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i INTRODUCTION

Control of multivariable systems traditionally has been oriented towards meeting require-
ments of system stability, insensitivity to plant variations, rejection of disturbances, steady
state accuracy, and transient performance.

Recently, research has concentrated on the disturbance-rejection problem, and on sensi-
tivity with respeci to large plant deviations. The disturbance-rejection problem has been
formulated as a worst-case design problem, starting from the classical “game against na-
ture” work, where such a formulation is explicit, through the more recent work on H.-
norm optimization formulation, where its presence is implicit. Alternatively, minimization
of a frequency-weighted K -norm is an appropriate problem formulation for achieving im-
proved robustness of system performance to structured and unstructured plant variations.
Frequency-domain-vased results on the H,, optimal and suboptimal solutions have led, how-
ever, to the conclusion that the required controllers are of order higher than the plant. The
recent return to the minimax formulations of the disturbance-rejection problem in the time
domain has shown that H.-norm optimal (and suboptimal) solutions exist in the form of
state-feedback and if controls are restricted to output-feedback, in the form of a full-order
(same as the plant) observer with modified plant matrix. A complete set of the necessary
and sufficient conditions for H-norm controllers expressed via the appropriate Algebraic
Riccati Equations (AREs) appears in [1] while earlier work on the connection between the
ARE and the H,, norm optimization problem leading to these results can be found in [2].
The recent paper [3], reviews the roots and history of the worst case, i.e., minmax, approach
to disturbance rejection. These results have shown that the rich theory on the structure and
properties of the solutions to the ARE, coupled with the properties of the related Riccati
operator and the Riccati inequality, provide extremely useful and fruitful tools for consider-
ation of the classical problems in design of multivariable systems as well as the consideration
of important new problems.

The research reported herein has concentrated on the development of design methodolo-

gies to meet simultaneously several diverse requirements including transient performance,



disturbance rejection, robustness, and reliability, using the following classes of admissible

controllers:

e low-order controllers; the goal here is to satisfy the basic performance, disturbance-

rejection, and robustness requirements,

o full-order output-feedback controllers, of the same order as the plant; the goal here is to
improve the reliability of the system by designing controllers capable of withstanding

outages of sensors and actuators, without loosing stability or increasing the H, norm

bound;

e output-feedback controllers for decentralized systems; the goal here is to meet require-
ments associated with transient performance, disturbance rejection and reliability using

a decentralized control structure.

The presentation is organized with respect to the classes of admissible controllers. Sec-
tion 2 and 3 deal mainly with topics related to design of low order controllers. Sections 4,
5, and 6 deal mainly with topics related to state-feedback and full-order output feedback-
controllers.

The design methodologies we have developed are based on:

e Projective controls, which provide a parametrized family of low-order controllers that
guarantee certain performances specifi-ations are met and possess free parameters to

be used to meet additional requirements.

e The Frobenius-Hankel (FH) norm as a computationally attractive measure of opti-
mality to meeting disturbance rejection and robustness requirements with low-order

projective controllers.

o The algebraic Riccati equation based characterization of H.,-norm-bounding con-

trollers, including

— state-feedback controllers to provide the reference solution for the projective con-

trollers, and




— full-order output-feedback controllers that meet robustness and reliability require-

ments, or solve the decentralized control problem.

The details of this research have been presented in the references listed below. and in
manuscripts now in prepzration. In the following we highlight the main contributions.

As indicated, projective controls represent a parametrized class of low-order controllers
which provide the means for a systematic two-phase design to achieve diverse design objec-
tives. In [4] a methodology was developed which applied projective controls to disturbance
attenuation for large flexible structures and other systems with many degrees of freedom.
The two-stage design first identifies and parametrizes all strictly proper controllers of given
order that retain the dominant system poles (i.e., dynamics) as defined by state-feedback
reference dynamics, and then selecis a particular controller by determining the free controller
parameters to minimize a measure of disturbance attenuation. The measure utilized is the
FH norm, the minimization of which is computationally attractive and also places a bound
on the H,,-norm. Restriction of the controllers to the class of projective controllers fixes the
system poles for transient behavior and disturbance attenuation while FH-norm minimiza-
tion then positions system zerns to enhance disturbance attenuation by low-order strictly
proper controllers. |

In [5] the two-stage design procedure was extended to design multiple control loops
for transient performance and disturbance attenuation using a low-order controller in each
loop. The H., optimal state-feedback solution was employed to specify and parametrize
all decentralized projective controllers that now create fixed modes at desired locations.
Then, using the FH-norm minimization approach, the {ree parameters in all controllers were
determined to place the zeroes and remaining poles to augment disturbance attenuation.

The procedures was further extended in [6] to design decentralized projective contro:s via
the H,,/FH-norm minimization procedure for the case when the controllers are restricted to
be strictly proper.

In (7] the FH-norm approach to disturbance rejection was applied to discrete-time sys-

tems. A new computational algorithm to minimize the FH norm for controllers of bounded




order was developed based on the use of the (discrete) algebraic Riccati equations which, in
the limit, reduce to the Lyapunov equations that characterize the necessary couditiocs. The
success of the algorithm is attributed to the expanded regions of existence of positive definite
solutions to the Riccati equations, as opposed to Liapunov equations. A nontrivial 5" order
example illustrates not only the convergence rate of the algorithm but also the nature of
the reduction of the FH norm, the H,, norm, the Trace norm and the Hankel norm at each

iteration. Also illustrated are bounds on H,, norm in terms of the values of the FH norm:

—RIC()len < 1G() e < 2VAIG( e

where n is the order of the closed-loop system. In [8] the above approach and the ARE-based
computational alguiithm were extended to cover in a vaified approach three general classes
of design probiems: disturbance rejection, tracking, and model reference design.

The recent results enabling the construction of H-norm-bounding controllers via the
algebraic Riccati equation has stimulated vigorous research into H, designs, to which we
have recently made a number of contributions. Our research has encompassed many issues
not treated previously by other researchers. These include the development of better bounds
on the H, -norm for established ARE-based designs [9], and the study of the properties of

the convex Riccati operator
R(X)=FTX + XF + ;IEXGGTX +HTH

and the associated algebraic Riccati inequality R(X) < 0 [10]. These properties were fun-
damental in rederiving in simple terms the state-feedback and output-feedback H..-norm-
Lounding controllers and extending the procedure to achieve robust stabilization with an
H,-norm bound in the presence of structured uncertainty [11]. Also a new parametrization
of all state-feedback controls and output-feedback controls that that guarartee a specified
H s -norm bound [12] has been obtained.

In (13], [14] the approach was extended to the design of controllers for decentralized
systems. It was shown that a controller of the same order as the system can be developed

for each control channel by constructing for each channel an observer in which the controls

4




associated with other channels are replaced by the estimates of these controls, as they are
defined by the state-feedback solution to the H.-norm-bounding problem, and the distur-
bance is replaced by the worst disturbance as described by the same state-feedback solution.
The observer gains for the controllers are determined by. the positive definite solution of a
large-dimensional (n x r, where r is the number of control channels) Riccati-like algebraic
equation.

The developed design methodology was extended to the problem of design of reliable
control systems [15]. This includes the design of control systems that possess the following

properties:
e stable controllers, i.e., strongly stable closed-loop system,
e robustness to the loss of a selected subset of measurements, and
e robustness to the loss of a selected subset of control inputs.

The essence of our approach stems from the fact that if X > 0 satisfies R(X) + P = 0,
where P > 0, then R(X) < 0 and consequently stability and H-norm bound can be guaran-
teed for the base case, while by judicious choice of P one can guarantee additional properties,
such as those mentioned above. In [16] the approach was extended to decentralized control
structures, and decentralized full order controllers reliable to loss of specified control channels
were developed.

The last topic presented in this report deals with H.-norm optimal and H.-norm-
bounding controls for discrete-time systems. Our contributions include the establishment of
a lower bound for the achievable H,,-norm which complements the known upper bound. We

have shown [17] that
[’\mAx(GTPG)]‘/2 < Ymin S

where P > 0 satisfies the Discrete ARE (DARE)

P = HTH + ATP(I + (BBT - —GGT)P|"' A
Y




subject to the convexity condition 42 — GTPG > 0. A study of the properties of the
discrete convex Riccati operator and the derivation of the design equations for the output-
feedback H.-norm-bounding controllers for discrete systems by utilizing a transformation
of the DARE to a Generalized (continuous) algebraic Riccati equation (GARE) are given
in [18]. A lower bound on the achievable H,-norm using output feedback controls was also
established.

The presentation of the material has been organized into five Sections. Sections 2 and 3
deal primarily with results related to the design of low-order controllers, and in particular
the FH norm and its utilization in design, and with projective controls as a means of defin-
ing a suitable parametrized class of low-order controllers. Section 4 establishes the approach
used in developing results for state-feedback control, full-order output-feedback control, and
decentralized control. Section 5 presents new results on the design of reliable control sys-
tems, for the centralized control problem as well as for decentralized control problems where
the problem of reliability with respect to a loss of certain control channels is resolved. Sec-
tion 6 presents extensions of the methodology. Problems considered include robustness to
structured parametric uncertainty in the plant, parametrization of classes of state-feedback
and output-feedback controls that guarantee an Hoo-norm bound, and the discrete Hoo-norm

optimization problem.




2 LOW-ORDER CONTROLLER DESIGN BASED
ON THE FH NORM

2.1 Motivation and Problem Formulation

In this report, we present methodologies for design of controllers to achieve closed-loop per-
formance, disturbance rejection, robustness, and reliability for multivariable time-invariant
linear systems. The systems will be represented by state-space models or by transfer func-
tions, as may be appropriate in a particular problem setting. In the remainder of this section
we specify the analytical representation, and the basic design problems considered in this
section.

We consider systems described by

f = Az+ Bu+ Guw,
Ye = Hz (2.1)
y = Cz+Du+tw

where z(t) € IR™ is the state, u(t) € IR™ is the control, wo(t) € IR is the disturbance,
y.(t) € R* is the controlled output, y(t) € IR? is the measured output, and w € IR is
measurement noise. In order to insure that the desired control is not achieved at the expense
of excessive use of control energy, the controlled output is typically expanded to include the

control vector. Thus we will here consider, in general, the controlled output to be

c Hz
z=[i]=[Kx]=ch. (2.2)

Two types of controls will be considered: Static output-feedback controls where the controller

is of the form
u = Ky, (2.3)

a particular case of which is the state-feedback controller if C = I, and dynamic output-

feedback control, where the controller is of the form

3

u

A+ By
C.k+ D.y.

(2.4)




By introducing the extended system describing the coupled dynamics (2.1) and (2.4), the
dynamic output-feedback control problem can be reduced to an equivalent static output-

feedback problem

:i,'e = éz,-{- B‘&'*‘G’U)o
Yee = I!z, + Ea (2.5)
ye = Cz.+ Dw
with
i =K.y, | (2.6)
where A0 B 0 c 0
x ~ -~
ol F N P I F R
(2.7)
5 N D .
H = [H 0], D=[ 0 ], E =[E 0],
and with the controller parameters packed into the equivalent gain matrix
D. C.
K. = [ B, A, ] . (2.8)

We now formulate a standard disturbancc-rejection problem via the H.-norm: Given

the closed-loop system
Fz 4+ Guw
Hz

where w is a disturbance input, z is a system output to be regulated, and the system matrix

z
z

(2.9)

F depends on the controller parameters, find a controller K(s) which guarantees closed-loop

stability and satisfies
K(s) = arg jnf T (K)o (2.10)

with T(K;s) = H(sI — F)™'G. The H, norm is defined as

[Tlloo = suP 0.0 {T(5w)}, (2.11)

where omax{-} denotes the maximum singular value. The definition (2.11) signifies that the
Ho, norm represents the largest size of a trzasfer-function matrix on the jw axis. (If T(s)
is a scalar transfer function, ||T||,, represents the worst-case amplification of a sinusoidal

disturbance input.)




An interpretation of the H,, norm in linear systems is that it is the worst-case ratio of

output energy to disturbance energy:

1Tl = sup 422, (2.12)
w€l, "w"2

Thus, an equivalent formulation of the disturbance-rejection problem (2.10) is to find a

controller satisfying
llzll2

K(s) = arg inf su 2.13
() & Kto) wers 1wz (2.13)

or A
K(s) = arg ,ig(l,f) sup{||z|lz : [lw|l2 < m}, (2.14)

which is a “minimax” problem in dynamic game theory. This reformulation really repre-
sents a return to the original formulations of global sensitivity problems as zero-sum games
between the control and “nature” (see for example [3]). This was explicitly recognized in
recent years, and the minimax formulation has since proved to be the proper vehicle for the
characterization and computation of H,-norm optimal solutions. It has also been demon-
strated that the optimal controllers can be implemented as state-feedback controllers, and
that optimal output-feedback controllers are of the same order as the plant.

A related formulation of the disturbance-rejection problem deals with determining sub-
optimal solutions, which are referred to here as H,-norm-bounding controls: Determine K

(or K.) such that the resulting system is stable and

1Tl <7, (2.15)

for selected v greater than the minimum achievable bound. This formulation has advantages
over the Hy-optimization problem, in that an optimal or near-optimal solution is often
characterized by high gains, high sensitivity to design-parameter variations, and excessive
concern with the worst disturbance.

For low-order controllers, the Ho-norm minimization problem and the norm-bounding
problem still do not have a computationally tractable solution. This prompts the consid-

eration of alternative formulations. We have developed the FH-norm formulation of the
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disturbance-rejection problem, and have developed computational algorithms to perform
FH-norm optimization. Solutions to the FH-norm optimization problem are easy to com-
pute, and avoid the high-gain and high-sensitivity problems of H..-optimal solutions. A
relation between the FH norm and the H,, norm allows quick determination of an H.-
norm bound once the FH-norm optimal solution is obtained. The FH-norm approach can
be applied t6 both continuous and discrete systems, and is particularly appealing when the
system is linear in the free design parameters. We, therefore, also develop appropriate linear
in the free parameter (LIFP) closed-loop systems representations. In Section 3 we proceed

to combine the FH-norm approach with the projective controls design methodology.

2.2 The Frobenius-Hankel Norm

Recently, Medani¢ and Perkins [19] introduced the use of the Frobenius-Hankel (FH)
norm, which is defined as the Frobenius norm on the Hankel singular values in disturbance
rejection and other control problems. The motivation for the choice of this norm is due to its
relationship to more widely known norms such as H, and H,, and its good computational
properties which make it suitable for use in optimization procedures.

In this section, the Frobenius-Hankel norm is defined and its properties explored. In
particular, both time-domain and frequency-domain physical interpretations will be given
for the FH norm, and a simple computational method will be developed for calculating the
FH norm. The FH norm will also be directly related to both the H, and H, norms. In
the following section, the FH norm will be used as the basis for a parameter-optimization
problem and applied to a model-reduction problem and an optimal controller problem.

The Hankel singular values of a stable system are defined as the singular values of the

Hankel operator associated with that system. (see [20].) If the system is described by

Az + Bu
Cz + Du, (2.16)

z
y

with A Hurwitz, then the Hankel singular values oy, ¢ € {1,2,...,n} can be computed as

o; = \{PQ}, (2.17)
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where P and @ satisfy
AP+ PAT + BBT =0 (2.18)

ATQ +QA+CTC =0. (2.19)

Note that P and Q are, respectively, the controllability and observability Grammians of the

system, and can be defined by
P= /°° 4 BBT A™ dt (2.20)
0

Q= / = AT CT CettdL. (2.21)
0

Definition 2.1. The Frobenius-Hankel norm of G(3s) € H; is

n 1/2
IG(s)llrr £ ZG?{G(S)}] : (2.22)

=1

where 0;{-} signifies the i*® Hankel singular value.

2.3 Properties of the FH Norm

The FH norm of a given system can be easily computed from its controllability and

observability grammians, P and Q.
Theorem 2.1. Given the system G(s) € H, and its controllability and observability gran.-
mians, P and Q respectively, then
IG)En = Tr {PQ}. (2.23)
Proof. From Definition 2.1,
IG()|IFy = Tr £2 (2.24)

where £ = diag (0, ...0,). Since there exists T nonsingular such that T-TPT-! = ¥ and
TQTT = £ [20]
IG(s)ll}y = Te (T-TTT)S(TT")E (2.25)

= Te (TTeT)(T'2T-T) (2.26)

11




= Tr PQ (2.27)
0O

Note that FH-norm computation via Theorem 2.1 involves the solution of the two Lya-
punov equatio.< for P and @), but avoids the eigenvalue computation necessary to determine
the individual Hankel singular values.

A time-domain interpretation of the FH norm is as follows:

Theorem 2.2. Given the system G(3) € H; and the impulse response of the system g(t),
then

IG) I = Tr [~ tg(t) g(t) dt. (2.28)
Proof. From Theorem 2.1,
IG(s)liFw = Tr PQ. (2.29)
By definitions (2.20) and (2.21), we obtain
T T
Tr PQ = lim Tr [ / eA* BBT AT dt] [ / eATTCTCeA dr], (2.30)
T—oo 0 0 '
which is equivalent to
T T 3 T
— T A(t47) A(t+7)
Tr PQ = Jim Tr /o /o [cert+nB] [ce*B]" dt ar. (2.31)

Let g(‘r) Ce?" B,

. T T T
Te PQ = Jim Tr /0 / gt +7)Tg(t + 1) dt dr (2.32)
Te PQ = Jim Te / / g(t)T g(t) dt dr. (2.33)
Let H(r) 2 [T+ g(t)Tg(t) dt.
. T
Tr PQ = lim Tr /0 H(r)dr. (2.34)
Integrating by parts,
. T T
Tr PQ = lim Tr |H(r)r|] - /0 rdH(r)] (2.35)
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T
Tr PQ = lim Tr [ /0 (T = t)g(t + T)Tg(t + T) + tg(t)Tg(t) dt| . (2.36)

In the limit as T — oo, g(t + T) — 0 and thus

Tr PQ= Tr /0 °° tg(t)Tg(t) dt. (2.37)

The following result provides frequency-domain properties of the FH norm.
Theorem 2.3. Given the system G(s) € H, and the frequency response of the system
G(jw) = G(8) |s=jw, then

1G() g = 51; [ ‘: Tr ﬁg—“’)cuw)- do. (2.38)

Proof Applying Parseval’s Theorem to (2.31) yields

16w = 5= [ Te Fleg®)Fla(®)" do (239)
- 2% f ‘: i Tr (%’-‘31) G(jw)" dw (2.40)
a

2.4 Relationships with Other Norms
The Frobenius-Hankel norm can be related to the H,, norm through the Hankel singular

values of the system.

Theorem 2.4. For a stable system

5(G(s)) < G()llr < 3 0:{Gls)) (241)

=1

and
—-lﬁncmum < 1G(3)leo < 2VANG(S) I (2.42)

Remark: It has been shown [20], that

5(G(s)) < IG(3)lleo < 23°0:(G(s)). (2.43)

i=1
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Proof Consider (2.41). Clearly, £ ,0? > 5%, while

(£ - (&) &)

= S0

=15=1
n

n n
doi+ D D 00 (2.44)
k=1 i=l =1

n e
>0

k=1 2
> |G(s)|IFx-

v

Consider now (2.42). We have Y o7 < n&* and so (1/vn)lIG(s)llFr < & < |G(5)]lo-
On the other hand, we have that gi:/=eln a value of the FH norm,
olo = ZU?=1 = ||G(3)||FH, ol = [0y 02 ..0,] (2.45)
i=1

the maximal value of the sum "%, o; is obtained by solving the maximization problem
min eTo, T =[11...1], (2.46)

subject to (2.45). This leads to the maximizer & = Ae where A must satisfy (2.45), producing
An = ||G(3)||%4- But then
Y 0; = eTa = AeTe = An = V/n||G(s)||Fh. (2.47)
i=1

For all other values of the ;, Y%, ¢ < /n||G(3)||[r# and so

=1

1G(8) 1o < 2303 < 2VAIG(3)] 7. (2.48)

i=1

o

The FH norm can aiso be related to the sensitivity of the H, norm to a shift of the

eigenvalues of the system along the real axis.

Theorem 2.5. Let the eigenvalues of the system G,(s) be given by A; = X; + a, then

LUGu)B| = 2G()n (249)

a=0
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Proof The shift in eigenvalues can be expressed by assuming A has the form

Ala) = A, + al.
Let
J = |G(s)|3 = Tr PCTC.
Then
J\ _ wpcte,
da a=0

where P, satisfies

AP, + P,AT +2P =0.
Let Q satisfy

QA+ ATQ+CTC =0

then using the properties of the trace, it can be shown that
Tr P,CTC =2 Tr PQ.

Thus

ﬂ =2 Tr PQ.
da

a=0

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

This expression may be useful in establishing robustness properties of the system.

2.4.1 Example

To illustrate the relationship between the various norm and the effect of their minimization

on the system response consider the system

. 0 1 1

T =1l_ao0 ’”+[0]“+[
ye = [1 0]z

y = [0 1]z

with control restricted to

u=—ky=-[0 k]z.
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It is then easily shown that

,_(tara o o
NG(s)llz = Sak , k3 =arg mn IGliz = 1+ o2
and
1 + a?)k? + 2a3k? + 202 . av?
Gl = LEEEL 2 Kby = arg mjn [Glew = — .
Moreover,
2 2 2
: _ a w? + k(1 + a?)
"G(s)"oo - J(w(k)a k) - mwa,'x{ (wz - 0)2 + kgwg
and so
o +2
TR, K < at oyt

IG()II% =

2 2 7
Fl+a) k22a+a\/a +2
a? a?+1

with w?(k) defined implicitely as satisfying the necessary condition
W+ 21+ a¥)?-6=0

and

§ = a?(a? +2) — (1 + a?)(k? — a)?

Because for 6 > 0, ||G(s)|| is unimodal and exhibits a maximum, and is monotonically

decreasing for § < 0, it is determined that

1+2a* - V1+a?
2 _ : 2 _ -
ks, = arg min I1G(s)lc = oVl tal .

The dependency of k2, k%, and k2, on a is depicted on Figure 2.1.
It is noted that as a — oo, all gains are bounded, so that high oscillation will result in
all cases. The reason is that consideration of the control as a1 additional controlled output

precludes the use of large gains. If the control is not weighted then one obtains

4+ a
2 _
loeg = X
k' + 202
”G(s)"%’H = 4k2q2
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control gains with the control weighted-in

1'4 ! v v T Y T Y T T

gain

0 2 e A i A i 1 . I Y

Figure 2.1: Optimal gains.

and \
2
2 _ w? + k
NG ()% = (w? — a)? + K2w?
From this follows
k2 = «a
kin = av?
3a
k2 = —
had 2

and the results are displayed in Figure 2.2. Thus, we see again, the characteristic property
that the FH norm optimal solution provides more damping than the LQ solution, but not
as much as the H,-norm optimal solution which, of course, reduces the peak of the gain
characteristic. In this case, for all values of a, the H,, norm solution guarantees a damping
ration § = f% = 0.6124, the FH norm solution guarantees { = ’? = 0.5946, which the H,

solution guarantees £ = 0.5.
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control gains with no weighting on the control

4 T T T T T T T Y T

gain

[=}
R
L
s

Figure 2.2: Optimal gains.
2.5 Frobenius-Hankel Norm Optimization

In this section, a common framework for solving optimal FH norm problems will be pre-
sented. Necessary conditions for an optimal solution wiil then be formulated and solution
methods for solving the necessary conditions will be proposed. In later sections, specific
problems will be solved under this framework, and in particular problems related to the

design of projective controls.

Let G(s) be a strictly proper system with transfer function
G(s) = C(8)(sI - A(8))"'B(6) (2.57)

parameterized by 6. The general method used to compute optimal FH norm solutions
involves determining the optimal values of the free parameters of the co.troller. For example,
in the case of the model-reduction problem, the parameters represent the reduced-order

system, i.e., § = ( A B,C, Ib) In the controller-synthesis problem, the parameters represent

18




the controller, i.e., 8§ = (A, B,,C., D.). The FH norm of G(3) can be computed as

J =Gty = Tr {PQ) (2.58)

where P and @ satisfy (2.18) and (2.19). The optimization problem is, thus, to find 8 such
that the criterion (2.58) is minimized subject to the constraints (2.18) and (2.19).
This constrained optimization problem can be converted to an unconstrained optimiza-

tion problem using Lagrange multipliers. The augmented criterion is given by
J= Tr {PQ + M(AP + PAT + BBT) + L(ATQ + QA + CTC)}. (2.59)

Using this approach, necessary conditions for an optimal solution are

aJ

T
p=AM+MA+Q=0 (2.60)
aJ T
30 = AL+ LAT+P=0 (2.61)
aJ T T
37 = AP+ PA" +BBT =0 (2.62)
0J =ATQ+QA+CTC =0 (2.63)
oM N '
aj 7 T T T
=5 = g5 Ir {2AT(MP +QL) + BTMB + CTCL} = 0. (2.64)

In general, these equations can not be solved for the optimal @ directly. However, iterative
methods may be applied to this problem.

A Gradient algorithm approach to the solution of this problem is to find the direction of
steepest descent and to take a step in that direction. The direction of steepest descent is in
the direction of the gradient with respect to ; the gradient of J with respect to 8 is given

by
dJ 8J a8JjdP aJ dQ aJdL 8J dM

W=t orwtogw torae Toman (2.65)

If P,Q, L, M satisfy (2.60-2.63), then
w0
a0 =30 (2.66)




The parameter update is given by

dJ
9,‘.“ = 0.’ - E-(-i-o-. (267)

Basic steps of the algorithm are given in Figure 2.3, for € fixed. This method has been used

1. Select 6, so that A(8,) is stable.

Let : = 1.

Solve Eqns. (2.60)-(2.63) for L, M, P and Q.
Calculate 6;,; from Eqns. (2.66) and (2.67).

ARl S

If the parameters have not converged, let : =7+ 1 and go to 2.

Figure 2.3: Gradient Algorithm.

in [4] to solve the FH optimization subproblem, associated with the decentralized control of
a large space structure using low-order controllers. The steepest decent algorithm results if
G is selected so that 6,4, is the minimum of J along the gradient direction.

An alternative approach, referred to here as “the Riccati approach”, [21,8] uses Riccati
equations instead of Lyapunov equations. The Riccati equations are constructed so that the
iterative solution converges to the solution of the Lyapunov equations.

The iterative equations are of the general form

ATMipy + Mgt A = My  RMipy + MiRMi + Q =0
ALy, + Li+1AT —LipgwRLiyy + LiRL; + P=0

APgy + Py AT — Py RPiy + PiRP: + BBT = 0 (2.68)
ATQiy1 + Qit1A — Qi1 RQi1 + QiRQ: + CTC =10
where §; is the solution of (2.67), or the solution of
aJ
= 0, (2.69)

if (2.69) can be solved. The second possibility occurs naturally in the discrete case and so

the algorithm will be discussed in Section 2.6 in greater detail. Note that if this iterative
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algorithm converges, it converges to the solution of the corresponding Lyapunov equations.
The Riccati approach has the important feature of being solvable for all stabilizable and
detectable systems. The Riccati approach should be used when ¢ is fixed, since an unstable
plant may then result at any given iteration. However, solving Riccati equations is more
time-consuming at each iteration than solving Lyapunov equations; therefore, the increased

assurance of convergence is obtained at the cost of greater computational burden.

2.5.1 Optimal model reduction

The disturbance-rejection problem is a useful paradigm for other problems, in particular for
the model-reference problem and model-reduction problem. In the model reduction problem,
given an n*"-order system

G(s) =C(sI - A'B+ D, (2.70)
the problem is to find a k-th order approximation

~ A

Gs)=C(sI-A)"'B+D (2.71)

that minimizes ||G(s) — G(3)||rx-

The error system as shown in Figure 2.4 is

G(s)

G(s) |

Figure 2.4: Model Reduction Problem.

E(s) = G(s) — G(s) = C.(s] - A.)'B, + D., (2.72)
where
A0 B ,
Ae=[0 A]’ B,=[B],C,=[C—C'], D.=D-D. (2.73)
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In order for the error system to be strictly proper, i.e., that e(t) — 0 as t — oo, we
require D, = 0. This is satisfied by letting D=D.
The necessary conditions from (2.60)-(2.64) are:
aj
oL,

gi}d (2.74)
= ATM+MA.+Q=0

%
3% = AL+ LAT+P =0
and 2]
— = 2(MP+ QL) =0
232 = 2ng,; f M)::B) =0 (2.75)
3 .
7 2(—CL1;+CMy) =

The gradient steepest descent or Riccati algorithm can now be used essentially as described.

2.5.2 Disturbance rejection

Given the plant (2.1) controlled by the dynamic controller (2.4), the closed-loop system
reduces to (2.5)-(2.7), i.e.,

I
o &
X X
>

2 O

(2.76)

i

e O O e
tx»
CNS
o

with

. A0 B A C 0 5 D

O N P IR ) T
G
0

p=[E 0], C= [ A=1[H 0, 1‘{=[D° C°]. (2.78)

B. A,
In order for the closed-loop system to be strictly proper, we require D = 0. Thus one

restriction on the optimal solution is
ED.D =o. (2.79)
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P(s) |

C(s)

Figure 2.5: Plant with controller configuration for disturbance rejection.

The necessary conditions for an optimal solution are then

aJ
%
— = ATQ+QA+C7"C=0

g’}ff (2.80)
ol _ 4t i+0=

55 = AM+MAi+Q=0

aJ
oQ

= AP+ PAT+BBT =0

= AL4+LAT+P=0
and

3_1{; _ 2(BT(MP + QLT + BTM(C + BRD)DT + BT(ff + BRO)LOT).  (281)

Satisfying the condition ED.D = 0 leads to three special cases:
(i) Strictly Proper Controller (D, = 0)
(ii) Noise-Free Measurements (D = 0)
(iii) Cheap Control (E = 0)

Of course (2.79) can be satisfied in a combination of these three cases. This would imply
that some channels of the control would be strictly proper, some noise-free, and some with
cheap control.

If the measurement noise (DDT) is non-singular and the controlled outputs include a
non-singular control term (ETE), then the optimal controller must be strictly proper. This

case is handled by setting D. = 0 and removing it from the set of parameters to be optimized.
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Thus the necessary conditions for an optimal controller are (2.80) and

aJ .

o4 = AMP+QLin=0

- = 2(MP+QLuCT + MyB.DD”) =0 (2.82)
aﬁ‘C]— = 2[BT(MP + QL)u + ETECan] =0.

If the measurement outputs of the plant are noise-free, then D = 0 and the necessary
conditions for an optimal controller are (2.80) and

8J

0A,

;’; = 2[(MP + QL)uCT + (MyB. + My BD.)DDT] =0
) (2.83)

9 9BT(MP+ QL) =0
ac,
061; = 2[BT(MuBD. + M2B)DDT + BT(MP + QL)uCT] =0.

If, in addition the controller is non-dynamic, i.e., C(s) = D., then the closed-loop system

G(s) = (H + ED.C)(sI — A— BD.C)™'G. (2.84)

The necessary conditions for an optimal control are (2.80) and

A

.é‘?bj_. = BT(LP + QM)CT + D.CMCT = 0. (2.85)

2.5.3 Example

Given the plant

© _0.4335 —0.0118 —0.9231 —0.4643| 0.8854 —0.7382

—0.9160 —0.5185 —0.4110 —0.0779| 0.1747 1.5473

A|B] | -0.0414 —0.6085 —0.7507 —0.8901|—1.4939  0.8204
cTD | = | —04828 —0.0916 —0.2014 —09215]|—-1.1423 —1.5361 |»  (2:86)

00782 1.9938 —0.8140 —0.8819 0 —1.5443

0.1821 03387 1.6250 1.0326 0 0]

determine a second-order, proper, stabilizing controller K(s) which minimizes the FH norm

of the closed-loop system.
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To start the algorithm, an initial stabilizing controller is needed. Such a controller is

given by
-1 0 -0.0118
K(s) = [ 0 -1 l —0.0555 | . (2.87)
| 0.0846 —0.1728 | 0

The optimal controller was computed by implementing the steepest decent algorithm

using Matlab. Figure 2.6 shows the FH norm (G = B, H = C) at each iteration of the

FH Norm

Figure 2.6: Iteration history of FH Norm of System.

algorithm. The FH norm was reduced from its initial value of 84.9 down to 5.6. The optimal

controller is determined to be

~0.7966 —0.2337 | —0.4563
K(s)= | —0.2502 —0.7149| 0.5331 |.
04515 —0.5542 | 0.1822

2.6 Discrete-Time Systems

In this section, we describe in detail the FH-norm approach to disturbance minimization in
discrete-time systems, and propose the new Riccati equation based computational algorithm
for the design of an FH-optimal controller of selected order.

The formulation, as will be seen, reduces to a linear-in-the-free-parameters (LIFP) system

description coupled with a performance criterion that leads to a Parametric Optimization
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(PO) problem. The necessary conditions for optimality are derived, and a fixed-point algo-
rithm involving the iterative solution of Lyapunov equations is suggested by the structure of
the necessary conditions. Presently available algorithms require an initially stable system.
To resolve this initialization problem and aid convergence, a new algorithm is proposed which

involves the iterative solutions of discrete Riccati-equations.

2.6.1 The disturbance-rejection problem in discrete-time systems

Consider the disturbance-rejection problem for the system in Figure 2.7, where u is the

-—»- C
;——-»‘
u Plant
K | y

Figure 2.7: System with external disturbance.

control vector, ¢ is the controlled output vector, w is the disturbance vector, and y is the
measured output vector. The goal is to suppress the response in the output ¢ due to the

disturbance w. Consider the linear, time-invariant, discrete-time, stochastic state-space
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system

ZTryr = Az + Bup+ Ew,
Yk = Cz;+ Fw, (288)
¢ = Dz

with z; € R, (s € IR™, ux € IR?, yx € IR, w; € IR, and T, w] wi < oo, and with the

linear controller
€1 = Kl + Kayx,
uy = Kil+ Ky

where £, € IR* and all the parameters of the dynamic compensator are free design parameters.

(2.89)

Letting z.x = [zT ¢T]7, we get the closed-loop system

A s (29
where
A=A+ BKC, E.=E+BKF, D.=[D 0l = [E* of, F=[F" of
and
A=[§ g] B:[’g }’] é=[§ }’] K=K ?:] (2.91)

Then G.(z) = D.(zI — A.)"' E, represents the closed-loop transfer function from the distur-
bance input to the regulated output ((z) = G.(z)w(z).
In the spirit of the H.-norm optimization, the optimal solution to the disturbance-

rejection problem can be defined as
K° = arg rr}xén IGe(2))loo (2.92)

where
IGe(2)lleo £ max Gmac{Ge(2)}- (2.93)

Finding a minimum with respect to the H, norm, however, presents computational
problems as formidable as in the continuous case since there are no efficient algorithms to
solve the ensuing minimax problem involving a controller of constrained structure.

The FH norm of the discrete-time system (2.90), similar to that of a continuous-time

system, is defined in terms of Hankel singular values and is computed from the product of
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the controllability and observability grammians, P and Q. For A, a stability matrix, P and

Q are defined in the discrete case as

P2 Y A*E.E: (A, (2.94)
k=0 .
Q £ Y (A))*D:D.A, (2.95)
k=0
and satisfy the Lyapunov equations
APA:—P+E.E: = 0
A:QA.—-Q+D:D, = 0. (2.96)

The Hankel singular values are defined as

0:(G(2)) & VA(P Q), (2.97)

and can also be derived from the singular values of the Hankel matrix (20,22]. The FH norm

is given by

1GL(=)llrw & J'fa?(acm) - \J"ifxa(m) — J/Tr (PQ) (2.98)

1=1 i=1

if |A;(A)] < 1 Vi. Recall that even though the matrices P and @ are not independent of
state transformation, the eigenvalues of the product PQ are invariant under such transfor-
mations [20].

As has been shown, the FH norm and the Hankel singular values satisfy the bounding

relations
n+s n+s
rn(G)) € | G = 16w < Lo Gule) (299)
=1 =1
and
n+ts
Tne(G(2)) < 1Ge(2)]eo < 23 0:(Go(2)): (2.100)

i=1

Introducing the no:ation for the Trace-norm (T-norm) and Hankel norm

n+s

IGe(2)llr = 3 _0i(Ge(2)),  [1G(2)llir = Tmax(Ge(2)) (2.101)

=1

and the interval T of the real line defined by

T 2 [IG()la, 2Ge(2)lI7), (2.102)
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it follows that ||G.(2)|lc € T and ||Ge(z)|lF# € I. Recall also that if ||G.(2)llrw = 6,
then min ||G(2)||g = 7‘;6 while max ||G.(z)|lr = /né, and so the largest that T can be is
[:};6,2\/56], and, similarly, the smallest T reduces to the set [§,26]. Thus, as ||G.(2)||Fy is
reduced by minimization the interval I is also reduced and the FH norm and the H,, norm
are forced to move closer together. The FG norm minimization procedure thus provides a

near- H,-optimal solution, as depicted in Figure 2.8 (where G:(z) is the transfer function of

210G iy
NG It

201Gty

IG iy
~ 1G ey
) LAl
0 IG Hiy
Initial K Optimized K

Figure 2.8: The effect of optimization on I.
the optimized system). This will be amply demonstrated by an example in Section 2.7.1.

2.6.2 The FH-norm optimization

The FH-norm optimization in discrete systems problem reduces to the minimization of

the criterion

J = |Ge(2)l[ky = tr (PQ), (2.103)
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where P and @ satisfy the Lyapunov equation (2.96). The goal of the optimization is to find
K* such that

K* = arg n}én tr (PQ). (2.104)
To convert constrained optimization to an unconstrained optimization, we define again
the Lagrange multiplier matrices L € IR**™ and M € R*™*", L = LT, and M = M7,

following the approach developed for continuous-time case. This leads, in the discrete case,

to the extended cost function

J

Tr [PQ + M(A.PAT — P+ E.ET) + L(ATQA. - Q + DTD,)] (2.105)

and the following necessary conditions for a minimum:

aJ T
3 = ATMA,-M+Q=0
2‘-]— = ALAT-L+P=0
36% (2.106)
— = APAT_PL+EET=0
g 1}4 A.PAT + E.E!
—— = T - T =
AL ATQA. - M +DTD. =0
and X
621!5 =2(C(PATM + LATQ) + FETM|B =0, (2.107)

where the derivative of a scalar with respect to a matrix is defined in the usual sense. We see
that equations (2.106) are quadratic in the parameter matrix K, and that equation (2.107)

is linear in K. Equation (2.107) can be rewritten in the form

UrKV; + UK V; = A, (2.108)

U, = BI:MB, i= CPCT + FFT, U, = BTQB, V, = CLCT
A = —BT[(MAP +QAL)CT + MEFT].

The linear-in-the-parameter form of condition (2.107), which does not arise in the analogous

continuous-time problem [23], arises here because of the structure of the discrete Lyapunov

equation.
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The use of numerical techniques is the only viable approach to the solution of the above
necessary conditions. Fixed-point or feasible direction algorithms as suggested by the form
of the necessary conditions, may be considered. However, convergence of the feasible direct
algorithm is slow while convergence of the fixed point algorithm is not guaranteed: At some
iteration, a destabilizing K; might arise, so that the matrices P;, Q;, L; and M; will not
be positive definite, and the algorithm cannot continue; or, while the algorithm rhight never
encounter this difficulty, it may still not converge. Problems such as this frequently occur in

parametric optimization problems (see [24]).

2.7 The Riccati-Based Algorithm

To improve computational efficiency, resolve the initialization problem [24], and achieve
convergence, we use an algebraic Riccati-equation approach for computing the FH-norm
optimal controller. This approach is the forerunner of the Riccati approach mentioned in
Section 2.5 for continuous-time case, and is treated here in greater detail. The use of the
Riccati equations is again proposed because of robust properties of positive semi-definite
solutions of these equations, and because of their relationship to the corresponding Lyapunov
equations (2.106).

Consider the Discrete Algebraic Riccati Equation (DARE)

APAT — P+ S5 - AP(P+ R)'PAT =0 (2.109)

for S > 0, R > 0. This has the same terms as the Lyapunov equation except for the
“rational” term AP(P + R)~'PAT. Recall the following fundamental property.

Lemma 2.1 [25]. If (A,S) is a stabilizable pair, then there exists a P > 0 that solves
equation (2.109). O

If S is positive definite then (A, S) is obviously stabilizable, and so P is positive defi-
nite regardless of the stability of A. This fact is exploited to construct an algorithm that

overcomes the initial stabilization problem. This property also guarantees the continuation
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of the algorithm through successive iterations by generating positive definite solutions to
Riccan equations constructed from the Lyapunov equations (2.106).
To adapt the Lyapunov-equation type conditions into a Riccati setting, we examine, for

example, the j*! iterate of the third equation in (2.106)
0= A, ;PiAT; — P + S; (2.110)
where S; = E,;ET.. We may expand this into the DARE form
0= A ;Pj1A]; = Pis1+ S~ A jPisa(Pisy + R P AL, (2.111)

where S is now given by S} = S§; + A.; Pj(P; + R)‘IP,-AZ:J-. If P is a fixed point of this
algorithm, (i.e., if P; — P as j — o0), then in the limit (2.111) converges to (2.110). We
use the same expansion technique on the other three Lyapunov equations and construct an
algorithm based on the iteration of the obtained Riccati equation in the spirit of fixed point
algorithms.

Algorithm:

1) Set K, (arbitrary), R>0,e¢>0,andlet P, =Q, =L, =M, =1

2) Compute A.; = A+ BK,;C,E.; = E + BK;F

3) Soive the DARE equations
= A.;Pin1Al; = Pip + i — AcjPisi(Pir + R)™1 P AT,
= AL,QjnAc; — Q@ + S5 — AT;Qi41(Qinr + RB)'Qjn1Aci

= A.;Lis1AT; — Lijy + S3j — AcjLipa(Lisa + R) ™' L AT
AZ:ijHAc.j — Mju1+ Sy — AZ:ij+1(Mj+1 + R)'M; 1A,

[ = R e I )

i

for PJ‘+1, QJ'+1,LJ'+1, and Mj+1, where

Si;; = Ec,ng:J‘ + A ;i P;(P; + R)'leAZ:j,
S = DID.+ AT,Q;(Q; + R)'Q,A.;
Sxj = Pj+Ac;Li(L; + R)'L,AT,,

Sy = Qi+ AcT'ij(Mj + R)"'M;A,,

4) Solve equation (2.108) for K,
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5) If [|K,+1 — Kj|| 2 ¢, go to 2); <lse stop.

This approach has several appealing features. First of all, P; and Q; (and hence L; and
M;) always have positive definite solutions if S;; and S,; are positive definite. This will
always be true if P, and @, are chosen positive definite (e.g., P, = Q, = I). The second
feature is the introduction of the matrix R in (2.111) which can be used to control speed of
convergence of the algorithm. This property can be seen in that for R > 0 and large, the
Riccati equation (2.111) approaches the corresponding Lyapunov equation (2.110).

If K is not stabilizing for some 5 > 0, the algorithm still generates positive definite P;, Q;,
L;, M;, and so the updates of K; may still be obtained uniquely from (2.108). In particular,
any K, € IR(P+*)x(*+3) can be used as an initial starting point, (unlike algorithms that iterate
on Lyapunov equations), resolving the initialization problem. The Riccati solutions may be
obtained by eigenvector or Schur methods [26]. Equation (2.108) may be solved by Schur
methods [27].

2.7.1 An example

The example used is a fifth-order plant and second-order controller. There are three
measured outputs, two control inputs, two disturbances, and two regulated outputs. The
system was open-loop unstable and the initial gain, chosen at random, was not stabilizing.

The matrices in this example are

[ 0.7090 0.2174 0.2156 0.2471 0.2714 ] [ 0.4218 0.6696 |
0.9167 0.6322 0.4611 0.1519 0.1583 0.9280 0.7232
A = | 0.4492 0.0208 0.9797 0.2248 0.3055 |, B = 0.3669 0.7510 |,
0.2074 0.6609 0.6527 0.4585 0.2312 0.2272 0.3142
| 0.6020 0.9731 0.5431 0.5976 0.9319 | | 0.4842 0.3740 |
[ 0.5190 0.3851 0.6518 0.1310 0.2305 ] [ 0.7631 0.4555
C = | 0.5971 0.4729 0.5466 0.5970 0.5064 |, F = | 0.0501 0.5027 |,
[ 0.3805 0.3592 0.8039 0.2023 0.1848 | | 0.6824 0.2716
0.6911 0.8366 ]
D - [ 0.1958 0.5790 0.8710 0.9427 0.0715 ] E- g?ﬂé g'gggg
| 0.9716 0.8839 0.7459 0.6631 0.7721 0.7691 0.2172

| 0.4180 0.6685 |
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with the initial gain matrix (partitioned as in (2.91))

0.9074
[ K, Kz]_ 0.6664
ks K 0.4865
0.3389

0.4859 0.5117
0.2697 0.7345

0.5581 0.0614
0.4706 0.3855

0.5784
0.0293

0.8401
0.3024

0.7800
0.6229

0.2379
0.9400

In simulations it was seen that using equation (2.108) directly to produce the update of
K causes the step size between updates to be large regardless of the size of the matrix R.
A modification of this algorithm to control the step size was seen to be useful. This may be
readily accomplished since the updates of the gain need not be stabilizing. An update law

for the gain K was chosen to be

K_,'.H = aN,- + (1 - a)Kj, ae€ [0, 1]

where N; is the solution of equation (2.108) in the j*® iteration.

Various choices of the gain a, and the matrix R were analyzed. The variation of the four
norms, the H,, norm, the FH norm, the Hankel norm, and the trace norm -t each iteration,
where the values R = 5I and a = 0.6 were used, is shown in Figure 2.9. The value of K at

iteration 40 was

—15.8530  2.5021 17.2028 -3.1335 -—3.9396
Ko = 11.2437 -3.1656 -~13.5988 3.1284 3.5185
10 = 2.0500 0.0137 -2.5740 1.1343 0.8562
—2.5727 —0.0660 3.3596 —1.6122 —0.8960

In this example, we can see that beyond 20 iterations the various norms decrease exponen-
tially. In Figure 2.10 we see that the algorithm keeps finding gains that reduce the FH norm,
even though the convergence of the gain K is not smooth. The use of a step-size control is
seen to be useful in this case. The FH norm and the H,, norm, in this example, are seen
to be close not only at the optimum but also at each iteration. We can also see that in this
example, the solution is stabilizing, and also produces a stable controller.

In this example, the interval T = [6.00, 25.25], bounds the H,, norm which was 9.44 at
the point in which the first stabilizing gain was determined. After 30 iterations, the interval

bounding the H,, norm was reduced to {.0105, .0399], and its actual value was .014. Thus,
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Figure 2.9: Log of various norms at each iteration.

a significant reduction was made in the H, norm and also the bounding interval Z. The
fact that the interval can be monitored implies that its size and location may be enough
to identify the size of the H,, norm. Thus, the desired accuracy of the H,, norm may be
obtained without actual computation.

Also considered was the effect of varying the order of the controller. Figure 2.11 shows
the FH norm trajectories in the computation process. As expected, the size of the controller
affects the reduction of the H, norm. Each of the initial controllers chosen were unstable
and resulted in unstable closed-loop systems. After fifty iterations, with the controller of
order s = 1, the interval 7 was [0.0998, 0.5694), and the FH norm was 0.1448, the H,, norm
being 0.1254. For the controller of second order, I was reduced to [.000171, .000583], and
the FH norm was .000182, while the H,, norm was .000228. Finally, for the third order
controller, T was [1.80e-6, 1.10e-5], and the FH and H., norms were computed to be 4.38e-6
and 2.00e-6 respectively. It appears that the first-order controller converged with an FH
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norm of approximately .1448, while the algorithm produced controllers of order 2 and 3 with

significantly smaller FH norm.

2.7.2 Application to other design problems

The disturbance-rejection paradigm can be used to treat other control problems in a
common framework. Prominent examples are the tracking of exogenous inputs, and model
reference design [28]. These are together with the disturbance-rejection problem depicted
in Figures 2.12. As before, u is the control vector, ¢ is the controlled output vector, w is
the disturbance vector, and y is ihe measured output vector, while r is a reference signal.
In the tracking problem, we also have the exogeneous input @w. The goal of the disturbance
rejection problem is to suppress the response in the output ¢ due to the disturbances w. The
objective of the tracking problem is to minimize the “throughput” from the input vector

v = [T wT]T to the output e. Similarly the goal of the model reference problem is to find
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Figure 2.11: FH norm variation for controllers of different order.

a controller that reduces the effect of the “disturbance” input vector » = [rT wT|7T to the
output vector e.

Developing a common design methodology, we first find a common way of representing the
closed-loop system in the tracking and model reference design in a linear-in-the-parameters
fashion, considering again the linear, time-invariant, discrete-time, stochastic state-space
plant (2.88).

We consider additionally in the tracking problem the tracking model

Bkv1 = Ay + Byin
r = Cim (2.112)
and the controller
fk+1 = Klfk + [K2 K3] [ z: ] y Ugp = K4fk + [Ks Ks] [ ':{: ] ’ (2-113)

and so for z.x = [u] zf E7]7, vk = [0 w]]T, and e; = ri — (& we have

Tehs1 = AcdZek + Ecavr, e = Dyz. (2.114)
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Figure 2.12: System structure for disturbance rejection, model reference and tracking.

where Ac't = Iig + BgKgc.'g, Ec'g = Et + Egl(gi;"g, Dg = [Cl - D 0],

) (A, 0 O } 0 0 ) Ci, 00

A = 0 AO0|, Bp={B O |, Ctc=10 C 0 |,
(0 0 O 0 I, 0 0 I,
B, 0 00

E~'¢ = 0 F |, Fg= 0 F |, Kt=[§6 gs §4]
(0 0 00 37

For the model reference problem, we adjoin to (2.90) the model

P41 Aypr + Biry

b, _ Cone (2.115)
and the controller
Err = Kibx + [y K [ ’1{: ] o we = Kebi + [Ks K [ ’:: ] : (2.116)
and so for z.x = [uI zT ¢T]7, and vy = [r] w]]7, we have
Teks1 = AcdTer + Ecavk, ex = Dyzei (2.117)
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where A, = A + BnKyComy Ecn = Em + Bp K Fo, Dy = [C, — D 0],

i [A;, 0 0 ) 0 0 ) 00 O
Amn = |0 A 0|, Bu=|B 0 |, Ch=1]0C 0],
0 0 O 0 I, 00 I,
B, 0 I, 0
E, =0 E|, F,={0 F ,R,,.:[’I? 11‘25 ?‘]
(0 0 0 0 3 0
All the parameters Kj,..., Kg of the various dynamic compensators are free design param-
eters.
For each of these problems,
G.(z) & D.(zI — A)'E. (2.118)

represents the closed-loop transfer function from the “disturbance” input to the output,

e(z) = G.(z)v(z). We thus have a common representation for each of the three problems,

which reduce to a disturbance rejection problem.

2.7.3 Examples

Using the same fifth-order plant and second order controllers. There are three observations,
two control inputs, two disturbances, and two outputs. The system was open-loop unstable

and the initial gains, for both the model reference and the tracking problems, were chosen
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at random and were not stabilizing. The data defining the examples are

[ 0.7090 0.2174 0.2156 0.2471 0.2714 ] 0.4218 0.6696
0.9167 0.6322 0.4611 0.1519 0.1583 0.9280 0.7232

A= 04492 0.0208 0.9797 0.2248 0.3055 |, B =] 0.3669 0.7510 |, .
0.2074 0.6609 0.6527 0.4585 0.2312 0.2272 0.3142
| 0.6020 0.0931 0.5431 0.5976 0.9319 | 0.4842 0.3740

£ 0.5190 0.3851 0.6518 0.1310 0.2305 ] )
C = | 0.5971 0.4729 0.5466 0.5970 0.5064 |,
| 0.3805 0.3592 0.8039 0.2023 0.1848
0.1958 0.5790 0.8710 0.9427 0.0715
0.9716 0.8839 0.7459 0.6631 0.7721 |’
[ 0.6911 0.8366
0.9911 0.9238 [0.7631 0.4555]
, F= .

E=| 01412 09555 0.0501 0.5027
0.7691 0.2172 0.6824 0.2716
| 0.4180 0.6685

For the tracking problem, we considered the model

0.0119 -0.7220 0.9915 0.6242 0.5635 0.6350
A =| -04124 04140 0.2435 |, B; = | 0.1253 |, C;=| 0.3515 0.9839

—0.1547  0.2075 0.4138 0.1564 0.7593 0.2910
and used the initial feedback gain

—-1.8687 -—0.3008 —-1.5063 1.8896 -—0.7378 1.9863 —0.5630 ]
1.1583 —1.9086 —0.3427 -1.2689 -1.8124 1.0980 -0.2509
Ko =
-0.6677 -0.5334 -0.7351 -0.8977 1.3538 —-1.6057 0.5989
-0.1027 -0.0875 0.7479  0.2787 -1.6202 0.9261 -0.2072 |

For the model reference problem, we considered the model

0.6242 0.5635 —0.5186 0.4181 -
,Br =1 0.1253 0.9838 | ,C, = 0.4124 0.2971

0.1564 0.6350 —0.0119 0.1547

—0.0313 0.2246 0.1190
A, 0.0834 -0.0586 0.2339
0.7635 0.0384 -—0.4704

and used the initial feedback gain matrix

-0.5773 -0.0756 0.3200 0.1270 -0.3971 —-0.1547  0.9915 ]
0.7430 -0.7640 0.2484 0.9679 —0.4181 -0.7220  0.2435
Ko =
0.6301 0.0165 —0.7493 0.2700 0.4124 0.4140 0.4138
0.7410 -0.7173 —-0.6873 0.5186 —0.4124 0.2075 -0.9343 |
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Both initial gains were chosen at random. The variation of the our norms: the Hankel norm,

the H,, norm, the FH norm, and the trace norm for the disturbance rejection problem was

shown in Figure 2.9. Figure 2.13, and Figure 2.14, show analogous, results for the tracking
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Figure 2.13: Log of various norms for the distribution of rejection problem.

and model reference problems, respectively. The value of K at iteration 40 for the disturbance

rejection problem was given earlier. For the tracking problem at iteration 35 the gain was

-7.8413 53768 -12.1889 1.4176 13.1417 0.3271
8.1238 -5.5467 7.7612 -2.1177 -9.7492 -0.1666
1.2912 -0.9435 4.3515 0.9927 -6.2684 0.6571
1.2044 -1.0983 0.9982 09183 -2.1879 0.5003

and the value of K at iteration 40 for the model reference problem was

24721 -1.7562 -15.1818 2.1323 16.6832 -—0.1850
—-2.0549 1.6154 10.4600 —-2.7596 —12.9371 0.3262
—-1.8793  0.8583 8.8285 0.1290 -11.7637 1.1118

1.3085 -0.0726 —4.4312  0.1457 5.9159 -0.6352

K35=

K4o =

0.9358
—0.9349
—0.9840
-0.2711

—1.8802
1.8608
1.4165

~0.5588

In this example, we can see that beyond 20 iterations, the various norms decrease exponen-

tially. Figure 2.15 shows the convergence of the algorithm in each of the three problems as
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Figure 2.14: Log of various norms at each iteration for the model reference problem.

represented by the change in K;. The FH norm and the H,, norm, in this example, are seen
to be close not only at the optimum but also at each iteration. We can also see that in the
example, the solutions are stabilizing, and also produce stable controllers.

Recall that in the disturbance-rejection example, (see Table 2.1) that the interval 7 =

Table 2.1: Variations in AK; for the three example problems.

[Problem | Z-initial H_.-initial | Z-final Optimized A,
Dis. Rej. | (6.00, 25.25] | 9.44 0.011, 0.040] | 0.014
"Tracking | [53.85, 154.07] | 68.64 0.90, 2.23] [ 0.94
Mod. Ref | [3.74, 12.28] | 6.87 0.012,1.13] | 0.014

(6.00, 25.25], bounds the H,, norm which was 9.44 at the point in which the first stabilizing
gain was determined. After 30 iterations, the interval bounding the H., norm was reduce
to [.0105, .0399], and the actual values was .014. Corresponding results for the two other

problems are summarized in Table 2.1. Thus, a significant reduction was made in the H,,
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Figure 2.15: Log of various norms at each iteration for the tracking problem.

norm and also the bounding interval Z, in each of these examples.

The FH-norm approach to disturbance rejection provides computational ease and a near-
optimal solution to the H,,-norm minimization for controllers of bounded order. The ability
to consider a broad class of problems makes this approach all the more attractive for control
design. These features are amply illustrated on the fifth order example. The new Riccati
equation based algorithm is computationally attractive since it takes advantage of devel-

oped computational tools for the Riccati equation and eliminates the search for an initial

stabilizing solution.
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3 LOW-ORDER CONTROLLER DESIGN USING
PROJECTIVE CONTROLS

3.1 Time-Domain Properties of Projective Control

The projective controls approach offers a method of designing a low-order output feedback
controller to retain a subset of eigenvalues and associated eigenvectors of a reference state-
feedback system. The reference system is typically obtained using an LQ approach or an
H-norm approach. The obtained controller can be either static or dynamic, the order being
determined in the design process so as to meet stated design objectives. Dynamic projective
controllers are parameterized by a p X r matrix of free parameters, r being the dimension of
the measured output vector, p being the order of the controller. When transient performance
is the issue, an LQ approach is typically used to determine the reference system, and the
retained eigenstructure is chosen to retain the dominant dynamics of the reference system.
The design freedom available in the free parameters is then used to shape the residual
dynamics. When disturbance rejection is the issue, an H-norm approach is employed and
the design freedom in the available free parameters is used to further improve disturbance
rejection.

In this section time-domain properties of projective controls are reviewed emphasizing in
particular a convenient parameterization of projective controllers. The remaining sections
expand the projective controls methodology and provide design tools to achieve transient
performance and disturbance rejection using low-order controllers. Section 3.2 concentrates
on the problem of shaping the residual dynamics, Section 3.3 presents the frequency-domain
properties of projective controls and their impact on the disturbance-rejection problem,
Section 3.4 develops the FH norm approach to solve the disturbance-rejection problem us-
ing projective controllers, and Section 3.5 introduces a convenient similarity transformation
which reduces the system reprasentation to a linear in the free parameter form and extends

the design to decentralized systems.

The projective controls method [29], [30] is a method for designing low-order controllers
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for higher-order systems based on retaining a subset of the poles and the associated eigen-
structure of a reference system. The reference system is determined by a state-feedback
controller which is chosen for its desirable properties. Many algorithms exist for designing
state-feedback controllers; thus projective controls approach is suitable for use in combina-
tion with many types of synthesis methods. Moreover, once the state-feedback controller is
determined, the projective controller is easily computed. In particular, this reference system

can be written in the form

G.(s) = G1(3)Gra(s), (3.1)

while the closed-loop projective controls system has been shown to reduce to
Gy(3) = G(s)Gpals). (3.2)

The G,1(3) is called the retained subsystem while Gp3(s) is called the residual subsystem.
The order of the retained subsystem is determined by the class of controller chosen. Three
classes of controllers are considered here: static, proper and strictly proper controllers. For
a static projective controller the residual dynamics are completely determined and stability
and performance of the non-retained dynamics is not guaranteed. In the case of dynamic
controllers, the projective controllers are parameterized by free parameters. These may be
used to achieve stability and improve the performance of the residual subsystem. In the
remainder of this section, we state the basic properties of projective controllers and develop

controller parameterizations.

3.1.1 Static controllers

Suppose a state-feedback controller u = K,z is applied to the system (2.1) and yields the

reference system

G.(s) = (H + EKo)(sI - F)™'G, (3.3)

where F = A 4+ BK,. The eigenstructure of the reference system is FX = XA where A

is a diagonal matrix of the eigenvalues of F, A\(F) and X is a matrix of the associated

45




eigenvectors. The reference system can be determined using any of the appropriate state-
feedback design methodologies. One common design approach is LQ optimization. It has the
desirable properties of producing controllers which are guaranteed to be stabilizing through
the solution of the algebraic Riccati equation. In particular, the stabilizing controller which

minimizes ||G(s)||z is given by
u= Kz, K;=-BTM,, (3.4)
where M; > 0 is the solution of the algebraic Riccati equation
ATM, + MA — M;BBTM, + HTH = 0. (3.5)

For details, see for example [31].

A stablizing controller which guarantees ||G(s)||ec < « 18 given by
u=Kepz, Ko=-BTM, (3.6)
providing there exists M., > 0 which satisfies the algebraic Riccati equation
ATM, + M A - M BBTM_, + %MOOGGTM“, +HTH =0. (3.7)

For details, see for example [1].
Consider now a static controller which retain the r reference eigenvalues A, and associated

eigenvectors X,, where r is the number of measured outputs.

Theorem 3.1. If A, is observable from C, then the static output-feedback controller C(s)
retains [A,, X,] if and only if

C(s) = D. (3.8)
where
D. = K,N,, (3.9)
N, £ X,(CX,)™. (3.10)

Proof. Let the feedback D, retains [A,, X,]. We thus must have
A.X, = (A+ BD.C)X, = X.A,. (3.11)
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Also
FX, =(A+ BK,)X, = X,A,. (3.12)

Subtracting the two equations yields
BD.CX, = BK, X,. (3.13)

Since A, is observable from C, C X, is invertible and (3.13) is satisfied by D, given by (3.9),
(3.10). Conversely, let D, be given by (3.9), (3.10). Then

A.X, = AX, + BKoX, = FX, = X,Ar. (3.14)

a

Theorem 3.2. Given the control law (3.8)-(3.10), the eigenvalues of the closed-loop system
are

de = A UA(AY), (3.15)

where

A, £YT(I, - N,C)AY (3.16)
and Y satisfies CY =0 and YTY = I,_,.
Proof Let T be given by

_ L _[Uul_ [ ©x)c
T=[X Y, T _\V]_[YT(I,.—N.,C)]'

Note that U and V exist provided that C X, is invertible which is guaranteed by the observ-

(3.17)

ability of A,. Thus T is invertible since U and V exist.

- A, =
T'AT = [ 0 A ] (3.18)
with
A, =YT(I, - N,C)AY (3.19)
Q
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3.1.2 Proper Controllers

The following result identifies the class of p*®-order controllers that retain r + p eigenvalues

and the associated eigenvectors of the reference system.

Theorem 3.3. The set of p**-order proper controllers which retain [A,, X,] and [A,, X,] is

given by

C(s) = C.(sI — A.)'B. + D,

with {Ac, B.,C., D.} parameterized by P, € IRP*" as

A. = A, +P,CFB,
B. = P,CF(N,- B,P,) - AP,
C. = K,B,

D. = K,(N,- B,P,)

and B, & (I, - N,C)X,.

Proof From

follows

or

or

thus,

|

A+ BD.C BCC] X, X,]=[X,, X,HA,

A.X, = XA,

B.C A W, W,
AW, + B.CX, = W,A,
AcWr + BcCXr = WrAr
BC.W, + (A + BD.C)X, = X,A, = (A+ BK,)X,
BC.W, + (A+ BD.C)X, = X,A, = (A+ BK,)X,

)

A. B.1[ W, W, ]| _[WaA, WA,
Cc. D.|| cx, cx. |~ | K.X, K.X.

A. B.| _[wA, WA [ W, w17
c. .|| kX, K.X. || CcX, cX. | -

Define L 2 W, 'W,; then (3.24) becomes

A. B.] _[ WA, W,LA,
C. D. |~ | K.X,

w, w,L]™
KX,

CcX, CX,
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or

8] 20 E ] T 2] oo

Note that W, represents a state-space transformation of the controller and thus W, is arbi-

trary. It follows that

I, L 17 _[L+La'CcX, —-LA™
cx, ¢cx,| | -a-cx, a-

with
ALCX,-CX,L.

Defining P, & L(CX, — CX,L)™!, produces
-1 = (CX,)"'(I, + CX,P,)

and

I, I+ PCX, -P,
CX CX ~-(CX,)" 1C'X,,(I + P,CX;) (CX,) (I, + CX,P,)
Now setting W, = (I, + P,CX,), the identity in (3.24) becomes

A. B. (I, + P,CX,)A, P,CX.A, I, -P,
C. D, K. X, K.X, —(CX,)"'CX, (CX.)"MI, +CX,P,)

A. B.]_[ A+ P.CF(X,-N,CX,) P,CF(N,CX,~ X,)P, +P,CFN, - A,P,
C. D.|= K.(X, — N,CX,) Ko(N,CX, — X,)P, + K,N, ’

which finally results in

Ac B.)| _[A,+P.CFB, P,CF(N, - B,P,)~A,P,
c. D.|~= K,B, Ky(N, — B,P,) '
a

Theorem 3.4. Given the control law (3.20)-(3.21), the eigenvalues of the closed-loop system

are

Ae = AU A UA(A,) (3.26)
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where

Proof: Consider

and define

which gives

T-l

|

A, 2 A, + B,P,AY. (3.27)

i_[A+BDL BC.
=l BC A

T=

]=

[ X X, Y
I,+ P.CX, P.CX, 0|’

~-P,C I,
(CX,)"*C(I + X,P,.C) —(CX,)"'CX,
YT +YT(B,P,—N,)C  -YTB,

| peeee——

< T

It can now be verified that

with

Ap 0 =
A, =

0 -~
0 0 4

A, =YT(I, 4+ (B,P, — N,)C)AY = A, + YTB,P,AY.

3.1.3 Strictly proper controllers

Consider finally the p*t-order strictly proper controller which retain the p reference eigen-

values A, and associated eigenvectors X,.

Theorem 3.5. The set of p*P-order strictly proper controllers which retain [Ap, X,) is given

by

C(s) = Cu(sI — A;)™'B. (3.28)

and parameterized by P, € IR"*? where

A. = A, —-P.CX,
B. = P, (3.29)
C. = K.X,
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Proof. From
A BC. Xo | _ | Xp A
B.C A, W, | i W, |'?

AW, + B.CX, = W,A,

we have

or

Wy(A, — W1 B.C X, )W,
Defining P, £ W, ! B, relation (3.31) reduces to

Ac = W,(A, = P.CX,)W,!
with
B. = W,P,.
From (3.30) also follows
BC.W, + AX, = X,A,
or
BCW,+ AX =(A+ BK,)X,,
which is satisfied by
Cch = KOXP

or

C.= KOX,,W;I.

(3.30)

(3.31)

(3.3zj

(3.33)

(3.34)

Note that W, represents a state-space transformation of the controller and thus W, is arbi-

trary. Choosing W, = I,,, reduces (3.32)-(3.34) to (3.29).

Theorem 3.8. Given the control law (3.28)-(3.29), the eigenvalues of the closed-loop system

are
XC = A,, U A(A,)
where

A 2 A-X,PC.
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Proof. Consider
i= A BC.
7| BC A,

and introduce the transformation

(X, L) aa [0
T"[I,, o]’ T "[I,, -X, |

Then
pig g | Ap ¥
TAT = [ 0 A
and so '
A =A-X,P,C.
o
3.1.4 Example
Consider the system defined by
0o 1 -2 1 0
-2 -1 0 1 1
A = 0 1 o 1,B=0 C=[1 00 0],
1 -2 -1 -1 1
Q = diag {100,0,100,0}, R=1,
with
Spec {A} = {-1.53 % j2.18,0.53 £ 50.92}
and

Spec {F} = {—3.57 % j4.09, —1.30, ~0.56}.

It can easily be determined in this problem that static projective controls will not stabilize
the system. Thus, a first-order dynamic controller is sought. Since r = 1, p = 1, there is only
one free design parameter. It effect on the residual dynamics can be observed by considering

the root locus for the residual system (note that here C = [I, 0),s0 YT =[0 I,])

T, = (Ar + BOPAIQ)zr
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where

~2446 46.93 -22.46 -9.10
A, 0.78 0.44 0.78 |, Bo= 0.07
21.59 -—48.18 2259 8.94
Az = 1 -2 1)
Omitting the details, it is determined in this particular problem that the stabilizing values

of p are in the interval [-2.575, -2.595). The controller parameters are

=-13-031p, D =0.85p +0.31p?
Ny = 13.49, Ky = —35.84 — 13.49p.

Taking
p=-2.5875

the controller becomes
= -0.50, D =0.17
N;=1349, K;=0.49

and the spectrum of the closed loop system becomes
Spec {A.} = {—0.56,~1.30, —0.20, —0.22 + j1.44}.

Here, the first two eigenvalues have been retained from the reference dynamics, and the last

three placed by solving the auxiliary pole-placement problem.

3.2 Shaping the Residual Dynamics

Consider presently that C = [I, 0] as in the previous example, and note that the residual
dynamics (3.32) can be associated with an auxiliary static output-feedback control problem
for a system of (n — r)*t-order with p input and ¢ outputs, where ¢ = rank A;,. It is well
known [32] that such an output pole-placement problem has a solution for almost all A,, B,

and A,;, and almost all desired spectra Agif n —r < p + ¢, i.e., if
p>n—r—q.

This implies, in particular, that when A;; is maximum rank, ¢ = r, the pole placement
problem can be solved for almost all problems using an (n — 2r)*t-order controller; this is

of lower order than the Luenberger (minimum order) observer. We present a solution to the

53




pole-placement problem in a novel way that utilizes the full available freedom, as opposed

to earlier procedures where P is frequently (for ease of calculation) restricted to be of unity

rank [33].
Let
L= [Ul Uy

where U; € R*-77 U, € Rn=7)%(n=2r) gatisfy

AUy =1
AuUz = 0
Then
A =T7A..Th = T,"‘A,.Tl + T{‘BOP[I 0].
Define

-1 _| Du Dr: -ip _ | Ba
h A'T“[Dn D |" TWB=|pg,

with Dy, € R™*", Dy, € R("°2')ﬂ, E, € R"™*?, Then

A = Dy + EyP Dy
' | Dn+EP Dy |

Now introduce the second transformation

L I -L I

Tg:[I' 0], T2—1=|:Ir 0],L€R(2"-'):'.

It can then be shown that

Ay, = T7'AT, =T' T AT, =T A, T

- Dy + Dy L+ E\P Dy,
—R(L)+ (E3 —~ LE,) Dj3— LD,

where

R(L) = LDy — DyyL + LDyoL — Day.
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(3.39)
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(3.41)

(3.42)

(3.43)

(3.44)



Now suppose n — 2r > p; this implies that a solution to the pole-placement problem almost
always exists. It also allows a non-unity rank solution to the pole-placement problem to be

determined. To this end, decompose E; — LE, as
E; — LE, = [M;, M) (3.45)
where M; € R("-)%(n=27) and det M; # 0. Decompose P and E, as
P=[P, P, E =[E} E) (3.46)

with Px € R(n-—2r)xr, P2 € R(p—n+2r)xr’ Eix € Rrx(n-zr)’ and E{’ € Rrx(p-n+2r)'

Theorem 3.7. Let L place the pole of Dy; — LDy; at A, and let P; place the poles of
A. — B, P at A; where

Aa = Dy + Dy2L + EZM'R(L) (3.47)
B, = E;M['M, - E,. (3.48)

Then if
P, = M{Y(R(L) — My P,) (3.49)

we have
A(A;) = AL UA,. (3.50)

Proof From 3.43, using (3.45) and (3.46) follows

Ay = Dy + DL+ E2P, + E}P; Dy, (3.51)
*7 | =R(L) + MyP, + M, P; Dya~ LDy |° '
Choosing P, to satisfy (3.49) for given L and P; produces
A, = Dy, + Dy L + EEM'R(L) — (E2 MM, — E})P, Dy,
2 0 Dy; = LDy, |°
a
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3.2.1 Example

To illustrate the above pole-placement procedure consider problem of placing the poles of

[0 10 0 0 1
g= |0 01 |z4{01]us|0|w
=7 3|2 TO0. 0

-

_[1 o]0
V= 1o 10|

at Ay = {-3, -4, -5}. For this problem

1
Dll = [g 0]) Dl2=[(1)]7 Gl=[é],

D2l = ["4 - 3]1 D22 = _2’ G2 = [0],

I.

00
B, = [0 1], B; =1 0].

Follows
0
D3y ~ LDy = =2 — [¢; &) [ 1 ] ==2-1{,
Suppose the eigenvalue of Dy — LD, is selected to be —4 € A4. In view of above choose
eg =2

and without loss of generality, let £, = 0. For this L we get
R(L) = LDy ~ DL 4+ LDyL — Dy,

= [e,zl[g (1)]-2[e12]+[e,2][‘1’][e21-[-4 — 3]

which produces
R(L)=[43).
We now want to satisfy
R(L) = (B: — LB\)P;

so,

[43] = ([10]-[02][3 ‘I’D[g ;:]

= [P] Pg] - 2[P3 P4],
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and hence,

[P, Py] = [4 3] +2[P; Py

Since here Ty = I, then E = T;*B = B, and so E, = By, E; = B;. Thus we solve the pole
placement problem

A(D11 + DyoL + B1K) = Agp = {-3, -5}

Since (0 17,0 0o0][P P
_ 1 B2
Dy, + DL+ B,P = .0 0.+.0][02]+[0 1][P3 P4]
3 '01'+'o 0] _[o 1
- _0 2. _P3 P4 - P3 P4
this demands that
P3 = -15
P4 = -=8.
Which in turn results in
P1 = -26
Pg = —8.
And so the gain matrices
26 17
p=-[% o] v

place the poles of A,. at {—3, -4, —5}.

3.3 Frequency Properties of Projective Controllers

In the previous sections, attention was focussed on improving the closed-loop performance
by retaining properties of a state-feedback controlled system with a low-order projective
controller; thus, time-domain properties of projective controls were exploited. Disturbance-
rejection properties are typically judged according to frequency-domain measures such as the
1l norm. Expressions have therefore been developed which relate the frequency-domain
properties of a system with a projective controller to the frequency-domain properties of a
system with a state-feedback controller.

In treating frequency domain properties via transfer functions it is often useful to use

the compact notation of the transfer function while retaining the state-space representation
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for computational purposes. We do so here and introduce the following notation for this

purpose:
Definition 3.1. Given the state-space representation of the LTI system

z(t) = Az(t)+ Buw(t)

«(t) = Cz(t)+ Dw(t) (3.52)
where z € IR® is the state, w € IR™ is the input, z € R" is the output, the transfer function
of the system shall be denoted by the packed representation

[_;H%] 8 C(sI- A)'B+D. - (3.53)

Thus, through the use of the expression (3.53), the transfer function of the system is
represented in terms of a state-space representation using a compact notation.

Let
a A1 Bl A Az Bz
Gl(s)_[cl D1]’ G,(s).[c2 D,]' (3.54)

If the two systems G;(s) and G,(s) are cascaded together as in Figure 3.1, the resulting

et G'l(s) Gg(s) | —

Figure 3.1: Cascade connection.

system can be represented as

Ay BCi | ByDy
0 A B,
C: D,C,| DDy

Gg(S)G](s) = . (355)

If the two systems are connected in parallel as in Figure 3.2, the resulting system can be

represented as
A 0 B,
G;(s) + Gg(s) = 0 .A_g Bg

(3.56)
Ci C;| D+ D,
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Gi(s) | +
L
Ga(s) |

Figure 3.2: Parallel connection.

P

P(s)

C(s) te

Figure 3.3: Feedback connection.

Note that representations (3.55) and (3.56) are not necessarily minimal. Consider finally the

feedback configuration of Figure 3.3. Let the plant have the state-space representation

¢ = Az+ Bu+Guw
z = Hz+ Eu (3.57)
y = Cz+ Dw

where z € IR" is the state, w € IR™ is the disturbance input, u € IR" is the controlled input,
z € IR’ is the controlled output, y € IR™ is the measured output. The transfer function P(s)

is characterized by
z(s) | _ w(s)

A|lG B
P(s)-A_-[H 0 E

c|p
Cs) & [%] (3.60)

u(s) = C(s)y(s), (3.61)

Then

. (3.59)

If the syster is controlled by

so that
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then the closed loop feedback system represented on Figure 3.2 is given by

A+BD.C BC.|G+ BD.D
Gs)=| BC A | BD (3.62)
H+ED.C EC.| ED.D

We can now state the following results for transfer function properties of projective

controllers.

Theorem 3.8. Define the error between the static projective system and the reference

system as
E(s) £ G.(3) = G,(s). (3.63)

Then

= Zi(8) - Ez(s) (3.64)
where G, 2 YT(I, - N,C)G.

Proof. Recall here that A, is given by (3.36). By definition, E(s) is given by

F 0

G
0 A |-G |. (3.65)
H+EK, HYED.C| 0

E(s) =

Applying the state space transformation

Toé[l" -X ’Y], T =

o

0 X, Y (3.66)

o o
< Qs

produces
F 0 -BK,Y| O
0 A, UAY |-UG
E(s) = 0 0 A R:2E (3.67)
H+FEK, 0 -EK)Y|[ O

Removing the unobservable states yields

E(s) = o o |ve |l F 1B} A VG (3.68)
. H+ER,[E||Kr]o|° @
HTEK, —EK.Y| 0
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Theorem 3.9. Define the error between the proper projective system and the reference

systems as E(s) 2 G,(s) — G,(s). Then

|G, +YT"B,P,CG | _ ,
E() [H+EK IE][KYl ) ]—EI(S)E2(3aPo) (369)
Proof Recall that A, is given in (3.27). By definition now
F 0 0 |-G
0 A+BD.C BC.| G
E(s) = 0 B.C A, 0 (3.70)
H+EK, H+ED.C EC, | 0
Applying the state space transformation
3 I, -X, -X, =Y
.21 0 X, X, Y (3.71)
0 I,+PCX, PCX, O
I, I, 0 ¥
=1_ 1|0 -P,C I,
=10 (CX.)'C(L +X,P,C) —(CX.,)-'CX, (3.72)
0 YT+YT(B,P,-N,)C -YTB,
yields
F 0 0 -BK,)Y 0
0 A, O * *
E(s) = 0 0 A, * * . (3.73)
(L 0 0 A, G,+YTB,P,CG
H+EK, 0 0 -EK)Y 0
Removing the unobservable states yields
F -—B~K°Y 0
E(s) = 0 A, G.+YTB,P,G (3.74)
H+ EK, -EK,)Y ] 0
which is equivalent to
|G, +YTB,P,CG
E(s) = [H+EK|E][KY| 0 ]' (3.75)

Theorem 3.10. Define the error between the strictly proper projective system and the

reference system as E(s) & G,(s) — Gp(s). Then

F |B][A
E(s) = [H+E'K|E][II ] (3.76)




Proof By definition, E(s) is now given by

F 0 0 |-G
0 A BC.| G
E(s) = 0 B.C A, 0 (3.77)
H+EK, H EC.| 0
Applying the state space transformation
I, =X, -1, ) I, I, 0
.20 x, I, |, T7'=|0 0 1, (3.78)
0 I 0 0 I, -X,
yields
F 0 -BK,|O0
0 A, BC |0
E(s) = 0 0 }L e (3.79)
H+EK, 0 -EK,|0

Removing the unobservable states yields

E(s) = A B _[ F |13_HﬁflG]
AT ER, “EK,[0| LH+YEKIE][K]O

3.4 FH-Norm Optimization of Projective Systems

Previous development has shown that, when dynamic projective controls are used, the

error transfer function in all cases reduces to
E(s) = Ex(s) - Eo(s),

where E;(s) is independent of the free controller parameter while E;(s) depends on F,.
Because || E(3)]| < || Ex(s)]| - || E2(s)]| and || E1(8)|| is constant, it is a natural idea is to choose
Py to reduce ||E,(s)]]. This, however, is not necessary and one may attempt to reduce
||E(3)|| which represents a frequency weighted optimization problem with respect to P,. In
either case, an auxiliary minimization problem is solved to determine the free parameters
of the dynamic projective controllers in the disturbance-rejection problem. The auxiliary

minimization problem is to find P, to solve
Py = arg min IT(s; Po)l, (3.80)
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where T'(s; P,) is some appropriate transfer function which is dependent upon P,, and || - ||
is an appropriate norm. The transfer functions that we will consider here are E;(s) given
in (3.64) or (3.69), and the norm will be the FH norm as the computationally feasible
alternative. The alternative approach where T'(s) = E(3) is also of interest and has the
advantage that it takes into account the frequency weighting implied by E,(s) in (3.64) or
(3.69). Finally, we may choose

T(s) = G(s) (3.81)

in which case the intent is not to reduce the error, but instead directly reduces |G(s)|| subject
to constraint on controller structure. In this section we choose to select the free parameters
of the system P, to satisfy

Py = arg ngon | E2(35 Po)l|Fars (3.82)

while the alternative approach of reducing ||G(s)||Fy is considered in the next section.

For the case of strictly proper controllers E,(s) is given by

oo - 18] - (445

where A, is given by (3.36). The problem then is to minimize over P,
J(P,)= Tr P.Q. (3.84)
subject to the two Lyapunov equations
A.P.+P.AT +B,BT =0 (3.85)

which define the controllability and observability grammians of (3.83). The necessary con-

ditions for a minimum then consists of (3.85) and

AL + L AT + P, = 0
Az'Mr + MrAr + Qr = 0 (3-86)
XT(Q.L, + M,P,)CT = 0

where M. and L, are Lagrange multipliers for the constraints (3.85).
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The gradient of J with respect to P, can be computed for arbitrary P, as

dJ _ T T
3 = 27 QL. + M,P.)C (3.87)

where P,, Q,, L, and M, solve the Lyapunov equations (3.86).

Thus, a feasible directions algorithm can be implemented by iteratively solving

. : dJ
s+1 _ pv __
PH =P _¢ (dP,,) (3.88)

for the optimal P,.
For proper controllers, we will assume for simplicity that C = [I 0],s0 Y = [ (; ] and

the expression for E;(s) reduces to
E(s) = Ko(sI — A,)" (VG + BoPoGh) (3.89)

where A, is given by (3.27), K; = KoY, V is defined in (3.17), By = YTB, and G, = CG.
The necessary conditions then take the form

A.Z‘Qr + er‘ir + K2TK2 ~= 0 .
ArPr + PrAr + (VG + BOPOGI)(VG + BOPOGI)T

ALr+ LA +P. =0 (3.50)
A,T-‘Mr + MrAr + Q2 =0
and
:%f' = 2BT(Q. M, + L, P,)JAT, + 2BTM,(VG + By P,G1)GT = 0. (3.91)
0

The structure of (3.91) allows the use of the steepest descent method, with Py adjusted
via (3.88), as well as the use of the Riccati equation based algorithm when (G,GT)-! exists.

The next iterate for P, is then given by
Pg*! = —(B3 M;Bo) ™' (B (Q: M; + L P)) AT, + By M{VGGT|(GiG) ™. (3.92)

3.5 Disturbance Rejection using the FH Norm and Projective
Controllers

3.5.1 Problem formulation

In some cases, it may be important to consider directly disturbance rejection with respect

to G(s), where G(s) is the closed-loop transfer function of the system using proper or strictly
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proper projective controllers. It is, however, observed from the parameterization of the
projective controllers that the closed-loop system is a non-linear (quadratic) function of
the free parameter matrix Py. Thus to simplify the computational issues, and reduce in the
design phase the system representation to simplest form, we seek in this section a reduction to
LIFP (linear-in-the-free-parameters) representation of the closed loop system. We will do so
in the decentralized setting where a number of decentralized low-order projective controllers
is used to retain by joint action a selected invariant subspace. In the decentralized case,
however, even the residual dynamics exhibits a nonlinear dependence on the free design
parameters Py,..., P, where q is the number of decentralized control channels and P; is the
free parameter matrix parameterizing the i-th controller. Thus, in the decentralized case,
it is even more significant to reduce the system to the LIFP representation. We therefore
develop the LIFP representation here for the decentralized control problem, which reduces
to the centralized problem when ¢ = 1.

Consider the decentralized system of Figure 3.4. The state space description of this

system can be written as follows:

z = Az + Byus + Bouy; + Guw

= Ciz
w o s (3.93)
ye = Hz.

where z € R™, u;,u; € RM, y,, y2¢ IR, yelR®, and welRI. Let the dynamic controllers have

the structure

& = Hi&i+ Dy

up = —Ngé—- Ky, i=1,2. (3.94)
where ¢ € IRP, i = 1,2, and define the extended system as
j’e = Aeze + Bleul + B2eu2 + Gew
YVie = Clexc
Y2 = C2eze (395)
Yee = He-re
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Ci(s)

)

3

Cg(s)

Figure 3.4: Decentralized system.

where )
A 0 0 B, B,
Ac = chl Hl 0 3 Ble = 0 ,Bge = 0
| D,C; 0 Hp 0 0
— Cl 0 0 - C2 0 0
Cle - ' o I O]ac'a‘c—[ 0 0 I] (3'96)
G. = 0 |,H.=[H 0 0]
| 0
The goal is to determine {H,, D1, Ny, Kn} and {Hz, D3, Ny3, Ka2} to achieve certain per- .
formance and disturbance rejection goals.
It has been shown (34] that if
u=—Koz (3.97)
is a stable feedback control producing the closed-loop system
z = Fz+Guw
v = Hz (3.98)
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with F having the Jordan decomposition

Aryp 0 n(r
F(Zr4p zc] = [Tr4p z] [ 0 ' A, ] y Xe4p€E ( ), (3.99)

then there exist dynamic controllers of the form (3.94) such that the resulting closed-loop
system retains all eigenvalues in A,,, together with the associated invariant spaces. In fact,

the entire family of such controllers has been parameterized [34] as follows:

H" = W,.-I?;W;-l, H.' = Ap" + P{F{zéo.', q" = 1,2

D; = WyD;, Di=PF -HP, i=1,2
(3.100)

Ky = K,— NguP;, i1=1,2

Ny = NaW;', Ngu=KiBi, i=1,2
Here P;, i = 1,2 are free parameter matrices of dimension p x r, the presence of Wp.- implies
the invariance to similarity transformations, while A,, A, are partitions of the Jordan form
Ar4p and Fi,, B{;, F¥, K., Ny and K}, = 1,2 are known quantities determined directly
by the reference solution F and its eigenvectors, assuming for each ¢ that the system has
transformed into the representation where C; = [/, 0]. For details see (34].

If transient performance is of primary concern, then the reference state-feedback solution
can be determined by solving an LQ optimization problem, and projective controls will
then retain in the closed-loop system the dominant poles of the reference solution that
define acceptable transient response. The free parameters are then determined by solving
an auxiliary problem to shape the residual dyrxmics.

If disturbance rejection and ¢ransient response are of concern, then the reference solution
can be determined to minimize the H, norm. The Hy-optimal state-feedback control is
given again by (3.6) where M > 0 is the solution of the ARE (3.7) with B = [B, B,), and v

is the minimal value for which M > 0 solving (3.6) exists. The use of (3.6) guarantees here
1Ge(8)lloo = |H(sI = F)™'Glloo < 7 (3.101)

with both control channels using state-feedback controls. Projective controls will now fix

the dominant poles and associated eigenvectors of the system at locations determined by
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the reference solution, while the free parameters P;, P, are to be used to shape the residual
dynamics to achieve disturbance rejection. To simplify the disturbance rejection problem
in applying the FH-norm minimization approach, the transformation developed in [34] that

reduces the closed-loop to a linear-in-the-free-parameters (LIFP) form will be applied.

3.5.2 Transformation to the LIFP form

Assuming, without loss of generality, that W,,‘- =1, ng = I, the closed-loop system

becomes
ZTe = AceZe + Gow (3.102)
Yee = H.z., (3.103)
with
Ag —~B;Na ) —B;Noaz
A, = (PII‘,,.l - H1P1)01 Apl + PlFlzBé 0 3 (3104)
(P,F? - H,P,)C, 0 Ap2 + P, FLB?
where
A=A+ BiNyP, + BNy P, A.= A - B K,,C, — B:K,2C;. (3.105)
Now apply the transformation #; = T'%, where
i I, 0 0 3 I, 0 0
T=|\pCi I, 0|, T'=|-PC, I, 0 |. (3.106)
PgCg 0 ng -—PgCg 0 Ipz

The system (3.103) becomes

533 = A 5’:3+G,w

G = Hi, (3.107)
where
A =T"'4.T, G.= T-'G., H.=H.T. (3.108)
The expression for A, can thus be derived to be
. Ac —BlN,ﬂ Bthﬂ
Ae = P E, A, + PGn PGy, J
P,E, PGy, Ap2 + PGy, (3.109)

= /ie + Blepzéle + Bzepzéze
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where

Ble =

Py
Il

0 A, 0

A. —BiNy —-B;Ng;
0 0 A

0] 0
Ipl B2e = 0 y
0 I, (3.110)

Cie = [E1 Gu Gr2ly, Ci=[E: Gu G2

withi
E1 = F,‘Cl - ClAc, Eg = F,?Cg - CgAc
Gun = F4By+CiBiNy, Gia=C1B;Ny (3.111)
Gn = CiBiNa, Gy = F4B3 + CaB;Ny,
while
) I, 0 0 G
G. = T'G.=|-PC1y I, 0 0
~PC;, 0 I, 0
G (3.112)
= -P,C\G
-P,CG
= Gs - B,,HC;G - BZQPQCQG
and
H. =HT =H.. (3.113)

Thus, when the similarity transformation is applied to the system, the expression derived for
Ace, G., and H, all exhibit a linear dependence on the free parameter matrices P, and P,.
(H, is in fact independent of the free parameter matrices.) This linear dependence can now
be utilized to determine suitable P, and P; (and thus the dynamic controllers) to achieve

disturbance rejection by minimizing the FH norm.

3.5.3 FH-norm minimization

This minimization now reduces to the minimization of J, = Trace P.Q,. subject to the

following constraints:

|
=]

ATQ.+Q.A., + HTH,

A.P. + PAT + G.GT (3.114)

|
e
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By defining the Lagrange multipliers, L, = LT, M, = M7, the problem can again be reduced
to an unconstrained minimization and since A.., G., and H, are all linear functions of the
free parameters; only minor changes are introduced in the usual necessary conditions. These

can now be written as follows:

3J/oP. = ATM,+M.A.+Q.=0

9J/9Q.

A.L.+LATL+P. =0

aJ/aLe = Ang + QeA-ce + I.{Z‘f{e =0
(3.115)
dJ/oM, = A.P.+P.AL+G.GT =0

dJ/dP, = 2BIL(M.P.+ Q.L.)CL —2BT M.G.GTCT

The feasible direction algorithm can now be applied. Initially, the free parameter ma-
trices, P, and P,, are set to zero, (although arbitrary values can be used). If the resulting

closed-loop system matrix, A, given by (3.104) has unstable eigenvalues, J, is not defined.

In this case, an embedding parameter, p, is chosen such that
p > Max;(Re);(A)), (3.116)

and A, modified to A, — pl. If the resulting A., is stable, the embedding parameter is
then zero. This leads to a modified extension J,, with an expanded region of definition
encompassing the initial P, P;.

In the feasible direction algorithm, the first four equations in (3.115) are selved for M.,
L., Q. and P,. These are then used in the last two equations to calculate a gradicnt direction

for the next iterate of P, and P, with

Pi*' = Pi_sdJ/8P,
Pl = P,—s8J/3P, (3.117)

where s is the step size solving the one dimensional minimization problem

. aJ aJ
s = a.rg lgg J“(Pl - ha—ﬂ,Pg - h-a?;) (3118)
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thus guaranteeing convergence to a local minimum. Using the embedding parameter method,
the maximal eigenvalue of A, can be successively moved towards the imaginary axis. The
parameter s can then be decreased and ultimately when the system is stabilized s can be
set to zero resulting in the minimization of the original criterion J.. However, it may not
be possible to move all unstable eigenvalues into the left-half plane without simultaneously
forcing previously stable eigenvalues into the right-half plane. If this situation occurs, the
order of the dynamic controller must be increased to provide additional design freedom
needed to stablize the system. Expanding controllers if necessary is simple in view of the way
controllers are parameterized (see [34]) and expanded free parameter matrices can utilize the
latest iterates of P, and P, to simply continue the combined stabilization and optimization
process. This resulting algorithm applicable to an arbitrary number of controllers can be

summarized as follows:
1) Initialize P! =, i = 1,...,k.

2) Evaluate the resulting closed-loop system matrix A.., based on the current iterative value

of P,,i=1,...,k. If A_ is stable, proceed to step 5.
3) Choose an embedding parameter, p, such that p > Max;(ReA;(A)).

4) Solve the associated minimization problem recursively until p can be set equal to zero.
(If A.. cannot be stabilized, increase the order of the dynamic controllers to be used

and start the algorithm over.)

5) Solve for P., Q., L. and M, from the necessary conditions for a minimum Trace P.Q..

6) Use the partial derivative equations with respect to the free parameter matrices to

calculate gradient directions.
7) Set P! +1 = AP; + P/ where AP, = —s8J/8P.,i = 1,...,k.

8) Repeat until P;, i = 1,...,k converge to their optimal values.
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9) Use calculated P;, : = 1,...,k, to determine controller parameters based on the param-

eterization given by (3.100) to complete the controller design.

It is noted that in view of (3.109)-(3.113) the last two necessary conditions in (3.115) are
linear in P;, P;. However, they represent coupled Sylvester equations, and so do not reduce
to a computationally attractive Riccati-based algorithm. In the centralized case however,

one can use the Riccati-based algorithm provided (CGGTCT)™! exits.

3.5.4 Example

In order to illustrate the approach, consider a seventh-order system with two decentralized
dynamic controllers to be designed so as to minimize the effects of a disturbance input on the

regulated outputs. A system of the form (3.93) will be used, characterized by the following

matrices:

[—2 1 0 0 -1 1 0] [ 0] [ 0]

-2 -3 1 0 0 1 1 0 0

-2 -3 -2 0 -1 -1 -1 1 0

A = 0 0 1 -3 -1 0 0| B=]|0 B,=1|0

-1 0 1 0-2 1 0 0 0

0 2 -1 -1 =2 1 1 0 0

| -1 0 -3 0 -2 -2 —4 | 0 |1

3 e

Q = diag {100,10,100,0,0,0,0}, Ry = Ry = 1.
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The open-loop system is unstable, with the spectrum,
A(A) = {-2.80 £ j2.41, —4.48,-3.71, .83 — .68, —1.26}.

The reference system (here 2n LQ solution, i.e., ¥ — o00) is characterized by the optimal
spectrum,

A(F) = {-10.09, —1.62 + j1.63, -1.15, —4.5, —3.10 + j.87}.

Since in this problem r, = r; = 2, two modes of the reference solution can be retained
with static projective controls. In addition, by using two first-order dynamic controllers, one

additional mode can be retained. The dominant modes are chosen for retention; thus,

A, = [ —1.62 +;1.63 0

0 _162-j1.63 | A»=[-115)

The initial choices for P, and P, are
A=[00, P=[0 0
producing the closed-loop spectrum,
A(Ac) = {—3.65 + j2.16,—3.89, .36, —1.62 + j1.64, —.92, —1.15, —1.15}.

Note that this choice of P, and P; fails to stabilize the resulting closed loop system. Con-
sequently, the embedding parameter method must be used initially until a stable A, is
achieved, or it is determined that the order of the dynamic controllers must be increased.
For the example at hand, first-order controllers did produce a stable system; thus, the order
did not need to be increased.

The feasible direction algorithm is then employed to yield the optimum parameters for

P, and P, for disturbance minimization. These optimal values are found to be

[-2.41 0.71)
[-3.65 1.58]

Py
P,

with an optimal value of the cost criterion of
J = Trace P.Q. = 1.430E~2.
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(Notice that for the initial choice, J = oo, since the system was unstable.) The closed loop

spectrum, A, produced by the free parameter matrices is now
A(A.) = {~5.77 + 3.365, —.58 £ 1.72j, —4.26, —3.42, —1.62 + 1.63j,—1.15}.

Once P, and P; are determined, the controller parameters can then be determined from

(3.100) to be

H, = =193, H, = -7.92

Dy = [-548 —458], D, =[-25.17 17.05]
Ko = [-343 —195), K =[-3417 20.48]
Nay =

-0.95 Ny, = -8.87,
thus completing the design. '

3.6 A design example

We finally present a realistic design example to illustrate the design procedures developed
in these two sections. The structure considered is a 45 foot lattice-type, light-weight (5 1bs.),
flexible beam with fixed base and free tip shown in Figure 3.5. The system is modeled by a
40th order state space model.

The control u € IR? consists of torques applied at the base of the structure about the z
and y axes. The disturbance w € IR? is generated by an z — y translation applied to the
base where the z-axis is taken to be the axis of the cruciform. Measurements of the system
y € IR® are obtained from an ¢ — y axis gyro and accelerometer sensors located at the tip
and base of the structure. The controlled output z € IR* is the position measurement at the
tip and base of the structure. The model parameters can be found in Figure 3.6 to 3.8 [35].
This example has also been studied in [36] and [37].

The system considered in this example consists of the z-axis dynamics of the complete
system. The inputs and outputs were decentralized after a Generalized Hessenberg analysis
[37] of the system. The resulting systems are described in Table 3.1. For more details see
(35], [37]).

The 12th order model of the z-axis dynamics was obtained by performing a balanced

reduction on the original system using only the z-axis inputs and outputs. The eigenvalues
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Table 3.1: Modes of the Cruciform Model.

Real Imaginary  Frequency  Damping
-4.2471e-03  £8.4941e-01  8.4942e-01 5.0000e-03
-3.4723e-02  +7.0339¢+00 7.0340e+00 4.9365e-03
-3.0800e-02 +7.7296e+00 7.7297e+00 3.9846e-03
-1.9863e-01 +1.0458e+01 1.0460e+01 1.8989e-02
-5.1863e-01 £2.5925e+01 2.5930e+01 2.0001e-02
-8.2976e-01 +4.6092e+01 4.6100e+01 1.7999e-02

of the resulting model are found in Table 3.1 and show typical flexible structure properties,
i.e., lightly damped and closely packed low frequency modes. The y-axis dynamics were
treated similarly but are not shown here.

Note that model reduction was used only to remove very weakly controllable and observ-
able modes. This is dotie to avoid neglecting modes which may be important in the design
of the controller since the projective controls method allows oiie to use a high order model
without requiring a high order controller.

The cruciform model is decentralized into z-axis and y-axis systems as shown in Table 3.2.

Table 3.2: GHR Decentralized Model Results.

Model | Inputs Outputs
x-axis | uy, w2 | 22, 25, Y1, Y4, Y8, Y11
y-axis | uz,wy | 21, 24, Y2, ¥s, Y7, Y10

3.6.1 Design of the controller.

A projective controller is now designed to achieve disturbance attenuation for the cruciform
system. From Figure 3.9 it can be seen that .:he nominal system has disturbance attenuation
of vy = —20dB. In this example, the disturbance attenuation will be improved to ¥ = —40dB
using a low-order, robust controller designed using the projective controls method.

A reference a state feedback controlled system was determined first. The eigenvalues of

the resulting closed loop system, A(F) are given in Table 3.3. The frequency response of the
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Table 3.3:

Modes of the Reference System.

Real Imaginary  Frequency  Damping
a -1.0856e-01  +8.5272e-01  8.5960e-01 1.2629e-01
b -3.4723e-02 17.0339e+00 7.0340e+00 4.9365e-03
c -3.0801e-02 +£7.7296e+00 7.7297e+00 3.9848e-03
d -1.9902e-01 +1.0458e+01 1.0460e+01 1.9026e-02
e -5.1870e-01 £2.5925e+01 2.5930e+01 2.0004e-02
f -8.2977e-01 14.6092e+01 4.6100e+01 1.7999e-02

closed-loop system in Figure 3.10 shows the disturbance attenuation to be v = —40dB. The
gain margins are (0,00) and phase margins are £90°. Thus, this state feedback forms an
acceptable reference system for the projective controls method.

Static projective controls excited the higher frequency models and so second order (p = 2)
dynamic projective controller was considered. In the design of the dynamic strictly proper
projective controller, there are two main design freedoms: the selection of the retained modes
[Ap, Xp) and the selection of the design parameter P,. The retained modes [A,, X,] are chosen
to retain disturbance attenuation and robustness properties as much as possible. The mode
a is retained in order to preserve the damping of this mode for disturbance attenuation.
Thus, A, = {a}.

To select P,, the approach of Section 3.4 was applied. Using a gradient method, the
Frobenius-Hankel norm of E; was minimized. The frequency response of the dynamic con-

troller associated with this choice of D, is given in Figure 3.11.

3.6.2 [Evaluation of Design

The final step was to evaluate the design by applying the controller to the full system.
The spectrum of the resulting closed loop system is shown in Table 3.4. The disturbance
attenuation of the full system is v = —40dB as seen in Fig. 3.13. Thus, the disturbance
attenuation goals of the design have been met using a second order controller. The gain
margins are [0,40dB] and phase margins are +70° which approach the stability margins
of the state feedback system. However, if these results are not satisfactory, a higher order

controller could be considered.
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To demonstrate the disturbance attenuation achieved by this design in the time domain,
the time response of the system to a disturbance impulse is computed. The open loop
response is given in Figure 3.14. Note the low damping of the low frequency mode. For the
system controlled by the design given above, the response is given in Figure 3.15. In this
case, the damping on the low frequency mode has increased dramatically.

A controller was also designed for the y-axis dynamics of the system in a similar manner.
The resulting closed loop system with decentralized controls was seen to be stable and
retain the desired disturbance attenuation properties. Thus, the disturbance attenuation
of an flexible system has been improved using two second order, decentralized controllers

designed by the method of this paper.

17




Figure 3.5: The Cruciform Structure.
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Figure 3.6: Model Structure.
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Figure 3.7: Model Input Parameters.

79

3.503¢ = 02 1
—-6.824¢ - 11
-1.698e — 08
—6.110e - 03

1.342¢ - 07

7.851e - 06

4.292¢ — 04
—-5.985¢ - 05
—-5.487¢ - 05

2.707e - 04
=4.396e - 04
~1.141e - 04

2.386e ~ 04
-1.114e - 05
=3.771e - 03
-1.181¢ - 06
-2.389¢ - 05

4.242¢ - 03
-1.293¢ - 07
~2.473e¢ - 03 |




T.idde - OT 0.0008 + 00 -23.948¢ - 08 9.56%2¢ - 07 0.000s + 00 -J3.049¢ ~ 08
( 00000 +00 -2.1708-08 ~4.200s - 08 0.000e + 00 -35.438¢ ~ 08 =4.2008 - 08
0.0000 4 00 0.000e 4 00 2234 ~ 01 0.000¢ + 0G0 0.000e + 00 2.22¢4e ~ 01
-1.564¢ - 02 35708 - 07 ~2.9040¢-04 ~1.TI0s-02 3.323e - 07 3.358¢ - 04
3.684e - 07 13886e =02 -3.112¢ - 04 3.967¢ - 07 1.778¢ - 03 1.829¢ - 04
1043 ~04 ~1.007¢ ~04 =8333 -02 5.56le~08 ~8.235¢-08 7.23te =01
1.770¢ - 02 4.8MNe - 04 8970 —08 <=36370-02 -4.648¢-04 7021004
~1.34de - 08 -).3808 - M 3007y - 04 2.287¢ - 03 34T -02 4816 -02
=21.388e - 03 » il - 03 1.2300 - 04 3000 ~¥d =APirv-02 -1.338¢~03
cTa 11846 =023 -3372-02 3.000¢ - 04 ~1.383¢-02 1804002 -352Me-02
’ =1.928¢-03 ~7.041¢-03 2.500e0 — 08 3.752¢ - 03 SATI-08 -3534e~-03
«8.]4le =08 T T9T¢-03 ~2.458¢-04 4.902¢ - 03 6.735¢ - 02 3.680¢ - 02
080e ~02 =3.000¢ —~ 02 3140~ 04 =1.078¢-07 1.838¢ =02 -4.819¢~03
-8.17%0 = 04 134 ~-01 3.331c - 08 $3TTe =04 ~8.6000-03 -59Te-03
-1916e =01 -2.801e¢-08 3.000¢ ~ 03 1.823¢ - 01 1.747¢ = 08 -~9.256¢ - &3
=7.178¢ - 08 L1Te~01 —1.320¢ - 04 ~3801¢-~08 1.820¢ - 01 9.888¢ -0
14000 - 03 -8674¢~03 -2518¢-03 -0.8880-04 -1.4048-02 1.837¢ 4 00
2718 ~01 <«3006s ~08 -0.68%g 08 2.962¢ ~ 01 ~5.088¢ - 08 9.087¢ -
=9.120¢ = 08 ~-4.008¢ ~ 02 7.32%¢ - 08 1.022¢ - 08 3637 ~01 -6.133e-03
. ~1.7¢ - 01 1.290e - 08 -9.101¢ - 08 3.388¢ -01 -2.373¢-08 $.2%0¢ - 03 J
[ 1.41Te - 09 3.503¢ - 02 3.468¢ - 23 1.432¢ - 09 3.502¢ - 02 4.683¢ - 17 ‘I
3807 - 02 0.000¢ +00 ~1.483¢ -~ 24 3.807¢ - 03 0.000e¢ +00 -2.187¢~18
=3540¢ - 07 -1698e-08 -1329¢~28 -3.546¢~07 -1.67% ~08 1.440¢ - 21
-1.572¢ =07 -8.110e ~ Q3 2.384¢ - 13 4.119¢ - 08 2.23%¢ - 01 3.055¢ - 09
=-7.738¢ - O3 1.2 =07 -1.382¢ =18 2.318¢ - 01 -5.184¢ =08 -3.310¢ =09
1.393¢ ~ 08 7.851¢ - 08 481le~18 -1.267¢ ~03 -1.198¢~0Q3 $.910¢ -~ 12
-)1i23¢ - 08 4292 - 04 1387 - 10 7.993e - 08 1.406¢ - 03 1.778¢ - 04
2258¢ - 03 -5985¢-05 ~34l4e~1I1 7.045¢ - 03 4.497¢ =03 -4.376¢ - 08
~2ITe -3 -5.487¢ -0 1.290¢ = 10  -3.180e - 02 3.039¢ - 03 1.653¢ - 04
¢ = 1.449e - 03 2.707¢ - 04 9.995¢ - 12 -1.1906 - 03 -6.000¢ - 03 1.274¢ - 08
. 43T7e - 04 ~4.306¢ = 04 2.020¢ - 10 1.456¢ =03 -1.7T9e - 03 2.588¢ - 04
4808 =03 =1.141¢ - 04 1.740e - 10 $.31% - 02 $.008¢ - 03 2.2208 -~ 04
1.234¢ - 03 3.208¢ - 04 8.840¢ ~ 11 2.008¢ =02 ~9.437Te-03 1.1Me ~ 04
=756 =03 -1l.ll4e~08 9249 - 11 ~7.424¢~02 1.910¢ - 04 1.188¢ ~ 04 -
1616¢ -08 -3.7T1¢~03 ~1.1108 =11 4.008¢ - 05 -1311¢=-01 -1.423¢-03
~5.860¢ - 03 -1.181e~08 -7.828¢-12 1.680¢e -0} ~-2.111¢ - 08 -1.00%¢ - 08
25402 - 04 ~1300e - 03 402U-13 -9.449¢-03 ~3.073¢-04 5.343¢ - O7
1.082¢ - 07 42426 -G3 -1.0008 - 11 ~6058¢-08 -1688¢~-01 -1.343¢~08
?7175¢~03 -1.2900 =07 -$5.344e 11 1.908¢ -0t ~3.141¢-08 _—6.801¢ - 08
L -1.0808 ~ 07 ~24T3¢ -0 -8.2Me=11 =14786-05 ~1.763¢-01 ~1.081¢ - 04 J
Figure 3.8: Model Output Parameters.
0
-
.
4
=0
4
-
d
Y -
. ] \
L _100 A
b
p 4
1 -
s -4
-150 I MY
J
- -
-200 ™1 T TTTTT T T T rTTT T T T
107! 1 10

frequency (radlans/second)

Figure 3.9: Frequency Response of the Open-Loop System.
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4 H,, DISTURBANCE REJECTION VIA THE AL-
GEBRAIC RICCATI EQUATION

4.1 Introduction

Sections 2 and 3 have concentrated on results useful in developing methodologies for low-
order controller design. For example, the projective controls approach allows a convenient
parameterization of low-order controllers which retain some spectral characteristics of a
desirable reference controller, and the FH-norm minimization approach provides a means
of determining these free parameters to guarantee-disturbance rejection for the closed-loop
system. The determination of the free parameters of a low-order controller so as to directly
minimize or bound the H,, norm of the closed-loop system is an open issue. While necessary
conditions can be derived, see for example [38,39,40,41], the existence issue is open, and
moreover, convergence of available algorithms is not guaranteed even if a solution exists.

A great deal of research has been conducted on H,, control design and the related issue
of robust control. For a survey of these two areas, see [42] and its references. In the last
few years, the connection between H, control and the algebraic Riccati equation (ARE) has
been established. See, for example, [43], {44], [2], [45], [46], [47], [48], [49], and [1].

This section concentrates on the ARE based methodology for controller design by which
minimizing, or bounding, the H,, norm of the closed-loop system is accomplished. The
methodology is useful for deriving three classes of controllers: (i) state-feedback controllers;
(ii) full-order observer-based output-feedback controllers; and (iii) decentralized controllers
comprisirng a full-order observer of the plant in each control channel. The state-feedback and
centralized output-feedback control laws derived by this methodology have been developed
in previous work, such as [48], [1], [47], and [46]. However, the decentralized control laws are
new, and represent a novel approach to H-norm-bounding decentralized control design.

For convenience, we restate the standard disturbance-rejection problem to be addressed.

Consider a linear, time-invariant plant of the form

t = Az + Bu + Guwy, (4.1a)
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y=Cz+w, (4.1d)
z= (Hx), (4.1¢)

u

where z is the state of the plant, u is the conirol input y is a measured output, z is an
output to be regulated, and wo and w, are square-integrable disturbances. Note that (4.1)
is essentially the same as (2.1), with D = 0.

Given any control input u to the plant (4.1), define the cost functional

J(u) = sup{Ml- : wp € Laf0, 00), wo # o} .

|lwoll2 *
Note that the measurement (4.1b), and hence the measurement noise w, is not considered
in this definition. Therefore, the cost J(u) is associated with open-loop controls or state-
feedback controls. In the case where u is a state-feedback control, J(u) is the H,, norm of

the closed-loop transfer-function matrix from wy to z. Define the optimal cost as
Qe = inf{J(u): u € L;[0,00)}. (12)

The following theorem from [48] gives a means of determining a,, and also establishes  .at
there exists a state-feedback control law which achieves any H,,-norm bound larger than

Qoo
Theorem 4.1. For the plant (4.1) with (A, B) stabilizable, and (A, H) detectable, the
bound

ay, < a

holds if and only if
ATX + XA+ C—IIEXGGTX _ XBBTX + HTH =0, (4.3)

with X > 0 and A, = A — BBTX + a~*GGTX Hurwitz. If so, the state-feedback control
law

u=—-BTXz (4.4)
stabilizes the plant, and gives a closed-loop transfer-function matrix

T(s) = (_ :T x) (sI - A+ BBTX)"'G
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from wy to z satisfying ||T||e < .

If the control u for plant (4.1) must be generated by a controller that uses only the

measurement y given by (4.1b), then the relevant cost functional is
[[well2

Jo(u) = sup {—"i”i;we € L2[0a°°),wz = [on wT] # 0} .

The infimal value of the output-feedback cost Jo(u) is generically greater than o, defined in
(4.2). The following theorem from (48] or [1] gives a means of determining this greatest lower
bound, and also gives an output-feedback control law which guarantees any given H,,-norm

bound achievable by output feedback.

Theorem 4.2. In the plant (4.1), assume (A, B) stabilizable, (A,C) detectable, (A,G)
stabilizable, and (A, H) detectable. Then there exists a stabilizing controller such that the

closed-loop transfer-function matrix T(s) from w, to z satisfies ||T||cc < « if and only if
ATX + XA+ = XGGTX ~ XBBTX + H'H = 0 (4.3)
with X > 0and A, = A— BBTX + a~>GGT X Hurwitz,
AY +Y AT + Y HTHY — YCTCY +GGT =0 (4.5)
withY >0 and A—YCTC + a~?*YHTH Hurwitz, and
omax{Y X} < &% (4.6)

If so, then the output-feedback control law

. 1
E=(A+ ;—GGTX — BBTX - LC)¢ + Ly, (4.7a)
u=—-BTX¢ (4.7b)
with »
L=(I-a?YX)'vcT (4.8)
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stabilizes the plant and gives a closed-loop transfer-function matrix from w, to z satisfying

IT]|oo < e

If a decentralized control structure s imposed or desired for a given problem, then the
result given in Theorem 4.2 cannot be used. A great deal of attention has been paid to the
problem of decentralized control design; see, for example, [50], [51], [52], [38], [63], [54], [55],
and [56]. Unlike previous work, the decentralized design procedure derived here addresses
the issue of H,, suboptimal control in a decentralized setting, and results in observer-based
designs that rely on a known state-feedback H,,-norm-bounding control. The observer struc-
ture assumed for the controllers allows the derivation of two bdesign equations for the decen-
tralized control law: One of these is the standard state-feedback H,, design equation; the
other is a Riccati-like algebraic equation (RLAE).

The decentralized-control version of the disturbance-rejection problem is formulated and
a solution derived in Section 4.5. The approach is based on a fundamental lemma described
next, and the spirit of the approach is then illustrated on the centralized control problem

where the result in Theorem 4.2 is rederived.

4.2 The Key Lemma

The following lemma establishes a sufficient condition, in the form of an “algebraic Riccati
inequality,” for a given system to be stable and have a particular H-norm bound. This
condition provides the basis for all the control laws derived in the remainder of Section 4, as

well as those derived in Section 5. The lemma is a simple extension of Lemma 1 of {57].

Lemma 4.1. Let T(s) = H(sI — F)~'G, with (F, H) a detectable pair. If there exist a real

matrix X > 0 and a positive scalar v such that
FTX +XF+ %XGGTX +HTH <0, (4.9)
then F is Hurwitz, and T(s) satisfies

T < 9. (4.10)
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Proof. Suppose (4.9) holds, with X > 0. To show that F' is Hurwitz, let v # 0 satisfy
Fv = v,
Multiply (4.9) on the left by v* and on the right by v to obtain
2Re(AN)v* Xv + %U'XGGTXv +vHTHv <0. (4.11)

Now, 2Re(A)v* Xv < 0 since all other terms on the left-hand side of (4.11) are non-negative.
If Re(A\)v*Xv < 0, then v"Xv > 0 and Re(A) < 0. If, on the other hand, Re{A)v*Xv =0,
then all terms in (4.11) must be zero. Therefore, the eigenvector v of F is in the null space
of H. Since (F, H) is detectable, the corresponding eigenvalue must be in the open left-half
plane. In either case, Re()) < 0; thus, F is Hurwitz.

Now, to prove (4.10), lef. w € IR; add and subtract jwX to obtain from (4.9)

—(—jwl = FT)X —= X(jwl — F) + ;II-Q-XGGTX +HTH<O. (4.12)
Since F is Hurwitz, (jwl — F) is invertible. Define
K(jw) = 6T X(jwl = F)'G;
pre-multiply (4.12) by 1GT(—jwl — FT)~!, and post-multiply by 1(jwI — F)~'G to obtain
~K(jw) = K7(=je) + K™(=jw) K (jw) + T (=ju)T () <

which gives

I = =TT(—j)T(jw) 2 I - KTi—j)]ll — K(jw).

42
Therefore, for all w € R,
1 ) . . .
I- ;;T'(Jw)T(JW) 2 [ - K(Gw)'ll - K(jw)] 2 0,

which implies (4.10). 0
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4.3 The General Approach

Lemma 4.1 suggests an approach to deriving Ho-norm-bounding control designs: The
approach is to first fix a controller structure, so as to determine the form of the closed-loop
system

z. = F,z.+G.w,, z=H.z., (4.13)

and then select feedback and observer gains so that the algebraic Riccati equation
FTX. + X.F. + ;l-z-X,GchT X+ HTH. =0 (4.14)

has a solution X, > 0. By Lemma 4.1, if (F,, H.) is a detectable pair, then the closed-loop
system (4.13) is stable, and T'(s) = H.(sI — F.)"'G, satisfies ||T||c < a.

By taking this approach, the same state-feedback and output-feedback control designs
given in [48] and (1] according to Theorems 4.1 and 4.2 are recovered in Section 4.4. These
derivations are simple, and serve to illustrate the approach and to introduce the derivation
of a new observer-based decentralized control law in Section 4.5. In the decentralized case,
controller feedback gains are computed from the solution to a state-feedback design ARE,
while observer gains are computed from a Riccati-like algebraic equation. The existence
of appropriate solutions to the design equations is sufficient to guarantee the control to be

H.,-norm-bounding.

4.4 The Centralized Control Design

The output-feedback H,, control law given in Theorems 4.1 and 4.2 are now derived,
based on Lemma 4.1. This derivation, which also appears in [11}, is not a complete proof of
Theorems 4.1 and 4.2, in that it establishes only that the designs are sufficient to guarantee
a predetermined H.-norm bound, and not that any achievable bound can be obtained using
such designs. For this reason, not all the stabilizability and detectability conditions appearing
in Theorem 4.1 and 4.2 are needed.

The problem here is to derive control laws to stabilize the' plant (4.1) and provide an H -

norm bound for the closed-loop transfer function matrix from the disturbance w, = (‘:’) to
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z. By Lemma 4.1, a sufficient condition for a state-feedback control u = Kz to stabilize the
plant and guarantee the H,-norm bound ||T}|. < « is that the feedback gain matrix K

satisfy
(A+ BK)TX + X(A+ BK) + ZI;XGGTX +(HT KT)(g) —0 (4.15)

with X > 0. Rearrange (4.15) as
ATX + XA+ ;%XGGTX - XBBTX + (KT + XB)(K + BTX)+ HTH =0,

which, upon setting K = — BT X, gives the state-feedback design equation (4.3). If (A, H) is
a detectable pair, then the detectability condition of Lemma 4.1 is satisfied for the closed-loop
system. Thus, the state-feedback design given in Theorem 4.1 is recovered via Lemma 4.1.
In the output-feedback case, an observer-based control law will be used to approximate
a state-feedback control u = Kz. To mimic the dynamics of the plant (4.1), the observer

takes the form

£ = A6 + Bu+ Gty + L(y — C€), u= K¢, (4.16a)
where a state-feedback model of the disturbance wq is assumed as
W = K4€. (4.16b)

The feedback gain K, observer gain L, and disturbance-estimate gain K4 will be chosen so
that, when controller (4.16) is applied to the plant (4.1), the closed-loop system will satisfy
the hypotheses of Lemma 4.1.

Introduce the error vector e = § — z, and write the closed-loop system as

t\ [ A+BK BK z G 0 [wo) _ - i
(é)_( GK4 A+GK.1—LC)(6)+(_G L)(w)=Feze+Gewe, (4.17a)

z= ( 1‘3 Ig ) (:) = A.z.. (4.17b)

Similar to the state-feedback case, the goal is to find X, > 0 such that

-~ . o~ 1l -~ . o~ o~
FTX, + X+ —XG.GTx. +ATH =0 0). (4.18)
a? e 00
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To ensure decoupling of (4.18) into a state-feedback design ARE and an observer design

equation, look for a block-diagonal solution

. (X 0
% (¥ 2)se

Then, the upper-left block of (4.18) is exactly Equation (4.15). If, as in the state-feedback
solution, X > 0 solves (4.3) and the feedback gain is given by

K = -BTX, (4.19)
then the upper-left block of (4.18) is satisfiex The upper-right block of (4.18) then gives
-XBBTX + KIGTX, - - XGG™ X, + XBETX = 0,

which is satisfied if
K;= EI;GTX. (4.20)
Given the choices (4.19) and (4.20), the lower-right block of (4.18) gives
Xi1(A+a2GGTX - LC) + (A+a?GGTX - LC)TX,

1 .

+ —X\(GGT + L)X, + XBBTX =0. (4.21)

Add to (4.21) the design equation (4.3) to obtain the ARE

1

(X+X)A + AT(X + X))+ ;(X + X1)GGT(X + X,) —a*CTC + HTH (22)
4.22

+ (zxL-ac) (17X, - aC) =0,

a a
which suggests the choice for the observer gain L as

X,L = a?C7. (4.23)

In order that L satisfying (4.23) is guaranteed to exist, impose the restriction X; > 0. Now

introduce

Y=a)(X+X)'>0

to transform (4.22) into the design ARE (4.5). A solution Y > 0 of (4.5), with a?Y~! > X,
guarantees X, > 0 solves (4.18) wien gains K, Ky, and L are computed from (4.19), (4.20),
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and (4.21). Hence, by Lemma 4.1 the closed-loop transfer-function matrix T(s) = H.(sI —
F.)"'G. satisfies ||T||o < a, provided (F.,H.) is a detectable pair.

The needed detectability condition is satisfied if (A, H) is a detectable pair and A, =
A +a~?GGTX — BBT X is Hurwitz. To see this, let v = (vf v7) satisfy

. (A-BB'X  —BB'X  \(u)_
Feo = ( a-2GGTX A+a~*GGTX ~ LC ) (v,) = v, (4.24)

~ H 0 v\
H,v = ( _BTX —-BTX ) (vz) = 0, (425)
and try to show that Re(\) < 0. The upper half of (4.24) and the lower half of (4.25)
give Av; = Hv,, while the upper part of (4.25) gives Hv; = 0. Since (A, H) is assumed a
detectable pair, this implies either Re(A) < 0 or v; = 0. Suppose v; = 0; then the lower half
of (4.24) gives
1
(a+ —GGTX - Lc) v2 = Avg. (4.26)
Therefore, pre-multiplying (4.21) by v and post-multiplying by v,, and using (4.23), gives
2Re(MN)v3; X v, + %v;XlGGTXIvz + a*v3CTCv; + v; X BBT Xv, = 0. (4.27)
Since every term but the first in (4.27) is nonnegative, the first term gives
Re(A)v; Xjv2 £0. (4.28)
If inequality holds in (4.28), then Re()) < 0. If equality holds in (4.28), then every term in
(4.27) is zero. Hence, Cv; = 0 and BT Xv, = 0, and thus (4.26) gives
(A+a™2GGTX — BBTX) vy = Ava.
By assumption, A + a~2GGT X — BBT X is Hurwitz; therefore, Re()\) < 0.
The following theorem summarizes the result.

Theorem 4.3. Suppose (A, H) is a detectable pair, X > 0 satisfies the state-feedback
design ARE (4.3) with Ax = A+ a~*GGTX — BBTX Hurwitz, and Y > 0 satisfies the
observer design ARE (4.5) with omax{Y X} < o®. If the observer gain is given by (4.8), then
the dynamic controller (4.7) stabilizes the plant (4.1), and the closed-loop transfer-function
matrix T(s) = H.(sI — F.)"'G. satisfies |T||c < a.
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4.5 The Decentralized Control Design

The same approach applied to the centralized control problem in Section 4.4 is now applied
to the decentralized problem. The design derived here also appears in [14].
Consider again the plant (4.1) with (A, H) a detectable pair. To allow the formulation of

a g-channel decentralized control problem for the plant (4.1), adopt the following notation:

uy
q Ug
ZB.-u.- = (B] B;... Bq) . = Bu, (4.29(1)
i=1 .
Uq
)] G [ w
C ,
y= y,2 = _2 z+ L:z =Cz+w, (4.295)
Yq G, W,
Wo
we=| ] = (w°), (4.29¢)
: w
Wy
S;=B;BT, ie€{1,2,...,q}, (4.29d)
S=8+8+...+S,=BB". (4.29)

The problem is to design a controller for each of the ¢ control channels, where the i*®
controller uses the local measurement y; to generate the local control u; for the plant.

The basic decentralized control law to be developed stabilizes the plant and provides a
predetermined H.,-norm bound for the closed-loop transfer-function matrix from w, to z.
The controllers which make up the control law are based on observers which form estimates
&,1€ {1,2,...,q}, of the state z for feedback. The state estimates are used for feedback so

as 12 approximate the state-feedback control
u=—-BTXz, (4.30)
where X > 0 satisfies the ARE

ATX + XA+ %XGGTX -XSX+HTH =0. (4.31)
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That is, the ¢*" control is given by
u; = — BT X¢,, (4.32)

which approximates a subvector of the state-feedback control (4.30). To mimic the plant
dynamics, the *! observer should ideally have the form
) q
E,‘ = AE, + Z BJ‘UJ' + Gwo + Li(yi - Cifi)) (433)
J=1
where L; is some observer gain matrix. However, since the disturbance wy and the controls
u;, j # 1, are not available to the observer, (4.33) cannot be implemented directly. Just as
the centralized observer (4.16) uses (4.20) as an estimate of the worst disturbance, the i*h

decentralized observer replaces wy in (4.33) by

by = ;:;GTX&- (4.34)
The " observer also replaces u;, j # i, by

@} = —B] X¢&, (4.35)

which are approximations, based on the state estimate of the i*® controller, of the controls
applied by the other controllers according to their shared strategy. With the control (4.32),

the observer structure (4.33), and estimates (4.34) and (4.35), the :*® controller becomes

é = (A + aiz-GGTX - SX - L.-c.-) &+ Liy; (4.36a)
w = —BY X&, (4.36b)
where the observer gains L;, i € {1,2,...,q}, are to be determined.

Applying the ¢ controllers (4.36) to the plant (4.1) gives a closed-loop system of order
(¢ + 1)n described by

z - A —BBZXC r G 0 Wo -
(f) B ( L.C Aae— LC: ) (5) + ( 0 L. ) (w) = F.z.+G.w, (4.37a)

_(H 0 T\ _
z= ( 0 —BTX. ) f) = H.z., (4.37b)

]




where £T = (¢7 ¢7 ... ¢7), and

Aoc = Diag (A,, Ags - -5 Ad) (4.38a)
A=A+ EI;GGTX - SX, (4.38b)
B, = Diag (B, Bs,. .., By), (4.38¢)
C. = Diag (C1,Cy, ..., Cy), (4.38d)
L. = Diag (Ly, L, ..., L), (4.38€)
X. = Diag (X, X,...,X). (4.38f)
For convenience, define also
IF=[I1I... IeR™™, (4.38¢)
G. = I.G, (4.38h)
A, = A, + I.BBTX.. (4.384)

Then, transforming coordinates of (4.37) such that the last gn state variables are the errors

e, =& —z, 1€{L,2,...,q}, gives

where

. - —-BBT ~
Fe — Me—IFeMe — ( A SX BBC Xc ) 7Ge = Me_lGe = ( G 0 ) : (4390)

o~2G,GTX A, - L.C, —G. L.
- ( H 0 (I 0
HC_H,M,_(_BTX —BZXC)’M"(IC 1). (4.39b)

The existence of a (¢ + 1)n x (¢ + 1)n matrix X, > 0 satisfying

FTX, + X.E + %x,c,czx, +HTH, =0 (4.40)
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will by Lemma 4.1 guarantee stability and an H-norm bound for the closed-loop system

(4.37). Assume the form
> X 0
X. = ( 0 X, ), (4.41)

with X > 0 solving (4.31) and X; > 0 undetermined, and decompose the left-hand side of

(4.40) into appropriately sized blocks as

FTX. + X+ XG0T + ATH, = [ Yy Un ) (4.42)
e el e a2 e e, e e e U1T2 U22

Then, it turns out that the off-diagonal block U,, is identically zero, and that (4.31) gives
U;: = 0. Hence, independent of L. and X, (4.42) becomes

with
Uz = (Ac — LCo)T X1 + Xi(Ac — LCe) + %XI(GCGCT + L IT)X, + X.B.BTX..

Defining W = o?X; !, this reduces to

1
Un = =X (WA + AW + L WX.BBTX.W - WCTCW

r o F (4.43)
+ GG, +(L.-WC)L; - CW)}Xi.

It is now possible to pick X, .(or, equivalently, W) and L. such that U,; = 0. While it is
logical in view of Lemma 4.1 to try to eliminate the last term in (4.43), this is not generally
possible, since L, must be block-diagonal. Thus, L. is chosen to eliminate the n x n main-

diagonal blocks of L, — WCT. This requires

L. = WpCT, (4.44)
where Wp is given by
Wi Wi Wi,
Wa Wp W,

’ WD = Dla.g (WII’W22a ey W,

96




or

Li=W,CT, ie{1,2,...,q}. (4.45)
Then, (4.43) becomes

U = —Xl{WAT+AW+ IWXBBTXW wcTew + G.GT

(4.46)
+ (W Wp)CTC.(W — WD)}XI
Therefore, if W > 0 satisfies the Riccati-like algebraic equation
WAT + AW + %WXCBCBZXCW -wcTew
@ (4.47)

+GCGZ + (W - WD)CCTCC(W - WD) =0,

then Uy, = 0, and (4.40) is satisfied. Since W > 0 is required, X, > 0 holds automatically,
and by Lerama 4.1, F, is Hurwitz and T(s) = H.(sI — F,)~1G, satisfies ||T|| < a, provided
(F., H.) is a detectable pair. The following lemma provides the needed result.

Lemma 4.2. Given the definitions (4.38) and (4.39), where X > 0 satisfies (4.31), W > 0
satisfies (4.47), and L. satisfies (4.44), the pair (F,, H.) is detectable under the following

three conditions:
(i) (A, H) is a detectable pair;
(ii) A, E A+ o ?GGTX — SX is Hurwitz;
(iii) Aq + SX has no eigenvalues on the jw-axis.

Proof Suppose ) is an eigenvalue of F. corresponding to an unobservable mode of (£, H.);

that is, some vT = (v7 v]) # 0 satisfies
- _(A-BBTX -BBTX. v
F°”"(a-2GcGTx AC—LCCC)< ):Av (4.48)

and

~ _ H 0 m1 _
H,v = ( —BTX —BTX ) (v2> =0. (449)

The proof now consists of showing that Re(A) < 0.
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The lower block of (4.49) and the upper block of (4.48) combine to give Av, = Av,, while
the upper block of (4.49) gives Hv, = 0. Since (A, H) is assumed a detectable pair, this
implies that either Re(A) < 0 or v; = 0. If v; = 0, then the lower block of (4.48) gives

(A, — L.C.)v; = Mv,. (4.50)

The detectability proof is completed by showing that A, — L.C. is Hurwitz. The bracketed

expression in (4.43) is equal to zero; therefore
1
(A, - L.COW + W(A. - L.C)T + ?WXCBCBCTXCW +GGT+L LT =0 (4.51)

Let n* be a left-eigenvector of A. — L.C. corresponding to the eigenvalue A. Multiply (4.51)
on the left by n* and on the right by n to obtain

2Re(\)*Wr + én-wchchT XWn+0"G.GTn+n°LLTn=0.  (4.52)

Since every other tcrm in (4.52) is nonnegative, Re(A)p*Wn < 0, with W > 0 assumed;
therefore, Re(A) < 0. The following argument demonstrates that Re(A) # 0. If Re(A) =0,
then every term in (4.52) must be zero; hence, n*L, = 0. Then A is an eigenvalue of A.. But

a similarity transformation on A, reveals that it can have no imaginary eigenvalues: If

I
I 1
M= o ,
-I 0 I
then
A+ S5X S X ... SqX
1 A, ... 0
M ACM = R . )
Aq

where A, is assumed Hurwitz, and A, + SX is assumed to have no imaginary eigenvalues.
a

Under the conditions of Lemma 4.2, £, is Hurwitz by Lemma 4.1. Therefore, F, is also

Hurwitz, and the closed-loop transfer-function matrix T(s) = H.(s] — F.)"'G. = H.(sI —
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F.)"'G, from w, to z satisfies ||T||c < a. Condition (iii) of Lemma 4.2 is a new technical
condition which must be introduced for the decentralized control problem.

The following theorem summarizes the result:

Theorem 4.4. Let (A, H) be a detectable pair and a be a positive scalar. Suppose X > 0
satisfies

ATX + XA+ ;I—ZXGGTX _ XSX+ HTH =0, (4.31)
A, = A+a *GGTX — SX is Hurwitz, and A, + SX has no jw-axis eigenvalues. Let W > 0

satisfy the Riccati-like algebraic equation

WAT + AW + %WXCBCBCTXCW -wcTew

(4.47)
+GCG’CF + (W - WD)CCTCC(W - WD) =0.
If the observer gains L, i € {1,2,...,q}, are given by
L; = w,CT, (4.45)
then the decentralized feedback control law
: 1
£ = (A +—GGTX = SX — L.C.-) g+ Ly, i€{1,2,....q}, (4.36a)
u; = -BIX¢&, i€{1,2,...,q}, (4.36b)

stabilizes the plant (4.1), with decentralized structure given by (4.29), and the closed-loop

transfer-function matrix
T(s) = He(sI — F.)"'G,
from w, to z (with F,, G., and H, defined in (4.37)) satisfies

1Tl < @

4.6 Example 1

Consider the plant (4.1) with ¢ = 2 and

-2 1 1 1 0 0 1
_ 3 0 0 2 |11 10 0
A=l ot 02 3| Bi=lo] B=|o] G=|,

-2 -1 2 -l 0 1 0
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C,=[1000] C,=[0010 H=[10—10]

The spectrum of A is {—2.56, —1.32 + j2.92, +0.19}; hence, the plant has an unstable mode.

To compute a decentralized control for this plant, first form the coefficients of (4.47) from
the plant matrices and the state-feedback design equation solution. Then, solve (4.47) by an
iterative method: Compute an approximate solution Wy by ignoring the complicating term
Q = (W - Wp)CTC (W — Wp). Then use Wy to compute an approximation of Qo of @,
and use Qo in the obvious way to compute the next approximate solution W,. Iterate this
procedure until the candidate solution W; makes the matrix norm of left-hand side of (4.47)
less than some acceptable tolerancé; then take W; as the solution W of (4.47). The tolerance
used for this example was 0.001.

Table 4.1 compares the closed-loop eigenvalues and H,, norms of state-feedback designs
with those of decentralized observer-based control designs for several values of a. For a > 4,
the state-feedback eigenvalues are easily recognizable in the spectra of the decentralized-
control systems; for smaller a, more interaction with other poles is evident. The sequence of
candidate solutions of the Riccati-like equation converges for a > 2, while the state-feedback

design Riccati equation has an appropriate solution for a > 1.3.

4.7 Example 2

Consider the 5'P-order plant (4.1) with ¢ = 2 and

0 1 4 -4 1 0 0 1
-3 -1 1 2 1 4 0 0
A= 0 1 -1 -1 0}, Bp=|0}|, By=|0}, G=|11],
2 1 -1 0 1 0 0 0
-1 2 1 =2 =2 0 2 1
1 0000
10000 00010
e - ( ). a-( ) n=(20103)
01000 00001 00010

The spectrum of A is

A(A) = [-0.0108 £ 53.717, -3.7138, —1.5906, +1.3262};
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Table 4.1: Closed-loop spectra and H,, norms for varying a.

State Feedback Decentralized Control
Spectrum 1T Spectrum 1Tl
-0.24 -0.24 -2.52 -1.26+32.90
a=20|-2.54 230 |-0.38 -2.54 -1.4743;2.97 ] 3.64
-1.45+52.98 -1.07 -2.70 -1.45%;2.98
-0.24 -0.24 -2.52 -1.26+32.90
a=16 | -2.54 2.30 |-0.38 -2.54 -1.474;2.9713.63
-1.45+352.98 -1.08 -2.70 -1.45+;2.98
-0.24 -0.25 -2.52 -1.26%;2.90
a=12{-2.54 229 |-0.38 -2.54 -1.47+;2.97 1 3.59
-1.45+52.98 -1.08 -2.70 -1.45+;2.98
-0.24 -0.27 -2.52 -1.26+3;2.90
a=8 |-2.54 2.27 |-0.37 -2.54 -1.47£352.97 ] 3.49
-1.45+;2.98 -1.09 -2.70 -1.45432.98
-0.27 -0.35+;0.08 ] -1.26+52.91
a=4 |-2.54 2.15 |-1.18 -2.54 -1.474;2.9713.05
-1.46+72.98 -249 -2.71 -1.45%32.98
-0.46 -2.36+70.85 [ -1.21+32.98
a=2 |-254 1.76 | -048 -2.53 -1.47+72.98|1.995
-1.46+;2.98 -1.38 -2.79 -1.45£;2.94
-2.59
a=13}-3.11 1.30 none none
-1.45452.94

hence, the plant has an unstable mode and a lightly-damped stable mode. This section gives
the results of H,,-suboptimal control designs for this plant. First, state-feedback solutions
are presented, then observer-based solutions, both centralized and decentralized. For various
values of the design parameter a, the spectrum, feedback and observer gains, and H,, norm

for the closed-loop system are given.

4.7.1 State feedback

State-feedback designs can be computed for values of a varying from oo to 1.069199.
For a = 1.069198, the solution X of the state-feedback design ARE (4.3) has a negative

eigenvalue; hence, for all practical purposes, a,, = 1.069199.
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The closed-loop poles are the eigenvalues of F = A — SX. Figure 4.1 shows the position

a -~ a=} i -&
0 - aet0?
® -~ gseagy

Figure 4.1: State-feedback poles for varying o Example 2.

of the closed-loop poles for a varying from oo to a,,. Note that as a decreases from oo to
2.0, the poles barely move. As a decreases from 2.0 to 1.1, the most oscillatory mode is
damped somewhat, and the other complex pole-pair meets at the real axis and splits into a
real pair. Finally, as a decreases in the short interval from 1.1 to a.,, the closed-loop poles
are extremely sensitive to variations in a: The two remaining complex poles move leftward
in the complex plane and meet at the real axis, then one pole goes toward —oo. Naturally,

moving a pole far into the left-half olane requires high feedback gains: The LQ feedback

matrix is

Ko — -0.51 —-1.00 —0.21 -0.98 -0.80
Le=1\ -048 -—-040 044 —094 —0.47

with resulting closed-loop spectrum
A(F) = {-0.92 + ;3.98, —1.78 & 70.35, —3.54}
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while a nearly H-optimal (a = 1.07) feedback matrix is

K = 13.21 -3.67 -51.59 61.76 7.93
T\ -66.51 397 189.88 -235.86 -—40.62

with resulting spectrum
A(F) = {-81.54,-10.51, -3.65, —2.63, —1.57}.

These gains are much larger than the LQ gains, and they also have different signs.
Reducing a to as, = 1.069199 results in gains (and one closed-loop pole) of magnitude
larger than 10°.

4.7.2 Centralized observer feedback

Observer-based centralized controls can be computed by the method given in Theorem 4.1
for values of a ranging from oo to 1.913. For a = 1.912, the solutions X and Y of (4.3) and
(4.5) do not satisfy the condition oma{Y X} < 0.

Figure 4.2 shows the position of the closed-loop poles for a varying from oo to 1.913. As
a falls from oo to 3.0, the most oscillatory modes are damped somewhat, and all but the
leftmost of the real poles move to the left on the real axis. As « falls from 3.0 to 2.4, the
two leftmost real poles meet, split into a complex pair, circle leftward, meet again on the
real axis, and move apart. Again, as a approaches its minimum, one pole moves off toward
—00. As a decreases from oo to 1.913, each real-axis pole effectively shifts from its original
LQG position to the LQG position vacated by the pole to its left, leaving the rightmost LQG
position vacant and moving the leftmost real-axis pole toward —oo.

The LQG (a = o0) observer-gain matrix is

1.37 —0.71 0.09 0.21
-0.71  1.95 0.7 0.70
Lige=| 040 024 026 0.31
0.09 079 1.03 0.15
0.21 0.70 0.15 0.61

with resulting closed-loop spectrum
A(F.) = {-0.92 £ ;3.98,-1.78 + 50.35, —3.54, ~1.09 + ;3.82, —1.32, -1.69, —3.78},
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Figure 4.2: Output-feedback poles for a varying a, Example 2.

while the observer-gain matrix for a = 1.92 is

247 190 326 1.29
1.90 94.47 98.89 24.57
L=] 155 2595 27.67 7.12
3.26 98.89 105.59 25.42
1.29 24.57 2542 7.04

with resulting spectrum
A(F.) = {-204.31, —1.22 + j4.41,-1.47 £+ 53.29, -1.75 £ ;0.42,-3.83, —-3.51, —1.65}.

Reducing a to 1.913 results in some gains (and one pole) with magnitudes on the order of
103.
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4.7.3 Decentralized control

Decentralized controls can be computed by the method given in Theorem 4.2 for values
of a ranging from oo to 2.3323. The solution of the Riccati-like algebraic equation (4.47)
is obtained using the simple iterative method described in Section 4.6. The smaller the
value of @, the more iterations are required to obtain convergence: For example, to satisfy
a tolerance of 0.001 on the largest singular value of the left-hand side of tle Ri:cati-like
equation, a = 10 requires only 6 iterations, while a = 2.35 requires 47 iterations. To speed
up computations for small a, the solution for a slightly larger a can be used as the starting
point; however, this “embedding” practice seems to result in convergence of the algorithm
only when using the starting point W = 0 also results in convergence. For a = 2.3322 and
below, the algorithm does not seem to converge.

Figure 4.3 shows the position of the closed-loop poles for a varying from oo to 2.3323.

f\fg.

* - ouliM3

Figure 4.3: Closed-loop poles for decentralized control, Example 2.
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As a decreases, the oscillatory modes are damped, and the real poles move to the left on
the real axis. Again, as a approaches its minimum, the poles on the real axis seem to be
shifting left into the positions originally occupied by other poles for a = co.

For a = oo, the observer-gain matrices are

1.63 -0.90 0.07 -0.31
-0.90 2.61 098 1.15
L,=| 041 040 |,L,=| 031 044 |,
-0.04 1.33 1.38 0.16
032 0.65 0.16 1.22

while the observer-gain matrices for a = 2.3323 are

3.03 -3.17 5.45 0.97
-3.17 19.26 10.08 6.02
Ly=| 033 371 |,L,=| 3.58 1.86
—2.16 18.89 11.80 2.40
0.76  2.92 2.40 3.48

Since the solution for @ = 2.3323 displays somewhat higher gains and an eigenvalue
moving to the left, it seems a reasonable hypothesis that solutions may exist for smaller o,

giving a high-gain result as in the state-feedback and centralized observer cases.

4.7.4 Spectrum and H, norm comparisons

The spectra for state-feedback solutions and subspectra for centralized and decentralized
observer-based solutions are shown for various values of a in Table 4.2. The state-feedback
poles are recognizable among the poles of both observer-based solutions. Although the
state-feedback root-locus plot (Fig. 4.1) appears quite different from the other two (Figs.
4.2 and 4.3), the observer-based solutions no longer exist when « is small enough that the
state-feedback poles have moved significantly from their LQ positions.

The H,, norms of the closed-loop systems are compared for a < 5 in Figure 4.4. The
norms are seen to be monotone increasing with a. For a = oo, the H,, norms are ||T||e =
1.55 for state feedback, ||T|jcc = 3.322 for centralized observer feedback, and ||T||e = 4.61
for decentralized observer feedback, where T(s) is the closed-loop transfer function matrix

in each case. As the theory guarantees, the H,, norms are always smaller than the design
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Figure 4.4: Comparison of actual closed-loop H., norms, Example 2.

parameter a. In the state-feedback and centralized observer-based designs, the actual Hy
norms and the bound a are very close for a close to the minimum value. In the decentralized
case, the actual norm approaches the bound « in the neighborhood of a = 2.5, then falls
away slightly from the bound as a approaches the minimum value for which solutions of
the Riccati-like design equation were computed. The “slack” in the bound suggests that
decentralized designs guaranteeing smaller norms may exist, possibly corresponding with
solutions of the Riccati-like equation for smaller values of a. Such solutions would have to

be obtained by methods different from those used in this example.
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Table 4.2: Closed-loop eigenvalues.

State Feedback Centralized Decentralized
Output Feedback Control
-0.92+,3.89 -0.92+,;3.89 -0.92473.39
a=o00 |-1.78%+;50.35 -1.78%+30.35 -1.784;0.35
-3.54 -3.54 . -3.54 ...
-0.92+,3.89 -0.95+;3.93 -0.88+33.94
a=10 | -1.78%;0.35 -1.77+;0.34 -1.77%+;0.34
-3.54 354 ... -3.54
-0.94+33.89 -0.974;4.03 -0.87174.02
a=5 |-1.78+;0.35 -1.71£350.35 -1.74+3;0.32
-3.54 -3.55 -3.56 ...
-0.994+;3.89 -1.01+54.17 -0.86+,4.18
a=13 |-1.784;0.35 -1.73£50.43 -1.66+50.46
- 3.54 -3.60 ... -3.58 ...
-1.03+;3.89 -1.04+34.26 -0.90%;4.35
a=25]|-1.78+50.36 -1.74+30.43 -1.72+;0.46
- 3.54 -3.46 ... -3.67
-1.12+53.89 -1.174+54.39
a=2 |-1.78+350.36 -1.75+;0.42
-3.54 -3.51
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5 RELIABLE CONTROL DESIGN

This section develops centralized and decentralized control designs which guarantee sta-
bility and a predetermined H.-norm bound despite measurement or control failures. Such
designs are referred to here as “reliable”.

There have been various attempts in the past to develop methodologies for the design of
reliable control systems, and these attempts have had differing reliability goals. Among the
most prominent attempts are [39], [58], [59], [60], [61], [62] and [63]). The design methodology
presented here differs from all previous attempts in that it is the first to produce controls that
guarantee stability and a Hy-norm bound for the base case when all sensors and actuators
are operative as well as in case of outages of certain sensors or certain actuators.

Section 5.1 presents an example which establishes the need for a reliable decentralized
design. Section 5.2 develops centralized reliable designs, which guarantee stability and an
H-norm bound despite possible outages of sensors or actuators within predefined suscep-
tible sets. The cases of sensor and actuator outages are treated separately, resulting in two
designs with different reliability properties. Section 5.3 presents decentralized reliable de-
signs which guarantee stability and an H,-norm bound despite possible outages of certain
control channels in the decentralized system. The control channel outages are modelled first
as measurement outages, and then as control input outages, resulting in two distinct designs
with the same reliability properties. Section 5.4 present results on the design of strongly

stable systems.

5.1 Motivation

The 4*P-order example of Section 4.6 is used to motivate the development of a reliable
decentralized control. In this exainple, stability and a predetermined H.-norm bound are
guaranteed by the basic decentralized design for various values of the design parameter a.
Table 5.1 gives the actual H,, norms of the closed-loop systems corresponding with several
values of a. In addition to the case when no controller failure occurs, Table 5.1 gives the

conditions corresponding with a failure of each of the two controllers. A failure of Controller
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Table 5.1: H., norms for the basic decentralized design.

no failure | #1 fails | #2 fails
a=20 3.64 unstable 5.34
a=16 3.63 unstable 5.30
a=14 3.61 unstable 5.28
a=12 3.59 unstable 5.23
a=28 3.49 unstable 5.04
a=4 3.05 unstable 4.19
a=2 1.995 unstable 2.46

#1 results in instability for each design computed, while a failure of Controller #2 results
only in an increased H,, norm for the closed-loop system.

Since the plant is open-loop unstable, a failure of both controllers at once necessarily
results in instability; however, it would be desirable to alter the design so as to guarantee
at least stability, and, better still, some level of disturbance attenuation for the closed-loop
system if only one controller should fail. While the basic design in this case still works well
if only Controller #2 fails, it is not acceptable if Controller #1 fails. Therefore, a design
reliable with respect to failure in Controller #1 is desired.

The essential idea in developing a reliable design methodology is that, if there exists

X. > 0 satisfying
1
FTX,+ X.F. + ?X,G,G,TX, +HTH.+P.=0 (5.1)

with some P, > 0, then the resulting closed-loop system will by Lemma 4.1 be stable and have
Hy,-norm bound a. Choosing P, = 0 in (5.1) yields the basic centralized and decentralized
designs derived in Section 4, characterized by closed-loop stability and the bound ||T||e < a.
Identification of the appropriate P, can ensure additional system properties associated with
reliability. It turns out that the appropriate choices of P, introduce perturbations into the
basic design equations equivalent to appending columns or rows to G or H in the basic design

equations. Preliminary results on design of reliable control systems were presented in [15].
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5.2 Reliable Centralized Design

The problem addressed here is that of designing a centralized controller which is reliable
despite possible sensor or actuator outages. The outages will be restricted to occur within
a preselected subset of available measurements or control inputs. The controllers developed
will guarantee closed-loop stability and a predetermined H.-norm bound, regardless of ad-
missible sensor or actuator failures. The cases of sensor and actuator outages are treated
separately, and two designs are developed to handle the two cases. However, it will be clear
from the results that controllers which can handle both sensor and actuator outages can be
obtained by combining the designs.

Consider first the design of a controller that can tolerate the outage of certain sensors
which provide the various elements of the measurement vector y. Let @ C {1,2,...,dim(y)}
correspond with a selected subset of sensors susceptible to outages. Introduce the decompo-
sition

C = Cq + Cq, (5.2)
where Cq denotes the measurement matrix associated with 2, and Cq denotes the measure-
ment matrix associated with the complementary subset of measurements. In other words,
Cq is the same as C, but with rows corresponding with susceptible sensors zeroed out. Let
w C Q correspond. with a particular subset of the susceptible sensors that actually experi-
ence an outage, and let T;(s) denote the transfer-function matrix of the resulting closed-loop

system. It is convenient to adopt the notation

where C, and C; have meanings analogous to those of Cq and Cp in (5.2). Since w C Q,

CTC, < C¥Cq. Also decompose the observer gain as

so that
LC=L,C,+ L,C,.
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(Lg has columns zeroed out corresponding with sensors which have actually failed.) Then

the following result holds:

Theorem 5.1. With all assumptions and the design otherwise as in Theorem 4.3, assume

X >0 andY > 0 satisfy the AREs

ATX + XA— XSX + Zli-XGGTX + HTH + o2CICq = 0, (5.5)

AY +YAT + 5,-YHTHY ~YCICaY +GGT =0, (5.6)

respectively. Then, for sensor outages corresponding with any w C Q, the closed-loop system

is stable, and ||T;]|c < a.

Remark 5.1: With all sensors operational, corresponding with w = @, Ty(s) = T(s) is the

transfer-function matrix from w, to z, where

W, = y = .
w u
Theorem 5.1 covers this case automatically, since w = @ C Q. If sensors corresponding to a

nonempty subset w C  fail, ther T;(3) is the transfer-function matrix from w,; to z, where

Wo
Wegy = )
L)

with w;, containing only those components of measurement noise associated with operational
sensors.
Proof The design equations (5.5) and (5.6) arise from replacing H in the description of the

plant by the augmented matrix

H
n=(4) o

and changing the design equations accordingly. If (5.5) and (5.6) have appropriate solutions,
then Theorem 4.3 guarantees that X, > 0 satisfies

1
FTX,+ X.F, + QX,G,GZ'Xe + HLH,.,. =0, (5.8)
where the augmented closed-loop system is described by the matrices
[ A -SX (G 0 _ [ Hs 0
F“(LC Aa-LC)’G°_(0 L)’H"“(o —BTX)’ (5.9)
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and (F,, H.,) is a detectable pair. The actual closed-loop system with no sensor outages is

described by the matrices

A -SX G 0 H o
F°=(LC AO,—LC>’G°=(0 L)’H°—(0 —BTX>' (5.10)

For sensor outages corresponding with w C , the controller becomes
é=(a+ —GGTX - SX - LC) &+ Lay, (5.11a)

u = —BTX¢. (5.116)

The controller dynamic structure is not affected by a sensor outage; only the controller input

structure is effectively changed. Given (5.11), the closed-loop system matrices become

A _SX G 0 H o
F”“(LQCQ A,,—LC)‘G“”:(O L;,)’H’=(0 —BTX)' (5.12)

The following useful relations are derived from (5.9), (5.10), and (5.12):

F.=F.+ (LO )(a, 0) = Foy + LewCoeo, (5.13a)
T
G.GT = ( o LQOLT ) + ( f )(o LT) = G..GT, + Lo LT, (5.13b)
T
HT H., = HTH, + o ( C"OC“ g ) . (5.13¢)

Use (5.8) and (5.13) to obtain

FLX. + X.Fus + 5 X.GeaGLX. + HTH,

1 CT (514)
=-CTLT X, - X.L..C... - ;;X,LWLZ;,X, - az( 00)(03 0).
Therefore, since —C3Cq < -CTC,, (5.14) gives
FIX., + X.F.+ -al—zxeGmG,Ta,Xe + HTH,
< -CTLT X, - X.LeCuo — i,xeL,wL,TuX, -a?CT C.., (5.15)

1
_ (_ X.L. + ac;) (lLZuxe + an) <o0.
(41 (o]
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Hence, provided (F.s, H.) is a detectable pair, Lemma 4.1 guarantees that F,; is Hurwitz,
and that T,(s) = H.(s] — F.5)"'G.s, the transfer-function matrix from w,g to z;, satisfies
ITzllc < @. The detectability proof is routine: If vT = (v] vT) # 0 satisfies F.ov = v and
H.v = 0, then Av; = Av; and Hv, = 0, with (A, H) assumed a detectable pair. Therefore,
either Re(A) < 0 or v; = 0. Suppose v; = 0; then F,v = F,ov = Av and H.v = 0 gives
H.,v = 0. Since (F., H.;) is a detectable pair, Re(A) < 0. o

Consider now the design of a controller that can tolerate the outage of certain actua-
tors which provide the various elements of the control vector u. Let  C {1,2,...,dim(u)}
correspond with a selected subset of actuators susceptible to outages. Introduce the decom-

position

B = Bq + By, (5.16) ’

where Bq denotes the control matrix associated with the set 2, and Bg denotes the control
matrix associated with the complementary subset of control inputs. In other words, Bg is
the same as B, but with columns corresponding with susceptible actuators zeroed out. Let
w C Q correspond with a particular subset of the susceptible actuators that actually fail,
and let T(s) denote the transfer-function matrix of the resulting closed-loop system. It is
convenient to adopt the notation

B=B,+B; (5.17)

where B, and B have meanings analogous to those of Bg and Bg in (5.16). Since w C Q,

B,BT < BaBI. Then the following result, dual to Theorem 5.1, holds:

Theorem 5.2. With all assumptions and the design otherwise as in Theorem 4.3, assume

X >0 andY > 0 satisfy the AREs

ATX + XA- XBaBYX + -&I;XGGTX +HTH =0, (5.18)
1
Ay+mﬂ+;gﬂﬁw-ywa+mﬂ+J&mg=m (5.19)
respectively. Define
G+ = (G aBy), (5.20)
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and let the controller be given by
€= (A + $G+G1X -SX - Lc) ¢+ Ly, (5.21a)
u = ~BTX¢. (5.21b)

Assume the controller is open-loop (internaily) stable. Then, for actuator outages corre-

sponding with any w C ), the closed-loop system is stable, and || Ts||co < a.

Remark 5.2: For actuator outages corresponding with w C 2, T;(s) is the transfer-function
matrix from w, to z;, where 2z excludes control components associated with failed actuators.
Proof The design equations (5.18) and (5.19) arise from replacing the matrix G in the
description of the plant (4.1) with the augmented matrix G, and introducing the corre-
éponding changes in the design equations. If (5.18) and (5.19) have appropriate solutions,
then Theorem 4.1 guarantees that X, > 0 satisfies

FTX. + X.F. + %X,G,J,ng, +HTH, =0, (5.22)
where the augmented closed-loop system is described by the matrices

(A -Sx [ Gy 0 (H 0
F‘“(LC Aa—-LC)’G”—( 0 L)’H=“(o —BTX)’ (5.23)

with A, = A+a~?G;GT X - SX and (F., H.) a detectable pair. When there are no actuator

outages, the actual closed-loop system is described by the matrices

A -SX G 0 H 0
F‘=(LC Aa—LC’>’G°=(0 L)’H°=(0 —BTX)' (5.24)

For actuator outages corresponding with w C 2, the controller becomes
: 1
£ = (A +—G4GTX — X - Lc) E+Ly, (5.25a)

u=—-BTX¢. (5.25b)

The controller dynamic structure is not affected by actuator outages; only the controller
output structure is effectively changed. Given (5.25), the closed-loop system is described by

the matrices
_( A -BiBIX _(G o H 0
F""_(LC Aa,—LC')’G"_(O L)’H°°=(0 -ng>' (5.26)
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The following useful relations are derived from (5.23), (5.24), and (5.26):

F.=F.,— (%’) (0 BTX) = F.; — B.,(0 BTX), (5.27a)
0
HTH, = HTH., + ( X B.,) (0 BT X), (5.27b)
BaBY 0
GetGT, = G.GT +2? ( 0 a 0 ) . (5.27¢)
Use (5.22) and (5.27) to obtain
1 T T
FIX. + X.Fuo+ —=X.GGe X+ HeoHeo (5.28)

< - (XBu - (45.)) (BLX. - (0 B2X)) <0,

Provided (F.;, H.;) is a detectable pair, Lemnma 4.1 guarantees that F,g is Hurwitz, and that
To(3) = H.o(sI - F.p)™'G, satisfies || T5 |0 < a. To prove detectability, let vT = (vf v]) #0

satisfy F.ov = Av and H.,v = 0; then Av; = Av; and Hv, = 0, with (A, H) assumed a
detectable pair. Therefore, either Re(A) < 0 or v; = 0. If v; =0, then Fgv = Av gives

(a+ 81—2G+G£X - SX = LC) v =u (5.29)

By the assumption that the controller is open-loop stable, (A + a~2G,.GTX — SX - LC) is
Hurwitz; therefore, Re(A) < 0. o

The design given in Theorem 5.2, unlike that given in Theorem 5.1, requires that the
controller turn out stable in order to guarantee reliable closed-loop stability. If the design
does not result in a stable controller, it may be combined with a strongly stabilizing design
developed in Section 5.5; then the assumption of open-loop stability of the controller will
hold automatically.

Note that to achieve reliability with respect to sensor outages, it is sufficient to modify
the feedback and observer gains; however, to achieve reliability with respect to actuator
outages, the observer structure must also be modified. The structural modification required

is the inclusion of G, in the controller dynamic matrix.
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5.3 Reliable Decentralized Design

Let Q € {1,2,...,q} correspond with a subset of controllers subject to outages. The

problem is to compute a decentralized control law which guarantees closed-loop stability

and an H,,-norm bound in spite of controller outages corresponding with any subset w C .

Without loss of generality, @ = {t+1,t+2,...,q} andw = {r+1,r+2,...,q}, with r > t.

Introduce the decompositions
B = (BlB,- 0..0)+(0.0 B,-+1...Bq) = BQ'{"B“,,

B. = Diag(B,,..., B,,0,...,0) + Diag(0,...,0,B;41,...,By) = By + B,

[ C1 ) ( 0 )
o 0o |_

C‘—‘- 0 + Cr+1 =Ca+Cwa
Lo/ \c )

CC = Dia.g(Cl,...,C,,O,...,O) +Diag(O,...,O,C,.H,...,Cq) = CCGI+CW7
L. = Diag(Ly,-.., Ly, 0,...,0) + Diag(0, .., 0, Lysts ..y Lg) = Leg + Lo

Also decompose the disturbance and regulated output vectors as

~(2)-(3)-(2)

Finally, define
B{) = (BH'I e Bq),

Cq =(Chy...CD).

Note that for any w C Q,
BqBY > B, BT,
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(5.300)

(5.30¢)

(5.30d)

(5.30e)

(5.31a)

(5.31b)

(5.32q)

(5.32b)

(5.33)




c¥cqa > CTc,. (5.34)

When no controller failures occur, the closed-loop system is described by matrices of the

A  -BBT _(G o _(H 0
F“:(LCC Aac-LcCc)’G°—(0 Lc)’H"(O —Bch)’

where A,. = Diag(Aqa, Aq, ..., Aa). Suppose that controller failures take the form

form

i =0, t€ew. (535)

The closed-loop system then takes the form

£ A -BBT™X. \(<\.{G 0 \ (w) _
(f) - ( LCGCG; Aac - LCCC ) (E) + ( 0 Lca’ ) (w) - Feate + Geowe, (5.36a)

z= ( f){ _ B(:T X, ) (2’) = H,z.. (5.36b)

Because of the assumed mode of failure, given by (5.35), the disturbances w;, ¢ € w, do not
enter the system (5.36). In fact, (5.36) is a controllability canonical form, with &;, i € w, the

uncontrollable parts of the extended state vector. Note also that
Aac — LCCc = Diag(Ao, - LICh Aa - LgCg, ey Aa - L,,Cq), (537)

where A, — L;C; is the open-loop dynamic matrix of the *® controller. Because of the form
of (5.36), the open-loop eigenvalues of the controllers which have failed appear directly as
modes of the closed-loop system. This means that a design guaranteeing reliable stability
will automatically guarantee that all controllers susceptible to outages are open-loop stable.

It is convenient to note that F,; and G, are related to F, and G, by

Fo=F, — ( L° )(cw 0)= F. - L,Cu, (5.384)
0 0

GeGJ - Ge - ( 0 Lw ) ’ (5-38b)

G..GY, =G.GT - L. LT, (5.38¢)

The design which follows will guarantee that F,; is Hurwitz, and that the transfer-function

matrix Ty(s) = H.(sI — F.;)"'G., satisfies ITzllo < @, for controller outages associated
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with any w C Q. The case where no controllers fail (represented by w = @ C Q) is always
admissible; hence, the design will automatically guarantee that F, is Hurwitz and that
T(s) = H.(sI — F.)"'G. satisfies |T|lo < a. The following theorem gives the reliable

design.

Theorem 5.3. With all assumptions and the decentralized design otherwise as in Theorem

4.4, let X > 0 satisfy
ATX + XA+ %xcaTx ~ XBBTX + HTH + a?CICq = 0, (5.39)

where Q@ C {1,2,...,q}. Then, for controller outages corresponding with any w C Q, the
closed-loop system (5.8) is internally stable, and the closed-loop transfer-function matrix

Ta(8) from weg to zy satisfies || Tyl £ a. In addition, all controllers corresponding with

the “susceptible” set ) are open-loop stable.

Remark 5.3: The design given in Theorem 5.3 results from replacing H in the description

of the plant (4.1) with the augmented matrix

H, = (a’én), (5.40)

and changing the design equations accordingly. This substitution results in no change in the

design equation (4.47), and is equivalent to selecting P. in (5.1) as

2T
P, = ( « CE’C" 3) > 0. (5.41)

The basic decentralized design computed for the augmented plant will provide reliable control
for the actual plant.
Proof. Just as in the development of Section 4.5, the existence of appropriate solutions to

the perturbed design equations (5.39) and (4.44) guarantees .hat X, > 0 satisfies

1
FIX.+ X.F. + 5 X.G.GTX. + HL H., =0, (5.42)
a
where
H 0
H,, = ( k. ) . (5.43)
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Now (5.38), (5.40), (5.42), and (5.43) give

FIX, + X.Fg+ %x,cwcfox, +HTH,
T
= -CTLT X, - X.L.,Cew — %X,LWLLXC -ao? ((’;“) (Cq 0).
Therefore, by (5.34),

FLX. + X.Fo+ —X.GuGLX. + HIH,
< -CTIT X, — X.LeooCle — %X,LWL,T‘,X, -a*CTC.,
= - (%X.,LW + aCZ;,) (éLZ;X, + aC,‘.,) <0.

Hence, provided (F.;, H.) is a detectable pair, Lemma 4.1 guarantees that F,; is Hurwitz,
and that T;(s) = H.(Is — F.3)"'G.s, the transfer-function matrix from weg to zg, satisfies
ITzlle € . The detectability proof is the same as that of Lemma 4.2: Assuming v # 0
satisfies F.ov = Av and H.v = 0 gives Av; = Av; and Hv, = 0, with (A, H) assumed a
detectable pair. Therefore, either Re(A) < 0 or vy = 0. If v; = 0, then (Aye — L.C.)va = Avy,
and hence (A. — L.C.)v; = vz, where A, — L.C, is known to be Hurwitz. 0

Recall that the closed-loop system (5.36) assumes measurement failures corresponding
with each 7 € w. If instead there are control input failures, that is, if the controller failures
are given by

ui=0, i€w, ‘ (5.44)

then the closed-loop system has the form

z A -B,BT X, T G 0 wo) _
(2 28) )+ (2 1) () ronsim

2= ( Io{ B B‘}_ X ) (2) = H.yz., (5.455)

where F,; has been redefined. Note that (5.45) is an observability canonical form, with £,
t € w, the unobservable parts of the extended state vector. In fact, for a given decentralized
control law, (5.36) and (5.45) are just two different realizations of the same transfer-function
matrix. However, the form (5.45) leads to the need for a different matrix P, in (5.1) to guar

antee reliable stability and performance, and hence to a different control law. Again, the
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closed-loop eigenvalues of the controllers which fail appear directly as modes of the closed-
loop system; unlike the proof of Theorem 5.3, however, the following development must
assume that all the controllers turn out open-loop stable. If some controllers turn out un-
stable, the design of Theorem 5.4 may be combined with a strongly stabilizing decentralized
design developed in Section 5.5.

It is convenient to note that F.; and H,; are related to F, and H, by

Foo=F. + (B;;,) (0 BLX.)=F.+ B..(0 BT Xx.) (5.46a)
0 0
H. = H, + ( 0 BIX, ) (5.46b)
Ty _ury _ [ 0 T
H H. =H,H, (Xchw (0 B_X.). | (5.46¢)

The following theorem gives the design:

Theorem 5.4. With all assumptions and the decentralized design otherwise as in Theorem

4.4, let X > 0 satisfy

ATX + XA+ %)(GGTX — XSaX + HTH =0, (5.47)
and let W > 0 satisfy
WAL, + AW+ LZWXCBCBCT XW -wWwCTC.W +G.GT
@ (5.48)
+ I.SqIT + (W — Wp)CTC (W — Wp) =0,
where
IF=(1r1...1
A=A+ Diag(SQX, SaX,..., SQX),
Sa = BaB2,
S =5+ Sﬁv
and Q C {1,2,...,q}. Let the controllers be given by
. 1
E.’ = (A + 'a—2G+sz - SX - LiCn')fi + L.'y.', t € {1,2? e ,(I}, (5.49(1)

121




u; = —-BTX¢&, i€{1,2,...,q}, (5.49b)

and assume all controllers are open-loop (internally) stable. Then, for controller outages
corresponding with any w C 2, the closed-loop system (5.45) is internally stable, and the

closed-loop transfer-function matrix Tg(3) from weg to zg satisfies || Tyl < .

Remark 5.4: The design equations (5.47) and (5.48) arise from replacing G in the plant
description (4.1) with the augmented matrix G, given by

G, = (G aBy), (5.50)

and changing the design equations accordingly. This substitution affects both the state-
feedback design ARE and the Riccati-like design equation for computing decentralized ob-
server gains. The substitution is equivalent to selecting P. in (5.1) as

_ Sa 0
P,_X,( 5 O)X,zo. (5.51)

The basic design computed for the augmented plant will provide reliable control for the
actual plant.
Proof. As in the development of Section 4.5, the existence of appropriate solutions to the

design equations (5.47) and (5.48) guarantees that X, > 0 satisfies
FTX.+ X.F. + LZX,GH.GZ_'_XC +HTH, = 0. (5.52)
a

Unlike the dual case, the additional columns of G, enter into the linear coefficient matrix
F, of (5.52), as well as into the quadratic coefficient as explicitly indicated. This is because

the controller structure (5.49) is affected if G is replaced by G,.. Hence, F. and G.; are now

A -BBTX, Gy 0
F"(LCC Aac—LcC,_.)’G"*:( 0 Lc)’ (5.53)

with Ayc = Diag(Aq, Aa, ..., Aq) and Ay = A+a~2G,GT X — SX. Manipulations of (5.52)
similar to those of the dual case, using (5.46), (5.50), and (5.53), give

given by

FZ:,Xe + XeFeGl + 'al—zxeGeGZXe + H;I::,Hew

< = (XeBew — (x,5.)) (BLX. - (0 BLX.) < 0.
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Provided (F.q, H.5) is a detectable pair, therefore, Lemma 4.1 guarantees that F,g is Hurwitz,
and that T,(s) = H.o(sI — F.5)"'G, satisfies ||T;|lcc < a. To establish detectability, let
vT = (v v]) # 0 satisfy F.ov = Av and Hegv = 0. Then Av; = Av; and Hv, = 0. Since

A, H) is a detectable pair, this implies either Re(A) < 0 or v; = 0. Suppose v; = 0; then
Fzv = v gives

(Aae = LeC2)vg = Ava. (5.54)

Since all controllers are assumed open-loop stable, (5.54) gives Re()) < 0. o

The two decentralized designs given in Theorems 5.3 and 5.4 model controller failures
as being, respectively, measurement failures and actuator failures. The failures considered
incapacitate entire controllers, so that measurement failures and actuator failures have the
same effect on the closed-loop transfer-function matrix. Although the two designs have the
same reliability goals, they are nevertheless different: The first automatically guarantees
reliable stability if the design equations have appropriate solutions, whereas the second may
exist but not guarantee reliable stability if the controllers are not open-loop stable; the first
design involves only modification of feedback and observer gains as compared with the basic
design, while the second requires also a change in the observer structure; and the range of
the design parameter a for which the two designs are computable may differ.

In the centralized case considered in Theorems 5.1 and 5.2, the failures considered are
those of individual sensors or actuators. Therefore, the two centralized designs differ not
only in the view taken of controller failure, and in other technical terms, but also in the

reliability properties they seek to guarantee.

5.4 Example

For the example in Section 4.6 reliable designs have been computed for both the centralized
and decentralized cases.

Centralized designs reliable with respect to an outage of each measurement were com-

puted for several values of the design parameter a according to the procedure given in

Theorem 5.1. Table 5.2 gives the actual H,, norms ||T|lc of the resulting closed-loop
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Table 5.2: H,, norms for basic and reliable decentralized designs.

Basic Design Reliable Design 1 | Reliable Design 2
no Y1 Y2 no /) Y2 no Y Y2
failure fails fails failure | fail | fails | failure | fails | fails

a=20| 3.09 | unstab. | unstab.| 4.38 |2.90]2.95| 4.34 | 4.68 | 4.26
a=16| 3.09 | unstab. | unstab. | 4.26 | 2.78|2.88 | 4.29 | 4.46 | 4.11
a=12| 3.06 | unstab. | unstab.| 4.06 | 2.61|2.78| 4.21 | 4.13| 3.89
a=8 | 3.01 | unstab. | unstab.} 3.76 12.3812.76 | 4.12 {3.55 | 3.46
a=4 | 2.72 34.28 | unstab. | 3.38 [2.22]|248] a’Y~'-X $0
a=2 [ 1.95 4.41 |[unstab.| oYX 0 ’YT - X #0

transfer-function matrices. Results corresponding to the designs reliable with respect to
outages of y; and y, are labelled “Reliable Design 1” and “Reliable Design 2,” respectively.
For each design, results are given corresponding to no sensor failure, failure of y;, and failure
of y,. For the sake of comparison, Table 5.2, includes H,, norms corresponding to the basic
centralized output-feedback design given in Theorem 4.3.

Reliable Design 1 theoretically guarantees stability and the closed-loop H,-norm bound
a only for failure of y;, and Reliable Design 2 only for failure of yz; but in this example,
each reliable design gives stability and the H.-norm bound in case of a failure of either
measurement. In fact, a measurement failure would seem to result in a reduced H,, norm
for the closed-loop system. This is so, however, because a measurement failure removes from
consideration the corresponding measurement noise, effectively eliminating one column of
the transfer-function matrix. More meaningful is a comparison of this (reduced) transfer-
function matrix in the case of a failure with the corresponding transfer-function submatrix in
the base case. Such a comparison shows that the H,, norm in case of a failure is larger than

it is when no failure occurs. For example, Reliable Design 2 for a = 8 results in the norms

IT2]lc = 3.55 and

11|Jeo = 3.46, as shown in Table 5.2, while the corresponding parts of
the base-case transfer-function matrix (after elimination of the appropriate columns) have
norms || 1|l = 3.30 and ||T} || = 3.01.

The reduced cost which can be achieved by eliminating measurements and their corre-

sponding noise inputs does not constitute a valid argument for discarding one measurement
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and using the other alone. The use of both measurements provides reliability, in that a single
sensor failure will not result in system instability.

Note that the solution of the observer-design ARE satisfies the condition a?Y~! = X > 0
only when a > 4 for Reliable Design 1, or when a > 5 (the case a = 5 is not shown)
for Reliable Design 2, while solutions were computed for the basic design with the design
parameter value as small as @ = 2. this difference is an indication of thé tradeoff between
reliability and performance guaranteed by the respective designs.

For the same example, a decentralized control design reliable with respect to the failure
of Control Channel 1 was computed for various values of the design parameter a according

to the procedure of Theorem 5.3. Table 5.3 gives the actual H,, norms of the closed-

Table 5.3: H,, norms for basic and reliable decentralized designs.

Basic Design Reliable Design
no failure | #1 fails | #2 fails | no failure | #1 fails | #2 fails
a=20 3.63 unstable 5.34 6.95 6.25 7.03
a=16 3.63 unstable 5.30 7.65 6.38 7.82
a=14 3.61 unstable 5.28 8.28 6.32 8.59
a=12 3.59 unstable 5.23 No solution to RLAE found.

loop transfer-function matrices resulting when the reliable design was computed for several
values of a. Conditions corresponding with no control failure, with failure of Controller #1,
and with failure of Controller #2 are given. For the sake of comparison, the comparison,
the comparable portion of Table 5.3, corresponding with the basic decentralized design, is
reproduced.

Table 5.3 shows that the reliable design guarantees stability and Hy-norm bounds a in
spite of a possible failure of Controller #1. As in the centralized case, the reduce H,, norm
in case of a failure of Controller #1 results since, when Controller #1 fails, the disturbance
w; and the control input u; are removed from consideration, eliminating one column and one
row from the closed-loop transfer-function matrix. Again, this apparent reduction in cost
does not constitute a valid argument for discarding Controller #1 and using Controller #2

alone, since the use of two controllers provides reliability, in that a single controller failure will
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not result in system instability. No solution was found to the Riccati-like algebraic equation
for the reliable design with a < 13, illustrating again the tradeoff between reliability and

disturbance attenuation.

5.5 Strongly Stabilizing Designs

The designs given in Theorems 5.3 and -5.4 provide decentralized control laws which are
reliable with respect to controller outages. For the design given in Theorem 5.3, all controllers
susceptible to outages are automatically stable; however, for the design given in Theorem
5.4, the controllers must be assumed to turn out stable for the closed-loop system to be
guaranteed stable. It is therefore of interest to develop designs which stabilize the plant
via a stable control law. Such designs are referred to as “strongly stabilizing.” Strong
stabilization has been treated in [64], where a necessary and sufficient condition for the
existence of a strongly stabilizing controller is given.

A decentralized design is now developed to guarantee open-loop stability of some subset of
controllers, without regard for performance in case of a controller outage. This design may be
combined with that of Theorem 5.4 so as to guarantee beforehand that specified controllers
will turn out open-loop stable. As a special case, a sirongy stabihzing centralized design is
also derived.

With the design otherwise as in Theorem 4.4, suppose Equation (4.47) is replaced by

WAT + acW + %WXCBCBCTXCW ~WCTC.W +G.GT
(5.55)

+ (W -Wp)CTC(W - Wp)+ P =0.

For any P > 0, the design guarantees closed-loop stability and the H — oco-norm bound
iTlo < a. The object is to select P > 0 so that the :*® controller is open-loop stable.
Rewrite (5.55) as

1
W(A. - L.C.)T + (A — L.COW + QWXCBCBZ XW+GGT + LLT+P=0. (556)

Recalling the definitions A,. = Diag(Aq,Aa,...,4a), IF = [[ I...1], and A. = A, +
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I.BBT X, rewrite (5.56) as

W(Aoe — L.C)T + (Age — L.COW + %WXCBCBCT X.w

(5.57)
+GGT + L. LT+ P+ I.BBTX.W + WX.B.BTIT =0.
The ** n x n main-diagonal block of (5.57) is
Wi
Wi(Aq = LiC)T + (As — LiCi)Wi + ;%(W,-, ...Wi)X.B.BT X,

- Wi (5.58)

+GGT + LiLT + P; + BBTX.| : |+ (Way...W;))X.B.BT =0,

Wi

where the linear coefficient (A, — L;C;) is the open-loop dynamic matrix of the i** controller.

To ensure that (A, — L;C;) will be Hurwitz, let P; = o?S = a’*BBT. Then (5.58) becomes
Wi Aa — LiC)T + (Aa — LiC)W;; + GGT + L;LT

Wi
- (-aB + 1w, w,-q)chc) «BT+i87x. | : || <o,
qs

(5.59)

with W;; > 0. To see that this is sufficient to guarantee that (A, — L;C;) is Hurwitz, let
v # 0 satisfy (A, — L;Ci)Tv = Av. Then (5.59) gives

2Re(A)v*Wv + v‘L;L;-rv <0,

and hence Re()\) < 0. But inequality must hold here, because Re()) = 0 implies LTv = 0,
and hence ATv = Av, with A, assumed Hurwitz.

Note that P; > o?S guarantees that the :*P controller will be stable, independent of
the other main-diagonal blocks of P. Therefore, several controllers may be simultaneously
guaranteed open-loop stable by selecting the main-diagonal blocks P;; of P to satisfy P;; > 0
if the #*® controller need not be stable, and P; > a?S if the i** controller must be stable.

Other blocks of P may be chosen in any way that makes P > 0, such as setting them all to
0.

The following theorem summarizes the result.
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Theorem 5.5. Let P be any gn x qn matrix satisfying
P 2 Diag(Pu,...,P“,O,..‘,0),

where P; = oS fori € {1,2,...,t}. With all assumptions and the design otherwise as in
"Theorem 4.4, suppose Equation (4.47) is replaced by

WAT + AW+ —I—QWXCBCBCTXCW -WCTC.W +G.GT
@ (5.60)

+ (W - WD)CZCC(W - WD) +P=0.
Then the design, in addition to its other properties, guarantees that the controllers in the

first t control channels are all open-loop stable.

The result of Theorem 5.5 is easily specialized to the centralized case. It is important
to note, however, that the solution W of the Riccati-like design equation with ¢ = 1 is not
the same as the solution Y of the observer design ARE in the centralized case. Therefore,
the reformulation of the design equations to guarantee strong stabilization in the centralized
case is not as simple as that given in Theorem 5.5. The following theorem gives the correct

formulation.

Theorem 5.6. With all assumptions and the design otherwise as in Theorem 4.3, letY > 0
satisfy the ARE

YFT+FY + YHTHY —YCTCY + %YXSXY +GGT +a?5=0,  (561)

where F = A — SX, S = BBT. Then the system is strongly stable, and the closed-loop

transfer-function matrix satisfies ||T || < a.

Proof For the special case ¢ = 1, the strong stabilization result of Theorem 5.5 still holds.

In this case, the design equation (5.60) is

W(A+a2GGTX)T + (A+a *GGTX)W + al—zwxsxw

(5.62)
- WCTCW + GGT 4+ a?S =0.
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Hence, the proof consists of showing that (5.61) implies (5.62). Recall the assumption from
Theorem 4.3 that oma{Y X} < @® or (a®Y~! — X) > 0. This implies that there exists a
matrix W > 0 such that

Wil=Y"!_a%X. (5.63)

Then, routine manipulations of (5.61) give the equivalent equation
YAT + AY + %YHTHY —YCTCY + GGT + ?YW-1SW-1Y = 0. (5.64)

Pre- and post-multiply (5.64) by Y-, and use (5.63) to obtain

AT(a X + W) + (72X + W™)A+ (e 2X + W)GGT (a2 X + W-1)

1 (5.65)
+ —HTH-CTC+a’W™SW™! = 0.
Now, divide the state-feedback design ARE (4.3) by a? to obtain
AT(a 2 X) + (a”?X)A + (@72 X)GGT (a7 X) - i,xsx + l,HTH =0, (5.66)
a a
and subtract (5.66) from (5.65) to obtain
ATW-1 + WA+ (e7?X)GGTW! + W-'GGT (a2 X)
(5.67)

+ W-GGTW-! — CTC + %xsx L RWISW = 0.

Finally, pre- and post-multiply (5.67) by W, and rearrange terms to obtain (5.62). O
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6 EXTENSIONS
6.1 Robust Decentralized Control

The decentralized design methodology given in Section 4.7.3 is now extended to apply to
a plant with structured (parametric) uncertainty. The resulting designs guarantee robust
stability and an H-norm bound for the closed-loop system, for any plant uncertainty in a
bounded admissible set.

The results and methods applied to the study the robust control problems of interest here
are closely connected to the topics of quadratic stability, and to H.-norm optimization.
Among the relatively few papers that actually treat the problem of robust H.-bounding
control in the presence of structured parametric uncertainty is [65], where a perturbations
in (A, B,C) is represented as additional weighted noise inputs and measured outputs. The
procedure suggested in [66] is then followed to solve the problem. As a consequence of the
selected linear and quadratic bounding function a controller is defined via three coupled
Riccati-like equations. The procedure developed here is in the same spirit, but with the
restriction of plant variations in the A matrix only. The applied approach, which in essence
implies a different bounding procedure, leads to two decoupled design equations.

The results are of interest is particular because they explain to the decentralized control
case, but they also apply easily to the simpler state-feedback and centralized output-feedback
cases, which are omitted here.

Structured uncertainty is introduced into the plant A-matrix according to the definition

A= Ao+ Y GiMHy, (6.1)

k=1
where Ag is known, the G’s and H,’s give the structure of the uncertainty, and each unknown
constant matrix M, satisfies
; max{ MM} < oF. (6.2)
If each positive bound o is sufficiently small, then the design equations to be derived for ro-
bust control will have appropriate solutions. The existence of such solutions guarantees that

the computed control law provides the desired robust stability and disturbance attenuation.
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6.1.1 Robust design derivation

The derivation of the robust design methodology is similar to that of the reliable design
methodology given in Section 5. The essential idea of the derivation is to formally express
a sufficient condition for stability and disturbance attenuation for the nominal system, in-
cluding a formal representation of some design freedom, and to determine how to use that
freedom to guarantee robust stability and performance for the actual system.

The first step in the derivation is to fix the observer structure of the control law, and

write the desired condition
T 1 T T
Fo. Xe + X Foe + EEXCGcGe X.+H,H.+P. =0, (6.3)

where (Fg., G., H,) describes the nominal closed-loop system, and P, > 0 is as yet unspeci-

fied. An appropriate value of P, will be chosen to guarantee desired robustness properties.

The plant uncertainty terms are omitted in (6.3), so that

g ( 4 -BBIX.
O = LcC AOac’LcCc ’

where Ap represents the nominal plant dynamics, and the block-diagonal matrix Agac — L.C-
represents the dynamics of the decentralized control law to be determined. Taking into
account the plant uncertainty (6.1), the actual closed-loop dynamic matrix is given by
F,.= Fy. + Z ( C(';k ) M (Hy 0) = Fo. + ZGekMkHek- (6.4)
k=1 k=1
Using (6.4), rewrite the condition (6.3) as

FTX,+ X.F, + ﬁ;x,a,afx, + HTH, = =P, + (F. — Fo)"X. + X.(F, — Fp.)

(6.5)

=-P.+ N {HIMIGTX. + X.G.x M, H..}.
k=1

Now, P, > 0 may be chosen such that the right-hand side of (6.5) is negative semi-definite.
Recall that oy is given by (6.2), and set
P.=Y {HiHu + 0} X.GuGh X} > Y {HLHi + X.Gu M MIGT, X e}, (6.6)
1=k

k=1
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so that, after some manipulation, (6.5) gives

FTX.+ X.F. + ZI;X,G,GZXe + HTH,

= —kZ{HZ,', - X.GaxMi}{Her — My GTX.} (6.7)
=1

=Y {X.Gar(o}] ~ MiM{)GT. X} < 0.
k=1

Therefore, if X, > 0 satisfies (6.3), with P, given by (6.6), then the uncertain system satisfies
the main hypothesis of Lemma 2.1.

The next step in the derivation of the robust control is to determine the needed mod-
ifications to the design equations (4.28) and (4.44) so that X, > 0 satisfies (6.3), with P,
given by (6.6). By examination of (6.3) and (6.6), and of the definitions of G, and H, given
in (4.34), it is easily seen that

;lz-X,G,GfX, +HTH, 4+ P, = EI?X,G,+GCT+X., +HTH,,,

where
Gy = ( %‘ L° ) Gy = (G a01G, ... a0,G,), (6.8a)
H
H., = ( 11(’)+ _B(:T x. ) H, = }{‘ . (6.8b)
H,

Hence, the robust design is obtained by replacing the triple (A,G, H) with the triple
(Ao, G4+, Hy) in the design equations (4.28) and (4.44) for the basic design. Using the
augmented matrices G, and H, in the design equations is similar to introducing additional
disturbance inputs and regulated outputs into the problem. Therefore, the smallest value
of a for which the design equations will have a solution will be larger for the robust design
than for the basic design.

Recall that, in the basic design, the controller dynamics depend on an assumed worst
disturbance, and hence on the matrix G. Therefore, replacing G with G, in the design
affects not only G., but also Fg,.
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The final step in deriving the robust design is to establish that (F,, H,) is a detectable
pair. Note that Lemma 4.2, applied to the modified design, establishes that (Fg., H.,) is
a detectable pair, provided (Ao, H) is a detectable pair, Aopq = Ag4a-3G+GLX — SX is
Hurwitz, and Age + SX has no jw-axis eigenvalues. Let v # 0 satisfy

Fv=M, Huv=0. (6.9)

The detectability proof consists of proving that Re(A) < 0. Multiply (6.7) on the left by v*
and on the right by v to obtain

2Re(\)v* Xev + %v‘XCGerXev + Y v {HY - X.G Mi}{Hox — MTGT X, }v
k=1

(6.10)
+Y v {X.Gu (0} ] - MiM])GL X, }v < 0.
k=1
Since every term in (6.10) but the first is nonnegative, this implies
Re(A\)v*X.v <0. (6.11)

If inequality holds in (6.11), then v*X.v > 0 and Re(A) < 0. If equality holds, then every

term in (6.10) is zero. This gives
{Ho - MIGLX.}v=0, ke{1,2,...,r}. (6.12)

But, since (6.2) implies 021 — M; M is nonsingular, (6.10) also gives GT, X,v = 0, so that
(6.12) gives
Hyv=0, ke{l,2,...,r}. (6.13)

Hence, (6.4) and (6.9) give Foev = Av, while (6.8b) and (6.9) give HT, H.yv = 0. Since
(Foey Hes) is a detectable pair, this implies Re()\) < 0.

Theorem 6.1 summarizes the result. The following definitions are convenient:
AOac = Dla.g (AOa, Aoa, ey Aoa), | (614(1)
1
Aoa = Ao + ¥G+GIX - SX, (6.14b)
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Ace = Aovac + 1.BB X., (6.14c)
Gc+ = IcG+. (6.14d)
ICT =[IT... IJeR™™

Theorem 6.1. Suppose the plant (2.1), with decentralized control structure given by (4.26),

has constant structured uncertainty (6.1), with
Amax {MiMT} < 0x, k€{1,2,...,r}.
Define G, and H, as in (6.8), and. let X > 0 satisfy
ATX + XAy + %X&GIX - XSX+H{H, =0, (6.15)
and W > 0 satisfy the Riccati-like algebraic eéuation

WAL + AW + —WX.B.BTX.W - WCTCW
@ (6.16)

+G¢+G?;+ + (W - WD)CZCc(W - WD) =0.

Suppose also that (Ao, H) is a detectable pair, Aoa is Hurwitz, and Aoq + SX has no eigen-

values on the jw-axis. Then the decentralized control law
& = (Aoa — LiCi)&i + Liyi, i€ {1,2,...,q},

ul'="B|‘TX€l" i€{1,2,...,Q},
with L; = W;CT, i € {1,2,...,q}, robustly stabilizes the uncertain plant, and the closed-
loop transfer-function matrix T'(s) from w, to z satisfies

1Tl £ .

There is no explicit restriction on the size of the bounds o in Theorem 6.1. However, the
larger the oy’s are taken to be, the larger a will need to be to obtain solutions to the design
equations (6.15) and (6.16); if the o;’s are taken to be too large, no solutions may exist at

all. If bounds o, on the size of the uncertainty are known accurately, then these bounds
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should be incorporated in G, (or H,), and hence in the design equations. If the resulting
design equations can be solved, then the design can tolerate uncertainties of the specified
size. On the other hand, if uncertainty bounds are not accurately known, the choice of the
ox’s may be used to reflect a relative weighting to be given by the design to disturbance
attenuation and robustness considerations. Since changing the values of the o;’s in this case
is equivalent to rescaling the Gi's and H}’s while holding the o4’s fixed, it may simplify the
design procedure to set

1
Uk——a-, ke {1,2,...,1‘},

and scale the G.’s and H’s with respect to G and H so as to reflect the tradeoff between
robustness and disturbance attenuation. Then, the size of the uncertainty which may be
tolerated is determined indirectly by finding the smallest value of a for which the design

equations can be solved. This variation on the above design is given in Theorem 6.2.

Theorem 6.2. Suppose the plant (2.1), with decentralized control structure defined by
(4.26), has constant structured uncertainty (6.1), with

Amax{MiMT} < 212-, ke{l,2,...,r}.

Define G4 = (G Gy ...G,) and HY = (HT HT...HT). Let X > 0 satisfy (6.15) and let
W > 0 satisfy the Riccati-like algebraic equation (6.16). Suppose also that (Ag, H) is a
detectable pair, Ay, is Hurwitz, and Ao, + SX has no eigenvalues on the jw-axis. Then the

decentralized control law

£i=(AOa-LiCi)£i+Liyi7 t € {1’2a-°-,q}s

u; = -B,-TXE,', i€ {1,2,. .. ,q},

with L; = W;CT, 1 € {1,2,...,q}, robustly stabilizes the uncertain plant, and the closed-

loop transfer-function matrix T(s) from w, to z satisfies

ITlleo < ex.
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6.1.2 Example

This section presents an example of robust state-feedback control design. The example
illustrates the difference between the robust designs of Theorems 6.1 and 6.2, and the use
of the parameter o, to determine the largest uncertainty in a certain class for which the
design guarantees stability and the predetermined H,-norm bound. For these purposes, a.
state-feedback example is adequate, and has the advantage of avoiding the complication of
decentralized design, already studied in Section 4.

Consider nominal plant

=2 1 1 1 00 1
3 0 0 2 10 0
Ao = -1 0 -2 -3 B = 0 0 G= 1 H=(10 -10),

-2 -1 2 -1 01 0

and introduce the structured uncertainty
A = Ao + G M H,,

where M, is an unknown scalar, and G, and H; are given by

0
G=|g|m=0010. (6.17)

1

This represents an uncertainty in the (4,3) element of the A-matrix of the plant. As in the
decentralized design of Theorem 6.1, the robust state-feedback control is found by doing a
basic design, but with the augmented matrices G, and H, in place of G and H, where in

this case

1 0
1o o {10 =10
Ge=11 o ’H+‘(oo 10)'

0 ao

The state-feedback design equation becomes

1
ATX + X Ao + ¥XG+GIX -XSX +H{H, =0,
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or equivalently
ATX + XAy + %XGGTX +0lXG,GTX - XSX + HTH + HTH, = 0. (6.18)

In the second quadratic term of (6.18), the a’s cancel out, allowing computation of a solution
- for a = co. By setting a@ = oo and solving (6.18) with various values of o, one may determine
a largest plant perturbation (corresponding with |M,| = ¢,_,,) for which at least stability
can be guaranteed using the robust state-feedback design. Then, given any oy < oy,,,,
one may determine a number o, such that for any a > ani, there exists an appropriate
solution of (6.18), and therefore an associated design guaranteeing the robust H.-norm
bound ||T||s = «a for the closed-loop system. Table 6.1 gives the values of amin, to the nearest

0.1, computed for various values of o,, and shows clearly the tradeoff between robustness and

optimal disturbance rejection. In this example, the largest admissible plant perturbation is

Table 6.1: Approximate minimum H-norm bounds for various plant uncertainties.

o0y 10 12 14 16 1.8
Omin (1.4 15 16 1.8 3.0

given approximately by oy_,, = 1.8.
|
|

If o = a7, as in Theorem 6.2, then for G, and H, given by (6.17) the design equation

becomes

1
ATX + XA+ ?X(GGT +GiGT)X — XSX + HTH + HTH, = 0. (6.19)
‘ The approximate smallest value of a for which (6.19) has an appropriate solution is amin =
|
|
|

1.4, which corresponds with a plant uncertainty bound oy = 0.71.

6.2 Computation of Families of H,, Control Laws

6.2.1 Introduction

Given a set of control design requirements, a designer may wish to characterize a family

of control laws which satisfy these requirements. The characterization of a family of such
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admissible control laws may permit the selection of a particular controller with additional
desirable properties.

Youla et al. [67] give a parameterization of all stabilizing controllers in terms of sta-
ble coprime factorizations of the plant and a baseline stabilizing controller. The parameter
space consists of the set of all stable proper transfer-function matrices Q(s) of appropri-
ate dimensions. Doyle et al. [1] and Glover a'nd Doyle [47] give a parameterization of all
stabilizing controllers which provide the H-norm bound ||T|lc £ o for the closed-loop
transfer-function matrix T(s). The parameter space consists of the set of all stable proper
transfer-function matrices Q(s) of appropriate dimensions satisfying ||Q||oc < a. The con-
troller parameterizations given in [67], (1], and [47] have the advantage of spanning the
set of all controllers with the desired (stabilization or disturbance-attenuation) properties.
Unfortunately, they have two substantial disadvantages: First, they include controllers of
arbitrarily high order; second, they do not retain the structural properties of the baseline
controller, such as strict properness or decentralized control structure. Restricting the order
of the parameter Q(s) also bounds the order of the controller; however, structural properties
of the baseline controller are still not retained.

Based on the parameterization of Youla, [68] gives a characterization of all stabilizing
decentralized control laws. The approach is simply to restrict the Youla parameter Q(s) to
values which give control laws with block-diagonal structure. This restriction is shown to be
equivalent to a set of matrix algebraic constraints on the parameter. Unfortunately, there
is no clear way of selecting the parameter to satisfy these constraints. Even if appropriate
parameters could be found, the corresponding controllers would still not retain the order or
strict properness of the baseline controller.

This section gives a characterization of families of H-suboptimal control laws starting
from known baseline designs. The derivation of the baseline controllers in each case has been
accomplished in Section 4 by fixing a controller structure and selecting controller parameters

such that a certain algebraic Riccati equation (ARE), with closed-loop system matrices as

coefficients, has a positive semi-definite solution. In this paper, families of controllers are
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derived by retaining the baseline controller structure and finding controller parameters such
that a relaxed sufficieny condition, in the form of an algebraic Riccati inequality, is satisfied.
Suitable controller parameters are found by exploiting a convexity property of a matrix
Riccati function.

First, a family of state-feedback gains all of which guarantee the same H.-norm bound
is given. Then, a family of observer-based output-feedback controllers is given, based on
some member of the state-feedback family. Each member of the output-feedback family
has the same observer structure; therefore, each is strictly proper and is of the same order
as the plant. Finally, a family of decentralized control laws is derived in the decentralized
case, where the baseline controller contains a full-order observer of the plant in each control
channel. Again, the (strictly proper) observer structure and the controller order are retained
by each member of the family.

No claim is made that the families of controllers given here include every controller with
the desired characteristics; however, the families are easily computed, and ev~lude all non-

strictly proper and high-order controllers.

6.2.2 The matrix Riccati function

This section gives some properties of a matrix Riccati function related to the computation
of families of H-suboptimal control laws. The matrix Riccati function is studied in greater
detail in [10].

Define the matrix Riccati function R on the space of symmetric matrices by
RX)=FTX+XF+ le-XGGTX + HTH. (6.20)

Then the following property is easily verified:
Lemma 6.1. Suppose F is Hurwitz and R(X) = 0. Then X > 0.

Proof. Write out R(X) =0 as

R(X)=FTX + XF + %XGGTX +HTH =0. (6.21)
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Define P = a~2XGGTX + HTH. Then (6.21) becomes FTX + XF+ P = 0, with F Hurwitz
and P > 0. By inertia theorems of the Lyaunov equation (see, for example, {20}, X >0 O
The following lemma gives a matrix convexity property for R. This property does not

require that F be Hurwitz, but only that the quadratic coefficient be positive semi-definite.

Lemma 6.2. Fori € {1,...,r}, let X; be symmetric matrices and j3; be nonnegative scalars
satisfying £7_,5; = 1. Then
R {Zﬂixi)} < Y B:R(X;). (6.22)
=1 =1
Proof: Compute

R {z'jﬂ.-x,.} _FT {iﬂ.-x,-} {Zﬂ, } Ft— {Zﬂ, } GGT {}:ﬂ. } +HTH

i=1 1=1 =1 i=1 1=1

= Zﬂ.(FTX +X:F+HTH)+ zzzﬂ.ﬂ, X.GG"X;

=1 t=1j5=1

= YAR(X) - 53 BXGGTX, {zﬂ,} 3O BB XGETX;

i=1 =1 i=1 i=13=1

= SHRX) - 5 & LABXGCT(Xi - X;)

=1 =1 j=1

r =1

= )':ﬂ.-R(X,-) - Z Y BiB; X:GGT(X; — X;)

=1 =1 ;=1

+5 3 T ABXCCT(X; - X)

=1 j=14¢

= iﬂeR(Xe) - Z Z BiB; X:GGT (X - X;)

=1 i=1 j=1

1 BiB; X;GGT(X; - X;)

1

1 r

2
a i=1 j

= Zr:ﬂf Xi)-= Z Z BiBi(X: — X;)GGT(X; - X;).

=1 j=1

(6.23)
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Therefore, R {E]_; /;R(X:)} < D_B:R(X;), the desired result. o
The following corollary iden‘?ilﬁes a class of easily computable matrices Z > 0 for which
R(Z)<O:
Lemma 6.3. Let Z be any convex combination of matrices X; > 0, : € {1,2,...,r},
satisfying R(X;) = 0.
Then Z > 0 satisfies
R(Z)<o0. (6.24)

Proof Express Z as
Z =) BX,

=1

where £7_,5; = 1. From Lemma 6.1 Z > 0, and from Lemma 6.2,

R(Z)=R {ijﬂ.-x,-} < S BR(X:) = 0.

i=1 i=1

6.2.3 A family of state-feedback controls

Note that, for the state-feedback case, any matrix X > 0 satisfying (4.8) is suitable for
computing the control ¥ = —BTXz. In fact, this control would still be suitable if the

left-hand side of (4.8) were negative semi-definite; that is, any control law given by
u=-BTZz, (6.25)

ATZ+ZA+ %zaa"z —-ZBBTZ+HTH<0, Z>0 (6.26)

provides stability and the Hu,-norm bound a for the closed-loop system.
A given solution X > 0 of (4.8) will be called the “baseline” solution. Given one such
solution, a family of matrices Z > 0 satisfying (6.26), and hence a family of stabilizing state-

feedback control laws which guarantee the closed-loop bound ||T||e, < @, is characterized.
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Take X > 0 to be the baseline solution of (4.8). Given this fixed matrix X, define the

matrix Riccati function R by
R(M)=FTM + MF + %MGGT M +(XBBTX + HTH), (6.27)

where F = A — BBT X is Hurwitz. By Lemma 6.1, each symmetric solution of R(X;) = 0
satisfies X; > 0. Let Z > 0 be any convex combination of solutions X; of R(X;) = 0. By
Lemma §.3,

R(Z)= FTZ 4+ ZF + %chTz +(XBBTX + HTH) <0. (6.28)
To see that Z > 0 satisfies (6.26), rearrange (6.28) to obtain
ATZ+ZA+ EI;ZGGTZ - ZBBTZ+ HTH
< -ZBBTZ + ZBBTX + XBBTZ - XBBTX

=—(Z - X)BBT(Z~ X) <.

The following theorem summarizes the characterization of a family of state-feedback H,,

controls:

Theorem 6.3. Suppose F = A — BBTX, where X > 0 solves the state-feedback design
ARE (4.8). Let Z be any convex combination of solutions X; of the ARE

FTX, + X:F + al-z-X;GGTXi +(XBBTX + HTH) = 0. (6.29)
Then, Fz = A — BBTZ is Hurwitz, and the state-feedback control law
u=-BTZz

guarantees that

T(s) = ( s ) (sI - Fz)~'G

satisfies ||T|| < a.
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6.2.4 A family of output-feedback controls

The approach of Theorem 6.3 extends to the output-feedback case: Start with Z > 0 a

convex combination of solutions X; of (6.29). Define
M=ATZ+ZA+ %zc:GTz - ZBBTZ + HTH. (6.30)

By Lemma 6.3, N; £ 0. The following theorem now gives a family of observers for each

state-feedback H,, control characterized by such a Z.

Theorem 6.4. Assume A + a~>GG¥Z — BB Z is Hurwitz. Let Y > 0 satisfy
AY + YAT + -O%YHTHY -YCTCY + GGT =0, (6.31)
with (A — YCTC) Hurwitz. Let V > 0 be any convex combination of solutions Y; of
(A-YCTOY: +Yi(A-YCIC)T + EI;Y.'(HTH - N)Y; 4+ (YCTCY + GGT) =0 (6.32)

satisfying omax{V 2} < a?, and define the observer gain L by

L=(I-a?VZ)y'VCT = (V™' - a"22)"'CT. (6.33)
Then, the controller
: 1
é = (A +=GGTZ - BB'Z - Lc) ¢+ Ly, (6.34a)
u=—BTZ¢, (6.34b)

stabilizes the plant (2.1), and provides the closed-loop Hu,-norm bound ||T || £ .

Proof First note that, since N; <0, (HTH — N;) 2 0. By Lemma 6.3,
1
(A-YCTCW +V(A-YCTO)T + ;V(HTH -~ M)V +(YCTCY + GGT) < 0. (6.35)
Algebraic manipulations similar to those in the proof of Theorem 3.1 give

1
AV + VAT + ZVHTHV —VCTCV 4+ GGT < évmv. (6.36)
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Pre- and post-multiply (6.36) by aV ~! to obtain
(@®V-1) + AT(a®V~!) + HTH — o*C7C + -al—z(a"’V")GGT(a’V“) < M. (6.37)

Subtract (6.30) from (6.37) to obtain
(@®V-! — 2)A + AT(a®V~! - Z) - &*CTC
1 _ 1 (6.38)
+a-2-(azv-')GGT(a2v-1) +ZBBTZ - ;,-ZGGTZ <0.
Define
X, = (a?V-1 = 2) >0, (6.39)

and rewrite (6.38) as
X, A+ ATX, — a?CTC + ;1,-()(l + Z)GGT(X, + Z) + ZBBTZ — ;lz-ZGGTZ <0. (6.40)

Now define N; < 0 as the left-hand side of (6.40); rearranging terms, (6.40) becomes
N, = Xi(A+a 2GGTZ - LC)+ (A+ a~*GGTZ - LC) X,
(6.41)
20T 1 T T
With the controller (6.34), the closed-loop system transformed to error coordinates is de-

scribed by

r_(A-BB"Z ~BBTZ a-(C¢ °Yy_( H 0 )
=\ a?GGTZ A+a*GGTZ-LC )'7*~\ -G L )'"*T\ -BTZ -BTZ )"

Define

zZ 0
Xe—(o XI)ZO,

and consider the quantity
X.Fo+ FT X+ 5 X.G.GTX. + HTH,. (6.42)

It can now be verified that the two off-diagonal blocks of (6.42) are identically zero, and that
the diagonal blocks give N, and N,, as defined in (6.30) and (6.41); therefore,

X.F+ FTX, + =X.G.GTX. +HTH,= [ ™ 0 ) <o
o? e 0 Nz
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The proof of detectability of (F., H.) is routine, and proceeds exactly as that in Section 4.4.
Therefore, by Lemma 4.1, F, is Hurwitz, and T(s) = H.(sI — F.)™'G, satisfies ||T||o <

a

Recall that (48] and [47] give parameterizations of the set of all output-feedback controllers
guaranteeing the Ho-norm bound a. Some of these controllers are of high order, and are
therefore undesirable. By contrast, Theorem 6.4 characterizes a family of controllers with

realizations all of the same order as the plant, which all guarantee the H-norm bound «a.

6.2.5 A family of decen.ralized controls

A generalization of Theorem 6.4 to the decentralized case cannot be readily obtained.
Manipulations like those in the proof of Theorem 6.4 applied to the Riccati-like (decentral-
ized) design equation do not give the desired result. Therefore, while Theorem 6.4 gives a
family of observer designs for each state-feedback design, the next theorem gives only one
decentralized observer design for each state-feedback design of Theorem 6.3. The definitions
of Z and N, assumed in the theorem statement are as in Section 6.2.4. For the remainder

of this section, every occurrence of X in (4.35) is replaced by Z.

Theorem 6.5. Assume A + a~2*GGTZ — BBTZ is Hurwitz and A + a~*GGTZ has no

jw-axis eigenvalues. Let W > 0 satisfy the Riccati-like algebraic equation

AW + WAT 4 ﬁwchchTxcw —WCTCW +G.GT + (W — Wp)CTC(W — Wp) =0,

. (6.43)
and compute L. = Diag(L, L,,...,L,) as
L.=WpCT. (6.44)
Then, the decentralized control law
bi=(A+ %GG‘TZ - BBTZ — LiC)& + Liyi, i€{1,2,...,q}, (6.45a)
w, =-BTz¢, ie{1,2,...,q), (6.45b)
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stabilizes the plant (2.1), with decentralized control structure given by (4.26), and provides
the closed-loop H,-norm bound ||T||e < a.

Proof Using (6.44), rewrite (6.43) as
(A, — LCIW + W(A. — L.C)T + z!17wxc3c13;fx,:w +GGT+LLT=0.  (6.46)

Pre- and post-multiply (6.46) by aW~! to obtain
(a*W-1) (A ~ L.C.) + (A. — LC.)(®W) + X.B.BT X¢
. (6.47)
+;;(a2w-1)(ccG3' + L LT) (W) = 0.
With controllers (6.45), the closed-loop system is described by the matrices

r_[A-BB'2Z -BBIZ,\ . (G oY, _( H 0
c=\ o2G.GTZ A.-L.C. |'° =\ -G. L. )=\ -BTZ -B7Z, )"

(6.48)
where (6.48) differs from (4.36) only in that X has been replaced everywhere by Z. Define

z 0
Xe= ( 0 a?W-t ) 20’
and consider the quantity
X.F.+FTX, + %X,G,G';"Xe + HTH,. (6.49)
The two off-diagonal blocks of (6.49) are identically zero. The upper-left block of (6.49) gives

N, defined in (6.30). The lower-right block is zero by (6.47). Therefore,

0 0
By Lemma 4.2, (F., H.) is a detectable pair; therefore, by Lemma 4.1, the closed-loop system

X.F.+FTX. + %X,G,H,TX, +HTH, = ( N0 ) <0.

is stable, and the closed-loop transfer-function matrix T'(s) = H.(sI — F.)"'G. satisfies
1Tl < e o

Similar to Theorem 6.4 in the centralized case, Theorem 6.5 gives a family of decen-
tralized control laws which guarantee a predetermined H.-norm bound for the closed-loop
system, and which are characterized by controllers of the same order as the plant. Unlike
the centralized case, the family of decentralized controls consists of only a single controller

associated with each member of a family of state-feedback controls.
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6.2.6 Conclusions

A convexity property of a certain matrix Riccati function is used to characterize families
of controllers which provide stability and H, disturbance attenuation. This characterization
has two significant advantages over those given [67], [48], and [47]: First, it includes families
of decentralized control laws. Second, it excludes controllers of high order. It is possible
that some controllers in the families developed here could have realizations of lower order
than that of the corresponding baseline controller; hence, a criterion for choosing among the
controllers could be the order of their minimal realizations. How to choose from the family

a controller with a lower-oider minimal realization is a problem for future research.

6.3 H-Infinity Control in Discrete Time

In this section wé develop state-feedback control laws that provide disturbance attenua-
tion with a uniform H.-norm bound for discrete systems using state-feedback and output-
feedback controls and also discuss methods of computing H., norms of discrete-time systems.
For completeness, we include known results regarding H,,-norm bounds of discrete-time sys-
tems and results on characterizing state-feedback control laws that guarantee certain H,

norm bounds.

6.3.1 Preliminary results

We consider the system

Ziy1 = Az + Bup + Gy (6.50a)

Hzr
(e = [ uk" ] (6.500)

where u is the control input, { is the regulated output and w is a square-summable dis-
turbance input. We also make the assumption that A is invertible, and that the triple
(A, B, H] is stabilizable and detectable. Our development will make constant reference to

the discrete-time algebraic Riccati equation (DARE) of the general form
P=R +ATP(I1+ R,P)'A (6.51)
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where, in general, R, and R; are symmetric but not necessarily sign-definite, as opposed to

LQ control with R; < 0 and R; > 0. We associate with this equation, the symplectic matrix

$ = A+ RzA-TRl —RQA-T
=| -aTr, AT

The following Lemma relates the stabilizing solution of (6.51) with the eigenvalues of $ [69].

Lemma 6.4. If § has no eigenvalues on the unit circle and [A, R;] is stabilizable, then
equation (6.51) has a unique stabilizing solution P (i.e., such that the spectrum of A —

R,A-T(P — R,)) lies in the open unit disk.) O

The results developed here are directly related to that of finding a controller that achieves
desired disturbance attenuation for the discrete system (6.50). This problem can be posed

as one of choosing a control strategy that minimizes cost functional

J(u)=sup{%:w€&,w;&0}. (6.52)

Alternatively, we may define the cost functional

V =<3 = 72 llwllz-

Then V < 0 for all w € Iy, if and only if ||T(2)||cc < 7, where T'(z) the transfer function from
w to . In this case, we say that the system has a disturbance attenuation of 4. It has been
shown in [40] that the minimizing control is a linear function of the state. We may therefore
restrict consideration to linear closed-loop systems. The functional (6.52) is then equivalent
to the H, norm of the system, and we may, therefore, formulate the optimal disturbance
rejection problem as follows: Determine the stabilizing state-feedback control u = Kaz

such that for all stabilizing K
| Tminlloo < I TeMloo

where

Tmin(2) = [ Kl‘i ] (21 = A= BKmin)™'G, Tc(z) = [ [Ii ] (2 - A- BK)™'G.
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Note that the H., norm is considered here to be the “sup norm” of essentially bounded
functions on the unit circle with analytic extension to the region outside the unit disk.

The next result identifies conditions under which this may be accomplished using state

feedback [40].

Theorem 6.8. Suppose that the triple [A, B, H] is stabilizable and detectable, and that

there exists a stabilizing solution P of
P=HTH + ATP [1 +(BBT - %GGT)P] " A (6.53)
with v > 0 and the side condition
I - GTPG > 0. (6.54)

Then the control u = Kz, with

-1

K=-BTP|I+(BBT - %GGT)P A (6.55)
guarantees that
a)the matrix (A + BK) is stable,

b)the matrix [A + (BBT — —lz-GGT)A"T(P — HT H)) is stable, and
v

¢) |Te|lo < v, where T.(2) = [ g ] (zI - A- BK)™'G.

o

A related result is found in [70]. In the setting of “perfect information,” used in [70],
however, the control was allowed to depend on both the state and the disturbance. The
disturbance, however, is generally not known.

The results of [40] show that the optimal solution to the disturbance-attenuation problem
exists as a state-feedback control. That is, consider a decreasing sequence {v;,t € N’} such

that for each «;, conditions (6.53) and (6.54) hold. This sequence, being bounded away from
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zero, will have a limit, which we call 4min. The controller gain K given in (6.55) also has a
limit [40], Kmin, and we have

“Ymin = || Tomin | oo (6.56)
where

Toin(z) = [ Kl,: ] (21 = A — BKumin)~'G. (6.57)

In the sequel, Ymin Will denote the minimal achievable H,,-norm bound using state feedback.
The following Lemma, which is very similar to the previous result, is useful in designing

suboptimal H,-norm-bounding controllers.

Lemma 6.5. Suppose [E, H] is detectable and for somey >0, 6 > 0, and P > 0 we have

-1
P> 61—2HTH +ETP (1 - %GGTP) E (6.58)

~*1 - GTPG > 0. (6.59)
Then for T(z) = H(zI - E)"'G
a)E is stable, and
b)IIT]les < 6.

Proof. For completeness we prove this result; it follows in spirit the continuous case and the

case where (6.58) is an equality.

a) Condition (6.58) implies that there exists N < 0 such that

= %HTH + ETPE— P+ MTS-'M (6.60)

where M = GTPE, and S = 421 - GT PG. Using condition (6.59), the fact that P > 0,
and the detectability of (E, H), we verify the stability of E by standard results on the

discrete Lyapunov equation.

b) Let

= FEzi + Guy, 2, =0,w €l
- Hz, (6.61)
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Define
1
Vs = 5ICIE ~ 7ol (662)

We are done if we can show that V; < 0 for all w € I3, since this will imply that
CNE - 7282 < flwll} < 0 (6.63)
for all w € Iy, thus giving the attenuation bound. Since E is stable, and z, =0

I Pz, = -Z(z{HP::kH — z1 Pz;) = 0; (6.64)
k=0

thus, using (6.64)
Vi = Vs—alPz,

o0
1
= E;{QT G = Y*wlwy + 21, P2y — 21 Pz,
k=0

gy |
= Eﬁ(H:rk)T(Hl‘k) — v*wiwe + (Ezx + Gui)T P(Ezi + Gui) — 7 Py
k=0

© (1
= Yo {E;HTH + ETPE - P} 24 — wl {v*] - GT PG}w, + 20T GT PEz,

k=0

= Y zI{N - MTS"'M}z; — wi {S}ws + 2wl Mz,
k=0

by (6.58). Let wj = S~ Mz, introduce w§ = w; — wj and note that

wliSw, = [wp — wi]T S[wi — wi] + 2wf Swy — wiT Swi
= wiTSw] + 2wl Swi — wiT Sw}.

Then V; becomes

o0
Vi = Y ziNzi — {wiT Sw} + 2wl Sw} — wiTSwi} + 2f Mw} + 22T MTw,
k=0

= ?__:ozZN:zk — wiTSw} + 2wl (Mz, — Sw}) — wiT (Mzi — Sw})

o0
= Y zINz — wiTSw <0
k=0
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for all w € I3, since w} = S~'Mz;, N<0and S > 0. o
Thus, if we can find any P > 0 that satisfies the conditions of Lemma 6.5, then the
stability of the system is guaranteed, and the uniform H.-norm bound holds. If instead of

the inequality we have equality, then for § = 1 we have the discrete equivalent of [71]:
Corollary 6.1. Suppose [E, H] is detectable and for some P > 0 and v > 0 we have
i) .
P=HTH+ETP (1 - %GGTP) E

I -GTPG > 0.

Then for T(z) = H(zI - E)™'G
a) E is stable, and

DT o < -

Remark 6.1. If P > 0 then we can remove the detectability condition.

Corollary 6.1 provides an iterative means of computing a tight upper bound on the H,
norm, with each successive iteration providing a better estimate of the actual value. To
determine the H,, norm, we choose ¥ > 0, and then test to see if the conditions of Corollary
6.1 are met. This procedure is then repeated with a lower value of v to find a new upper
bound. Determining the actual H,, norm involves a search for 4,, where

-1
¥, == inf {7 >0:3p>0suchthat P= HTH + ETP (1 - %GGTP) E>0

andv?*I - GTPG > 0}

so that
ITlleo = (2] — E)™'Glloo = 7.
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This is fully analogous to the algorithms proposed for the continuous case [71]. A more effi-
cient algorithm for computing the H,, norm in the discrete case is described in Section 6.3.4.

We also note for future reference the following two well known facts.
Lemma 6.6. If E is stable and P = ETPE + S, for some S > 0, then P > 0.
Proof Since E is stable then we can write P = Z2(ET)*SE* > 0. 0

Lemma 6.7. If (A, H) is detectable, then for any gain K, (E, H) is detectable, where
E=A+BK,and H =[HT KT|T.

Proof Let A be an eigenvalue of E corresponding to an unobservable mode of (E, H); that

is, there exists a vector v # 0 such that

Ev = \v (6.65a)

and

Av=0. (6.65b)

The proof consists in showing that |A\| < 1. Equation (6.65b) implies that Hv = 0, and
Kv = 0, which in turn implies that Ev = (A + BK)v = Av = Av, and thus corresponds to
an unobservable mode of (A, H). Since (A, H) is detectable, |A] < 1. mi

Thus, detectability is not lost under the proposed state-feedback structure and augmented

output matrix.

6.3.2 Properties of Riccati operators

We now introduce a discrete-time Riccati operator, analogous to that for the continuous
problem introduced in {10], establish its convexity properties, and proceed to find a set of
state-feedback laws that guarantee H-norm bounds. The general approach is based on the
discrete Algebraic Riccati inequality (DARI) of Lemma 6.5.

For a fixed, positive scalar v, and matrices E, G, H, and H, we introduce over the field

S={XeR"*:X=XT} the two domains

Si={X €S: (v - GTXG)" exists} (6.66)




S,={X€S:(v*I-GTXG) > 0}, (6.67)

and define the operators DR: Sy — S, and R: §; — S where

-1
DR(X) = HTH-X+ETX [1 - %GGTX] E

(6.68)
- HTH-X+ET [1 - ;lz-XGGT] " xE
and »
R(X)=HTH-X+ATX [1 + (BBT - %GGT) x] A. (6.69)
Note that when U = -71—2GGT, E =F,, and B = [HTKT], where
K,=—BTX, [1 + (BBT - %GGT) x,] T a (6.70)
F,= A+ BK,, (6.71)
and X, is the stabilizing solution of R(X) = 0, then
DR(X)=HTH + KTK,+ FTX(I-UX)™'F,- X (6.72)
RX)=HTH+KIK, + FTX(I-UX)'F,- X (6.73)
where o
K.=—BTX [1 + (BBT - %GGT) x] A (6.74)
F. = A+ BK.. (6.75)

Note also that if R(X) = 0 then X solves equation (6.53), and similarly, for this choice of E
and H,DR(X,) = R(X,).

We first explore general properties of the tw> Riccati operators and then proceed to define
and demostrate a convexity property of the Riccati operator DR(X). The first property
relates to the monotonicity of the stabilizing solution of the Riccati equation R(P) = 0 with
respect to v. The next three properties relate to the solutions of DR(M) = 0.

As usual, given X(v) € R**™, the matrix %— is defined if all the partials exist.
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Theorem 6.7. If ¥ > 4yn and P is the stabilizing solution of

-1
P=HTH + ATP [I + (BBT _ %GGT) P] A,

P . . . . . .
then — exists and is a negative semidefinite matrix.

0
Proof. zet 11 = v+ ¢ for € > 0, where without loss of generality we can let ¢ be small enough
that ¥, = ¥ — € > Yqin. Let a; = 1/97 and a; = 1/42. and let P, and P, be the stabilizing
solutions of
Fi = HTH + ATA{I+ (BBT - 0,GGT)P,]'A
P, = HTH + ATPR)[I 4+ (BBT - a,GGT)P,] 1 A.
Then
AP=P - P,

= AT{P,(I + (BBT — &;GGT)P||! - [I + P,(BBT — a,GGT)|"' B,} A
= AT(I + Py(BBT — a;,GGT)]"{[I + P(BBT - a,GGT))P, — P,[I + (BBT — 0,GGT)Py]}
x[I + (BBT — a,GGT)P,|-' A

= ETAPE, + AaDTD,
where Aa = ay — oy, E; = [[ + (BBT — o;GGT)P)-'A, D; = GTE;, for i = 1,2. Thus

AP AP
e = H (55) B+ DID:
Taking the limit as ¢ — 0, we have P, - P, P, - P, E, - E, E; —» E, D; —» D and

D2 — D; therefore,
oP oP
—_— ET T .
oL (_aa) E+ D™D

But by Theorem 6.6, E is stable and so by Lemma 6.6, %g 2> 0 and thus
0P _0Pda_oP( 2\ _
& Bady dal\ )=

Remark 6.2: Theorem 6.7 tells us that if vy > ¥2 > Ymin, then P(m) < P(72) € P(Yemin)-

a

This result could be strengthened to strict monotonicity if controllability conditions are

imposed.
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Remark 6.3: If P is chosen as the anti-stabilizing solution, i.e., E~! is stable, then P(v) is

monotonically increasing, i.e., for 91 > 72 > Ymin, then P(71) 2 P(v2) 2 P(Ymin)-
Lemma 6.8. If E is a stability matrix, M € S, and DR(M) =0, then M > 0.
Proof. Suppose DR(M) =0 i.e.,

DR(M)=HTH - M + ETME + ETMG(+*I - GTMG)'GTME = 0;

thus,
ETME - M =—-HTH - ETMG(*I - GTMG)'GTME < 0.

Since E is a stability matrix, then by Lemma 6.6, M > 0. (]

Theorem 6.8. Suppose M, and M, are the “stabilizing” and “anti-stabilizing” solutions of

DR(M) = 0. If M is any other matrix with DR(M) = 0, then
M, <M< M,

-1
Proof. M, is the stabilizing solution if F,, = (I - %GGTM,) E has p(F,,) < 1. Under

this condition, we have

1
E™M, (1 - %GGTM,) E=FT (I - %M,GGT) M,F,,.

Introduce again U = %GGT; then
DR(M,)=0=HTH + FIM,F,, — M, — FEM,UM,F,,. (6.76)

Note also that the expression below can be manipulated as follows:

ETM(I - UM)™E — FIMF,,
= ET{(M(I =UM)™" —(I - M,U)"*M(I —-UM,)"'} E
= ET(I - M,U)"{(I - M,U)M(I = UM)~(I - UM,) = M}(I - UM,)E

= ET(I - M,U) {(M - M,UM, + (M — M,)G(+*I - GTMG)™!
GT(M — M,) - M)} (I - UM,)"'E
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and so
ETM(I - UM)'E - F};MFO,

(6.77)
= FL{(M — M)G(xI - GTMG)™\GT(M ~ M,) - M,UM,s} Fo.

Thus, since M is a solution, we have in anaogy with (6.76), and using (6.77)
DR(M)=0=HTH+ ETM(I-UM)'E-M
=HTH 4+ FIMF,,— M + ETM(I -UM)'E - FIMF,,

= HTH + FIMF,, —~ M — FIM,UM,F,,
+FI(M - M,)G(+*I — GTMG)'GT(M ~ M,)F,,

= DR(M,) + FL(M = M)Foy + M, - M
+FIL(M — M,)G(y*I — GTMG)"'GT(M — M,)F.,,,

and so
0 = DR(M)- DR(M,)

FI(M — M,)F,, — (M - M,)
+FT(M — M,)G(+*I — GTMG)~'GT(M — M,)F,,.

Since F,, is stable, and FL(M — M,)F,, — (M — M,) < 0, Lemma 6.6 gives M — M, > 0 or

M, < M. Similarly, for the upper bound, we can write, (with p(Fo,') < 1)

DR(M,) = HTH + FLM,Fp, — M, — FIM,UM,F,,"

DR(M) = HTH+ FLMF, — M — FIM,UM,F,,
+FT(M, — M)G(y*I — GTMG)"'GT(M, — M)F,,.

and so
0 = DR(M)-DR(M,)

= (M, = M) = FL(M, — M)F,, + FL(M, — M)G(y*I — GTM G)"'GT(M, — M)F,,.

Premultiplying by F-T, postmultiplying by F;! and rearranging gives
FT(M, - MYFS! = (M, = M) = —(M, - M)G(*] - GTMG)™'GT(M, - M) < 0.
Since F' is stable, then M, > M. m]
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Theorem 6.9. If M € S;, (E,H) is detectable, and DR(M) = 0, then M € S, (ie.,
v¥I - GTMG > 0).

Proof Suppose M > HTH, and let W = E-T{M - HTH}E™! > 0. Thus
DR(M)=0=—-ETWE + ETM{I-UM]'E
which implies that M[I — UM]~! > 0. But
M{I - UM]™ = I = MU' MY*{(1 = MPUM"*) MV (T - UM]™!
which is positive semidefinite if
~3(I = MMPUMY?) > 0.
This is equivalent to
I -GTMG > 0.

But since M € Sy, then (y2/ — GTMG) has no zero eigenvalues, and so v*I — GTMG > 0.
We now show that M > HTH. Since (E, H) is a detectable pair, then there exists M>0
such that

M=H"H+E"ME
which implies that M > HTH. Note also that as ¥ — oo in DR(M) = 0, that M(v) — M.
Recall also that 4, is the infimal number such that for all ¥ € (Yo, 0) there exist real
solutions of DR(M) = 0. By Theorem 6.7, M,(v) is monotcaically decreasing for v €

(qs, 00), and so

M,(y) > M,(c0) =M > HTH > 0.
By Theorem 6.8, we verify that M,(y) > M(y) > M,(y) > HTH. w

Definition 6.1. A set A is called convex if and only if z,, z, € A, and a € [0,1], implies
that az; + (1 — a)z; € A.

Note that S; is not a convex set, but S, is convex.
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Definition 6.2. Suppose f : R*™*" — R"*", f(z) = f(z)7, for all z on A, which is a

convex set, then f is comvex on A if and only if for all z,,7, € A, and a € [0,1],

flazy + (1 - @)z2) < af(z1) + (1 - @) f(z2) (6.78)

[44

where “<” is defined in the sign-definite sense.

Theorem 6.10. DR is convex on S,.

The proof of this property will require a few preliminary results on DR and its Fréchet
differential [72]. The first. Fréchet differential § DR(z;A) exists on Sy and is given in the

following Lemma.
Lemma 6.9. §DR(z; A) = —A + ET[I — zU]'A[I — Uz]™*E on S}, where U = %GGT.
Proof We must show that for z an interior point of Sy, and for A such that z + A belongs

to a neighborhood of z in S}, that

. ||DR(z + A) — DR(z) — 6D R(z; A)||
llm =
ialj—o A

0. (6.79)
We may, without loss of generality, restrict A such that for some 0 < M; < o
I = (= + AU < Mi||[T = 2U]7. (6.80)

Let M, = ||E||*|[[ — Uz]"*|P||U||- We now have
DR(z + A) - DR(z) — §DR(z; A)

=ET{(z +A)I-U(z+ Q)] = [I —zU]" 'z} E - ET[I - zU]'A[I - Uz]"'E

=ET[I - aU)' {(I-2U)(z+A)—z(I-U(z+ A)} I - U(z + A)|"'E
—ET[I - zU)'A[I - Uz)'E

=ET[[ -zU]"'A{{I -U(z+A)' = [I - Uz]" '} E
= ET[I — zU]'A[l = U(z + A)]"'WWA[I - Uz]'E.
Thus

IDR(z + &) - DR(z) - 6DR(z; A)l| < M|E|P|I - U] PUYIA]I2

M M,||A|?

ihiA
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and so we readily see that

. ||DR(z + A) - DR(z) — éDR(z; A)|| )
1 < 1 M, M,||All =0. 6.81
jali~o 1A = a2 Ml (o3

a
Remark 6.4: Note that §DR(z;A) is linear in A; that is, for a scalar a,§ DR(z;ad) =
adDR(z;A), and also §DR(z; Ay + dA2) = §DR(z; A1) + §DR(z;dAs).
Remark 6.5: Since §DR(z; A) exists, it can also be shown to equal
DR(z + aA) — DR(z)

«x

§DR(z;A) = cl.gg

So, not only does the first Fréchet differential exist for DR on Sy, but actually the Taylor
series may be found. Remark 6.4 demonstrates that the derivative can be considered as a
linear operator on its domain [73]. We may thus write §DR(z; A) as DR:(A).

Although the convexity considered in this section is in the sign-definite sense, rather
than element-wise, the following result is established in the same way as for scalar convex
functions of a vector variable. The proof given here is a generalization of that given in [74]

and relates convexity with the first Fréchet differential.

Lemma 6.10. DR is convex on S, iff for all X,Y € S,
DR(Y) - DR(X) 2 DR.(Y - X). (6.82)
Proof Suppose DR is convex on S,. Then for all a € [0,1] and X, Y € §,
DR(aY — (1 = a)X)) < aDR(Y) + (1 — a) DR(X).

Now for a € (0, 1], we have

DR(X + (Y — X) - DR(X)

o

< DR(Y) - DR(X).

Letting « — 0 we obtain (6.82), by Remark 6.5.
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Now let X,Y € Sp,and a € (0.1}, and let Z = aX + (1 — a)Y. Then Z € S, and
DR(X) > DR(Z)+ DR,(X - 2) (6.83)
DR(Y) > DR(Z) + DR.(Y - 2). (6.84)
Multiplying (6.83) by « and (6.84) by (1 — a) and adding gives |
aDR(X)+ (1 —a)DR(Y) > DR(Z)+ aDR,(X - Z)+ (1 — a)DR,(Y - Z).  (6.85)

By the definition of Z and Remark 6.4,
aDR,(X -Z)+(1 —a)DR,(Y — Z) = DR, [a(X — Z)] + (1 — a)DR.(Y - Z)

= DR,[(1 —a)(Z - Y)} + (1 = a)DR,(Y - 2)

=—(1—-a)DR,(Y -2Z)+ (1 —a)DR.(Y - 2)
= 0.

Substituting Z = aX + (1 — a)Y into (6.85), then gives
aDR(X)+ (1 —a)DR(Y) 2 DR(aX + (1 — a)Y)

and so DR(X) is convex.

Proof of Theorem 6.10: Based on Lemma 6.10, DR is convex on S, if for all X, Y € S,
DR(Y) - DR(X) 2 DR,(Y - X)
so this is what is proved. Let X, Y € S,; then
DR(Y)-DR(X)=—(Y - X)+ ET{Y(I-UY)'-X(I-UX)'}E.

Now

(I - XU)Y(I -UY)\I-UX)=(I-XU)Y[I+(I-UY)UY - X)]
== XU)Y +[I+(Y = X)U(I - YU))YU(Y - X)
=Y - XUY + YUY = X) + (Y = X)U(I - YU)"'YU(Y - X).
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Thus
YI-UY)'-X(I-UX)"?

== XU Y{(I-XU)YT-UY) I -UX)- (- XU)X}I - UX)"?
= (I - XU){(Y = X) + (Y = X)U(Y - X)
+HY = X)U(I - YU)'YU(Y - X)}I - UX)™!

= (I = XU (Y = X)+ (Y = X)U(I = YU) /(Y = X)}(I = UX)",
and so
DR(Y) — DR{X) = —(Y - X)
+ET(I = XU){(Y - X) + (Y = X)U(I - YU)" Y — X)}(I - UX)"'E.
On the other hand

DR.(Y - X)=—(Y - X)+ ET(I - XU)"\(Y - X)(I - UX)'E.

Subtracting gives

DR(Y) - DR(X) - DR,(Y - X)
a
= ET(I - XU)"N(Y - X)G(v*I - GTYG)~'GT(Y - X)(I - UX)"E > 0.

The next Corollary, states the convexity property in terms of a convex combination of ele-

ments in S,.

Corollary 6.2. If X; € S, fori=1,2,...,q,and §; 2 0 with 1 + ...+ B, = 1, then

DR (iﬂ,-x.-) < Y ADR(X). (6.56)

=1 =1

o

We next define the admissible set of candidate feedback solutions. To this end let

S, = {X = :X:: Xi € S, DR(X) =0, B0, 3= 1} (6.87)

i=1 =1

where DR(-) is the operator (6.68) with £ = F, = A+ BK, T = [HTKT)T, and K, is
given by (6.55), and formed from the stabilizing solution of the Riccati equation (6.53). Note
that based on Lemma 6.8 and Theorems 6.8 to 6.10 it follows that S, C S.,. Note also that
X, the stabilizing solution of DR(X) = 0, is the “least” element of S, (i.e., X, < X for all
X € 8S,).
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Lemma 6.11. If X € S, then DR(X) < 0.

q
Proof Recall that X = Zﬂ;X.-, with 8; + ...+ B, = 1. Thus by Corollary 6.2,

=1

DR(X) < }Eﬂ.-DR(X,-) =0.

=1

Lemma 6.12. If X € S, then R(X) <0.

Proof By Lemma 6.11. 0 > DR(X), and so we only need to show that DR(X) = R(X).

We have
DR(X) - R(X) = K;IK, - KZI(, + F,TX[I - UX|'F, - F,TX[I ~UX]'F;

= T(X,X,).
Let
M(X)=X" + BBT - U,

N(X)= M(X)- BBT.
Note that N(X) > 0, M(X) > 0. Then
KTK,+ FTX[I -UX)'F, = ATM(X)™'A

and similarly

(6.88)

(6.89)
(6.90)

(6.91)

KTK,+ FTX[I-UX]'F, = ATM(X)"{BBT + N(X,)N(X)"'N(X,}M(X,)' A. (6.92)

So based on (6.91), (6.92), with M(z), N(z) defined by (6.89), (6.90) we find that
T(X, X,) = AT{M(X,)"[BBT + N(X,)N(X)"'N(X,)I]M(X,)™' - M(X)"'}A

= ATM(X,)"Y{BBT + N(X,)N(X)"'N(X,) - M(X,)M(X)"'M(X,)}M(X,)'A

= ATM(X,) " Y{Q(X, X,}M(X,) A

with
Q(X,X,) = BBT + N(X,)N(X)'N(X,) - M(X,)M(X)"' M(X,)

(6.93)

= BBT + N(X,)N(X)"'N(X,) - [BBT + N(X,)|[BBT + N(X)]-[BBT + N(X.)).
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Note that Q(X, X,) is a Schur complement of the block =;; of the matrix = defined as

- _ [ BBT + N(X,)N(X)"'N(X,) BBT + N(X,) (6.95)
= T | BBT + N(X,) BBT + N(X) |’ '
Now, since (6.95) can be decomposed as
= - [ 5 ] (BT BT] + [ (NXINX)™ ] N(X)[N(X)"'N(X,) ] (6.96)

it follows from = > 0 that Q(X, X,) = 0, which implies that T'(X, X,) > 0, and so DR(X) —
R(X) 2 0 and thus 0 > DR(X) > R(X). o

6.3.3 Norm-bounding state-feedback control strategies

In this section, we discuss feedback controls that guarantee upper and lower bounds on the
H,, norm of the system. The first Theorem presents the new lower bound on the optimum
Ho, norm achievable for a given system using state-feedback controls. For completeness, the

statement of the Theorem includes the known upper bound on the H,, norm of a system.

Theorem 6.11. If there exist P, > 0 and a positive scalar v, such that
-1
P,=HTH + ATP, [1 + (BBT - %GGT) P,,] A (6.97a)
0

v I -GTP,G >0 (6.97b)

then the control u = Kz, with K = —BTP,[I + (BBT - %GGT)P‘,]“lA guarantees that

Amax(GTP,G) < ||IT.|I%, < 72, T(2) = [ g ] (2 - A- BK)"'G (6.97¢)
and moreover
Aras(G7 PiG) < [ToiallZs < 72 (6.97d)
Proof
a) The upper bounds are proved in Theorem 6.6, with the upper bound in (6.97d) following

from the one in (6.97c) and the fact that Ty,,(z) has a lower Hy-norm bound than

that given by any other state-feedback control.
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b) To show that the lower bounds hold, let E = A + BK and Hy, = [ Iz ] with

K = -BTP,I + (BBT - %GGT)PO]“‘A. (6.98)
Then (E, H,) is a detectable pair (Lemma 6.8). Define

Yoo = inf{y > 0: I such thatP = HTH, + ETP(I - %GGTP)‘IE', I - GTPG > 0}
= |Ho(2] — E)™'Gllo = 172l

and so the lower bound in (6.97b) is shown if we show that
2 T
Yool 2 G P(7,)G. (6.99)
Note that when P = P, and v = 4, then (6.97a) can be rewritten as
-1
P,=HTH,+ ETP, (1 - %GGTP.,) E (6.100)
i

and since 21 — GTP(+,)G > 0, we have that Yo > “Ymin and also that 4, > «,, by the
definitions of Ymin and 4,,. Thus, by Theorem 6.7, we have P(74:) 2 P(v,) and hence we
have v,/ > GTP(v,,)G > GT P(v,)G.
As for the second lower bound, we have, by Remark 6.2, that P(Ymin) = P(70), and so
by the definition of ymin, ¥23,,7 > GT P(Ymin)G > GTP(4,)G. 0
We are now in a position to form an entire class of H-norm-bounding state-feedback

laws, for the system (6.50).

Theorem 6.12. For v > ~min, if X € Sy, then the control law uy = Kz, with K, =
-1
-BTX [I + (BBT - :71—2GGT) X] A guarantees that

a) A+ BK, is stable, and

b) A3 (GTX,G) < [Te|loo < v where

T.(z) = [ Iz ] (21 — A— BK,)"'G.
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Proof By Lemma 6.12, R(X) < 0, and by Theorem 6.9, 4*I — GTXG > 0. With E =
A+ BK, and H replaced with H = [HT KT]|T then by Lemma 6.7, (E, H) is detectable and
so Lemma 6.7 gives the upper bound.

The proof of the lower bound uses Theorem 6.8 since X, (), the stabilizing solution of
R(X) = 0, with v specified by in Theorem 6.12, satisfies X > X,(v). With E and H so

fixed, we consider the Riccati equation
P=HTH + ETP[I-UP|'E (6.101)
and define
v = inf{(y > 0 : P the stabilizing solution of (6.101) with v*] — GT PG > 0}.

Since P,(v) is monotonically decreasing in v, then P,(11) = X,(v) and so v >
GTP,(v1)G > GT X,(7)G, thus giving

I = 7% 2 Amax {(GTX,G}. o

6.3.4 Computing H,-norm bounds for linear systems

Various methods have been proposed for finding either the H,, norm of a system, or
bounds on its value. We review available lower and upper bounds and then, by appropriate
modification of the result in the previous section, derive a new lower bound.

A straightforward means of computing a lower bound is simply by choosing ¢; € [0, 2p],

t=1,2,..., N, and computing

ITleo 2 Y (6.102)
where
= 1/2 TN P
T = 13X Anax {T(e™) T(e")}. (6.103)

Using this method, we would expect to obtain a better approximation of the actual value
as we increase N;. Essentially, we have a search, but there is generally no clear means of

obtaining a good estimate without computing a large number of values.
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A simple lower bound on the H,, norm is the H, norm of the system, since the H; norm

must be less than or equal to the H,, norm for all inputs. It can thus be shown that
IT|I? = trace (HL.HT) = trace (GTL,G) < ||T|oo (6.104)
where L. and L, are the controllability and observability grammians
L.=ELET + GGT (6.105a)

L,=ETL,E+ HTH. (6.105b)

This lower bound requires the solution of only one Lyapunov equation.

The Hankel (semi-) norm, which has proven to be useful in the approximation of high-
order systems by low-order systems, may also be used. Given any LT1system we can consider
the Hankel singular values o;, i = 1,...,n, which may be shown to be

0? = M(LoLc),i =1,...,n. (6.106)
It has been shown [75], [20], that
n
ITIer = Omax(T) < [T lloo < 23_0i(T).- (6.107)
s=1
This gives a quick means of obtaining both upper and lower bounds on the H,, norm. The
computation of these bounds requires the solution of two Lyapunov equations. It can be
shown that ||T||2 < ||T'||#, and so the Hankel singular values give a tighter lower bound than
the H; norm.

The disadvantage of the last two bounds is that they are not always tight. In the discrete

case we can establish a lower bound for ||T|| and thus a interval within which the H,, norm

of the system must lie. The following Lemma presents the new lower bound, together with

the known upper bound on the H,, norm.

Lemma 6.13. Let E be a stability matrix, and T(z) = H(zI - E)™'G. If there exists P > 0

and a positive scalar v such that
-1
P=HTH+ETP (1 - %GGTP) E (6.108)
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and

+*I - GTPG > 0. (6.109)

Then
Amax(GTPG) < ||, < 42 (6.110)

Proof. The upper bound is proved in Theorem 6.6. To show the lower bound, note that since
7 = |HGI - E)"Gl 1
= inf{y >0:3p> suchthat P= HTH + ETP (I - %GGTP) E >0,*1 - GTPG > 0}

then by Theorem 6.7 (which holds in particular for B = 0), P(4,) 2 P(«), and thus we have
21 > GTP(1,)G 2 GTP(1,)G. 0

We can now give an algorithm for comput'ing H,, norm. This algorithm requires a given
upper bound 7* and a lower bound v'. We can set 4/ = 0 with 4* a large number, or else
select both bounds from (6.107).
Algorithm:
1

(1) Given E, G, H, 7', v*. Let 4f =+*,and 4{ =9, = 5(7’ +7").

(2) Compute P; (eqn. (6.108)), the stabilizing solution (if possible).

(3) If either:

a) nc stabilizing solution exists or

b) (v*I — GTP,G) is not positive definite
tten let v/, = ¥, and 9%, = 7¥; otherwise let 7},, = max{\2(GTP.G),~!}, and
V4 = %
1 ! u
(4) Let vipy = 5(7.’4-1 + 7i+1)'

(5) If |7is1 — 7l < ¢, a specified accuracy level then stop with [|T]|ec = 7i41(e€) otherwise

increment : and v, to (2). o
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6.3.5 Examples

In this section we consider two examples. The first is related to the computation of the
optimal H-norm-bounding state-feedback approach. The second relates to the computation
of the Hy, norm of a given system.

For the computation of the optimal state feedback consider the scalar system

Teyr = @z + bup + Guy

6.111
(¢ = hz; ( )
and also consider the DARE

a’P
14 (62— g*/v?)P’

P=h*+ (6.112)

Various phenomena can be illustrated with this system regarding the norm bounds discussed
above. It is also possible to understand when the norm bounds are tight. The conditions

necessary for obtaining the bounds are:
1) P is the stabilizing solution of (6.112), and
ii) 92 — g?P > 0 (the “convexity” condition).

Under these conditions, there exists a state feedback that guarantees an Ho,-norm bound
less than 4. This example will demonstrate that as v is decreased, that either condition, (i),
or (ii) might be the first to fail, thus stopping the search for the minimizer.

Solving (6.112) for 42 gives

2_ 2 P(P — h?)
V=9 RPt —(Phtra? - 1)P - B

(6.113)

Example 1: Let a = b = g = h = 1/2. Graphs of the relationship between P and 4? are
shown in Figure 6.1. The figure shows both solutions to the Riccati equation when they exist.
In this figure, we show a trial value 47, and the lower bound obtained from the computation
of P(m), i.e., gz.Pl.

For this system, the stabilizability condition defines the minimizer Pp, = 1/2, for which

7? = 1/5. This occurs at the local minimum of equation (6.113). For the corresponding
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Figure 6.1: Unit circle eigenvalues constraining condition.

Kmin = —1/4, we have E = A + BKumin = 3/8, stable. The H,, norm of the closed-loop

system is \ .
h -1 — (h2 + I(xf'un)g2
| s Jer-2a] = a

Note also that v, P = (1/8)? < || Trin||%, and so the lower bound is not tight for this system.

1
=< (6.114)

Lo <]

Example 2: a =1/2, b= g = h = 1. A graph of y? versus P is given in Figure 6.2. Tle
state feedback that gives the minimal achievable Ho, norm is Kmin = —1/2, which gives the
Ho, norm ||Tiyin||2, = 5/4. Note that in this example the admissible minimum (P = 2), of
cquation (6.70) is on the boundary of the “convexity” region. Thus, the limiting condition
here is the convexity condition. In this example, the lower bound is seen to be tight, since
for v2 = 5/4, P, = 5/4 = ¥2 Pmin, thus 72P, = || Tinl|%, = 72- It can also be seen that at the
minimum, A, = 2/5, Kpyn = —1/2,and £ = 0.
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Figure 6.2: Convexity constraining condition.

Suppose that now we wish to compute the H,, norm of the stable system

Ty = Ezp+guws 6.115
G = Hz (6.115)
using the DARE
E?P
_gTys _EP 11
P=HTH+ (6.116)

which can be rewritten explicitly in terms of P:

. 5 P(P—HTH)
VEINTEYP-ETH

(6.117)

Example 3: Figure 6.3 shows the graph of 42 versus P for the case of E = 3/8, g = 1/2,
H=[1/2 - 1/4]7.
Note that the lower bound g?P is not tight. Indeed, it can be shown that for any v, the

difference between the lower bound (computed for v) and the H,, norm satisfies

*HTHI\E
ITIZ, - L.B.(v)? = 72 — g*P(7) > SH_HIE|

> TR (6.118)
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Figure 6.3: Computing the norm of a stable system.

Thus, we see that for the H.-optimal state feedback control problem, the convexity
condition or the stabilizability condition could be active. In the case of the H,, norm calcu-
lation, however, the limiting case is always the stabilizability condition. These conclusions

carry over to higher-order systems.

6.3.6 The observer-based H,-norm-bounding control

In this section we present the solution of the observer-based H.,-norm-bounding problem
when only certain output measurements are available to implement the control. The main
results are stated in this subsection and proved in subsection 6.3.7. The results we present
parallel those available for the continuous-time problem, but are established using a novel
transformation of the the discrete algebraic Riccati equation (DARE).

Suppose that instead of having full state feedback, only certain (noisy) outputs are mea-
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sured. We thus consider the system

Ty = Az + Bup + Guy

Ye C’Z’;:’: by (6.119)
G = [ u ]

and assume that vy € l;, and [A, C] is detectable in addition to the assumptions made for
the system (6.50). The problem is set up in a manner fully analogous to the continuous case.

Thus, we adjoin to (6.71), the linear time-invariant controller
i1 = Ak + By + Giiy + L(yx — Czi) (6.120a)

i = K¢ (6.1200)

where K is given by (6.55) for given ¥, and where @ and w are estimates of the optimal control
ard “worst disturbance” from the state-feedback solution. The actual “worst disturbance”,

wis a disturbance that achieves the maximum input/output (I/O) energy ratio, i.e.,

1 Te(2)w ()]l

W = ar 6.121
%0 T Tw(@), (6121
where T.(z) = H,(2I — E)"'G, H, = [ i{, ], E = A+ BK. 1t can be shown [40] that there

exist “stochastic” disturbances in [;, that achieves I/O energy ratios as high as that of ,

which can be shown to be realizable in feedback form,
1 1 -
W = Kz, Kyq= ?GTP [1 + (BBT - ?GGT) P“ A (6.122)

and where P is the stabilizing solution of (6.53).

Using the structure (6.120), we seek the matrix L to achieve stability and guarantee a

1esired H,,-norm bound. To this end we form the closed loop system:

z A BK T G 0 w
HE = R G

with the output

Ck=[}0{ 10(] [;]k (6.123b)
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where A, = [I + (BBT - -:’IEGGT)F] A=A+ BK+GK, Let e = £ — £, and introduce

(2] 11 42

and apply it to (6.123) to obtain ' :

the transformation

- E ~-BK z (G 0 w . -
= _gK, A+GK.,-LC] [e]k+ G —L] [v]k-Eﬂ**Go“’k (6.125)
and
H 0 -
Ck:[K _K} T‘:L:Hozk. (6.126)

The central result of this section defines an observer-based controller that satisfies an uniform

H,-norm bound, and can be stated as follows:
Theorem 6.13. If there exists P > 0 satisfying
-1
P=HTH+ ATP [1 + (BBT - %GG’T) P} A, (6.127)

with v > 0 and
v I -GTPG >0 (6.128)

and if there exists V > 0 that satisfies

V= ;I;HTH - CTC + ATV[I - GGTV]"'A, (6.129)
with .
vV > HTH + ATP [1 - %G’GTP] A (6.130)
and if the gain matrix L is chosen to be
1 -1 1 -1
I= (1 - —zv-lp) A (V +C7C - —2HTH) cT (6.131)
v v

then for T.(z) = H,(zI — E,)"'G, we have
a) E, is stable, and
b) [ITelleo < -
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Thus the solution of the problem is given in terms of two uncoupled Riccati equations,
as in the continuous case.

A related result has been obtained by [70]. However, their conclusions are again based on
the “perfect information” case. In addition, the solution of that problem is given in terms
of two coupled Riccati equations.

The proof of Theorem 6.8 will be based on the relationship between the discrete algebraic
Riccati equatioh (DARE) of dynamic games, and its relationship to a nonsymmetric, gener-
alized, algebraic Riccati equation (GARE), and will be given in the next section. This novel
approach also gives insight into the problem, using results in [76] regarding the solution of

generalized Riccati equations.
6.3.7 The generalized Riccati equation
Recall the DARE
1 -1
P=HTH+ ATP [I + (BBT - ;;GGT) P] A (6.132)

and the associated symplectic matrix

1 1
T_ LA nt\ a-Tyry _ T_ 1 AT 4T
G o A+(BB 566 )A HTH (BB 560G )A C (e1m)
~ATHTH AT
We now consider the GARE
X = (ATX + HTH) lA - (BBT - %GGT) x] (6.134)

or

—XA+AT [1 + HTH (BBT - %GGT) AT } X-X (BBT - %GGT) X-ATHTHA = 0.

(6.135)
This is a continuous-time ARE, and has as its associated generator matrix
A - (BBT - —lz-GGT )
{= Y (6.136)

—-ATHTHA AT [1 +HTH (BBT - %GGT) A'T]
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0 I
-1 0
U-'$TU = $~'. It can be shown that ¢, on the other hand, is neither symplectic (since

U-1¢TU # ¢7'), nor Hamiltonian (since U “14TU £ —¢) [26]. However, like $, the matrix ¢ .

has the property that if A is an eigenvalue of ¢, then 1/ is also an eigenvalue. Indeed, we

It can be shown [26] that $ is 2 symplectic matrix since for U = ], we have

have:
Lemma 6.14. $ and ¢ have the same spectrum.

Proof If two matrices Ty and T; are square, then the spectrum of the product T, T; is the

same as the spectrum of T;T;. Examining § and ¢, we have

] L _
A - BBT-—GGT) I 0
$ = ( 7 [-A-THTH a1 |=hh
L0 I :
! -
I 0 A - BBT——GGT)
$ = | -aTHTH A‘T] ( 7 =TT,
- O 1 J

a
Remark 6.6: We take note from the proof of Lemma 6.14 that the invertibility of T and
T, depend only on the invertibility of A. Thus, if A is invertible, then neither § nor ¢ have

zero eigenvalues. Thus the “rlosed-loop” matrix
Ac=A- (BBT - %GGT) A-T(P - HTH), (6.137)
v

(which arises in Lemma 1.2), has no zero eigenvalues, and is thus invertible. o

Suppose the matrix A contains a subspectrum of ¢. The next Lemma demonstrates the
relation between the GARE and ¢, based on [76].

I

X

Lemma 6.15. If¢{ )I( ] = [

] A, then X solves (6.135).
Proof. If

A - (BBT - -I—ZGGT)
v

~ATHTHA AT [1 +HTH (BBT ~ i,GGT) A'T] X X
7
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then

/
A- \BBT - l, GT) X =A, (6.138)
9
—ATHTHA+ ATl + HTH (BBT - %GGT) A-T|X = XA, (6.139)

and from (6.138), (6.139) follows
—HTHA+ (I + HTH (BBT - %GGT) A‘T]X = AT XA,
v
=ATX [A - (BBT - ;I;GGT) XA]

or

(ATX + HTH)A — [I +(ATX + HTH) (BBT - %GGT)] X =0, (6.140)
which reduces to
(ATX + HTH) {A - (BBT - %GGT) X] -X=0.

a
If p(A - (BBT - %GGT) X) < 1, (i.e, p(A) < 1 by (6.138)), then X is called the

stabilizing solution of (6.135). Note that instead of the vectors ] , we may use the Schur

X
X1l .0 . . . Yil.... .
vectors X, if A is in real Schur form, or the eigenvectors Y, if A is in Jordan form,

giving X = X X7! (or X = Y,Y?) as a solution of (6.135). Also nctc that unlike the
solution P, of the DARE (6.53), the solution X of the GARE is non-symmetric, while AT X,

however, is symmetric. We now demonstrate the relationship between the solutions of the

GARE and the DARE.

Lemma 6.16. If X and P are related by ATX = P — HTH and
1 -1
[1 +P (BBT - —QGGT)]
v

exists then P solves (6.53) iff X solves (6.135). Moreover, P is the stabilizing solution to
(6.53) iff X is the stabilizing solution to (6.135).
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‘ -1

Proof By the Remark 6.5, we know that [A - (BBT - %GGT) A"T(P - HTH)] exists.
Also, by hypothesis, we have

X =AT(P-~HTH). (6.141)

To prove the first assertion, note that X solves (6.135) if
(ATX + HTH) [A - (BBT ~ %GGT) x] -X=0.
By (6.141) the above expression is equivalent to
P [A - (BBT - %GGT) AT(P -~ HTH)] - A T(P-HTH)=0 (6.142)
which is equivalent to
(1 + P (BBT - %GGT)) AT(P-HTH)=PA
or 1
AT(P-HTH) = (1 +P (BBT ~ ;IEGGT))- PA. (6.143)
On the other hand, expression (6.142) is equivalent to
HTH - P+ ATPA- ATP (BBT - %GGT) AT (P-HTH) =0. (6.144)
In light of (6.143) and (6.144), expression (6.142) is equivalent to
0=HTH-P+ ATPA- ATP <BBT ~ %GGT) (1 +P (BBT - %GGT))_I PA

—HTH- P+ AT {1 +P (BBT - %GGT) - (BBT - —12-GGT)}
v
-1 ]

(1 + P (BBT - ;I;GGT)) PA

-1
= HTH — P+ AT <I+P (BBT— iGG”)) PA

~2
-1
=HTH - P+ ATP (1 + (BBT - %GGT) P) A,
and so P solves (6.53) if X solves (6.135). For the proof of the second part, we have from the
proof of Lemma 6.15 that X is the stabilizing solution of (6.135) if A — (BBT - %GGT) X
v
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is a stability matrix. But
A.=A- (BBT - —%GGT) AT(P—HTH) = A~ (BBT - iZGGT) X,
Y 0]

which, by (6.137) is stable if P is the stabilizing solution of (6.53). 0

Remark 6.7: When P! exists and P solves (6.53), the condition P > HT H is equivalent
to P! > %GG’T — BB”. In Corollary 6.1, we note that the condition 42/ — GTPG > 0,
7

is equivalent to P~! > %GGT, when P-! exists, since P1/? (P"1 - 7—1,‘,GGT) PY/? > 0 is

equivalen? to I — :)%GTPl/zPl/zG > 0, and implies that P > HT H. Thus, in Corollary 6.1,
when P! exists, P > HT H is equivalent to v2I — GT PG > 0.

Remark 6.8: Lemma 6.16 was proved for Ry = HTH > 0 and R, = BBT - %GGT, which
is sign-indefi. ite. The proof, however does not depend on the sign deﬁnitenZss of R,, and
can be used for indefinite R;. This fact will be exploited in the observer equations.

The motivation for using the GARE, instead of the DARE in the proof of Theorem 6.13
is that, by using the GARE, we arrive at expressions that, as will be shown, are similar
to the corresponding continuous-time expressions, e.g., K = —BTX, K; = izGTX 1],
[13]. This similarity serves two purposes: First, it simplifies the expressions. AISecond, and
perhaps more important, it provides insight from the results on the observer-based H,-norm-
bounding problem in the continuous-time case, and provides guidelines for the solution of
the discrete-time problem.

In many optimal control problems, duality plays an important role. In the search for a
solution to the present problem, we again seek to exploit duality as was successfully accom-

plished in the continuous problem [1]. Thus, we consider an observer DARE,
-1
Q@ =GGT + AQ [1 + (CTC - %HTH) Q] AT, (6.145)

which is the dual of the control DARE (6.132). We expect, by analogy, that the condition
31 — HQHT > 0, will be necessary; it implies that V-! = Q > GGT. Noie that V satisfies

V= %HTH —CTC + ATV[I - GGTV]-'A, (6.146)
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which is the DARE found in Theorem 6.13. Along with V, by fully analogous development,
we associate with the DARE (6.146) the GARE

W= (AT W+ 712-HTH - CTC) (A+GGTW), (6.147)
where W is related to V by
ATW =V — —HTH + CTC. (6.148)
v

We now return to the proof of Theorem 6.13.

Proof of Theorem 6.183: Define P = [ }09 12
1

we desire to show that with L given by (6.131), P is positive definite and satisfies

], where P, = ¥V — P. Using Corollary 6.1,

-1
P=HTH,+ ETP (I ~ ;IZ-GZGOP) E, (6.149)

v*1 - GTPG, > 0. (6.150)

Hence, by Corollary 6.1, the closed-loop system is stable and its H,, norm is bounded by +.
Transforming the DARE to the associated GARE, leads to X satisfying

X =(ETX +HTH,) (E + %GonX) : (6.151)
We now show that X of the form

c_ | X Xn
X = [ 0 X } (6.152)

where X is the stabilizing solution of (6.135) while X2, and X3, satisfy

ETXy; = (KTGT Xy, + KTK), (6.153)

ng =‘72W~X12—X, (6154)

solves the GARE (6.151). We then conclude, by the use of Lemma 6.16, that P is related
to X via

EIX=P—-HTH,> HTH,, (6.155)
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also satisfies (6.150) and th. s is the desired solution to the DARE (6.149).
Let
Gn Gz
and so (6.151) is established if Gy1 = Gi; = Gnn = G2 = 0. Note first that using (6.153),

and the definitions of K; and K, that
ET -KTGT ] [ X Xy ] + [ HTH + KTK —KTK ]

[ Gu G ] =(ETX + HTH,) (Ea N 7_12.5;6(}'3')'() - X, (6.156)

EZ‘X- + H:,I‘Ho =

| -KTBT (A+GKy—-LC)T 0 Xz -KTK KTK
_ [E™ +HTH+ K"K ETX1;— KIGT Xy — KTK
| ~KTBTX ~ KTK (A+GKy-LC)T Xy - KTBTX,, - KTK
[ ATX +HTH 0
| 0 (A= LC)Y Xpo + ATX,, |
(6.157)
We also have
1 T E -BK 1 [ GGT GGT X 1
Eo+ 706X = [ _GK, A+GK4-LC] +72'[GGT GGT+LLT] [ 0 Xp
A, N
= 1
0 Ac + N + L (?LTXn - C)
(6.158) |
where
, 1
N =—-BK + ;;GGT(XH + X39). (6.159)
Thus, equation (6.156) becomes ‘
Gn Gul| | ATX+HTH 0 A A{ |
Gun Gan |~ 0 (A-LC)T Xy + AT X3 0 A +N+1L (?LTXZQ - C)
[x Xu
0 Xy |
(6.160)
This gives

Gn = (ATX + HTH)A.- X = (ATX + HTH) [A - (BBT - -1—2GGT) X] -X
v
= 0,
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by (6.134) and Lemma 6.16. Next, note by inspection that G = 0. Introduce M =
BBTX + —1;GGTX22, and observe that
Y

G2 = (ATX+ HTH)N - X2

= (ATX + HTH) [—BK + "%GGT(Xn + Xzz)] - E-TXTM
= (ATX + HTH) (M + %GGTE‘TXTM) _ETXTM
= (ATX + HTH) (X-TET + ;:—2GGT) E-TXTM — E-TXTM

= {(ATx + HTH)X-T (ET + %XTGGT) - 1} E-TXTM

= {PX-TAT - I}E-TXTM

= {PP'-INE-TXTM =0.
Before proceeding to establish that G2 = 0, we first note from (6.153) and (6.154). that

Xp=9W-X;3— X =vW - X - E-T(KIGTX,; + KTK), (6.161)
which implies that
(I+ETKTGT) Xy =v*W - X — E"TKTK, (6.162)

and so
AZXQ; = (ET + I(dTGT)ng = ET(I + E-TK}GT)XQZ

= ET(72W - X = E—TKTK) = 72E'TW —ATX + KTK — KTK
= YETAT(ATW) - ATX (6.163)
1
From (6.163)

T
XI = [»,2 ETAT (V - %HTH + CTC) -P+ HTH] A7
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and so
Xo = AST [72ETA‘T(V - ;I-Z-HTH +CTC)- P+ HTH] .
Now, using the definition of A, from (6.137), and using (6.141) to relate X and P produces
Xpp=P (P"‘ - %GGT) AT(y*V — HTH +4°CTC) - A;TATX

while from (6.146) and the facts that X = PA. and that ATX is symmetric we have

1
Xp = P [P“ - %GGT] [(—ﬁvrl _ %GGT] A—PA
v Y

1 . 1 1 -
= P {P‘1 - ?GGT - (V) + ?GGT} [(~/""V)‘1 - ?GGT] A
and using again (6.146) this finally produces
1
X2 = (1 - 7—2PV“) AT (72V - HTH + 7’CTC) . (6.164)
Therefore (6.131) simplifies to
XLL =~*CT. (6.165)

Now consider Ga;. Since Gq11 = G2 = 0, then G22 = G2 + G11 + G12 and so we proceed to
show that this sum is equal to zero. We have
G2 = G2+ Gu+Gn . .
= (A= LC) Xy + ATX 1o} |[Ac+ N+ L (%L’“X22 ~C)| - Xq
+(ATX + HTH)A. — X + (ATX + HTH)N — X5,

- 1 .
= [(A - LC)TXn + ATXIQ] Ac + N + L (?LTXQQ - C) - (X + X12 + Xzz)

+(ATX + HTH)(A. + N)

= [(A-LC)"Xn+ ATX;; + ATX + HTH| [Ac +N+L (%LTx,, -~ c)]
1

—(X + Xu+ X)) - (ATX + HTH)L (?

LTX, — C)

= [AT(X + X2+ X22) + HTH - CTLTXn] [Ac +N+L (%LTXn - C)]

—(X + X114 Xa2) = (ATX + HTHVL (217X, - C
72
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and using (6.154) and (6.147), as well as equations (6.146), (6.157) and Remark 6.7,
Ggg = [AT(‘72W) + HTH - ‘720TC - CT(LTXn - '720)]
x [A +GGTW + L (%LTXn - C)]

—(v*W) - (ATX + HTH)L (%LTXZQ - C)

= ~° { [ATW + %HTH - CTC] [A+GGTW] - W} =0

and thus, (6.151) is satisfied. Now consider (6.155). We have, from (6.151)
[ ATX + HTH 0 ]

T ¢ T —_
E;X+HH, = L 0 (A—LC)TX22+ATX12

[ ATX + HTH 0
i 0 vIATW - ATX — 42CTC

P 0 (6.166)

1
0 +° (V - ?HTH + CTC) — P+ HTH —4*CTC
[ P 0 5
- lo 72V——P]—P'
Now P is positive definite if P, = y?V — P is positive definite, and this is established using
(6.127), and (6.130):

1
vV -P > HTH+AT[P“—%GGT] A-P

-1 (6.167)
> HTH 4+ AT [P-‘ + BBT — ;I;GGT] A-P=0;

thus, (6.155) is established by (6.166) and (6.167). Finally, consider (6.150). We wish to
show that conditions (6.128) and (6.130) imply

o GZPGO > 0.

We recall from Remark 6.7, that (6.150) is equivalent to P > HZ H,, which we will demon-
strate. Since P satisfies (6.127), then

(P—HTH)™ — A7'BBTAT = 4~ (P“ - %GGT) AT,
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and so conditions (6.128) and (6.130) imply that

YV >HTH+[(P-HTH) ' - A7'BBTAT|"' > 0
or
(PL+P—H'H)> [(P-HTH)™ = A7'BBTA™T|™' > 0 (6.168)

since vV = P, + P. Since P > HT H, then (6.168) holds if
(P-HTH) ' -~ A'BBTAT>(PL+P-HTH) ' >0,
which is equivalent to
(P-HTH){(P-HTH)™' —A'BBTAT —(P,+ P- HTH)"'}(P- HTH) > 0. (6.169)
Since K = —BTA-T(P — HTH), using (6.169) we can write

KTK = (P-HTH)A"'BBTA-T(P - HTH)

(P - HTH){(P — HTH)™' — (P, + P — HTH)~'}(P — HTH)
(P — HTH)"' + P11,

oA

This leads to
I > K[(P- HTH)'l + Pl’l]KT

_ K[I_I][P—HTH 0 ]“ [ I

T _ p-1T
o B _I]K = KB-1RT.

Thus, conditions (6.128) and (6.130) imply that

0 < P-KTK
P—HTH 0 I'].er - o
- [ ) Pl}_[_l]f( K[l —1)=P—HTH,.

Remark 6.9: The structures of L and K in this problem (i.e., K = —BTX and LTX;, =
v2C) are similar to those of the continuous-time solutions, though they are not intuitive from
the DARE equations. The use of the GARE framework thus provides an elegant solution to
this problem. Numerically, the computation of the GARE itself should also be more robust,

since no inversions are required.
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Remark 6.10: If the worst disturbances are assumed, i.e.,

[ v ] = %GZX::,

v
then the total closed-loop matrix becomes

A, N

0 A+GGTW (6.170)

E,+ %GOGZ)‘( = [
¥

Since A+ GGTW is the “closed-loop™ matrix associated with the observer Riccati equation,
we see that the eigenvalues are the union of the control and observer closed-loop matrix
eigenvalues.

Thus, we have established the observer-based controller analogous to that in the
continuous-time case. The results here, because of the discrete Riccati equation structure,
have added conditions (6.128) and (6.130). Note that (6.130) is a condition on the relation-
ship between Riccati solutions (6.127) and (6.129). A similar condition is found in [48,1],
Theorem 3].

6.3.8 A lower bound on the optimal H, norm

As in the case of the state-feedback control for 4 > ~min, it is possible to obtain both an
upper and lower bound on the minimal achievable H,, norm when observer-based controls
are used. Let 4° be the the minimal achievable H.,, norm using a controller of the form
presented here, such that for all ¥ > «°, there exist P, V and L satisfying (6.127) - (6.131).

The next theorem gives a lower bound on the value of ¥°.

Theorem 6.14. If there exist positive-definite P and V such that
-1
P = HTH+ATP{I+ BBT—;yl-;GGT P| A
YV = HTH —42CTC ++*ATV[I - GGTV]-'A

-1
withy >0, v I — GTPG >0, and v*V > HTH + ATP (I - %GGTP) A, then

-1
A { [HTH +ATP (1 - %GGTP) A] V"} <Y< (6.171)
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The proof of the theorem requires two technical Lemmas relating the monotonicity of

solutions of the DARE with respect to 7.
1 - o
Lemma 6.17. [P('y)'1 - ?GGT] is monotonically increasing in v for v € (7°,0).

Proof. By Theorem 6.7, P(7) is monotonically increasing for 4 € (Ymin, ©0). It can be easily
shown that 4° > Ymin, and so P(v) is monotone in (7°,00). Thus, for v; > v > 7° 2 Ymin,
it follows that P(m) < P(y2) < P(v°,, and so P(71)™! 2 P(v2)™! 2 P(y°)~!. We also have

that ——l-z-G'GT > -——lgGGT > ——l-iGGT, and thus we have
T T2 ~°

1 1 1
P(m)?! - 7—12GGT > P(y2)~' = :/—%-GGT > P(y°)! - ?GGT.

Therefore,

-1 -1

1 -1 1 1
P(y)™ - ;?GGT] < [P(‘Yz)—1 - %GGT] < [1’(‘7")'1 - ;(;;GGT . |

Lemma 6.18. V(«) is monotonically increasing in v for v € (v°,00).

Proof Recall that if Q is the stabilizing solution of (6.86a), by analogy with Theorem 6.7,
Q is monotonically decreasing in v for ¥ € (Fmin, ), where Fpyin is the smallest v associated
with the (dual) observer problem. It is easy to show that 4° 2> Fmin. Thus, Q is monotonically
decreasing in (y°,00), and so V = Q! is monotone increasing there. o
Proof of Theorem 6.14: The upper bound follows from the definition of 4°. To prove the

lower bound, we have to show that for ¢ > 0
-1
(7°+€)*V(y) > HTH + AT (P('y)" - %GGT) A.

Without loss of generality, we can choose € > 0 such that y — 4° > € > 0. By Lemmas £.17
and 6.18, we have that

(Y+)WV() =2 (°+e*V(r°+¢)
1

-1
> HTH + AT |P(y°+¢)"' = ———GGT| 4
+a7 [P+ e+ o |

> HTI 4 AT (P(-,)-‘ - ;};GGT) A.
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7 CONCLUSION

The research described in this report has provided many new results and research direc-
tions. These include the FH-norm-optimal low-order controller design problem with con-
trollers restricted to belong to the class of projective controllers, the ARE-inequality based
approach to designing H,,-norm suboptimal full order controllers and its application to the
decentralized control problem using full order controllers, the development of design equa-
tions for control systems reliable with respect to sensor and actuator outages, the design of
strongly stable systems and decentralized control systems reliable with respect to a loss of
certain control channels. In addition, initial results were obtained in the output-feedback-
based H-norm-bounding controls for discrete systems based on the transformation of the
DARE to the GARE. These results include both an upper and a lower bound on the value of
the H,, norm. Parametrizations of state-feedback and output-feedback controls that provide
a specified bound on the H,, norm were also obtained.

The design of low-order controllers reduces ultimately to a nonlinear optimization prob-
lem, or to a problem of extracting elements of a subset to obtain a suboptimal solution. In
this respect we have combined the projective controls approach with FH-norm optimization
to simplify the computational aspects. The use of projective controls provides a convenient
way of parametrizing the entire class of controllers of a given order that retain the dominant
dynamics of a reference, state-feedback controlled system, which is computationally easy to
design and adjust. Moreover, it provides a systematic procedure for retaining more reference
dynamics by gradually increasing the controller order and the number of free design parame-
ters. The FH norm provides a physically meaningful and computationally attractive criterion
for optimal and suboptimal controller design. In particular, the possibility of transforming
the parametrized class of projective controllers to a form linear in the free parameters has
enabled the efficient application of FH-norm optimization to the optimization of the free
design parameters in the parametrized class of projective controllers.

The described methodology for designing full order output feedback controllers with a
guaranteed Ho, norm bound highlight the possiblity of achieving additional important design
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goals with controllers of the same order as the plant. Considered here in detail is the problem
of designing reliable controllers, and design equations have been developed which achieve
reliability at the expense of an increase in the guaranteed bound on the Hy-norm for both
the base configuration and when certain outages of sensors or actuators occur. Results on the
parametrization of classes of output feedback controllers that achieve an H.,-norm bound we
feel will allow a further and systematic development and evaluation of multiatribute designs.
Finally, the DARE to GARE transformation and the resuilts already obtained concering the
deeign equations for full order based output feedback control and the convexity properties
of the discrete Riccati operator will, we expect, allow the results and insight gained from the

analysis of the continuous control problems to be carried over to discrete contrc! problem.
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