C
SWITCH: A SIMULATION OF COP y
REPRESENTATIONAL CHANGE IN THE
MUTILATED CHECKERBOARD PROBLEM

Technical Report AIP - 108

Cralg A. Kaplan

AD-A225 720

Department of Psychology
Camegie Mellon University
Pittsburgh, PA 15213

December 8, 1989

The Artificial Intelligence

and Psychology Project
DTIC
- ELECTE
Departments of AUG2 3 1980

Computer Science and Psychology

Carnegie Mellon University @O

Learning Research and Development Center
University of Pittsburgh

Approved for public release: distribution unlimited.

90 08 21 083

TNCIassilied

REPORT

DOCUMENTATION PAGE

5. RESTIICTIVE MARKINGS

TION / AVAILABIUTY OF
Approved for public release;

AIP - 108

Distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Carnegie Mellon University

6b. OFFICE SYMBOL
(if applicable)

Ta. NAME OF MONITORING ORGANIZATION
Computer Sciences Division

Office of Naval Research (Code 1133)

6c. ADORESS (City, State, and 2% Code)
Department of Psychology
Pittsburgh, PA 15213

7b. ADODRESS (City, State. and ZIf Code)

800 N. Quincy Street
Arlington, VA 22217-5000

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION
Same as Monitoring Organizatio

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NOOO14-86~K-0678

8c. ADORESS (City, State, and ZW Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. [NO. NO. ACCESSION NO
N/A N/A N/A N/A

11. TITLE (Include Security Classification)

Switch: A simulation of representation change in the mutilated checkerboard problem

12. PERSONAL AUTHOR(S)

Craig A. Kaplan

—|

13a. TYPE OFf REPORT
Technical

16. SUPPLEMENTARY NOTATION

13v. TIME COVERED

FROM SESeprlS | TOISegelo |

14. DATE OF REPORT (Year, Month, Day) R'S. PAGE COUNT

25

L.80/12/8

17 COSATI COOES

FIELD GROUP $UB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)

representational change.

19. ASSTRACT (Continue on reverse if necessary and identify by block number)

~" One of the best ways to study insight is to study problems that require shifts i.n
representation. One such problem is The Mutilated Checkerboqrd (MC) problem. Tr]us
report presents a brief psychological account of problem solving in the MQ domgm,
followed by a detailed computer simulation of how change .of representation might
actually occur. The computer simulation, SWITCH, was build in the production system
language, Soar. Analysis of how SWITCH works leads to psychologlpal claims abput
problem solving strategies, representation, and the mechanism underlying

-

A

/

-

20. DISTRIBUTION / AVAILABILITY OF ASSTRACT

[22a NAME OF RESPONSIBLE INOIVIDUAL
Dr. Alan L. Meyrowitz

DO FORM 1473, 84 MAR

Dunclassirieounumited (B same as ret.

O oric users

21 ABSTRACT SECURITY CLASSIFICATION

220 TELEPHONE (Include Ares Code) | 22¢c. OFFICE SYMBOL

83 APR edition Mmay be used until exhausted.
All gther editions are absolete.

(202) 696-4302 NOOO14
— SECURITY CLASSIFICATION OF ThiS PAGE
‘Unclassified

14

r

SWITCH: A SIMULATION OF
REPRESENTATIONAL CHANGE IN THE
MUTILATED CHECKERBOARD PROBLEM

Technical Report AlP - 108

Craig A. Kaplan

Department of Psychology
Camegie l/iellon University
Pittsburgh, PA 15213

December 8, 1989

This research was supported in part by the Computer Sciences Division, Office of Naval Research, under
contract number N00014-86-K-0678, and in part by the Department of Psychology at CMU. Support for
final revisions of the report came from IBM's Human Factors Center at Santa Teresa Laboratories.
Reproduction in whole or part is permitted for any purpose of the United States Government. Approved
for public release, distribution unlimited.

The author is indebted to Herb Simon, Davide Steier and Allen Newell for their substantive help with this
project. The author also wishes to thank Elaine Atkinson for her help in formatting the final copy.

Correspondence and requests for reprints should be sent to Herbert A. Simon, Department of
Psychology, Camegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

ELECTE ¥

AUG23 1890 ¢

-

INTRODUCTION

A

. Insight Is that flash of llumination during which a probiem solver exclaims "Ahal® and sees (or thinks
s)he see) the answer. To have an insight, one must first have a problem that cdnsﬁtutes something of a
puzzle; it the problem is difficult for merely technical reasons (e.g. the following of a long and tedious
algorithm), there is little room for insight. However, it the problem requires that one or more of its
elements be thought of in a new way, then insight seems duue fkely. =

e

[T T .

—T:I;.ere ls good ;vldence that insight often follows rapidly after the problem solver represents the
problem in a new way (Kaplan & Simon In press). Unfortunately, it quite difficult to collect psychotogical
data at the exact moment of insight, since human subjects are almost universally silent just before the
AHAL. . This report presents a computer simulation of how subjects might change representation and how
that representation might lead to the salution of an infamous insight problem, the Mutilated Checkerboard

problem.

Accession Fop

NTIS GRAsI ‘P‘

DTIC TAR 0
Unannounced 0
Justif:cation__________
By

Diqt;{&ut}onl

Avai}gpllity Codes
Avail and/or

Dist Speoial

o The Mutilated Checkerboard Probliem

The Mutilated Checkerboard problem (McCarthy 1964, Newell 1966, Kaplan and Simon in press) is an
ideal problem for the study of insight because its solution requires a radical shift in mprosontaﬁon The

problem it has been presented it in a number of experiments follows:

Subjects are presented with an 8x8 checkerboard from which the
diagonally opposite corners have besn removed (see Figure 1). Subjects are
asked to imagine that they have 31 dominos, each of which is capable of
covering two squares if it is placed on the checkerboard either horizontally
or vertically. Diagonal placement is not allowed. The task is to determine
if it is possible to cover the 62 remaining squares using the 31 dominos.

A covering must be shown, or the subject must 1oq!.ca11y p:m why
a covering is impossible to produce.

lnfactnocoverhgcxlsts An insightful way to prove. this fact is 1o notice that a domino awsat cover a
Na&mdawhﬂesquwemmaﬂerhownlsplaoedonmeboard SIncealI31domhosrmstbousedn
mmofGqunmbtobecoverod thetomﬂboaqualmmborsotblackwwﬂhsquues(eaeh
pair correspondingtoonedomlno plaoement) for the problomtobeposslble However.anexamlnatlonof
Figure 1 nveals that in removmg the diagonally opposuo comers, we have removod two white squares.
Thatmeanshorearotwomorabladsthanwhl!eébﬂontheboaﬁ.qndﬂw»pmbbmlsﬁlpp&_sglbleto

soive.

Task:
Cover . the 62 remaining squares using 31 dominos.
Each domino covers two adjacent squares. Or:

Prove logically why such a covering is impossible.

il

Figure 1: The Classic Mutilated Checkerboard (MC) Problem

Elsewhere the interesting characteristics of the MC problem and of solution attempts by human subjects
are described and analyzed in considerable detall (Kaplan and Simon in press). However in order to
estabiish a psychological context for the simuiation which follows, | will re-ierate some of those
characteristics here.

First, the switch in representation from the generic concept of "square” to the elaborated concepts of
*black square” and “white square” Is at the heart of the Mutilated Checkerboard’s difficulty. More
specifically, f we distinguish between time spent exploring various approaches prior to switching
representation, and time spent on the problem after the switch, it becomes clear that most of the
muemsdﬂwnysmﬁomhhloxploradmofmpamspﬂonothesvmch Once the switch has
beenmads mprpoflstﬂvlalformanyswjects - L ; Lo)

s . - : : T.r B

The switch in representation Itself occurs quﬂerapldly in what one subject retrospectively_caled "a
‘flash of insight." Figure 2 presents the protocol transcripts from three of thé more articulate subjects
before, during and after representational change.' Notice that the total episode — from receiving the hint
orﬂrstbooomingawaroofmeidoao'pamy (e.9. meanomamgeolorp-mm throuigh the actual shiftin
representation (which is not always clearly delineated), to the generation of a rough proot of impossibility
- Is fairly brief. Typically, it takes less than one minute. This short time span stands in stark contrast to
the 20 to 45 minutes that subjects typically spend exploring fruitless paths (even though they are given
periodic hints to prod them alongl).

These protocols are taken from a study (Kasplan and Simon in press) in which several different versions of the Mutitated
Checkerboard problem were used. The versions differed in that sometimes the squares were iabelled with the aiternating words
such as "bread” and "butter” instead of actually being different colors. However, the reader should feel free to tranelate "bread” and
“butter” as dlack” and “pink.”

SUBJECT 1 (l BREAD & BUTTBR subject): EXCERPT LASTS: 70 Secs.

1: Just by ttial and arror I can only find 31 places ... I dunno,
maybe somaone else would have counted the spaces and just said that
you could f£fit 31; but if you try it out on the paper, you can only
£it 30, - (pause & distracted chattering)

E: Keep trying.

1: Maybe it has to do with the words on the page? I haven’'t tried anything
with that. - {(pause)

Maybe that’s it. Ok, dominos, umm, the dominos can Only £it ... alright,
the dominos can fit over two squares, and no matter which way you put
it because it cannot go diagonally, it has to f£it over a butter and
a bread. And because you crossed out two breads, it has to leave two
butters left over so it doesn’t ... only 30, it won’'t fit. 1Is that
the answerx?

- D - T D T D A O R U P D R D D P D W A P A R D D M D D S P A NP S S D D D = R - -

SUBJECT 2 (a COLOR -ubjcet) T e EXCIRP! LAS!S. 48 s.cs

2: 'There’s an even number of squares, 80 Lt’a po.liblo d.pcndinq on th.
‘Placement... 80 it has to be tha placement. . . (ppuse)

2: How about a different plnccn.nt’ We could t:y that. -
Well, if we place the Xs in different corners, then it’ d be :-nlly

simple ... other than opposite ummEmmm .How about a black and

a pink Oh, we always have to cover a black and a pink square...

at the same time time Uh, theze’s no way to avoid that ... ummm.
Oh!, There’s two black squares covared up and ... since you always

have to cover up a black and a pink square, there’s no way you can

do it.

- A " G - - - - - - - - D . - - D G P W S Y D D D W R D D D . e -

SUBJECT 7 (a COLOR subject requiring a hint): EXCERPT LASTS: 36 Secs.
E: What about the color? Can you use color to help you out?

7: There’'s two Pinks next to each other Oh God!! You’'re taking two black
out? And you would need to take a black and a white out ... a black
and a pink out. (pause)

7: So you’re leaving ... OH!!! Jeez! So you're leaving it’s short --
how many, you’re leaving uhhhh there’s more pinks than black,
and in order to complete it you’d have to connect two pinks but you
can’t because they are diagonally ... is that getting close?
since they are diagonally connected ... and so you’'re always gonna
end up with two extra pinks ... because their mates were taken out.

Figure 2: The AHAI Experience (3 Protocol Excerpts)

<1 suggest that the rapid generalion of the rough proof once subjects switch 10 the wppropriats

representation corrasponds to a relatively straightiorward application of feirly general knowledge. On the
other hand, the initial (and time consuming) problem soiving can be Interpreted as search through a large
space of potential cues without powerful heuristics to narrow that search. How subjects eventually arrive
at cues which trigger a switch in representation is discussed etsewhere (Kaplan and Simon in press). The
purpose of the production system simulation, SWITCH, is to demonstrate a set of mechanisms sufficient
to expiain the actual switch of representation itself, and to explain how this switch might lead to g rapid
solution. SWITCH aims 1o illuminate those processes that are hidden in the pauses and unspoken words
of the brief verbal protocols in Figure 2.

The SWITCH Simulation

Before plunging ahead with the actual penormanoo of SWITCH, we must estabﬁsh some baslc facts
daout Soaer -- the panlcular producﬂon system chosen for lmplementlng SWITCH We also should anend
to the leatures of Soar that have psychological meaning in SWITCH and to the lc'low!edge that SWITCH
starts with.

Soar Baslcs

SWITCH makes primary use only of the fact that Soar is a production system (i.e. it supports a set of
rules that match against the contents of WM to see if they are instantiated.) However, Soar is also an
aréhnecture for general Intelligencé possessed bf a number of special features that make it unique among
production systems (Laird, Rosenbloom, & Newell 1986).2

Soar’s claims that all cognition takes place in problem spaces and that all leaming occurs by chunking
would be critical if SWITCH was expanded to mode! the entire course of solving the MC problem, as
opposed to focussing on the moment of insight. The psychological claims that are being made at present
however, include only that: 1) The knowledge that subjects have stored in LTM can be represented by
productions, 2) that the condition side of the productions specify what retrieval cues might access that
knowiedge, 3) and that the contents of WM correspond roughly to the contents of the subjects’ STM

2A non-exhaustive list of these features includes the following: A two-phase processing cycle consisting of an elaboration phase

during ‘which productions fire “in parafiel” and a decision phase during which a new goal, problem space, or operator is made part of
the currently active context, A highly specified leaming method — chunking, An architecture centered around the notion of problem

spaces, & goal generation driven by impasses reached duriny problem solving.

combined with the information that is perceptually gvailable in the environment.

; L 1 I

What SWITCH Starts With

SWITCH starts with essentially the same information as a subject who has aiready done a significant
amount of unsuccessful problem solving and has just been given a hint to pay attention to the color of
squares. in addition to modelling the behavior of the subject, however, SWITCH has the task of
modelling the environment in which the subject acts. These two sources of knowledge — knowledge
about the task environment, and about the subject's representation of that environment -- have been
carefully distinguished and separated in the SWITCH. Specifically, SWITCH s given the following

information at the start of a simulation run®.

A model of the real world problem (e.g. representations of squares, dominos, the adjacency
" relationships between squares)

¢ A model of the human subject’s representation of the real worid problem, including concepts
that have been generated during problem solving, prior to recelving the color hint (e.g. a
concept of a.generic square, the proposition that a domino covers two squares)

+ An assumed focus of attention (i.e. a 2x2 patch of the board that is referred to first when the
stmulation needs information about real world squares)

¢ A set of fairly general productions corresponding to well leamed inference rules presumably
possessed by adult subjects (e.g. if one proposition appears true based on observation and
the same proposition seems faise logically, then a contradiction exists).

o Strategic knowledge (impiemented In domain specific productions for the purpose of this
version of the simulation) corresponding to general strategies such as: "pursue hot ideas” or
*change to finer grain size upon faiture.”

¢ A hint (corresponding to that given to subjects) that the parity (e.g. color) of the squares is
important.

How It works

SWITCH, has three distinct levels of representation. At botlom are the real world viements (RWES) --
the simulation’s modef of the problem elements themseives. Next comes the Intemal Representational
Concept (IRC) level which corresponds to the subject’s intemnal representation of elements in the extemal
world. Finally, there is the propositional level which cormesponds to sequences of IRCs strung together.

While the RWESs are necessary in that the simulation must model the task domain, the way these units
are represented in SWITCH is irrelevant to the subject’s intemal representation of the problem. Hence
there is no psychological claim at the RWE level.

3Note: The complete Soar code for SWITCH, along with a sample execution trace can be found in Appendix A

B
-

10

In c..wast, the IRCs and Propositions comespond to a human subject’s representation of the problem.
WMMWMMmmeommeﬂmlshmehme. One might think of
melHCs‘a‘svaohalpmwmwhldlareoombhedin ditferent ways to produce various
propositions. |

SWITCH's hierarchial representation of knowledge provides it with two basic methods of solving
problems: 1) it can try to produce new combinations of the primitives it aiready has in the hopes that the
new propositions will trigger some useful knowledge that it has already leamed, or 2) it can try to
elaborate the IRCs In the hopes that changing the buliding blocks themselves will eventualty result in
useful propasitions.

The best way 1o get a feel for how the simulation works Is to examine a production and see what it
does. Figure 3 (beiow) presents the production that performs the actual shift in representation. This
production matches on a hint and then checks to see If any relevant IRCs exist that are unelaborated with
respect to the attribute that the hint refers to. Thus, if the hint says to attend to the color of the squares,
the production may find an IRC corresponding to a generic square — that is to the concept of
"squareness” without any value for color. At this point, the production looks at the board (the RWES) to
see if the sduares In the real world have color. They do, so the production maps the color from the real
world square to a new IRC that possesses all the previous attributes of the generic square, but now also
specifies the square’s color. Thus, by "analogy” to the real world, the simulation is able to shift from an
intial representation of “square®, to a representation of "black square” or "white square.” A similar
production allows the simuiation to elaborate old propositions using new IRCs. Thus the proposition "A
domino covers a square and a square” may become "A domino covers a black square and a white

square.™

‘ﬂndshhdﬂpmﬂdbn,mmchM-pwpoalbm-by-cmbgy,anbofoundhAppmdb:A.Nohlh-tknowbdpoln
this simulation is monotonic so the old proposition is not actually transformed, but rather & new proposition is created using the old

propostition as & template from which to "analogize.”

1"

Production: alabo:ate-con cept-by-analogy

IF: The goal .s to prove the problem impossible, AND

The operator is to elaborate a representation, AND

A hint exists saying pay attention to some attribute (e.g. COLOR), AND
Some representational concepts (e.g. the concept of squares) exist
that have na value for the attribute in question (e.g. COLOR), AND
There are some real world referents for the representational concepts
_that can be referred to (e.g. the squares which really exist

on the board)

THEN: Map the value of the hinted-at attribute (e.g. COLOR) from the real
world objects (e.g. real squares) to the repreasentational concept of the
objects (e.g. representation of squares).

Figure 3: A Sample Production From SWITCH

12

_ What It does
An actual trace of the simulation run can be found in Appendix A, but | have abstracted the main

sequence of steps and present it below:
1) Get the hint.

2) Decide to elaborate IRCs. (This strategic decision reflects the fact that
the siaulation has been stuck up to this point, and examines the ’
representational primitives since no progress has been made at the higher
propositional level).

3) Elaborate concepts by analogy. (The simulation comes up with the new IRCs
of "black square” and "white square").

4) Decide to generate propositions. (Once new IRCs have been generated, the
strategy of "pursue hot ideas” dictates that the simulation check what the
implications of the new conceptual primitives will be at the propositional
level).

5) Elaborate propositions by analogy. (The simmlation produces the
proposition that a domino covers a "black aquare" and a "white square").

6) Infer equal numbers covered. (The newly generated proposition ~-- step 5 --
tziggers knowledge that equal numbers of the two types of squares must be
covered. Pilot data indicates that subjects have a production similar to
this in gensral form).

7) Check actual numbers covered. (Since the simulation is working within
the general context of the schama "Proof by contradiction,” every new fact
must be checked against reality)

8) Detect a contradiction and exclaim "Impossible!" |

9) Decide to generate a reason for impossibility. (Again, the proof context
dictates that the simulation search for a reason for the contradiction)

10) Trace back from contradiction. (The simulation has stored the source of
its proposition -- logically deduced, or empirically observed -~ and is
able to recall them).

11) State rough proof. (The simulation uses general knowledge about proofs
to frame the information it has recalled).

The behavior outlined above captures very well the behavior of some subjects from the time they
receive a hint to the time they generate a rough proof, however the majority of subjects deviated in
various ways from the account just presented. Since an examination of the protocols reveals that the
seeds of these deviations can often be traced to behavior during earlier problem solving, many individual
differences could probably be captured in a simulation of the entire problem soiving episode. With regard
to change of representation, however, subjects seem remarkably consistent in showing surprise, and then

13

rapid utilization of the new representation. Thus, although there are individual differences in the paths
that subjects take once they have changed representations, there is no need to suppose that there is any
variabilty in the mechanism underlying the representational shift ftset.

Conclusions

SWITCH makes a number of psychological claims. First, there is a general conegpondenoes between
the production system architecture and the psychological notion of retrieval from LTM. Moreover, the
information "bulit in" to the simulation corresponds the information that human subjects could reasonably
be expected to have.

Second, the hierarchical representation scheme (e.g. the levels of RWEs, IRCs, and propositions)
seems psychologically valid. That is, it seems reasonable that representations are bulid of more finely
grained representational units from the level below. However, it remains to be seen where the
boundaﬂestoﬂmebvdsnﬂgl\tbe.andtowhatdegreemangesatonelovelugke!ytoaﬂeam
representations at another. -

Thlrd. the simulation has incorporated the heuristics of "change grain size upon fallure” and "pursue hot
ideas.” While there is some indication that subjects use these strategies in the Mutilated checkerboard
problem, the generality of these heurigtics needs to be tested further.

Fourth, the tallure of the simulation to match the behavior of all of the subjects emphasizes the
importance of individual differences in problem solving. Many of these individual differences could
probably be captured in a simulation of the entire problem solving episode (including the many false starts
that typically precede insight).

Finally, the simulation provides a mechanism for changing representations (analogical mapping), and
itustrates how general knowledge, together with a hint, is sufficient to produce the phenomenon of insight
in the MC problem.

14

REFERENCES

Kaplan, C.A, and Simon, H.A. (in press) In search of insight. Cognitive
Psychology.

Laird, J.E., Newell, A., & Rosenbloom, P. S. (1986) Soar: An architecture
for general intelligence. Computer Science Technical Report
CMU-CS-86-171 Pilitsburgh: CMU.

McCarthy, J. (1964) A tough nut for proof procedures. Stanford
Artifical Intelligence Project, Memo No. 16.

Newell, A. (1966) On the representations of problems. Computer Science
Research Review, 18-33. Pittsburgh: CMU.

Simon, H.A. (1978) On the forms of mental representation. in C. Wade Savage
(ed.) Perception and Cognition: Issues in the Foundation of Psychology,
Vol. IX, Minnesota Studies in the Philosophy of Science. Minneapolis,
U. of Minnesota Press.

APPENDIX A: -~ The Soar Simulation:

Trace and Documented Soar Code
g: 800005
load-top-goal
DECIDE problem-space p00006
p: p00006 proof-by-contradiction
load-problem-features
DECIDE state s00007
s: s00007
create-generate-proposition
create-elaborate-representation
load-initial-propositions
load-initial-concepts
load-hints
default-prefer-elaborate-representation
DECIDE operator 000049
o: 000049 elaborate-representation
:8 elaborate-concept-by-analogy
:8 elaborate-concept-by-analogy
:9 newstate*set-up-state-for-copying

N

&S W

NONUVLL b

10 nevstate*copy-valid-state-attributes
10 nevstate*copy-valid-state-attributes
10 newstate*copy-valid-state-attributes
11 DECIDE state nQ0064

s: n00064
:12 default*no-operator-retry
:12 create~generate-proposition
:12 create-elaborate-representation
1
1

:13 prefer-generate-propositionl

:14 DECIDE operator o00065

o: 000065 generate-proposition
elaborate-propositions-by-analogy
nevstate*set-up-state-for-copying
infer-equal-numbers-covered
nevstate*copy-valid-state-attributes
nevstate*copy-valid-state-attributes
nevstate*copy-valid-state-attributes
nevstate*copy-valid-state-attributes
nevstate*copy-valid-state-attributes
make-count-proposition
contradiction-found
problem is impossible!

DECIDE state n00068

s: n00068

:20 default*ro-operator-retry

:20 create-generate-proposition

:20 create-elaborate-representation

7:20 create-find-reason

7:21 prefer-generate-proposition2

7:21 prefer-generate-propositionl

7:21 prefer-find-reason

7:22 DECIDE operator 000072

7 o: 000072 find-reason

8:23 trace-back-contradiction

For the problem to be possible, it must be true that

number black square equal number white square
since domino covers black square and white square .
But, it is false that

number black square equal number white square
by empirical observation. Therefore, the
problem is impossible.

"End -- Explicit Halt"

e os o
e O e b b b b b e e
OD ONNNNNNOIONWD

\J\A\10\0\._;OO\O\O\O\@O@O\O\U\UUU\MUL\&\&\L\&\&\bbuuuuwwwwwwwo—n—owo

-

Y s et as d e s o33 2823 3333 3232823222822 32t sdsddsds s sl
Mutilated Checkerboard Problem -- Simulation in SOAR 4.4

Craig Kaplan
Carnegie-Mellon University
MARCH 9, 1987

* % o %k % * ¥ H*

;* This program simulates the behavior of subjects from the time
* that they receive the COLOR hint to the time that they generate

* a rough proof of the problem’s impossibility.
L L L L LR s S t t L R e e T Ty

* % % X % ¥ % A ¥ ¥

"

INTIALIZATION PRODUCTIONS

e W W We WE Ve WE We WE wWe Wl ws ws we e

sp load-top-goal

Establish the top level goal of proving the problem impossible as well
as the method of proof by contradiction. The name of the problem-
space is somewhat arbitrary since its states really represent the
ever-changing WM-representation.

ws we we we we gmy

ws we we ws |

(goal <g> “problem-space undecided -~ “supergoal)

|
|
v

(goal <g> “name prove-impossible)
(problem-space <p> “name proof-by-contradiction)
(preference <p> "role problem-space “value acceptable “goal <g>)

)

(sp load-problem-features

Load a set of Real World Elements (RVEs)

corresponding to the physical squares, dominos, and adjacent-squares.
These elements correspond to the problem-itself as opposed to a human’s
representation of the problem.

.
’
.
’
9
]

“we ws we we

(goal <g> “problem-space <p> “state undecided - “supergoal)
(problem-space <p> “name proof-by-contradiction)
-->

(preference <s> °“role state "value acceptable "“problem-space <p>
“state undecided)

(state <s> “rw <rw> ks <ks>)

(rwve <rwl> “name domino °“shape rectangle “area 2 “number-of 1
“function coverer)

(rve <rw2> "name square “shape square “area 1 “number-of 1 “position 1
“color-of black “function coveree "status removed)

(rwe <rw3> “name square “shape square “area 1 “number-of 1 “position 2
“color-of white “function coveree “status present)

(rve <rw4> “name square “shape square “area 1 “number-of 1 “position 3
“color-of black “function coveree "status present)

(rve <rvw5> “name square "shape square “area 1 "number-of 1 “position 4
“color-of vhite “function coveree “status present)

(rwe <rw6> “name square “shape square "area 1 “number-of 1 “position
“color-of black “function coveree “status present)

(rve <rv7> “name square "shape square "area 1 “number-of 1 “position
“color-of white “function coveree °“status present)

(rve <rw8> “name square “shape square “area 1 “number-of 1 “position

N W»m

AR-3

“color-of black “function coveree “status present)

(rve <rw9> “name square "shape square “area 1 “number-of 1 “position 8
“color-of white “function coveree “status present)

(rwve <rwl0> “name square “shape square “area 1 “number-of 1 “position
9 “color-of black “function coveree “status present)’

(rve <rwll> “name square “shape square “area 1 “number-of 1 “position
10 “color-of white “function coveree "status present)

(rve <rwl2> "name square “shape square "area 1 “number-of 1 “position
11 “color-of black “function coveree “status present)

(rve <rwl3> “name square “shape square “area 1 “number-of 1 “position
12 “color-of white “function coveree “status present)

(rwve <rwl4> “name square °"shape square “area 1 “number-of 1 “position
13 “color-of black “function coveree “status removed)

(rve <rwl5> “name square “shape square “area 1 “number-of 1 “position
14 “color-of white "function coveree “status present)

(rve <rwl6> “name square “shape square “area 1 “number-of 1 “position
15 “color-of black “function coveree “status present)

(rve <rwl7> “name square “shape square “area 1 “number-of 1 “position

16 “color-of white “function coveree “status present)

(rwve <rwl9> “name adjacent-squares “shape square “number-of 2 “posl 2
“pos2 3)

(rve <rv20> “name adjacent-squares “shape square “number-of 2 “posl 2
“pos2 7) '

(rve <rw2l> “name adjacent-squares “shape square “number-of 2 “posl 7
“pos2 8)

(rve <rw22> “name adjacent-squares “shape square “number-of 2 “posl 8
“pos2 9)

(rwe <rw23> “name adjacent-squares “shape square “number-of 2 “posl 9
“pos2 10)

(rve <rw24> “name adjacent-squares “shape square “number-of 2 “posl 9
“pos2 16)

(rwve <rw25> “name adjacent-squares “shape square “number-of 2 “posl 16
“pos2 15)

(rve <rw26> "name adjacent-squares “shape square “number-of 2 “posl 10
"pos2 15)

(rve <rw27> “name adjacent-squares “shape square “number-of 2 “posl 7
“pos2 10)

(rve <rw28> “name adjacent-squares “shape square “number-of 2 “posl 3
“pos2 6)

(rve <rw29> “name adjacent-squares “shape square “number-of 2 “posl 6
“pos2 7)

(rve <rw30> “name adjacent-squares “shape square “number-of 2 “posl 6
“pos2 11)

(rwe <rw31> “name adjacent-squares “shape square “number-of 2 “posl 10
“pos2 11)

(rve <rw32> “name adjacent-squares “shape square “number-of 2 “posl 15
“pos2 14)

(rwve <rw33> "name adjacent-squares “shape square “number-of 2 “posl 11
“pos2 14)

(rve <rw34> “name adjacent-squares “shape square “number-of 2 “posl 11
“pos2 12)

(rve <rw35> “name adjacent-squares “shape square “number-of 2 “posl 5
“pos2 12)

(rve <rw36> “name adjacent-squares “shape square “number-of 2 “posl 5
“pos2 6) S

(rve <rw37> “name adjacent-squares "shape square “number-of 2 “posl 3
“pos2 4)

(rve <rw38> “name adjacent-squares “shape square “number-of 2 “posl 4
“pos2 5)

(rv <rw> “rve <rwld> <rw2d> <rw3d> <rwdd> <rwh> <rw6d <rw7d> <rw8d <rvd

M < 3u€

<rwl0> <rwll)> <rwl2d> <rwl3dd> <rwlédd> <rwl5> <rvléd> <rwl?>
<rwl8> <rwl9> <rw20> <rw2l> <rw22> <rw23> <rw24> <rw25
<rw26> <rwl7> <rw28> <rw29> <rw30> <rw3l> <rw3i2> <rwi3d>
<rw34> <rwldd> <rw3i6> <rwi7?> <rw3i8>)

)
v“-\

(sp load-hints

+; Load the "color-hint" to pay attention to the color of the squares,
;3 and the "insight-hint"” which alerts the Ss that there is a "trick
;3 way of looking at the problem.”

(goal <g> “problem-space <p> “state <s> “operator undecided)
(problem-space <p> “name proof-by-contradiction)
(state <s> “ks <ks>)
(ks <ks> ~"hint)
-

- (hint <hl> “name color-of-squares-hint “attend-to-name square
"attend-to-attribute color-of)
(hint <h2> “name insight-hint)
(ks <ks> “hint <hl> <h2)>)

)

(sp load-initial-concepts

Create Internal Representational Concepts (IRCs) corresponding to the
concepts a subject is likely to have acquired during the course of
problem solving through the point when the subject gets the COLOR hint.
The concept "sample" represents the fact that subjects usually choose

to attend to a couple of specific squares rather than the entire board

at once. Future simulations may model the sampling processes dynamically.
NOTE: At a later stage, the simulation will actually derive these IRCs
from RWEs using Concept Formation Rules. (Also, including "number black
square" and "number white square" here is a temporary kludge, as it is
almost certain that these concepts would be induced AFTER, not before

the COLOR hint. Ve need to find an elegant way for SOAR to count squares.)

We wa we Wwe We We we W we ws we
e WE we We W We we W We s we

(goal <g> “problem-space <p> “state <s> “operator undecided)
(problem-space <p> “name proof-by-contradiction)

(state <s> “ks <ks>)

(ks <ks> -"irc)

(irc <ir0> “name square concept “shape square “area 1 “number-of 1
“position nil “color-of nil “function coveree “status nil)

(irc <irl> “name adjacent-squares concept "shape square square “number-of 2
"area 2 “posl 3 “pos2 4 “function coveree)

(irc <ir2> "name domino concept “shape rectangle “area 2
“function coverer)

(irc <ir3> “name number black square “number 6)

(irc <ir4> "name number white square “number 8)

(irc <ir6> “name sample °“shape square “number-of 1 “position 3
"adjacent-to 4 “salience 1lst)

(irc <ir7> “name sample 'shape square “number-of 1 “position 4
adjacent to 3 “salience 2nd)

(sf <sfl> “name salient-feature “attend- to-name square
"attend-to-attribute number-of) .

(ks <ks> “irc <ir0> <irl> <ir2> <ir3d> <iré4> <ir5> <ir6) <ir?>
“sf <sfld)

RS

)

(sp load-initial-propositions
;3 Loads propositions that would have been inferred by subjects prior to
;; receiving the COLOR hint. Note: This is a minimal, not exclusive list.

(goal <g> “problem-space <p> “state <s> “operator undecided)
(problem-space <p> “name proof-by-contradiction)

(state <s> “ks <ks>)

(ks <ks> -"prop)

->
(ks <ks> “prop <prl>)
(prop <prl> “terml domino “rel covers "“term2 square °term3 square)
)
; E X 2 2 3 33 32 2 2 2 32 1T 3 3 12t i i i3+ 2 1 2+ 2 2 1 t -+ 2 1 2 T T E 2 ¢+ ¥ P E E 2 1 1 £ 2 1t T 1 2 X 2 {2 5 F 1 &
H SEARCH CONTROL PRODUCTIONS -- PROOF-BY-CONTRADICTION PROBLEM SPACE

;3 Create one of the operators that we assume subjects have whenever
;3 they have had difficulty solving problems with the intial representation.

(goal <g> “name prove-impossible “problem-space <p> “state <s>
"operator undecided)

(problem-space <p> “name proof-by-contradiction)

(state <s> “rw <rw> “ks <ks>)

(operator <o> "name elaborate-representation)

(preference <o> “role operator “value acceptable “goal <g>
“problem-space <p> “state <s>)

(sp create-generate-proposition

;3 Create one of the operators that we assume subjects have whenever
;3 they are reasoning with propositions.

(goal <g> “name prove-impossible “problem-space <p> “state <s>
“operator undecided)
(problem-space <p> “name proof-by-contradiction)
(state <s> “rw <rw> “ks <ks>)
-->
(operator <o> "name generate-proposition)
(preference <o> "role operator “value acceptable “goal <g>
“problem-space <{p> "state <s>)
)

+3 If no new elaborations or propositions have

;3 been generated, and the insight hint has been given,
;3 then try to elaborate the basic representation. . L.
(goal <g> “problem-space <p> “state <s> “operator undecided)
(problem-space <p> “name proof-by-contradiction)

(state <s> “ks <ks> -"newirc -"newprop)

(ks <ks> “hint <h2>)

BELC I R 17

(hint <h2> “name insight-hint)
(operator “name elaborate-representation)
(operator <o02> “name generate-proposition)
(preference “role operator “value acceptable “goal <g>
“problem-space <p> “state <s>)
(preference <02> “role operator “value acceptable "goal <g>
“problem-space <p> “state <s>)
-=> .
(preference <o0l> “role operator “value better “reference <o02> “goal <g>
“problem-space <p> °“state <s>)

)

(sp prefer-generate-propositionl

33 If new elaborations have been made
;; then try to generate propositions.

(goal <g> “problem-space <p> “state <s> “operator undecided)
(problem-space <p> “name proof-by-contradiction)
(state <s> “ks <ks> “newirc)
(operator “name elaborate-representation)
(operator <02> “name generate-proposition)
(preference “role operator “value acceptable “goal <g>
“problem-space <p> “state <s>)
(preference <02> “role operator “value acceptable “goal <g>
“problem-space <p> “state <s>)
-=>
(preference <02> “role operator “value better “reference “goal <g>
“problem-space <p> “state <sd>)
(state <s> “change <change>)
(delete <change> “newirc)
)

33 If new propositions have been recently generated
3; then try to generate some more propositions.

(goal <g> “problem-space <p> “state <s> “operator undecided)

(problem-space <p> “name proof-by-contradiction)

(state <s> "ks <ks> “newprop)

(operator “name elaborate-representation)

(operator <02> “name generate-proposition)

(preference “role operator “value acceptable “goal <g>
“problem-space <p> “state <s>)

(preference <02> “role operator “value acceptable “goal <g>
“problem-space <p> “state <s>)

-=>
(state <s> “change <change>)
(delete <change> “newprop)
(preference <02> "role operator "value better "reference “goal <g>
“problem-space <p> “state <s>)
)
[AR I N E R R E R R T T R R T E R S I T R I T S R F E R S S T T T SR T EERECEEEDE=SE=R

A-6

] CONCEPT FORMATION RULES

(sp elaborate-concept-by-analogy

;3 The hint <h> specifies what concept <irl> to look at. The hint also

;; specifies what property of the concept <focus> to look at.

;3 If that property has the value nil, then create a new concept <ir2>

;3 that is the same as the old concept in all respects (i.e. analogous)

;3 except that the value of nil in the attribute of interest is replaced

;3 with a value <val0> found by looking at relevant features

;3 of the board <rwl>. Rather than examine every matching concept (square)
;3 on the board, a representative square <ir2> is chosen. (We assume that
;3 the subject chooses at least two -- one of each color)

(goal <g> “problem-space <p> “state <s> “operator <o>)

(state <s> “ks <ks> “rw <rw>)

(ks <ks> “hint <h> “irc <irl> <ir2)>)

(rw <rw> “rve <rvwld)

(problem-space <p> “name proof-by-contradiction)

(operator <o> “name elaborate-representation)

(hint <h> "artend-to-name <name> “attend-to-attribute <focusd>)

(irc <irl> “name <name> “<focus> nil “shape <shape> “number-of <nn>
“area <a> “position <pos> “function <func> “status <stat>)

(irc <ir2> “name sample °“shape <name> “number-of <nn> “position <pl>
“salience << 1lst 2nd >>)

(rve <rwvl> “name <name> “<focus> {<val0> <> nil} “position <pl>)

-=>
(operator <o> “newstateneeded)
(state <s> “newirc)
(ks <ks> “irc <ir3d>)
(irc <ir3> “name <val0O> <name> concept "<focus> <val0> “shape <shape>
“number-of <nn> “area <a> “position <pos> “function <func>
“status <stat>)

RULES FOR CREATING PROPOSITIONS

(sp elaborate-propositions-by-analogy

3+ The hint <h> specifies which concept <name> and which property <attl)>
; of that concept is of current interest. Any proposition <pr> that mentions
; the concept as being covered is chosen to be elaborated. In order to
; specify which features of the board <rwl>&<rw2> should be used as the
; basis for the elaboration, a pair of representative-coverees <irl)>
; which indicate the location of two specific instances <pl>&<p2> of
; the concept are chosen. (Note: in this case "concept" is equivalent
3 "square(s)") The interesting properties of the concept (e.g. color-of
; the squares) are observed in the two specific instances and then used
; to elaborate the old proposition. The new propositions created are
; exactly the same as (analogous to) the old proposition except that
; the concepts are now modified according to the observed properties
; (e.g. "black square" or "white square" instead of simply "square").
(goal <g> “problem- -space <p> “state <s> “operator <o>)
(problem-space <p> name proof-by- contrad1ct1on)
(state <s> “ks <ks> “rwv <rw>)
(operator <o> “name generate-proposition)
(ks <ks> “hint <h> “prop <pr> “irc <irld>)

M <3 168

~ !

(rw <rw> “rve <rwl> <rw2)>)

(hint <h> “attend-to-name <name> "attend-to-attribute <attld>)

(prop <pr> "terml <tl> “rel covers “term2 <name> "term3 <named>)

(irc <irl> "name sample “shape <name> “position <pl>
"adjacent-to <p2> “salience lst)

(rve <rwl> “shape <name> “position <pl> “<attl> <cl>)

(rve <rw2> “shape <name> “position <p2> “<attl> <c2>)

(operator <o> "newvstateneeded)

(state <s> “newprop)

(prop <pr> “terml domino “rel covers “term2 <cl> square
“term3 <c2> square)

(ks <ks> “prop <pr>)

(sp infer-equal-numbers-covered

;; Any coverer that must covers two coverees implies equal numbers of the
;3 coverees.

(goal <g> “problem-space <p> “state <s> “operator <o>)

(problem-space <p> "name proof-by-contradiction)

(state <s> "ks <ks> “rv <rw>)

(operator <o> "name generate-proposition)

(ks <ks> “prop <pr> °“sf <sfl>)

(sf <sfl> ‘attend-to-name <item> “attend-to~attribute number-of)

(prop <pr> “terml <coverer> °“rel covers “term2 {<cl> <> <item>} <item>
“term3 {<c2> <O <eld> O <item>) <itemd)

-->

(operator <o> “newstateneeded)

(state <s> “newprop)

(prop <p2> “source logical <pr> “terml number <cl> <item> “rel equal
“term2 number <c2> <itemd “truth true)

(ks <ks> “prop <p2>)

(sp make-count-proposition

If the number of two types of squares are not equal, state

this fact as an empirical proposition. (NOTE: Actually in place

of this production, future versions of the simulation will

probably instantiate elaborate-concept-by-analogy a 2nd time

to notice the color of the Xed squares. Then an inference will

be made that there cannot be equal numbers of blacks and whites
since two blacks were removed. Human subjects almost always follow
this sequence.)

we we we We W we we ws we
ws ws we we we we we we

(goal <g> “problem-space <p> “state <s> “operator <o>)
(problem-space <p> “name proof-by-contradiction)
(state <s> “ks <ks> “rw <rw>)
(ks <ks> “hint <h> “prop <pr> “irc <irld> <ir2>)
(operator <o> “name generate-proposition)
(hint <h> attend to-name <item>)
(prop <pr> -"source empirical “terml number {<c1> <> <1tem>
<> number} <item> “rel <any-relation>
“term2 number {<c2> <> <item> <> number)} <item»)
(irc <irl> “name number <cl1> <item> “number <nl1))
(irc <ir2> “name number <c2> <item> “number { <n2> <> <nl> })

FE XIS 3.0

-=>
(operator <o> “newstateneeded)
(state <s> “newprop) o
(prop <pr> “source empirical “terml number <cl> <item> “rel equal
“term2 number <c2> <item> “truth false)
(ks <kg> “prop <pr>)
)

;3 Check for identical propositions with opposite truth values.

;3 Scope of this production is narrowed somewhat by making use of the hint
;3 and by restricting examination to those propositions that deal with

;; the number of types of items.

;3 Subjects typically exclaim that the problem is impossible as soon as

;; they detect a contradiction.

(goal <g> “problem-space <p> “state <s> “operator <od>)
(problem-space <p> “name proof-by-contradiction)
(state <s> “ks <ks> “rw <rw>)
(ks <ks> “hint <h> “prop <prl> <pr2> -"contradiction? yes)
(hint <h> “attend-to-name <item>)
(prop <prl> “terml number {<cl> <> <item> <> number} <item> “rel <rel>
“term2 number {<c2> <> <item> <> number} <item> “truth true)
(prop <pr2> “terml number {<cl> <> <item> <> number)} <item> “rel <rel>
“term2 number {<c2> <> <item> <> number} <item> “truth false)
-=>
(operator <o> “newstateneeded)
(ks <ks> “contradiction? yes)
(writel (crlf) | The problem is impossible!|)
)

(sp create-find-reason

§mm—mm e mm——— e — e ———————
(goal <g> “problem-space <p> “state <s> “operator undecided)
(problem-space <p> “name proof-by-contradiction)

(state <s> “"ks <ks> “rv <rwd>)
(ks <ks> “contradiction? yes)
-=>

(operator “name find-reason)
(preference “role operator “value acceptable “goal <g>
"problem-space <p> “state <s>)
)

33 If a contradiction has been detected then it becomes
;3 the highest priority to explain it, given that the subject
;3 is seraching for a proof by contradiction.

(goal <g> “problem-space <p> “state <s> “operator undecided)

(problem-space <p> “name proof-by-contradiction)

(state <s> “ks <ks> “rw <rw>)

(ks <ks> “contradiction? yes) . ..

(preference “role operator “value acceptable “goal <g>
"problem-space <p> “state <s>)

(operator “name find-reason)

-’

(preference <0l> “role operator “value best “goal <g>

RY KT 3

“problem-space <p> “state <s>)
)

’
;5 Retrieve the contradiction and state the logically-inferred proposition
;3 and its premises as support for concluding impossibility since they

;; contradicted by empirical observation.

(goal <g> “problem-space <p> “state <s> “operator <o>)
(problem-space <p> "name proof-by-contradiction)
(state <s> “ks <ks> “rw <rw>)
(operator <o> “name find-reason)
(ks <ks> “hint <h> “prop <prl> <pr2> <pr3>)
(hint <h> “attend-to-name <item)>)
(prop <prl> “source logical {<pr3> < logical <> empirical <> nil}
“terml number {<cl> <> number <> <item>} <item> “rel <rel>
“term2 number ({<e¢2> <> number <> <item>} <item>
“truth {<truthl> true})
(prop <pr2> “source empirical “terml number {<cl> <> number
<> <item>) <item> “rel <rel> “term2 number
{<e2> <> number <> <item>} <item> “truth {<truth2> false})
(prop <pr3> “terml <t> “rel <r> “term2 {<ccl> < <item>} <item>
“term3 (<cc2> <O <Kitem>} <itemd)

-—->
(writel (crlf) |For the problem to be possible, it must be|
<truthl> |that])
(wvritel (crlf) number <cl> <itemd> <rel> number <c2> <item>)
(vritel (crlf) |since| <t> <r> <ccl> <item> |and] <cc2> <item> |.])
(vritel (crlf) |[But, it is| <truth2> |that|)
(writel (crlf) number <cl> <item> <rel> number <ec2> <item>)
(wvritel (crlf) |by empirical okservation. Therefore, the|)
(writel (crlf) |problem is impossible.|)
(halt)
)
'] tE* 2 3 1 £+ 2 3+ 2 ¥ 321 2 3 3 Tt - 1 2 - F T Fr T+ s 2 E 2 - E 3+ F I Tt 3 2 3 2 2 3 T T I3t i I i iIT IS EI]
HH David Steier’s state copying productions
’y t 2 2+ 2 2 2 2 32 2 2 32 -+ 2+ 3 2 2 3 2 2 F 3 T 5 2 3 F 2 R E 2 T X1 1 3 3 Tt I XY

;; Kinds of state modifications needed for operator implementation:

3 1) Adding an attribute to the state
HH 2) Deleting an attribute from the state
HH 3) Replacing the value of an existing attribute on the state

with another value

* we -we
-e »

; Responses in the current system:

1) create a newv state, copy over all the attributes,
and add the new one

2) create a new state, and copy over all the attributes of
the old state except for the one being deleted

3) create a nev state and copy over the attributes
of the old state except for the one being replaced,
add the replacing attribute

-
e -

s we we we we
wes we we w

-
-e

; The productions fire when the change augmentations Have been,
added to the current operator.
"NEVSTATENEEDED" HACK needed so this production will fire once
; per operator. I really want to say that a new state is required
if one or more changes are needed. The augmentation to the operator
; also lets state adds work correctly.

we we we we we we we we we
s Wwr we we we we we we w

XN 166

A-l0

;3 Set up new state and make sure the name is not copied
(sp newstate*set-up-state-for-copying
(goal <g> “problem-space <p> “state <s> “operator <g>)
(operator <q> “newstateneeded)
-=>
(state <ns> “dummy-attribute dummy)
(preference <ns> "goal <g> “problem-space <p> “state <s>
“operator <q> “role state “value acceptable)
)
+3 Don’t copy the name attribute
(sp newstate*copy-valid-state-attributes
(goal <g> “problem-space <p> “state <s> “operator <gq>)
(operator <q> “newstateneeded)
-{ (operator <q> “change <change>)
(delete <change> “<att> <val>)])
-{ (operator <q> “change <change>)
(replace <change> “<att> <vald>)}
(state <s> "“{<att> <> name} <vald>)
(preference <ns> “goal <g> “problem-space <p> “state <s>°
“role state “operator <q> “value acceptable)
(state <ns> -"<att> <vald)
-=>

)

(state <ns> “<att> <val>)

(sp nevstate-do-add-to-newstate-if-needed
(goal <g> “problem-space <p> “operator <q> “state <s>)
(operator <q@> “change <ab>)
(add <a> “<att> <val>)
(preference <ns> “goal <g> “problem-space <{p> “state <s>

“operator <q> “role state “value acceptable)

(state <ns> -"<att> <val>)

-

)

(sp newstate-do-replace-to-nevstate-if-needed
(goal <g> “problem-space <p> “operator <q> “state <s>)
(operator <q> “change <r>)
(replace <r> “{<att> <> by} “by <newvald)
(preference <ns> “goal <g> “problem-space <p> “state <s>
"role state “value acceptable)
(state <ns> -"<att> <newval>)

(state <ns> “<att> <vald)

(state <ns> “<att> <newval>)

R SIS B

