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1. Introduc;fon

J
Let v'be a o-finite Borel measure on a separable metric space T, and let

n

{X(t). t € T} be a measurable a-stable process, 0<a<2. Sample path integrals
of the type fT|X(t)|pu(dt). p > 0, arise in many situations, e.g. in multiple
stochastic stable integration (Rosinski and Woyczynski 1987), in inversion
formulae for the Fourier transform of stable noise (Cambanis 1988), in integral
transformations between stationary and stationary increments stable processes
(Cambanis and Maejima 1990) and others. It is important, therefore, to know
exactly when the above integral is finite. Although much is known about this
question, certain things appear to have been unknowi: in the case p<l and even
the known results are scattered in the literature and have never been put
together, mainly because different cases have been handled using very different
tools, varying from pth order analysis to geometry of certain Banach spaces.
As a result, researchers working with stable processes have had to justify in
each case existence of sample path integrals (see Cambanis and Maejima (1990)
for a recent example). It is our purpose in this paper, therefore, to give
necessary and sufficient conditions for sample path integrability of stable
processes in the case which has been open, and to present them together with
known results in an easy to use form. - In each case we will attempt to describe
fully what part of the result has been known and to give due credit to the
people to whom it belongs. In many cases we reprove known results, partially
for completeness, mostly because in many cases our argument covers both known
cases and open ones. Also, a large part of our argument is completely
elementary.

In the next section we start with some preliminary information on sample

path integrability, on stable processes, and we also give a "tinv" hit cf
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information on geometry of Banach spaces which we will need in the present
study. Necessary and sufficient conditions for integrability of sample paths
of stable processes are given in Section 3.
In Section 4 we prove a Fubini-type theorem which justifies interchanging
the order of Lebesgue and stable stochastic integration, and, finally, in
Section 5 we derive the asymptotics of the distribution of the integral

ITIX(t)|pv(dt) in the case when it is finite.

2. Preliminaries

A (real) stochastic process {X(t), € T} is called a-stable, 0<ag2, if

t
for any A.B>0, {AX,(t) + BXy(t), t €T) d (A% + B3)V%(¢) + D(t). t € T},
where {Xi(t). t € T}, i=1,2, are i.i.d. copies of {X(t), t € T}, and D: T — R
is a nonrandom function. An a-stable process is called strictly a-stable if
D(t)=0 for all t € T, and it is called symmetric a-stable (SaS) if {-X(t). t €
T} d {X(t), t € T}. A 2-stable process is, of course, Gaussian, and an S2S
process is ~ero-mean Gaussian.

Suppose now that the time space T is a separable metric space, and let v

be a o-finite Borel measure on T. Let {X(t), t € T} be a measurable zero mean

Gaussian process and p 2 1. Then

(2.1) P(S |X(t)|Pv(dt) < @) = 0 or 1,
T
and
(2.2) P(S IX(t)|Pu(de) <o) =1  1ff S E|X(t)|Po(dt) < »
T T

(Rajput 1972), which expresses a very simple idea: the integral [ |X(t)|pv(dt)
T

ifs finite 1f and only if its expectation is finite. This idea has some
applicability in the m=etahle case pioper, (1 e where Oda<?), kot s

understandingly limited by poor integrability properties of stable random




variables.
A usual and very convenient representation of a-stable processes is the

integral representation

(2.3) (xee), teTy S (r £ (x)M(dx), t € T),
T

where M is an (independently scattered) a-stable random measure on (E,&) with
certain control measure m and skewness intensity [, and ft € La(E.s.m) (also

J |ft(x)log|ft(x)Iﬁ(x)lm(dx)(m if a=1), t € T. VWc refer the reader to Hardin
E

(1984) and Samorodnitsky (1987) for more information on integrals with respect
to a-stable random measures. In particular, every SaS process can be
represented in the integral form (2.3), and the random measure M can be taken,
in this case, to be SaS (i.e. to have skewness intensity B = 0) (see
Bretagnolle et al. (1966) and Schriber (1972)).

A stochastic process {X(t), t € T} is said to satisfy condition § if the

n
linear space ¥(X) = { 2 aiX(ti). a, €ER, t, €T, i=1,...,n, n=1,2,...,}

i=1 i

generated by the process is separable in the metric of convergence in
probability. A SaS process satisfying condition S can be represented in a more

special form than (2.3). namely

1
(2.4) xet), tety S qr £, COM(dx), t € T},
0

where M i{s a SaS random measure on ([0,1].8) with Lebesgue control measure and
ft € La[O.l]. t € T (Kuelbs 1973), and a strictly a-stable process satisfying
condition S, with a # 1, can also be represented in the form (2.4), but this
time M is a totally skewed to the right a-stable random measure on ([0.1].8)
with Lebesgue control measure (i.e. the skewness intensity 8 = 1).

Let {X(t), t € T} be an a-stable process with an integral representation
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(2.3), and suppose that the control measure m is actually a probability

measure. In that case

[ ]
(2.5) x(e), tet) $ e 3 (.r7V% (vy-a (), toeT).
a j=1 JJ N RN |
where (Fl.Fz....} is a sequence of arrival times of a Poisson process with unit

Vl v2 1
arrivai rate, 1 N ....J is a sequence of i.i.d. Ex{-1,1}-valued random

Y

1 2
vectors such that VJ has distribution m on E, and
1+6(V )
P(v, = 1|V,) = 1- = -1|V,) = —i—,
(v, = 1IV)) = 1-P(7; = ~1]V,) = —5

\ A
the sequences {I',,[,,...} and 1 . 2 e are independent, a . : T — R,
1" 2 e 7o J
J=1.2,... is a sequence of nonrandom functions (which can be taken equal

identically to O in the SaS case as well as in the case 0<a<1), and
< 1
(2.6) C = (f x ¥sinx dx)™ .
T 0

See LePage (1989). To save space we will not display the functions a‘j
explicitly: we only mention that they can be chosen to be measurable if the
kernel ft(x) is jointly measurable, TxE — R. Note also that the series in the
right hand side of (2.5) converges with probability 1 for every t € T, and we
define it to be equal to zero if it does not converge.

The following is an extension of Proposition 6.1 of Rosinski and

Woyczynski (1986) to the strictly stable case.

Proposition 2.1 A strictly a-stable process {X(t), t € T}, a # 1, (or an SIS
process) has a measurable modiciation if and only if it admits an integral
representation (2.4) with M being a totally skewed to the right a-stable random

measure with Lebesgue control measure, and ft(x). TxE — R jointly measurable.
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Moreover, i® {X(t). t € T} admits an integral representation as above, then it
has a measurable modification even if a = 1, and one such meosurable

modification is given by the right hand side of (2.5).

Proof. Suppose {X(t), t € T} has the required integral representation. Let
{Y(t). t € T} be the version of {X(t), t € T} defined by the right hand side of
(2.5). Then {Y(t), t € T} is measurable as the limit of a sequence of
measurable functions. Conversely, if {X(t), t € T} has a measurable version
with a # 1, then (Xl(t)—X2(t). t € T} has a measurable version as well, the
latter process is SaS, wid our conclusion follows from Proposition 6.1 of

Rosinski and Woyczynski (1986). o

Remark. In the sequel we will deal with measurable a-stable processes

represented in the more general form (2.3) rather than (2.4). One should keep

in mind that in this case according to Proposition 2.1 the closed subspace of
La(E.G.m) spanned by (ft' t € T} must be scparable.

From now on, unless stated otherwise, {X(t). t € T} will always be a
measurable modification of an a-stable process with an integral representation
(2.3) and ft(x). T x E — R jointly measurable. It follows from the zero-one
law of Dudley and Kanter (1974) that for any p>0, (2.1) is still true, and we
want to know when the probability in (2.1) is equal to 1. The case p 2 1 (at
least, for an SaS {X(t)., t € T}) is known, and the results can be found in
Linde (1983).

Historically, the case l{p<a is due to Cambanis and Miller (1980) and
Linde et al. (1980), while the case p > max(a,l) is due to Marcus and
Woyczynski (1979) and Linde et al. (1980). The most complicated case p=a)l was

solved by Rosinski and Woyczynski (1987). Most of the above results were

obtained by involving the correspondence principle between stable processes




with sample paths in LP spaces and stable measures on these spaces (Weron 1984,
also Louie 1980), and then using the theory of stable measures on separable
Banach spaces.

Less seems to be known about the case 0<{p<{l, mainly because much less is
known about probability measures on such metric spaces than in the Banach space
case. Luckily, the case p=za € (0,1) has been solved (implicitly) by Kwapieg
and Woyczynski (1987), see also in this connection Rosinski and Woyczynski
(1987). The sufficiency of the integrability conditions in the case O<a<{p<I
can be deduced from Marcus and Woyczynski (1979) and Rosinski and Woyczynski
(1985).

We conclude this section with a small piece of information on geometry of
Banach spaces and with a lemma.

Let Y..Y,,... be a sequence of i.1.d. random vectors taking values in a

o v
separable Banach space B, and suppose that the series

D 7
(2.7) leejrJ "YJ

converges a.s., where 61,62

+
a sequence of arrival times of a unit rate Poisson process on R , and all three

is an i.i.d. sequence of random signs and Fl,Fz is
sequences are independent. Then the series (2.7) converges to a SaS random
vector on B and Equu“ { » (Rosinski 1986) and, moreover, if the space B is of
Rademacher type q > a, then EHYIHa ¢ » implies that the series (2.7) converges
a.s. (Linde 1983).

Finally, a simple lemma which can be easily proved using Borell-Cantelli

lemma (see also Rosinski (1989)).

Lemma 2.2 Let XI,X be a sequence of L.i.d. random variables. Then

2
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| <o iff Iim n-lx =0 a.s.,
n—o n

E|X1| =o iff Tim n—1|X | = = a.s.
n—% n

3. Necessary and Sufficient Conditions for Integrability of Sample Patbs of

Stable Processes.

We start with the following lemma, which is crucial in our line of

argument.
Lemma 3.1. Let

Xn = é fn(x)M(dx). n=1,2,...,

be a sequence of jointly a-stable random variables, 0<al2, where M is an

a-stable random measure with control measure m. If Xn —— 0 a.s. then

(3.1) f (x) — 0 for m-almost every x € E
n o
and
(3.2) I sup |f_(x)]%m(dx) < .
E n>1

Moreover, if 0 < a < 1 and (3.1) and (3.2) hold, then Xn — 0 a.s.

n-—o

Proof. This is well known, see e.g. Kosinski (1986), Corollary 5.2, also

Marcus and Woyczynski (1987), Samorodnitsky (1987).
The following proposition goes a long way towards our goal.

Proposition 3.2. Let {X(t), t € T} be a measurable a-stable process,

0<a<2, with an integral representation (2.3). If

I 1X(t) [Pu(dt) < » a.s.
T

then
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(3.3) rd £, () [Ym(ax) )P Fo(de) < o
and
(3.4) é ({ | (x) [Pu(dt))*Pm(dx) < =.

Proof: We may assume without loss of generality that both measures m and v are
probability measures. Let (0,%,P) be the probability space on which the
process {X(t), t € T} lives, and let UI'U2"" be a sequence of i.i.d. T-valued
random variables with common law v living on a different probability space
(Ql.yl.Pl). Then for P-almost every w € (2, ElX(Ul.w)Ip { @ and thus Lemma 2.2

implies that n—l/pX(Un.w) = O P,-a.s., so that by Fubini’s theorem, for

1

Pl—almost every choice of UI'U2""' n_l/pX(Un) = O P-a.s. Invoking Lemma

3.1, we conclude that for Pl—almost every choice of Ul'U2""

(3.5) [ sup (a7 P)s (%) [m(dx) < .
E n)l n

Let now Z,,Z, be a sequence of i.i.d. E-valued random variables with common law

1'72
m living on a still different probability space (Q2,y2.P2). Then (3.5), Lemma

2.2 and Fubini's theorem imply that

~-1/p .~1/a _
(3.6) sup sup n J IfU (Zj)l (@ Ple2 a.s.

n2l j21 n

This is the crucial relation. To derive now, say, (3.4), use (3.6) and

Fubini's theorem to conclude that for P.,-almost every choice of 21.22

2
sup n—l/p(sup j-l/a|fU (Zj)l) ¢® P -a.s.
n2l1 J21 n
Therefore, for every such 21.22.... by Lemma 2.2

= > Elae (J"’“Ifun(zj)l)p]
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= § sup % (2,) [Pugar)
T i

> sup P05 (2) [Pucar).
j21 T Y

Applying once again Lemma 2.2 we obtain

L 18 0o Putae))™Paqan) = Ex(f 11,2 Po(ae)™P < o,
E T

proving (3.4). The proof of (3.3) is identical. n]

Remark. It turns out that both expressions in (3.3) and (3.4) play an importar .

role in the distribution of the integral [ |X(t)|pv(dt) when the latter is
T

finite. We will return to this point in the sequel.
The following is the main result of this section, and it gives necessary
and sufficient conditions for an a-stable process {X(t). t € T} to have sample

paths in LP(T,») for all p > 0, 0 < a < 2.

Theorem 3.3 Let {X(t), t € T} be a measurable a-stable process with an
integral representation (2.3), 0 < a < 2. If a = 1 we assume that the process

is symmetric. Let p > 0. Then [ |X(t)|pv(dt) (o a.s. if and only if
T
(3.7) I G lft(x)|am(dx))p/av(dt) {® when 0 < p < a,
T E

£, )% T S e, (v)|%m(dv)v(du)
(3.8)f £ 1£,(0)[*| 1 + log, ET m(dx)v(dt) < o
ET ° L f () [m(av) S £, (x) [(du)
E T

when p = a,

(3.9) S (015, |Fu(dt))™Pn(dx) < ®  when p > a.
T E

roof : Suppose first that {X(t), t € T} is SaS. As the (most complicated) case




10
p = a has been covered by Rosinski and Woyczynski (198/) and Kwapien and

Woyczynski (1987), it remains to consider the other two cases.

Case 1. O<p<a. Necessity of (3.7) follows from Proposition 3.2. On the other

hand, (3.7) implies that

(3.10) ES IX()Poqdt) = £ (5 16, (x)[%n(dx))P Pu(dr) < =,
T ‘PT E

a

where Ca p is a positive constant depending only on a and p. Thus,

I |X(t)|Pv(dt) < = a.s.
T

Case 2. p > a. Necessity of (3.9) follows once again from Proposition 3.2. On
the other hand, suppose that (3.9) holds. Then f (x) € Lp(T.v) for almost

every X € E and (assuming once again that m is a probability measure),

(3.11) Elf_(Z)n* < o,
LP(T.v)
where Z is an E-valued random variable with law m. Let 21.22.... be i.i.d.
1/a - 1/
copies of Z. Then the series Ca ¢ 3 ejrj af.(Zj) converges a.s. in Lp(T.v)
3=1

because the Banach space Lp(T.v) is of Rademacher type p A 2 > a when p > |,
whereas the case p<l is obvious. This series gives us a modification of {X(t).
t € T} which is in Lp(T.v). thus completing the proof of the theorem in the
symmetric case.

In the general case, let (Xl(t), t € T} and (X2(t). t € T} be two

independent copies of {X(t), t € T}). Then Y(t) = 2_‘/0

(Xl(t)—Xz(t)). t €T, is
SaS with an integral representation (2.3), but this time the random measure M

is symmetric and has the same control measure m as before. Now our claim

follows from the easily checkable fact that
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S IX(t)|Po(dt) < @ a.s. iff [ |y(t)|Pv(dt) < = a.s.
T T

The proof of the thecrem is now complete. o

Remark. It is interesting to note that our argument shows that, actually,

I IX(t)|Pv(dt) < » a.s. if and only if (3.6) holds.
T

4. Change of order of integration. Let {X(t), t € T} be a measurable a-stable

process with an integral representation (2.3) such that [ |X(t)]v(dt) < @ a.s.
T
We expect the distribution of the path integral [ X(t)v(dt) to be a-stable as
T

well, and in many applications one is interested in the parameters of this
distribution. Those are easy to find if one may interchange the order of
Lebesgue integration and stochastic integration in (2.3). The following
theorem justifies such change of order of integration. In the (symmetric) case

1<a<2 it is due to Rosinski (1986). See also Appendix of Cambanis (1988).
Theorem 4.1. Let

(4.1) X(t) = [ £ (x)M(dx). t €T
E

be a measurable a-stable process, where M {s an a-stable random measure 0<a<2,
and ft(x): TxE — R is jointly measurable. If a = 1 we assume that M (and thus

X) are symmetric. If J |X(t)]v(dt) ¢ » a.s. then
T
(4.2) I X(t)u(de) = [ (J £ (x)v(dt))M(dx) a.s.
T E T
and thus, in particular, [ ft(°)v(dt) € La(E.G,m)).
T

Proof: When a?l, our results can be proved in the same way as Lemma 7.1 of

Rosinski (1986). Consider, therefore, the case 0<a<l. We use the
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"randomization” Lemma 1.1 of Kallenberg (1988) to conclude (assuming, as usual,

that the control measure m is a probability measure) that there are two

v v
independent sequences, Fl.Fz...., and [ 1 ]. [ 2 ],... as in (2.5) (note that
"1 T2
aJ=O since 0<a<l), such that
{4.3) (X(t), t €T} 225(c® s +17V% (v). t €T} in LY(T.0)
a j=1 JJ t'
and
(4.4) S (S £ (x)v(dt))M(dx) 25 c/® 3 1Jr31’“f (Y )u(de).
Therefore, by (4.3),
(4.5) §X(t)u(dt) = /% (3 4.7 V% (v.))u(dt) a.s.
T S S A
Note that
2 ~1/a Y ~1/a
(4.6) I s rJ Ift(VJ)Iv(dt) = 3 rJ q) Ift(VJ)Iu(dt)) < ®a.s.
T j=1 j=1 T

because 0<a<l and because by Theorem 3.3 we have E(J Ift(Vl)lv(dt))a ¢ o Now
T

(4.4), (4.5) and Fubini's theorem complete the proof. 8]

Remark. A similar argument yields in the nonsymmetric case, a=1., ‘.t the left

hand side of (4.2) is again l-stable and that

J X(t)v(dt) - J (S ft(x)v(dt))M(dx) = const. a.s.
T E T

We conjecture that the constant above is, actually, equal to O.

5. The distribution of the LP-norm of an a-stable process. Let {X(t). t € T}

be a measurable a-stable process with an integral representation (2.3).
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Suppose that for p>0

(5.1) J= (F IX(t)[Po(@t))’P ¢ @ a.s.
T

It follows from the theory of stable measures on Banach spaces that, tor p)l,

the limit lim AaP(J>k) exists, and can be identified in terms of the kernel
A=

ft(x) in (2.3), see de Acosta (1977) and Araujo and Giné (1980), Corollary
6.20. Nevertheless, in the case O<{p<l, it is not, apparently, even known that
the above limit exists. Our next theorem proves the existence of the limit and
identifies it for all p>0. Unfortunately, we need to make an assumption
slightly stronger than (5.1). We conjecture that the statement is true under
(5.1) as well.

Note that our theorem is true also in the nonsymmetric case a=1.

Theorem 5.1. Let {X(t), t € T} be a measurable a-stable process with an
integral representation (2.3), 0<a<2, and let p>0. Assume that the control
measure m is finite and that ftGLa+e(E.8.m). t €T for some ¢ > 0. Let M' be
an at+e-stable random measure on (E,&) with the same control measure and

skewness intensity as M. Let X'(t) = [ ft(x)M'(dx), t € T, and assume that
E

S I1X (t)|Pv(dt) < ®. Then (5.1) holds. and
T

(5.2) 1im A%P(OA) = C

A0 a

(18,00 [Po(de))™ Pmax).
E T

where Ca its given by (2.6).

Proof: We may and will assume that the measures m and v are probability
measures. The fact that (5.1) holds follows from Theorem 3.3 (see also (3.6)).

Let {X(t), t € T} be defined by the right hand side of (2.5). Then

(. K)Jg 3:= Cl/a 31/a

. rt(vj)—aj(t)lpv(dx))"p.

(S IX(e) Poqae)P= /(s | 3 v
T T j=1
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Let
(5.4) Vi = Cl/a(f v l/af (V)a (t)l u(dt))

a ;'

2" Ty feVy)oa
T j=2

It follows from Theorem 3.3 that Vl< ® a.s., and thus V2 ( ®a.s. as well.
have
(5.6)  lim A%P(V>A) = lim A“P(cl/“f 172 (V) Poae)) P > 0

A0 A0

C, lim AP(T ¢ N (f|f (V) [Po(de))™P))
Aqm

CEU 11,V Po(ae)™P)

¢, I 18,00 [Po(de)) ™ Pm(ax).
ET

1f we prove that
(5.7) EVy < =,

then our theorem will follow from (5.3), (5.6) and (5.7). let

(1) i)
(1) (1) Yl v§
{Fl .F2 e L) (1) v...}, 1=z1.2, be two independent copies of the
1

random variables determining V2 and let

(1) _ ~l/a (W) (1)-17a, (1), p 1/p _
Vo ' = C, ({ |Jz2 ] rJ £ (vJ ) aJ(t)l v(dt))'F, 1 =1,2.

It is clearly enough to prove that

(5.8) EVDvD 1T cw yr po 1

Let 61'62""

random variables involved. Choose a positive integer m so big that %;-g 1.

We

be a sequence of 1.1.d. random signs independent of the rest of

]
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Then by the so called Khinchine inequality (see e.g. Proposition 3.5.1 of Linde
(1983)) we obtain
(5.9) E|V(1)— v{2)|e

(1) (1) 1/a (2)p (2) -1/a

< CEJ | 3 (v Fvit)-t (Vi) [Pugac)) ™/

T j=2

(2)-1/a

-CE(J |3 ej(wgl)rgl)‘l’“ft(vgl))—wgz)rj

£, (v42))) [Pu(ae))®
T =2 J

< oy r vl 1 2 E ej(w(l)rgl) Vap (v (22 1/ag (y(2)) Py gy mposem

{CE

m L]
o vl J (TE]| S eJ(qgl)r(l)—l/aftk(vgl))_

=1 € i= J
Tlx...me k=1 = j=2

wgz)rgz)'l’“ft (V§2)))lpm)1/mv(dt1)...v(dtm)]a/ m

Sconse B[ T T3 (x (1) (1) 1/a, (v§1))_1§2)r(2)—1/af (v§2)))2)p/2

T x...xT k=l j=2 t J %

b(dt,)...v(de_)]P"

2.,p/2
)P

§ const. E(J ( 2 r 2/ D(dt))a/p

e £ (vy)
where const. is a finite positive number which is allowed to change from line
to line.

Now, let (Xi(t). t € T}, i=1,2 be independent copies of {X'(t), t € T}:
then Y(t) = 2_1/(a+e)(Xi(t) - Xé(t)). t € T is a measurable S{a+e)S process
with an integral representation (2.3), where the random measure M has the same

control measure m as before, but this time M is S(a+e)S. Clearly,

J ]Y(t)|Pv(dt) < w a.s. By Lemma 3.1,
T
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(5.10) [ sup (n 1/p/fU (x) ) €m(dx) < ®
E n1
for almost every choice of i.i.d. T-valued random variables UI'UZ"" with
common law v. Fix now Ul'U2"" for which (5.10) holds. Then Eg(V )a+e w,
where g(x) = sup n—l/p/fU (x)]. x € E, and V1 is as above. Therefore, letting
n2l n
once agajn €1 €gr - and F F2.... be independent sequences of 1.i.d. random

signs and Poisson arrivals accordingly, independent of the 1.1.d. sequence

Vl.V2.... as above, we conclude that

. b
E| S e r @ B(V, )¢

j=2 1

Applying once again Khinchine's inequality, we obtain

® > E| s erl/a g(V,) % 2 const. E( s ry 278,y 2y2/2
JJ J
J=2 j2
> const. E|sup n’2/p b) r—2/an (v )2)(1/2
n1 j=2 4 n 9

We conclude by Lemma 2.2 that

sup iuzlasup n ~2/p E F(l) 2/a U (V(i))2 (® a.s.,
121 21 j=2

where (ng), Vgi). j=1.2,...}. i=1,2,... are i.1.d. copies of (TJ,VJ.

j=1.2,...}, independent of the sequence Ul'U2"" . By Fubini's theorem, for

almost every choice of (ng).vgi). J=1.2....}, i=1,2, ..,

sup n_2/p(sup | ~2/a F(i) 2/a

V“))2 ) <®a.s.,
n21 121 J-2 J

U (
and thus by Lemma 2.2,

© 5 EU(sup { -2/a r(i) 2/a 2)p/2

(1)
v Yy 0)
11 j= 2 J U, J
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> sup i—p/a F (3 r(i)—2/a

>1 T =29 ft(vgi))z)p/zv(d“)'
i =

Applying once again Lemma 2.2, we conclude that

o0

E(f (3r.%¢

] fc(VJ)2)p/2v(dt))a/p < w,
T j=2

which, together with (5.10), proves (5.8), and thus the proof of the theorem is

now complete. o

Remark. As promised, we can now identify the role of the expressions (3.3) and

(3.4) in the distribution of J = ([ |X(t)|pv(dt))1/p when {X(t), t € T} is
T
symmetric. The expression in (3.3), [ (J |ft(x)|am(dx))p/av(dt). is equal to
T E

const. EJP (when p<a, of course), while the expression in (3.4),

I J |ft(x)|pv(dt))a/pm(dx). determines the limit lim AaP(J>A) (at least, under
E T A-0

the assumptions of Theorem 5.1).
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