Reliability and Survivability of Communication Networks
N000014-86-K-0745
UAH Proposal No. 87-99
Period Covered: June, 1987 to September, 1988

Reliability and Survivability of Communication Networks
N00014-89-J-1410
UAH Proposal No. 89-029
Period Covered: January, 1989 to September, 1989

Principal Investigator: Peter J. Slater

Co-principal Investigators: Ashok T. Amin
Kyle T. Siegrist
A. Publications on network reliability:

2. Exact formulas for reliability measures for various classes of graphs, Congressus Numerantium 58, 1987, 43-52.

8. The optimal unicyclic graphs for pair-connected reliability, submitted for publication.

Note: Other publications not related to network reliability received acknowledgement of ONR support.
B. Presentations on network reliability.

3. Amin: presented A.3, IBID.

8. Siegrist, The distribution of pair-connectivity for network reliability, IBID.

9. Slater, Pair-connected network reliability, First Cumberland Conf. on Graph Algorithms and Combinatorics, Tullahoma, TN, April, 1988.

C. Graduate students supported:

Ms. D. Grinstead (October, 1987 to August, 1988)
Ms. T. Johnson (Summers 1988 and 1989)

D. Research highlights.

For an (n,m)-graph G (on n vertices and m edges) representing a communications network with each vertex representing a processor and each edge a communications link the majority of studies of reliability and survivability were concerned with global reliability (the probability that the graph remains connected) or with 2-terminal reliability (the probability that two specified vertices s and t remain connected). The common model assumed that vertices are fail-safe but each edge is inoperable independently with probability $q = 1 - p$.

In [A.1] we introduced a general formula that encompassed the various known reliability/survivability measures and that made clear the probabilistic rating of component failure and the penalty function aspect of measuring the amount of disruption that is created by the failure of certain elements. We introduced the pair-connected measure of reliability, letting $PC(G)$ denote the expected number of pairs of vertices that remain connected. (This concept was independently introduced by Colbourn who used the term "resilience".) Letting p denote the probability that each edge is operable, we have $PC(G; p) = \sum_{i=1}^{m} A_i p^i$.

We have shown that determining $PC(G; p)$ is NP-hard even for the case where G is planar of maximum degree four, and have produced linear algorithms for its determination in special cases (for example, for series-parallel graphs). Indeed, exact formulas have been produced for certain classes of graphs, and in general we have the following theorem.

Theorem. For a fixed value h, the coefficients A_1, A_2, \ldots, A_h in $PC(G; p)$ can be computed in time polynomial in n.
A particularly nice result is the following.

Theorem [A.4] There does not exist a uniformly optimal \((n, m)\)-graph for pair-connected reliability if
\[n \leq m \leq \left(\frac{3}{2}\right) - 2. \]

Having proven this theorem we began the study of "intervals of optimality", in particular contrasting the structure of graphs optimal for \(p\) near zero versus those optimal for values of \(p\) near one.

We also began the study of pair-connectivity for models in which edges are fail-safe but vertices fail. Unlike the above theorem for edge failures, for some but not all values of \(m\) there do exist uniformly optimal graphs for the vertex-failure model of pair-connected reliability, and we are continuing our efforts to completely indentify those values of \(m\).

Going beyond studying just the mean of pair-connectivity random variable \(PC\), in work that is continuing we consider deviations from the mean, the law of large numbers, and the central limit theorem for \(PC\) as \(n \rightarrow \infty\).