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SUGGESTED RESEARCH TOPICS IN SENSITIVITY
AND STABILITY ANALYSIS FOR
SEMI-INFINITE PROGRAMMING PROBLEMS

Abstract

We suggest several important research topics for semi-infinite programs whose problem
functions and index sets contain parameters that are subject to perturbation. These include
optimal value and optimal solution sensitivity and stability properties and penalty function
approximation techniques. The approaches proposed are a natural carryover from

parametric nonlinear programming, with emphasis on practical applicability and

computability. .
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SUGGESTED RESEARCH TOPICS IN SENSITIVITY
AND STABILITY ANALYSIS FOR
SEMI-INFINITE PROGRAMMING PROBLEMS

by
Anthony V. Fiacco

and
Yo Ishizuka

1. INTRODUCTION

Our purpose is to suggest potentially fruitful areas of research in sensitivity
and stability analysis for semi-infinite programming problems whose objective and
constraint functions and index sets are perturbed by several parameters. The main
subjects of this paper are the following:

[. Basic sensitivity and stability results: optimal value and optimal solution
sensitivity and stability properties, i.e. continuity, differentiability, and
lower and upper bounds of optimai values and optimal solutions of
parametric semi-infinite programming problems;

II. Development of the penaity function method as a solution strategy and
also as an algorithmic approximation technique for sensitivity information
in semi-infinite programming;

[lI. Computational implementation.




The proposed areas of research are envisioned as extensions of the respective
sensitivity and stability results and techniques for the standard nonlinear

programming problem (NLP):

A. Basic sensitivity and stability characterizations, parameter
derivatives and bounds.

B. Penalty function methodology.

C. Computer codes for solution, sensitivity and bound analysis for

NLP, and demonstrations of practical applicability.

Throughout this paper, emphasis will be placed on computable results and

computational aspects.

2. SEMI-INFINITE PROGRAMMING

2.1 Formulations and Applications

The semi-infinite programming problem (SIP) is a nonlinear programming

problem formulated as follows:

SIP: m’i‘n F(x)

s.t. Gi(x, tl) ’?__ 0 Vti € Ti, l=l, R

where F: E" - El, Gi‘ E" x E‘,pi — E‘,l . Ti - Epi , and E? is Euclidean q-space.
The sets Ti are called index sets. We assume at least one Ti consists of infinitely

many elements. The linear semi-infinite programming problem is & special case of




SIP and is formulated as:

LSIP: m‘gn ch

s.t. al(tl)T X ; bl(tl) \'rltl € Tl’ l=1, ... 9 My

where c, a,(t;,) € EM, b(t) € El, and the superscript “T” denotes “transpose.”

SIP arises in various kinds of system optimizations. Roughly speakine,
optimization problems that are naturally formulated as SIP may be classified into
three categories, according to the physical meanings of the index sets Ti‘

(i) Decision problems under uncertainty: the case where t; € Ti stands for
the i-th “unknown” (i.e., the i-th opponent or i-th disturbance) variable,
and the decision—maker wishes to optimize his objective F under the
condition that the performance indexes Gi be kept over the permissible
levels (zero), whatever the opponent’s decision may be or whatever
disturbances may happen. Examples: The problem of designing frame
buildings {Polak (1983)], taking into account seismic force as a
disturbance, and electronic circuit design problems [Polak (1983)] that
include a production error parameter as the unknown factor. (These
formulations by Polak also include time-dependent constraints, mentioned
below.);

(ii) The case when the constraints depend on “time” or “space,” i.e.,

t e Ti stands for time or space or frequency variables. Examples: An
air pollution control problem [see Glashoff and Gustafson (1983)] which
requires the minimum cost strategy to keep concentrations of a pollutant

below the permissible level at every point in an area, and the design of




feedback control systems [Polak (1983)], over time or frequency domains;
{iii) Min-max (or Chebyshev or Uniform) approximation problems: Given a
function f and a family A = (a(x, -) | x ¢ X} of approximation functions,
the min-max approximation problem (MAP) on a domain T is formulated as
follows:
MAP: min ttnea’i‘( | alx, t) — f(t) | .

xeX

This problem can te rewritten as an SIP:

MAP: min o
(x,0)
s.t. a(x, t) — f(t) + o > 0 vteT
— a(x, t) + f(t) +0 >0 VteT

In particular, when a(- , t) is linear in x, MAP is a special case of LSIP. Most of

the work for SIP and LSIP is motivated by MAP or its extensions.

2.2 Existing Results for SIP and LSIP

As for nonlinear programming (NLP), many aspects of SIP or LSIP have been
studied, e.g.,

¢ Optimality conditions:

® First order conditions [John (1948), Gehner (1974), Hettich and Jongen
(1978)};
® Second order conditions [Ben-Tal, Teboulle and Zowe (1979), loffe (1983),

Shapiro (1985)};




® Duaslity theory [see papers in Fiacco and Kortanek (1983), Glashoff and
Gustafson (1983), Anderson and Nash (1987)};
® Solution methods for LSIP:
& Exchange algorithms, dual simplex methods and cutting plane methods

(Hettich (1983), Glashoff and Gustafson (1983));
® Primal simplex methods [Anderson (1985), Anderson and Nash (1987))

o Solution methods for SIP:
® Cutting plane method [Blankenship and Falk (1976));
e Lagrange methods [Watson (1983, 1985), Coope and Watson (1985)};

e Exact penalt; method [Conn and Gould (1987)].

The difficulty of dealing with SIP or LSIP, of course, is the presence of an
infinite numbers of constraints. A useful technique to overcome this difficulty
replaces the infinitely many constraints with a finite number, without changing the
optimal value [Borwein (1981, 1983), Jongen, Jonker and Twilt (1983)]. It is well
known that this reduction is possible under mild assumptions (e.g., convexity). This
fact forms a basis for a duality theory, and hence, for dual simplex methods.
Furthermore, under stronger assumptions (e.g., assumptions under which the basic

sensitivity theorem by Fiacco (1983, 1976) holds] for the inner problem,

of SIP at X, we can obtain a finite number of functions t;

ij* J=1, .., O i=1l,., m

which (locally) solve IP;(x) for x e N(X) (a neighborhood of X), and then it can be




shown that SIP is (locally) equivalent to the following problem:

RSIP: m)i(n F(x)

s.t. Gi(x, tij(x)] >0, j=l..,0y i=l, .., m.

If ti j€ Cl, the reduced problem RSIP is a standard NLP, and the theory for NLP will
be applicable to RSIP. This idea is widely used in theoretical developments (Shapiro
(1985), Zwier (1987)] and numerical solution methods [Hettich (1983), Watson

(1983, 1985), Conn and Gould (1987)]. An extension of this technique should be

useful in parametric SIP as well {(see Section 3.2).

3. PROPOSED RESEARCH TOPICS

3.1 Parametric SIP

We are concerned with the question: If the data involved in an SIP changes,
what happens to the optimal value or the optimal solutions? For example, let us
consider the application problems mentioned in Section 2.l.

(i) Decision problems under uncertainty. If the decision-maker changes the
permissible levels of the performance indices G!-, or if he assumes slightly
different constraint sets Ti of the opponent or disturbance variables, how
will the optimal decision change? Note that it is important to consider
the latter case because, in most situations, the Ti are only “estimated” or
“assumed” sets (e.g., the set of expected seismic forces).

(ii) Constraints depending on time or space coordination. How do changes in
cost function, permissible levels, and area of air pollution control affect

the optimal strategy? If we consider a different time interval on a




different frequency domain, what will happen to the cortrol system?
(iii) Min-max approximation. If we change the function f and the domain T,
slightly, what can we expect?

In order to answer these questions, we have to consider the parametric semi-infinite

programming problem. Introducing the parameter vector e ¢ Eq in SIP explicitly, we

formulate this problem as follows:

SIP(e): m)i(n F(x, e)

s.t. Gi(x, e, ti) >0 Ve Ti(e), i=l, .., m.

We define the constraint set, the optimal value, and the optimal solution set as

follows:
Rle) = (x ¢ E"Gilx,e, 1) >0 Vt e Tile) i=1, .., m)
F*le) = inf F(x, e),
xeR(e)
Sle) = (x"¢ R(e)t F(x*,e) = F*%e)) .

As briefly mentioned in Section 1, our proposed research includes:
I. Basic sensitivity and stability results for F*(e) and S(e);
II. Penalty function approaches for SIP(e);

IIl. Emphasis on computability and computational implementation.

In the following three sections we shall discuss these subjects in more detail.
First, we mention important relevant work in parametric semi-infinite programming.

For standard (i,e., smooth and finitely constrained) parametric NLP, many usef ul
results have been obtained. A survey of basic theoretical results, and the

computable algorithmic approach to parametric NLP is given in the book by Fiacco




(1983). As for parametric SIP, however, there have not been as many results. In
his book, Brosowski (1982) studies several types of perturbed SIP with fixed (i.e.,
nonperturbed) index sets, and investigates their “qualitative” properties (e.g.,
continuity of F* and S°, etc.). Niirnberger (1985) studies the (strong) unicity (i.e.,
uniqueness) of S(e) of problems similar to those studied by Brosowski. If, as in
Brosowski’s formulations, the index sets Ti are not perturbed, i.e., if the constraints

in SIP(e) are of the following form:

Gi(x,e,ti)_z_o v, e T,, i=1,..,m,

then one can apply sensitivity and stability results of parametric

infinite programming (Penot (1984), Lempio and Maurer (1980), da Silva (1985)}, which

treat perturbed constraints such as

Gi(x. e, - ) € C.

i® i=1,..,m,

where Ci is a positive cone in a space of functions defined on Ti'
Another approach may be possible: defining minimal value functions of the
inner problems of SIP(e) as

Gi'(x, e) = inf Gi(x, e, t), i=1, ..., m,

thTl(e)

we can rewrite SIP(e) as:

SIP*(e): m}%n F(x, e)

s.t. Gi'(x. e) >0, i=1, .., m,




which is of a standard parametric NLP form, with non—smooth constraint functions
Gi" One can then apply sensitivity results from non—smooth parametric NLP (e.g.,
Auslender (1979), Rockafellar (1982)] to SIP*(e) to obtain estimates of the directional
derivatives of F* in terms of the generalized gradients [Clarke (1975)] of Gi.'

Recently, Zencke and Hettich (1987) obtained the directional derivative of F® of a

parametric linear SIP with fixed index sets, via duality arguments.

For min-max approximation problems, stability properties including the
perturbation of the respective domains have been studied, e.g., Flachs (1985) and
Dunham (1977) investigated the continuity of the best rational min-max

approximation with respect to the domains.

Compared with past studies, our proposed research will have new and
significant extensions in the following respects:
® Allowing the index sets to be perturbed;

¢ Emphasizing computability and computational aspects.

3.2 Basic Sensitivity and Stability Analysis for SIP(e)

Basic sensitivity and stability analysis for NLP includes the following
important areas:
a. Local qualitative analysis, i.e., continuity of optimal values or optimal
solutions set [see Section 2.2 in Fiacco (1983)];
b. Local quantitative analysis, i.e., estimation and characterization of
(directional) derivatives of optimal values and optimal solutions [see
Sections 2.3 and 2.4 in Fiacco (1983));

c. Global qualitative analysis, i.e., convexity and concavity of optimal values




with respect to the parameter [see Fiacco and Kyparisis (1986)].
d. Global quantitative analysis, i.e., estimation of lower and upper bounds of
optimal values and optimal solutions [see Chapter 9 in Fiacco (1983),

Fiacco and Kyparisis (1988)}

We suggest further investigation of the analogous properties and measures
for SiP(e). As mentioned in the previous section, viawing SIP(e) as a non—smooth
parametric NLP, we can use general sensitivity theory to obtain an estimate of the
directional derivative of F°. Another theoretically and computationally useful
approach will be the extension of the reduction idea mentioned in Section 2.2 to our

SIP(e). Suppose that the inner problem:

IPI(Y, -e.): min GIG(-’ E.' tl)

at (X, ©) satisfies the standard assumptions in Fiacco’s basic sensitivity theorem
(Fiacco (1983)), at every minimal solution t: Then there exists a finite number of
perturbed local minimal solutions ti.j (x, e), =1, .., o; of IP;(x, e) for

(x, e) € N(X, €), and SIP(e) is (locally) equivalent to the following reduced problem:

RSIP(e): m)x;n F(x, e)

s.t. Gi[x, e, tu(x, e)] g 0, J==l, ey O l='=1, A I

i'

S.nce, under the assumptions, t j are in Cl, we can apply existing smooth parametric
NLP sensitivity and stability results to RSIP(e) to describe the local behavior of

optimal values and optimal solutions of SIP(e).

10




As for global properties (i.e., c and d above] of SIP(e), (especially for optimal
values), Fiacco’s calculation technique for bounds on optimal values [{Chap. 9 in
Fiacco (1983)] will be applicable in a direct manner, since it is based on the
convexity properties of the problem rather than on the finiteness or

differentiability of the constraints.

3.3 Penaity Function Methods for SIP(e)

For standard parametric NLP, Fiacco (1983) has established a technique to
estimate sensitivity information (e.g. 8 perturbed Karush-Kuhn-Tucker triple and its
derivative) via penalty function algorithms (see also Armacost and Fiacco (1977,
1978)]. By this technique, one can obtain sensitivity information from trial points
generated by a penalty function algorithm for solving a given NLP. Since it is easy
to implement this technique in any penalty function algorithm, it provides a very

useful sensitivity analysis tool in practice.

We suggest the adaptation of this technique to SIP(e). To this end, of
course, a penalty function algorithm for solving SIP must be established.
Unfortunately, however, it seems that no serious studies of penalty methods for SIP

(or LSIP) have been made, except for Conn and Gould’s recent exact penalty

function method for SIP [Conn and Gould (1987)]. We propose to investigate
application of classical penalty (especially, barrier) function methods to solve SIP

problems. For example, denoting the penalty parameter by r,

m
I STy
Px,r) = F(x) + El Iti‘Ti S ) dt, ,

m
Plx, 1) = Fx) = 3 [, .x r&nlGyx, t)I dt,
i=1 IOl |

11




are simple extensions of classical barrier functions. [t seems clear that a slight
modification of finite-dimensional standard proofs of convergence will yield
convergence theorems of methods for SIP based on these barrier function methods.
Since the publication of Karmarkar (1984), many serious attempts to reconsider
penalty function methods as solution methods for LP have been pursued [e.g., Gill,
Murray, Saunders, Tomlin and Wright (1986); Megiddo (1986); Reneger (1988); Ben
Daya and Shetty (1988)], and it has been reported that, at least for some particular
classes of LPs, these “new” interior path methods are superior to the simplex
method. In addition to the need to develop practical sensitivity analysis tools, this
is another motivation for investigating the penalty function approach for solving
SIP. Reslizing that many existing algorithms for SIP (especially LSIP) can be
regarded as (dual or primal) simplex methods (Hettich (1983), Glashoff and Gustafson
(1983), Anderson and Nash (1987)), and that the effort to construct solution methods
(even for LSIP) continues, we are confident that a penalty function approach will
provide an efficient solution method as well as an important sensitivity analysis

tool for SIP.

3.4 Computational Impiementation

Based on the penalty function approach mentioned in the previous section,
Armacost and Fiacco (1978) developed a computer code called SENSUMT to estimate
the sensitivity information of a standard parametric NLP. As a preliminary
experiment, we propose the use of SENSUMT to analyze SIP(e). Having solved the
inner problem IP,(x, e) by an appropriate NLP algorithm, one may apply SENSUMT to

the reduced problem RSIP(e) to obtain sensitivity information for SIP(e).

12




We also suggest investigation of the use of integral types of barrier
functions like those mentioned in the previous section. Since we do not have
experimental results for such barrier methods, their efficacy remains to be tested

computationally.

3.5 Disclaimer

We do not presume to include all the vital issues and important current
references in SIP, e.g., incisive work in the stability of the feasible set recently
studied by Jonger, Twilt and Weber [“Semi-Infinite Optimization: Structure and
Stability of the Feasible Set,” Memo. No. 838, University of Twente, Enschede, The
Netherlands, December 1989]. (See also, references to recent work in this paper.)
The topics addressed are simply those of particular interest to the authors and
deemed to be of considerable importance among those for which computable resulits
may be obtained. Finally, we note that all the results addressed in this paper can
be extended to include equality constraints. Since this extension is straightforward,

we do not pursue the details here.
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