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1. Introducdfon

Let v'be a a-finite Borel measure on a separable metric space T, and let

{X(t). t C T} be a measurable a-stable process, O<a<2. Sample path integrals

of the type STIX(t)jPv(dt), p > 0, arise in many situations, e.g. in multiple

stochastic stable integration (Rosinski and Woyczynski 1987), in inversion

formulae for the Fourier transform of stable noise (Cambanis 1988), in integral

transformations between stationary and stationary increments stable processes

(Cambanis and Maejima 1990) and others. It is important, therefore, to know

exactly when the above integral is finite. Although much is known about this

question, certain things appear to have been unknowi in the case p<l and even

the known results are scattered in the literature and have never been put

together. mainly because different cases have been handled using very different

tools, varying from pth order analysis to geometry of certain Banach spaces.

As a result, researchers working with stable processes have had to justify in

each case existence of sample path integrals (see Cambanis and Maejima (1990)

for a recent example). It is our purpose in this paper, therefore, to give

necessary and sufficient conditions for sample path integrability of stable

processes in the case which has been open, and to present them together with

known results in an easy to use form.- In each case we will attempt to describe

fully what part of the result has been known and to give due credit to the

people to whom it belongs. In many cases we reprove known results, partially

for completeness, mostly because in many cases our argument covers both known

cases and open ones. Also, a large part of our argument is completely

elementary.

In the next section we start with some preliminary information on sample

path integrability, on stable processes, and we also vivP a "tinv" hit cf
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information on geometry of Banach spaces which we will need in the present

study. Necessary and sufficient conditions for integrability of sample paths

of stable processes are given in Section 3.

In Section 4 we prove a Fubini-type theorem which justifies interchanging

the order of Lebesgue and stable stochastic integration, and, finally, in

Section 5 we derive the asymptotics of the distribution of the integral

STIX(t)IPv(dt) in the case when it is finite.

2. Preliminaries

A (real) stochastic process {X(t), t E T} is called a-stable, O(a<2, if

for any A.B)O, {AX,(t) + BX2 (t), t E TI (Aa + Ba)l/aX(t) + D(t). t E T},

where {Xi(t) , t C TI, i=1.2, are i.i.d. copies of {X(t), t E T}. and D: T -.

is a nonrandom function. An a-stable process is called strictly a-stable if

D(t)--O for all t C T. and it is called symmetric a-stable (SaS) if (-X(t). t C

T) = {X(t), t E T). A 2-stable process is, of course, Gaussian, and an S2S

process is z ero-mean Gaussian.

Suppose now that the time space T is a separable metric space, and let v

be a a-finite Borel measure on T. Let {X(t). t E T} be a measurable zero mean

Gaussian process and p > 1. Then

(2.1) P(f IX(t)iPv(dt) < ) = 0 or 1.
T

and

(2.2) P(f IX(t)iPv(dt) < ) = I iff f EIX(t)IPv(dt) (
T T

(Rajput 1972). which expresses a very simple idea: the integral f IX(t)lPv(dt)
T

is finite if and only if its expectation is finite. This idea has some

applicability in thp "-ath - cqc pi,&,r, (1 P where 0<OK ), it is

understandingly limited by poor Integrability properties of stable random
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variables.

A usual and very convenient representation of a-stable processes is the

integral representation

(2.3) {X(t), t E T} (f ft(x)M(dx), t E T),
T

where M is an (independently scattered) a-stable random measure on (E,I) with

certain control measure m and skewness intensity P, and ft C La(E,,m) (also

f Ift(x)loglft(x)II(x)Im(dx) <( if a = 1), t C T. We refer the reader to Hardin
E

(1984) and Samorodnitsky (1987) for more information on integrals with respect

to a-stable random measures. In particular, every SaS process can be

represented in the integral form (2.3). and the random measure M can be taken.

in this case, to be SaS (i.e. to have skewness intensity 0 0) (see

Bretagnolle et al. (1966) and Schriber (1972)).

A stochastic process {X(t), t C TI is said to satisfy condition S if the

n
linear space V(X) = { aiX(t )} a, C IR, t, C T, i=l,..,n, n=l 2, }

i=.

generated by the process is separable in the metric of convergence in

probability. A SaS process satisfying condition S can be represented in a more

special form than (2.3). namely

1

(2.4) X(t), t C T q (f f t(x)M(dx). t C T),
0

where M is a SaS random measure on ([0,1].2) with Lebesgue control measure and

ft C La[O. l], t E T (Kuelbs 1973). and a strictly a-stable process satisfying

condition S. with a X 1, can also be represented in the form (2.4). but this

time M is a totally skewed to the right a-stable random measure on ([O.1].91)

with Lebesgue control measure (i.e. the skewness intensity 1).

Let {X(t). t C T} be an a-stable process with an integral representation
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(2.3). and suppose that the control measure m is actually a probability

measure. In that case

(2.5) {X(t). t E T} c/a l/af(V) ()) t E T.a J=l t(V t )-aJ

where {r1.r2..... } is a sequence of arrival times of a Poisson process with unit

arrivai rate, {l]. r2]....I is a sequence of i.i.d. Ex{-1,1}-value. random

vectors such that V has distribution m on E, and

P(-y = lIV ) -P(-r = -lV ) - 2'

the sequences {Fr 1, 2 ...} and {rl]. [2].... are independent, a.: T -R,11 ''Y _ 2

j=l.2.... is a sequence of nonrandom functions (which can be taken equal

identically to 0 in the SaS case as well as in the case O(a(l), and

(2.6) C = (f x-asInx dx) - I .
a 0

See LePage (1989). To save space we will not display the functions aj

explicitly; we only mention that they can be chosen to be measurable if the

kernel f t(x) is jointly measurable, TxE -4 [R. Note also that the series in the

right hand side of (2.5) converges with probability 1 for every t e T, and we

define it to be equal to zero if it does not converge.

The following is an extension of Proposition 6.1 of Rosinski and

Woyczynski (1986) to the strictly stable case.

Proposition 2.1 A strictly a-stable process {X(t), t E T), a 9 1, (or an SlS

process) has a measurable modtctation tf and only tf it admits an integral

representation (2.4) with M being a totally skewed to the right a-stable random

measure with Lebesgue control measure, and ft(x), TxE -- IR jointly measurable.
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Moreover, il {X(t). t E T} admits an integral representation as above, then tt

has a measurable modification even tf a = 1. and one such measurablc

modification ts given by the right hand side of (2.5).

Proof. Suppose {X(t), t C T} has the required integral representation. Let

{Y(t). t E T) be the version of (X(t), t C T} defined by the right hand side of

(2.5). Then {Y(t). t C T} is measurable as the limit of a sequence of

measurable functions. Conversely, if (X(t), t C T} has a measurable version

with a 0 1, then {Xl(t)-X 2 (t). t C T) has a measurable version as well, the

latter process is SaS, ai d our conclusion follows from Proposition 6.1 of

Rosinski and Woyczynski (1986). 0

Remark. In the sequel we will deal with measurable a-stable processes

represented in the more general form (2.3) rather than (2.4). One should keep

in mind that in this case according to Proposition 2.1 the closed subspace of

La(E,E,m) spanned by {ft. t E T} must be separable.

From now on, unless stated otherwise, {X(t). t E T} will always be a

measurable modification of an a-stable process with an integral representation

(2.3) and f t(x), T x E --+ R jointly measurable. It follows from the zero-one

law of Dudley and Kanter (1974) that for any p>O. (2.1) is still true, and we

want to know when the probability in (2.1) is equal to 1. The case p I (at

least, for an SaS (X(t). t E T)) is known, and the results can be found in

Linde (1983).

Historically, the case lp<a is due to Cambanis and Miller (1980) and

Linde et al. (1980), while the case p > max(a,1) is due to Marcus and

Woyczynski (1979) and Linde et al. (1980). The most complicated case p=a>l was

solved by Rosinski and Woyczynski (1987). Most of the above results were

obtained by involving the correspondence principle between stable processes
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with sample paths in Lp spaces and stable measures on these spaces (Weron 1984,

also Louie 1980), and then using the theory of stable measures on separable

Banach spaces.

Less seems to be known about the case O<p<l. mainly because much less is

known about probability measures on such metric spaces than in the Banach space

case. Luckily, the case p=a E (0.1) has been solved (implicitly) by Kwapien

and Woyczynski (1987), see also in this connection Rosinski and Woyczynski

(1987). The sufficiency of the integrability conditions in the case O<a<p<i

can be deduced from Marcus and Woyczynski (1979) and Rosinski and Woyczynski

(1985).

We conclude this section with a small piece of information on geometry of

Banach spaces and with a lemma.

Let Y0 .YI . be a sequence of i.i.d. random vectors taking values in a

separable Banach space B. and suppose that the series

(2.7) 2 j /ay
J=lj i

converges a.s., where c 1, 2 is an i.i.d. sequence of random signs and F1 ,F2 is

a sequence of arrival times of a unit rate Poisson process on P+. and all three

sequences are independent. Then the series (2.7) converges to a SaS random

vector on B and EIIY IIa < - (Rosinski 1986) and, moreover, if the space B is of

Rademacher type q > a, then ElIlY111a < implies that the series (2.7) converges

a.s. (Linde 1983).

Finally, a simple lemma which can be easily proved using Borell-Cantelli

lemma (see also Rosinski (1989)).

Lemma 2.2 Let X 1X 2 be a sequence of t.t.d. random vartables. Then
1' 2
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EIXII < iff lim n- IX n 0 0~ .

n-o

EIXlI : iff lim n 1 IXnI - a.s.
n.-iw

3. Necessary and Sufficient Conditions for Integrability of Sample Paths of

Stable Processes.

We start with the following lemma, which is crucial in our line of

argument.

Lemma 3.1. Let

X f fn(x)M(dx), n=1.2,...,
E

be a sequence of Jointly a-stable random variables, O<a<2, where M ts an

a-stable random measure with control measure m. If X -- 0 a.s. then
n n-4w

(3.1) fn (x) -+ 0 for m-almost every x E E

n-o

and

(3.2) f sup Ifn(x)la m (dx) <
E n>l

Moreover, if 0 < a < 1 and (3.1) and (3.2) hold, then X - 0 a.s.
n n-4u

Proof. This is well known, see e.g. kosinski (1986), Corollary 5.2, also

Marcus and Woyczynski (1987), Samorodnitsky (1987). D3

The following proposition goes a long way towards our goal.

Proposition 3.2. Let {X(t), t E T} be a measurable a-stable process,

O<a<2, with an integral representation (2.3). If

f IX(t) IPv(dt) < - a.s.

T

then



S

(3.3) f (f ift (x)ldm(dx) )P/a,(dt)

T E

ond

(3.4) f (f Ift(x) lPvdt)) a/pmdx) <

E T

Proof: We may assume without loss of generality that both measures m and v are

probability measures. Let (f0,9,P) be the probability space on which the

process {X(t), t E T} lives, and let U1,U 2.... be a sequence of i.i.d. T-valued

random variables with common law v living on a different probability space

(Q191.PY. Then for P-almost every w E fQ. EIX(UI,w)Ip < - and thus Lemma 2.2

implies that nl/lX(U - ) -0 P1-a.s., so that by Fubini's theorem, for
n n-4*

P -almost every choice of U.U .. n ---X(U -0 P-a.s. Invoking Lemma
I l2''** n n-o

3.1. we conclude that for P1 -almost every choice of U1 ,U2 ....

(3.5) f sup (n-I/Pf . (x)Iam(dx) <

E n0 n

Let now Z IZ 2 be a sequence of i.i.d. E-valued random variables with common law

m living on a still different probability space (Q2 ,52,P2 ). Then (3.5), Lemma

2-2 and Fubini's theorem imply that

(3.6) sup sup n Up l/aIfu (Z )I < - P1xP2-a.s.
n~l Jil n

This is the crucial relation. To derive now, say, (3.4). use (3.6) and

Fubini's theorem to conclude that for P 2-almost every choice of Z1,Z 2

sup n- /P(sup J-l/ai U (Z )I) < Pl-a.s.
n~l Jil n

Therefore, for every such Z1,Z 2 .... by Lemma 2.2

'> E.bsupy Lm/a 2fu.Z I pi

J~l n
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-f supJj-p/a

sup j-P/af~ft(Z )Pv(dt).
JD1 T

Applying once again Lemma 2.2 we obtain

f (f Ift(x)Ipv(dt))a /pm(dx) = E2 (If[ t(Z1)[P(dt))</ p <
E T T

proving (3.4). The proof of (3.3) is identical. 0

Remark. It turns out that both expressions in (3.3) and (3.4) play an importar

role in the distribution of the integral f IX(t)IPv(dt) when the latter is
T

finite. We will return to this point in the sequel.

The following is the main result of this section, and it gives necessary

and sufficient conditions for an a-stable process {X(t), t C T} to have sample

paths in LP(T.v) for all p > 0, 0 < a < 2.

Theorem 3.3 Let {X(t), t C T} be a measurable a-stable process with an

integral representatton (2.3). 0 < a ( 2. If a = 1 we assume that the process

ts symmetrtc. Let p > 0. Then f IX(t)lPv(dt) < o a.s. tf and only if
T

(3.7) f (' Ift(x)Iam(dx))P/v(dt) < co when 0 < p < a,
T E

Ift(x)ta f f Ifu(v)Iam(dv)v(du)
(3.8)f f If(x) 1 + logE T m(dx)v(dt) <

E T " + f£tv)lam(dv) f if j(x) aa(du)
E T

when p = a,

(3.9) f (f Ift(x)IPv(dt))a/Pm(dx) ( when p > a.
T E

Proof: Suppose first that {X(t), t C T) is SaS. As the (most complicated) case



10

p = a has been covered by Rosinski and Woyczynski (1987) and Kwapien and

Woyczynski (1987). it remains to consider the other two cases.

Case 1. O<p<a. Necessity of (3.7) follows from Proposition 3.2. On the other

hand, (3.7) implies that

(3.10) E f !X(t)IPu(dt) = C f ft(x)am(dx))P/a(dt) < ,
T a p T E

where C is a positive constant depending only on a and p. Thus,a,p

f IX(t) IPv(dt) < - a.s.
T

Case 2. p > a. Necessity of (3.9) follows once again from Proposition 3.2. On

the other hand, suppose that (3.9) holds. Then f*(x) E LP(T.v) for almost

every x C E and (assuming once again that m is a probability measure).

(3.11) Ellf. (Z) ,a  < CO.

L p(T. )

where Z is an E-valued random variable with law m. Let Z Z.. be i.i.d.

C1/a 1/af.pZ
copies of Z. Then the series C / 2 f (Z.) converges a.s. in LP(T.v)

a 1j= j

because the Banach space LP(T.v) is of Rademacher type p A 2 > a when p 1.

whereas the case p<l is obvious. This series gives us a modification of {X(t).

t C T} which is in LP(T.v). thus completing the proof of the theorem in the

symmetric case.

In the general case, let (Xl(t). t C T} and {X2 (t). t E T} be two

independent copies of {X(t). t C T). Then Y(t) = 2- 1/a(XI(t)-X 2 (t)), t C T. is

ScS with an integral representation (2.3). but this time the random measure M

is symmetric and has the same control measure m as before. Now our claim

follows from the easily checkable fact that
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IX(t)lPv(dt) < - a.s. iff S IY(t)lPv(dt) < - a.s.
T T

The proof of the theorem is now complete. 0

Remark. It is interesting to note that our argument shows that. actually,

f IX(t)IPv(dt) < - a.s. if and only if (3.6) holds.
T

. order of integration. Let {X(t), t E T} be a measurable a-stable

process with an integral representation (2.3) such that f IX(t)Iu(dt) < - a.s.

T

We expect the distribution of the path integral .T X(t)v(dt) to be a-stable as
T

well, and in many applications one is interested in the parameters of this

distribution. Those are easy to find if one may interchange the order of

Lebesgue integration and stochastic integration in (2.3). The following

theorem justifies such change of order of integration. In the (symmetric) case

1<a<2 it is due to Rosinski (1986). See also Appendix of Cambanis (1988).

Theorem 4.1. Let

(4.1) X(t) = f ft(x)M(dx), t E T
E

be a measurable a-stable process, where M ts an a-stable random measure O<a<2,

and f t(x): TxE - R is jointly measurable. If a = 1 we assume that M (and thus

X) are symmetric. If f I(t)Iv(dt) < a.s. then
T

(4.2) f X(t)v(dt) = f (f f t(x)v(dt))M(dx) a.s.
T E T

and thus, in particular, f f t(.)v(dt) E La(EL.9m)).
T

Proof: When a~l, our results can be proved in the same way as Lemma 7.1 of

Rosinski (1986). Consider, therefore, the case O<a<l. We use the
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"randomization" Lemma 1.1 of Kallenberg (1988) to conclude (assuming. as usual,

that the control measure m is a probability measure) that there are two

independent sequences, 1 ,F2 . . . . . and 1' 2 ]... as in (2.5) (note that

a -O since O<a<l), such that

(4.3) {X(t), t C T} a'S'_c1/a= y -Pf/a f(V ), t C T} in L I(T.v)a J-1 iJj t j

and

(4.4) f (f f (x)v(dt))M(dx) a*s. C1l/a 7 pIl-/af f (V)v(dt).
ETj= 

J  T t--

Therefore, by (4.3),

(4.5) f X(t)v(dt) = C I/a ( I F -1/a f (V ))v(dt) a.s.
T a T J=l j j  t(Vj

Note that

(4.6) f j Fl/aIf (V )Iv(dt) = 2 F-i/a(f Ift(Vj)vl(dt)) < - a.s.T j=Ij t ij=l i T

because O<a<l and because by Theorem 3.3 we have E(f Ift(Vl)Iv(dt)) a < . Now
T

(4.4), (4.5) and Fubini's theorem complete the proof. 0

Remark. A similar argument yields in the nonsymmetric case, a=l, ,,it the left

hand side of (4.2) is again 1-stable and that

f X(t)v(dt) - f (f f t(x)v(dt))M(dx) = const. a.s.
T E T

We conjecture that the constant above is. actually, equal to 0.

5. The distribution of the LP-norm of an a-stable process. Let {X(t). t E T}

be a measurable a-stable process with an integral representation (2.3).
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Suppose that for p>O

(5.1) J = (S IX(t)lPv(dt)) 1/ p < a.s.
T

It follows from the theory of stable measures on Banach spaces that, for p~l,

the limit lim aP(J>N) exists, and can be identified in terms of the kernel
X-40

f t(x) in (2.3), see de Acosta (1977) and Araujo and Gin6 (1980), Corollary

6.20. Nevertheless, in the case O<p(l, it is not, apparently, even known that

the above limit exists. Our next theorem proves the existence of the limit and

identifies it for all p>O. Unfortunately, we need to make an assumption

slightly stronger than (5.1). We conjecture that the statement is true under

(5.1) as well.

Note that our theorem is true also in the nonsymmetric case a=l.

Theorem 5.1. Let {X(t), t E T) be a measurable a-stable process with an

integral representation (2.3), O(a<2, and let p>O. Assume that the control

measure m is finite and that ft ELa+ (E,,m), t E T for some e > 0. Let M' be

an a+E-stabLe random measure on (E.9) with the same control measure and

skeuness intensity as M. Let X'(t) = f t(x)M'(dx), t E T. and assume that
E

f IX'(t)IPv(dt) < -. Then (5.1) holds, and
T

(5.2) lim X a P(j>A) = C a f (f Ift(x)IPv(dt))'/Pm(dx),
X-00 E T

where C is given by (2.6).
a

Proof: We may and will assume that the measures m and v are probability

measures. The fact that (5.1) holds follows from Theorem 3.3 (see also (3.6)).

Let (X(t), t c T} be defined by the right hand side of (2.5). Then

d /a * 1/a ,n /n()J J: ca(f Ix(t)IPv(dt))/P= clla(f I I r f(V)a(t)v(dx))
T a T J=l t(J-J
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Let

(5.4) V = Cl/a(" Fr1 r 1 a f(V)-a(t)Pv(dt))I/ p ,

a T 1 tl

(5.5) V CI/a( - V/a f )-a (t)Pv(dt)/
2 a T J=2 j j  t j

It follows from Theorem 3.3 that VI( a.s.. and thus V2 < - a.s. as well. We

have

(5.6) lim XaP(Vl>X) = lim XaP(C /af -I/a f (Vp)Ipv(dt))11/ > )X- m  X-- °  a T { I l  t(V ) P~ t ) > X

= ca( lim xp(r I x-1 (J'ft (Vl)IPv(dt))a/P))
,-400 T

= CaE(f Ift (Vl I)Pv(dt)) a / p )

T

= C f(f Ift(x)IPv(dt))a/Pm(dx).
ET

If we prove that

(5.7) EV" <
2

then our theorem will follow from (5.3), (5.6) and (5.7). Let

. ..... i 2)... i--1.2. be two independent copies of the

1 2

random variables determining V2 and let

v(i) = Cl/a(f I I..(I)r(i)-l/af (v(i)-a (t)I(dt))llp. I = 1.2.

2 a T J=2 t jd

It Is clearly enough to prove that

(5.8) EIV()-V(2 )la < if p 1.2 2

Let f- 1 F 2 .... be a sequence of i.i.d. random signs independent of the rest of

random variables involved. Choose a positive integer m so big that 2-- _ 1.pm
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Then by the so called Khinchine inequality (see e.g. Proposition 3.5.1 of Linde

(1983)) we obtain

2 2'

CQEf I ~((l) -l/af (V(l))_Y( 2 )fr(2)-l/xf (V(2)))Pd)a/

T J=2 i

a T J=2 J t i i t i

< CaE1 r'VEe(T I I (-f(l)1(I)lI/af t(V~l')_ (2) ,(2)-l/a t(2)I pvd ] ma/pm
T J-2 j i

a CE V ' Tx ..XT k=l = j-2it
I. m

(2)F,(2 )lf/af (V(2)))1lm)/,d ) 1/rn ~ d ) a!p

m 00 (l(9_,(212)Ia V-)2p

T Ix .. xT Mk=l J=2 k ~ j Jtk

v(dt1 )... .v(dt)] /pm

const. E(f ( I rz-/a f (V p/V(t)'P
T J_2 tJ

where const. is a finite positive number which is allowed to change from line

to line.

Now, let {X'(t), t E T}. i=1.2 be independent copies of {X(t), t E T):

then Y(t) = 2- /(a+e) (Xi(t) - X (t)). t E T Is a measurable S(a+c)S process

with an integral representation (2.3). where the random measure M has the same

control measure m as before, but this time M is S(a+c)S. Clearly,

f IY(t)ipv(dt) < - a.s. By Lema 3.1,



16

(5.10) f sup (n" /P/fU (x)l)a+6m(dx) <

En01 n

for almost every choice of i.i.d. T-valued random variables U 11U 2... with

common law v. Fix now U1 ,U 2 .... for which (5.10) holds. Then Eg(V 1) ( CO,

where g(x) = sup n- Up/fU (x)I, x C E, and V, is as above. Therefore, letting
n~l n

once againa e-1 F-62.... and T' 111 - be independent sequences of i.i.d. random

signs and Poisson arrivals accordingly, independent of the i.i.d. sequence

V 11V 2* as above, we conclude that

El I F r-1/ag (V )Ia<

Applying once again Khinchine's inequality, we obtain

W W
Go > El1. E er Ia (IV) fl const. E( I F-2/a gV2 a/2

.J=2 J J=2

const. Elsup n-1  I r- afu(V)) 2

n~l J=2 i Uni

We conclude by Lemma 2.2 that

sup I sup n ~ ~ / fu <V1 ) a.s.,

i~l n~l ,J=2 U n

where (i). vi). J=1,2.... 1=1.2.... are i.i.d. copies of (F

J=12... ) inepeden oftheseqenc U1' 2...... By Fubini's theorem, for

almost every choice of (I) Vt) J=l.2.... ). 1=1.2..

si -2/p (sup - I r (t)-2/afU (V(i))2 ) <( a.s.,

n 1 1 1 J-2 i n J

and thus by Lemma~ 2.2.

1 1 J=2 Un
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sup i-P/a I '( Fi)-2/af V(i))2p2 d)

il T J=2 t

Applying once again Lemma 2.2. we conclude that

E(J" ( 2 f-2/af t(V ) 2 )p/ 2 v(dt))aLP <.
T J=2 j

which, together with (5.10), proves (5.8), and thus the proof of the theorem is

now complete. 11

Remark. As promised, we can now identify the role of the expressions (3.3) and

(3.4) in the distribution of J = (f IX(t)IPv(dt)) IU p when (X(t), t C T) is
T

symmetric. The expression in (3.3), f (,f Ift(x) am(dx))p / a v(dt). is equal to
T E

const. EJp (when p<a, of course), while the expression in (3.4),

" (f ift(x)1Pv(dt))a/Pm(dx), determines the limit lim NaP(J>X) (at least, underE T X--

the assumptions of Theorem 5.1).
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