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Abstract

We describe experiments with a versatile pictorial prototype based learning scheme for
3D object recognition. The GRBF scheme seems to be amenable to realization in biophysical
hardware because the only kind of computation it involves can be effectively carried out by
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Figure 1: Application of a general module for multivariate function approximation to the
problem of recognizing a 3D object from any of its perspective views. In (a), the module
is trained to produce the vector representing the standard view of the object, given a set of
examples of random perspective views of the same object. The module is also capable of
recovering the viewpoint coordinates 0, 0 (the latitude and the longitude of the observer on an
imaginary sphere centered at the object) that correspond to the training views. When given a
new random view of the same object (b), the module recognizes it by producing the standard
view. Other objects are rejected by thresholding the euclidean distance between the actual
output of the model and the standard view.

1 Introduction

An intelligent visual system is expected to be able to retain representations of objects it encoun-
ters and to recognize these objects later, under potentially different viewing conditions. This
requires the solution of at least three difficult problems. The first problem is the variability
of object appearance due to changing illumination, which may be addressed by working with
relatively stable features, such as intensity edges [1] (preferably, in conjunction with cues from
visual motion and stereo [2]), rather than with raw intensity images. The second problem, the
removal of the variability due to unknown pose of the object, may be solved by first hypothesiz-
ing the viewpoint (e.g., using information on feature correspondences between the image and a
model), then computing the appearance of the model of the object to be recognized from that
viewpoint and comparing it with the actual image [3, 4, 5, 6]. Generally, recognition schemes of
this type employ 3D models of objects. Automatic learning of 3D models is the third difficult
problem faced by state-of-the-art recognition schemes. Few of these schemes learn to recognize
objects from examples and most use 3D models acquired through user interaction (see, e.g.,
[6]) or through active sensing (e.g., range data; [7, 8]).

In this paper, we describe an implemented scheme for recognizing wire-frame objects that
addresses two of the three aspects of the recognition problem mentioned above: learning object
representations and generalizing recognition to novel viewpoints. We base our approach on a
recently proposed network scheme for the approximation of multivariate functions, by coaching
the problem in terms of the synthesis of a module that generates a representation of an object
(e.g., produces a "standard" view) given any of its perspective views (Figure 1).

*



2 -Theoretical basis

2.1 How much information is necessary for learning 3D structure?

Structure from motion theorems [9, 10], pioneered by Ullman [11], indicate that full information
about the 3D structure of an object represented as a set of feature points (at least five to eight) is
present in just two of their perspective views, provided that corresponding points are identified
in each view. A view is represented as a 2N vector zl, Yl, z 2 , lY2,... ,ZN, YN of the coordinates
on the image plane of N labeled and visible feature points on the object. Here and in most
of the following we assume that all features are visible, as they are in wire-frame objects. The
generalization to opaque objects follows by partitioning the viewpoint space for each object
into a set of "aspects" [12], corresponding to stable clusters of visible features. In principle,
therefore, having enough 2D views of an object is equivalent to having its 3D stl actuse speciflcd.

2.2 Learning as hypersurface interpolation

This line of reasoning, together with properties ofperpective projection, suggest (a) that for each
object there exists a smooth function mapping any perspective view into a "standard" view of
the object and (b) that this multivariate function may be synthesized, or at least approximated,
from a small number of views of the object. Such a function would be object specific, with
different functions corresponding to different 3D objects. Furthermore, the application of the
function that is specific for one object to the views of a different object is expected to result in
a "wrong" standard view that can be easily detected as such.

Synthesizing an approximation to a function from a small number of sparse data - the views
- can be considered as learning an input-output mapping from a set of examples [13, 141. A
powerful scheme for the approximation of smooth functions has been recently proposed under
the name of Generalized Radial Basis Functions (GRBFs) and shown [13, 14] to be equivalent
to standard regularization [15, 16] and generalized splines ([13]; see closely related work by
Powell [17] and Broomhead and Lowe [18]). The approximation of f : Rh -+ R is given by

K

f(x)= caG(Ilx - t. l) (1)

where the coefficients c, and the centers t,, are found during the learning stage and C is an
appropriate basis function (see [13, 14]), such as the Gaussian. If the function f is vector-valued,
each component fi is computed using eq. 1 with the appropriate ci., in which case the equation
is precisely equivalent to the network of Figure 2. The function f(x) in equation 1 minimizes
the error functional

M

H[f] = Z(. - f/(xi))2 + AlIPf 112 (2)
i=1

on the set of examples. In equation 2, P is usually a differential operator and A is a positive
real number, called the regularization parameter [15]. The radial function G is fully determined
by the stabilizer P in eq. 2 and therefore by the prior assumptions on the function to be
approximated, such as its degree of smoothness [13]. P also determines whether a polynomial
term of the form Ei dipi(x) should be added to the right-hand side of eq. 1. In most of the

2



. experiments described in section 3.6 we omitted the polynomial term and used the Gaussian as
the radial basis function. The optimal width a of the Gaussian RBFs can be found, along with
c. and t,, by minimizing H in equation 2.

In a special simple case, there are as many basis functions (K) as views in the training set
(M; in general, K < M). The centers of the radial functions are then fixed and are identical
with the training views. Each basis unit in the "hidden" layer computes the distance of the new
view from its center and applies to it the radial function. The resulting value G(Ix - tall), can
be regarded as the "activity" of the unit. If G is Gaussian, a basis unit will attain maximum
activity when the input exactly matches its center. The output of the network is a linear
superposition of the activities of all the basis units in the network.

Figure 2b illustrates the special case of Gaussian basis functions. A multidimensional Gaus-
sian can be synthesized as the product of two-dimensional Gaussian receptive fields operating
on retinotopic maps of features. The solid circles in the image plane represent the 2D Gaus-
sians associated with the first radial basis function, which corresponds to the first view of the
object. The dotted circles represent the 2D receptive fields that synthesize the Gaussian radial
function associated with another view. The Gaussian receptive fields transduce positions of
features, represented implicitly as activity in a retinotopic array, and their product "computes"
the radial function without the need of calculating norms and exponentials explicitly.'

The weights C are found during learning by minimizing a measure of the error between the
network's prediction and the desired output for each of the examples. Computationally, this
amounts to inverting a matrix (when M $ K, the generalized inverse is computed instead) and
is equivalent to finding an optimal generalized spline approximation (interpolation when A = 0
in equation 2) with fixed knots.

If the centers of the basis functions are allowed to move (which may be desirable, e.g., when
the number of basis functions is less than the number of views in the training set), the scheme
becomes equivalent to a spline with free knots. The centers may be updated during learning
by a gradient descent minimizing the approximation error expressed by equation 2. A further
generalization may be achieved by using a.weighted norm in equation 1:

lx- t1 = (x - t)T WTW(x - t) (3)
Updating the centers is equivalent to modifying the corresponding "prototypical views" and
corresponds to task-dependent clustering. Finding the optimal weights for the norm is equiv-
alent to a transformation of the input coordinate space and corresponds to task-dependent
dimensionality reduction. A more detailed description of the GRBF approximation technique,
of its theoretical motivation and of its relation to other techniques such as backpropagation [20]
can be found in [13, 14].

3 Implementation and performance

We have conducted an empirical investigation of the applicability of GRBFs, under a variety
of conditions, to the problem of shape-based object recognition. The results of a series of

'Implementing a multidimensional receptive field as a product of 2D receptive fields all of which look at the
same retina can result in "cross-talk" between different features if the spatial extent of the receptive fields is
not limited. This does not seem to be a problem with Gaussian receptive fields, which respond very weakly to
features that are far from the field's center (cf. [19J).
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Figure 2, (a) A network representation of approximation by Generalized Radial Basis Functions.
(b) shows an equivalent interpretation of (a) for the case of Gaussian radial basis functions.
The solid circles in the image plane represent the 2D Gaussians associated with the first radial
basis function, which corresponds to the first view of the object. The dotted circles represent
the 2D receptive fields that synthesize the Gaussian radial function associated with another
view.

experiments that involved simple computer-generated shapes are described below.

3.1 Input objects

Objects for testing the recognition scheme were created using the Symbolics S-Geometry 3D
graphics modeling system. The objects were 5-segment random wire frames 2 (Figure 3). All
the objects were positioned in such a manner that their centers of mass coincided with the
origin of the 3D coordinate system defined by the modeling program. Different views of the
objects were obtained by rotating the S-Geometry "camera" around the 3D origin, so that it
could assume any position specified by two viewpoint coordinates, 0 and 4, corresponding to
the latitude and the longitude on an imaginary sphere centered at the object. No rotation of
the camera around its optical axis was allowed.

3.2 Input representations

We have experimented with several different methods of encoding object shape, all of which
employed exclusively the 2D information available in the projection of the objects' vertices
onto the imaging plane. The first and most straightforward method was used in most of the
experiments described in this section.

21n some of the experiments, 7-segment wires or other objects such as wire-frame cubes and octahedra were

used.
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Figure 3: Two examples of wire objects used in the experiments. The wires were created by a
random walk in 3D. They were encoded for training and subsequent recognition by projecting
the vertices onto an imaging plane (under either orthographic or pcripective projection). The
resulting vector of z, y-cnordinates could be further preprocessed to obtain different encodings
(see section 3.2).

1. XY-coordinates. A list of the screen coordinates of the wire's vtrtices, (Z, Yli, ... , z,, Y,).
The origin of the screen coordinate system was at the upper left comer of the screen, and
the coordinates varied in the [0..127] range.

2. Centered XY-coordinates. Same as previous, but with the origin at the screen projection
of the 3D center of rotation common to all the objects.

3. Segment lengths. Screen distances between the projections of the successive vertices of
the objects.

O 4. Normalized segment lengths. Same as previous, but with the lengths divided by the
length of the first segment.

5. Angles. Angles formed by the projections of the successive segments.

6. Angles + lengths. A mixed encoding, combining the angles and the segment lengths in
one heterogeneous vector.

Note that the fifth encoding method (angles) leads to the invariance of recognition perfor-
mance with respect to translation, scaling and image-plane rotation of the objects. Another
point of interest is that nothing in the present approach precludes information other than 2D
shape from being incorporated into the input representation. In particular, 3D shape cues
(obtained, e.g., through binocular stereo) can be used within the same framework depicted in
Figure 1. We shall return to this point in the discussion.

3.3 Output representation

As depicted in Figure 1, the recognition module was trained to produce a standard output for
any input that showed a view of the target object. The output representation was identical
to the input one (as a matter of fact, the first input view was chosen as the standard one).
However, in addition to the standard view of the object whose arbitrary view was presented as
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input, the system was also capable of recovering other information about that object, namely.
its attitude (as expressed by the viewpoint coordinates 0 and ).3

3.4 Test paradigm

The primary measure of the system's performance was the standard view recovery error, defined
as the eucildean distance between an actual output and the ideal one. Two statistical mea-
sures of performance were computed in each of the experiments to be described below. These

measures involved training the system on each of 10 different wire objects and comparing the
standard view recovery errors for views of the trained object with those of the other nine ob-
jects. The errors for the trained object should be small, compared to the errors for the other
objects (Figure 4). Ideally, the smallest error on a non-target object (call it MIN,,, tagt)
should be larger than the largest error on the target (MAXtaget): a MIN/MAX ratio greater
than 1 is required for a perfect separation between the target and other objects using a simple
threshold decision. A less conservative measure is the ratio of the averages of the two error
classes, AVG/AVG.'

3.5 Example of operation

Two examples of the module's operation, one in which the input is the training object, and
another in which it is a different but similar object, appear in Figure 5. The top row shows
the standard view of a wire frame object, superimposed on its estimate by the GRBF network
(large black dots), when its input is a random view of the same object (second from top row).
The fit is much closer than in the bottom two rows, where the input view belongs to a different
object.

From Figure 5 it appears that arbitrary views of the target object cause the GRBF module to
output a vector that is close to the ideal (trained) one. It also appears that views of non-target
objects are transformed into scaled versions of the ideal vector, so that Y ,, = kYot(ideal),
where k < 1. To understand why that happens, it is convenient to consider first a linear
associative memory that is realized by a matrix operator C trained to recognize views of a
target object by transforming them into a preset standard vector Y. Since C maps distinct
vectors Vi to the same vector Y, it must be singular (it can be shown that the rows of C are
all collinear). If the number of (randomly chosen) training views Vi is sufficiently large, there
is a good chance that they span a 6-dimensional manifold that, to a first approximation, is a
hyperplane in R 2N (see the appendix). Any new view V will lie within this hyperplane and will
be mapped to a scaled kY. Views of non-target objects will tend to be orthogonal to the space
spanned by the training views, resulting in k z 0. An analogous argument can be made for the
RBF scheme, in which the linear mapping C is preceded by the application of the radial basis

3 We have also experimented with a scalar output representation; see section 3.6.8.
4Standard statistical methods of parameter estimation and hypothesis testing may be used to translate the

means and the standard deviations of mrN,,.t.,.t, MAX, a,,,t, AVGn.t..qe, and AVGntas., into prob-
abilities of Type I and Type II recognition errors (see e.g. [21]). Since these methods involve table lookup
of probability distributions, we did not use them on-line. Characteristically for our experiments, a ratio of
AVG,,oo,t , to AVG.,. ois.t of 5.0 sufficed to impose a 0.001 upper bound on the probabilities of both Type I
and Type II errors.
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AVG AVG

- - -- ----- - -avg

max _ _ MIN MAX

avg- -- min

Error range for test
views of the target

Error range for views
of other objects

Figure 4: Definitions of the AVG/AVG and the MIN/MAX performance criteria used through-
out the paper. The error here is defined as the euclidean distance between the standard view of
the target and the actual output of the system (the smaller the error, the greater the likelihood
that the input view belongs to the target). In this illustration, the average error for non-targets
is considerably greater than that of target views. Consequently. there is P good chance of
correct recognition of the target (and correct rejection of non-targets). An ideal performance
requires that there be no overlap between the error value ranges corresponding to target and
non-target views, in which case MIN/MAX > 1 and the two classes of views are separable by
thresholding.
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Figure 5: Examples of the module's operation. Above: standard view of a wire frame object
(top row), superimposed on its estimate by the GRBF network (large dots), when its input is
a random view of the same object (second from top row). The fit is much closer than in the
bottom two rows, where the input view belongs to a different object. The number of training
views M = 40, the number of RBFs K = 20 and the range of attitudes 6, 0 is 0' to 900.
A naive fixed-step gradient descent (with a small number of steps) was used to obtain the
optimal positions of the GRBF centers. Below: within a smaller range of 0, 0 E [00, 450], the
performance was acceptable with only two radial basis units: M = 40, K = 2 (Note that in the
"different object" row the dots signifying the predicted vertex locations are in most cases off
the scale).
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. functions Ga. The analogy is then between the original training vectors Vi and their images
under Ga.

3.6 Performance

3.6.1 Effects of receptive field size and of number of centers

In the first experiment, the number K of RBF centers is made equal to the number M of
training views by letting the centers coincide with the views themselves. Consider Figure 6,
which shows the dependency of the error (distance between actual and ideal outputs) for random
views of the trained object (left column) and the error for views of other objects (right column),
as a function of K and of the size o of the (Gaussian) basis functions. Figure 6 conveys
information as to the relative significance of the average and worst-case performance of the
recognition module over the depicted range of K and a. The worst-case performance (assessed
by comparing the upper curve in the left column with the lower curve in the right column)
lags far behind the average performance (assessed by comparing the middle curves in the two
columns). It should be noted that the role of the outliers that contribute to the worst-case
measure is statistically insignificant, as long as the average performance does not drop below a
certain threshold (corresponding to an AVG/AVG ratio of about 5).

The next plot provides a direct answer to the question of the optimal combination of K and
a. Under the AVG/AVG measure (Figure 7, middle column), it is o' = 25, for K = 100 = M
(clearly, increasing the number of training views and R1BF centers improves the performance,
but the price in terms of computational resources makes it probably not worthwhile to increase
K and M beyond about 80 - 100). Under the MIN/MAX measure, the best performance is. achieved for a = 30 (Figure 7, right column). The left column of Figure 7 gives a different
perspective on the module's performance, by plotting the proportions of Type I and Type II
recognition errors vs. o-. Note that having too much interpolation (in this case, a > 25) sharply
increases the probability of a Type II (false alarm or overgeneralization) error, as expected.

3.6.2 Effect of perspective projection

The result of Ullman and Basri [22] on representing objects by linear combinations of views
suggests that recognition posed as a problem in function approximation is better behaved under
orthographic than under perspective projection. We have tested the GRBF module with two
different settings of the distance of the simulated camera from the objects: "near", in which
there was an appreciable perspective distortion, and "far", in which the distortion was almost
unnoticeable (this served as an approximation of orthographic projection condition). From
Figure 8 it can be seen that doubling the distance from "near" to "far" made no significant
difference in the performance.

A separate look at the false alarm and the miss rates (Figure 9) shows that if camera distance
had any effect, it was on the miss rate. The most prominent effect was the decrease in the miss
rate under orthographic approximation for M = K = 20. This finding is consistent with the
Uliman-Basri theoretical argument for the relative ease of recognition under the assumption of
orthographic projection.
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Figure 6: Error (distance between actual and ideal output) vs. the size a of the basis functions,

for modules with different number of centers K (the number of training views M is equal here
to K). Data are shown for two input sets: random views of the trained object (ERV, left

column) and views of other nine objects (EOO, right column). Three measures of the error,
MIN (lower curves), AVG (middle curves) and MAX (upper curves) are shown separately. Bars
indicate standard deviation, computed over ten different training objects.
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Figure 10: AVG/AVG and MIN/MAX performance vs. the range of the viewpoint coordinates
8, 0 (the objects are a cube and an octahedron, M = K = 40 or = 30.0, and the error bars are
standard deviations over 10 sets of random training and testing views). Here and in the next
figure, 0.,__ = 2 0 ,,ui so that OL. = 1800 corresponds to the full viewing sphere.

3.6.3 Effect of range of attitudes

If the number of training views is held constant, the performance of the GRBF module is
expected to deteriorate with the increase in the range of the viewpoint coordinates into which
the training views fall. Figure 10 shows that this indeed happens: for M = K = 40 and Or = 30,
both the AVG/AVG and the ME"N/MAX measures take a sharp dip when 0, 0 reach (1200, 2400).

3.6.4 Recovery of attitude

The range of the allowed orientations has a similar influence on the precision of the recovery
of the orientation parameters 0,4 (Figure 11). For M = K = 40 and a = 30, the mean square
error of the recovered orientation stays below 100 for 0 < 1200, 0 < 240*, rising to about 60*
for the full range of orientations. Doubling M and K extends effective recovery of 0, .0 to the
full range of orientations.

3.6.5 Effect of number of vertices

The power of the GRBF module to discriminate between trained object and other, similar
objects increases with the increase in the number of vertices used in the encoding (Figure 12).
The discrimination power is nil (MIN/IAX = 0) for two-vertex objects, rises steadily with
the number of vertices, then starts to drop. This may be due to an interplay of two factors:
the amount of information and cross-talk among GRBF centers. At least four points on each
object are necessary for discrimination (see the appendix). The more vertices are used, the more
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range of 9, dog.

Figure 11: Errors in the viewpoint coordinates 6, recovered by the module vs. the range of
the viewpoint coordinates (M = K = 40, o" = 30).

information there is for the recognizer to go by, until cross-talk sets in (which will happen if the
size of the basis functions a is not allowed to decrease in proportion with the increased density
of object vertices in the image plane). In human recognition, a similar effect is intuitively
expected (30-vertex wire objects seem to be too complicated to be distinguished by vertex
positions alone).

3.6.6 Different input/output representations

The versatility of the present approach to recognition is illustrated in Figure 13, which shows. superimposed a plot of the MIEN/MAX performance vs. the number K of RBF centers for
the regular encoding used throughout the paper (z, y-coordinate vectors) and a shift, scale
and image-plane rotation invariant encoding (angles between successive segments of the wire
objects). For a six-vertex object, the z, y-coordinate vector has length 12, while the angles
vector has length 4. The relatively smaller amount of information in the angle encoding puts
it at a disadvantage for smaller K's. For a large enough K the angle encoding yields higher
MJN/MAX ratio, in addition to possessing desirable invariance with respect to shift, scale and
rotation of the input.

3.6.7 Sensitivity to occlusion

To find out the sensitivity of the GR.BF scheme to occlusion, we have repeatedly trained it on
views each of whose constituent features had a fixed probability of being "occluded" (in which
case the corresponding component of the representation vector was set to 0). Note that more
than one feature could be occluded at a time.

The performance of the GRBF module in subsequent testing, plotted vs. the probability of
individual vertex occlusion, is shown in Figure l4. s It appears from the figure that decent per-
formance can be expected even when the probability of having any particular feature occluded
is 0.2, in which case about three quarters of the training views had at least one of the features

'Although no occlusion was assumed in testing, one can get an idea of the scheme's sensitivity to this factor
by considering Figure 12, which shows the effect of the number of features on the discrimination power.
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Figure 12: AVG/AVG and MIN/MAX indices vs. the number of vertices used in training (the
data for number of vertices from 2 to 6 are for six-vertex random wire objects; the data for
number of vertices 7 and 8 are for eight-vertex wires; M = K = 60, o* = 30.0).
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Figure 13: MIN/MAX performance for two types of input encoding: vertex coordinates (solid
line) and angles formed by successive pairs of segments (dashed line; data for six-vertex random
wire objects, c, chosen optimal for each encoding, M = K).
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Figure 14: AVG/AVG and MIN/MAX indices vs. the probability of any given vertex being
occluded (left: six-vertex random wire objects; right: eight-vertex objects). 6, were confined
to one half of the viewing sphere; K = M = 50 (lower curves), K = MP = 100 (upper curves);

= 30.0.

O occluded. Occlusion has had a somewhat stronger effect on the learning of eight-vertex wires

(Figure 14, right column).
Note that in the present experiment the basic GRBF scheme was not augmented by any

mechanism specifically designed to deal with occlusion. A better insensitivity to the deletion
(occlusion) of features can be achieved by providing a basis function (center) for each possible
subset of features. We conjecture that in practice the maximum size of necessary feature subsets
is rather small. This size could be found during learning, by analyzing the weight matrix W.

3.6.8 Scalar vs. vector output

If a compact output representation is required, it is possible to train the recognition module to
produce a scalar output, as opposed to a vector that represents a standard view. Figure 15)
shows that the single-output network performs on the average almost as well as the network of
Figure 2 (which outputs a standard view vector). The advantage of the vector-output module
may be explained by the larger number of its free parameters (elements of the C matrix).

3.6.9 GRBF, using gradient descent

In most of the experiments described in this report, the GRBF module was trained without
searching for optimal center locations ta, coeficients C or weights W (equation 3). In these
cases, the centers were set at some of the training views, the matrix C was found by a generalized
inverse method (see section 2), and an identity matrix was used as W.
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Figure 15: AVG/AVG and MIN/MAX performance for scalar and vector output (data for
six-vertex random wire objects, a = 30, M = K = 80; error bars show standard deviation
computed over 10 objects). In the first case, the network is trained to output 1 when show
views of the target. In the second case, the output is a standard view of the target.

The parameters ta and C obtained in this manner serve as a convenient starting point for
improvement using gradient descent search in the parameter space. The gradient descent was
performed according to the expressions given in [14].8 We have compared the performance
improvement for this encoding under three conditions: changing centers t,, or weights W, or
both (the coefficient matrix C was always allowed to change), for two sets of parameter values.
Only trials for which the gradient descent procedure actually converged were included in the
comparison. The results for M = 40, K = 10 and a full range of viewpoints appear in Figure 16.
Note that the best effects were achieved by a combined adjustment of C, to, and W together.
A visual example of the performance of the GRBF module with K = 10 centers and M = 40
training views after the adjustment of the centers' locations through gradient descent appears
in Figure 5.

3.7 Comparison with related schemes

At this point it is natural to ask whether other, simpler network schemes can perform in the
recognition task defined in this report as well as does the GRBF module. To address this
question, we investigated the performance of three related schemes: linear associative memory
and two versions of the nearest neighbor classifier (with and without feature correspondence).

'Since these expressions pertain to the case of a single-output network, we used such a network in this

experiment.
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Allowed to change AVG/AVG improvement MIN/MAX improvement
C, ta, W 1.59 1.24
C, t 1.45 0.58
C, W 2.30 0.74

Figure 16: Improvement ratios in the AVG/AVG and the MIN/MAX performance measures
caused by 100 steps of gradient descent, with the step size w = 10- 3 (six-vertex wires, M = 40,
K = 10, a = 30.0, angles encoding, perspective projection, full range of viewpoint coordinates).
The numbers are exponentials of the averages of logarithms of the appropriate measures over
10 trials. Training was carried out on one object and testing on five other objects.

3.7.1 Linear associative memory

The GRBF network of Figure 2 can be converted into a linear associator by omitting the middle
layer (the basis units; the full GRBF scheme has a linear part connected in parallel with the
network of Figure 2 at all times [13]). The association function in this case is realized by the
matrix C. Let V be the matrix whose rows are the training views and Y - the matrix whose
rows are the vectors to be associated with the rows of V (in our case, all of these are the same
vector, e.g., the first training view). C is then found by solving the equation Y = CV, that is,
C = YV+ (pseudoinverse is needed, since generally V is not square; cf. [23]).

The performance of the linear associative memory (Figure 17) was considerably worse than
that of the GRBF module. The main difference is in the MIN/MAX measure, which fails
to exceed 1.0 even with 100 training views. A closer look revealed that this was due to the
tendency of the linear associator to overgeneralize. 7

3.7.2 Nearest Neighbor scheme

Another recognition scheme that we have tested, the nearest neighbor (NN) classifier, operated
as follows. In training, it stored all the views of the target object presented to it. To decide
whether a new view belonged to the target object, the NN classifier found among the stored
views the one with the shortest euclidean distance from the input view. This distance, which
could be interpreted as the inverse of a classification confidence measure, was then returned
as the classification error. This simple recognition scheme performed surprisingly well, with
the MIN/MAX measure exceeding 1.0 with just 100 views (Figure 18). As the number of
stored views grows, the performance of the NN classifier is expected to improve, asymptotically
matching that of the RBF scheme. Any comparison between the two schemes should include,
therefore, the amount of memory they use.

3.7.3 Nearest Neighbor without correspondence

The computation of the euclidean distance between the input and each of the stored views in
the NN scheme requires that the correspondence between the features of the objects be known.

?It should be noted that the interpolation scheme of Ulman and Basri (not related to the linear associator;
see [22]) is not linear.
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Figure IT: AVG/AVG and MIN/MAX indices vs. the number of training views for the linear
associative scheme (six-vertex random wire objects).
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Figure 18: AVG/AVG and MIIN/MAX indices vs. the number of remembered views for the
nearest- neighbor method that uses correspondence information (six-vertex random wire ob-
jects). For comparison purposes, the performance of the RBF scheme with M = K is also
shown (dashed curve).
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Figure 19: AVG/AVG and MIN/MAX indices vs. the width a of the Gaussian blurring mask
(see section 3.7.3) for the nearest-neighbor method that uses 2D correlation and 2D array
representation of views, instead of correspondence information and 1D vector representation of
views (six-vertex random wire objects; the number of remembered views is 80).

This requirement can be dispensed with, at the cost of reduced performance, as follows. Define
recognition error for a given object as the inverse of the sum of 2D correlations between each
of the stored training views (represented in this case as 2D arrays rather than as 1D vectors of
vertex coordinates) and the input view. Low error would then be obtained for an input that
is "close" to at least one of the stored views. To improve the generalization ability of the NN
classifier that relies on 2D correlation, the input view is blurred (convolved with a Gaussian
mask) before the correlations are computed. The dependence of the performance on the size of
the blurring mask is shown in Figure 19.

4 Discussion

The reconstructionist dogma of computational vision appears recently to have fallen upon hard
times. A standard version of this dogma holds it that the ultimate goal of a visual recognition
system is the formation of object representations that make explicit the relevant 3D structure,
just as a toy airplane makes explicit the relative size and position of the wings and the fuselage
in the real airplane [24]. This view of recognition considers the 2D image bottleneck that
necessarily intervenes between the distal object and its percept a nuisance, to be overcome, e.g.,
by invoking relevant physical and computational constraints [1]. Due to persistent difficulties at
the higher levels of the reconstructionist program (see [25, 26, 27] for reviews), inverse optics all

* 21



the way to the top [1, 281 no longer seems to be the most promising approach to recognition.8

The performance of the GRBF module described in the foregoing sections suggests that ob-
ject recognition can be done without first reconstructing the third dimension of the visual input,
and without relying on three-dimensional object models (see also [29, 22, 19]). Furthermore,
adopting the present approach to recognition does not mean giving up the use of information
beyond 2D shape (color, texture and depth). Computationally, therefore, there seems to be
no reason to reject the memory-based function approximation approach to recognition out of
hand.

In the study of biological vision, the notion that in the primate visual system objects are
represented by single units each of which responds selectively to a specific object, dubbed the
grandmother cell dogma, used to draw criticism, for a number of reasons. The arguments given
against it included the limited memory capacity of the brain and the lack of neurobiological
and psychological support. The results reported in the previous sections indicate that doing
function approximation rather than straightforward template matching may solve the memory
capacity problem. Furthermore, the function approximation approach is also compatible with
prominent biological and psychophysical findings on recognition, outlined below.

4.1 Biological aspects

4.1.1 Receptive fields

One feature of the GRBF scheme that may guide its biological interpretation is the expressibility
of its function in terms of combinations of receptive fields. It is possible to decompose a
multidimensional Gaussian radial basis function into a product of Gaussians of lower dimensions
(Figure 2b). In our case, the center of a basis unit plays a role similar to a prototype and the
unit's response profile is synthesized as the product of feature detectors with two-dimensional
Gaussian receptive fields (i.e., the activity of a detector depends on the distance r between the
stimulus and the center of the receptive field as e -

,
2 /, 2 ). The network's output (see equation

1) is the sum of these products and therefore represents the logical disjunction of conjunctions

"Va Ai(feature F at (z:, y'))", where the disjunction ranges over all the prototypes of the
given object.

4.1.2 View-specific units

Cells that respond preferentially not only to a specific object, but to a limited range of that
object's views, have been found in the inferotemporal cortex of monkeys by a number of re-
searchers (see r30] for a review). The existence of these "grandmother cells" is compatible with
the notion of a hierarchical structure of object representations. The lower level of this structure
may be composed of receptive fields that transduce position of individual features into activity
of units that encode their presence. The next level would correspond to "grandmother" units
that encode specific views. In the GRBF terminology, these are the basis units, each centered
around the view it is tuned to. At a still higher level, a "disembodied" representation of an

*Inverse methods appear to be useful in low-level visual tasks such as stereo and motion computation which
contribute to the representation that Marr called 24.D-sketch [161. At the higher levels, the lack of well-defined
constraints on the solution that are general enough to be relevant in real-life situations hinders the application
of inverse methods.
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. object could be formed by combining several view-specific units, arriving at the disjunction of
conjunctions representation that stands for the object, irrespective of viewpoint (or position,
or size). 9

4.1.3 Separating "what" from "where"

Rather than discarding the viewpoint information in the process of arriving at the viewpoint-
invariant representation, the GRBF scheme can retrieve and output it separately (see Figure 1
and section 3.6.4). As a final parallel between GRBFs and visual neuroscience, we note that
this separation of form and space resembles the separation between the ventral and the dorsal
visual pathways, the first of which carries predominantly shape and the second - predominantly
spatial information from the striate cortex towards temporal and parietal regions, respectively
(see e.g. [31]).

4.2 Psychophysical aspects

4.2.1 Human object recognition

Another aspect on the biological plausibility of our approach to recognition is provided by
psychological studies. Different features of human performance in object recognition can be
interpreted in terms of characteristics of the underlying information-processing mechanism.
We first mention briefly several of the most prominent relevant findings and phenomena.

Object constancy

O Perhaps the most familiar of these is the phenomenon of object constancy: our ability to
recognize things under widely changing conditions from a variety of viewpoints, and the lack of
change in the apparent shape of objects under these different conditions. This phenomenon is
usually illustrated with a simple object such as a coin, which can be easily recognized when seen
at an oblique angle, and whose outline then appears to us as a circle tilted in depth rather than
an image-plane ellipse. Importantly, object constancy works for considerably more complex
things such as faces and letters. This has prompted some researchers [32] to postulate a shape
normalization mechanism in object perception, whose function is to bring the viewed shape to
a standard appearance before recognition is attempted.

Canonical views

The existence of standard or canonical views of objects predicted by the shape normalization
theory is supported by a wide range of experimental data [331. Canonical views of commonplace
objects can be reliably characterized using several criteria. For example, when asked to form
a mental image of an object, people usually imagine it as seen from a canonical perspective.
In recognition, canonical views are identified more quickly than others, with response times
decreasing monotonically with increasing subjective goodness.

'Mar ([I], p.15) argued that little understanding of how vision is done is gained by invoking the grandmother
cell hypothesis if it is based only on neurophysiological data. Our approach complements the neurophysiological
hypothesis by providing one possible computational account of the hierarchical structure of object representations,
from feature detectors, through view-specific encoding, to grandmother cells.
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Mental rotation

The monotonic increase in the recognition latency with misorientation of the object relative
to a canonical view (as defined independently, e.g. through subjective judgement) prompts the
interpretation of the recognition process in terms of a mechanism related to mental rotation
[34]. Specifically, it seems that the recognition process may be decomposed into two stages,
normalization and comparison [5]. In the first stage, the system carries out the transformation
necessary to normalize the appearance of the input object. In the second stage, a comparison is
made between the normalized input and a model stored in memory. Close agreement between
the two then leads to the recognition of the input as an instance of the model (the two stages
are presumably executed in parallel for a number of candidate object models). Practice with
specific objects appears to cause the two-stage strategy to be abandoned in favor of a more
memory-intensive, less time-consuming direct comparison strategy. Under direct comparison,
many views of the objects are stored and recognition proceeds in essentially constant time,
provided that the presented views are sufficiently close to one of the stored views [34, 35].

Invariant features and integration

Another possible way around the need for time-consuming mental rotation in recognition is
through the use of viewpoint-invariant features. When the object shapes include potentially
informative viewpoint-invariant features, and when the experimental setup encourages the use
of such features, they apparently lead to the disappearance of sequential effects in recognition,
even for objects that normally do exhibit such effects [36]. The human visual system also
appears to be able to put to use in recognition cues other than shape, such as color and texture,
when these are available.' 0

4.2.2 GRBF and the psychology of recognition

Although the GRBF-based recognition system can hardly be considered a complete model of
human object recognition, some of its functional characteristics agree with the features of human
performance outlined above. In particular, recognition by the recovery of a fixed standard
view of the input object may be considered aralogous to the phenomenon of object constancy.
Furthermore, as an interpolation scheme, a GRZ3F module necessarily performs better on some
of the views of the object it has been trained upon (specifically, on the views corresponding to
the centers of the basis functions) than on other, random views. This characteristic resembles
the phenomenon of canonical views. Finally, as we have already mentioned above, a GRBF-
based recognizer can accept inputs from diverse sources of visual information (as well as from
non-visual sensors).

At least two of the features inherent in the present formulation of the interpolation-based
approach to recognition mar its plausibility as a functional model of human object recognition.
The first of these, the reliance on a supervised learning procedure, can in principle be dispensed
with by modifying the scheme to incorporate adaptive data-driven clustering, and to associate a
constant output vector with all the inputs that fall within the same cluster (rather than relying
on an externally supplied input-output pairs as it is done at present). The second shortcoming of
the present formulation lies in its disregard of the dynamics of object recognition. In particular,

1°In addition, cross-modality cues (auditory and haptic) are readily incorporated.
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the GRBF approach ignores the time course of the recognition process and its modification with
practice (as manifested in the shift from time-intensive to memory-intensive strategy apparent
in human performance).

4.2.3 Comparison with CLF

A model of object recognition that attempts to address these issues and appears to be related
to GRBF is the CLF (conjunction of localized features) of [37, 19]. In this model, formulated
as a two-layer network, units in the second (representation) layer come to represent patterns in
the first (input) layer through an unsupervised Hebbian reinforcement mechanism. Sequences
of second-layer units correspond to multiple-view representations of input objects, with the
association between successive views predicated on the existence of apparent motion between
the views during training (that is, the two successive views must resemble each other and
must be sufficiently close in time to be able to elicit the perception of apparent motion in a
human observer). Thus, on one hand, the CLF model represents an object by a disjunction of
conjunctions of the presence of features in specific (fuzzy or blurred) locations in the image,
just as the GRBF module does. On the other hand, the CLF model is able to replicate the
dynamic behavior of the human object recognition system, mentioned above, through non-
uniform activation of sequences of representation units and their modification with practice.

4.2.4 Two predictions

Assuming that a scheme resembling GRBF or other kind of prototype interpolation is the basis
of the human ability to recognize objects allows one to formulate strong predictions regarding
human performance in specific experiments. The most important of these predictions states
that the ability of the visual system to generalize recognition to a novel view of an object should
drop off significantly with the misorientation of the novel view relative to the familiar views of
that object. Furthermore, the drop-off rate should be independent of the relative configuration

Che familiar views in the viewpoint coordinate space.
Other contemporary models of object recognition generate different predictions when brought

to bear on these points. Ullman's alignment model [5] (as well as the related models of Lowe
[6] and Thompson & Mundy [4], Biederman's RBC theory [38] and most computer vision works
on recognition) predicts no first-order dependency of recognition rate on misorientation. The
linear scheme of Ullman and Basri [22] also predicts no such dependency, except when its three
training views are coplanar in the viewpoint coordinate space. The predictions of the CLF
model of Edelman [37, 19], on the other hand, agree with these of the GRBF scheme (which is
not surprising, since the two appear to be related).

Experimental findings seem to support the limited generalization view of recognition shared
by the GRBF and the CLF models. Descriptions of some relevant experiments can be found
in [39, 40, 41, 34, 42, 35, 43]. Work that should further elucidate this point is currently under
way in our laboratory.

5 Summary

We have described experiments with a versatile pictorial prototype-based learning scheme for
3D object recognition. The GRBF scheme seems to be amenable to realization in biophysical
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hardware because the only kind of computation it involves can be effectively carried out by
combining receptive fields. Furthermore, the scheme is computationally imposing because it
brings together the old notion of a "grandmother" cell and the rigorous approximation methods
of regularization and splines.
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6 Appendix: The result of Ullman and Basri for orthographic
projection

Ullman and Ba.sri [29, 22] have recently discovered the striking fact that under orthographic
projection a view of a 3D object is the linear combination of a small number of views of the
same object. In this appendix, we reformulate their results in the more abstract setting of linear
algebra. This framework makes the result very transparent: the constraint of linear transfor-
mation (the same linear transformation for each vertex) implies immediately that the set of
views of an object spans a 9-dimensional space, independently of the number of vertices; or-
thographic projection preserves linearity while reducing the number of dimensions to 6. Simple
considerations show that the linear spaces of the x and y coordinates are nonintersecting and
that each has dimension 3. This appendix describes the previous statements in more details.

6.1 Any view of a 3D object is a linear combination of a small, fixed numer
of views

This section provides the main result (in the second subsection).

6.1.1 Any 3D-view of an object is a linear combination of 9 views

Let us define a 3D-view of a 3D object as:

Zl
Y1

Z1

X2

Y12

Xobj Z2

1/n

Zn

with X E IZ n, which is a vector space in the usual way.
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Consider the set of uniform (our definition) linear operators on X bj, defined by the 3n x 3n
matrices L3 n:

L0 0Lz 3n 0 L 0

0 0

where

(hi 112 113)

= 121 122 123)

131 132 133

is an affine transformation on 1Z3 . Translation in 3D space is taken care of separately (see
later).

The space of the L3 " operators is a vector space which is isomorphic to the vector space of
the L matrices. It therefore has a basis of 9 elements independently of n. We can express

9

L" - aLn
i=1

where ai are the l,,j and Ln is the usual basis for L3 " , and thus

9 9
T3b - E aL"X' aix

1=1 i1

where X~bj are 9 independent 3D views of the specific object, needed to span the 9 elements of
L, 3 for each coordinate. Thus:

Theorem 6.1 The vector space V3D generated by uniform linear transformations on a 3D view
of a specific object is a 9-dimensional subspace of R)3" (3 dimensions each for X, y and z).

Thus any object obi generates a corresponding low dimensional subspace Vi'? of all possible
views of all objects (7Z3n). Of course, V3D 7 3n , iff n > 3. In other words, to have object

specificity, i.e., for this result to be nontrivial, it is necessary that n > 3. Notice that in a sense
7 3n = V06i + V, 2 + ....

6.1.2 Any 2D-view of a 3D object is a linear combination of 6 2D-views

Now consider the orthographic projection P : IZ3" _ 7Z2n, defined by PX = x, that is
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Y i Y
Z1 Z

Y212

3z2

yn

Zn

with P being a linear operator with the matrix representation

1 0 0)......0
0 1 0 0.....0

P 0 0 0 1 0 0

0 0 01
0 0 . 01 0

We define x as the 2D-view of a 3D object. The result below follows immediately (6 views span
the elements of L in the first 2 rows) and is the main result of Ullman and Basri (in a different
formulation):

Theorem 6.2 The vector space Vobi given by V,,b = PVg? is a 6-dimensional subspace of 1 2,

(the space of all 2D orthographic views of all 3D objects), i.e. Xob = ELz aixo,.

The inclusion of rigid translations is equivalent to the addition of a two-dimensional linear
subspace (the same for all objects), spanned by the vectors

0
1

tX~bj =0

and

0)
1
0

ty bj = 1

28



6.2 The z and the y coordinates of a view are each a separate linear combi-
nation of 3 views

In the previous section we have seen that any 2D-view of a 3D object under orthographic pro-
jection is the linear combination of 6 2D-views. This section reformulates another observation of
Ullman and Basri: the z coordinates of a 2D-view are a linear combination of the z coordinates
of 3 2D-views and the y coordinates are an independent linear combination of the y coordinates
of 3 2D-views.

Let us consider a similarity transformation of z:

Z,

Z3

Zn

Yl

TX= Y2

Z1

Zn

Under this similarity transformation, L3n becomes a 3 x 3 matrix of 9 (that is 3 x 3) blocks.
Each block is a multiple of I E Zn,' (notice the "isomorphism" to L).

[Ill 112 113

TT LT = 121 122 123
\131 132 133

where

0 Ill 0I = 0 0 111

and so on for the other blocks.
The same argument of the previous section makes it clear that if we define
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Xn)Li77=

then the following holds:

3

=1

3

i=1

Thus we have proved:

Theorem 6.3 The subspace spanned by the vectors 4 - the z components of x b 
- which is an

n-dimensional subspace of Vo2D (which is 2n-dimensional), is spanned by three views of the x
coordinates of the object undergoing uniform transformations, i.e., each f can be represented as
the linear combination of 3 independent fi. The same is true for the 77: each 77 is an independent
linear combination of 3 ii. Again, n > 3 -in order for this to be non-trivial (since 7 - T n for
n < 3).

Remark: The bases of f and the basis of 7 depend on the specific object.

6.3 V and V have the same basis, i.e., 1.5 snapshots suffice

We know from the previous sections that V2N = VN ED V N , where dimV = dimV = 3. A
stronger property holds

Theorem 6.4 Vz = Vy

Proof Assume that V and Vy are not identical: then there is a vector y which is in Vy and
not in V (or vice versa). Then one can take the 3D view that originated y (through orthogonal
projection) and apply to it a legal transformation consisting of a rigid rotation of 90 degrees in
the image plane (such a transformation is in L and therefore is legal). The x view of that 3D
vector is the y, contradicting the assumption. It follows that V = Ed.

Remarks.

1. The same argument shows that V = Vy = V,.

2. The same basis of three vectors spans V, and V (separately).
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3. The property that the x views and the y views of the same 3D object from the same
snapshot are independent is generic, since if they were dependent, a very slightly different
object, differing only in the y coordinate of one vertex would have independent views
(observation due to Bruno Caprile).

4. In general, 1.5 snapshots are sufficient.

6.4 The case of rigid transformations, i.e., rotations in 3D

The previous two section have considered the case of uniform linear transformations in 3D of
a 3D object. The space of such transformations is a vector space that contains as a nonlinear
subspace the space of the rigid rotations in 3D (which is easily seen not to be a vector space).
Can we characterize what the restriction to rigid rotations means? This section addresses this
question.

Consider the restriction L = R with RTR = I. Then:

111121 + 112122 + 113123 = 0

The equations define a nonlinear subspace of the space = {1n,112, 413} isomorphic to 7Vs ,
and of 7 = 1121,122,l23), also isomorphic to 1Z3. Of course, is a linear subspace of 7Z', the
space of all views of the x coordinates of all objects. Rotations are the intersection of with
the conics defined by the previous equations.

The 2D views of one object defined by uniform affine transformations span {111, 112,113} =

7Z3. The 2D views of one object defined by rigid transformations, i.e., rotations, span a nonlinear
subspace of 7Z3, namely, the surface of the unit sphere in 7?3. All points on the unit sphere are
allowed for { I, 112,113} (thus we "use up" two parameters). The triplet (121122123) is determined
as one parameter family. Geometrically, once the vector 111, 112,113 is fixed on the unit sphere,
an orthogonal circle is determined on which the vector (121,122, 123) must lie.

6.5 Summary of the appendix

The main point of this appendix can be summarized as a characterization of the algebraic
structure (as a linear vector space) of the views of one object under orthographic projection.

Consider the space 7Z3NV of 3D views of all objects. Consider the subspace V3 generated
by one view of a specific object and by the action on it of the group of uniform transformations
L, that transform in the same way each vertex. L is an algebra of order 9, and therefore a
linear vector space isomorphic to 7Z3 X 7Z3. Thus, V3N is a linear vector space isomorphic to
7,9. The projection operator (orthographic projection) that deletes the z components from
the 3D views, maps Vo$ T into a linear vector subspace Vt', isomorphic to 7V. V' consists
of vector with z and y components and can be written as the direct sum Vb= VZN@VYN,
where VN and VN are non-intersecting linear subspaces, each isomorphic to 7 3. In addition,

we have proved that V1 N = VN, which implies that 1.5 snapshots are sufficient for "learning"
an object (in general). If 3D translations are included, a linear subspace, isomorphic to V2,
must be added to the linear space spanned by the 2D views of one object. The above is a short
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alternative proof of the main results of Ullman and Basri [29] (with the exception of the 1.5
views result, see [22]).
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