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A. \tESCRIPTION OF THE SCIENTIFIC RESEARCH GOALS

The thrust of this project is to come up with the design and specification of advanced

composite materials using dielectric ceramics, chiral polymers or piezoelectric materials as

inclusions with polymer-based materials as the binders. The research is theoretical and

complements the associated experimental and developmental programs on such materials at the

Research Center for the Engineering of Electronic and Acoustic Materials and the Materials

Research Laboratory. Basic research on the interaction of electromagnetic and acoustic fields with

composite materials at wavelengths comparable to inclusion size and spacing were to be studied to

come up with structure- property relations that offer better possibilities for controling material

behavior than those permitted by simple mixing rules. Emphasis was on chiral composites,

piezoelectric composites, fractal composites, and ferrite composites. (2j) ;

B. SIGNIFICANT RESULTS IN THE PAST YEAR

Much progress has been achieved during the three years of this program as evidenced by the

numerous publications in refereed journals.

Basic research on the electromagnetics of chiral media have now been applied to chiral

waveguides, chiral mirrors and their applications, Green's functions for chiral media which were

then used in the solution of several problems of practical interest. The first monograph on this

subject entitled " Time Harmonic Electromagnetic Fields in Chiral Media " , co-authored by

Lakhtakia, Varadan and Varadan was published by Springer - Verlag in 1989. Multiple scattering

calculations have been extended to composites containing chiral inclusions, as well as anisotropic

inclusions. We have demonstrated that chirality significantly alters the absorption characteristics of

an otherwise low loss composite. This has also been verified by experiments on chiral composites

designed and prepared at our laboratory and measured in the 8 - 18 GHz frequency range. The

chirality parameter (3 has been measured for the first time for chiral materials. This parameter has

not been measured for optically active materials, although that phenomenon has been known and

studied for over one hundred years.

Composites containing anisotropic inclusions have been modeled, treating for the first time
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the effects of inclusion anisotropy. A new coupled dipole model was formulated and implemented

nemerically to compute the single scatterer response. These were then included in the multiple

scattering computations. The results were then compared with models which neglect the anisotropy

of the inclusions. The differences are tremendous and wrong approximations can lead to gross

errors.

The phenomenon of back scattering enhancement is of great practical interest because it may

permit imaging through composite media. This particular problem is engaging the interest of

several theorists and experimentalists. Using our multiple scattering formulation, we have been

able to obtain good agreement with enhancement observed experimentally on random systems in

the optical region.

The theoretical problems associated with the microwave sintering of ceramics fit very well

into the scope of our multiple scattering studies. Green ceramics in the form of porous pellets have

a high dielectric loss tangent, leading to absorption of microwave power and resulting increase of

temperature and loss tangent. This creates a condition for rapid increase of temperature often

referred to as temperature runaway. By theoretically analyzing the effective properties of the

porous ceramic, the thermal runaway condition can be predicted by including thermal effects via a

diffusion equation and hot wall boundary conditions correlated with experimental observations.

Research is ongoing in this area.

Inverse problems associated with ferrite composites have been studies. Ferrite composites

have both dielectric and magnetic properties which are complex and frequency dependent. From

measurements of the propagation constant, it is not possible to infer both properties. An inverse

procedure has been proposed and has been tested against experimental data. It can be used to infer

constituent properties from the data. This is a convenient way of obtaining constituent properties,

especially for constituents in powder form.

C. PLANS FOR NEXT YEAR'S RESEARCH

This is the final report for the three year program. The Center will continue development of

further applications of novel chiral composite as well as piezoelectric composite coatings for

various types of sensors and coatings.
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D. LIST OF PUBLICATIONS, REPORTS, PRESENTATIONS

1. Papers Published in Refereed Journals

T.R. Howarth, 'Book Review of Power Sonic and Ultrasonic Transducers Design,' J. Acoust.

Soc. Am. 85, 1989, 520-521 (B).

T.R. Howarth, 'Experimental studies using chiral composites as acoustic energy attenuators,' J.

Acoust. Soc. Am. 84, 1988, 1557 (T).

A. Lakhtakia, R. Messier, V.V. Varadan & V.K. Varadan, 'Incommensurate numbers,

continued fractions, and fractal immittances,' Z. Naturforsch. A 43, 1988, 943 - 955.

A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Excitation of a planar achiral/chiral interface by

near fields,' J. Wave-Mater. Interact. 3, 1988, 231 - 241.

A. Lakhtakia, V.V. Varadan & V.K. Varadan, 'What happens to plane waves at the planar

interfaces of mirror-conjugated chiral media,' J. Opt. Soc. Am. A 6, 1989, 23 - 26.

A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Green's functions for acoustic propagation of

sound in a simply moving fluid,' I. Acoust. Soc. Am. 85, 1989, 1852 - 1856.

A. Lakhtakia, V.V. Varadan & V.K. Varadan, "'ime-harmonic and time-dependent dyadic

Green's functions for some uniaxial gyroelectromagnetic media,' Appl. Opt. 28, 1989, 1049 -

1052.

A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Eigenmodes of a chiral sphere with a perfectly

conducting coating,' J. Phys. D 22, 1989, 825 - 828.

A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Influence of impedance mismatch between a

chiral scatterer and the surrounding chiral medium,' J. Mod. Opt. 36, 1989, 1385 - 1392.

Y. Ma, V.K. Varadan & V.V. Varadan, 'Effective properties of microwave composites,' J.

Wave-Mater. Interact. 3, 1988, 243 - 248.

V.K. Varadan, A. Lakhtakia & V.V. Varadan, 'Propagation in a parallel-plate waveguide wholly

filled with a chiral medium,' J. Wave-Mater. Interact. 3, 1988, 267 - 272.
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V.V. Varadan, A. Lakhtakia & V.K. Varadan, 'Scattering by three-dimensional anisotropic

scatterers,' IEEE Trans. Antennas Propagat. 37, 1989, 800 - 802. J. Wave-Mater. Interact. 3,

1988, 243 - 248.

2. Technical Reports

3a. Invited Presentations

V.K. Varadan, Y. Ma and V.V. Varadan, 'Modelling of dielectric properties of porous ceramics

during microwave sintering,' 91st Annual Meeting of American Ceramic Society, Indianapolis,

Indiana, April 23-27, 1989.

3b. Contributed Presentations

X.Q. Bao, J.H. Jeng, V.V. Varadan and V.K. Varadan, 'Designing and analyzing the

performance of PZT/polymer composite probes. II,' 91st Annual Meeting of American Ceramic

Society, Indianapolis, Indiana, April 23-27, 1989.

X.Q. Bao, V.V. Varadan and V.K. Varadan, 'Additional damping and wave attenuation in 1-3

piezoelectric composites due to electric conductivity,' 91st Annual Meeting of American Ceramic

Society, Indianapolis, Indiana, April 23-27, 1989.

T.R. Howarth, X.-Q. Bao, V.K. Varadan, V.V. Varadan, 'Large area sensors for active acoustic

control systems,' 117th Meeting of the Acoustical Society of America, Syracuse, New York, May

22-26, 1989.

T.R. Howarth, X.-Q. Bao, V.K. Varadan, V.V. Varadan, 'Passive and active acodstic

absorbing materials for underwater applications,' International Conference on Coatings and Sensors

for Acoustic and Electromagnetic/Optical Applications, University Park, Pennsylvania, May 9-11,

1989.

J.H. Jeng, X.Q. Bao, V.V. Varadan and V.K. Varadan, 'Designing and analyzing the

performance of PZT/polymer composite probes. I,' 91st Annual Meeting of American Ceramic

Society, Indianapolis, Indiana, April 23-27, 1989.

A. Lakhtakia, V.V. Varadan & V.K. Varadan, 'On left- and right-circularly polarized waves in

isotropic noncentrosymmetric elastic media,' Second Joint Meeting of the Acoustical Society of

America and the Acoustical Society of Japan, Honolulu, Hawaii, USA, November 14-18, 1988.
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A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Review of recent progress in the electromagnetic

theory of chiral media,' First Progress in Electromagnetics Research Symposium, Boston,

Massachusetts, USA, July 25-26, 1989.

Y. Ma, R. Ro & V.V. Varadan, "Wave scattering from rough surfaces using the facet-ensemble

approach,' Second Joint Meeting of the Acoustical Society of America and the Acoustical Society of

Japan, Honolulu, Hawaii, USA, November 14-18, 1988.

Y. Ma, V.K. Varadan & D.K. Ghodgaonkar, 'Inverse problems for ferromagnetic composites,'

91st Annual Meeting of American Ceramic Society, Indianapolis, Indiana, April 23-27, 1989.

Y. Ma, V.K. Varadan & V.V. Varadan, 'Enhanced absorption due to dependent scattering,' 1989

CRDEC Scientific Conference on Obscuration and Aerosol Research, Aberdeen Proving Ground,

Maryland, June 26-30, 1989.

V.K. Varadan, Y. Ma, V.V. Varadan & A. Lakhtakia, 'Electromagnetic wave propagation in

chiral composite materials,'First Progress in Electromagnetics Research Symposium, Boston,

Massachusetts, USA, July 25-26, 1989.

V.V. Varadan, A. Lakhtakia, Y. Ma & V.K. Varadan, 'Long and intermediate wavelength

models for the effective properties of a chiral composite material,' URSI International Symposium

on Electromagnetic Theory, Stockholm, Sweden, August 14-17, 1989.

S.K. Yang, V.V. Varadan, V.K. Varadan & S. Moghe, Transverse waves in structurally chiral

media,' IEEE 1988 Ultrasonics Symposium, Chicago, Illinois, October 2-5, 1988.

S.K. Yang, V.V. Varadan & V.K. Varadan, 'Characterization and thickness measurement of a

ceramic coating using an ultrasonic technique,' 91st Annual Meeting of American Ceramic Society,

Indianapolis, Indiana, April 23-27, 1989.

S.K. Yang, V.V. Varadan & V.K. Varadan, 'Acoustical activity in structurally chiral

composites,' 117th Meeting of the Acoustical Society of America, Syracuse, New York, May

22-26, 1989
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4. Books (and sections thereof)

A. Lakhtakia, V.K. Varadan and V.V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral
Media, Heidelberg: Springer-Verlag, 1989.

V.K. Varadan, Y. Ma, A. Lakhtakia and V.V. Varadan, 'Microwave sintering of ceramics,' in
Microwave Processing of Materials (Eds.: W.H. Sutton, M.H. Brooks & I.J. Chabinski),
Pittsburgh: MRS, 1988.

V.K. Varadan, V.V. Varadan and A. Lakhtakia, 'Principles of microwave interaction with
poymeric and organic materials,' in Microwave Processing of Materials (Eds.: W.H. Sutton, M.H.
Brooks & I.J. Chabinski), Pittsburgh: MRS, 1988.
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E. LIST OF AWARDS

Name of Person Recipient's Sponsor of

Receiving Award Institution Name of Award Award

T.R. Howarth Penn State 1988 Authors Award Raytheon Company

University



F. PARTICIPANTS AND THEIR STATUS

V.K. VARADAN (Principal Investigator), Professor

V.V. VARADAN (Principal Investigator), Professor

A. LAKHTAKIA, Assistant Professor

Y. MA, Assistant Professor

T.R. HOWARTH, Graduate Student

Y.W. KIM, Graduate Student

R.-Y. RO, Graduate Student
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G. OTHER SPONSORED RESEARCH DURING FY89

Item Amount V.K. Varadan V.V. Varadan

1. 1989 Center Memberships $225,000 11.0% 17.0%

2. Ben Franklin State Support
+PA Industrial Support for $320,000 24.5% 27.5%
projects in Materials Research

3. ONR Contract #N00014-82-K-0339
(Global-local sensing of fluid- $85,000 0.0% 2.0%
structure interactions)

4. ONR Contract #N00014-89-J-3102
(Global-local SAW sensors for $105,000 3.0% 3.0%
turbulence)
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H. PUBLICATIONS / PATENTS / PRESENTATIONS I HONORS REPORT

(Number Only)

Papers Submitted to Refereed Journals (and not yet published):

Papers Published in Refereed Journals: 12

Books (and sections thereof) Submitted for Publications: 0

Books (and sections thereof) Published: 3

Patents Filed: 1

Patents Granted: 0

Invited Presentations at Topical or Scientific / Technical Society Conferences: 1

Contributed Presentations at Topical or Scientific / Technical Society Conferences: 15

Honors / Awards / Prizes: 1

Technical Reports Published or Non-Journal Publications:O

Number of Graduate Students: 3

Number of Post-Docs: 0
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BRIEF RESEARCH REPORTS

Electromagnetic Response of Chiral Media

Electromagnetic waves in a chiral medium are circularly birefringent. In other words, left- and

right-circularly polarized waves, with different phase velocities, exist in this class of media. In

order to describe the electromagnetic properties of isotropic chiral media, the usual constitutive

equations, D = eE and B = gH, are inadequate because they admit to a single phase velocity.

Instead, D = e [E + DVxE] and B = g. [H + DVxH]; these constitutive relations are symmetric

under time-reversality- For a right-handed medium, the chirality parameter 03 > 0; while for a

left-handed medium, 5 < 0. Several theoretical aspects of electromagnetic wave propagation and

scattering in isotropic chiral media have been explored, and have been described in the previous

Annual Report.

A major activity during the present period was the publication of a book on electromagnetic

chirality in the Lecture Notes in Physics series published by Springer-Verlag. This is the first book

on the subject, and it aims to summarize the recent developments in this exciting new area.

Undertook as a service to the electromagnetics community, this book lays down the foundations of

electromagnetic theory as applicable to chiral media. [A. Lakhtakia, V.K. Varadan and V.V. Varadan,

Time-Harnonic Electromagnetic Fields in Chiral Media, Heidelberg:. Springer-Verlag, 1989.]

In general, when a wave propagating in a homogeneous isotropic chiral medium encounters a

homogeneous isotropic chiral scatterer, both the scattered and the internally induced fields contain

LCP and RCP components regardless of the state of polarization of the incident field. In the

previous Annual Report, we had shown that the reflected and the transmitted plane waves across the

planar interface of a mirror-conjugated chiral media have the same handedness as the incident plane

wave. It has now been proved that the scattered as well as the internal fields have the same state of

polarization as the incident field, if the scatterer and the surrounding medium are

impedance-matched; this conclusion holds regardless of the two chiral parameters involved as well

as the geometry of the scatterer. [A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Influence of impedance

mismatch between a chiral scatterer and the surrounding chiral medium,' J. Mod. Opt. 36, 1989, 1385 - 1392.]

A fully vector treatment of the problem of scattering by singly periodic interfaces between
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chiral and achiral media was developed. Using an improved T-matrix method of solution, this

treatment is able to bypass the restrictions imposed by the Rayleigh hypothesis. In addition, several

other related problems have their solutions embedded in the method developed. The specific

features of the solution procedure allow it be easily converted for doubly periodic interfaces. The

analysis may be useful for developing new surface-relief gratings made using chiral materials. [A.

Lakhtakia, V.K. Varadan & V.V. Varadan, 'Scattering by periodic achiral-chiral interfaces,' accepted for publication in

J. Opt. Soc. Am. A]. Furthermore, the excitation of a planar achiral-chiral interface by near fields was

also examined. [A. Lakhtakia, V.K. Varadan & V.V. Varadan, 'Excitation of a planar achiral/chiral interface by

near fields,' J. Wave-Mater. Interact. 3, 1988, 231 - 241.]

Wave propagation in unidirectionally inhomogeneous chiral media was examined, i.e., the

constitutive properties of the chiral media vary along the z axis. It was also assumed that the

electromagnetic field was a function of the z coordinate alone. It was shown that the electromagnetic

field, in this arrangement, can be decomposed into two mutually-independent circularly-polarized

states. Coupled first-order differential equations were derived to describe the fields, and various

solution procedures discussed. Extension was made to the case when the medium inhomogeneity is

periodic, for which case a perturbational solution was explicitly given.[A. Lakhtakia, V.K. Varadan &

V.V. Varadan, 'Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium,' accepted for

publication in Int. J. Engg. Sci.]

In the previous Annual Report, we had described spherical chiral resonators. Continuing on the

same lines, propagation of electromagnetic waves in a parallel-plate waveguide wholly filled with a

chiral medium was examined. The dispersion equation derived leads to two sets of modes, and the

propagation constants for the two sets were numerically obtained. [V.K. Varadan, A. Lakhtakia & V.V.

Varadan, 'ropagation in a parallel-plate waveguide wholly filled with a chiral medium,' J. Wave-Mater. Interact. 3,

1988, 267 - 272.]

In another effort to utilize the geometric foundations of chirality, the reflection and the

transmission characteristics of a structurally chiral slab had been investigated in the previous year.

This effort has been further extended this year. By stacking up unit cells made of (identical)

structurally chiral slabs, a periodically inhomogeneous medium was constructed. Each structurally
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chiral slab was made up of a certain number of identical uniaxially anisotropic plates, the

consecutive optic axes describing either a right- or a left-handed spiral. When the unit cell thickness

is very small compared to the principal wavelengths in the uniaxial plates, the periodically

inhomogeneous uniaxial medium was shown to be equivalent to a homogeneous biaxial medium,

the two optic axes of the equivalent medium being dependent on the handedness of the periodic

medium. [V.V. Varadan, A. Lakhtakia & V.K. Varadan, 'Propagation through a periodic chiral arrangement of

identical uniaxial dielectric layers and its effective properties,' accepted for publication in Optik] A similar result

was also obtained when the uniaxial plates were replaced by biaxial plates. [A. Lakhtakia, V.K. Varadan

& V.V. Varadan, 'Effective properties of a periodic chiral arrangement of identical biaxially dielectric plates,' accepted

for publication in J. Mater. Res.]

When particles of considerable concentration are dispersed in a host medium to form a

composite, multiple scattering dominates the scattered energy when waves are impinging upon

them. While this effect is known and shown for various dense systems, it has never been examined

for chiral composites. Therefore, preliminary investigations were undertaken this year. The

scattering response of a single chiral particle is cast in terms of a T-matrix. The circular

birefringence of chiral media does not generate any difficulties in the present multiple scattering

formulation, if and only if the composite medium is assumed to be achiral (or weakly chiral).

Although a rigorous multiple scattering formalism needs to be introduced when the effective

medium is chiral, at least in the low frequency regime, using Maxwell-Garnett Approximation

(MGA), we have derived the dispersion equation for an effectively chiral composite medium. [V.v.

Varadan, Y. Ma & V.K. Varadan, Effects of chiral microstructure on EM wave propagation in a lossy dielectric

composite material,' accepted for publication in Radio Science] The low frequency expressions of the

dispersion equation using the Bruggeman approximation were also obtained. [V.V. Varadan, A.

Lakhtakia, Y. Ma & V.K. Varadan, TLng and intermediate wavelength models for the effective properties of a chiral

composite material,' URSI International Symposium on Electromagnetic Theory, Stockholm, Sweden, August 14 -

A7 1989]. Finally, computed results of microwave properties of chiral composite materials, were

obtained by the numerical solution of the dispersion equations. [VIC. Varadan, Y. Ma, V.V. Varadan &

A. Lakhtakia, Electromagnetic wave propagation in chiral composite materials,' First Progress in Electromagnetics
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Research Symposium, Boston, Massachusetts, USA, July 25 - 26, 1989]

Acoustic Chirality

The premise for acoustic chirality in elastic solids has been investigated by us in the past, and

was reported in the Previous Annual Reports. In an effort to synthesize structurally chiral media,

layered composites were examined. These are made up by stacking identical uniaxial plates, their

consecutive symmetric axes describing either a right- or a left-handed spiral. The field equations

governing the harmonic motions of the layered composite were written as a first order matrix

ordinary differential equation, where the field variable is a 6-vector consisting of the displacement

and traction components. A matrix representation method was used for solving the reflection and

transmission characteristics of the layered composites; it is noteworthy that this method is not

affected by the number of layers. Numerical results of the plane wave reflection and transmission

characteristics were obtained for these chiral arrangements. It was observed that the co-polarized

characteristics are unaffected by the structural chirality, while the cross-polarized reflected and

transmitted electromagnetic fields are greatly influenced by it. These investigations will shortly be

submitted for publication.

Experimental research on the use of chiral composites for acoustic attenuation continued during

the present period. The composites were constructed by embedding piezoelectric springs in a

polymeric material. Each chiral inclusion was also backed by an air-filled cavity, while echo

reduction and insertion loss were measured in an acoustic pulse tube. The results of our

investigations demonstrated that underwater sound attenuation could be enhanced by embedding

chiral-shaped inclusions in polymeric materials. Further research is in progress.

Effective Properties of Ferromagnetic Composites

Ferrite composite materials as well as other ferromagnetic, carbonyl iron composites have

recently received wide attention due to their various applications over quite a broad microwave

band. Electromagnetic shielding ability and wave absorbing efficiency are just two of their popular

characteristics. In order to use these materials in different environments and to optimize their
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capabilities, we must carefully tailor their properties. In this context, we have developed a direct

formalism which can be used to predict the effective electromagnetic properties of ferrite composite

materials [Y. Ma, V.K. Varadan & V.V. Varadan, ?rediction of electromagnetic properties of ferrite composites,'

submitted for publication in Progress in Electromagnetic Research ].

In addition, for many types of ferrites, it is hard to directly measure the frequency dependent

complex permittivity and permeability due to their high electric conductivities. We have developed a

new technique to predict these complex properties using the effective property measurements done

for a high (or low) porosity ferrite composite, as well as our mutiple scattering formalism. [Y. Ma,

V.K. Varadan & D.K. Ghodgaonkar, 'Inverse problems for ferromagnetic composites,' 91st Annual Meeting of

American Ceramic Society, Indianapolis, Indiana, April 23-27, 1989].

Modified Flux Models and Their Applications to Coating Design

In two- and four- flux models of radiative transfer theory, the scattering coefficients or

efficiencies of non-emitting media are commonly computed using the single-scattering albedo, while

the interactions among particles are neglected. The flux models are modified by considering multiple

scattering. One application of the modified flux model is to predict the opacity of high pigment

volume concentration paint coatings. Therefore, we introduced the multiple scattering formalism

and have shown from the resulting equations how the multiple scattering albedo can be calculated

from the effective propagation constant K. The multiple scattering albedo so obtained can be used in

the flux model to compute the diffuse reflectance of the corresponding paint film.

Because the refractive index of pigment particles used in the measurements is direction-

dependent, the modeling of an anisotropic scatterer wass introduced. For an unpolarized light

source, illuminated anisotropic particles of random orientation can be thought of as having an

average refractive index over the optical axes within the particles in most of the visible spectrum.

This information is used to compute scattering cross section or the T-matrix.

We also reviewed the existing formalisms of the flux models. The coupled differential

equations for the diffuse reflectance and transmittance are solvable in general. However, the

coefficients in the equations were modified by incorporating multiple scattering. The boundary
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conditions for the real paint films cannot be ignored and we considered two different diffuse

substrates in order to justify the opacity through the contrast ratio. Though in most cases theoretical

results compare favorably well with those measured, the discrepancies in some case due to either

the anisotropic modeling or inaccuracy in the values used for the substrate are discussed [Y. Ma,

V.V. Varadan & V.K. Varadan, 'Modified flux models considering multiple scattering - application to opacity of

coatings,' submitted, Applied Optics].

Enhanced Absorption due to Dependent Scattering

In a recent series of studies on light scattering from pigmented surface coatings or by radiative

heat transfer in powder insulators, it has been shown that for densely populated heterogeneous

media dependent scattering as well as dependent absorption have to be considered. As a result, for

paint opacity, the dependent scattering-absorption can greatly affect the diffuse reflectance as it does

the overall thermal radiation resistance of the powder insulation composites. Analogous to the

aforementioned applications, chemical and nuclear reactors, fuel combustors, cryogenic insulation,

microwave and laser coatings, artificial obscuration materials and many other commercial and

military systems usually involve a high concentration of particles. In order to analyze the energy

transport characteristics, the dependent scattering and absorption properties cannot be ignored.

The role of multiple scattering on dependent scattering as well as on dependent absorption was

investigated for heterogeneous media containing a high concentration of particles. The decrease of

scattering and increase of absorption for lossy (with intrinsic absorption) particles in a lossless

matrix was quantitatively described by the use of a Rayleigh region solution derived from a multiple

scattering formalism. For smaller wavelengths, dependent scattering and absorption was obtained

through nvnerically solving the resulting dispersion equation. Numerical results were computed for

lossless particles in a lossy matrix which models an optical coating system. [(i) Y. Ma, VX. Varadan &

V.V. Varadan, 'Enhanced absorption due to dependent scattering,' accepted for publication in ASME Journal of Heat

Transfer; (ii) Y. Ma, V.K. Varadan & V.V. Varadan, 'Enhanced absorption due to dependent scattering,' 1989

CRDEC Scientific Conference on Obscuration and Aerosol Research, Aberdeen Proving Ground. Maryland, June

26-30, 1989]
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Modeling of Dielectric Properties of Porous Ceramic Materials

In our experimental studies on the microwave sintering of ceramics, it has been observed that

the (initial) porosity of the green sample predetermines the subsequent sintering rate [V.K. Varadan, Y.

Ma, A. Lakhtakia and V.V. Varadan, 'Microwave sintering of ceramics,' in Microwave Processing of Materials (Eds.:

W.H. Sutton, M.H. Brooks & IJ. Chabinski), Pittsburgh: MRS, 1988].The change in porosity during

sintering is a complex thermodynamic process, rooted in the absorbed microwave energy; the

instantaneous absorption depends on the temperature-dependent dielectric loss of the porous

sample.

We have proposed a model to quantitatively describe the change in the dielectric properties

using the effective two-body inter-particle potentials. These potentials depend on the porosity as

well as on the temperature. At the critical porosity (or ,the critical temperature), a phase switch can

thus be predicted [V.K. Varadan, Y. Ma and V.V. Varadan, Modeling of dielectric properties of porous ceramics

during microwave sintering,' 91st Annual Meeting of American Ceramic Society, Indianapolis, Indiana, April

23-27, 1989]. In addition, using analytical expressions [Y. Ma, V.K. Varadan & V.V. Varadan, 'Effective

properties of microwave composites,' J. Wave-Mater. Interact. 3, 1988, 243 - 248] we have predicted dielectric

properties of some sintered ceramic materials. The computed results compare quite well with those

measured which were provided by Georges Roussy from Universite' de Nancy 1, France.



The Journal of the Acoustical Society of America

Vol. 85 (1), January 1989. pp. 520-521.

BOOK REVIEWS

Power Sonic and Ultrasonic Transducers an accurate portrayal of the present problems being encountered in low.
Design frequency sonar transducers.

"Frequency, Power and Depth Performance of Class IV Flextensional

B. Harmonic and J. N. Decarpigny, Eds. Transducers" is the title of Chap. 6 as cowritten by J. Qswin and J. Dunn of
Springer New York. 1988. British Aerospace, Underwater Research and Engineering Unit in Wey-

mouth, United Kingdom. This paper gives an excellent overview of the
x + 249 pp Price S59.40. Class IV flextensional transducers from the original patents to present. Dis-

cussions on depth, power, and frequency performance are given along with
simple design guidelines. A correction on the dates of the two Toulis patents

The subject of power sonic and ultrasonic transducers has been rapidly (references 6.1 and 6.11 ) must be clarified though. The authors incorrectly
expanding on an international scale over the last several years. This book is listed the patents as being granted in 1963 but in actuality the patents were
a collection of papers resulting from the Proceedings of the International first filed in 1963 and granted in 1966. A minor point but one that should be
Workshop on the Design of Power Sonic and Ultrasonic Transducers, as quantified to establish an accurate historical setting.
held in Lille, France, on 26 and 27 May 1987. A presentation of some of the Chapter 7 is titled "Opportunities and Challenges in the Use of Ter-
latest transducer design techniques, applications, and available materials fenol for Sonar Transducers," by J. M. Sewell and P. M. Kuhn of Martin
are given. The complete text includes 222 figures and is written iii English. Marietta Aerospace in Baltimore, Maryland. This paper begins with a brief

The contents of the book begin with an introductory lecture by B. comparison between piezoceramic and terfenol, and is then followed with a
Tocquet and follows with the 13 papers written by each of the invited Work- discussion of terfenol transducer performance characteristics. Even though
shop contributors. Each chapter is an individual paper, and, as such, they the authors found several positive points in the designs presented, the tech-
can stand on their own. nology shown here is antiquated. Their methods for applying both the dc

The first chapter is entitled "Power Limitations of Piezoelectric (magnetic) and the mechanical bias are ineffective and will result in low-
Length Expander Transducers," by Oscar B. Wilson of the U.S. Naval efficiency devices. The educated reader will readily notice that the latest
Postgraduate School in Monterey, California. This paper discusses some of reference given is 1977, despite the literature and patents published by the
the internal and external power limiting factors of electroacoustic trans- Naval Underwater Systems Center (NUSC), Raytheon Company, and Im-
ducers. Effective use of an equivalent network is provided with the example age Acoustics, among others, that have advanced this technology much
discussion of a longitudinal vibrator. further along.

L. Eyraud of the Laboratoire de Genie Electrique et Ferroelectricite in "Application of the Finite Element Method to the Design of Power
Villeurbanne, France authors the second paper "The Material for Piezo- Piezoelectric Sonar Transducers" and "Determination of the Power limits
electric Power Transducers" and coauthors the third paper "Characteriza- of a High Frequency Transducer Using the Finite Element Method" are the
tion of Piezoelectric Ceramics for High Power Transducers" with P. Gon- titles to Chaps. 8 and 9, respectively. The first one, authored by B. Harmon-
nard and P. Champ of the same address. Chapter 2 discusses the ic (oneof the two book editors) of the lnstitutSuperieurd'Electroniquedu
mechanisms of piezoceramic stability as a function of aging and polariza- Nord, Laboratoire d'Acoustique, in Lille, France, presents FEM analysis
tion through a discussion of chemical compositions, while Chap. 3 charac- (with ATILA code) on several sonar transducer designs. Chapter 9, co-
terizes various ferroelectric parameters. An analysis of piezoceramics under written by W. Steichen, G. Vanderborck, and Y. Lagier of Thornson-Sintra
cw and pulsed conditions is presented with the limiting factors of each in Valbonne, France, explains a multiprocedure FEM analysis that includes
detailed. acoustic radiation and thermal and dielectric losses. Although this method

The fourth chapter is titled "Highly Magnetostrictive Rare Earth appears rather tedious, the experimental and computed examples are in
Compounds for High Power Acoustic Projectors," by Arthur E. Clark from general agreement.
the Naval Surface Weapons Center (NSWC) in Silver Spring. Maryland. The next two chapters present discussions on novel new ultrasonic
This paper is a reproduction of a chapter (7) written in 1980 in the book. transducer designs for industrial applications. Chapter 10 is entitled "High
Ferromagnetic Materials, Volume 1, published by North-Holland, Amster- Power Ultrasonic Transducers for Use in Gases and Interphases," by J. A.
dam. It presents a background and detailed discussion of magnetostrictive Gallego-Juarez of the Instituto de Acustica in Madrid, Spain, while Chap.
lanthanide compounds. Although the discussion appears complete, much II is entitled "Design of High Power Ultrasonic Transducers for Use in
of the literature is dated and does not include the excellent recent work done Macrosonics," by P. Tierce of Sinaptec Sari and J. N. Decarpigny (the
by Clark and his colleagues at NSWC. second editor of the book) of the Institut Superieur d'Electronique du

D. Boucher of Groupe d'Etude et de Recherche en Detection Sous- Nord, Laboratoire d'Acoustique, both in Lille, France.
Marine in Toulon, France penned Chap. 5 "Trends and Problems in Low The functions and architecture of a sonar emitting system are present-
Frequency Sonar Projectors Design." A discussion on various classical so- ed in Chap. 12 under the heading "Power Electronic Devices for Sonar
nar transducer designs is presented along with an effective briefing on array Systems," by C. Pohlenz of Groupe d'Etude et de Recherche en Detection
interaction effects. Unfortunately several of his commentson specific trans- Sous-Marine (GERDSM) in Toulon. France. This paper offers several
ducer designs are quite misleading. For example, when he states "...the methods for solving difficult impedance matching problems in a sonar sys-
work in this field (Class IV flextensional design) has been pursued as far as tern. Disappointingly, it is the only paper that did not offer any references
'possible," he ignores the recent resurgence of the Class IV flextensional for further study. The final paper in the book. Chap. 13, is "The Electronic
desip utilizing lanthanide drivers, high strength epoxy shell composites, Driving Sources for Ultrasonic Machining," by B. Thirion of Slice Sari in
and new multidimensional array designs. On the other hand, his summary is Lille. France.

520 J. AcousL Soc. Am. 11(1), Jan. 1969 0001-4966/89/01520-02500.80 *) 1989 Acotltical Society of America 520

In summary, although I found several papers reporting on "past glor-
ies," 1 feel that most transducer designers and material scientists will benefit
from this book. It offers a rare glimpse of the international transducer world
with a wide variety of useful global references. It is not limited to the under-
water sonar designer since it additionally offers innovative ultrasonic de-
vices that may be found in use in the private sector.

THOMAS R. HOWARTH
Department of Engineering Science and Mechanics
Research Center for the Engineering of Electronic and Acoustic Materials
The Pennsylvania State University
University Park. Pennsylvania 16802
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TECHNICAL NOTES AND RESEARCH BRIEFS

Advanced-degree dissertations In acoustics

Expermintal studies using chirsi composites as acoustic energy
attenuators (43.30.Ky-Thomns R. Howarth, The Research Centerfor
Engineering of Electronic and Acoustic Materials Department of Engineer.
ing Science and Mechanics, The Pennsylvania State University. University
Park. PA 16802, May 1988 (M.S). The area of underwater acoustic attenu-
ation has been a subject of much research since the 1940s. The Germans first
investigated the use of air-rubber baffles to camouflage their submarines for
active sonar. In their study they also developed a water-filled acoustic pulse
tube device for determining air-rubber performance characteristics under
various hydrostatic pressures and temperatures. In the late 1970s and into
the 1980s other types of designs have been sought. It was found by using the
concept of a T matrix in conjunction with multiple scattering theory that
the use of piezoelectric chiral-shaped elements could replace the air pockets
of the previous designs and offer new mechanisms for acoustic energy at-
tenuation. This thesis investigates experimental studies using piezoelectric
chiral composities for acoustic attenuation. A discussion of the theoretical
concepts is given followed by the techniques used for fabrication of test
samples. Background and operation of the pulse tube measurement system
are provided followed by a discussion of measured results. Recommenda-
tions for future investigations conclude the presentation.

Thesis Advisor. Vijay K. Varadan.
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Incommensurate Numbers, Continued Fractions,
and Fractal Immittances
A. Lakhtakia*, R. Messier*'**, V. V. Varadan *, and V. K. Varadan*
The Pennsylvania State University, University Park, PA 16802 (USA)

Z. Naturforsch. 43a, 943-955 (1988); received June 10, 1988

Continued fractions have a rich tradition in the theory of numbers; e.g., non-terminating con-
tinucd fractions rcprcscnt irrational numbers. It will he shown thal a class of continucd fractions
possess the property of self-referential decomposition, and their interpretation in the form of non-
terminating ladder circuits gives rise to fractal immittances with potential analogies to rough
surfaces, thin cermet films, as well as to the internal void network structure of thick films.

Introduction Continued Fractions and Quadratic Irrational Numbers

The motivation for this work comes from number Any rational or irrational number can be written
theory: the representation of irrational numbers in the down in the continued fraction form as [8]
Stieltjes continued fraction form, and which has al- 1
ready inspired the development of ladder circuits [1]. (a, a,, a 2 , a3 ... ) = a + 1
Continued fractions have recently been used in under- a, +
standing fractal quantization of particles in one- a2 +
dimensional potentials with incommensurate periods a3 +... ()
[2], as well as in two-dimensional electron gases [3]: a with a,, a,, etc. being positive integers (but see Ap-
particularly appealing and simple interpretation of pendix]. The continued fraction is finite in size when
the relevant Hamiltonian has been given by Chao [4]. it represents any rational number p/q, with ao being
Continued fractions have also been applied in examin- the integral part of the ratio p/q; it turns out that every
ing the frustrated instabilities of active optical resona- rational number has exactly two such representations
tots [5]. [9]. On the other hand, irrational numbers have con-

Although continued fractions have seen some use in tinued fraction representations which are infinite in
the characterisation of the rough surfaces of real mate- size. Of these irrational numbers, there is a class of
rials '[(6,71, they have not been applied yet to the quadratic irrational numbers which are solutions of a
inhormogeneous internal structure of materials. It will quadratic equation. A theorem due to Lagrange [10]be shown that specific examples of the resulting ladder
circuits have fractal immittances with potential ana- states that the continued fraction expansion of any

logies to both cermet thin films and films with internal quadratic irrational is periodic after a certain state,
void networks; and, hence, to the related film proper- e. (. ,
ties. /i1 = (3, 1,6, 6, 1,6,

,31= < 5, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1
10, 1, 1, 3, 5, 3, 1, 1, 10, ...>,

{24 - 4/5}/17 = (1, 5, 2, 3,2, 3,2,3,...>.
Department of Engineering Science and Mechanics.

• Materials Research Laboratory. I It is the representation of quadratic irrational num-
Reprint requests to Prof. R. Messier, Engineering Science bers which is of particular interest in the present con-
and Mechanics, 265 Materials Research Labroatory. The text. The simplest example is the number
Pennsylvania State University, University Park, PA 16802,
USA Q ) = <0, A 1, ... >; / >0, (2)

0932-0784 / 88 /1100-0943 S 01.30/0. - Please order a reprint rather than making your own copy.
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EXCITATION OF A PLANAR ACHIRAL/CHIRAL INTERFACE

BY NEAR FIELDS

A. LAKHTAKIA, V.K. VARADAN and V.V. VARADAN
Deparment of Engineering Science and Mechanics

and
Research Center for the Engineering of Electronic and Acoustic Materials

The Pennsylvania State University
University Park, PA 16802

ABSTRACT

The refraction of nearfields by a planar achiralichiral interface has been examined. A realistic source, a
constant current line source, has been used here, as apart from the usual analyses involving incident
planewaves only. Provided a planewave spectral decomposition of the incident field is possible, this
procedure can be extended to include sources of other configurations and polarizations as well. Maps of the
refracted field are drawn to elucidate the effect of both the near-zone irradiation as well as of the handedness of
the chiral medium. Such an analysis would be of use to various researchers in the area so that the effect of
the near fields of radiating sources may not be ignored.

1. INTRODUCTION

Ever since the discovery of optical activity early in the last century, there has been a great interest in
measuring the circular dichroic (CD) and the optical rotatory dispersion (ORD) spectra of molecular
aggregations [1]. Such measurements are routinely made, at frequencies down into the infra-red regime
nowadays. The measurement procedures usually are variants of a simple technique: A planar slab of the
optically active, or chiral, material is irradiated by a source, the polarization state of the irradiating field being
known. On the other side of the slab, the rotation of the plane of polarization of the transmitted field with
respect to that of the incident field is measured, and the CD and the ORD of the material determined. A good
description of such an experiment conducted at frequencies around 10 GHz is available in [2], where Tinoco
and Freeman describe the procedure for measuring the optical rotatory activity of a collection of oriented
copper helices, each approximately 0.5 cm in diam and about 1 cm long.

However, this and other such measurement techniques usually ignore the proximity of the chiral slab to
the source. If the source is far away from the exposed face of the slab, the illuminating field may be
conveniently taken to be a planewave. But when that is not so, the slab lies in the near-zone of the source,
where the irradiating field has reactive components of large magnitudes. In such circumstances, the planewave
approximation of the source field can be quite gross. In this communication, the nature of the fields excited
in a chiral half-space are examined. The source is taken to be a constant current line source, the field radiated
by which source is decomposed into an infinite set of planewaves, some of which are propagating and the
remaining ones are evanescent It is to be emphasized here that any other source can be accommodated in this
theoretical procedure, provided its field can be expressed by a planewave spectral (PWS) representation [3]. By
mapping the field refracted into the chiral half-space, some understanding of the effect of near-field irradiation
of achiral/chiral interfaces is obtained.

2. REFRACTION OF A TE-POLARIZED PLANEWAVE BY A PLANE
ACHIRAL/CHIRAL INTERFACE

Let the space z < 0 be filled by a non-dissipative achiral medium (here taken to be free-space) in which
the constitutive relations

D= 0 E , B=.oH (la,b)

hold, and from which a TE-polarized planewave

Journal of Wave-Material Interaction, Vol. 3, No. 3, July 1988
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Ei(s)=jexpU (sx+%3o(C)z)] , Hi()=(1/jo4L)VXEi(K) , (2a,b)

with

2- 211/212
0 () +[ko 1 I ,ko = (to[R ]1/2 (3a,b)

is incident on the interface z = 0. the harmonic time-dependence exp[-jct] being suppressed here and hereafter.
and the unit vectors i, j, k having their usual meanings in a rectangular co-ordinate system.

The region above the z = 0 interface, z > 0, is occupied by a chiral medium in which the constitutive

equations are given as (4,5]

D=e(E+aVxE) , B= {H+aVxH) (4a,b)

and in which it would be proper, because of Snell's law, to express the transmitted field as (6]:

Etic) = TL(ic) QL(K) + aR TR(ic) QRc) ; (5a)

H t(K) = aL TL(ic) QL(K) + TR(SK) QR(K) (5b)

in which TL,ROC) are to be determined by the boundary conditions on the interface z = 0, and the left- and the

right-circularly polarized (LCP and RCP) wavefunctions, respectively, are given as

QL(K) = (1/kL) (-PL(K)i -jkLj + i}k) expoi (cx + 3 L()zl , (6a)

and

QR (K) = (1/kR) 14R (Kc)i -jkR i+ )k) explj {scx + I 3R(KC)z}] (6b)

In Eqs. (5) and (6) the following definitions holdi

3.= _j[E/R]1/2., aR =-j[ 1 (2 (7a,b)

kL=k[1-ka]-i , kR=k[+kal -  , (7c,d)

2- 2 1/2 pRY2 21/2
PL( ) = + [k LK I R( k) +[k I , (7e,f)

l(2k = wo [gel (7g)

The field reflected back into the achiral medium also has LCP and RCP components, and it can be

expressed in the form [6]:

Er(1) = RR(c) PR(C) + RL(c) PL(c) , Hr() = (1/jcw 0 ) V x ErO() (8a,b)

where RLR(x) are to be determined and the wavefunctions,

P R(1C)= (1/k) (5, 0(c)i +jkoj + sA) exp[j (Ix -3 0 ()z}] , (9a)

-PL (K)1= (lk) -(j)i-jkaj + AckI expU I x - 0,(1c)z] . (9b)

By invoking the usual boundary conditions across the z =0 interface, i.e.,

k x [E1(ic) + Er(k) - EE(c)] =0 , k x [H i(u) + H(1) - Ht(K)] 0 , (10a,b)

and using Eqs. (1), (5) and (8), it can be shown that

TL(i ) = 2i [S + a Q(KC)] / A(K) (h a)

Journal ofWave-Material Intaction, Vol. 3, No. 3, July 1988
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TR() = 2j [aL S - P(c)] / A(c) , (I b)

RL() =-(1/4 ) [TL() {(P(OO+1) (aL S + 1) + TR(C) (Q(K-1) {S +a}] , (1 kC)

RRM(1:ff(/4) [TL(:){IP(M)-I 1)1alS - 1)+TR( IQ00)+ 1)1 {S -aR] I (Il1d)

A(i)=[S +aR Q(C)] [1 -a LP() S]-[aLS-P(c)][aR+Q(K)S] , (Ile)

ani

P(c) = (ko/,kL) [ 3L()/Io(K)] , Q(C) =(k/kR) [PR(K)/Po(K)] , S =-j [R.0/%] 1 /2

(llfg,h)

It should be noted that if a =0 , i.e., the medium above the z = 0 interface also becomes achiral, then

kR =kL= k , PR() =L(K) = PC) = + [k2 -K 211/2 (12a,b)

P(K) i Q(1C) = (kJk) [P3(K)/ 3 (K)] , (12c)

TL( ) = R TR(K) =j aR [aR +Q(KC)S] -  (12d)

and

RR(C) = - RL(K) = (112)j [aR - Q(c) S] [aR + Q(1C) S] -  ; (12e)

consequently, the familiar expressions available in any standard textbook [e.g., 71 on EM theory emerge:

Et(K)=j2aR [aR+Q(Kc)S] - expU ({cx+13(K)z}] , (13a)

and

Er(c) = -j [aR- Q(c) S] [aR + Q(c) S]1- expu (lx- 5o(0)z) . (13b)

3. REFRACTION OF THE FIELD OF A LINE SOURCE

Let now an isotropically radiating, y-directed current line source be located at rp = -kdp in the achiral
half-space, and its radiated field be set as [8]:

EI = jxH0 (klr - r pl (14)

A planewave spectral (PWS) decomposition [3] of this field is possible, and is given by

EI = jf [drKoi(c)] expUI30(K)dp] exp[j ({cx + 0o()z) I, z>-dp , (15a)

and

E1 =j J[dKJ/%(0 )] exp[-j30(K)d ] exp[j (cx-Po(c)z}] , z<-d . (15b)

In view of the PWS decomposition, Eq. (15a) and the development of the preceding section, it is
possible to write down the total field existing in the chiral half-space due to the line source as

Journwn of Wave.Materiel Interaction, Vol. 3. No. 3, July 1988
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Er=f [dIYJ 00o1 exPU (iC)d P I (TL(K)QL(Q)+ aRTR(ic)QR(K)) , z>0 . (16)

Likewise, provided it is assumed that the field reflected from the achiral/chiral interface does not influence the
line source current, the total field existing in the space z < -dp can be set down as

ER= J [di[po(c)] exp[JI3(K)dp I {RR(K) PR(ic) + RL(K) PL(ic)) +

+jf[d o(K:)]exp[-jio(K)dPlexpUj {X-1o(K)z}] ,z<-dp (17)

4. DISCUSSION

It is the function ET which has to be mapped in the xz plane in order to understand the fields generated
in the chiral half-space. It is obvious that the K-domain poles can be extracted simply by solving the
equation A(ic) = 0. However, such poles are of little interest in the present analysis. Instead, the only recourse
is to actually map ET over an xz grid for a given set of parameters. It would certainly be useful then to
exploit the x- and the x-symmetries of the various parts of the integrands in q. (16), and it turns out that

ET= 2 [dckL3o(K)]p expop,(K)d1,I expOjPL(i)z] TL(K) (-ipL(K)coslx-JkL OSlcx+kjxsinicx) +

0

+ 2aR f [dc*RPo(K)] expUIj 0(K)dp] exp[j1R(K)z] TR() --PR(K)coswx+jJkRcosx+kj~sin~x,
0 Z>0, (18)

whose cartesian components have either even or odd symmetries with respect to the x coordinate.
A computer program to calculate ET was implemented on a DEC VAX 111730 minicomputer via Eq.

(18). The infinite ic-integral in Eq. (18) was truncated to hold over the range 0 < r/k o < 20.0, it being
observed that this truncation did not give rise to any errors for the selected values e0 < 5.0, Wl4o = 1.0, ak
< 0.1 and kod = 2.0. The magnitudes of the x-, y-, and z- directed components of the LCP and the RCP
parts of ET, as well as of the total ET, are illustrated in Figs. 1 - 4 for several cases over the rectangular
region 0 < kx/dp kz/dp < 10.0.

In Fig. 1, T = El since e/eo = 1.0 and ak = 0.0. This illustration, therefore, simply shows the field
radiated by the line source in the specified xz domain when all space is covered by the non-dissipative achiral
medium. As was expected and can be observed from this figure, the magnitudes of the RCP and the LCP
parts of ET are identical, but ET is only y-directed. In Fig. 2, the ratio eo was increased to 5.0 with rxk
still equal to zero. Again, ET turns out to have only a y-directed component, the x- and the z- directed
components of its LCP and RCP parts having cancelled themselves out. These two figures are then simply
symbolic of what can be expected when the refracting half-space is also achiral [8].

This cancellation of the x- and the z- directed components of the LCP and the RCP parts of ET does not
occur in Fig. 3 where eteo = 5.0 and ak = 0.01. The magnitudes of the LCP and the RCP pans of ET are
still equal by virtue of the fact that all possible values of ic ( positive as well as negative) are included in Eq.
(18). However, the sum of these pats still shows the presence of the x- and the z- directed components,
which had cancelled out in Figs. I and 2 where ak = 0.0. The effect of handedness in the half-space z > 0 is
betrayed, thus, by the presence of a transmitted electric field ET which is not TE polarised like the source
field El. This tendency is even more marked in Fig. 4 where e/eo = 5.0 and ctk = 0.1. Furthermore, in
Fig. 4, ET records well-defined extrema, which are not as prominent in Fig. 3. It becomes possible to state,
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Figure 5 Magnitudes, from left to right, of the x- and y- directed components of ET when El is given by
Eq. (19). The parameters kod p = 2.0, C/e = 5.0, 11/± 0 =1.0 and ctk = 0. 1. The field maps are
drawn on the xz domain 0: W xdp. kz/dp g 10.0.
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RCP part of ET, and ET itself. The parameters kod p = 2.0, eleo, = 5.0, W/ii = 1.0 and ak = 0. 1.
The field maps are drawn on the xz domain 0:5 kx/dp, kz/dp 10.0.
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therefore, that if otk << 1.0, then kR - kL - k and the effect of the chirality parameter a is slight on the
field ET as can be seen from comparing Fig. 3 with Fig. 2. But as cak increases, then kR and kL differ
widely from k [9], and the interference of the LCP and the RCP parts of ET is all too visible.

Some idea of this interference can be drawn from considering only specific values of ic in Eq. (18]) or,
equivalently, by modifying the line source field El of Eq. (14) to

EI = jxH0(klr - r 1) 8(K) , (19)

where 8(.) is the Dirac delta function. Shown in Fig. 5 are the magnitudes of the x- and the y- directed
components of ET, with e/eo = 5.0 and cdc = 0.1, there being no z-directed component of ET. If Eq. (19])is
used as the incident field, then, from the preceding theoretical analysis, it is easy to see that

E.T =[2/k(S+aR)]expU(kz--kodP)] {-i sin(k cz) + j cos (k 2z)} , (20a)

provided ak < 1 and the approximations

kL-k[l+tk] ; kR=k[1-zk] (20b,c)

are valid. Fig. 5 vindicates Eq. (20a) very well and it also becomes easy to observe the mutual interference of
the LCP and the RCP parts of ET in deriving this equation.

Finally, in Fig. 6, the incident field is modified to

E1 =jxH0(klr-rp)5(K-ko4) , (21)

and ET is computed; e/e o = 5.0 and azk = 0.1. It turns out that P(ko/4) = Q(ko/4), while OL(ko/4)/kL -

PR(ko/4 )/kR. Consequently, TL(ko/4) - -aRTR(ko/ 4 ). Hence, the RCP and the LCP parts of ET are
virtually identical in magnitude, their z-directed components are negligible, and their x- and y- directed
components have a cos(kox/4) dependence on the x coordinate. When, the LCP and the RCP parts are added
up, the cartesian components of ET have well-defined extrema in the xz plane. In view of Figs. 5 and 6,
then, the variations of ET in Fig. 4 can be easily explained.

It should be noted that ET(xy) in Figs. 1 - 4 tends to decay away as one goes farther from the source at
rp. This is natural since El, in the vicinity of the source, has reactive components with large magnitudes. As
one moves farther and farther away from the source, these reactive, near-zone field components tend to die
out. This behavior of El is replicated qualitatively by ET as well, a phenomenon which has been noted in
other electromagnetic scattering problems also [10].

In summary, it has been shown here that the fields refracted into a chiral half-space are markedly different
when ctk is substantially different from zero, i.e., when ak is of the order of 0.1. A realistic source has been
used here, as apart from the usual analyses involving incident planewaves only (6]. Provided a PWS
decomposition [3] of the incident field is possible, this procedure can be extended to include sources of other
configurations and polarizations as well. Such an analysis would be of use to various researchers in the area
so that the effect of the near fields [101 of radiating sources may not be ignored.
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The plane-wave reflection and transmission characteristics of bimaterial interfaces between chiral and chiral-
achiral interfaces have been extensively explored. We report on the curious characteristics of the interface formed
by two chiral half-spaces, one of which is the mirror image of the other; this is referred to as problem 1. It is shown
that these characteristics are related to the reflection of plane waves on the interface of a chiral half-space and a
perfectly conducting one, which constitutes problem 2.

INTRODUCTION The plane-wave reflection and transmission characteris-
tics of bimaterial interfaces between chiral and chiral-

The lack of geometric symmetry between an object and its achiral interfaces have been extensively explored recently.4-
mirror image is referred to as chirality, 1.2 and the mirror Here we report on the curious characteristics of the interface

image of a chiral object cannot be made to coincide with the formed by two chiral half-spaces, one of which is the mirror

object itself by any operation involving only rotations and/or ime of te ohr this is roe show
tranlatons Themos comonl inestgate chralob- image of the other; this is referred to as problem 1. We show

translations. The most commonly investigated chiral oh- that these characteristics are related to the reflection of
jects are the L- and the D-type stereoisomers, which are plane waves on the interface of a chiral half-space and a
familiar to organic chemists. The basis for the difference in p
the physical properties of the mirror conjugates lies in the perfectly conducting one; this constitutes problem 2.
handedness, or the chirality, possessed by their molecular
configurations. When an electromagnetic disturbance trav- PROBLEM 1

9 els through a medium consisting of chiral molecules, it is Let the space z :5 0 be occupied by the chiral medium (e, ,
forced to adapt to the handedness of the molecules. Inother 0), while the half-space z >_ 0 is occupied by the mirror-
words, linearly polarized plane waves cannot be made to conjugate medium (e, j, -0). Either a LCP or a RCP plane
propagate through such a medium, whereas left-circularly wave is incident upon the interface z -0 from the zone z :5 0.
polarized (LCP) and right-circularly polarized (RCP) plane It is appropriate to express the fields in the zone z _< 0 by the
waves, traveling with different phase velocities, are perfectly fields
acceptable solutions of the vector wave equation for this
class of medium. QL AL[ey + j(-exal + ezx)/kl]exp[j(Kx + acz)]

The usual constitutive equations D = eE and B = uH do
not hold for chiral media; instead, the equations",2  + BL[ey.+ J(ecal + ezx)/khIexpl(x - alZ)],

De E+ eVXE, BfI.H+0U7 XXH (1) z<0, (4a)

are deemed applicable, with 0 being -he chirality parameter. QR f AR[ey + i(e.a2 - ei)/kIexpUi(cx + a 2z)]
The regular time-harmonic Maxwell equations [exp(-jt)] + BR[ey - j(eza 2 + e.x)/kjexpU(jx - a2z)],
are now utilized along with Eqs. (1), and, following Bohren,3

the electric and the magnetic fields are transformed into z -< 0. (4b)

E - QL + aRQR, H - QR + aLQL, (2) In these equations, AL and AR represent the incident plane
waves, while BL and BR are the amplitudes of the reflected

where the LCP and the RCP fields, QL and QR, respectively, ones; K is the horizontal wave number required by Snell's
must satisfy the conditions laws to satisfy the phase-matching condition on the inter-

face z - 0; al - +(k, 2 - k2) 1/2 and a2 - +(k2
2 - k2)l/; and e.,

(V2 + k,2)QL - 0, (V2 + k2)QR = 0, etc. are the unit Cartesian vectors.
V X QL - khQL, V- QL - 0, The half-space z >_ 0 is occupied by the mirror-conjugate

V X QR -k 2QR, V. QR 0 . (3) medium; this means that phase velocities of the LCP and the
RCP plane waves here are, respectively, those of the RCP

In these equations, k I k/(1 - kh) and k2 - h!(1 + ku), while and the LCP plane waves in the medium of incidence. Con-
k =  ( ) is a convenient abbreviation; aR --j(/) 1 /2 is an sequently, an acceptable representation of the fields in the
impedance, and aL -j(e/ )1fl is an admittance, medium of transmission is given by

(V40-3232/89/0100230 4502.00 0 1989 Optical Soeiety of America
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QL - CL[ey + j(-exa2 + e)/k 2]expU(Kx + a2z)], This curious result should be noted: If the incident plane
wave is LCP (RCP), then the reflected and the transmitted

z > 0, (5a) waves are also LCP (RCP). There are no waves of the

QR = CR[eY + J(ecal - e.K)/khJexpU(icx + a 1z)], opposite handedness generated at the planar boundaries
between mirror-conjugated chiral media. Thus, the ar-

z > 0, (5b) rangement of problem 1 acts somewhat like a beam splitter;
with CL and C? being the transmission coefficients. an incident LCP (RCP) plane wave is broken into two LCP

the sLandtCbeion the traissio croeiciets. s(RCP) plane waves, which leave the interface in opposite z
The solution of the boundary-value problem is sought in directions with different amplitudes and phase velocities.

* the convenient matrix forms

BR R RRLA j ' (6a) PROBLEM2
Let the medium in the zone z >- 0 be perfectly conducting.

FCL TLL TLR1 [ALl() Then a solution uf~ the form

CRJ LTRL TRRJLARJ' [6b) BL ru rLR1 [AL]

with the R's constituting the reflection matrix and the T's ER L rRL rRRJ LARJ (8)

constituting the transmission matrix. The utilization of is to be sought. For this purpose, Eqs. (2) and (4) are
Eqs. (2), (4), and (5) in ensuring that there are no discontin- utilized to ensure the nulling of the tangential E field at the
uities in the tangential E fields and the tangential H fields impenetrable surface z - 0, and the result obtained is
across the interface z = 0 yields

RLL = -RR = (alk2 - a2k)/(alk2 + a2kl), r)L f (aa k2 + a~k1 ) +TLL =2atk/(alk + akt),rRLff 2aLalk2 (lk 2 + a2k),

TLL = 2alk/(clk + a2k,),
rLR= -2aRa 2k1/(alk 2 + a2k1). (9)

T -Rm 2cr2k1/(ck 2 + a2k1), We observe, therefore, that when a LCP or a RCP plane

RLR = RRL = TLR TRL f 0. (7) wave hits a perfectly conducting surface, the reflected field

QL
- . QR

LCP INCIDENCE

r r

0.,, rRL 1

RCP INCIDENCE

rig

1 rRR r

Fig. 1. Illustration of the correspondence between problems 1 and 2 in accordance with Eqs. (10). Problem 1 considers the interface of a chirt
medium and a perfect conductor, while in problem 2 the two chiral media on either side of the interface are mirror conjugates
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d QL Q R

LCP INCIDENCE

rLL rRL I rLL r

I _ _, 7
Perfect Conductor

- aRrRL aL aLrLL

RCP INCIDENCE

rR rRR r Li

Perfect Conductor + et

P
aLrLR -IR  "atrn

Vig.2. Illustration of the imaging concept for problem 2 by using two specializations of problem 1. See Fig. for the descriptions ofproblems
land 2.

consists of components of both circular polarization states. rLL(-) = rM(fl), reu(-) - r (8),
However, when ic - ki, then rRL = 0, rJL = -1, rLR = - 2aR, rLR(-) - aR'rRL(ft), r1 1 (-#) - aLrR() (11)
and rRR - 1, which gives rise to the trivial case of no reflec-
tion for the grazing LCP incidence. Likewise, when K i k2,
then rLR - 0, rRR - -1, rRL - 2aL, and rLL 1 1. point to the imaging concept. Consider problem 2 again

with an incident LCP plane wave of unit amplitude. Rele-
DISCUSSION vant to the zone z _< 0, this problem is equivalent to the

superposition of two problems, each of which is a specializa-
The correspondence between the solutions [Eqs. (7) and (9)] tion of problem 1. These two problems are (i) a problem 1 in
of problems 1 and 2 should be noted. That is, which a LCP plane wave is incident upon the interface from

the zone z _5 0 with unit amplitude and (ii) a problem I in
RLL m rLL, RRR = rRR, which a RCP plane wave is incident upon the interface from
TLL = rRL/aL, TRR - -- rR/aR. (10) the zone z >- 0 with an amplitude equal to aL. The case of an

incident RCP plane wave in problem 2 can also be handled in
For illustration, let us consider the case of LCP incidence, this way, and both cases are schematically illustrated in Fig.

In problems 1 and 2, ru. is the amplitude of the reflected 2. However, as becomes clear from Fig. 2, the use of an
LCP wave that travels with a phase velocity w/ki. In prob- imaging theory for chiral media is complicated for scattering
lem 2, rRL is the amplitude of the reflected RCP wave with a problems in general: not only do the sources get imaged but
phase velocity Wk 2, but in problem 1, rRL/aL is the amplitude the medium does also.
of the transmitted LCP wave, which also travels with a The authors are also with the Center for the Engineering
phase velocity A/k2 because the medium of transmission is of Electronic and Acoustic Materials, The Pennsylvania
the mirror conjugate of the medium of incidence and reflec- State University, University Park, Pennsylvania.
tion. Analogous comments also apply to the case of RCP
plane-wave incidence, and both cases are schematically il-
lustrated in Fig. 1. It should be noted that Fermat's princi- REFERENCES
pie is equally well satisfied in problems 1 and 2, and in
identical fashion. - - 1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of

Light by Small Particles (Wiley, New York, 1983).
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Green's functions for propagation of sound in a simply " -
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Two approaches involving the spatial and temporal Fourier transforms have been used to
derive time- and space-dependent Green's functions pertinent to the propagation of sound
waves in a fluid that is moving with a constant velocity v. The two approaches give rise to
differing interpretations of the observations made by a stationary observer visa--vis those made
by an observer moving with the fluid. The properties of the causal and the noncausal Green's
functions are analyzed, and are shown to be equivalent.

PACS numbers: 43.20.Rz, 43.30.Es

INTRODUCTION The corresponding Green's function, therefore, must be the

It is readily apparent that, at the point of observation, solution of the inhomogeneous wave equation

the acoustic frequency spectrum of a radiating source is al- [ - c- 2  + vV)2 ] g(rt) (2)
tered by the flow of the fluid in which the source and the I -- (
observer are embedded; this phenomenon has been the sub- 6(.) being the Dirac delta function.
ject of intense investigation.' In spite of the widespread As Jackson 12 has pointed out, (1) is not invariant under
interest, particularly in the area of fluid mechanics,' we Galilean transformations, and no kinematic transformation
have not been able to come across a systematic derivation of of p(r,t) can eliminate the term v-V in (1). The solution of
the pertinent Green's function; although, it should be noted (2) can, however, be very easily attempted if the term (d /
that, for the corresponding problem in electromagnetic field (2 ) can be vey al atte if th e (
theory, Green's functions are commonly available." F very useful for that purpose. We define two sets of Fourier

Here, we will utilize spatial as well as temporal Fourier transform pairs: one in the time ,= temporal frequency do-
transforms in order to derive two separate expressions for mains specified by the twin sets of relations' 3

the Gveen's function pertinent to the radiation and propaga-
tion of sound waves in an ideal fluid flowing with a constant a(t) = (21r) dw exp( - t)a(o), (3a)
velocity v. These two approaches involve interchanging the -

order in which the spatial and the temporal transforms, and f"
correspond to Doppler shifts in either spatial or temporal a f) J dt exp(iwt)a(t), (3b)

- frequencies. Thus the two approaches give rise to differing
-interpretations of the observations made by a stationary ob- w being the temporal frequency; and the second in the space
server vis-a-vis those made by an observer moving with the ': spatial frequency domains given as' 4

fluid. It is shown that the causal Green's functions derived - 3
from the two approaches are identical. a(r) = (21r) - - d q exp(iq-r)a(q), (4a)

I. PRELIMINARIES a(q) = d'r exp( - iqkr)a(r), (4b)

As per Morse and Ingard," in a fluid moving with a
veloityv, he aousic resure ~r~) stisfes he ave in which q is the (vector) three-dimensional spatial frequen-velocity v, the acoustic pressure p(r,t) satisfies the wave

equation cy variable. Armed with these two sets of Fourier transform
pairs, we can solve (2) via any one of the two approaches

V =0 (-) possible.

*' within a source-free region, c being the speed of sound in the
medium at rest (i.e., when = 0); this equation is valid in a
coordinate system that is moving with a velocity - v with II. DOPPLER SHIFT IN THE TEMPORAL FREQUENCY
respect to a parallel coordinate frame affixed to the fluid. The first approach involves taking the temporal Fourier
The first coordinate system (xyzt) is called stationary, transform of (2), which yields the relation

. while another coordinate system (xvZ,t'), to be discussed
later, will be referred to as the auxiliary system; the velocity [V2  C 2 ( -1) + v-V) 2]g(r,.) = - (r), (5)
v - ve, in the stationary system, e, being the unit vector, after using the integral representation of 8(t) given as

" 1862 J. Acoust. Soc. Am. I5 (5). May 1989 oo14966/89/051852-os,5o.eo 0 1989 Acstical Society of Anric 1852



6(t) = (2r)-' dw exp( -ian). (6) fdgpo(c)sin(a g +b )(g2+bz)-112

Next, we employ the factorization 4 '"' 7  = cos(b 4"Z-) (a2  c2 ) -11
2 U(a - c), c>0.

. g(r,w) = h(r,a)exp[ - i(W/c)Mz], (7) (14b)

" which is nothing but an expression of the Doppler shift in the As a result,
temporal frequency domain. In (7), the Mach number (T
M=v/c, and r(lI -M') = 1; werestrictM< 1. I(M;r,t) =(21r)U p) (7P f dq,

As a consequence of (7), (5) simplifies to

V2  (Me.V) 2 + (yo,/c)I]h(r,a) X exp(iqz)cos(y-q. to), (15a)

8(r)exp(i(w/c)Mr2 z]. (8) -4rU( -Up) (!..) (2
Utilization of (4a) and (4b), along with the representation

8(r)= (21r-3f_.f d'qexp(iqr) (9) X [8(z + ) + 6 (z -t)], (15b)
on utlizing (6); in these equations,

for the Dirac delta function 85(r), in (8) then gives 
rise to the

algebraic relation to = j(c/y) -_p 2 , (16a)

h(q,) = - (c/)2/{ 2- (c/y)2[q-q - M(e .q)2]}. p = + V -. (16b)
(10) Further simplification is afforded by the fact that

As a first step towards obtaining h(r,t), we take the 2+at6(4'-z) =-(" +a) + 6(-a), (17)

inverse temporal Fourier transform of ( 10); the application and
of (3a) to (10) yields 3  that ct/y>p due to the Heaviside function; consequent-ly,

h(q,t) = (217) -(c/y) [1r sgn(t) I I(M;r,t) = (41r 2/y) U(ct/y -p)8(z 2 --7-2t2),

X [qq -M 2(e,.q) 2] -1/2 and 18a)

of X sin{(ct/r [q'q - M (e.-q) z] }, (I1) h(rt) = (c/4 172) [irsgn(t)] U(ct/r-p)

in ( whence, on taking the inverse spatial Fourier transform also, X 8(( - 182 t o), (18b)
er we get From (3) and (7), it is easy to see that

do- h(r,t) = (21r) - 4 (c/y) (rsgn(t)]I(M;r,t), (12) g(r,t) = h(r,t + Mc-y7z); (19)
hence, a solution of (2), to be subscripted t for later use, is

in which the signum function sgn(4) 2U(4) - 1, whereas given as
3) the Heaviside function U(4) = lV40 and

U(4)-0V"<O. g,(r,t) = (c/4 ) [< 0sgn(t+Mcyz)]
3b) On expanding q in a cylindrical coordinate space XU[c(t+Mc-?z)/r-p]

(q,qp,q,), q, = q'e, the integral I(M;r,t) in (12) can be x6(2 - _ C2r 2t2).
given as (20)

To be noted is the fact that the inversion (13) of (12) had

I(M;r,t) f dq. exp(iq z) dq, q, not assumed causality; if causality is to be incorporatec
4a) f - - when the inverse temporal Fourier transform of (11) is tak-

en, '"' then the signum function sgn(t + Mc- lyz) in (20)
Xb[qX , + should be replaced by the 2 U(t + Mc- 7,2z). Here and here-

4b) r (after, the term causal should be interpreted as causal wid

X sin , [( T/.) +(q. respect to time.

hes III. DOPPLER SHIFT IN THE SPATIAL FREQUENCY
X dp, exp(iqp cos pq). (13) The second approach mirrors the first one in that tht

0 order of taking the temporal and the spatial Fourier tras
forms is reversed. Thus, on using (4) and (9) in (2), wt

• I Theinitegral on the azimuthal angle q'q is easily implemented obtain

via an integral representation of the cylindrical Bessel func- o

tionf,(4'): J- q[ q -+c( - q ]glq, t)i -(). (21
arer, 21r

,(4')---(21r)-' daexp(ig cosa); (14a) The introduction of the factorization

(a) d the consequent integral on q, can be calculated through g(qt) =f(q,t)exp( - ie.qvt) (22

Sonine's discontinuous integral": in (21) results in
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" 2  between g, (rt) and g, (r,t). In addition, it should be noted
-q-q- c~- 1 fiq,t) = --8(t)exp(ie,.qvt). that if v = O, then both g, and g, reduce to the familiar

(23) expression

It should be noted that (22) tantamounts to a Doppler shift in g,(r,t),.o = g, (rt),._o
the spatial frequency domain. = (1/4ir 2 r) fir sg(t) I U(ct - p)

The temporal Fourier transform of (23) gives rise to the X (t(- ) + 8(t+ rc') (32)
algebraic expression forftqw) given by

iqw) = C2/(a, 2 - q-qc2 ). (24) which too can be made causal if sgn(t) is replaced by 2U(t)
and the second delta function is omitted. However, the

As a first step towards derivingf(r,t), the inverse temporal switching functions, i.e., the signum and the Heaviside func-
Fourier transform is taken; hence,'3  tions, included in (20) and (30) have different arguments.

f(q,t) = (27r) 'c2 [ir sgn(t) I (qc) -t sin(qct), (25) The major reason for the difference between g, (rt) and

from where, on taking the inverse spatial Fourier transform g, (r,t) appears to be due to the specific factorizations (7)

also, we get and (22), respectively. As stated earlier, while (7) expresses
a Doppler shift for time-harmonic waves, (22) gives rise to a

.fr,t) = (2rr)-c[ir sgn(t) ]J(M;r,t), (26) Doppler shift for space-harmonic fields. Howevef, it is easy

in which the integral J(M;r,t) is given by to show that

J(M;r,t) = dqexp(iqz) dq, qP (q- + q -
1
/2  g, (rt) = (2 ,-) ' dw exp( - it)exp(- i i rz)

Xsin(ct + ) X ff d3q exp (iq-r) h (q) (33)

xf pq exp(iqppcos q.)). (27) is a proper solution of (2) by substituting (33) in (2) and

noting that the differential operators of the left side of (2)
The use of (14a), (14b) and (17) in (27) finally yields will act only on the exponential terms of (33). Moreover, it

J(M;r,t) = 4n2U(ct -p),(1. - c:t 2), (28a) is also possible to show similarly that

whence hr,t) = (2r4f daiexp( -iot)

fAr,t) = (c/4ir2) flr sgn(t) ] U(ct -p)&(r 2 - c2t
2 ). J("

Finally, by applying (22) in (4), it can be shown that Xf- ff d q exp(iq.r)h(qo) (34a)

* g(r,t) =f(r - vt,t), (29) satisfies the differential equation

and the ue of this relationship in (28b) gives the Green's V2 _ M --- ]- h(rt) = - 8(r)8(t).
function &2ik C/ : 2 1

g, (rt) =(c/4
9 ) (34b)

X, r7) (/4 ) ] l_2tIt should be noted that by using (19) in (2), it is observed
x [ r sg(t) ] U(ct -p)6(r - 2zvt- c2 -2 ); that

(30) 2 22

the subscript r on g in (30) is for later use. Again, we note + +r + -

that g, derived above is noncausal; for causality to be incor- 2 "

porated, sgn(t) should be replaced by 2U(t). - ) - h(x, y',t') = -6(r)5(t), (34c)

* IV. DISCUSSION wheret' = t + M z/c, ' =z, and it isassumed thatthesta-

The two Green's functions derived above share one im- tionary and the auxiliary frames coincide at t = t' = 0. Like-

portant feature, i.e., they possess the same singularities. The wise, it can also be shown that
singularities of bothg, (r,t) and g, (r,t) are embedded in the
delta function that can be expanded as g, (r,t) = (2) -4 dq exp(iq-r)exp( - iq.vt)

I'L f f

=(2r1Rz+2zvt+ cr-7t)-1 Xf dw exp( -iwt)f(q,w) (35)

X [.6(z -+ r-'R " + 2zvt + cP - t ) is also a proper solution of (2) by substituting (35) in (2). In
addition,+ 8(Z- y-'4R? " + 2zvt + Py ,'1t) J, (31a) adion

where +fr,t) -(27r)-4 dq exp(iqr)

R = M2 Z2 - p2 . (31b) f"

In this respect, therefore, there is nothing to distinguish X f_. dw exp(--1t)f(q,) (36a)
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satisfies the differential equation order to illustrate the utility of these Green's functions, we
-2 a_2 consider a source pressure which acts on a ring of radius a.

( -Ar) 8(r)b(t). (36b) First, let the time-harmonic problem be considered, i.e.,.(V2 atithe source pressure-
e Again, it is to be noted that by substituting (29) in (2), and

assuming that the stationary and the auxiliary frames coin- p, (rs) = (P/a)8(p - a)b(z)exp( - imt), (41)

cide at z = z' = 0, that P being some constant. The radiated pressure will be isotrop-

S ic in the x-y plane; hence,. in the x-z plane it will be given,

+ + y--c-  x, y',t') using (40) and (41), as

-8(r)CO, (36c) p,. (x,0,z4)

where z' = z - t and t' = t. Thus the proprieties of the two _ [ C-) ( \] f "r o
procedures are in good standing. (Sir )exp - io [exp -- Mz ado

The equivalence of g, (r,w) and g, (r,t) is now demon- 0

strited. Using the relations (4b) and (7), it can be shown Xexp[i(ro/c) x2 + a - 2ax cos q'o + yz ]
that X (x 2 + a - 2ax cospo + ?z2)-1 / , x#a. (42)

g, (qa) = hCq + w7,2 v/c2 ,oi), (37a)
while, from (3b) and (22), The evaluation of this integral must be done numerically;

however Fraunhoffer-type approximations 1 can be made to
g, (q,o.) =f(q,a, - q-v). (37b) obtain the far-zone pressure quite easily. If

However, the right sides of (37a) and (37b) are identical as (x2 + 7AZi) 1/2 _o, then the integrand can be simplified to
can be seen by utilizing (10) and (24). Therefore, in the exp[i(rao/c) (x2 + Z2)"1/2] (x 2 + 2z 2 ) -1/ 2

temporal-spatial-frequency domain, g, (q,a) and g, (q,g)
are identical, as should be expected.20 As a result of the X exp[ -i(ra /c)ax cos 4o(x2 + y2ZI) - 1/2].

uniqueness theorem for the inverse Fourier transforms, 21 it In which case, (42) simplifies to
follows that g, (r,t) = g, (r,r) except perhaps at their singu-
larities. It is obvious that everywhere except at their (com- p,. (x,0,z,W)
mon) singularities, g, (r,t) = g, (r,t) = 0 as a consequence - (Py/2)exp( - iat)exp( - i(ow/c)MyAz]
of the delta functions in (20) and (30). Xexp[i(ye/c) (X2 + y2Z) /2] (x2 + 7,22 ) -1/2

Finally, we show that the two causal Green's functions
have identical values at their singularities. Analyzing, first, Xo[ (ra/c)ax(x2 + 72Z7. -i /2]. (43)for the causal g, (r,t), it should be noted thatfr the csCr,)it should+ be noted tha) 2 (t + 2To illustrate the use of g, (rt), we consider the same- 2zvt - 2 y-2 2 -p 2 + _ (c/y) 2 (( + M 8z/c)2  ring source with an impulse excitation; i.e.

(38) (rt) --- (P/a)8(p -a)(z)8(t). (44)
and p>O0. Therefore, at the singularities p2 + ez

2 = (c/I) 2  In t e plane z = hd atio ist c

X (t + My 2z/c) 2 ; together withp>0, this implies that (dcy) In the equatorial plane z---0, the radiation is isotropic.
X(t + My2z/c) >p. As a result, at its singularities, the caus- Hence, from the causal version of (30), the radiated pressure
al g, (r,f) = c/2ir. Next, for the causal g, (r,t) it should be will be given by
noted that p (x,OO,:) X (- - do

r-2zVt-- 2- 2 -p 2 + (z-:) 2 -c 2 t2. (39)

Therefore, at the singularities,p 2 + (z- vt)2 = C2t 2; togeth- .X 8(ct-.0 yx + a2 - 2ax cos po)
a erwithp>O, this implies that ct>p. Consequently, at its sin- X CX + 2 _ 2ax. C ,) - 1/2 t>0. (45)

gularities, the causal g, (rt) = c/2V . Hence, the causal
g, (rt) andg, (rt) areequal forall rand t>O. Similar reason- Thus p,. (x,O,Ot) exists only for y(x - a) ct<y(x + a)
ing also gives the noncausal g,(r,t) =g, (r,t) = c/4ir at and has a magnitude of (P),/2iu)/t during that interval. On
their singularities, consequently, the noncausal g, (r,t) and the other hand, along the z axis, the radiated pressure is

• * , (r,:) are also equal everywhere.
From the available literature, it is observed that Pd (0,0,z,) Pcy2 6(c: + zM1 z

" •-4M 7 W + , +W ). (46)
5) g1~ ~(- ILexp~ia. 2 *.'Cx2_ +yz + yz)

" r (' e)c + + It should be noted that the time ofarrival at the origin from
•In r[_,(_ \ (46) equalst = (y/c)a; thus the radiated pulse arrives there

Xexp[1-- M7AZ ,C)+Y2+y2)-/ later in a moving fluid than in a stationary fluid. Also,
t(44) = alc is time of arrival at z=Ma, while t=(a/

C. c)y2(I +M 2 ) is the time ofarrival at z= -Ma on thez
has been commonly utilized for solving time-harmonic prob- axis, whi~h conclusions correspond, respectively, to the up-

m." v'" On the other hand, g, (r,t) is in a form more stream and the downstream velocities of z-directed plane
amenable to interpretation for time-dependent problems. In waves derived by Ingard and Singhal for moving fluids. 20
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The derived Green's functions can be used for the solution (V x 21) . a- ' •(V X U) - E - k2a - E
of initial and boundary value problems, as well as for ob-
taining the electromagnetic fields radiated by electric and iwwqJ - V X (a- ' K), (4a)
magnetic sources.

(V X U). •(V X ) . H-k 2 a. H

Researchers have begun to focus attention on the electro-
magnetic theory of anisotropic media because of the recent i.oK+Vx(a•J), (4b)
proliferation in the use of such materials for a variety of in which k = wV(c_ooq) has been used for convenience. It
applications. Post' laid the foundation of the constitutive should be noted that in Eqs. (3a,b) and (4a,b), as well as
equations of a general, linear, bianisotropic, homogeneous hereafter, J and K, respectively, denote the electric and the
medium around a quarter of a century ago; and his work was magnetic source current densities.
later extended by several workers (see, e.g., Refs. 2-8). In The solutions of Eqs. (3a,b) and (4a,b) are now sought in
that vein, the dyadic formalism promoted by Chen 9 in con- the forms of the infinite-domain Green's functions, begin-
nection with his work on the time-harmonic electric Green's ning with the time-harmonic solutions.
function' ° for uniaxial dielectrics has recently been utilized For the time-harmonic case, by direct substitution in Eqs.
to compute the corresponding magnetic Green's function (4a,b) it can be easily verified that the solutions
also"; furthermore, time-dependent Green's functions have
been derived for the same media.12  

E(rw) = fff d'r [iwoq!,(R[w) . J(riu)
Gyroelectromagnetic media have not been given much

attention. Ray optics of crystals such as calcite and rutile is - Z,(Rlw) • la- '. K(r,w)IJ, (5a)
well known, 13 and some work on radiation due to Chow 14 is
also available. Some results can be obtained by appropriate H(rw) = fff d3riwoZ,(RJw) K(rlw)
simplifications of the extant results pertaining to bianisotro-
pic media.2-8 In general, however, a systematic electrody-
namic theory of such media is not well-developed, particular- hold, provided the Green's functions Z, and Z. satisfy,
ly with respect to the infinite medium Green's functions. In respectively, the equations
the sequel we have derived the time-harmonic as well as the
time-dependent Green's functions for a homogeneous, uni- [(V X ) . a- - (V x U) - k 2a] • f8,(Rlw) = 216(R), (6a)
axial gyroelectromagnetic medium whose permeability ten-
sor is a scalar multiple of its permittivity tensor, and we have (V X 2) a- ' - (7 x 9) - k2a) . 18(Rtw) = V X 96(R), (6b)
explored the characteristics of the derived Green's functions. 5(.) being the Dirac delta function. It should be noted that
Following a proposal due to Rumsey'5 for constructing artifi- the appearance of R = r - r8 in Eqs. (6a,b) signifies the
cial uniaxial gyromagnetic materials, it is conjectured that spatial invariance of the uniaxial gyroelectromagnetic medi-
materials of the type studied here can be constructed by um considered here, with r, being the source point and r, the
embedding parallel ferrite and dielectric fibers in some host field point.
medium. It is to be noted that while boldface English letters To solve Eq. (6a), its 3-D spatial Fourier transform is
represent vectors, the German letters denote tensors or dy- taken, as has been done elsewhere for uniaxial dielectrics. -

ads; in addition, all vector operations have been ordered to It turns out that
proceed from right to left.

Uniaxial gyroelectromagnetic media possess a single optic e(RW) f (2,r)-'_. d3p exp[ip. R]58'(pw), (7)
axis for both their electric and magnetic properties; in addi- _.
tion, we assume that the permeability tensor is a scalar in which the dyadic
multiple of the permittivity tensor. Thus, the appropriate
constitutive equations are given as Zle(pl) = _(p x J). a- ' _(p X 2l) - k2a, (8)

D = oa . E; B = isoqa. H, (la,b) and p is the 3-D spatial frequency vector. Using dyadic
algebra, 9 the inverse 1f-'(p1w) can be derived as

in which the uniaxial tensor a is specified by' I'(pl) = [a2aa- - pp/kg/[p , a . p - k 2a'al. (9)

a = a,?( + (a', - a.)eee, (2) By substituting Eq. (9) into Eq. (7) and evaluating the result-

e, being the unit vector parallel to the optic axis, and 21, the ing integral, the Green's dyadic Ze(Rw) is calculated to be
idempotent; a j., a q, and q are scalar constitutive parameters $8,(Rw) = [ala a- + V/k] explikRel/4?rR, (10)
assumed constant; and co and AO refer to free space. Substi- in which
tution into the time-dependent Maxwell's equations yields
the field equations R,= [a aRS- .R]. (11)

(V X N) . a' - (V X U) . E + 0ouqa • 1 2E/at 2l Similarly, by taking the Fourier transform of Eq. (6b), it
can be shown that

~, 4-uztqJ/8tJ - V X (a- K), (3a)
(V X U )- -'- (V X U )--H +× (I -'•2 K/, (3 8)m (R lw ) - (2 ,r)- J d 3p e x p lip • R ][ 't(p l. ) ip X N,, ':i (V X ).* a - •(V XI). H + ova•2/t -

(12)=-9 0o K/atJ+' X(a -.J). (3b)
whence,

Likewise, substitution into the time-harmonic Maxwell's Z(RIl) -[alai-7'] V X I exp[ikR,]/4rR,
equations, with an expf-itJt dependence, gives rise to the
differential equations - a2 aa' X Vexp[ikRJ/41rRJ. (13)
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From Eqs. (10) and (13), it is quite clear that the uniaxial p2(ep) = k2a~a/I[a (e )x e,)- (p X e) + a(e,- e,)]. (20)
gyroelectromagnetic media considered in this paper are sin-
gly refringent, as opposed to uniaxial dielectrics which are When ep is parallel to the optic axis, the associated E and H
birefringent. Additionally, all waves in these uniaxial gyro- fields are mutually orthogonal, and are orthogonal to e. as
electromagnetic media are of the extraordinary type, where- well, and any polarization can be chosen subject to the re-
as both ordinary and extraordinary waves can propagate in strictions imposed by the time-harmonic Maxwell's equa-
uniaxial dielectrics.9 - 12  tions. On the other hand, if e. is not collinear with e,, two

Coordinate-free forms9 of F8e(Row) and 8,(RIw) can be well-defined polarizations are possible. Respectively, these
easily obtained from Eqs. (10) and (13), and are, respectively, are given as
given as

(i) E, = ep X ec; H, = -[h~a1/wg#qp]E;
ie(Rw) = (a2La!, exp[ikRe]/4rRe)([1 - (ikRe) -1 + (ikRe)-Ia - 1  (21a,b)

- [1 - 3(ikR,) - ' + 3(ikRe)- ' ]  (ii) E2 = ec - ep(ep, ec)(p/ka.) 2; H2 = -[Wop2/k2a,]E,.

(a- ' - R)(a - l . R)/[R • a-'. RI), (14a) (22a,b)

Z.,(Rlw) - (k2'aa 2 exp[ikRe]/4rRe) It should be noted that the first polarization, Eqs. (21a,b), is
TE-to-ep; while the second one, Eqs. (22a,b), is TH-to-ep; in

([(ikR,) - 2 - (ikR)-'Ja-1 X [a- ' . RI). (14b) either case, the B and D fields are orthogonal to ep.
The solutions of Eqs. (3a,b) are also sought for in the forms

These forms may be of use when solving radiation and scat-

tering problems using numerical techniques which call for E(rlt) = fff d3r, f dtJs 0qZ 1(R17) . J(rts)
the discretization of surfaces and/or volumes.

The reciprocal nature4 of these uniaxial gyroelectromag- + Z,(Rlr) a- .' K(r1t)], (23a)

netic media is reflected by the symmetry properties H(rit) = fff d3r. f dts[-,2(R-) a- -' J(r.It,)

Ze(RI) = Ze(-Rw); Zm(Rl) = - Z,(-R lw); ' (15a,b)
+ eo0i(R~r) • K(r3It,)], (23b)

in addition, the following transpose properties also hold:
in which the use of r = t - t, is in accordance with the

[ (RIJ)]P = e(R~); (16a) temporal invariance of the medium, with r >_ 0 demanded by
[Zm(Rw) - a-]" = -55(R~w) -a- '.  (16b) the consideration of causality9; t is the time associated with

the field point, while t, is associated with the source point.
These relationships can be verified very easily from the By substituting Eqs. (23a,b) into Eqs. (3a,b), and then taking

coordinate-free forms (14a,b). Furthermore, using Eq. (10) the (causal) temporal Fourier transform of the resulting
it can be shown that Fe(Rlw) and Z (Rlw) are connected equations, it can be shown that
through the relationship

-a(RI7) = (21r) - 1 f do.(iw) exp[-iwtJZe(Rw), (24a)
em(Rlw) =f a' [V x e(Rlw)] • C; (17a)J-+

and the combination of Eqs. (6a) and (17a) gives
V XZ.Rl) V - 5,R~) a= a(R. 17) 2(Rr) - -(210 - ' dow exp[-iJtl8 (Rl). (24b)

V x vn(R[w) - k'a • 
. )e(RIoj) • a = aS(R). (17b)

Correct to the order R; 3, the near-zone approximations of Causality is obtained by invoking analytic continuation from

the Green's dyadics can be obtainec from Eqs. (14ab) as real to complex w by moving the integration path above the
real axis in the complex o plane; therefore, A > 0 in Eqs.

0,0w) = (a'a exp[ikRe/4rR)(ikR,)-2 (23a,b) so as to ensure avoiding the pole singularities. 16,17

Finally, by using the unit step function u(t) defined as's
S(a- 

- 3(a-
. R)(a - /. R)/[R . a - • R]), (18a)

Z.(RIo) = 0. (18b) u(t) = j) + (1/i) Jo(d°a/w) sirwt, t>_0

The far-zone approximations, correct to order Ri', are de- -0, t < 0, (25)
rived from Eqs. (14a,b) as as well as the Dirac delta function, the integrals involved on

Z,(R w) = (a' a, exp[ikR,]/4rR e) the right-hand sides of Eqs. (23a,b) are evaluated out to yield

X (a - - (a- • .R)(a'- R)/[R. a- • R]), (19a) 0 1 0(R) - (a'±ai/4,rRe)([-61'() + (c/R.)6(r.)

-8.(Rlw) - -(k 2a,aI exp(ikR,]/4rR,) - (c./R.)'u(r)]a-1 - [-6'(r.) + 3(c./R , )6(r,)

X (ikRe)-(4 - x [a-' RI). (19b) - 3(ce/Re)'u()I( - 
. R)(a - '. R)/[R- a- -RI), (26)

As a by-product of the foregoing analysis, the propagation 02(R) - (W a2/4 rceR2)( W(r)
characteristics of plane waves in the uniaxial gyroelectro- + (ce/R,)6d(7)]a -1 X fa- 

. R]), (27)
magnetic media considered here can be obtained. Consider
a plane wave traveling in the direction e. with the phase, in which 6'(.) is the unit doublet impulse17 ,
velocity w/p. The wavenumber p(ep) can be calculated from
the relation cc= 'u oqo] -

12, 7 r - Re/c, (28a,b)
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Abstract. The eigenmodes of a spherical resonator, with a perfectly conducting
wall and filled with a homogeneous isotropic chiral medium, have been identified
and studied. In particular, the roots of the dispersion equation have been given as
functions of Pl/a. where a is the cavity radius and 0 is the chirality parameter.
Application as a microwave circuit element is suggested.

1. Introduction and preliminaries metry and reciprocity; here is the chirality parameter
measured in units of length. Following Bohren (1974),

Though the phenomenon of chirality is known chiefly the EM field is transformed to
at the molecular level, and therefore, at frequencies in
or above the ultraviolet range, it has been suggested
(Lakhtakia et al 1988) that particles endowed with chi- where the left- and the right-circularly polarised (LCP
rality can exist at even lower frequencies, say, in the and RCP) fields, Q, and Q2, respectively, must satisfy
GHz range. This is because chirality, or handedness, is the Helmholtz equations
a geometric property; for example, the electromagnetic
(EM) response of a right-handed helix is different from (V2 + yI)Q = 0 (V 2 + Y2)Q2 0 (3)

that of a left-handed one (Varadan et al 1988). Fur- along with the rotational conditionst
thermore, by embedding such chiral particles in a low-
loss dielectric medium, the resulting composite medium V x Q1 = Y1 Q1 V x Q2 = -Y2Q2. (4)

too will possess handedness. With advances in polymer Needless to say, these fields are also divergence-free
science, it is becoming increasingly possible that such i.e.
artificial materials can be manufactured with ease, and
their properties tailored by altering the sizes and con- V .Q = 0 V. Q2 = 0. (5)
centration of the embedded chiral particles. In these equations, the two wavenumbers are given by

Significant advances have taken place recently in
the formulation of a frequency-domain electromagnetic y' = k/(1 - kfl) y, = k/(1 + kfl) (6)
theory for chiral media; we have summarised these and
elsewhere (Lakhtakia et al 1988). With these devel-
opments, it is time that aspects relating to the appli- al = -i(e/JU)"' al = -i(/e)'1 2. (7)
cation of chiral media for practical problems be An exp(-iot) time dependence has been assumed
explored. To that end, we consider here the eigen- Anrexghiut tim e h een ssmed
modes of a perfectly conducting sphere filled with a thoughottiorishort-hand notation.
homogeneous, isotropic, chiral medium. Such an
arrangement constitutes a microwave resonator, an
important circuit element (Harrington 1964). 2. Fields Inside the spherical resonator

Consider a source-free region occupied by an iso-
tropic chiral medium in which the usual constitutive
relations D = EE and B =dH are not adequate because Consider now the spherical resonator r = a which is

of their incompatibility with the handedness of the bounded by perfectly conducting walls and is wholly

medium. Instead, the relations filled with a chiral medium. Using a representation
due to Bohren (1974) and justified by us elsewhere

D= eE+ PEV xE B =/tH + f#V x H (1)
t We are indebted to an anonymous referee for pointing out that

hold, and satisfy the requirements of time-reversal sym- Q, and Q2 are Beltrami fields (Caraman 1974).
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Figure 1. Roots (x = ka) of the dispersion equation Figure 3. Function F(x; n = 1) for fA/a = 0 and A/a = 0.04.
F(x; n) = 0 as functions of Aq/a for n = 1. Computations for
figures 1-4 were performed on a MAC II minicomputer
using Absoft MACFORTRAN/020. have been defined by Morse and Feshbach (1953).

while A, and B, are the unknown expansion coef-
ficients.

20 n=z The determination of the expansion coefficients can
on "be accomplished using the boundary conditions

e, × E = 0 on the surface r = a, where E can be syn-
.2 ==MW : thesised using (2) and (8), and e, is the unit radial
g a ea • _..t vector. On taking the inner productt of Eq with

(m',r'(cos 0) sinm'q ) and that of E, with
(r'(cos0)cosm'q)) on r=a, and adding the two

•i 0 results, it is easy to see that

o= "0 a *" A,,,j(xl) + aRB.j.(x2 ) = 0. (10a)
2 a .i '"ni 'in t In these equations in(or ) is the spherical Bessel function

' of order n, :rs(cos 6) P (cos 0)/sin 8,
r, (cos 6) = dP'(cos 6)/d0, Pm (cos 0) is the associ-
ated Legendre function of order n and degree m, and

0. _"_-__ _ -__ -__ - xp= 'ypa for p = 1, 2. Likewise, after taking the inner
-6 -S -4 3 2 product of Eq with (m'r'n"' (cos 0) cos rq) and that of

Loq(P /aI E., with (-n'(cos 6) sin m'tp) on r = a, the equation
Figure 2. Roots (x =ka) of the dispersion equation Aomnjn(xi) + aRBoj,.(x 2) = 0 (10b)F(x; n) = 0 as functions of fl/a for n = 2. can be obtained. Furthermore, from the inner products

of Eo with (r '(cos8) cosm'q0) and of -E. with
(Lakhtakia et al 1987), the field inside the cavity can (m';r' (cos 0) sin m'T) on r = a, one can obtain
be adequately expressed by Ae.x2aVn(X1) - aRBCmX,, Vp.(X 2 ) = 0 (10C)

Q1 (r) = I ALP)(ytr) in which V,,(4) = j,( ) is the Riccatti-Bessel function
-,Sm (8) and a p.( )- d V()/d . Finally, adding the inner

product of Eo with (rm'(cos 0) sin m'q) to that of Eq,Q2(r) = B'R )(y 2r)" with (m';r'x (cos 0) cos m') on r = a yields

- :' " AomnX2aV.~(x1) -aRBo.nXljdV(X2 ) = O. (10d),"In these equations, the functionsAon24(X) IRmXt(X 0(ldIs it obvious from (10) that azimuthal parity in terms
L( 9)(yr) = M()(y~r) + N)(yir) (9a) of the indices s and m is conserved for the present

R1)(y 2r) = Mt)(y2r) - NOt(yzr) (9b) problem, which contributes to the degeneracy of the. eigenvalues.
are left- and right-circularly polarised, respectively.
The subscript v is a triple index-the index s can be t The inner product of two functions f(O, q7) and g(O, q7), as usedP. here, is defined as the integral
even or odd, the index n varies from 1 to -, and the
index m assumes values from 0 to n; the well known dq , f d6,i, Of(O, q,)g(e, T).
vector spherical wavefunctions M(P(ar) and N(,)(or) d0 082!
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2 or equivalently through the expressionn=2

0 ,, = We(e-D 5,, • D *,q - A-I'Bsmnq B ,*,nq).

In either case, it can be shown that

, Wsn,, = -I.n(X q)j.(X2nq)4e(y lqYZq/kq)

00

2 f• x 0 0si

W1 -1 xr
" rrL ,ynqr stu R(1 r2nq r)(1a

1/a =0.04 provided e, j and P3 are all assumed real. The angular

-2 • integrals can be evaluated analytically to yield
14 is 16 17 18 19 20 21

x = ia Wsmnq = - n (x lnq)in (X2q)4E( Y nq Y2.q/k2q)

Figure 4. Function F(x; n = 2) for fl/a = 0 and P/a = 0.04. x [(2n + 1)(n - m)!]-'[2r(1 + 6,w)

x n(n + 1)(n + m)!]In (17b)
The dispersion equation for the chiral-filled res- in which 6,,m is the Dirac delta, and the integral

onator is simply obtained by the simultaneous solution
of (10a)-(10d); consequently, each solution of the Inq = dr r2{jn(y.inqr)jn(Y2nqr)equation

F(x; n) = Vn.(xI) a~pn(x2) + a~pn(x1)Vn(x2) = 0 x [ 1 - n(n + 1)/yIq y2.q r 2]

x = ka (11a) - aIn(71nqr)alln(ylnqr)/7,nq72nqr2 }  (17c)

adds yet another index q (for its qth zero), represented may have to be evaluated numerically due to its signifi-
jointly by Xnq, Xlq and X2q. Corresponding to this qth cant complexity.
solution of (11a), the ratio It is well known that although LCP and RCP waves

can propagate independently in an unbounded chiral
Asmnq/a RBsmnq =-n(xE~q)/In(xinq). (llb) region, at a bimaterial interface mode-conversion

Thus, mode-ordering for the chiral-filled spherical occurs (Lakhtakia et al 1985). Therefore, pure LCP or

resonator requires four separate indices, of which s, m RCP modes cannot exist within a bound chiral volume,
and n are as before, and q denotes the qth zero of as is also apparent from (12) and (13). Moreover, in

(11a) for a given n. The eigenmodes of this cavity are view of the definitions (6), the solutions xn of (11a)
do not depend on the sign of the chirality parameter

Esmnq = -in(X2nq)L(V)(YInqr) +in(xlnq)RP)(Y2nqr) P3; if P3 changes its sign then Xinq and x2, are simply

(12) interchanged. In the sequel it is assumed that P3 is real
and positive.

aRHsmnq = jn(x2nq)LV)(Y1nqr) + jn(X1nq)R(')(y2nqr)

(13) 3. Results and discussion

and the field inside the chiral-filled resonator can be
expressed in terms of these modes: Returning to (11a), it is clear that with /a = 0, i.e.,

when the medium is non-chiral, this equation reduces

E = ,Fm.wE,.nq H = , FmnqH.,q (14) tosmnq smnq
sm,! smq n(x) a ,,,(x) = 0 x = ka (18a)

with the usual restriction that the m = 0, s = odd mode

is non-existent. In these equations Xpnq = ypnqa for p = in which case the TE-to-r eigenvalues come from the

1, 2; and w,,q = (e14)"/2/knq are the resonance fre- zeros of the equation (Harrington 1964)

quencies, with jMx) = 0 x = ka (18b)

xq= (kqa) t = i(xjt + x,). (15) and yield the transverse electric modes with e .- E = 0.

The stored energy in a given eigenmode can be On the other hand, the Tm-to-r eigenvalues are the

computed in either of two ways (Lakhtakia et al 1988): solutions of the equation (Harrington 1964)

using the relation ap.(x) = 0 x = ka (18c)

W,..q = iRe(E,,,,,q • D* - H.m.q B,) (16a) and give the transverse magnetic modes with e,- H =
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0. Furthermore, when xfl/a 4 1, then the Riccatti- accommodation for an increasingly larger number of

Bessel functions in (11a) can be expanded around x to eigenmodes.
first order in i13/a using a Taylor series expansion; It is well known that resonators find use as the
with this approximation (Ila) consequently reduces to microwave analogues of LC circuits. For fixed n and

1p.(X)Oanp(X) - (x 2fl,/a) 2 aV',(x) a2V(X) = 0. #3 = 0, the resonance frequencies are spaced far apart,
(19a) as is obvious also from figures 1 and 2; thus, non-chiral

resonators are essentially narrow-band. On the other

But hand, when 13/a is large in the present context, the
X * = resonance frequencies are closely spaced. Therefore,
x 2O2 n(x) = [n(n + 1) - x-]g,' (x) chiral resonators may be utilised for 'wide-band' pur-

so that (19a) further simplifies to poses, and, in particular, to replace the multicavity
staggered turning arrangements (Gewartowski and

p,(x) a,(x)[1 - x 2 1 2 a-2n(n + 1) + x4 l 2a -2 ] =- 0 Watson 1965) in klystron amplifiers.

x = ka (19b)

suggesting that the eigenvalues for x/3/a < 1 do not References
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Abstract. In a homogeneous isotropic chiral medium, the electromagnetic field
has to be described in terms of left-circularly and right-circularly polarized (LCP
and RCP) components, each of which has a different wavenumber associated with
it. In general, when a wave propagating in a homogeneous isotropic chiral
medium encounters a homogeneous isotropic chiral scatterer, both the scattered
and the internally induced fields contain LCP and RCP components regardless of
the state of polarization of the incident field. It is proved here that the scattered as
well as the internal fields have the same state of polarization as the incident field, if
the scatterer and the surrounding medium are impedance-matched; this conclu-
sion holds regardless of the two chiral parameters involved as well as the geometry
of the scatterer. Two examples are also given.

1. Introduction and preliminaries
Homogeneous isotropic chiral media are circularly birefringent [1, 2]: the

electromagnetic field in such a medium has to be described in terms of left-circularly
and right-circularly polarized components, each of which has a different wave-
number associated with it. Either of the two components is capable of independent
propagation in an unbounded homogeneous region. However, when either a left-
circularly polarized (LCP) or a right-circularly polarized (RCP) wave hits an
isotropic obstacle, then the scattered field is composed of both LCP and RCP
components; in addition, if any field can be induced inside the obstacle, it too is
composed of both components.

Chiral media can come in two forms, one being the mirror-conjugate of the other;
this is commonly exemplified by L-type and D-type enantiomorphs of many organic
molecules [3]. A homogeneous, isotropic, reciprocal chiral medium can be described
by the constitutive equations

D=[E+PiV x E], B=4[H + PV x H], (1 a,b)

in which a and i have their usual meaning, while P is the chirality parameter. Two
media having the same c, u and 1PI, but with their chirality parameters differing in
sign, are mirror-conjugates of each other. In a recent paper [4], it was shown that
when a plane wave is scattered by the planar interface between two mirror-
conjugated chiral media, the reflected as well as the refracted plane waves are of the
same circular polarization state as the incident plane wave. This phenomenon will be
generalized here, and shown to exist at the interface of any two homogeneous
isotropic chiral media, provided that they are impedance-matched.

0950-0340189 S300 () 1989 Taylor & Francis Ltd.
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Following the pioneering work of Bohren [2], the electromagnetic field in a chiral
medium is transformed by the prescription of a LCP field Q, and a RCP field Q2,
defined as per the following relations:

E=Q 1 +aRQ 2, H=aLQI +Q 2 , (2a, b)

with

aL

It should be noted that a1 has the units of an impedance and aL, that of an admittance.
In an unbounded chiral medium LCP and RCP fields can exist independent of each
other, while linearly polarized fields are not allowed [5]. From the aforementioned
transformation, it follows that E = i(p/e)"/2 H for a LCP field, and E = - i(pU/6)"12 H for
a RCP field; consequently, the ratio (./._) 1/2 may be considered as the intrinsic wave
impedance of a chiral medium, just as in the case of achiral media [6].

Substitution of equations (2 a, b) into source-free Maxwell's equations, with a
harmonic time-dependence exp [- iot], leads to the circulation equations

VxQ, =YQ,, V X Q 2= -Y 2Q 2, (4a, b)

both Q 1 and Q 2 are solenoidal. The wavenumbers corresponding to the LCP and the
RCP fields are given as

k k
=1kp ' Y2 = 1 +kf' (5)

in which k=o(ep)1/2 is simply a shorthand notation and does not represent any
wavenumber except when #=0.

2. Analysis
In an unbounded source-free region occupied by an isotropic chiral medium, it

can be shown that E and H satisfy the same homogeneous governing differential
equations,

V2E+2yY 2flV x E+yTy 2E=O, V" E=O, (6)

V2 H+2yY 2 lV x H+Y 1Y2 H =0, V'H=0. (7)

For this isotropic chiral medium, the infinite medium Green function 5(r, r.) satisfies
the dyadic inhomogeneous relation [5]

[VV-V 2z3 -Y 1Y2 - 2yV x 3] -B(r, r.) = 3 8(r- r.), (8)

3 being the unit dyadic. Its solution is given by the decomposition

4B.-.((r, ro) = 4B,(r, ro) + ( 2(r, ro), (9 a)

... . .. . .... .. . • ... ....• ... .. . ..+ +
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Equations (10 a, b) form the bedrock of the T-matrix method [7, 8]. Once these
have been solved, the scattered field, {EIC, H"), can be easily determined via the
relations

F(r)=(y,2k 2 ) f d2ro(B(r, r) [ipen x H+(ro)+ke. x E(ro)]

+(yIy 2 k 2 )ff d2 ro% 2(rro) [iculu..x H+(ro)-ke.x E(ro)]

reV+, (11 a)

H (r)=(,7 2k-2 ) f{d 2 roT0 (r, ro) (ke. x H+(ro-iaxe, x E+(r)]

-(/1 7 2k 2 ) f sd 2ro.) 2(r, ro) [ke.x H+(ro)+iwjexE+(r)]

reV,. (11 b)

Let the transformation (2 a, b) be applied to both the incident and the scattered
fields. As a consequence, equations (10a,b) and (11a,b) can be respectively

rewritten in the forms

-Qilnl(r)=(YIY2k1 )f fs d~r° '),(r r°) ["×E+(r°)-a~eaxH+(r°)], reV-

(12 a)f f-tl 0dro (r, ro) [.. x H +(ro)-aLenx E+(ro)], I" reV._,

Qi~c(r)=(y 72k-1)f d 2r.4 1 rr)ex +r)ae x E+(r)], re V-,

2 f. f- JS (5(,r)-[.x r)-a

(12b)

-Qs(r) = (y 17 2 k' f .f 1r ~(r, r.) -[e. x H + (r)-aelxE( 0 I e

1) d. 2.+.. - .xH+ r), r ,
Q]°(r) ~ ~ ff(f+ k

(13oa)

's~)=( 7k - 1) dro2(rro e (o . x E+(r.)], re V+.

(13 b)

The boundary conditions on the interface S are the continuity of the tangential
components of the E and H fields across S. Consequently, equations (12 a, b) and
(13 a, b) can be re-expressed to bring in the field, {EI", Hi"'}, induced inside V- [5, 81
as

.Qilnc(r) = ( 2kI)f fT d 2r " ((rr.)"[e x Ein'(r°)-aten x Hilt(r°)], reV,

(14a)

.--.. . .QT(r) =(' k -1) f{ d 2ro (r, r. ) [e. x H'O(r.) - aLe. X E"(r)], reV ,

(14b)

" ...
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Q'(r)=(7,Y2 k- 1 ) f f d 2r. 5 1(r, r.) •[. x E"'(r)-at.e x H.'(r0 )], eV 4 ,

(15 a)

~QIc(r)=(v k-1)$ {S dr. 2(r, r.) - [9. x Hi'"(r) - aLel x E"'(ro)], reV4 .

(15 b)

But, Bohren's decomposition (2 a, b) also applies to the medium inside V-, albeit
with the primed constitutive parameters. In strict analogy with expression (3), the
quantities

'= kF -1-', (16)

can also be defined. Consequently, the foregoing sets of integral equations are
transformed to

QMC -(r)y 1 k[1 +a/a']I d2 r. (5(r, r.)" [e x Qia"(r.)]

+701 2k- [aR-ad f dzr. (5 r, r.) .[e x Q"'(ro)], reV-, (17a)

QO(r) =Y1yk-[I +a/a' fs dzr. (51(r, r.)" [ x O'(ro)

+7172k-'[a' -aR.] Itdr.o(5 ,(r, r.))'[eo x Q'n'(r)],  rc-V+, (17b)

Q 2c(r)=Vyzk -[aL-a'] 2 sd2ro2(r, ro)'[6, x Q'(ro)]

-yly2k-'[1 +aaa]Jf $d 2r.o( 2(r, r.).[e, xOQ"1(ro)], rV_,
(18 a)

Q 2" ( r ) ffi ,Y ,k -' [ a L -a d 2 r o ( 2 ( r , r . ) [ e , x Q ( r ) ]

-yy2k-'[l +a'1 /apj fs d2roT 2(r, r.)' [e. x Q' t ,(r.)], reV.

(18b)

As was expected, equations (17 a, b) and (18 a, b) show that both the scattered and
the internally induced fields contain LCP and RCP components regardless of the
state of polarization of the incident field. It should be noted that in deriving
equations (17a, b) and (18 a, b), the chiral parameters of either medium were not
explicitly used; nor do equations (2 a, b) need them. In fact, these equations are
applicable whether both, any one or neither of the two materials are chiral.

.4".- ".-. *-"-. . . . ."
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QC(r)-(y k )f fs d2rol(r, r.) [. x (ro) ale. x H'(r.)], reV.,

(15 a)

Q'2(r)= Y1 ~k f fs d 2 r. (r)2(r, r.),[e. x H'n'(r.) -aL'" x Eint(r.)], re V..

(15 b)

But, Bohren's decomposition (2 a, b) also applies to the medium inside V-, albeit
with the primed constitutive parameters. In strict analogy with expression (3), the
quantities

,R .'pY, 2= 14 (16)
12aR---- ~ ~ --- " -a,j.'

can also be defined. Consequently, the foregoing sets of integral equations are
transformed to

-Q nc(r)= 7172k-'[1 +aRia' f fs d2 r°  (r, r) [e. x Qint(r.) ]

+11i72k- 1[a' -apJ J d2r.T~1 (r, r,,) [e,, xQi(r.)], rEV-, (17a)

Q(r)=yy 2k'[1 + a/a J d2r.5 ' 1(r, r) -[e. x Q"(r.)]

+71 72k-'[Ca'a]JJ d2r,, (B 2r, r) en X Q(rg,] reV.,

(18 a)

Qsc(r)=y..Vy k'aL-a' ff d2r.,B(,r,)[,

(18b)

As was expected, equations (17 a, b) and (18 a, b) show that both the scattered and
the internally induced fields contain LCP and RCP components regardless of the
state of polarization of the incident field. It should be noted that in deriving
equations (17 a, b) and (18 a, b), the chiral parameters of either medium were not

-.. -explicitly used; nor do equations (2 a, b) need them. In fact, these equations are
applicable whether both, any one or neither of the two materials are chiral.

- .o................"...... ..

. .. " ... "' '' " .. . :* ' " - " , .""-- -"-- ." -:. . .-,' " 7 
-
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One notable case stands out: let the scatterer be impedance-matched with the
surrounding medium; Mu'f'=I4/s. In that case, equations (17a, b) and (18a, b)
simplify to

-Qi"c(r)=2yyk- f d 2r. T(r, r.) [e. x Qn"(ro)], reV., (19a)

Q2(r)=2y i 2k-1 d 2.ro 5(r, r.)" [e. x Q'nt (ro)], reV+, (19b)

Qan(r) = 2y 1 2 k 1 ff d2r B2(r, r.) [ne. x Q '(r°)], reV_, (20 a)

SQ'(r) = 2yl 2k- ff d 2 r0 ! 2(r, r) " [en x Qi"t (r.)], r.V+. (20 b)

Equations (19 a, b) and (20 a, b) clearly show that the scattered as well as the internal
fields have the same state of polarization as the incident field, if the scatterer and the
surrounding medium are impedance-matched. This conclusion is not affected by the
value of the chirality parameter in either of the two media, and forms the major result
of this paper.

3. Scattering by planar interface
As an example of the analysis given above, let the reflection and refraction of

plane waves at bimaterial interfaces be considered. Let V, be the half space z<0;
and V-, the half space z > 0. The interface S is the plane z = 0.

In V+, the unprimed constitutive parameters are used, and the incident fields can
be represented by [9]

Q C'n(r)=Al[e,+i(- lex+ie 2)/yl] exp [i(Kx + alz)], reV+, (21 a)

Qi'()-- A 2 [e,+ i(a2e1 - Ke 1)/y2] exp [ic(x + z 2z)], reV+, (21 b)

while the scattered (i.e. reflected) fields are given by

Qs(r) = Rje, + i(c91e1 + K.)IY1] exp [i(cx - a1z)], reV+, (22 a)

Q2(r) = R 2[e,- i( 2 e. + x.)y 2] exp [icx - a2z), r V+. (22 b)

The fields induced in V_ (i.e. the refracted fields) are to be given as

Q' t(r)- Ti[e,+i(-'e=+Ke)hy41] exp [i(cx+a'1 z)], reV_, (23 a)

Q' 1 (r) = T 2 [e0, + i(a20. - Ke)/'] exp [i(x + a'2z)], reV_, (23 b)

in which the primed constitutive parameters have been used. In these equations, C is
the (common) horizontal wavenumber required to satisfy Snell's laws at the interface
S; e.,.. are the unit Cartesian vectors; while a- + (y2- K

2 ) 1 /2
,a 2  + (M- K2 )1/2,

M11  (Y12 -K 2 ) 1 /2 and a' +(Y -K 2 )1 2 .

The x-directed and y-directed components of the E and the H fields have
to be continuous across S; in addition, the two media are impedance-matched,
namely p'/'= it/e. Use of these conditions leads to the solutions

- - T,=2y'a 1[y'1a1+a 1y 1-'A 1, R,=T 1 -A,, (24)

2 -2y7'2a 2['2a2 + a2Y2]- 1A 2, R2 = '2-A 2. (25)

V.. . r "" "" " ' " °" " .' " " " " ' ": ' -',"' - " . -t , . , "..
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This illustrates the observation that the incident, the reflected, and the refracted
plane waves are of the same circular-polarization state whenever the two chiral media
on either side of a planar interface are impedance-matched. Given that U'/C' ='/8, it
should also be noted from equations (24) and (25) that T1/A1 = T2/A1 = 1 for the case
of normal incidence (K=0); further, if #i=0, then the case of normal incidence
trivially satisfies the Brewster condition [10].

4. Scattering by a sphere
The second, and the last, example involves the scattering characteristics of a

sphere. Let V_ be a sphere of radius a. The incident field can be expanded as

QiInc(r)= Y A,[M(,')(7,r)+N("(yr)], (26 a)
V-Smn

O € r -- B [ (, ) T r - ) T r ) ] . ( 2 6 b )
V-Smn

The subscript v is a triple-index-the index s can be even or odd, the index n varies
from I to x, and the index m assumes values from 0 to n; the well known vector
spherical wavefunctions, Mu)(or) and N/)(ar, j= 1, 3, have been defined by Morse
and Feshbach [11], while A, and B, are the expansion coefficients.

The scattered field is likewise expressed in terms of the vector wavefunctions as

QC(r) = " F,[M(,3 )(y1 r) + N~V3 ( lr)], reV+, (27 a)
V

Q2(r) = ) G,[M(Y 2r) - N.,)(7 2r)], re V+, (27 b)
V

while the field induced inside V_ has the representation

Q t (r)- C,[M(,1)(y, r) + N(')(y' r)], reV_, (28 a)

Qi"n(r) = " D,[M(1 )(y2r)- N((y'r)], reV.. (28 b)

After enforcing the continuity of the tangential components of the E and the H
fields across the sphere r = a, utilizing the orthogonalities of the spherical harmonics
[II], and recognizing that the two media are impedance-matched (i.e. ji/e' = pe), one
obtains the following solution:

(29 a)

C,= A,(i "l)[8 ,(,ia)*,,(,'a)- ,,(,ta)Od/,(y'ia)] - 1, (29b)

G - B,[800.(Y2a),(y a) - , (Y2a)a,.(y2a)][r ,(Y2a) n(y'a) - .(y2a)8',(A'2a)] -,

(30 a)

D, = BvQ,± )[81(7 2a)*&,(2a) U(Y 2a)8ak(y 2a)] -1 (30 b)

b , , ' . ..
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In these expressions 0.#(x)=xj.(x) and ,,(x)-xh( ' 'I(x) are the Riccati-Bessel
functions [12]; and 00nr(X)=d0.i(x)/dx, and so on. Again, the major result of this
paper has been exemplified by equations (29 a, b) and (30 a, b).
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ABSTRACT

We employ the multipie scattering formalism to obtain two independent expressions for the effective
permittivity < e > and peryneability < p > of microwave composite materials. These twc expressions c-e
required, but not provided in the literature, in the investigation of the reflecti7- and transmis:'on
characteristics for a layer of microwave composite materials in response to incident 1.iliteter-waves and
microwaves. In order to cr~eck the validity of the expressions, several cases involving Iossyiloss.'ss matrix
and inclusion materials are discussed.

1. INTRODUCTION

It is well known that when waves propagate through a medium containing scatterers, the entrained
energy (intensity) is going to be either redistributed in various directions by scattering or absorbed by
intrinsic absorption mechanisms, This suggests the well known idea that to achieve a high attenuation of the
incident wave energy, the geometry and material properties of the scatterers as well as physical mechanisms
for srattering and absorption should be carefully selected. The selection is not an easy task and it depends on
different applications, civilian as well as military considerations and advancements in material technology.

In many applications involving microwaves, it is desirable to design materials that will have prescribed
reflection and transmission characteristics as a function of frequency (narrow or wide band) and at the same
time conform to restrictions on weight, structural properties, thickness, etc. Microwave composite materials
that contain a distribution of inclusions of specific concentration, distribution, geometry and material
properties can often achieve such goals. Since the actual response of microwave composite materials to the
incident wave of low to high gigahertz frequency is quite diverse, it becomes very expensive and time
consuming to actually prepare samples of such materials and test them experimentally. However, an optimal
design through theoretical analysis of such materials is relatively efficient and the parameters invulved are
tractable.

When particles are dispersed in a host medium to form a composite, depending on the volume fraction of
particles, single or multiple scattering dominates the scattered energy when waves are incident on them.
Multiple scattering effect cannot be ignored when the concentration of particles is considerable as in the case
of microwave composites. In this theoretical investigation, we employ the multiple scattering formalism,
which has been previously applied to get the effective propagation constant for the ferrite composites (1], to
obtain two independent expressions for the effective permittivity < e > and permeability < t > of microwave
composite materials. These two expressions are required, but not provided in the literature, in the
investigation of the reflection and transmission characteristics for a layer of microwave composite materials
in response to incident millimeter-waves and microwaves. In order to check the validity of the expressions,
several cases involving lossy/lossless matrix and inclusion materials are discussed.

2. MULTIPLE SCATTERING FORMALISM

Consider the propagation of a plane harmonic electromagnetic wave in a medium referred to as the
matrix characterized by complex values of the dielectric function e2 = e2' + j e2" and magnetic permeability
12 = g2' + i 12". Embedded in the matrix is a random distribution of uniform size spherical scatterers whose
permittivity el = el'+j e1* and permeability ;lI =;it'+j;tI" . The matrix of volume V contains N
scatterers such that N - .*, V -+ - but no (= N/V) the number density is finite.
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Let E, E° , Eie and Eis be respectively the totalelectromagetic field, the incident wave field, the field
exciting the ith scatterer and the field scattered by the ith scatterer. All the fields have implicit exp(-iwt)
time dependence and satisfy vector Helmholtz equation. Let Re On and Ou On denote the basis of orthogonal
functions which are eigenfunctions of the vectol Helmholtz equation. The qualifiers Re and Ou denote
functions which are regular at the origin and outgoing at infinity (2]. Thus, we can write the following set
of self-consistent equations:

NE=E°0+ Es

i=l

E =I n aR n (r - r) (2)

E i= In an Reo n(r- r); a<lr-ri 1<2a (3)

E s =7 tn nOu o(r- ri)  •I r- r > a (4)
i n N i I

where ani and fni are unknown expansion coefficients and ani are known incident field coefficients. We
observe in (3) and (4) that a is the radius of the sphere and that all expansions are with respect to a coordinate
origin located in a particular scatterer.

The T-matrix by definition simply relates the expansion coefficients of Eie and EiS provided the sum of
them is the total field. Thus [2],

fn= 11" nn' 0n'()

and the following addition theorem for the basis functions is invoked

OU On(r - rj) = n' Yn' (rI - rJ)Reo nf (r- ri) (6)

Substituting (2) - (6) in (1), and using the orthogonality of the basis functions we obtain

ia X J (r J (7)az = a + :T' c(ri r ij(7

jsi
This is a set of coupled algebraic equations for the exciting field coefficients which can be iterated and leads
to a multiple scattering series.

For randomly distributed scatterers, an ensemble average can be performed on (7) leading to

<a i a + <  (ri - r) Td < >> (8)

where the angle brackets and their subscripts i and ij denote conditional averages. Equation (8) when iterated
is an infinite hierarchy and usually the hierarchy is truncated by use of the quasi-crystalline approximation
(QCA) [3]. The QCA states as

(9)
iiJ

Then, (8) simplifies to

<ai> =a + < (Y (r. -r i <d>j> i  (10)

an integral equation for < a i >i which in principle can be solved. We observe that the ensemble average in
(10) only requires P(rjlri), the joint probability distribution function. In particular, the homogeneous
solution of (10) leads to a dispersion equation for the .effective medium in the quasi-crystalline
approximation. Defining the spatial Fourier transform of < a' >i as

i f eiK-r, x

<L > i  e X (K) dK (11)

Journal of Wave.Material lntraction, Vol. 3, No. 3, July 1988
244



Ma, Varadan and Varadan Effective Properties of Microwave Composites

and substituting in (10), we obtain for the homogeneous solution
~~iK-(r - r)

X i (K) f 'i5(r. - r.) Tj p(rjri) x e X' (K) dr. (12)

If the scatterers are identical

Xi (K)=X (K) = X (K) (13)

and thus for a nontrivial solution to < a i >i, we require

N- iK(ri - r,) I=0 (14)fI . a (r, - p(1r4)
j*i

In (14), P(rjlri) is the joint probability distribution function and I is an identity matrix. For isotropic or
spherical statistics,

P(r .lri) 0= 1r - 2 (15)
g(1r-r.1)/v ; J-r.1 >2a

where we have assumed that the scatterers are impenetrable with a minimum separation between the centers,
and in (15), 2a could be the diameter of the circumscribing sphere. For spherical scatterers, the joint
probability distribution depends only on the interparticle distance and not on the orientation of the vector
joining the centers; and the function g(I r i - rj I) is called the radial distribution function.

3. DISPERSION EQUATION IN THE LONG WAVELENGTH LIMIT

The objective of the self-consistent multiple scattering formalism derived for the problem is to obtain an
analytical expression for the dispersion equation (14) of a wave propagating in the random medium. By
solving the dispersion equation, we can obtain an effective propagation constant of the random medium.
However, this is a forbidden task and can only be done numerically when the size of the scatterers is large
compared with the incident wavelength.

Fortunately, for most microwave composite materials, the scatterers are much smaller than a millimeter
in size. Therefore, at frequencies in the gigahertz range, the wavelength in the matrix material is much larger
than the size a of particles and make the nondimensional frequency ka fall in the Rayleigh region. Thus, one
can solve the dispersion equation in the long wavelength regime and obtain a closed form solution.

Retaining only the dipole terms, we have the following dispersion equation [1]

T' (JH 0 + JH 2 /2)-1 3 JH1 T2 /2
3 JH1 T2 /2 T' (JHo + JH2 /2)-I =0 (16)

JH =3j 2 / X3 + w

JH = 3j 0(K/k 2)/X

JH2 = 3j (K/k 2)
2 X3

D2 =c/{1 -(K/k2' )2]

T j (2X3 / 3) [(111 - !9) (291 + g A)
2 1 2 2 1
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=j (2X'/3) [(e. -c 2 ) /(22 + e)]

w =(1 - c)4 /(1 + 2c)2

X2 = Re (k2a)

Al = A, +jAe

'2 = A2 + jA2'

k2 = o ( j2e2)12 / 0

K = Effective propagation constant = ao (< p> <e>) 1/2 /c

co = Light speed in vacuum

c = Volume fraction of scatterers
The effective dielectric constant < e > and permeability < g > can be easily obtained from Eq. (16) due

to the fact that T1 and T2 are uncoupled and the effective propagation constant K is polarization independent
in the Rayleigh region. This approach can also be applied to the study of electromagnetic scattering by a
periodic array of particles.

For randomly distributed lossy/lossless scatterers with a high concentration in a lossy/lossless matrix,
the effective permeability and permittivity are, respectively,

2 2<A > / g2 = { 1 - [Olw - (C7 - cj)/(l + 72)] (B + jA)} I - [O3w + (cy - cj) / 2(1 - y2) (B + jA) }

<E>/E2={ 1-[3w-(cY-cj)/(1+ 2)] (C +jD)){ 1- [3w + (c-cj) 2(1-y) (C +jD))
2

(17)
where,

A= 2 (By+ A) B = 2 (Ay- B)

C= 2 (Cy- D) D = 2 (Dy+ C)

2 + 1 1 +
1 2 2 1 1 2) 2 1 ;

B =[( - ') (2 '+ + )+ I- ' )(2g + g)] A
1 2 2 1 1 2 2 1

D [(e' e) (2e' +') + (C' -e') (2e"+ E/A
1 2 2 1 1 2 2 1
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A =(29' + ±' 2 + (29; + 9;')

A' =(2j' +e') 2 +(2e' + e)2
2 1 2 1

y(X I-3X IX;) /(X3 -3X2

I(X 3-_3X XX2/3

X2 = (k2 a)

4. RESULTS AND DISCUSSION

Different from various equations, which are quite popularly used, such as Maxwell-Gamett equation,
Clausius-Mosotti equation, and other equations like Lichtenecker logarithmic equation, our equations for
independent permittivity and permeability can be used in either purely scattering domain or absorption
domain. In other words, the matrix as well as the inclusion materials can both be lossy and lossless or
combinations of the two. Furthermore, a rigorous multiple scattering theory has been employed in the
derivations accounted for high concentrations of the inclusion phase while none of the mentioned equations
has considered multiple scattering.

In the following, we discuss some limiting cases when (17) is applied to compute the effective
properties of microwave composite materials. Because the effective permittivity and permeability bear the
same form. For simplicity, we use only the expressions for the effective permittivity. However, all the
following discussion are exactly those for the effective permeability when all the e's are replaced by the g's
in the statements.

Case 1. PureScattring

If neither the scatterers nor the matrix material are lossy, i.e. el" = e2" = 0, only scattering contributes
to the imaginary part of the effective dielectric constant < e >.

<e> 2(I+2cT)/(1-cT)+j66wcT2 /(1- c T) 2  (18)
2

where T = (1' - e2' ) / ( I' + 2 E2 ' ). The effective dielectric constant < e > becomes e2' and e1',
respectively, when c equals to 0 (no scatterer) and 1 ( matrix material totally occupied by scatterers).
Meanwhile, the imaginary part of < e > vanishes due to the disappearance of scatterers.

Case 2. Lossy scatterers in a lossless matrix

This is a common case happened in various problems, e.g. suspensions in fluids. For this case, e2" = 0
but e" is not. Equation (17) can be reduced to the form as follows

<e>I/e= I + 2 (ow +cj) (D-jC) /1 + 2 [3w-cj/21 (D-jC) (19)
2

Again, < e > becomes e2' when c = 0. However, when c = 1,

< >/' =(1 + 2C + 2jD) / (1 - C-jD) = (e + je) / e (20)
2 1 12

It is easy to see that the effective dielectric constant becomes that of the lossy scatterers.

Case 3. Lossless scatterers in a lossv matrix

Although this problem has seldom been considered for electromagnetic case , e.g. particles in a viscous
fluid, it is useful to check the validity of the formalism. For this case, el" = 0 and E2" is finite. It is easy to

Journal of Wave.Material Interaction, Vol. 3. No. 3, July 1988
247



Ma, Varadan and Varadan Effective Properties of Microwave Composites

show using (17), for c = 0, < e > = e 2 = E2'+ j e2" . For c = 1, (17) reduces to

<e>/c =(l +2C+2jD)/(1 -C-jD)=E'/(e' +j) (21)
2 1 2 2

which means the effective dielectric constant becomes that of the scatterers and is real.

Case 4. Lossy scatterers in a loss' matrix

For this case, the complete form of (17) must be considered. As for the relative contribution form
scattering and absorption towards < e >, one can easily show by using case 2 that

<e>/ =[(1 +2cC)(1-c c C)-2 2] / [(- c C)2 + c2 D2]

+j[3cD+6flwc(C2 +D2)] / [(1 - c C)2 + C2 D2  (22)

If el" = 0 then D = 0, the above equation becomes that for case 1. Therefore, the scattering contribution to
the imaginary part of < e > has a P dependence. Because 3 is of the order of (k2 a)3 , which is much less than
one for the long wavelength limit, we know the scattering contribution is fairly small when compared with
the absorption contribution which is frequency independent if el and e2 are also frequency independent. The
real part of the effective dielectric constant is less affected by the absorption due to the fact that eF" is, in
general, fairly small.
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ABSTRACT

Propgation of electromagnetic waves in a parallel-plate waveguide wholly filled wv'h a chiral mejium is
examined. The dispersion equation derived leads to two sets of modes. Propagation comtants for the two sets
have been numerically obtained.

1. INTRODUCTION

Although the phenomenon of chirality is known chiefly at the molecular level, it has been suggested [I I
that particles endowed with chirality can exist at even lower frequencies, say, in the GHz range. This i'
because chirality, or handedness, is a geometric property: for example, the electromagnetic response of a
right-handed helix is different from that of a left-handed one [2]. Furthermore, by embedding such chiral
particles in a low-loss dielectric medium, that medium too will possess handedness. With advances in
polymer science, it is becoming increasingly possible that such artificial materials can be manufactured with
ease, and their properties tailored by altering the sizes and concentration of the embedded chiral particles,

Significant advances have taken place recently in the formulation of a frequency-domain electromagnetic
theory for chiral media, and these have been summarised by us elsewhere [1]. With these developments, it is
time that aspects relating to the application of chiral media for practical problems be explored. To that end,
we have already obtained the eigenmodes of a perfectly conducting sphere filled with a homogeneous,
isotropic, chiral medium [3]. In continuation of our aim, we study here the modes of a parallel-plate
waveguide filled with a chiral material. It is our conjecture that this geometry will be of use in the
development of integrated circuitry with chiral substrates.

Consider a source-free region occupied by an isotropic chiral medium in which the usual
constitutive relations D = eE and B = gtH do not hold due to their incompatibility with the handedness of
the medium. Instead, the relations

D=eE+0EVxE ; B=gxH+31±VxH (1)
hold, and satisfy the requirements of time-reversal symmetry and reciprocity. Following [41, the
electromagnetic field is transformed to

E=Ql+aRQ 2 ; H=Q 2 +aLQI , (2)

where the left- (LCP) and the right- (RCP) circularly polarized fields, Q1 and Q2, respectively, must satisfy
the Helmholtz equations

{V2+,IQ,=O I V' +  ) Q 2 = 0  (3)

along with the rotational conditions

VxQI=YtQI; VxQ 2 =-y 2 Q2  (4)

Needless to say, these fields are also divergence-free, vide

V.Q 1=0 ; V.Q 2 =0 (5)
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In these equations, the two wavenumbers are given by

,y;/[-0 ,2k[+0 (6)

and

a---i(e/g) l12; R--i(Ide) 1/  . (7)

An exp(-iot] time dependence has been assumed throughout this work, while k = a) (pl/) 12 is simply a
shorthand notation.

2. MODAL ANALYSIS

Consider the region bounded by the perfectly conducting plates z = ±d, which is wholly filled with a
chiral medium. It is well-known that although LCP and RCP waves can propagate independently in an
unbounded chiral region, at a bimaterial interface mode-conversion occurs [4]. Therefore, pure LCP or RCP
modes cannot exist within a bounded chiral volume. Using a representation given by us earlier [5], the
electromagnetic field inside the parallel-plate waveguide can be adequately expressed by

Q, = [Ai+ f,1 {-'alex+ K ez- i71 ey Iexp[iaz]

+ Al ~ [a I e x + K ez -iky, ey}) exp[-ia Iz1] exp [ix] (8a)

Q2 =1 [2 ex + K ez+ Y2 eyI exp[ic.2z]

+A 2 _
1 {a 2 ex+xeZ+iy 2 ey) exp[--ia 2 z]] exp [iKx] , (8b)

which satisfy the phase-matching conditions via the horizontal wavenumber K. In these equations,
a1 = +o(t1 2 - K2 ) and = = +4(y2 - x2 ), while Ai± and A2± are the unknown field coefficients.

The boundary conditions require that the tangential components of the electric field be identically zero on
the surfaces z = +d. The use of (2) and (8) along with the boundary conditions leads to the dispersion equation

r~.-l l 1 -10 = yfT + a2yf2 } { 1 - exp[i2 (y1 + y2) d]) + {a y1T - a 2Y2 } {exp[i2y1 d]} -exp[i2y 2 d]) ] x

[{aIy,' + a272 } 1-exp[i2 (y + y2 )d]) - {af ' - a,^ 2-'2 (exp[i2y 1 d] -exp[i2y2 d])].

(9)
Since (9) contains two factors on its right hand side, it is clear that two kinds of modes can exist. The

dispersion equation for thefirst set of modes is given by

o= [calz ' + a2y2
1 (I -exp[i2 (1 +y2) dl) + (a 1y' -a j272' {exp[i2y1 d]I - exp[i2y2 dl]

(1Oa)

and for these modes it is easily seen that

A,+/AtfA2+ / A2-_=-1 (10b)

akA2+I A,+ =sin(ald)/Isin(ax2d) (000

As a consequence the field components Ex and Hx are even with respect to z, whereas the field components
E. H Ez and Hz are odd with respect to z.

the other hand, the dispersion equation for the second set of modes is given by
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O=[{atta +ctjy } (I -exp[i2 (y + Y2)d]} -(a,1 ' -zY 2 I}(exp[i211d]}-cxp[i2T2 d]}I

( I1a)

and for these modes it can be shown that
A+/A_ =A2+/A2. =l 0 1 b)

aR A+ / A1+ = cos(ajd) / cos(c 2d) (I Ic)

As a consequence the field components Ex and Hx are odd with respect to z, whereas the field components

Ey, Hy, Ez and Hz are even with respect to z.

10.0

beta/d = 10**(-8)

8.0

////,

4) 6.0- sip an° so
O 4.0

Q-)

N UNo
0 2.0- so

0.0 r

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Normalized Frequency (k*d)

Figure 1. Solutions id of the dispersion equations (12c) and (13c) are virtually identical for P3fd I0-4 .

They also correspond (almost exactly) to the TE- and TM- polarised fields when A/d = 0.

3. NUMERICAL RESULTS

With the developments of the previous section, the modal fields of the first set can be compactly set

down as

Q, = exp[icx ] Y¥I {--a cos(ctIz) ex + iicsin(a 1z) ez + y1sin(a°z) ey} , (12a)

aR Q2 = exp[iKx] f2' {--a2cos(cy) ex + isin(a2z) e. - y2sin(a 2z) ey I sin(ald) / sin(a 2d)

(12b)

the horizontal wavenumber ic can be determined for this set by solving the equation
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a 1 2 / c.2Y + tanr(ad) /tan(a 2d) = 0 (12c)

In a similar vein, the modal fields of the second set can be written as

Ql= exp[iixl I {-alsin(a1 z) e. + xcos(asz) ez - iylcos(alz) ey} , (13a)

aR Q2 = exp[icx] f2 {-ia 2sin(a 2z) ex + Kcos(a 2z) e.+ iy2cos(a 2z) ey I cos(ad) / cos(a2 d)

(13b)
the horizontal wavenumber c can be determined for this set by solving the equation

a Iy2 /2 +cot(ad)/co(a 2d)=O ( 3c)
The solutions xd of the dispersion equations (12) and (13c) were obtained numerically on a Macintosh

II minicomputer as functions of the normalized frequency kd < 10.0 for various values of /d; while KS
min(y1 ,y2], ko was kept less than 0.5 for Figs. 1-3, it is less than 0.99 for Figs. 4 and 5. Fig.1 shows the
calculations for O/d = 10-8. For 3/d < 10-4 , the roots for the two sets of modes did not appreciably differ
from each other, furthermore aid and a2d were approximately equal to integral multiples of ir/2. The effect
of chirality became numerically appreciable, however, at 3/d = 10-3, although the differences between the
roots for the two sets are still small enough to be appreciated on a graph.

Shown in Figs. 2 and 3 are the roots icd of the dispersion equations (12c) and (13c), respectively, for O/d
f 10-2. The root structures are now different for the two sets, and particularly so when kd is high. When /d
increases even further, the differences are even more telling, as illustrated in Figs. 4 and 5. Thus it is only at
the higher frequencies, and for a higher degree of chirality as characterised by larger values of 1f1, that the
effect of the chirality of the medium becomes significant.

10.0"

beta/d = 10**(-2)
First Set

8.0-

6.0

o .0

. U

o 2.0 ,
N

0U

0.0-
0.0 2.0 4.0 6.0 8.0 10.0 12.0

Normalized Frequency (k*d)

Figure 2. Solutions icd of the dispersion equation (12c) of the first set at O/d = 10-2; k3 < 0.5.
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10.0
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.6.0a
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C 2.0-

0.0,,,,,
0.0 2.0 4.0 6.0 8.0 10 .0 12.0

Normalized Frequency (k'd)

Figure 3. Solutions ied of the dispersion equation (13c) of te second set at p/d.= 10-2; kA3 S 0.5.
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Figure 4. Solutions wd of the dispersion equation (12c) of the first set at O/d - 10- 1; kP3 < 0.99.
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Figure 5. Solutions icd of the dispersion equation (13c) of the second set at /d = 10; k3 < 0.99.
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Errata:

PROPAGATION IN A PARALLEL-PLATE WAVEGUIDE

WHOLLY FILLED WITH A CHIRAL MEDIUM

VUAY K. VARADAN, AKHLESH LAKHTAKIA and VASUNDARA V. VARADAN
Department of Engineering Science and Mechanics

and
Center for the Engineering of Electronic and Acoustic Materials

The Pennsylvania State University
University Park, PA 16802.

Equations (9), (10a), (11a) and (13a) of the subject paper [1] contained typographical errors. The correct
versions are as follows:

O= [{a y' + c% } {I- expfi2(a + a2)d]} + {cly -a yl} {exp[i2atd]) - exp[i2ot2d]]×1 1 2 2 11 222
[{el + a2l } {I1- exp[i2(o, + a)d]} - {ct ly-l - a l} {exp[i2aod] I -exp[i2ad}].

1{ 2 2y}1-x~i( 2 1 2 2 12

(9)

0= , -1 + a2y2 } {1- exp[i2 (a1+ ao2)dl} + {cyl - a 2y2 I {exp[i2aldfl - exp[i2 2d] I],(1a

(IOa)

0 = [{oal"yl 1 + at2 1} (1 -expii2 (oi1+ao2)d]} - {oa1' 1' - cyxT1} {exp[i2oald]} -expi2ot2dl}],

(11 a)

Q1= exp[i1 x] y1 {-ialsin(azz) ex + ccos(aoz) ez- iy1 cos(a z) eY), (13a)
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Walker's method was iteratively refined by Yan'-Shen [7), [81, but
remained valid for very small spheres. This work was extended by
Pistol'kors (9] who considered the self-oscillation modes with no
azimuthal dependence of a small ferrite sphere. Further research
using similar approximations has also been reported in two papers by
Wolff (101, [111. A more comprehensive approach [121, published in
Russian, on scattering by ferrite spheres appears to be flawed in its
selection of the basis functions for representing fields in the spherical
coordinate system.

A semimicroscopic approach (15], in which the scatterer is
modeled by mutually interacting point-polarizable groups, has gained
popularity in the last few years (e.g., (16], (17]). This technique,
dubbed the coupled dipole approximation procedure, has been
successfully applied to compute the scattering characteristics of
nonspherical, lossless dielectric objects. This procedure has also been
successful in predicting the Perrin matrix for scattering by bacteria
[181. Here we report, for the first time, the application of this method
for the computation of the scattering by homogeneous, anisotropic
scatterers with a relative permittivity dyadic e. Numerical results will
be presented for spheres made of titanium dioxide, which is an
uniaxial medium.

Detailed discussions of the presented method as applicable to
isotropic scatterers are available elsewhere [15]-[17]; therefore, here
we shall mention only its features arising due to the anisotropic
properties of the scatterer. The scatterer is modeled by a three-
dimensional array of point-polarizable groups arranged on a cartesian
lattice embedded in free space. Each one of these groups is
characterised by a polarizability tensor p, such that when an electric
field E hits it, the scattered field can be adequately expressed as being

Scattering by Three-Dimensional Anisotropic Scatterers due to an electric dipole moment p, with

VASUNDARA V. VARADAN, MEMBER, IEEE, AKHLESH LAKHTAKIA, p=p E. (1)
AND VIJAY K. VARADAN, MEMBER, IEEE It has been shown by Bedeaux and Mazur [19] that the polarizability

Abstract-The coupled dipole approximation method has been ex- of a small volume v and dielectric dyadic (e0e) imnersed in free space
tended In order to compute the scattering characteristics of three- is given by
dimensional, homogeneous, lossless, anisotropic objects. Numerical
results are given for uniaxial spheres made of titanium dioxide. p=3ueo[e-g] • [e+ 2 g] -. (2)

INTRODUCTION AND THEORY For our purposes we set u = V/N, in which V is the volume of the

The Mie formulation [1] of scattering by a homogeneous, isotropic scatterer and N is the total number of point-polarizable groups it has
sphere has enjoyed an enormous amount of popularity ever since its been modeled by. It is to be emphasized that from a geometric
inception in 1909, but no formulation of comparable magnitude exists viewpoint, the polarizability p could be that of an equivoluminal
for anisotropic spheres. Recently, Graglia and Uslenghi [2] have sphere. Still, for our purposes, each sphere is to be visualized solely
formulated integral equations for scattering by anisotropic objects as a point-polarizable group located at the center of the sphere; hence,
using microscopic arguments; however, they have been successful in any discussion of intersecting spheres is moot. It is hoped that with a
the numerical implementation of their formulation only for two- sufficiently large N, a convergent result would be obtained (as is the
dimensional problems [31. A method for the solution of electromag- case with the method of moments), and which would be checked with
netic scattering by transversely isotropic cylinders due to Monzon experimental results for adequacy and accuracy.
and Darnaskos [4] should also be mentioned, as should Moon's It also needs be mentioned that the term [e - AJ'e + 291- has
formalism [5] for the scattering of elastic waves by uniaxial, not been obtained through a simple-minded extension of the
piezoelectric cylinders made of barium titanate. Clausius-Mossotti relation for small, isotropic, dielectric spheres

The oscillations of a small gyrotropic sphere have been handled by [201. Instead, Bedeaux and Mazur [19] invoked a statistical theory for
Walker (61 by considering quasistatic electric and magnetic modes. the wave vector and the frequency-dependent dielectric tensor for
For the electric modes the internal E-feld was expressed as V , a their treatment of a nonpolar fluid. Hence, their theory is not
for the magnetic modes the internal H-field was modeled as Vo,.. restricted to small values of the polarizabiity per unit volume. The

only restriction here is that the medium not be lossy, for it is not clear
if a lossy spherical unit can be adequately represented by a complex

Manuscript received March 4, 1988; revised August 12, 1988. electric dipole.The authors ae with the Deparment of Engneeng Science and The electric field, E,,, exciting the mth spherical subunit is
Mechanics and the Center for the Engineering of Electronic and Acoustic
Materials. Pennsylvania State University, University Park, PA 16802. composed of the incident field I, (r,) as well as the scattered fields*

IEEE Log Number 8927252. due to all the other subunits evaluated at r,, the location of the mrth
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subunit. Thus 0.125

F. (r.)fi ( • F ,,; m fi 1, 2, .. ,M . (3a) !!*., (y-z plan)
s- 1.2,.-'.M 0.100 - .. ... ... ... ... ... ... ...

where
0.075

Q.. = 58,.. - (1 - 6,..)(k2/4vE0Rn.r)

-exp [ikR. .g .p • e,.e,..-h,np}. (3b) .05o4 F o-

In these equations, 6,. is the Kronecker delta, k = w4_ozjt- is the
free-space wavenumber, R., = r,. - r., e., = Rmn/Rmn, gmn = 0.025

3[kR..]-  - 3i[kR,,.] -  - 1 and 3h.,, = g,., - 2. Equation (4b)
can be so, for the exciting fields, whence the far-zone scattered .000
field due to the anisotropic scatterer can be easily derived as 0. 50* 100' 1s0"

e in the x-z or the v-z plane

F (r)= rn, {kr exp [-ikr] E(r)} Fig. 1. Comparison of the scattering patterns of an isotropic sphere, of

radius a and relative permittivity 7.2. using Mie meory ( -- ) and the
= (k3 /4,reo) exp [-ikr • r/r]p present method (- ). The plane wave E_ = e. exp [ikz] is incident with

m ". k = 0.5.

[-r-(4) 0.s T y-t Plane

Equations (3) give the procedure its name. The exciting field is
determined at the location of each point-polarizable group via the 0.i1.
second term in (3b), which permits interactions between the groups.
These interactions are exact, given that the groups are dipolar.

0.075

NUMERICAL RESULTS AND DISCUSSION
0.1]25--

Equations (3b) and (4) were programmed and solved, for a uniaxial
sphere, on a DEC VAX 11/730 minicomputer using single precision x-z plane

complex arithmetic. Uniaxial dielectric media are characterized by an 0.100
anisotropic permittivity, with the relative permittivity stated in dyadic
notation as

0.075 .

efj+f fC (5) Z. I

where ~j is the unit dyadic and c is the unit vector along the optic axis; 0.050

without loss of generality it can be assumed that c = e We chose the
scatterer to be a sphere of radius a (i.e., V = 4ra 3 l3) made up of
titanium dioxide (e, = 0.913, e1 = 7.197) on which plane waves 0.025

are incident at a normalized frequency ka = 0.5. We compared the/
scattering pattern F, for a dielectric sphere of relative permittivity 0.0-
7.2 with rigorous calculations made using the Mie theory, and 0.~ 50,10, 5-
observed agreement within 5 percent when 179 spherical subunits 8 in the x-z or the Y-z plane
were utilized; see Fig. I. For the results presented in the sequel,
therefore, 179 spherical subunits were used to model the uniaxial Fig. 2. Scattering pattern of a TiO2 sphere (- ) of radius a on which a

planewave. F,. = P, exp [ikzl] is incident with ka = 0.5. Top: e,.F, in
spheres. the y-z plane. Bottom: e#. F,. in the x-z plane. For comparison. Mie theory

Shown in Fig. 2 are computations made for the titanium dioxide calculations for isotropic spheres of relative permittivities 5.913 ( .

sphere when a plane wave, KF = ex exp [ikz] is incident on it. The - ) and 7.197 (*...) are also plotted.
scattering pattern in the x-z plane turns out be predominantly 0-
polarized, whereas in the y-z plane it is ip-polarized. For comparison, incident electric vector is parallel to the optic ax' s. This understand-
the data from Mie theory for isotropic spheres of relative permittivi- ing is further underscored in Fig. 4 where the scattering pattern is
ties 5.913 and 7.197 are also plotted. The depolarized scattered fields plotted for the incident plane wave F, = e, exp [ikxl; the
(i.e., the p-polarized one in the x-z plane and the 0-polarized one in depolarized component of the scattered field is 0-polarized in the x-z
the y-z plane), which are due to anisotropy of the scatterer, have not plane, and v-polarized in the y-z plane. It should be noticed that the
been plotted since they are several orders of magnitude smaller for depolarized component manifests itself significantly only in the y-Z
the calculations pertaining Fig. 2. plane, but its magnitude is small.

In Fig. 3, the scattering pattern is plotted when the incident plane This coupled dipole approximation method is simple, and does not
wave is given by F,,. = e, exp [ikx]; the depolarized component of require the solution of any integrodifferential equation. As is
the scattered field is p-polarized in the x-y plane, and 0-polarized in apparent from (3), the presented method will work for any
the y-z plane. The scattering pattern in the x-z plane is still 0- constitutive dyadic e, provided it is lossless; furthermore, scatterers
polarized; but, in the y-z plane, the predominant component of the of any shape can be accommodated. Thus, this procedure will work
scattering pattern is also the 0-polarized one, not the t,-polarized one. well for any three-dimensional, lossless, anisotropic scatterer. With
This suggests the tremendous effect of the anisotropy when the increasing frequency, however, the number of spherical subunits
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Chem. Phys., vol. 84, pp. 2658-2667, 1986.

0.000 - -[17] V. V. Varadan, A. Lakhtakia, and V. K. Varadan. "Equivalent dipole
-200" -100 0. 100" 200' moments of helical arrangements of small, isotropic, point-polarizable

scatterers: Application to chiral polymer design," J. Appi. Phys., vol.0 ". t~h x- or he -z pane63, pp. 280-284, 1988.

Fig. 4. Scattering pattern of a TiO2 sphere of radius a on which a plane [18] R. A. Harris and W. M. McClain. "On the manifestation of retarding
wave, E, = e, exp [ikx] is incident with ka = 0.5. Code: e.F, (-), effects in diagonally polarized light scattering," 1. Chem. Phys., vol.
e.-F, in they-z plane ('''.), and e,'F, in the y-z plane (--). 82, pp. 658-663, 1985.

[19] D. Bedeaux and P. Mazur, "On the critical behaviour of the dielectric
constant for a nonpolar fluid," Physica, l A. 67, pp. 23-54, 1973.

required for a convergent solution increases, thereby straining the [201 C. Kittel, Introduction to Solid State Physics, 4th ed., New Delhi:
memory resot rces of any computer. On the other hand, for aspherical Wiley Eastern, 1974, p. 459.

objects, fewer spherical subunits will be needed, making this [21] S. B. Singham and C. F. Bohren, "Light scattering by an arbitrary
procedure very attractive. The danger of having to invert extremely particle: a physical reformulation of the couple dipole method," Opt.

large matrices can be surmounted by resorting to an order of Lett., vol. 12, pp. 10-12, 1988.

scattering procedure, in which the interactions are built in through a

Feynmann series, as has been done for isotropic particles by Singham
and Bohren [211. In addition, scattering by inhomogeneous objects,
like coated spheres and spheroids, can also be handled as has been
done for the isotropic case [16]. It should also be noted that this
procedure works best when the internal field does not vary rapidly in

space.
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PRINCIPLES OF MICROWAVE INTERACTION

WITH POLYMERIC AND ORGANIC MATERIALS

VIJAY K. VARADAN, VASUNDARA V. VARADAN AND AKHLESH LAKHTAKIA

Department of Engineering Science & Mechanics, and The Center for Engineering of Electronic
and Acoustic Materials
Pennsylvania State University. University Park. PA 16802.

ABSTRACT

Electomagnetic waves can discriminate between objects of different handedness due to their
transverse nature, which implies that the origin of chirality need not necessarily be molecular as
in the case of optically active media. Effectively chirul composites may, therefore, be constructed
by embedding chiral rrdcrostructres in non-chiral host media.

INMODUCTION

Many.organic molecules occur as stereoisomers in enandomorphic pairs, Le., one isomer is
the minor mage of the other one, but the two of them are not congruent with each other. The
basis for the differnce in the physical propetes of the muror-conjugates lies in the handedness
or the chirality possessed by their molecular configurations. When an electromagnetic
disturbance travels through a medium consisting of chin molecules, it is forced to adapt to the
handedness of the molecules. Electromagnetic (EM) waves can recognize the handedness of a
chiral object primarily due to their transverse natu, i.e., the applicable vector, infinite-medium
Gren's function contains the vector distance between the source and the field points. From a
microsopic, not molecular, point of view, therefore, it is possible that an effectively chirl
.ops. medium may be constructed by embedding m china obects, an of t s=
han es, In a dielectric host. The microsuucture size should be large enough that the EM
wave in the matrix can appreciate the handedness of the microstructur; at the same time, the
microstructure size should be small enough so that the composite medium, consisting of achiral
phases, is effewdvly chiral. By var y'g the concentrations and the siz of the chira inclusion,
the properties of the composite medium may be altered to suit desired polarization characteistscs
It has been observed by us that the introduction of chirality In an otherwise achiral. dielectric
scattering volume radically alters its scattering and absorption charcteristics (1]. Particularly
with the proliferation of research on novel polymers, it is possible that such materials can turn
out to be of considerable importance for many electomagnetic applications It has been
demonstrated [2,31 that it is possible to produce polymers which possess no true axisyinmetric
centers, and helical sands - either left- or right-handed - can be produced.

WHAT IS CHIRALlT?

In ailer to understand the characteristics of chira media, one has to begin with the notions
of dthe intrinsic polarization and the intrinsic mtagnetization vectors. Free space is vacuum, i.e., it
doe not contain any matter. The constuve relations for the electromagnetic fields in free space
can be adequately expressed in the form

D a roE; B = Itoll.(1

Fields in material media induce bound charges too. Collectively, the constitutive equations in
material media have the form

ft. m.& Un. sv Pro& VOL 4. m e IWOemnt ftiSt 8ns
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D =MoE + P, B = ol + M. (2)

in which P and K respectively, are the polarization and the magnetization. The polarization P is
nothing but the average electric dipole moment per unit volume, while M is the average magnetic
dipole moment per unit volume.

In non-magnetic dielectric media. a prominent contribution to P comes from the charge
separation in the atom. and is designated as electronic polarization. This is because an applied
electric field causes displacement of the electrons with respect to the atomic nucleus. Atomic or
Ionic polarization may be caused by the displacement of atoms or ions in a molecule by electric
fields. Some media may also have permanent elecuic dipole moments because the centers of the
negative and the positive charges are not co-incident. Without an applied electric field, these
permanent dipoles am randomly aligned, and their effect is nulled on the average; however, when
an electric field is applied, then these dipole moments line up to give rise to orientational
polarization. In linear media, these various contributons can be summed up as

P = tZ; D a eol+XJE - E (3)

X, being the elecic susceptibilky, and e the (real) dielectric constant.
Each of the threypes of polarizations are.frequency-dependent; however, as the frequency

.ncreases the polarization may not be able to follow the oscillations of the applied field.
Orientational polarization concerns itself with the most massive entities; hence, it is the firs to be
unable to reach its equilibrium value. The loss of orientational polarization occurs at lower
frequencies for macromolecules and lare-chain polymes, and it occurs at higher frequencies for
small molecules. As die frequency increases even further, first the atomic, and then the
electronic, polarizations also fall off. Typically. the times for ouienmational, atomic, and eleconic
polarizations to reach their equilibrium values are 1-9 S, 10-"3 s and 10-1 s. respectively.ghly elongated and aligned molecules tend to give rise to anisotropic preties.

Electronic polarizability is due to the bound electrons. Thereore it increases when the
atomi radius also increases. This implies that polymers with delocalized electrons will have
largcr electronic polarizations; for example, conducting polymers with electron-withdrawing
groups. On the other hand, polymers possessing highly as Meic positive and negative cha
densaties will have large orientational polanubilities. Too son extent, these considerations
permit one to t1ilor the frequency-dependent dielectric constants of polymem

Under the .Mnuence of the externally applied field, the polar molecules rotate towards an
-equilibrium distribution If the Polar molecules are massive, or if the ftuquency is very high. therotatory motion lag behind the applied field and equilibrium is never attained. Thus, the
polarization is no longer in sync with the applied field, giving rise to a conduction current
density. This results in thermal dissipation of energy. Thus, ohmic losses in dielectric media give
rise to a conductivity (F, which is incorporated in the timec-harmonic constitutive equation by
making econaplezLe.

O = g. =ol+ ,i ,(4)

0 - 2xf being te circular frequency. It would also follow that conduction losses increase with
tmpetum Sic the conduction charges have enhance mobilities at higher temperatures.
Furhrow mm: massve molecules ani less able to follow the applied field, which means thatthe rato.._ . lm te(e) enrally higher for such substances Unsatmrted polymers will
also have hi .because of the increased availability of electons for conduction. It should
also be noted dWs while charge transport in metas takes plac via electins only, charge transport
in polymers may em involve ions.

There are Macroscopic currnts due to electron spin and the motion of electrons around the
nucleus. Thes microscopic Currents act as sources of macr~oscopic mragnetic fields,thrbendowing the electrons and the atoms with magnetic dipole moments; but these currents do not
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produce macroscopic charge transport. In magnetic media, the effect of the magnetic dipole
moments cannot be ignored, giving rise to the magnetization M. Again, for linear media, it can
be stated that

M = XnlLoH; B - go[l+ Xm]H = gLH (5)

. being the magnetic susceptibility, and t the (real) permeability. Magnetic ohmic losses can be
incorporated by making g complex in the same fashion as the electric ohmic losses.

Chirality was first observed as optical activity, which is the rotation of the plane of
polarization in certain linear isotropic media. Pasteur interpreted the observations of Biot and
Arago by imagining that the arrangement of atoms within an optically active material is
mirror-asymmetric [4]. Phenomenological studies by Drude [51 indicated that the rotation of the
plane of polarization is predicted by Maxwell's equations provide P has an additional term
proportional to VxE. Further studies [6,7] have shown that even M must have a term
proportional to VxH. Thus, the constitutive equations for homogeneous chiral media have the
form

D - e[E + OVx]; B = p(H + (XVxH], (6)

in which cL and 0 are the chirality parameters. Since the curl is a pseudo-vector under a reflection
of the coordinate system, the mirror-asymmetry of chiral media is immediately apparent in (6).
The nonlocal character of (6) needs to be noticed, because the polarization P (resp. magnetization
M) depends not only on E (resp. H) but also on the circulation of E (resp. H). In a
not-too-rigorous manner, one may even observe that P (resp. M) has a component due to the
time-rate of change of H (resp. E), vide Faraday and Ampere-Maxwell laws. Reciprocity
demands that a = P, a constraint which is generally obeyed by optically active media S].

Thus, optically active media (mostly organic materials) are naturally chiral, at optical
frequencies; interesting examples include the famous Watson-Crick double-helix representation
of the DNA molecule. But the underlying principle behind chirality is the mirror-asymmetry of
the constituent microstructure. Therefore, artificially chiral media can be constructed by
embedding chiral microstructures in non-chiral host media, such composites being effectively
chiral even at the sub-optical, and even in the high mm-wave, frequencies. The microstructure
size should be large enough compared to the wavelength in the matrix medium so that the spatial
variadon of the EM field can sense its handedness; at the same time, it should be small enough so
that, at least in some frequency range, the composite should appear to be effectively chiral.

In a non-chital medium, the simplest EM waves that can propagate are linearly-polarized
plane waves. But in chiral media the simplest waves are either left-circularly polarized, or they
are right-circularly polarized, plane waves; it is important to note that the left- and the
right-handed waves travel with different phase velocities (7). Furthermore, when a linearly
r larized wave hits a chiral scatterer embedded in a non-chiral medium, the scattered field has

o LCP and RCP components. Now, let us envision the propagation of a plane wave in an
artificial chiral medium which contains a certain density of chiral inclusions in a host phase.
Multiple scattering (9] between the chiral inclusions will create LCP and RCP fields. In the right
frequency range only LCP or RCP fields will be allowed to propagate in the forward direction,
thereby rendering the composite effectively chiral.

ANTI-REFLEMCION COATINGS

There is considerable interest in developing low-weight coatings which will reduce
reflections from metallic surfaces. In view of our previous studies [11, it appeared that artificial
chiral media may be just the thing to fill the bill. To further investigate this premise, we
considered the planewave reflection characteristics of a chiral coating, of thickness d, on top of a
perfectly conducting plane. The chiral layer has a permittivity e a permeability gi = ., as well
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the chirality parameter S. vide the constutive relations [7]

D n CIE + JVxE]; B = goIH + I3VxH]. (7)

The chiral dielectric medium is low-loss so that its relative permittivity e/ego is complex with
Imfeg) << Re({e/J. The thickness d of the coating was assumed to be 2 mm for all of our
numerical studies, and the reflection coefficients, RTE and RTM [10), were computed,respectively, for TE- and TM- polarized planewave incitence cases.

A design of a wideband anti-reflection chiral coating cannot afford to have both E14 and f3
independent of frequency. Once it became clear from numerical experimentation that (i) chirality
is ineffective in the reduction of the reflection efficiency if cle, is purely real, and (ii) that either
or e eo or both must be frequency dependent in order to obtain a wideband anti-reflection
coating, the design of such a coating became more of an optimization problem. Shown in Figs.
I - 3 is a sample design with cJ% assuned to tx: constant, whereas P3 - (f) assumed is shown in
Fig. 1. In Figs. 2 and 3., the enhancement of the absorption efficiency of over a 50-300 GHz
frequency range by incorporating this frequency dependent 0 = 0(f) is illustrated, for the TE- and
TM- polarization incidence cases, respectively; 0. is the angle of incidence with respect to the
normal. The relative permittivity CIE, is set at 5.0 + iO.05 for all frequencies considered. It
should be noted from these two figures that whereas the design objective of achieving RTE and
RT I less than 20% for 50 S f S 300 GHz and 0* 5 05 830* can be achieved using the P of Fig.
1,the reflection efficiencies hover around 92% if 13 were to be set equal to zero.

From our numerical studies, several conclusions can be drawn. Firstly, in reducing
reflection if a larger constant 0 is used, then the values of ee, tend to decrease over the entire
frequency band of interest, a goal which appears to be desirable for a material scientist.
However, this also tends to reduce the bandwidth over which the desired absorption efficiencies
can be achieved. Secondly. chirality in the absence of a lossy e is of no use whatsoever in
reducing reflected power density: conducting polymers constitute feasible matrix media.
Therefore, chirality serves only as an enhancement factor for absorption, but of itself it is not an
absorbing mechanism. Thirdly, and very importantly, both e/eo and P should be frequency
dependent. This last conclusion, however, was not verified here because of the complexities of
multivariate optimization problems.

EQUIVALENT DIPOLE MOMENTS OF HELICAL ENSEMBLES

Thus, the significance of chiral media cannot be denied. As has been mentioned earlier.
effectively chiral media can be constructed by embedding chiral microstructures in non-chiral
host media. Such microstructures may be macromolecular polymers with helical conformations
(2,3,111. What is of interest for EM use is the optimization of the polymer's chirality: the
parameters governing the helix geometry must be examined for their effect on an incident EM
wave. We decided to model helical polymers by an arrangement of spherical beads (in
themselves, large molecules for our purposes) suspended on a helical strand which is
indistinguishable from the surrounding space. Whereas the spheres are also sufficiently small to
be modeled as point electric dipoles, the overall size of the finite helical arrangement can be large
enough to be in the high-frequency regime. The helix on which the tiny spheres are located is
given, in a cartesian co-ordinatc system, by the radius vector

r(F- - atux cost + Uy h sinai + uz P(4/2x); 4 e (-a, eel. (8)

where a is the radius and P is the pitch of the helix; the handedness parameter h = +1 if the helix
curls up in the +z direction according to the right-handed rule. and h - -1. if otherwise; and u,.
u7 , and u, are the unit orthogonal vectors. Let the helix be finite in extent, having 2N+ !
complete rotatons, N being a positive integer or zero. On each of the 2N+i rings of this finite
helix, there are 2M+1 spheres arranged over equal-64 segments, M beming a positive integer
greater than zero. Each of the spheres in this arrangement has a radius b which is small enough
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Figure I The frequency profile
= (f) used for the results 40

shown in Figs. 2 and 3. The
parameter J3 carries the unit of
meter. 30

'0
X 20

I0"

f ( x io OH,)

Figure 2 Reflection efficie'icy Rn
RTE plotted as a function of Oo
and frequency f for a 2 mii thick
anti-reflection coating. The'. ,
omlxpmtvy o - .i.05. In the upper figure the 13 te,

= f3(f) of Fig. I is used while in
the lower figure 13 is set equal to

0.0 m.o

Figure 3 Same as Fig. 2, but
Rt is ploted.

R,npltte asm a ummnin ofmii n80u
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that no two of them ever touch. The spheres possess a dielectric constant e. and if a field F"
illuminates the m h sphere, an electic dipole moment [121

Pm=aEm 4xeob3 (jE-Eo)(E+ 2Eo)' Em (9)

is induced on it, with c being the isotropic electric polarizability of the spheres.
The EM field incident on the helical ensemble. Einc, can be any arbitrary field so long as its

source is not located anywhere inside or on the minimum sphere circumscribing the helix. But
the field E, actually incident on the m sphere is not Ejjr,) alone; it also consists of the fields
re-radiated by all of the other spheres as well [9,13). With this reasoning, the system of 3Q
simultaneous equations.

Em= Einc(rm) + Cak 2 (4,,Y- ,r, [Rmn"I expjkRmn"

•[gmnnmn(nmn-En) - (I/3 )gmn -21 En)], (10)

must be solved, in order to obtain the various exciting fields E.. Here, Rm = Ir - r.I. na W
(rm " r.)R,. g,m - 3(kRm) "2 3j(kRm)"- 1. while the wavenumber k = o /(enoJ). Once the
solution of (10) has been obtained, the total scattered field for kr - - can be computed from

4n.o Esc(r) - a k2 r"1 expjjkr] Ta [ exp[-jkrm'r/r] [Em - r(r- Em)/r2]). (1)

Multiple scattering between the spheres would ensure that E. Ee,(r,). It is to be
expected that the exciting fields should reflect the chirality of the helical ensemble, because the
ensemble of unit vectors (n,,) used in (10) is handed, even though the scaar distances (Rmn I
do not depend on h. This, indeed turned out to be the case. From our computations a very
interesting conclusion can be drawn: Provided kt- II u. or ki. N u., then (i) only uy.E,
changes sign with h when uy*EE. a 0, and (ii) only uixEm changes sign with h when u.X Eh.=
- 0. Symmetries of similar natures are also present when ki,. 11 uy. but they are not so easily
describable.

Since the source of E, is not concentrated at any given location, it can be conveniently
expressed as being due to a set of multipoles concentrated at the origin. The two lowest order
multipoles would be an electric dipole, p., and a magnetic dipole, m, 1 . Since the helical
ensembles are much smaller than the ambient wavelength, it appears that optimally chiral helical
strands must have maximal values of .nsq,. The magnetic dipole moment can be calculated by
taling the projection of E, on E, in thi limit kr -,as

0f" dO sinO 0 i2 i dip Em(r). Em*(r) = (0X d9 sinO 0f2x dip Esc(r) • Em*(r), (12)

in which E, is the electric field radiated by the equivalent magnetic dipole,

4uoEm(r) = - k2 [p oeo 1/2 r2 expUkrl (rxn.qvt}. (13)

Seveal studies were carred out for different planewave incidence conditions and the results of
then invetsga oas anm snumarized now. From studying the magnitude of neq_ as a function of
the raio WP for several different incident plane waves, we observe that when wP - 0.24, optimal
chim.ity is achieved because m 0m is maximal. The computed optimal value of the ratio a/P is. .. ---
interesngly enough, not far from values reported for various helica polymetf 14,151. -t is
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important to realize that chirality will not be observed unless a/P 0 0 or P/a 0O because in these
two respective limits, the ensemble of scatterers is either linear or circular, and, thus, devoid of
handednes. On the other hand, the ratio VP cannot be very large either. because polymers in the
helical configuration deviate only slightly from their linear counterparts [16]. Thus, that the
optimal value of a/P turns out to be 0.24 is quite satisfactory.

Furthermore, it is obvious that by increasing a, m,,,, can also be enhanced: but the spheres
ame small and a is only weakly dependent on e. . Even so, it is recommended that a be as large
a possible. Next, it was also found that increasing the number of spheres per ring (i.e.,
increasing M) is also helpful in increasing chirality by enhancing the number of dipole-dipole
interaction paths. Short helices appeared to be, however, preferable to large ones; in other words
N should be as small as possible.

EXPFIMENTAL RESULTS

As part of our experimental effort to test the viability of chiral composites, we devised a
free-space measurement method, using a dielectric-loaded horn antenna and the HP8510A
network analyzer to determine the reflection from an artificially chiral slab which is backed by a
metal plate. A 41.5 mm thick chiral slab was made of Eccogel 90, into which were put in a
certain number of miniature right-handed metallic springs; the metal content of the exposed area
due to the introduction of the springs was set at 3.2% v/v. The horn antenna was arranged so as
to simulate a linearly polarized planewave normally incident on the slab. The full details of our
experimental efforts will appear elsewhere (17], but, for the purpose of illustration, shown in
Fig. 4 is the reflected power measured over the 14.5-17.5 GHz frequency range. As control, yet
another sample with 3.2% metallic content, but with each spring replaced by an equi-voluminal
steel sphere was used; the measurements with the control sample are also shown in Fig. 4.
Almost over the whole frequency range, it appears that the chiral sample reduces the reflected
power more than the contol sample, thus illustrating the effect of chirality. It should be noted
that the chiral slab is solid, in contrast to the extant absorbing coatings which are largely porous
and brittle (e.g., the lining of anechoic chambers).
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FIgure 4 Measured reflected power when a linearly polarized planewave is normally incident on
a chiral slab backed by a metal plate. The identifier 'ri denotes 3.2% v/v metallic content in
Eccogel 90 in tie form of miniature tight-handed metallic springs. The control sample has each...
spring replaced by a steel sphere ('.ss.
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