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ABSTRACT:
The acoustical performance of a submerged linear array of spherical transducers is

examined by combining the T-Matrix method of solving for multiple acoustic interactions
among separate bodies with a model for the transducers as thin spherical elastic shells.
This approach solve-s the fully coupled problem of the response of the array to internal
forcing. The results show that the assumptions giving rise to the Chebyshev criteria
for optimal arrays of point sources appear to apply well even for large spheres at low
frequencies. However, at frequencies near or above the lowest resonant frequency the
directional pattern may be degraded, depending on the material of the shells.



Introduction

The determination of the acoustical field due to several separate radiating aid/or scat-
tering bodies is a problem of considerable practical importance, and has been extensively
studied. The present work concerns the interactions of an array of spherical radiators,
considered to be elastic shells, in an unbounded medium.

While there has been much related work on scattering from spheres and on radiation
from different geometries, e.g., cylindrical radiators or flat disks. the previous work on
multiple spherical radiators is not extensive. Karnovskii (1941, 1956) examined the effect
on the resis ive portion of the impedance of a spherical radiator due to the presence of
other radiators in an array, under the assumptions that the wavelength is much laxger
th ani the radiator. and the surface velocity of each radiator is specified. New and Eisler
I 1972 applied a more accurate method, with no restriction on waveleigt h, to the problem

of a puilsing sphere near a rigid sphere. Their method of accounting for multiple acoustic
interactions (equivalent to that used by Marnevskaya (1969. 1970) for scattering fromi two
spheres', involves decomposing the total acoustic field into waves radiated from each sphere,
vwhiich in turn are expanded in terms of spherical waves. The boundary conditions on each
sp! ,re ,ire satisfied by translating the coordinate origin of each other sphere to that of the
first by means of an "addition theorem" for spherical waves (Friedman and Russek. 1954).
We use the same method here.

Waterman (1969) developed this method more generally for scattering from a body
of arbitrary shape. This was extended to apply to several bodies by Peterson and Str03m
(1974). and also by Varadan and Varadan (1981). This technique of finding multiple
acmustic interactions is commonly referred to as the "T-matrix" method.

Thompson (1977) extended the work of New and Eisler by considering different ve-
locity distributions on the two spheres: both spheres pulsing or both oscillating, in or out
of phase. Reese and Thompson (1981) further considered the next higher aixisvmmetric
mode of vibration (n = 2), and Thompson and Reese (1983) considered the combination
of one pulsing and one oscillating sphere.

In all of the aforementioned work, the surface velocities on the spheres are assumed to
be known a priori, i.e., the spheres are treated as perfect velocity transducers. In this way
the above work is idealized in the sense that the effects of fluid loading on the structures
are not taken into account.

Much work has been done on scattering by elastic bodies wh-ich does account for
the coupling between the acoustic field and the elastic deformation. Here, we mention
only a few relevant papers. Junger (1952) examined the scattering of plane waves by a
thin spherical shell. Forced vibrations of a spheroidal shell, and the resulting acoustic
field, were considered by Yen and DiMaggio (1967). B6strom (1980) developed a method,
closely related to the T-Matrix method, for acoustic scattering from an elastic body of
al bitrary shape. In his paper, he gives numerical results for spheroid and "peanut" shaped
scatterers. Other researchers have employed the T-Matrix method to treat scattering from
b,,ies of more complicated geometry, e.g., Peterson rt al. (1980). Seybert ct aI. (1988)
11;1', rcently investigated radiation by a forced thick spherical shell by a boundary-element
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method. In all of the above mentioned works dealing with elastic radiators, it should be
noted that results are given only for a single radiator rather than for an array.

Here we consider an array made up of a small number of radiators in an unbounded
medium. The method used combines the "T-Matrix" method for multiple acoustic in-
teractions with a mechanical model of each radiator, treated as a thin elastic sphencal
shell with specified internal forcing. This approach solves the coupled problem for the
acoustic field (including multiple-scattering effects) and the motion of the elastic shells.
While we consider the radiation problem, the method is equally applicable to the combined
radiation-scattering problem, by the inclusion of an externally applied incident acoustic
field.

The linear array considered is comprised of three identical spherical shells, which are
forced by a uniform pressure along the inside of each shell, thereby exiting the lowest
(pulsing) mode. For comparison, we solve the same problem for acoustically hard ''Th"'es.
where the surface velocity is specified. We find that the theoretical predictions for an axray
of point sources with Chebyshev spacing and shading apply well to the array considered
when the frequency of excitation is less than the lowest resonant frequency of a single
spherical shdi! in water. This corresponds to values of roughly ka = 1.0 for the case of
steel shells, where a is the radius of the shells, and k = ./cf. For frequencies above
the lowest resonant frequency the theoretical predictions can also be very good dependi;ig
upon the material properties of the scatterers invol.'ed and whether or not they are being
excited at resonance.

.Method

The accustic field p in an unbounded medium containing a finite number of bodies
.M) C: b: written ;a th,' sum of rdi,,ted pressures from ev body p. ad the incidrr't

pressure p,) (if any):

p(x) = po(x) + Zp,(x) (1)
j=1

where p is the total pressure (complex), x is vector position and all variables are assumed to
vary harmonically with time like e', with angular frequency -, Hereafter we consider
only the radiation problem for driven transducers, i.e., we assume there is no incident
pressure.

Each of the radiated pressures pj can be expressed as a series whose terms (D,, form
a complete set of separable radiating solutions to the reduced Helmholtz equation in a
particular coordinate system. Here we use spherical harmonics, but one could instead use
spheroidal or ellipsoidal harmonics. Then:

P, ,3) A,-,,K(kr, )";O:,,(,, , ) (2)
n=O mr-n



Hfre (r) , 0, O.3j) are spherical coordinates relative to the center of radiator j. A, , is the
amplitude of the corresponding spherical wave, which is the product of the spherial Han-
kel function hl'l)(kri) (k = c/c is the wavenumber) and the surface spherical harmonic
,"'(0j, oj) = Pn(cos(O,)) c'T "¢, , where P,7 is the associated Legendre function. For arbi-

trarily shaped bodies, this expansion is only valid exterior to all the spheres circumscribed
about each body (Waterman, 1969), but since we assume spherical radiators, tile expansion
is valid throughout the medium.

If the normal velocities wj at the surface of each spherical radiator are known a priori

then solving the multiple-scattering problem amounts to satisfying the boundary conditions
on the surface of each sphere:

ap =(ipck)wj , j=1,2 .... Al'3)
& rj = a,

This is facilitated by the "addition theorem' that expresses a spherical wave relative t')
one ,ricin as a series of spherical waves relative to another origin (Friednan and tiussk.
1954). We use the form of the addition theorem given by New and Eisler (1972). based ,i
the formulation of Sack (1964). Thus the complete acoustic field p due to all the radiators
can he represented in terms of spherical waves relative to any one particuiar radiator tj

0'r" j') = E E n:" )(r' B+ Bk,,, j(kr) YI(0,O ) (4)

n=O M=-n k=l,kgj

where j,,(I-rj) is the spherical Bessel function of the first kind. and the coeffcients Bk.,,1

arP given by the addition theorem of the form

Bjkmn =3 E E Tjkmnnp, Akpv (5a)

Tjkmin" v = a(n" st'mP')h(1)(kcrjk)1', -mO'k' O'k (5b)

where the summation over s is in increments of 2, the coordinates (r.k, 91k, Ojk) give the
center of sphere j relative to that of sphere k, and the translation theorem coefficients
a(n, s, v,, 7n, 1) are given in New and Eisler (1972). This representation applies everywhere
within any sphere centered on radiator j that excludes all the other radiators, and in
particular applies on the surface of radiator j.

The normal derivative of pressure at the surface of radiator j is found from (4) by

replacing the Hankel and Bessel functions h(l)(kr,), j,(kr,) by their derivatives, evalu-
ated at. ka), where a, is the radius of sphere j. This gives a series in terms of the surface
harmonics }m. The surface normal velocities w1eaxe likewise expanded in terms of surface

harmonics, with coefficients I,,. Due to the orthogonality of these fanctions, the coef-
ficzen'1,; of Ym on each side of the series representation of equation (3) must be equal for
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Qlach sphere. In this way, the boundary conditions for the complete set of spheres reduce
to a matrix equation of the form

Y4 = (6)

Here, the vectors A and IV'' represent respectively the coefficients Ajmn for the radiated
pressure field (as in Eq. 2) and the coefficients Vim, in the expansion of the normal surface
velocity, while I' is an acoustic admittance matrix that accounts for all the multiple

scattering. Given the surface velocities on each sphere, one can solve for the acoustic
field (IV) by a matrix multiplication of equation (6) by the acoustic impedance matrix

The above approach assumes the radiators are ideal velocity transducers in that their
surface velocity is entirely independent of the acoustic loading. Instead, the radiators
can be ticated more realistically as thin spherical elastic shells, with internal drivers that
apply a known force. The resulting motion of the shells is then due to a cornbination of
internal forcing and acu.tik loading. This fully accounts for the acoustic coupling of the
fluid/structure interactions.

The motion of a thin elastic spherical shell subject to harmonic forcing is well known.
\e use the thin shell equations of motion which are equivalnt to the formulation given

by Junger and Feit (1972) with 3 = 0. The surface normal motion can be represented
in terms of sphericzd harmonics, each corresponding to two normal modes of vibration of
the shell (or one mode for n = 0). Associated with each normal mode of vibration of
the shell is a mechanical impedance. Utilizing this impedance, the coupled fluid/structure
eqtiations reduce to a set of linear algebraic equations (as above):

F - A = Z,,, 11W (7)

where the vector F represents the coefficients F,,,, for the internal forcing, and the matrix
Zr, is the mechanical impedance matrix, which is diagonal. (The pressiure term is negative

because the pressure acts inward, not outward.)
The modal impedances of the j h radiator aloug the diagonal of Z,, are given by:

Zjm a-- a2(1 -w 2) {2-- A,-- 1ZJ _- ) Eh-Q A,, + 1)(Q 2 - 2(1 + v)) - A,,(l + V)2 (8)

where the scaled frequency is f22 = a2W2(1 - ,2)p/E, aj is the sphere radius, h is the shell

thickness, p is the density, E is Young's modulus, j is Poisson's ratio, and A,, = n(n + 1).
Note that, in this thin-shell approximation, for a given number n of nodes, all the surface
harmonics corresponding to different azimuthal dependence numbers m have the same
impedances.

Combining equations (6) and (7) produces a matrix equation which can be solved for
the surface motion directly in terms of the forcing:

Iv=Z,,, + F (9)
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This demonstrates that for the coupled problem, the total effective impednce is the sum
of the acoustic impedance anid the mechanical impedance. (This simplicity is a result ,E'
the spherical geometry of each transducer.) The velocities then yield the acoustic field
through equation (6).

The far-field radiation is more conveniently expressed in terms of spherical waves
relative to a single system coordinate origin (rather thani by equations 1 and 2). This
entails applying the addition theorem again, in a slightly different form, to express the
radiation from each radiator in terms of the system origin. Using the index zero to indicate
the system origin, the appropriate addition theorem is:

00 n

p(ro,Oo,oo) A ( )IoZ 0k
j= n=0 rn=-n -=-

--

V a, ( / ton) i

5= 1T -I

where the summation over s is in incremelt s of 2 and the notation followvs that of e' juatlons
4) and (5). This represent ation applies anywhere outside a sphere cei, t,'r,.d at the orifin

that contains all the radiators.
In practice, the infinite stums over mode numbers (n and v) must be truncated at somie

particular number, say N. (Then in equation 10, the sum over v would go up to 2N for
consistency.) Also, if the array is linear and the forcing is axisymmetric about this line,
o1,)v axisvmnetric modes (m= 0) will be excited, eliminating all sums over 7n and p.

To summarize our method, given the geometry of the array, the propertiS of the
rnedium, and the operating frequency, the acoustic impedance matrix Z, can be calculated,

up :' <h' cbwe' ",mher of mncis N, tbrrruah the addition theorem. From the iiaterial
properties and thickness of each slell, the mechanical impedance matrix Z,, can be found.

The sum of the two gives the total impedance matrix, which can be used to dc-crinine the
surface mnotion of each transducer, given a prescribed internal forcing. The motion in turn
,etermnes the acoustic field. which in the far field is given by a second application of the
addition theorem.

Results

Numerical results are presented which: 1) demonstrate that the spherical addition
theorenis have been correctly applied; 2) illustrate the response of a small linear array of
radiating spherical shells given Chebyshev shading; and, 3) examine convergence properties
of the truncated infinite series of spherical harmonics over a specified frequency window.

To c(nfirm that the translation formulas for the spherical harmonics have been cor-
rm',etly applied, results reported in New and Eisler (1972) were reproduced for the particular

1-11 ll," of two sibiliera,'d spheres, one of which is pulsing harmonically. while the other
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acts like an acoustically hard obstacle. Fig. 1 displays the reactance and resistance terms
of the acoustic impedance which have been scaled by their corresponding values obtained
from a single harmonically pulsing sphere. Variations about unity represent the extent to
which the reactance and resistance of the pulsing sphere are affected by the presence of

the second sphere. As one would expect, and as can be seen from Fig 1, the interaction
effect is mitigated as the scaled distance (kr) between spheres is increased.

Note that there is excellent agreement between the present calulations, using four
spherical harmonics, with those of New and Eisler (using eleven). Fig. 2 plots the core-
sponding far field pattern of the present code against that of New and Eisler once again
showing very good agreement. The far field results of Fig. 2 have been scaled by the
magnitude of the far field produced from a single pulsing sphere.

For the array problem, the three spheres are centered at (0, 0, 0) and (0, 0, ±D). The
material properties (assuming steel) and dimensions of the shells used ue as follows:

Radius, a = 1.0in
Thickness, h = .01m
Young's Modulus, E = 2.07x10 11x(1 + ir)N/n 2

Structural Loss Factor, q = 0.0 or 0.1
Poisson's Ratio. v = 0.3
Shell Density, p, 7669tKg/m 3

Fluid Density, pI = 1000Kg/m 3

Fluid Sound Speed, cf = 1524m/scc

Scaled Center to Center Spacing, kD = 7r or D/,\ = 1/2.

The Chebyshev criteria for an array'of point sources sugge!sts that one can control the
magitude of the side lobes relative to the main lobe by adjusting the mnplitudes of the
forcing functions applied to the surfaces of the spheres (Dolph, 1946). Here the spheres on
either side of the center sphere are given relative amplitudes 11/1S'" that of the center
sphere (whicli is subject to a uniform pressure of lpPa) to give a 20dB drop. Given the
half wavelength spacing of the spheres, and the foregoing anplitudlcs, th( main lobe should
appear at 0 = 90 degrees, with side lobes (magnitudes 20dB less than the center lobe) at
0 = ) and V;O degrees.

In the results that follow, the source level (SL) of the array of radiators is defined by

The above source level is in practice found by taking the far field pressure, and scaling it
to l Pa. Far field results are scaled in an eqtivalent fashion.

Fig. 3 displays the radiation pattern at ka = 1.13, which is near the first resonant
freq, ency for a submerged spherical shell. The convergence of the truncated series is shown

by varying the number N of spherical harmonics retained. It can readily be seen that the

series solution for the pressure has converged with the inclusion of about 5 terms. In
subsequent resulLs 11 harmoics ae used to obviate coivergence concerns.
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Fig. -j rnpares the far field results at four different frequencies: ka = 0.9. ka = 1.0,
k'a =1 .25, and ka = 1.5. It can be seen that for the low frequency cses the Chebvslw.v
array produces a result matching that of an ideahzed Clelbysliev array, in tlht tile niills
appear where they should, and the pressure at 90 degrees is 20dB greater than the pressure,
at 0 and 180 degrees. The trend, however, as the frequency is increa-sed, is that the
response smooths out. The nulls have nearly vanished, and the far field appears to be
tending towards a uniform far field pressure. The conclusion is that at low frequencies
Chebyshev optimality is preserved, while at higher frequencies optimality is d, troved.

To examine the effect of varying the frequency on the response of the array, Fig.
5 graphs the SL calculation over the frequency range ka = 0.01 to ka = 1.5. Three
curves are shown which correspond to: arrays of acoustically hard spheres: as well as
damped (r7 = 0.1), alnd undamped (r; = 0.0) thin-walled spherical shells. The response
curves appear to be relatively smooth in all cases below frequencies about I,' = 1.0. The
acouistically hard sphere case is iN fact smooth throughout the freq ueiicy wi:lhw, whil e
tile spirical shell without damping case has a proniincnt. ip at k 1 -- 1. 1:. ;it whiich poiot

the SL drops by almost 15 dB. A second less significant spike appcars at, Ie = 1.44. The
itroluction of the mechanical damping has the effect of s(nothing out thlie spikes at these

aiinoolous frequencies, especially at ka = 1.44 wh:e the spike completely (d:appears ill
the damped response.

To more carefully analyze the array response about /,'a = 1.13. Fig. 6 plots the flu
field responses of the array from ka = 1.11 to ka = 1.14. At ka = 1.13 it is scen that the
peak at 0 = 90 degrees dips, leaving lobes at 0 = 60 and 120 degrees. This frequency is
slightly less than the lowest eigenfrequency of a single submerged spherical shell, which is
at about ka = 1.15. The response at ka = 1.13 would appear resonable in light )f the fact
that the n = 2 spherical harmonic takes on its most negative value at 0 = 90 degrees as it
has a 0 dependence similar to cos(20). The spike at ca = 1.44 is likexwisc very close to the
eigonfrequency of the n = 3 spherical harmonic.

To further support the contention that the spikes occuring in the shell response of
fig. 5 are due to resonance effects, we include fig. 7 which plots the source level for the
acoustically hard spheres (i.e., with specified surface velocities) at the same frequencies
displayed in fig. 4 for the steel shells. Notice that at each frequency of fig. 7. the response
changes little, and in fact is very close to the predicted values for an idealized Chebyshev
array.

Figs. 8 and 9 are equivalent to figs. 5 and 4 except that aluminum spherical shells are
used. All dimensions are the same as for the steel shells. The pertinent material properties
used for aluminum are:

Yotmg's Modulus, E = 7.10xl1O'x(1 + irl)N/m2

Poisson's Ratio, v = 0.33

Shell Density, p, = 2700Kg/m 3 .
As is seen from examination of fig. 8, a spike in the source level response is found

at Ica .76 which agrees with the eigenfrequency of the n 2 spherical liarnionic. The
spike is riot a-s dranatic as in the case of the steel shell, and in fact upon viewing the far
field response at this frequency, the n = 2 harmonic is only slightly excited, causing ilv
a . lit deformiiation of the far field response. To show that the almiiim shii ls act m I re



like- ani idealizedl Cliebvshiev array, fig 9 plots four far field cur-ves above ka =.TG- It c~
be :-.CCI that the idealized shape is rough.dy miaintaine'd. The above evidence su[i-vrst~i that
for at least certai'n materials, excitation above resonance does not necessar-ily (legrari' the
idIealizedl Chehvsllev output of the array.

Finally, figure 10 compares the directional patterns due to arrays of point souirces.
hard spheres, steel shells, and aluminum shells, for ka =1.0. Tis shows that thle mnain
geomietric effect of using large spheres rather than point sources is that the nulls at 30 and
120 degrees are less pronounced for large spheres. The effects of dliffering materials and
driving (force vs. velocity) primarily give different overall levels of output, with sliilar
directional dependence, at tis frequency.

In conclusion, more work needs to be done in exploring the interactions of radiatinig
arrayzs anid the pr, ;tiit methodology appears to provide a versatile tool wvith which tis call
be done. One( advantage of thle presenft technique over many of the methods currently used.
is that iii the perfornmaxi e of the array at a particular frequency, the arnm iit o)f excitat ioi
of each eigenmnloode of the shlells, can be seen explicitly. This canill) 1w ho d ne easill if
the problem iiihs been s )lve(1 numerically via finite differci ice. hite h : n ( )r I i id'ir v
elpiment mnet 1ids. Furthbernmore, the alcou-stic imlpe-lance is, fon lilncl (1 elnt ly of the

moIchai ical I IIIpecla rice, whichb breaks tihe Coupled problem inito t.wo slinll I d pr)IllIs . Tb I usI
in exploring~, sayN. t he effect.s of the radiator material and- slwll t I ick i':ss f ir a part icilaru

atrray*, geoietry, tile acoustic impedance of need be conmputed oitly )1 ice, a midl thenl '-ol mpledl
with th mechanical imipedlaice of each type of radiator. In fut~l' nrc \Ork we plain to use

tis appronach withI inore complicated transducer models.
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Figure Captions

Figure 1. Resistance ald reactance for one pulsing sphere (velocity prescribed) near a hard
sphere, normalized by the value in the absence of the second sphere, as a function of the
scaled distance kr between the sphere centers.

Figure 2. Normalized far field directional dependence; same configuration and comparism)n
as in Figure 1, for kr = 3.

Figure 3. Directional pattern for Chebyshev array of three steel spherical shell radiators,
near a resonance (ka = 1.13), calculated using varying numbers of harmonics N. (Grid
circle intervals are 20dB.)

Figure 4. Frequency dependence of directiond pattern of array (as in Figuro 3).

Figire 5. Main lobe level as a function of frequency for three similar arrays using dif-
ferent radiators: elastic steel shells. steel shells with material damping complex Young's
modulus), md ideal velocity transducers for comparison.

Figure 6. Resonance effects on directionality: the pattern is shown for four frequencies
near re,-onanice.

Fichur 7. Frequency dependence of directional pattern of array of acoustically hard spheres
ideal velocity transduicers).

Figurc S. . ain lobe levi us a function of frequency as in Figure -5) for elastic aluminum
"heil radiators.

FiL',i" 9S. $an:ie as f i( Figu re 4. except that the shells are 'oinposed of al l iininuiii rather
thal z'tel.

Filgure 10 ('uin parisoil of directional patterns for point sources. hard spheres, steel shells.
and alumi nuni shells, for ka = 1.
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