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I. INTRODUCTION

Pulsed lasers have been used to produce sparks (breakdown) in gases for
nearly two decades. Over the intervening years, the details of the laser
microplasma formation pfggess have been extensively studied and are currently
fairly well understood. One of the applications of these laser-produced
sparks hzs been to ignite reactive gases for minimum ignition energy
studies. A problem that was quickly discovered in this work was that the
laser sparks exhibited a strong threshold behavior for their formation and
that once formed, they were frequently so vigorous that they drove detonable
gas mixtures into detonation.

Recently, our laboratory has demonstrated the efficient production of
microplasmas in various gases by using tunable ultraviolet lasers whose
wavelengths correspond to resonance excitation of the constituent atoms.
Specifically, we have observed resonant microplasma formation in flows of
oxygen-atom containing molecules such as 0, and N,0 with the laser set at
226 nm, a wgy?length which corresponds to oxygen—atom two—photon
excitation. Similarly, we have observed resonant laser—produced
microplasmas in Hy flows with_the laser set at 243 nm, a hydrogen-atom two-
photon excitation wavelength. These uv laser produced nicroplasmas differ
significantly from those formed by non~resonant laser radiation in that they
are formed with much lower values of incident laser energy (ILE) required, and
also they are controlled much nore easily with respect to the awount of laser
energy that is deposited into the focal volume, i.e., the sharp threshold for
breakdown is not observed. A mechnism for the microplasma formation process
has been deduced and involves three sequential steps: (a) the multiphoton
photochemical production of substituent atoms (H and 0), (b) resonant
multiphoton ionization of these atoms to efficiently produce "seed" electrons
in the laser focal volume, and (c) microplasma formation in the focal volume
through the process of electron multiplication due to ¢ascade ionization and
plasma heating via the inverse brehmsstrahlung effect.

We have previously used the§g7resonant microplasmas for the ignition of
H2/02 and HZ/NZO preitixed flows. We have extended this work to include
nore practical laser systems, ones that could be possibly used in actual field
applications. Specifically, since we are interested in the potential of this
new igniter source for the National Aerospace Plane (NASP) applications, we
have chosen to work with one of the common uv gas discharge lasers, the ArF
excimer laser, which operates at 193 nm. This paper describes not only the
results of our ignition studies with the ArF laser, but also the results of
studies aimed at the understanding of some of the underlying physical and
chemical mechanisms entailed in this phenomenon.

IT. EXPERIMENTAL

The experimental apparatus has been described previously.6 Briefly, a
Lunonics excimer laser (Model 440) is focused by a 10 cm focal length lens
into a premixed flow of HZ/OZ or Hz/air at room tenperature. This flow passes
through the orifice (0.7 mn) of a jet burner and intersects the laser focal
volume approximately 1-2 mm above the burner surface. The criterion for
ignition is straightforward, i.e., ignition is recorded when a flame appears
following the laser pulse. The flow conditions are set so that the laser-
generated flame is stabilized on the burner. Following ignition, the flame is




quickly extinguished and the water—cooled burner is allowed to return back to
ambient conditions.

For the Hy microplasma formation experiments, the laser used is a
Nd:YAG/pumped dye laser system whose radiation in the wavelength region near
243 nm is generated by frequency doubling the dye laser and mixing this
doubled beam with the residual 1.06 micron beam from the Nd:YAG pump laser.
Typically for these experiments we operated in the 0.l1-1 mJ/pulse range while
the system is capable of delivering up to 3 mJ/pulse.

For the oxygen—atom spin-orbit studies, the Nd:YAG/dye laser was operated
at 226 nm (O-atom two-photon transition) with low pulse energies used (0.5 mJ
or less) and a long focal length lens (f.l. = 40 cm) so as to avoid any
saturation of the tw.—photon fluorescence signal. Also, the excimer laser was
operated at similar modest pulse energies and long focal length lens ‘
conditions to avoid multiphoton photolysis/excitatien effects. Oxygen atom
emission at 845 nm was passed through a combination of interference filter and
ArF radiation reflector and subsequently detected by a photomultiplier tube.

IIT. RESULTS

A. H,/0, and Hy/Air Ignition by the ArF Excimer Laser

One of the most important considerations in the development of a
practical laser igniter for in-flight use is the laser itself. A tunable
laser system, such as is required for O-atom excitation at 226 nm, is not
likely to be used in a supersonic aircraft. However, as mentioned before, a
much more simple device such as an excimer laser can be envisioned as being
made flight worthy. Figure 1 shows the dependence of the incident laser
energy (ILE) necessary for the ignition of a premixed flow of 1li,/0, on the
equivalence ratio. The ArF excimer laser was operated in the unstable
resonator mode which yields a much less divergent beam as compared to the
stable resonator, and thus a tighter focus. The winimum of the curve shows
that the ArF laser ignition process is indeed very efficient, with less than 1
nJ pulse energy required. Unlike our previous work using the tunable uv
laser, the specific mechanisms for microplasma formation using the broadband
(ca. 100 cm ) fixed frequency of the excimer laser is not yet well-
understood. It may include at least two possibilities; (1) a 141 multiphoton
ionization (MPI) of Oy involving the Schumann-Runge (S-R) bands, and (2) the
2+1 MP1 of Hy going through the E,F electronically excited states.
Determining which of these two mechanisms, or possibly even some other one, is
responsible for the efficient ignition awaits further work. For Hp/air, the
results are qualitatively similar to those for H,/0, with the exception that
the minimum ILE values were found to be around 6 nJ, which is considerably
higher than that found for Hp/0p. We speculate that these ILE values for
Hz/air can be dropped considerably by using a tunable excimer laser which 1is
tuned to wavelengths of strong absorption (see below).

B. Microplasma Formation Mechanism

As mentioned above, the microplasma formation mechanisn(s) for the ArF
excimer laser are not yet fully understood. However, we have conducted
further studies of the uv microplasma formation process in general using a
tunable laser at 243 nm focussed into a H, roon temperature flow.
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Figure 1. Dependence of ILE on Equivalence Ratio for Hy/0, Premixed
Flows Using ArF Laser (193 nm) (Unstable Resonatoés

Specifically, we compared room temperature D, gas behavior with that of Hy
gas. Figure 2 shows the wavelength dependence for microplasma formation in
both gases at 70 torr. In both cases we were nonitoring the H/D atom emission
at 656 nm (n=3 + n=2). A well-defined isotopic shift is clearly evident with
a wavelength separation corresponding to about 22 cm_l. This is exactly the
energy spacing difference given in energy level tables for the n=2 upper level
involved in the two-photon excitation of H and D atoms (n=1 + n=2). We also
observe the same isotopic shift at atmospheric pressure with the only
difference being broader excitation spectral widths. We believe that these
substantial widths observed in ignition/microplasma formation are due to the
finite absorption in the "wings" of the atomic transitions. This isotopic
shift behavior further substantiates our interpretation of the microplasma
formation mechanism, i.e., multiphoton photolysis of parent molecules to form
atoms, resonant nultiphoton ionization of these atoms, followed by microplasma
formation in the laser focal volume using free electrons liberated in the
previous step.

Recently we completed a study on the photochemical meghanisms involved in
ArF laser photolysis of cmall carbon-containing molecules. e have expanded
this work to include molecular hydrogen. Figure 3 shows the time-of-flight
nass spectra (TOF-MS) generated during the irradiation of a molecular bean of
Hy by an ArF (193 nn) excimer laser. Our interpretation of this data is that
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Figure 2. Excitation Spectra for Microplasma Formation in Hy and
D, at 70 Torr and Room Temperature. Emission monitored at 656 nm.

under the collisionless conditions of this expegiment, the Hy first ionizes
via a 2+] process involving the E and F states,” and then subsequently the
molecular ion is photolyzed to produce H ions. If the same experiment is
repeated using the laser set at the peak of the two-photon excitation at

243 nn (see Figure 2), then there is no signal from either of these ionic
species. Similarly, with the laser set at 225.6 nm (O-atom two-photon
transition) we did not detect either the molecular or atomic oxygen ions.
This data clearly indicates the importance of collisions in inducing
photofragmentation. Studies are currently underway to better understand the
importance of collisions on these pathways.

C. Atmospheric Absorption Effects on ArF Laser Ignition Studies

In the course of doing the experiments described in Section A above, we
became concerned that the values for the incident laser energy (ILE) that we
were measuring may depend on the distance of the ignition site from the laser
due to beam attenuation by atmospheric gases, i.e., 0, absorption in the S-R
bands. In order to determine the severity of this potential problem we
measured the spectral profile of the transmitted ArF laser beam as propagated
through 20 feet of helium gas as compared to 20 feet of air (Figgre 4), The
He data shows the expected broadband ArF laser spectral profile except for
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the strong self-absorption feature near 193.1 mn.11 The air profi&e, in
comparison, clearly shows a number of 0, absorption line features with the
laser beam attenuation measured around 65%. However, the impact of the
atmospheric attenuation of the laser beam on the ignition behavior of a
premixed H2/02 flow appears to be quite dramatic (Figure 5). The data in
Figure 5 suggest that laser radiation within the O, absorption spectrum must
be important in the ignition process otherwise one would not expect to see
such a dramatic difference. Clearly, this phenomenon where laboratory air
acts as an "active optical filter"” needs to be properly accounted for in ArF
laser experiments that are wavelength specific.

3 <XOIMZM IMMBI>r =2ZMO~0Z~
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Figure 5. Effect of ArF Laser Attenuation by Laboratory Air on
Ignition of Hy/0, Premixed Gases.
(A) Pathlength = 20 feet, (B) Pathlength = 1 foot.

D. Nascent Spin-Orbit Distribution of Oxygen Atoms

When photons from an ArF laser beam are absorbed by 0,, the excited
nolecules predissociate very rapidly such that more than 997 of these excited
?olecules break apart to form oxygen atows in the ground electronic state (2p

P). However, this O-atom state is split into three spin-orbit J states which
give rise to the frequently seen spectral "triplet" in fluorescence/ionization




excitation scans or ignition spectral scans around 226 mn.6 Very little
attention has been paid to the nascent distribution of these oxygen atoms into
the different spin-orbit states upon photolysis or as reaction products, but
this could be important in air-breathing combustion applications, particularly
in low pressure/high flow speed conditions where there may not be sufficient
time/collisions to "thermalize" these three states. The reason for this is
that a substantial difference in the elementary reaction rate constants for
the three different O-atom gpin-orbit states may exist even for such important
combustion reactions as 0 (°P, , o) + Hy + products. Such spin-orbit state
specific rate constant differencés have been previously observed in atoms like
Br, F, I, Ca, and Sr (typically fgctors of 2-10) with extreme cases showing 5
orders of magnitude differences. Figure 6 shows a clear case of non-
statistical behavior in the photolysis of O, by the ArF laser. We have also
determined the rate of equilibration for these oxygen—atom spin-orbit states
with molecular oxygen as the collision partner (Figure 7).
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Figure 6. O-Atom Spin-Orbit State Distribution from ArF Laser
Photolysis of Oy. Nascent conditions: 0 = 160 utorr, 40 nsec delay.
Thermalized conditions: 0, = 300 mtorr, N, = 100 torr, 40 nsec delay.
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E. Ignition of Other Reactive Gases

The study of multiphoton photochemical ignition via fuel molecules was
expanded to flowing CyHy/air and CpH,/0p mixtures again irradiated by the ArF
(193 nm) excimer laser. Figure 8 shows the time-dependence of the
transmitted, ca. 15 nsec, focussed laser beam as it passes above the burner
orifice with no flow (Figure 8a) and a CyHy flow (Figure 8b) in which a
microplasma is formed. As expected, the bulk of the absorption (Figure 8¢)
occurs later in the laser pulse, since it takes time for the microplasma (the
greatest absorber of radiation) to build-up. Figure 9 shows the dependence of
the ILE on equivalence ratio for CZHZ/air. The scale on the right, i.e., the
"upper limit to the minimum ignition energy" was determined by calibrating a
laser energy detector which measured the amount of laser energy transmitted
with and w/o a reactive flow. The difference represents the amount of laser
radiation absorbed and/cr scattered. The minimun values around 40 uicrojoules
appear to be a factor gf 2 higher than literature values for closed bomb spark
ignition of C2H2/air. Such a low uv laser ignition energy value, even
though higher than the closed bomb spark value, nay indicate that the radicals
formed near the focal volume might play an important role in ignition kernel
growth. Recent experiments using much longer focal length lenses have
indicated that the ArF laser can ignite a C2H2/air nixture apparently without
the need to form a microplasma with, however, somewhat higher levels of ILE
required.
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Figure 8. Transmitted ArF Laser Radiation Through a CoHy Flow.
(a) CyHy flow absent, (b) CoH, flow present with resulting microplasma,
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IV. SUMMARY

The ArF excimer laser has been demonstrated to readily ignite flows of
premixed Hy/0y, Hp/air, CyHy/0,, and CyHy/air. 1In all cases the laser couples
resonantly with one or both of the molecular gaseous constituents. For H2/02
and Hz/air systems the laser energy efficiency would most likely improve if
the ArF radiation was tuned to the apropriate molecular (Hj or 0,)
transition. These results are very encouraging with respect to the potential
practical application of uv laser ignition for supersonic/hypersonic
airbreathing engines. The ArF laser wavelength region (193 nm), however, has
certain disadvantages primarily due to atmospheric gas absorption which
requires purging of the beam path or use of far—-uv optical fibers which are
presently quite lossy. Nevertheless, in the case of supersonic/hypersonic
reactive flows where the incoming air is substantially shock-heated, laser
radiation in the 200-250 nm region may work quite well, but this has not yet -
been demonstrated.
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