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ABSTRACT

The research program during the contract period
consisted of the analysis of the Ubitron/FEL amplifier in
three-dimensions. The principai configuration of interest
consisted of the propagation of an energetic electron beam
through a loss-free rectangular waveguide in the presence of
a linearly polarized wiggler field with parabolically
tapered pole pieces. The purpose of the tapered pole faces
is to provide a mechanism for focussing the electron beam
in the plane of the bulk wiggler induced oscillation. A
nonlinear theory and simulation code has been developed to
study this configuration which can treat a multiple mode
interaction, harmonic growth, efficiency enhancement by
means of a tapered wiggler, the effect of beam thermal
spread on the interaction, the injection of the beam into
the wiggler, and detailed facets of the particle dynamics
such as Betatron oscillations and velocity shear.
Comparisons of the experiment at the Lawrence ULivermore
National Laboratory are excellent. some of the principal
results of the simulation relate to the harmonic and tapered
wiggler interactions. In the case of the harmonic
interaction, the nonlinear simulation shows both high gain
and good efficiency at the harmonics, although the

interaction is increasingly sensitive to the effects of




velocity spread at the higher harmonics. The tapered
wiggler interaction shows high efficiencies are possible
and that one effect of the tapered wiggler is to reduce the
sensitivity to beam velocity spread. An additional area of
study 1is the enhancement of the efficiency of a
configuration based upon an electromagnetic wave wiggler by
means of the tapering of an external axial guide field. The
purpose of the electromagnetic wave wiggler is to achieve a
higher operating frequency for a given beam energy (relative
to a magnetostatic wiggler), however, electromagnetic wave
wigglers are inherently more difficult to control (i.e.
taper) for efficiency enhancement purposes. Thus, the use
of a tapered axial guide field for this reason may have

important applications.




1. GENERAL DISCUSSION

The fundamental interaction mechanism of the Ubitron is
the same as that of the Free-Electron Laser (FEL), the
distinction between the two 1is that the term Ubitron
specifically refers to a microwave tube while the term FEL
is often used to describe devices operating over the entire
spectrum. The common Ubitron/FEL interaction mechanism
derives from the propagation of an energetic (but not
necessary relativistic) electron beam through a rippled
magnetic field (called a "wiggler"™ or "undulator®). The
effect of the wiggler field is to induce an oscillation in
the transverse velocity which is to induce an oscillation in
the transverse velocity which gives rise to spontaneous or
incoherent radiation. Coherent radiation arises from
electron bunching in tue ponderomotive potential formed by
the beating of the radiation and wiggler fields. The
wavelength of the output radiation depends on both the
period of the wiggler field and the energy of the electron
beam, and experiments have proven the mechanism to operate
over wavelengths ranging from the microwave through the
visible spectra. within this context, therefore, the
Ubitron represents a specific application of the concept to

the microwave regime and we shall use the term to describe




FEL's which employ electron beams with energies less than

about 500 keV.

The primary configuration studied during the contract
period consisted of the propagation of an electron beam
through a loss-free rectangular waveguide in the presence of
a linearly polarized wiggler (field. The principal
motivation for this work derives from the interest in Code
6840 at the Naval Research Laboratory in Ubitrons based upon
extremely short period planar wigglers and/or higher
harmonic Ubitrons. The advantage to be derived from such
configurations is the pcssiblity of generating high
frequency radiation using low energy electron beams. The
detailed wiggler field model we employ describes a planar
wiggler with parabolically tapered pole faces. This type of
wiggler field provides for enhanced focussing in the
direction of the bulk--wiggler -induced motion, and was first
employed experimentally by Phillips!. An analytic model for
this type of field has been given by Scharlemann?, who found
that the field can be represented in the form
’kwx' kay
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where By denotes the amplitude and ky (= 27/\y, where Ay is

the period) represents the wavenumber.

The analytical technique employed 1is based upon
experience gained 1in the extensive prior treatment of
Ubitron/FEL. configurations based upon helical wiggler
fields® 5. Since we are interested in an amplifier model
only single-frequency wave propagation is considered, which
permits Maxwell's equations to be averaged over a wave
period. As a result, the fast time scale phenomena are
eliminated from the problem. In addition, only a "beamlet”
of electrons which enter the interaction region within one
wave period needs to be included in the analysis. These two
benefits result in major improvements in computational
efficiency in comparison with full-scale particle—-in-cell
simulation codes. The boundary conditions imposed by the
waveguide wall may be treated by the expansion of the
radiation field in terms of the vacuum waveguide modes. 1In
previous work with helical wiggler configurations a
cylindrical waveguide was assumed; however, in treating the
planar wiggler, we have assumed the boundary conditions to

be determined by a rectangular waveguide.




While our primary interest is in the use of short period
wigglers and higher harmonic interactions which permit high
frequency operation with moderate energy electron beams, the
only operational experiment against which our nonlinear
theory can be compared is the ELF experiment at Lawrence
Livermore National Laboratory®s7. The ELF experiment makes
use of a 3.5 MeV electron beam and a planar wiggler field
with a 9.8 cm period and an amplitude of as much as 4 kG to
obtain operation at a frequency of 35 GHz. As a
consequence, the initial development and testing of the

simulation code were performed for this experiment.

The initial formulation described a single-mode
analysis, and gave results in reasonable agreement with the
experiment. The analytical treatment and numerical results
have been published in Physical Review A (see Appendix I).
Resonant interaction was found with the TEy,, TE;,, TM;,
modes. The saturated powers found for the TE modes were of
the order of 200 MW which is comparable to that observed
experimentally. The coupling to the TM mode is weaker than
for either of the TE modes, and both the gain and saturated
power are substantially lower than for the TEg, and TE;,,

modes.
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The principal difference between the nonlinear analysis
developed under the present contract and other treatments,
such as described in the FRED code in use at the Lawrence
Livermore National Laboratory’, is in the treatment of the
particle dynamics. The particle orbits are treated by means
of a reduced set of orbit equations obtained by an average
of the Lorentz force equations over a wiggler period in FRED
and virtually every other nonlinear treatment of the
Free-Electron Laser. The average of the orbit equations is
not performed in the present analysis, however, and the full
set of Lorentz force equations (i.e., in three dimensions)
is integrated for each particle in the simulation. As a
result, the particle dynamics are treated more accurately in
the present analysis than in simulation codes such as TRED.
This is important in the description of the planar wiggler
interaction because the magnitude of the bulk wiggler
velocity is not constant for this configuration, and an
oscillation occurs in the axial velocity with a period of
half the wiggler wavelength. This rapid oscillation is lost
when the orbit equations are averaged over a wiggler period,
but manifests itself in an oscillation in both the wave
power and phase at a wavelength of \y/2. While this does
not affect the bulk growth of the wave, it does introduce an
uncertainty in the measurement of the axial evolution of the

wave power and phase which may be as high as 10-20%.




One advantage of the more accurate treatment of the
particle dynamics employed in the present analysis is that
the injection of the beam into the wiggler may be modelled.
The injection process is crucial to the efficient operation
of the Free-Electron Laser because poor matching of the beam
into the wiggler can result in a large axial energy spread
which degrades the interaction efficiency. In order to
minimize this problem most experimental configurations
employ an adiabatic entry taper on the wiggler amplitude
which, 1in most cases, exceeds four wiggler periods in
length. Simulation of the injection process shows that the
adiabatic injection process is effective for entry taper
regions longer than approximately 4-5 wiggler periods.
Entry taper regions shorter than this are found to result in

substantial declines in the operating efficiency.

A second advantage that derives from the improved
treatment of the particle dynamics is that the analysis is
applicable to the study of harmonic radiation. The harmonic
interaction holds promise for the production of high
frequency radiation using electron beams of moderate energy.
This is an important future application of the analysis.
However, in experiments designed to operate in the visible
spectrum, the harmonic radiation would occur in the

ultraviolet which can result in fatal damage to the optical




system As a result, the efficiencies and growth rates of
the harmonic interaction can have important implications for
a wide variety of Free-Electron Laser applications. The
nonlinear simulation indicates that the harmonic interaction
in a planar wiggler can be significant with growth rates
comparable to that found at the fundamental. The saturation
efficiency 1is found to decrease most sharply between the
fundamental and the first harmonic, but shows a weak
variation with harmonic number thereafter. Thus, the total
power carried by the harmonics can be a significant fraction
of that found at the fundamental. This is a particularly
encouraging result from the standpoint of the design of a
higher harmonic device. However, the simulation also shows
that the harmonics are substantially more sensitive to the
effect of an axial energy spread than the fundamental, and
more precise control of the electron beam will be required
to perform a harmonic experiment. These results have been

published in Physical Review A (see Appendix II).

Another important configuration employed in the
Free-Electron Laser interaction mechanism is the enhancement
of the saturation efficiency by means of a tapered wiggler.
The physical basis for the efficiency enhancement can be
explained by first noting that wave -particle resonance in

the Free-Electron laser occurs when w =~ (k + ky) vz, where




vz denotes the axial electron velocity, ky is the wiggler
wavenumber, and (w, k) denote the frequency and wavenumber
of the radiation. As the beam gives up energy to the waves,
the axial electron velocity decreases and the particles drop
out of resonance with the wave. The purpose of the wiggler
tapering is to accelerate the beam in the axial directon so
as to maintain the resonance over an extended interaction
length. This can be accomplished by means of a decrease in
the wiggler amplitude which affects the partition of energy
between motion in the perpendicular and parallel directions
by decreasing the perpendicular velocity of the bulk wiggler
motion while increasing the axial velocity. The tapered
wiggler interaction mechanism has been addressed in the
nonlinear analysis (see Appendix I), with particular
emphasis placed on the effects of an axial energy spread on
the maximum achievable saturation efficiency. The principal
result is that the tapered wiggler interaction is
significantly less sensitive to the effect of the energy
spread than is the case for a uniform wiggler. This is
encouraging from the standpoint of the design of a tapered
wiggler harmonic experiment, since the higher sensitivity to
beam energy spread encountered for the harmonic interaction
may be compensated for by the tapered wiggler. This will be

an important area of future study.
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Recognizing that a single-mode representation is not
appropriate for an overmoded configuration in which the beam
is resonant with more than one mode, we undertook to include
multiple modes in the simulation. The procedure for the
inclusion of multiple modes within the present formulation
involves (1) the integration of particle trajectories in the
presence of the aggregate field, and (2) the computation of
the coupling of each mode to the total current to obtain the
growth of the wave mode. It should be remarked that
although multiple modes can be treated within the
framework of the analysis, all the modes are at the same
frequency in order to perform the average of the field
equations over a wave period. The results of the analysis
have been submitted for publication in the Physical Review A
(Appendix III). The analysis has also been applied to the
case of the experiment at LLNL7 with excellent results. The
experiment made use of a 3.5 MeV/850 A electron beam with
an initial radius of 1 cm propagating through a waveguide of
3.8 cm x 2.9 cm cross section. The wiggler field was
characterized by an amplitude of 3.72 kG and a period of 9.8
cm. The input radiation source was a magnetron producing 50
kW at a frequency of 34.6 GHz predominantly in the TE,, mode
of the waveguide. The best estimates available? indicate
that, perhaps, 1% of the total power is carried by the TE,,

and TM;, modes. The observed output power for a uniform
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wiggler (i.e. constant amplitude) was 180 MW, and rose to
1GW (for an efficiency of 34%) when the amplitude was
decreased by 55% over a distance of 1.1 m. The simulation
code for these parameters yield an output power of 185 MW
for the uniform wiggler case, and 1 GW for the tapered
wiggler interaction. It is important to remark, however,
that the theory is not in complete correspondence with the
experiment. The most important difference lies in the use
of tapered pole pieces to provide for beam focussing in the
plane of the bulk wiggler motion in the simulation, while
the experiment employed a quadrupole magnetic field for this
purpose. For this reason, the excellent agreement between
the theory and the experiment should not be overstated.
However, it does indicate that the essential physics of the
interaction is included in the theory, and the simulation
will now be turned to the study of harmonic interactions in

earnest.

Contributed papers on this work have been presented at
the 9th Free Electron Laser Conference in Williamsburg,
virginia (9-13 September, 1987), and at the American
Physical Society/Division of Plasma Physics meeting in San
Diego, CA (2 -6 November, 1987). In addition, recognition of
the importance of these contributions to the understanding

of the physics of the Ubitron/Free Electron Laser has

12




resulted in an invited paper presented at the 9th

International Free-Electron Laser Conference.

An additional area of study is the configuration based
upon electromagnetic wave wigglers. The advantage of this
type of configuration is that a higher frequency interaction
may be obtained for a given electron beam energy relative to
a magnetostatic wiggler. However, one disadvantage of the
electromagnetic wave wiggler is that it is more difficult to
control (than magnetostatic wigglers) for the purpose of
efficiency enhancement through a tapered amplitude or
period. In order to circumvent this problem, we have
prcposed the use of an auxiliary axial guide field. The
axial jguide field is useful from the standpoint of confining
(or focussing) the beam. However, the nonlinear interaction
efficiency may be enhanced by tapering the guide field as
easily as tapering the wiggler field%. As a consequence, we
have analyzed the effect of a tapered axial guide field on
the electromagnetic wave wiggler configuration, and the
results have been published in the IEEE Journal of Quantum
Electronics (see Appendix IV). The results indicate that
the tapered axial guide field may have important
applications to the enhancement of the efficiency in

electromagnetic wave wiggler configurations.
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Three-dimensional nonlinear analysis of free-electron-laser amplifiers with planar wigglers
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The nonlinear evolution of the free-electron-laser {FEL) amplifier is investigated numerically for a
configuration consisting of a planar wiggler with parabolically tapered pole pieces. A set of coupled
nonlinear differential equations is derived in three dimensions which governs the self-consistent evolu-
tion of the TE and TM modes in a loss-free rectangular waveguide as well as the trajectories of an
ensemble of electrons. The initial conditions are chosen to model the injection of a cylindrically sym-
metric electron beam into the wiggler by means of a region with an adiabatically tapered wiggler am-
plitude, and the effect of an initial beam momentum spread is included in the formulation. Both
self-field and space-charge effects have been neglected, and the analysis is valid for the high-gain
Compton regime. In addition, the phase stability of the FEL amplifier against fluctuations in the
beam voltage, the enhancement of the efficiency by means of a tapered wiggler amplitude, and har-
monic generation are also studied. Numerical simulations are conducted to model a 35-GHz
amplifier with an electron beam energy of 3.5 MeV, and good agreement is found between the simu-
lation and an experiment conducted by Orzechowski and co-workers. Significantly, the results indi-
cate that a tapered wiggler configuration is somewhat less sensitive to the beam thermal spread than a

uniform wiggler system.

[. INTRODUCTION
The free-electron laser (FEL) and the ubitron! have
been successfully demonstrated as radiation sources over a
broad frequency range from the microwave' ~'* through
the optical'*~*! spectra. The distinction between the ubi-
tron and the FEL is not well defined in the literature;
however, we find it convenient to differentiate between the
FEL and the ubitron primarily on the basis of the
electron-beam energy. As such, we refer to those devices
as ubitrons when the beam energy is below 500 keV. Al-
though this definition is somewhat arbitrary, operation at
these energies generally involves frequencies close to the
waveguide cutoff of the device, and the ubitron may be
thought of as a weakly relativistic FEL operated as a mi-
crowave tube. In either case, however, the physical-
interaction mechanism is ti.e same, and relies on a period-
ically rippled magnetic field (referred to as the wiggler
field) to induce an oscillatory motion in the electron
beam. The interaction between the transverse component
of the oscillatory motion and the radiation field results in
an axial bunching of the electron beam which is the
source of the instability. This axial-bunching mechanism
can be thought of as the result of the ponderomotive po-
tential formed by the beating of the wiggler and radiation
fields. The precise form for the wiggler field can take a
variety of configurations, and ubitrons and FEL's have

36

been constructed using both helically? =% 0= 121815 5n4

linearly":*13-18=2! nolarized wiggler fields. In addition, a
wigiler configuration has been proposed which makes use
of a rotating quadrupole design.??

The motivation for the present work is to develop a
nonlinear theory and simulation code for a ubitron or
FEL amplifier based upon a linearly polarized wiggler
field. The advantage of a planar wiggler design over that
of a helical configuration is ease of construction and
modification. Linearly polarized wigglers are readily con-
structed from permanent magnet arrays which can be
easily adjusted to a tapered wiggler configuration. In this
paper we derive a fully three-dimensional nonlinear
analysis of the FEL and the ubitron for the planar wiggler
configuration. The analysis follows that described previ-
ously for a helical wiggler configuration,?*~?” and involves
the derivation of a set of coupled nonlinear differential
equations which self-consistently describe the evolution of
both an ensemble of electrons and the electromagnetic
fields in a rectangular waveguide. Space-charge fields are
neglected in the analysis; therefore, the treatment is ap-
plicable to the high-gain Compton (or strong-pump) re-
gime. The nonlinear current which mediates the interac-
tion is computed from the microscopic behavior of the
¢lectrons by means of an average of the electron phases
relative to the ponderomotive wave formed by the beating
of the wiggler and radiation fields. The detailed wiggler

2182 ©1987 The American Physical Society
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model we employ includes the effect of parabolically ta-
percd pole pieces in order to provide for electron focusing
in the plane of the bulk wiggler mation, Further, the in-
jection of the electron beam into the wiggler field is
modeled by allowing the wiggler amplitude 1o inersase
adiabatically from zero to a constant level. The procedure
ased also permits the inclusion of an arbitrary taper of the
wiggler amplitude fer the purpose of the enhancement of
the interaction efficiency, The overlap berween the elec-
tron beam and the transverse mode structure of the TE
and TM modes is included in a seif-consistent manner, s0
that no arbitrary "“filling factor” need be included in the
analysis. Since the problem of interest is that of a FEL or
ubitron amplifier, only single-frequency propagation is
considered. This permits an average over a wave period t0
be performed which eliminates the fast-time-scale phe-
nomena from the formulation, and tesults in a great in-
crease in computational efficiency over a fuli-scale
particle-in-cell simulation,
In organization of this paper is as follows. The general
equations are derived in Sec. II. The numerical solution
to the dynamical equations is given in Sec. IV, in which a
particuiar example is treated in depth which mrreSponds
10 a recent experiment by Orzechowski and co-workers."”
Three distinet waveguide modes are found to grow in
| simulation, and we consider each of these modes in detail
including the bandwidths and rsiative growth rates and
i saturation efficiencies. Also considered are the effects of

} { [ { k ) [ 1
i l » 2 k Y I m,
x)=B, {cos(k 2z} sinh -~ = /sinh |—= (8

L j Vi TVE

r ' [

k., x I, | By) |
I ~Vv2 cosh !—\75- J sinh r-'—”:z J,sm(k,_,.z)’é, J[ )

where B, denotes the wiggler amplitude, and

\=2mw/r, ) is the wiggler wave number. We model the
injection of the electron beam into the wiggier by allowing
the wiggler amplitude to increase adiabatically from zero
10 a constant level over N, wiggler periods. In addition,
since we intend to study efficiency echancement by means
of a tapered wiggler, the wiggier amplitude will be tapered
starting at some point z;, downstream from the entry re-
gion in a linear fashion. To this end, we choose

B, sin‘k,z/4N,), 0<z<N,h,

B izi= B, N,A <2<z {2)
:‘Bw“*'ewkw“z -2} 2>2
where
e z-Lins, 3)

k, dz

descnbes the slope of the taper. Since the fringing fields
associated with the tapered wiggler amplitude are neglect-
ed, this representation is strictly valid only if the slope of
the taper is small. Within the entry region this implies
that .V, must be large, while for 2 > 2o we must require
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11} variations in the length of the entry region on the satu-
ration efficiency, (2) an initial momentumn spread in the
slectron beam {1.e., prior to the injection into the wiggler:,
{3) the scaling of the efficiency with beam current, and 4
the enhancement of the interaction efficiency through a
linearly tapered wiggler amplitude. These issues are treat-
ed in an abstract manner in $ec. 111 because the snalysis
does no: correspond to ail aspects of the experimental
configuration, However, a comparison between the simu-
lation and the experiment is made in Sec. IV in which we
give a summary and discussion,

11, GENERAL FORMULATION

The configuration we consider is that of a refativisiic
electron beam propagating through a loss-free rectangu-
lar waveguide in the presence of a linearly polarized
wiggler magneric field. The wiggler-field model that we
employ is that encountered when the individual magnets
in the wiggler have parabolically tapered pole faces,
which provides for electron-beam focusing in the plane
of the pnnclpal wiggler motion. This teuhnique was first
empioyad experimentally by Phillips.' A detailed
analysis of the megnetic field produced by a wiggler with
parabolicaily tapered pole pieces was undertaken by
Scharlemann,*? whe showed that the wiggler field is of
ihe form

that 1€, <«<1.

The boundary conditions at the wa\eguxdc wall may be
satisfied by expanding the vector potential in terms of the
onhogonal basis functions of the vacuum wavegulde
Thus, we write the vector potential of the radiaticn in the
form

= 2’ 5 Ayiz)eis (x,)) cosa @
=0
for the TE modes, and
Ll .
BAix= 3 84,2 ,lei,f‘(x.y)cosa
=1
Kin 1I#X i
+ == $in
k , @
X sin [% sinat, ]
l |

for the TM modes, where for frequency o and wave num-
ber k(2)

a= fo'dz'k(z')—mr . ‘6)
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In addition, ¥’ indicates that { and n are not both zero,
and

eVix 1= cos lmX nY |
W YI= b a b |
Ir . |IrX nrY |.
———sin{—— {cos | — |¢, , (7
kya
Dix,p)= I cos [ 17X | gin [ 27Y |2
R Y= e a b |
+ 27 §in InX cos nm¥ (] (8)
k‘nb a 4

are the polarization vectors. In this representation the
waveguide is assumed to be centered at the origin and
bounded by —a/2<x<a/2 and —b/2<y<b/2. Asa
consequence, X =x+a /2, Y=y+b/2, and
2o , )12
=+
b 2

k]nE (9}

denotes the cutoff wave vector. It is implicitly assumed
I

8J(x,t)=—en, fdpovzoFo(p)ffdxodyoal(xo.yo) f

that both 8A4,,(z) and k(z) vary slowly over a wave
period.
The microscopic source current can be written as the
following sum over individual particle trajectories:
NT
5](!,1)= —e 2 vi(Z;pioi'xlO’yloltiO)

i=1

X 8[X)—X1;(Z;PioyXionYior£10})

5[‘ —T,(Z ;pio,xiO'YiOvtIO)]
] Uzi(z ;piOYXIO’yIODtiO) l

, (10)

where L is the length of the interaction region, Ny is the
total number of electrons, n, is the average electron densi-
ty, v{z;piosXiosViortio) is the velocity of the ith electron at
position z which entered the interaction region li.e.,
crossed the z =0 plane) at time t,, and transverse position
{x,0,¥:0) With momentum p,,, and

dz’

(2 pigXiosYio fio) Stio+ . (n
l ' ! 0 v:l(z 1PiosXios Yios rO)

This discrete sum over particles can be replaced by an in-
tegration over the initial conditions, and we write

dtoa‘.to Wz ;pos X0, ¥0:t0)

5[: —T(.! ;Po»xo»)’o-to )]

X 8[x, —X,(2;po,.X0.Yort0)] , (12)

where v, is the initial axial velocity, 4; =ab is the area of
the waveguide, T=L /{v,o), and o (xq,p9), 0 (t5), and
F, (po) describe the distributions of the initial conditions
subject to the normalizations (4, is the cross sectional
area of the beam)

fdeOdy()U"XQ.yg)= Ah ' (13)
41
[77 dtgo t1g)=T, (14)
[
and i
J dpoFolpoi=1. (15)

Substitution of the microscopic fields and the source
current into Maxwell’s equations yields the equations
which govern the evolution of the radiation amplitude and
wave number. The procedure is formally identical to that
described previously for thc helical wiggler, cylindrical
waveguide conﬁgurauon. and involves a modal orthogo-
nalization in the transverse coordinates. In addition, a
quasistatic assumption is made in the sense that particles
which enter the interaction region at times t, separated by
integral multiples of a wave period are assumed to execute
identical trajectories. As a result, viz;pg.x0.Y0.l0
+2aN /w)=viz;po,Xg.¥a:fo) for the integer N, and a
time average over a wave period can be performed which

[ DZ‘,Z §F‘0-X0vJ’oJ0) |

f

permits considzration of a single “‘beamlet” that includes
electrons which enter the interaction region within one
ponderomotive (or wave) period.”’ This greatly improves
the computational efficiency. It should be remarked that
the ponderomotive phase of each particle is followed self-
consistently in the analysis, so that while the beamlet is
initially distributed over one ponderomotive wave, the
final state may describe an electron distribution which has
become trapped within several ponderomotive buckets. In

view of this, the equations which govern the evolution of

the TE,, mode are

dZ
;jﬁalﬁ' dan
=g Fln< cosa e(,l) >‘ (16)
lv, |
and
zk'”; (k'28a,,)= —8— F,,,( ls"“’l el v> , an
I

where 8a,, =¢84,,/mc?, w} =4me’n,/m, v is the instan-
taneous velocity, and Fj,={ when cither /=0 or n=0
and unity otherwise. For the TM,, mode we obtain a

similar result,
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dz ! k .! lc" ! AR P | v, A P4 j b i
and
I k: i‘ - d i Kl: 1l N ,)l , - L fl " | ' )' '
PSPPI - S [ P R S BRI St OO 0 (1< SN RN SALL R .0\ ST I 2.0 ) DO .
2|k & dz | ik - } ba;, i 8 g \ o e v Tk MD | p |5ml‘ 5 icosa/ . 19

Observe thut there s no neatnvial TM mode soiution when aither (=0 or 7 =0.

The averaging operator (i -~ ;) is defined aver the nitial conditions of *he beam nste that the instanianeous post-
tions aid momenta cf the electrons are umplicit funchions of the Wiial conditionsi and inzludes tne effect of an .nria/
momentura spread by means of the distribution function

Fylpor= A expl = (p,o—po 7 Ap i 1Bpi~plo — P H D’ 201

where gy and Ap, descrive the iatiai bulk momentum and moinenium spread f the peam, Hix! is the Heaviside func-
uon, and the rormabzation constant is
) 20 , Yranl il JP
4= f‘ dpgexpl = {pso=pal/ap;) . . 21
i ~ .

Observe tha the distribution is moroenergeric, but conaing 2 pitzh angle spread which deseribes an axiai energy syread
M

(as weil as a trangverse eneryy spread! given approximateiy by

To1n

Ay, RY
r I ;1*2(}’3—1\-& ; . 122
Yo ' 2o

|
where yo='1—p3/m*4 % There is no fundamental difficulty i the wnclusion of an overall energy spread in the
analysis; however, the additional degree of fresdom reguires an incressed number of particles in the sinulanon. The 6
function allows us to perform one of the moraentum-space integrais analytically, and to write the averaging operator
the forin

(0 i)= A

in #2 _ , ey ) as 572
=y fc ddy, fo dp.oBioeXxpl = 05 0o /57 ] j_,:zuoo ‘) f‘a.zdxc f_bvzd}’uo-’xc,ya?( ity

{23)

where o= --wiy. is the initial ponderomative phase,  where B, is given by Egs. (1 and 2} and the radiation
6= tan“":p}.o/p,;), and Bp=tp/c It is impertant o Gelds are given by tha veetor potentials
recognize that this average includes the etiect of the over- L3
lap between the efectron beam and the transverse mode EE ==~ =8A., 3B.=Vx6Ay . 27
structure of the radiation field in = seif-consistent way, ¢ ot

The phase variation of each mode can be anaivzed vy  Fiaally. the eleciron coordinates obey (he equations
the addition of an equation to integrate the relative phase

U X = (28:
Qiz)= f:dz‘[k(z'B—kQ] , 124) tdg T *
, " . d
where kgsl.a)z/'c‘-kf,,)l ! is the wave number of the RS LT 29)
vacuum guide Since the departure of & (2} from the vacu. o
um wave number describes the effect of the wave-particle  and
interaction, $(2) represents a measure of the dielectric d ©
effect of the FEL interaction. Thus, we integrate the ad- d—w=k + Ky - i
ditional equation ‘ Y;
d ke k 25) describes the evoiution of pondereomotive phase
@ | w—w+i”m'h+k @ | (31
= W . - - N -
for both the TE und TM modes. T vy l “Ty

In order 0 complete the formulauon, the elestron-orbit
equations must also be specified. Since we describe an
amplifier model, we choose to integrate in z and write the
Lorentz force equations in the form

L. NUMERICAL ANALYSIS

The set of coupled differential equations described in
Sec. 11 is solved for an ampiifier configuration in which a

d [
u,—p= —e5E, - =vx (B, ~6B,,), (26) : L !
v 4P e ot " single mode of frequency o is injected into the system at

(Ve
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z=0. The dynamical equations [Egs. (16)-(19) and (25)]
for the fields can be reduced to a set of four first-order
ordinary differential equations for da,,
M.[=k, 'd(Inday,)/dz], k, and the relative phase ®.
Hence, the numerical resolution of the problem consists in
the simultaneous solution of 6N +4 first-order ordinary
differential equations, where Ny is the number of elec-
trons. The algorithm we employ is the fourth-order
Runge-Kutta-Gill technique. While this technique is
somewhat less stable than the fourth-order Adams-
Moulton predictor-corrector scheme, it has the advantage
of being less memory intensive. Indeed, the requirements
placed on the available size of computer memories
represents a critical practical limitation when momentum
spread is included. The averages in Egs. (16)-(19) are
performed by means of an Nth-order Gaussian quadrature
technique in each of the variables (x.yq, Y. p.0, 8-

The initial conditions on the radiation field are chosen
such that M (z =0)=0, k(z=0)=k,, and ®(z=0)=0
for an arbitrary initial power level. Observe that the
time-averaged Poynting flux Py, for the waveguide modes
is related to the field amplitude by the relation

_mic* ab
32e° wFy,

wkda?, (32)

In

for the TE,, mode, and

2
in
w |k +—

k

darf, i33)

for the TM,, mode. The initial state of the electron beam
is chosen to model the injection of a continuous, axisym-
metric electron beam with a uniform cross section; hence,
we choose o =1 for —r<¥y<mand o, =1 forry<R,.
The particular example we analyze is that of a 35-GHz
amplifier employing an electron beam with an energy of
3.5 MeV, a current of 800 A, and an initial radius of 1.0
c¢m which propagates through a waveguide characterized
by a=9.8 cm and b=2.9 cm. In order to obtain peak
growth rates in the vicinity of 35 GHz we choose a
wiggler field with an amplitude of 3.72 kG and a period of
9.8 ¢cm, with an entry taper of .W, =35. For purposes of il-
lustration, the first case we consider is that of a beam with
zero momentum spread (Ay, =0). For all cases discussed
in this work with Ay, =0 the choice of a tenth-order
Gaussian algorithm in each of the coordinates (¢, ry,6,)
was found to provide an accuracy of the order of 0.1%.
The initial electron distributions in the axial phase space
and beam cross section are shown in Fig. 1. Each dot in
the illustration of the axial phase space describes a phase
sheet composed of 100 electrons distributed throughout
the cross section of the electron beam. Each phase sheet,
therefore, represents a cross-sectional slice of the electron
beam, which is chosen initially as shown in Fig. 1(bl. Al-
though each phase sheet is initially chosen to be identical,
the subsequent evolution of the electron trajectories in the
presence of the radiation field is followed self-consistently.
It should also be remarked that the distribution shown
represents a uniform electron beam. The nonuniformity
in the positions of the electrons chosen by means of the
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Axial Phase Space (k,z = 0)
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FIG. 1. Initialization of ta) the axial phase space, and ‘b the
beam cross section. Each point in the axial phase space
represents  the  superpositton of  10Q  particles  distnibuted
throughout the cross section of the beam.

Gaussian algorithm is compensated for by a nonuniformi-
ty in the weighting of the electrons.

There are three modes which are resonant in the vi-
cinity of 35 GHz; specifically, the TE;,, TE,,, and TM,,
modes. The analysis presented in this work deals with
wave-particle interactions with single modes, and we
shall deal with each of these modes individually. The
first mode we treat is the TE,; mode which is the
lowest-order resonant mode at the frequency of interest.
The detailed evolution of the wave power as a function
of axial position is shown in Fig. 2 for the injection of a
50-kW signal at a frequency of w/ck, =11.3(34.6 GHz).
As shown in the figure, saturation occurs at k,.z ~ 115§
(1.79 m) at a power level of approximately 214 MW
which corresponds to an efficiency of 7~7.75%. Wave
amplification occurs principally within the uniform
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wiggler region 12> N, A, which is 1.30 m for this case
and yields au average gain of about 28 dB/m. Although
this value for the average gain is lower than that oo-
served in some other experiments (a gain of approxi-
mately 120 dB/m has been observed by Gold and co-
workers™, the average normalizes growth raie
[y k. ~0.08 is quiie kigh and 15 attributable to the rel
at.vely high wiggler amplirude and long wiggler period.

One fearvre of inerest shown in Fig. 2 which merts
some discussion is the oscillation in the :nstanianeous
power which aceurs with a penod of A, /2. This is not
found for the case of nelical wiggler configurations lor
which the buik transverse wiggier monon describes a helix
with & ransverse vejociiv of relatively constan: magni-
tude. In contrast, 8 iiucarly po.arized wiggier will induce

culk wiggler motion in the piane normal to that of the
v.xggler feld characterized oy an escillatery velociy. In
arder ‘o illustrate this qualitatively, we abserve thar for
the present configuraticn the bulk rransverse wiggler
wmeiion { aligned along the » axis and varies approximats-
ly as

a, .

-~ ——sinik, 2 &, . 343
Yok

“«

The scurce ierms oonfained i the dynamucal egquations

181119} are derived essentialiv from 2 calcuiaiion of
(I.8E; hance, the principal wave-particle coupling 1s
with the x component of the radiation deld. If we asstume
that 8E, ~bE, sinikz —wiy, then it is evident that

<J.3E) ~ - ‘;:%l:—-bg"(‘ COsV— CO8! 2K, 2= L
“rofty
The nteraction occurs when the ponderomotive phase is a
slowly varving  fuaction  of axizl  posmion  {ie,
oak =k i, ], and the upper bear wave which varies as
costy describes wave amplification., The l'ower beat wave
descnbes the osaillaton at half the wiggler period. Al
though the spatial average of the contribution of the lower
beat wave vamishes and this term provides no contnibution
t2 the bulk growth of the wave, the instantaneous values

TEpy Mode (a 8.8em: b=29%cm: ..«ckw-113 Pm-so kW)
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FIO. 2. Plot of the growth of the TE;, mode with axial pos-
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f the power are affected. Indeed, the 1astantaneous vana-.
uen ou the relative pnase also exhibits an oscillauon at
half the wiggler perod.

A full spectrum of the TE;, mode is snown in Fig. 3 i
which we plot the saturation e¢fficiency and distance o
saturation as a function of frequency wirhin the unstabie
band. As shown in the figure, wave amplificatior, is found
for "*equencxe* extending from w/ck, =10 {30.6 GHz:
throngh w/ck, = 14.2 (435 GHz' with a peak efficiency
of the crder of approximately 9.8%. The peak growth
rate ‘as measured by the distance to saturation) occurs for
2/ck,=12.3:37.7 GHz), which is scmewhat iigher than
the targeted 35 GHz. However, the gain bandwidth s
sufficiently broad that the growth rate has not decreased
significandy from 1hie peak value.

The variation of the reiative phase versus axial position
is 1.ustrated in Fig, 4 for w/ck, =10.4, 10.7, 11.0, 11.3,
end 11.9, As is svident from the figure, the oscillation at
one half the wiggier period i3 also manifested in the reia-
tive phase. The btulk variation ‘fe. averaged over a
wiggler neriod! shows the same gualitative pehavior as
that found for a helical wigglers® Specifically, for fre-
quencies at the jow end of the gain tand the relative phase
dscreases up 0 a point just short of the position at which
the power saturaces {incicated in the figure by an arrow,,
after whlch titz phase remains relatively constant. As the
‘reguency incraasss, the variation in the relative phase e
sreases unul @ eritical frequency is reached iw ok i1
for the particular cose under consideration: for which the
phase is found o vary hitle over the course of the interac-
tion. This cntical {requency is typically found to be abour

TEy Mode te-S 8 ¢m; b=2.9cm; P, =80 KW)
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TEy Mode (a=9.8 cm; b=2.9 cm; P;, =50 kW)
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FIG. 4. Plot of the relative phase of the TE,, mode vs axial
position for w/ck, =10.4, 10.7, 11.0, 11.3, and 11.9.

109% below the frequency of peak growth. For frequen-
cies above the critical frequency, the bulk phase increases
monotonically. It should be remarked that the gain band
under discussion corresponds to the upper frequency in-
tersection between the beam resonance line [w={(k
+k,Jv,] and the vacuum waveguide dispersion curve.
There is also a gain band associated with the lower-
frequency intersection which shows a similar variation in
the relative phase, except, that there is an inversion in the
frequency dependence.™

The question of the effect of the injection process of the
electron beam can be addressed by varying the length of
the entry taper region. The results of this analysis are
shown in Fig. § in which we plot the saturation efficiency
and the distance to saturation as functions of the length of
the entry taper region for .V, >3. We have arbitrarily
chosen the minimum length of the entry taper region to
be three wiggler periods since the fringing fields associated
with the tapered wiggler field have been neglected, and we
feel that below this value the fringing fields will be impor-
tant. The results indicate that the saturation efficiency in-
creases markedly as the length of the entry region in-
creases from 3A, to approximately 6A,., after which the
increase in the efficiency becomes more gradual. We attri-
bute this increase in the efficiency to a decrease in the
effective momentum spread induced by the injection of
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TEp; Mode (a=9.8 cm; b=2.9 cm; w/ckw=11.3)
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FIG. 5. Plot of the distance to saturation and the efficiency of
the TE,; mode as a function of the length of the entry taper re-
gion for w/ck, =11.3.

the beam into the increasing wiggler field. [t should also
be noted that the increase in the distance to saturation is
roughly linear for ¥, > 5 and corresponds to the increase
in the length of the entry region (i.e., the length of the
uniform wiggler region remains relatively constant).

The particle dynamics during the course of the TE,;
mode interaction are illustrated in Figs. 6 and 7. In the
first place, we remark that saturation proceeds by means
of the phase trapping of the beam in the ponderomotive
potential. This is shown in Fig. 6 in which we plot the
phase-space distribution of the beam at saturation. The
dashed line in the figure represents an approximate
separatrix calculated for particles at the beam center:
hence, many of the electrons which appear outside of the
separatrix may instead be on trapped particle orbits at the
edge of the beam. The cross-sectional evolution of the
beam is shown in Fig. 7. The cross-sectional projection of
the beam at the start of the uniform wiggler region tie.,
k,z=31) is shown in Fig. 7(a). The bulk motion of the
beam exhibits four essential features. The first is the pri-
mary wiggler-induced oscillatory notion which shifts the
center of the beam off axis in the x direction, and this
shift is clearly shown in Fig. 7(a). The second feature is
that the transverse wiggler gradient introduces a betatron
osciilation which causes a macroscopic scalloping of the
beam envelope. In addition, on a microscopic level the
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FIG. & Pict of the peam disiniburon in axial phase space a7
sgiygraL.on.

indvidual elsctrons come into a forus and oud again on
*he upposiie side of the beam. This becomes evideni in
Fig. 7:a) by nciicing that the two closely spaced “‘spokes”
are criemed in the nagaiive-x direcuon while in the inital
state {Tig. .ib] these same spokes were oriented in the
vositive-x directuon. The third feature 1s that the trans-
veise wiggler gradient also has a focusing effect on the
Searw: which results in 2 reduction in the maximumn beam
radius relative to the :nual state. The betairon gscillation
Jceurs over 2 length of approximaiely Azp~35 0BA. i,
& Arg=19.3:, and the evalution of the beam cross secticn
aver this distance is shown in Fig. 7 ‘from k z=31=31"
Lastly, the geometry of the wiggler aud the transverse
gradients tends tc distcri the beam into an eiliptical cross
section While chis is avident in Fig. 7 at an early stage of
the wiggler, 1t 1s shown even more dramatically i Fig.
75 which shows the cross seciion  at saranug
k.r=118

We now zoasider the TE;, mode, and plot the evoiu-
zom of (e wave power versus axial position 1n Fig. € for a
50-kW input signal at w/ck, = (1.3 and an ¢'ectran heam
with a zero initial momentum spread. As is evident rom
the figure, the power saturates at K.z =104 at abour 194
MW for an efficiency 1~6.85% In companson with the
TE., mode, therefors, we conclude ihat the average
growth rate i3 somewhat higher and the efficiency lower
for the TE;, mode at this frequency. A compiete spec-
trum for the TE,; mode is shown in Fig. 9 in which we
niot the distance to saturation and the efficiency versus
frequency. As shown in the figure, gain 5 found for fre-
quencies ranging 11om w/ek, ~8.9 through w/ck, R 14
with a peak efficiency of approximately 12%. As a resuit,
both the bandwidth and peak efficiency ars higher for the
TE., mode than for the TE; mode. In addition. while
this frequency falls slightly below the frequency of peak

growth rate for the TL;, mode, ir is close to the frequency
of maximum growth rate for the [E,, mode.

[he avolation of the wave powes versus uxiai posttion
is shown in Vig. 10 for & 50-kW input signal in the TM-,
model a1 w. ¢k, <11.3 aad an eieciron beam with zero
ipinal momentum spread.  As shown in the figure. the
power saturates dat X,z ~217 with approximately 68.3
MW for an efficiency 17=~2.45%. This is & much lower
growth rate and efficiency than found for either the TE,.
or TE;; modes, despite the fact that the cutoff frequency
and dispersion curves are degenerate for the TM.; and
TE;: modes. The difference between the two modes lies
in the transverse mcde structure. As mentioned previ-
ously, the principal component of the wiggler-induced
motion 15 aligned with the x axis; hence, the wave-
particie interaction is governed largely by the x com-
wonent of the electric fleld. Comparison of the mode
structures for the TE,, and TM,, modes given by Egs.
i4) and {3; shows that for a given mode smpiitude
1§ 44y ) the ratio of the x component of the eleciric field
of the T™M;, ro that of the TE,; mode is approximately
26 /0 =0.59. As a result, the wave-particle coupling is
weaker for the TM,; mode. Note that this conclusion
would be reversed if the con® ~~ation were altered such
that the nrncipal comporent o7 Jhe wiggler motion were
aligned with the + 4iis. However, one effect arising from
the degen: .oy of the dispersion curves is thar the rre-
quen.y of interest «w/ck,=11.3! lies near to peak
gron h for bath TE.. and TM;, modes This is shown
ciearly ir Fig. 11 1n which we piot the distance to satu-
ration and the saturation efficiency as a function of fre-
guency for the TM,, mode. As might be expected, the
reduced wave-particle coupling and growth rates for the
TM;, mode result in a narrower bandwidth for insiabili-
1y, and we obtain wave growth for frequencies ranging
from w/ck, ~10.2-12.

The Guestion of the variation in the phese of FEL
amplifiers has important implications for many of the
potential applications of these cevices. Since high
powers ard efficiencies have been demonstraied experi-
mentaily,’’ one such application may be as a high-power
microwave source for the next generaiion of radie-
frequency electron acceleraiors. However, one require-
ment for such an application is good phase stability of
the output radiation against fluctuauons in the electren-
beam voltage. Examunation of Fig. 4 shows that the rel-
ative phase at saturation varies rapidly with frequency.
Since there is a correspondence between variations in the
frequency at fixed voltage and variations in the voltage
ai fixed frequency, we might expect the phase at satura-
tion 10 vary rapidly with beam voltage. This is indeed
the case as shown in Fig. {2, in which we plot the rela-
tive phase at a fixed axial posinon (chosen to correspond
to the saturation point for a beam voltage of 3.5 MeV?
versus beam voltage for the TE,, TE,;, and TM;
modes. The vanation in the relative phase is approx:-
mate;y $1°/1% variation in the beam voltage for the
TE;, mode, 43°/1% variation in the beam voltage for
the TE,. mode, and 89°/19% variation in the beam voit-
age for the TM,, mode. Such rapid varisticns in the
phase are consistent with results obtained previously for
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a helical wiggler, cylindrical waveguide confguration,®
and contrasts with 8°/1% variation 1n beam voltags for
a typical Stanford Linear Accelerator SLAC) klystron.®
We conclude, therefore, ihat applications which require
an extremeily phase-stabia microwave source will aiso re-
qiire anu electron-beam source with a very low level of
voltage fluctuations.

The effect of an initial momentum spread 1s shown in
Fig. 13 in which we plet the efficiency versus Ay, /v, for
the TEn, TE,, and TM;, modes. From the beam-
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resonance sondition, it is apparent that the transition to a
thermally domineted regime occurs when Av, / vo~T,/
tk+k&,). Making use of Eq. (22) we And that this trans:-
tion cccurs at about &y, /g~ 18% for the TE,, and TE:,
modes, and Ay, /y5=8% for the TM;, mode. Asa conse-
quence, the casas shown in Fig. 19 are well short of the
thermal-beam regime. The efficiency is found to decrease
in an approximately linear fashion with increasing 4y, for
each of these modes, which corrasponds with results ob-
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tained for a helical wiggler configuration.*® Note, however
that the present results were obtained with the same mod-
el distribution (20) as for the helica! wiggler, and the de-
tailed variation in the efficiency with momentum spread
can be expected to vary with the choice of distribution. Be
that as it may, we find that the efficiency drops from
N =7.75% to 7 =~4.98% for the TEy, mode as Ay, /vy, in-
creases to about 2.3%. For the TE,, mode, the efficiency
drops from 7~6.85% to 71=~3.76% as Ay, /y, increases
to 2.3%. The efficiency of the TM,; mode decreases from
1N~2.45% ton~1.27% as Ay, /yqincreases to 1%. This
is more rapid than for the TEy and TE,; modes, and
occurs because the transition to the thermal-beam regime
is found for a lower value of the momentum spread for the
TM;; mode.

The scaling of the saturation efficiency with beam
current for the TEy,, TE,,, and TM,; modes is shown in
Figs. 14-16, respectively, for Ay, =0 and Ay, /y,=1%.
On the basis of an idealized one-dimensional model,” it
has been shown that the saturation efficiency should scale
as n~1,"* for frequencies corresponding to peak growth
rates. As shown in Fig. 14, this type of scaling law is ob-
tained for the TE; mode over a range of currents extend-
ing from approximately 300-1000 A. Observe that the
dielectric effect of the electron beam on the waveguide
mode is included in the formulation, and the bandwidth of
the interaction shifts with the beam current. As a conse-
quence, the increasing divergence between the simulation
results and the scaling law for currents below 300 A is at-
tributed to a shift in the frequency of peak growth away
from w/ck, ~11.3. It should also be noted that the curve
for Ay, /yo=1% increases with current only slightly fas-
ter than that obtained for Ay, =0 and, other parameters
being equal, the I, * scaling law seems to be relatively in-

TEgy Mode (a=9.8cm; b=29 cm;
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FIG. 14. Graph of the saturation efficiency of the TEy, mode
vs beam current for w/ck, =11.3.
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dependent of the momentum spread. However, one point
of caution is worth noting in regard to these conclusions.
Specificaily, if the variation in current were accompanied
by variations in the momentum spread and/or beam ra-
dius {as might be expected if the beam were heid ar con-
stant brightness), then the scaling law mighr differ. The
I; 7% scaling iaw is also approximately found for the TE;,
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mode for currents ranging from about 200-1000 A. The
slightiy larger range of currents over which the scaing
law seems o hold for the TE;, mode 13 attributed o the
previousiy mentioned result that w/ck, =11.3 is closer
1o the frequency of peak growth rate for this mode than
for the I'Es mode. As a consequence, this frequency
rematns in the vicinity of the maximum growth rate over
a broader range of curremts for the TE,, mode. Al-
though the expected scaling law is approximately ob-
tained for the TE;, and TE:., modes, three.dimensionsl
effects inveived in the beam propagation and the cou-
pling between tihe beam and the transverse mode struz-
ture do modify the scaling. This is most evident for the
TM,, mode shown in Fig. 16 for which we find the
efficiency increasing somewhat faster than /) .-

We now addrass the issue of eficiency enhancement by
means of a tapered wiggler field, and concentrate on the
TE;;, mode. The fundamental theory of the efficiency
enhancement mechanism has been amply discussed in the
literature.*1 = ** [n order to understand the physical basis
of the process, we observe that the wave-particle reso-
nance condition which gives rise to amplification is ex-
tremely sensivive to the axial electron velocity. However,
the axial velocity decreases as the wave is amplified until,
ultimately, the resonance condition is broken and the
amplification ceases. The purpose of the tapered wiggier
field is ro reduce the transverse velocity induced by the
wiggler which, in turn, results in an axial acceleration that
maintaing the rescnance conditior. Thus, the tapered
field is a means of “tapping’” the transverse kinetic energy
of the peam. This can be accomplished by a tapering of
either the wiggler amplitude or period; however, in the
present work we shall confine ourselves to a tapered am-
plitude configuration. The results of the simulation are in
qualitative agreement with those obtained for a helical
wiggler configuration,®* and indicate that the efficiency
enhancement is extremely sensitive both to the point at
which the taper is begun and to the slope of the taper.
The optimal position at which to begin the taper is, typi-
cally, at a point shortly prior to saturation {for the unta-
pered system) which corresponds to the trapping of the
bulk of the electron beam in the ponderomotive potential
tormed by the beating of the wiggler and radiation flelds.

For the case corresponding to the TEy, mode shown in
Fig. 2, the optimal point at which to begin the taper
oceurs for k 2o 110. In order to accelerate the beam in
the axial direction the wiggler field must be decreased.
and the evclution of the wave power versus axial position
is shown in Fig. 17 for a taper of €, =-0.007. The
efficiency enhancement (as measured by the growth 1n the
wave powet; continues for as long as the taper is main-
tained, and a maximum efficiency of np,, =~ 34.0% is ob-
tained if the wiggler fleld is rapered to zero at A, 2253
fi.e, 3.95 mi The effect of different choices for the
wiggler taper is shown in Fig. 18, in which we plot the
maximum efficiency found by tapering the wiggler fleld to
zero versus €,. As shown in the figure, optimal results
are found for €, ~ =0.002 at which point 7y, ~44% and
the interaction region extends to k,z~610 tie., 9.5 m).
The variation in the relative phase for a tapered wiggler
interaction is shown in Fig. 19, in which we plot the rela-
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FIG. 17. Plot of the evolution of the TE;, mode for a tapered
wiggler interaction with €, = —0.007 and &, z,=110.

tive phase versus axial position for €, =—0.007, and
w/ck, =10.7, 11.0, and 11.3. Note that the start taper
point is chosen to be the optimum value for each frequen-
cv. and is indicated in the figure by the airow. Three
features are readily apparent from the figure. The first is
that the vartation in the relative phase subsequent ta the
start-taper point is approximately the same for each of the
three frequencies shown, and the spacing between the
curves remains approximately constant. Second, while
the phase variation within the tapered wiggler region ini-
tially increases immediately after the start-taper position,
the phase variation appears to saturate and remain rela-
tively constant over an extended interaction length.
Third, the oscillations at one-half the wiggler appear to
decrease in amplitude over the course of the tapered
wiggler region.

TEgy Mode (a=9.8cm; b=29 em; o, /ckyw =11.3: P,, =50 kW]

. /—\\\
. \.\-
.
o\
.

KuyZyqy = 110

imani®)

Vy » 38 Mev
Ip ~ 800 A
Ap=10cm

'0- 8,-3%G
~9cm

000 T o00e oo T obm T obo
Ew
FIG. 18. Graph of the maximum efficiency of the TE, mode
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FIG. 19. Plot of the evoluticn of the relative phase durning the
course of the tapered wiggler interaction for w/ck, =10.7, 11.0,
and 11.3.

The effect of an initial beam momentum spread on the
tapered wiggler-efficiency enhancement process has also
been investigated, and the results are summarized in Fig.
20 in which we plot the maximum realizable efficiency (if
the wiggler field is tapered to zero) versus Ay, /v, The
maximum efficiency at a fixed start-taper point
(k. zy=110) chosen to correspond to the optimum posi-
tion for Ay.=0 is shown in Fig. 20(a) versus the axil

TEn Mode (a=9.8 cm; b=2.9 cm; w/ck,, =11.3; P;, =50 kW)
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FIG. 20. lllustration of the effect of beam momentum
spread on the tapered wiggler interaction at (a) fixed z,, and 'b!
variable z,. Observe that in (b} the optimal start-taper points
correspond to k,zo=110 for Ay,/yo< 1%, k,2o=117 for
Ay./yvo=1.5%, and k2o =124 for Ay, /yo=2%.
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momentum spread. As is evident from the figure, the
efficiency-enhancement process 15 unaifected by the
momentum spread for Ay, /yq % 1%, but decreases rapid-
ly for axial energy spreads above this value. There arc
two priucipai reasons for this decrease in 1,,. The first
is that the phase-trapping mechanism becomes less
effective as the momentum spread increases because 4 pro-
portionally greater fraction of the beam remains outsida
the trapped orbit region of the axial phase space. The
second reason is that the increase in the momentum
spread results in a decrease in the growth rate and a
longer distance to saturation. Because of this, the op-
timum startstaper point is an incréasing function of the
momentum spread. Thus, if we determine the optimum
start-taper point versus Ay, then the maximum efficiency
can be expected 1o decrease less rapidly with axial energy
spread than is shown in Fig. 20(a). This is indeed the
case, as shown in Fig. 20(b) in which we plot n,,., versus
Ay, for the optimum start-taper points. Note that for
Ay, /v 1% this point coincides with that for Ay, =0
‘for the current choice of parameters). As seen in the
dgure, M0, ~26.6% for &v,/y,=2% and a start-taper
point of k_z,=124. This contrasts with 85 7,,,=11.8%
‘and 8y, /y,=2%! when k,z,=110. As a consequence,
we conclude that although the untapered efficiency de-
creases relatively quickly with increasing momentum
spread, the tapered-wiggler interaction can accept a small
level of momentum spread without suffering a significant
degradation in the interaction efficiency. However, the
upper limit on the allowable momentum spread must be
determined by the particular choice of experimental pa-
rameters, and the value of Ay, /v,% 1% should not be
construed to be a general result.

IV. SUMMARY AND DISCUSSION

In this paper a fully self-consistent nonlinear theory and
numerical simujation has been developed for the FEL
amplifier tm three dimensions. The particular config-
uration of interest coasists of a ecylindrically symmetric
electron beam of arbitrary cross section (on entry at 2 =0)
injected into a loss-free rectangular waveguide in the pres-
ence of a linearly polarized wiggler magnetic field. The
wiggler-field model is that generated by a magnet stack in
which the individual magnets have parabolically tapered
pole pieces in order to provide for electron focusing in the
plane of the bulk wiggler-induced motion. In addition,
the adiabatic injection of the electron beam is modeled by
the inclusion of an initial taper of (he wiggler amplitude.
The system of equations derived is a generali2ation of a
previously dJdescribed analysis of a pelical wigglet-
cylindrical waveguide configuration’ =¥’ which treats
the self-consistent evolution of :he trajectories of an en-
semble of electrons and the radiation flelds. The anaiysis
includes both the TE and TM modes, and includes the
overlap of the transverse mode structure and the electron
beam (i.e., the fllling factor) in a self-consistent way.
Space-charge fields have been negiected; hence, the
analysis is restricted to the high-gain Compton (strong-
pump) regime of operation. Since the problem of in-
terest is the FEL amplifier, only single-frequency propa-
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gation 1s considered, which permits an average over a
wave penod (o be performed that eliminates the fast-
time-scale phenomena formulation. This results in a
grest increase in computational efficiency over a full-
scale particle-in-all simulation code, and allows the ap-
plication of the technique ro short t.e., optical) wave-
lengths given an appropriate mode structure.

The electron trajectories are integrated using the com-
plete Lorentz-force equations, so we are able to study the
detailed orbital dynamies in the combined wiggler-
radiaticn fleld structure. The overall bulk motion of the
electron beam exhibits a dominant oscillation at the
wiggler period, as well as a slow-time-scale betatron oscul-
lation due to the transverse inhomogeneity in the wiggler
fleld. The dynamics of the adiabatic injection of the ciec-
tron beamn were studied by means of a comparison of the
saturation efficiency with the length of the entry taper re-
gion. The results indicate that the saturation efficiency in-
creases relatively quickly with the length of the entry
taper region for N, %6, and more slowly therezfter. The
reason for this is that the injection prozess itseif in a real-
istic (i.e., three-dimensional) wiggler field introduces a
sffective momentum spread on the beamn which decreases
as the axial wiggler gradient becomes more gradual, For
practical purposes N, 25 appears to be an adequaie
compromise between the minimization of the overall
wiggler length and the maximization of the interaction
efficiency, and this is the regime in which many wmi-
crowave FEL's have been operated.—%1°~i2 [q addition,
the effect of a tapered wiggler amplitude on the enhance-
ment of the interaction efficiency cen be included in a
straightforward manner.

The numerical analysis has been performed for the case
of a 35-GHz FEL amplifier which employs a 3.5-MeV,
800-A electron beam with an initial radius of 1.0 cm.
The beam propagates through a rectangular waveguide
with dimensions @ =9.8 ¢m and 5=2.9 cm in the pres-
ence of a wiggler fleld with a 3.72-kG amplitude and 9.8-
cm period. Three distinct waveguide modes are found tc
be amplified: the TEy, TE;,, and TM;; modes. For this
choice of frequency, the TEy, mode exhibits the highest
untapered; efficiency, while the TE,, mode has the
highest growth rate. The wave-pasticle coupling for the
TM,: mode is the weakest of the three modes and has the
lowest growth rate and efficiency as well as the narrowest
nandwidth. The effect of an initial momentum spread is
wnvestigated for axial energy spreads Ay, /vy % 2% which,
for this choice of parameters, i3 well within the cold-bearn
regime. Results indicate that over this range of ay; the
efficiency decreases in an approximately linear fashion
with increasing axial energy spread. This is in substantial
agreement with the resulte obtained for a helical wiggler
configuration;** however, it should be remarked that the
same disiribution has been used for both the planar and
helical wiggler configurations. Thus, while the planar and
helical wigglers behave in substantially the same manner,
the detailed scaling of the efficiency with the momentum
spread can be expected 10 vary with the detailed choice of
distribution.

The phase variation of the planar wiggler configuration
discussed herein is also in qualitative agreement with that

T

Ay




2196

found for helical wiggler configurations.’® The principal
difference is that an oscillation at one-half the wiggler
period is superimposed on the bulk variation in the phase
due to details of the wave-particle coupling with a planar
wiggler. Specifically, for the gain band associated with
the upper (high-frequency) intersection between the
beam-resonance line and the waveguide-dispersion curve,
we observe that the bulk variation of the relative phase de-
creases with axial position up to a point short of that at
which the power saturates for frequencies at the low end
of the band. As the frequency increases, the phase varia-
tion decreases until a critical frequency is reached for
which the phase remains relatively constant over the
course of the interaction. This critical frequency has been
found to occur at approximately 10% below the frequen-
cy of peak growth rate for all parametric cases studied for
both the helical and planar wigglers. Above this critical
frequency the average relative phase tends to increase with
axial position. In view of the high power potential of the
FEL amplifier, applications such as microwave sources for
the next generation of radio-frequency electron accelera-
tors are natural considerations and the question of the
phase stability of these devices against fluctuations in the
electron-beam voltage is of importance. Again, we find
qualitative agreement on this issue between simulations of
helical and planar wiggler configurations. The results in-
dicate a much poorer phase stability than the current gen-
eration of SLAC klystrons, and we conclude that applica-
tions of FEL amplifiers which require an extremely
phase-stable microwave source will also require an elec-
tron beam with a very low level of voltage fluctuations.

The enhancement of the interaction efficiency by means
of a tapered wiggler amplitude shows maximum
efficiencies of the order of 35-45 % are possible for this
choice of parameters. This brings maximum power levels
into the GW range. The simulation results also indicate
that the tapered wiggler-efficiency-enhancement mecha-
nism is relatively less sensitive to the effect of momentum
spread than the uniform-wiggler case, and no degradation
in the maximum efficiency is found for Ay./y,S1% in
the present case. Examination of the phase variation dur-
ing the tapered wiggler interaction shows similar results
over the entire gain band (Fig. 19), and there is no de-
crease in the phase separation for the various frequencies
observed in the tapered wiggler region. Since variations in
the frequency at fixed beam voltage are fundamentally
equivalent to a variation in the voltage at fixed frequency
li.e., both processes sweep through the gain band), we find
that our conclusion regarding the phase stability of FEL
amplifiers is unaltered for the case of tapered wiggler in-
teractions.

Indeed, the bulk features of the FEL interaction mecha-
nism are found to be in substantial agreement for both
helical and planar wiggler configurations. The most evi-
dent distinction is the rapid oscillation in both the power
and relative phase which appears for planar wigglers at
half the wiggler period. While the bulk wave
amplification is unaffected by this oscillation, it may intro-
duce an uncertainty in the measurement of the gain
and/or power from planar wiggler configurations which is
of the order of 10% (apart from systematic instrumental
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errors). In addition, the relative phase also exhibits this
oscillation, which indicates a periodic modulation in wave
refraction also occurs. It is, therefore, an open question
whether this may affect the focusing (i.e., optical guiding)
of the radiation, and this will be addressed in a future
work by the inclusion of multiple modes in the formula-
tion. However, this question may be moot for tapered
wiggler configurations since the oscillation appears to be
attenuated (Fig. 19).

Although the configuration described in this paper does
not precisely coincide with the experiment conducted by
Orzechowski and co-workers,”!* the parameters chosen
for the numerical analysis coincide with those of the ex-
periment and it is useful to compare the simulation with
the experiment. The fundamental differences between the
experimental configuration and the analytical model are
that in the experiment (1) the beam was injected into the
wiggler by means of an entry taper region one wiggler
period in length, (2) a quadrupole field was used to pro-
vide electron focusing instead of parabolically shaped pole
pieces, and (3) in the tapered wiggler experiment'® the am-
plitude was tapered nonlinearly. A 50-kW 34.6-GHz (i.e.,
w/ck,=11.3) magnetron was used to drive the FEL
amplifier, and the signal was injected in such a way as to
couple primarily to the TEy mode. As a result, the TE,,
mode was the predominant component of the output sig-
nal; however, significant power levels were also detected
in the TE,; and TM;,; modes. The detailed experimental
parameters we choose to compare with the experiment in-
volve a 3.5-MeV, 850-A electron beam used in the tapered
wiggler experiment. Although the beam is thought to ex-
hibit a slightly elliptical cross section, the average of the
semimajor and semiminor radii is about 1.0 cm and we
choose this value for the beam radius in the numerical
simulation. The waveguide and wiggler parameters are
those used previously in Sec. III, and we note that since
the fringing fiélds are not included in our model of the en-
try taper region the choice of .V, =5 is a compromise.
The evolution of the wave power in the TEy, mode as a
function of axial position for these parameters is shown in
Fig. 21 for a uniform wiggler (¢,=0), and for
€, =—0.007. The results are similar to those described
in the preceding section for an 800-A beam, and the best
fit with the experiment is found for an axial energy spread
of Ay,/yo=~1%. As shown in the figure, the untapered
wiggler results give a saturated power of 194 MW over a
uniform wiggler-interaction region (i.e., Z,,—5X,) of 1.4
m in length. This compares well with the experimental
measurement of 180 MW over an interaction length of 1.3
m, and the discrepancies are within the experimental un-
certainty. We remark, however, that the simulation re-
sults may be affected by as much as 20% by the choice of
the length of the entry taper region. It is more difficult to
compare the simulation (with a linear wiggler taper) and
the experiment (with a nonlinear taper) in such a detailed
fashion. [t is certainly reasonable to expect that a non-
linear taper might be more efficient than a linear one in
the sense that the efficiency enhancement can be accom-
plished over a shorter interaction region. Thus, in the
comparison of the tapered wiggler results we interpret the
simulation as an indication of limits on the energy extrac-
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f ' P simulational modeis and computer codes undergo 1apid
”"‘ Pt " development which renders an uccurate descnption

N o / ! difficult; hence, 1 wili confine my remarks to lundamern!al

. Ry =t0em ‘.""" ‘ properties which include the particle dynamics and ihe

o Mam ! treatment of the radiation field. The particle dynamics in

i - ?1 237 . - FRED are treated in a reduced form by averaging thc.orb;t
L I T Rty A equations over a wiggler period. The trangverse motion is
g @ ; rax i described in terms of the bulk wiggler and betatron oscii-
E - 7 - lations by means of an analytical approximation, and the
‘ self-consistent effect of the radiation fleld on the trans-

“« 1 : verse motion is not included. The dynamics in the axial

. s - direction are handled by integration of equations for the

. Kuto = im;f _‘ particle phase and energy. .Thls 1s the most common ap-

1 W e ‘ proach used in the simulation of free-electron lasers and,

- N, T mmw - as shown by the comparison between FRED and the exper-
o :-:’;'*‘“‘ = o imental results,”® it works well. However, certain efects

Rt bl are excluded from chis formuiation. Firsty, we observe

FIG. 21 Plet showing the evolution of the TE; made vs axi-
al pesition for a uniform and tapered wiggler interaction.

tion. With this in mind we obsérve that the optimal
start-taper point 1s at k,z;~ 111 (sligh:lv more than one
wiggler perind short of the saturation point for a8 uniform
wiggler). We chocse the slope of the taper to correspond
roughly with the guerage taper in the experiment, and find
a maximum efficiency of about n,u=356% at a power
level of 1.06 GW. This differs by only about 8% from
that found in the experiment, and we interpret this as
300d agreement within the uncertainty introduced by the
differencas in the slope of the waper. We conclude, there-
fore, tha: the simulation is congistent with the interpreta-
tion of a 19 axial beam energy spread, which is support-
ed by an electron-spectrometer measurement ndicating an
apper limit on the energy spread of 29" Furthermore,
‘n view of the relative insensitivity of the wapered wiggler
interaction isee Fig. 20}, we conclude that the perfor-
mance of the tapered wiggler experiment would not be
markedly improved by a further improvement in beam
quality fi.e., 8 decrease in the momentum spread:.

Tt is useful to compare the analysis and simulation de-
scribed herein with other models in order to assess the rel-
ative merits of the various formulations of the problem
To this end, we consider the simulation code FRED in use
at the Lawrence Livermore National Laboratory’®¥ be-
cause this code has been used extensively 1o model and in-

that the rapid osciliation at the second wiggler harmonic
is lost entirely due to the averaging of the orbit equations
over a wiggler period. Secand, the injection of the elec-
tron beam into the wiggler is excluded from the simula-
tion, and must be described explicitly. Third, because the
self-consistent effect of the radiation field on the trans-
verse electron motion is nct included, the inirial transients
assoclated with the injection of the radiation into the
amplifier are not properly handled. As a result, launching
losses cannot be described by FRED, and the wave power
must be initiahzed at a lower value than that actually in-
jected into the amplifier.® Thus, it is our opinion that the
approack ro the particle dynamices described in this paper
is superior to that employed in FRED. The advaniage of
FRED over the single-mode analysis we have described is
that the radiation field is treated by means of a field solver
which implicitly handles multiple modes and, thus, de-
scnbes the optical guiding (1., focusing) of the rad:aticn
due to the electron-beam interaction, However, cptical
guiding can be treated via a multimode formulation of the
present analysis as well. Indeed, such an analysts is now
under study, and the results will be presented in the forth-
coming work.
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Harmonic generation in free-electron lasers

H. P. Freund and C. L. Chang
Science Applications International Corporation, McLean, Virginia 22102

‘ H. Bluem
Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742
{Received 22 May 1987)

A nonlinear formulation of the free-electron-laser amplifier with a linearly polarized wiggler
magnetic field is used to study harmonic generation. Substantial emission is found to occur at the
harmonics for a cold beam; however, the harmonics are far more sensitive to beam thermal effects

than is the fundamental.

The question of harmonic generation in free-electron
lasers (FEL's) has become increasingly important in re-
cent years. The operation of an FEL oscillator at visible
wavelengths driven by the ACO (les Anneaux de Col-
lisions de I’Accélérateur Linéaire d’Orsay) storage ring'
has shown that the generation of harmonics at uv wave-
lengths can limit performance due to severe degradation
of the optical system. In contrast, there is interest in the
generation of harmonics in an effort to achieve ever
shorter wavelengths without the necessity of ever higher
electron beam energies. In order to address these ques-
tions, we have developed a fully three-dimensional for-
mulation of the FEL amplificr for a configuration which
consists of an electron b2am propagating through a rec-
tangular waveguide in the piesence of a linearly polar-
ized wiggler magnetic field. A set of nonlinear
differential equations is derived which self-consistently
describes the evolution of bath an ensemble of electrons
and the electromagnetic fields. The issue of harmonic
generation [i.e., w=(k +/k, v, for I >1] has been ad-
dressed previously for the case of an electron beam prop-
agating through a cylindrical waveguide in the presence
J

of a helical wiggler field,> and emission was shown to
occur at all harmonics of the resonant frequency. How-
ever, due to the modulation of the axial electron velocity
in linearly polarized wiggler fields, only the odd harmon-
ics are excited. In this paper we study both the linear
growth rates and nonlinear saturation efficiencies at the
odd harmonics, as well as the effect of thermal spread on
harmonic generation.

The configuration we consider is that of a relativistic
electron beam propagating through a loss-free rectangu-
lar waveguide in the presence of a linearly polarized
wiggler magnetic field. The wiggler-field model we em-
ploy is that encountered when the individual magnets in
the wiggler have parabolically tapered pole faces. The
wiggler field generated in this way provides for electron
beam focusing in the plane of the principal wiggler
motion, and was first employed experimentally by Phil-
lips.> A detailed analysis of the magnetic field produced
by a wiggler with parabolically tapered pole pieces was
undertaken by Scharlemann, who showed that the
wiggler field is of the form

B( B [ (k )[h kwx h w ~ h w h}H)’A
W X)= wlcos o2 lsm 5 |sinh | 3 ¢, +cos 5 | cosh |5 18
- w . wy .
—V2cosh | —= |sinh |—= |sin(k,2z)¢, N, u
V2
—

where B, denotes the wiggler amplitude and
k, (=2m/A, ) is the wiggler wave number. In addition,
we model the injection of an electron beam into the
wiggler by allowing the wiggler amplitude to increase
adiabatically from zero to a constant level over N,
wiggler periods as follows:

2

w

4N,
Bw, Z)kaw . Q)

B, sin , O0<z<N A,

B,(2)=

Note, however, :hat fringing fields associated with the
tapered wiggler amplitude are neglected, and this repre-
sentation (for z < N, A, ) is valid only for large V,. For
the purposes of the present analysis, we choose N, =10.

The boundary conditions at the waveguide wall may
be satisfied by expanding the vector potential in terms of
the orthogonal basis functions of the TE modes, and we
write the vector potential of the radiation field in the
form

SA(x,0)= f' S A pn(2)emy(x,y)cosx , (3)

m=0
LY
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where for frequency @ and wave number  (z)
4 .
= ‘k{z')—-ot , 4)
a= [ldr'k(z)-o

S’ indicates that m and n are not both zero, and

——

| €mn(X,)) = —2— cOs mmX k2 G

i mal\X, )= kmnb b X

1]

l mm . |mnX nrY |

| — ¢ (5)
k”ma Sin a b Y

is the polarization vector. In this representation the
. waveguide is assumed to be centered at the origin and
' bounded by —a/2<x<a/2and —b/2<y<b/2. Asa
| consequence, X =x +a/2, Y=y +b/2, and

721

2

m
kpn=m |5+ (6)
a

denotes the cutoff wave number. It is implicitly assumed
' that both the mode amplitudes 84,,(z) and the wave
number k (z) vary slowly over a wave period.
: A detailed derivation of the equations which describe
i the evolution of the mode amplitudes and wave number
has been presented® for both the TE and TM modes;
however, the method follows that employed for a helical
wiggler.? Here we note that substituton of the fields (3)
' into Maxwell’s equations yields

e

(- 4

3219
d? o?
;z-zsamn*' C_Z"‘kz—krfm 8a,,
1
Wy cosa
=T mnB:O( (v | emn'v> (7N
vz

and

@ .
2k Vz'tj_z(k ]/zsamn )= — —C—Z_anﬁzo< s:)na €mn 'V> (8)

upon orthogonalization in x and y, and an average over
the wave period. In Egs. (7 and 13),
83,,, =8 A,,, /mc? w, is the ambient plasma frequen-
¢y, B,p=v,9/¢ (where v,, is the initial axial beam veloci-
ty), v is the instantaneous velocity, and F,_, =4 (8) when
either m =0 or n =0 {m 30 and n+<0). The averaging
operator {{ ---)) describes the source current and in-
cludes the effect of an /nitial (i.e., at z=0) thermal
spread in the beam by means of the distribution function

Fo(po)= A exp[ —(p,o—po)*/8p}]
X8(pd—ply—p05)18(p,0) , i9)

where py and Ap, describe the initial bulk momentum
and the momentum spread of the beam, O(x) is the
Heaviside function, and the normalization constant is

Po 2 3 -1
A= (17' fo dp,gexp[ —(p,o—pg) /4p; ) . 1o

This distribution describes an initially monoenergetic
beam with a pitch-angle spread. The average is over the
initial conditions and defined as

r pa Py 24,2
=g fo déo fo dP:o‘;:"xP[—(P:O—Po) /p:]

, where ay ( = —w!t, and ¢, is the time the electron crosses
g the z =0 plane) is the initial phase, dg=tan~'(p,o/psq).
‘ and o (ay) and o (xq,p,) describe the electron distribu-
| tions in initial phase and initial cross section. For sim-
| plicity, we assume the beam to be uniformly distributed
in phase (o, =1) and cross section for an initially cylin-
drical beam (i.e., o, =1 for 7y < R,). In order to com-
plete the formulation, the electron trajectories are fol-
lowed by means of the Lorentz force equations in the
combined wiggler and radiation fields. It should be
remarked that although the fast-time-scale behavior of
Maxwell’s equations have been eliminated by means of
the average over a wave period, no average of the
Lorentz force equations is undertaken. This is impor-
tant in order to resolve the interaction at higher har-
monics.

Equations (7) and (8) can be reduced to a set of three
first-order differential equations describing the evolution
of the amplitude S&a,,, the growth rate T[,,
( =d Inba,,, /dz), and the wave number. Hence, includ-

e as2 br2
X fﬂ”daoo‘(ao) f_a':dxo f_b/:dyoa,(x,),yo)( DRI N A

ing the orbit equations, we solve an initial-value problem
composed of a set of 6V +3 coupled nonlinear
differential equations, where N is the number of parti-
cles. The field quantities are initialized such that
8a,,,(z =0) describes an arbitrary input power level,
I,..(z2=0)=0, and k(z =0)=(w?/c?—k?,,)'"* Thus,
while the initial state describes a vacuum mode, the sys-
tem evolves into a dielectrically loaded waveguide mode
in the presence of the beam.

The particular example we consider involves a 3.3-
MeV, 100-A electron beam with an initial radius of 0.2
cm propagating through a rectangular waveguide (@ = 10
c¢m, b =3 cm) in the presence of a wiggler with a 4.2-kG
amplitude and a 9.8-cm period. A spectrum of the
efficiency, 0, of the TEq, mode is shown in Fig. | as a
function of frequency for the fundamental through the
ninth harmonic in the absence of any thermal spread
(i.e., Ap,=0). The doublet at the fundamental corre-
sponds to the upper and lower intersections between the
waveguide dispersion curve and the beam-resonance line
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FIG. 1. Plot of the efficiency vs frequency at the fundamen-
tal, third, fifth, seventh, and ninth harmonics.

{w=~{k +ky v, ]. Itis evident from the figure that there
is a sharp drop in the efficiency between the fundamental
and the third harmonic. However, the subsequent de-
crease of the efficiency with harmonic number is rather
slow, and substantial power may be found at the higher
harmonics. In addition, the decrease in the growth rares
with harmonic number is relatively slow. B:cause ¢f
variations in the launching loss associated with the vari-
ous harmonics, as well as oscillations in the growth rate
over the course of the interaction, it is difficult to obrain
estimates of the average growth rates. However, the dis-
tance to saturation (2, ) for a fixed input signal of 6 kW
provides a measure of the average growth rate. Fcr e
ample, the peak growth rate is obtained at w/ck, ~7 1.
for the fundamental (upper intersection), and saturation
occurs at k,z,, ~ 184 with an efficiency n~5.57%. At
the third harmonic, peak growth is found for
w/ck, ~27.25, and saturation occurs at k, 2, ~172
with an efficiency 7 ~0.81%. In view of the shorter sat-
uration length and lower efficiency at the harmonic, it is
clear that the third-harmonic growth rate is a substantial
fraction of that at the fundamental. A similar con-
clusion is obtained at the seventh harmonic which
displays a peak growth rate at w/ck, ~65.5 and a satu-
ration length k,z,,, ~ 172 with 7~0.39%.

The effect of the thermal spread is shown in Fig. 2 in
which we plot the normalized efficiency /1, (1, is the
efficiency for Ap,=0) versus the axial energy spread
Ay, /v, Observe that since the initial distribution is
monoenergetic
—1:2

A
I+2(y§—l)7p5— . (12)
0

— 1=

Yo

where y3=1+p3m3c® The principal conclusion to be

drawn from the figure is that the harmonic emission is
far more sensitive to the effect of the thermal spread
than the fundamental. While the efficiency decreases by
an order of magnitude for Ay,/yo>2% at the funda-
mental, a corresponding decrease occurs for

TEp Mode (a = 10 cm; b = 3 cm)
T T 1 ‘]

Vb = 33 Mev J
b =100 A i
Ry =02cm i
Bw = 4.2kG -
Aw = 98cm
Nw = 10

Wicky = 700

05

nine

wicky = 22.25

, Wwicky = 4650

YT T YTV T

P Wickw = 6525

-y =

A
05 10 15 20

AY:/Yo (%)

FIG. 2. Thermal effect on the efficiency.

Ay, /y9=0.77 at the third harmonic. At higher har-
monics the decrease is even more rapid. In addition, as
found by Davidson,® the growth rates are also more sen-
sitive to the thermal spread at the harmonics than at the
fundamental. While the saturation length increases from
k 2o ~1991t0 k, 2z, =209 at w/ck, =7.0 (fundamental)
as the thermal spread increases to Ay, /vy~ 1%, the de-
crease is more rapid at the third harmonic. For this
case, the saturation length increases from &k .z, ~ 205 to
k, 2z =241 at w/ck, ~27.25 as the axial energy spread
increases to Ay, /y5=0.5%. At w/ck, =65.25 seventh
harmonic) the saturation length increases from
k,Zg =205 to k, 2z, ~257 as the thermal spread in-
creases to Ay. /y7=0.27%.

The question of the effect of the thermal spread on
harmonic generation has been addressed in an analytic
model of the low-gain, single-particle regime by Coisson
and de Martini.” The results of the analytic model also
showed that the sensitivity of the interaction to the
beam thermal spread increased with the harmonic num-
ber. The reason for this can be understood by considera-
tion of the resonance condition w—(k +/k, v, =0, so
that the transition to the thermally dominated regime
occurs when (Rek + 1k, )Av, ~(Imk)T, where Auv, is the
axial velocity spread, U, is the bulk axial velocity of the
beam, Rek is the wave number, and Imk is the growth
rate. Since the growth rate typically decreases with in-
creasing harmonic number® while the wave number in-
creases (i.e., it is a higher-frequency interaction), it 1s
clear that the transition to the thermally domirated re-
gime occurs for progressively lower values of Av, /T, as
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the harmonic number increases.

The issue of beam propagation through the wiggler
can also be addressed with this formulation. Results in-
dicate that while the entire beam propagates through the
system in the absence of a thermal spread, a substantial
fraction of the beam can be lost to the wall for even
moderate thermal spreads (i.e., Ay,/yo>1%) at this
beam energy.

In summary, the results indicate that substantial
growth rates and efficiencies at the higher harmonics are
obtainable at the cost of more stringent requirements on
beam quality. It should also be remarked that while the
difficulties harmonic emission posed for the optical FEL

oscillator at ACO were due to spontaneous (rather than
coherent) emission, tie higher beam currents obtainable
o1 the forthcoming super-ACO storage ring could lead
to coherent harmonic generation. Such problems are
due, in large part, to the excellent beam quality (i.e.,
Ay, /v0=0.1%) obtainable with a storage ring.
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MULTI-MODE NONLINEAR ANALYSIS OF FREE-ELECTRON
LASER AMPLIFIERS IN THREE-DIMENSIONS
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ABSTRACT

The nonlinear evolution of a Free-Electron Laser (FEL) amplifier is investigated
for a configuration in which an electron beam propagates through an overmoded rect-
angular waveguide in the presence of a planar wiggler with parabolically tapered pole
pieces. The analysis is fully three-dimensional and describes the evolution of an arbi-
trary number of resonant TE and/or TM modes of the rectangular guide as well as the
trajectories of an ensemble of electrons. Numerical simulations are conducted for pa-
rameters consistent with the 35-GHz amplifier experiment performed by Orzechowski
and coworkers, in which the TE,,,TE,,, and TM,, modes were observed. The the-
ory is found to be in good agreement with the experiment. Surprisingly, comparison
with a single-mode analysis shows that the enhancement of the efficiency of the TE,,
mode obtained by means of a tapered wiggler is significantly greater (as well as being
in substantial agreement with the experiment) when the TE;, and TM,;, modes are

included in the simulation.




I. INTRODUCTION

The Free-Electron Laser (FEL) has been shown to be a high power radiation
source over a broad spectrum extending from microwave!~!? through optical *¢-2!
wavelengths. For operation at relatively low beam energies (typically below about 500
keV) and long wavelengths, the device is termed a Ubitron ! and the interaction occurs
in the vicinity of the lowest order waveguide cutoff. As a consequence, the system
can be designed in such a way that the beam is resonant only with the lowest order
waveguide mode, and a single-mode analysis is sufficient to describe many aspects of
the interaction. However, at higher energies and shorter wavelengths, the interaction is
overmoded in the sense that the electron beam can be resonant with several (perhaps
many) modes, and the competition between the modes has important consequences for

the interaction.

The motivation for the present work is to develop a multi-mode nonlinear theory
and simulation code for a Ubitron/FEL amplifier. The analysis is based on previ-
ously described single-mode analyses of helical wiggler/axial guide field??~2° and pla-
nar wiggler?® configurations. The development of a multi-mode analysis represents a
straightforward generalization of the single-mode theories, and involves the calculation
of J ¢ E for each mode as well as the integration of electron trajectories in the aggre-
gate field composed of the sum of all the resonant modes. The particular configuration
considered in the present work is that of a planar wiggler geometry in which the elec-
tron beam propagates through a rectangular waveguide. The detailed wiggler model
we employ includes the effect of parabolically shaped pole pieces in order to provide
for electron focussing in the plane of the bulk wiggler motion, !'?” and we model the
injection of the electron beam into the wiggler by allowing the wiggler amplitude to
increase adiabatically from zero to a constant level. In addition, we consider the effect
of a tapered wiggler amplitude on efficiency enhancement in overmoded systems. As in
the case of the single-mode analysis,?® the overlap between the electron beam and the

transverse mode structure of either TE or TM modes is included in a self-consistent
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way, and no arbitrary “filling-factor” is necessary. Although the problem of interest
is that of an overmoded FEL amplifier which requires a multi-mode treatment, only
single-frequency propagation need be considered. As a result, Maxwell’s equations may
be averaged over a wave period which results in the elimination of the fast-time- scale

phenomena from the formulation.

The organization of the paper is as follows. The general formulation is described
in Sec. II, and allows for the inclusion of an arbitrary number of modes of TE and/or
TM polarization, subject to the restriction that all are propagating modes at the
same frequency. A direct application of the multi-mode analysis is to the description
of a recent experiment by. and coworkers,®!?® in which the TE,,,TE,,, and TM,,
modes of a rectangular waveguide were observed. Numerical examples appropriate to
this experiment are discussed in Sec. III, and good agreement with the experiment is

found. A summary and discussion is given in Sec. IV.




Wv——*—

II. GENERAL FORMULATION

The configuration we employ is that of an electron beam propagating through an
overmoded rectangular waveguide in the presence of a planar wiggler field generated

by a magnet array with parabolically tapered pole pieces.!'?” As a result, the wiggler

field is assumed to be of the form:

B, (x) = B, {cosk, z(smh[T]s h[\/_]e, sh[\/_]cosh[\/_]ey)

- 2cosh[%]sinh[h’7:]sinkw 28,} (1)

where B,, denotes the wiggler amplitude, and k&, (= 27/}, ) is the wiggler wavenumber.
The injection of the beam into the wiggler is modeled by an adiabatic increase in the
wiggler amplitude over N, periods. In addition, since the enhancement of the efficiency
by means of a tapered wiggler is also studied, the wiggler amplitude will be tapered

downward starting at some point 2z, downstream from the entry region in a linear

fashion. For this purpose we choose

B, sin*(k, z/4N,) ;0<2< N, A,
B,(z) =<{ B, iNyA, <2< 2, (2)
B,[l1+ € ko(z2—2)] ;2> 2

where




1 4d
e=kd—tnB.,

(3)

describes the slope of the taper. Since the fringing fields associated with the tapered

wiggler amplitude are neglected, this representation requires the slopes of the taper to

be small (i.e., N, must be large and |¢, | < 1).

The boundary conditions at the waveguide wall may be satisfied by expanding the

vector potential in terms of the orthogonal basis functions of the vacuum waveguide.

Thus, we write the vector potential of the radiation in the form

SA(x,t) = Z 6Acn (2)ell) (z,y) cos @

for the TE modes, and

L inX nnY

A(x,t) = le 8Ain(2)le,. (z,y)cos a + kTs n(T)sin( 3 ) sin aé, |
for the TM modes, where for frequency w and wavenumber k(z)
a= }dz’k(z') —wt .
In addition, }_' indicates that £ and n are not both zero, and
,“, - nr tr X nrY .. _ tr | inX nrY ..
) (z,v) kmbcos( ” ——) sin( > )é. k,,.asm( - )cos(——b )é,

(5)




ix irX, . nnY, . nr , drX nrY, .
eﬁ:)(xvy) = k,,,acos 'a—) sm(T) e + k,,,bsm(T) Cos(—b—) €y (8)

are the polarization vectors. In this representation, the waveguide is assumed to be
centered at the origin and bounded by —a/2 < z < a/2 and -b/2 < y < b/2. As a
consequence, X =z +a/2,Y =y +5/2, and

ez 2
ken = w(a—z + %)1“ (9)

denotes the cutoff wavevector. It is implicitly assumed that both §A,,(z) and &(z)

vary slowly over a wave period.

The multi-mode treatment includes an arbitrary number of propagating modes of
TE and/or TM polarization. The detailed equations which describe the evolution of
the amplitudes and wavenumbers of these modes are identical to those derived in the
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single-mode analysis,’® and we merely restate the results here. The equations which

govern the evolution of the T E,, mode are

d? w? w? cos a
d—;,;éazn + (:{ —k* - k?n)6a!n = 8?:‘an <—1v_|—e il)‘> ) (10)
and
d w3 sina
1/2 % (112 = 8% (1) 11
2k dz (k 6aln) c’ Flu lv'l eln v> ¥ ( )

where 8a,, = e6A.,/mc?,w} = 47n,e? /m (where n, is the bulk density of the beam),
v is the instantaneous electron velocity, and F,, = 1/2 when either £ =0 or n = 0 and

unity otherwise. For the TM,, mode we obtain a similar result

T T e T




2 2
£ bae, + (1+ ﬁ)(w‘— — K — k2, )ba,, = 8=2

dz? k3 7% e? c?
X %eii)'v'*' %:TEI:—"-sin ela{) sin(?) sin¢>, (12)
and
2k + 502 L4 By gq,, ) = s
x<sli::l1e(li).v - l::l ,fl:—"sin(elaﬁ)sin(niy)cos% (13)

wiere we note that there is no nontrivial TM mode solution when both ¢ = 0 and

n == 0.

Equations (10) - (13) are equivalent to a calculation of J ¢ §E,, for each mode.
The averaging operator ({(...)) is defined over the initial conditions of the beam, and

includes the effect of an initial momentum spread by means of the distribution function

F,(p,) = Aexp|—(p:o — p,)*/API] 68(p5 — P}, — Pl )H(p:0) (14)

where p, and Ap, describe the initial bulk momentum and momentum spread, H(z)

is the Heaviside function; and the normalization constant is

A= (n'] dpuo expl=(pu0 = p)" /A2 (15)




Observe that this distribution is monoenergetic, but contains a pitch angle spread which

describes an axial energy spread given approximately by

A~,

o

A
~1-[1+2(7 —1)—;"2]"/2 : (16)

where 7, = (1 + p?/m?c?)!/2. As a result, the averaging operator takes the form

A 2r Po
((-)) = 3oo5 1 ddo 1 dpooBuo expl—(peo — o) /AR
" a/2 b/2
x [ d,o(¥,) [ dz, [ dy,00(Zs,%)(...) (17)
-n -a/2 -b/2

where ¥,(= ~wi,) is the initial ponderomotive phase, ¢, = tan™'(p,o/pz0), B:0 =
v:o/¢, and 0 ‘¢, and oy (z,, y,) describe the initial beam distributions in phase and

cross section.

The phase veriation of each mode can be analyzed by the addition of an equation

to integrate the relative phase.

®(z) = Zdz’(k(z') k), (18)

where k, = (w?/c? — k3 )!/? is the wavenumber of the vacuum guide. Since the
departure of k(z) from the vacuum wavenumber describes the effect of the wave-particle
interaction, ®(z) represents a measure of the dielectric effect of the FEL interaction.

Thus, we integrate the additional equation




— ¢ =k- ko ]
o® (19)

for each TE a.ndATM mode.

Each mode will interact resonantly with the electrons and be coupled through the
electron motion in the combined wiggler and bulk radiation fields. Thus in order to
complete the formulation, the electron orbit equations must also be specified. Since we
describe an amplifier model, we choose to integrate in z, and write the Lorentz force

equations in the form

d e
v, E P= —ebE — ‘c'V L] (B,,, + 6B) (20)

where B,, is given by Eq. (1) and the radiation fields are given by

19
6 = —- =
E=--= ) 6A., (21)
all modes
and
SB=Vx ) 6Awm . (22)
all modes

Finally, the electron coordinates obey the equations

d
—p = 23
v, dzz v, (23)
d
v, E;y =v, (24)




and

d w
Z‘;w:k‘*'kw—'v— ’ (25)

which describes the evolution of ponderomotive phase

» w=¢o+}dz'(k+k.,—vﬁ) . (26)
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III. NUMERICAL ANALYSIS

The dynamical equations for the particles and fields described in Sec II are now
solved for an overmoded amplifier configuration in which several modes may be in
resonance with the beam at a fixed frequency w. The numerical problem involves the
solution of a set of 6N +4N,, ordinary differential equations (whereNr is the number
of particles, and N, is the number of modes) as an initial value problem. Observe that
equations for the amplitude, growth rate, wavenumber, and phase are integrated for
each mode. The integration is accomplished by means of a fourth order Runge-Kutta-
Gill technique, and the particle average described in Eq. (17) is performed by and N**
order Gaussian quadrature in each of the initial variables. The initial conditions on the
fields are chosen to model the injection of an arbitrary power level of each mode, and
the initial wavenumbers correspond to the vacuum state (i.e., k(z = 0) = k,). Further,
the initial value of the relative phase of each rnode is zero, and both the wiggler field
and growth rate are initially zero. The initial state of the electron beam is chosen to
model the injection of a continuous, axisymmetric electror. beam with a uniform cross
section so that oy = 1 for -7 < ¢, < m,and o, = 1forr, < R,. A more detailed

description of the procedure is to be found in refs. 22 and 26.

The particular example we consider is that of a 35-GHz amplifier employing an
electron beam with an energy of 3.5 MeV, a current of 850A, and an initial radius of
1.0 cm propagating through a waveguide characterized by a = 9.8¢cm and b = 2.9cm.
Wave-particle resonance is obtained in the vicinity of 35-GHz for a wiggler field of
3.72 kG amplitude and 9.8 c¢cm period,and beam injection is accomplished over an en-
try length of five wiggler periods. For this choice of parameters three wave modes
are resonant; specifically, the TE,,, TE;,, and TM;, modes. The multi-mode results
described herein will be compared with a previous single-mode treatment. In addi-
tion, the parameters correspond with an experiment conducted by Orzechowski and

coworkers,’!® and a comparison of the simulation with the experiment will be given in
Sec. IV.
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The detailed evolution of the total wave power as a function of axial position is
shown in Fig. 1 for an axial energy spread of A«, /v, = 1.5% on thc beam and the
injection of a signal at w/ck, = 11.3(34.6GHz) composed of the TE;; mode at 50
kW, the TE,, mode at 500 W, and the TM;, mode at 100 W. As shown in the figure,
saturation of the total signal occurs at k, z = 96(1.5m) at a power level of 201 MW
for a total efficiency of n ~ 6.87%. It is also evident that although the TE,;, mode
was the overwhelming dominant mode upon injection, it comprises only about 60% of
the signal at saturation. The remaining power is composed primarily of the TE,, (at
37% of the signal) with only a relatively small contribution of the TM,, mode. As
discussed in ref. 26, the reason for this is that at this frequency the growth rate of
the TE,, mode exceeds that of the TE,, mode, and compensates for the lower initial
power level. Due to the polarization of the TM,;, mode, the growth rate and efficiency
are smaller than for the TE modes, and the TM,, mode never accounts for more than
about 7 MW. The rapid oscillation shown in the figure has a period of approximately
Aw /2 and occurs because the evolution of J e E for a plana- wiggler exhibits both a slow
variation corresponding to the ponderomotive phase and a rapid oscillation at A, /2.%°
Observe that the single-mode analysis showed a saturated power of 162 MW for the
TE,, mode, 126 MW for the TE;, mode, and 25 MW for the TM,, mode. Thus,
while the total power of the signal in the multi-mode analysis somewhat exceeds that
shown in the single-mode cases (for the T E modes), the power levels of the individual

modes are lower.

The phase variation of each of these modes is shown in Fig. 2 as a function of
axial position, where the arrow denotes the point at which the total power saturates.
Of these modes, the TE,,; behaves in qualitatively the same way as in the single-mode
case. Specifically, the bulk phase at this frequency (apart from the rapid oscillation at
A /2) increases monotonically with axial position through, and beyond, the saturation
point. In contrast, the relative phases of both the TE,, and TM,, modes are decidedly
not monotonic and exhibit a decrease with axial position starting at a point somewhat

beyond saturation. This is a multi-mode effect since the relative phases of the T E;,
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and TM;, modes also exhibit a monotonic increase with axial position at this frequency
in the single-mode analysis. Finally, we observe that the curves of relative phase for the
TE;, and TM;, modes are almost identical. The reason for this is that the dispersion

curves for the TE,, and TM,, modes are degenerate in a rectangular waveguide.

The effect of an initial momentum spread on the saturation efficiency of the total
signal and the TE,; and TE,, mode components is shown in Fig. 3. The TM;, mode
is excluded from the figure because it composes such a small fraction of the signal. As
shown in the figure, the saturation efficiency is relatively insensitive to the axial energy
spread over the range A~v,/v, £2.5%, and decreases from n ~ 8.6% at Ay, ~ 0 to
n =~ 5.9% at A~, /v, =~ 2.5%. The reason for this is that the coupling coefficient (and,
hence, the growth rate) depends upon the product of the wiggler amplitude and period.
Since this product is large for the present choice of parameters, the growth rate is large
and the interaction can accept a relatively large axial energy spread without suffering

a severe degradation.

The saturation efficiency is known to scale as the cube root of the beam current at
the frequency of peak growth from the idealized one-dimensional theory of the high-g.in
Compton (i.e., the strong-pump) regime, and this type of scaling law was also found
from the three-dimensional single-mode simulation of this configuration. The scaling
of the total power as a function of beam current for the multi-mode analysis is shown
in Fig. 4 for Ay, = 0 and A~, /v, = 1%, the efficiency is found to scale approximately
as n ~ I;/ 2.

Turning to the question of the enhancement of the efficiency by means of a tapered
wiggler, we plot the evolution of the power with axial position in Fig. 5 for parameters
corresponding to those shown in Fig. 1. The optimal start-taper point for this case
is k, z, = 86, and we choose a slope of ¢, = —0.007 which was also studied for the
single-mode analysis. The central conclusion to be drawn from the figure is that it is
possible to selectively enhance the TE,, mode. The uniform wiggler interaction for this

example yields a total efficiency of 6.8%, of which the TE,, mode comprises only 60%
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of the signal. By contrast, careful choice of both the start-taper point and the slope of
the taper show that the efficiency can be enhanced to n,,,, ~ 41.29% (if the wiggler
field is tapered to zero) with 99% of the power in the TE,;, mode. Both the TE,,
and TM;, (not shown in the figure) ultimately decay to extremely low intensities. One
surprising result of the present multi-mode analysis is that the maximum efficiency to be
obtained by tapered wiggler fields is enhanced relative to the single-mode analysis. By
comparison, the single-mode analysis for these parameters yields a maximum efficiency
of Nma: =~ 34% which is substantially lower than the 41.29% found in the multi-mode
simulation. The phase variation of the TE,, mode for this example is shown in Fig.
6, and exhibits the same qualitative variation as in the single-mode analysis. Another
characteristic of the tapered wiggler interaction observed in the single-mode treatment
is that the overall efficiency appears to be relatively insensitive to the axial energy

spread. As shown in Fig. 7, in which we plot the maximum obtainable efficiency versus

A7, /7., this is also found to be the case in the multi-mode analysis. As shown in the-

figure, the maximum efficiency decreases from 43.6% at v, = 0 to as much as 39.4% at
A%, /v, = 2%. This is a much lower proportional sensitivity to the axial energy spread

than is illustrated in Fig. 3 for the uniform wiggler case.

Finally, we address the question of the sensitivity of the tapered wiggler interaction
to fluctuations in the bulk energy of the beam. The reason for concern with this
issue is that the tapered wiggler interaction is known to be sensitive to the start-taper
point. In particular, the taper should begin at a point shortly prior to saturation
(for the untapered wiggler) corresponding to the trapping of the bulk of the beam in
the ponderomotive potential. Changes, or fluctuations, in the beam energy at fixed
frequency are equivalent to variation of the frequency at fixed energy, and result in
shifts in the growth rate and saturation point. For this reason, it might be expected
that the tapered wiggler interaction is sensitive to fluctuations in the bulk energy of the
beam. In order to address this question, the variation in the efficiency has been studied
as a function of beam energy, and the results are shown in Fig. 8. For convenience, this

figure has been generated for the limiting case of zero axial energy spread for which the
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optimal start-taper point is k, z, = 83 at a beam energy of 3.5 MeV. Hence, choosing
€w = —0.007 and the aforementioned start-taper point, Fig. 8 describes the variation in
the efficiency with beam energy when (1) the wiggler is tapered to zero (AB, /B, = 1),
and (2) when the wiggler is tapered to half its ambient level (AB, /B, = 0.5). As
shown in the figure, there is a sharp decline in the efficiency above approximately 3.55
MeV. In contrast, there is a more gradual decrease in the efficiency for energies down to
3.3 MeV, below which the resonant interaction at w/ck, = 11.3 is lost. As a result, the
tapered wiggler interaction will tolerate a bulk energy fluctuation of the order of 8.6 %

for these parameters without severe degradation in performance for these parameters.
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IV. SUMMARY AND DISCUSSION

In this paper, a multi-mode analysis and simulation of FEL amplifiers in three-
dimensions has been given for a configuration in which a relativistic electron beam
propagates through an overmoded rectangular waveguide in the presence of a planar
wiggler generated by means of an array of magnets with tapered pole pieces. I'he
multi-mode analysis is accomplished by expansion of the radiation field in terms of
the vacuum waveguide modes, and an arbitrary number of propagating TE and/or
TM modes is included in the analysis. Although multiple modes are included in the
analysis, the problem of interest is that of an amplifier and single frequency propagation
is considered. As a result, the field equations are averaged over a wave period in order
to eliminate the fast-time scale phenomena. However, no average of the orbit equations
was performed, and the electron dynamics were treated by means of the fully three-
dimensional Lorentz force equations. As a result, the effects of the adiabatic injection
process, bulk wiggler motion, Betatron oscillations, velocity shear, beam focussing
due to the wiggler gradients, and phase trapping of the beam in the ponderomotive
potential formed by the beating of the wiggler and radiation fields, are all included in

a self-consistent manner.

The numerical example describes a 35-GHz amplifier which employs a 3.5
MeV/850A electron beam with a 1.0 ¢m initial radius propagating through a rect-
angular waveguide with dimensions a = 9.8¢cm and b = 2.9¢cm in the presence of a
wiggler field with a 3.72 kG amplitude and 9.8¢m period. Three distinct wave modes
are found to be resonant; specifically, the TE,,,TE,,, and TM;; modes. The simula-
tion is carried out under the assumption that the injected signal consists primarily of
the TE,;, mode at a 50kW power level, the TE;, mode at 500W, and the TM,, mode
at 100W. Results indicate that although the TE,, mode was at a relatively low initial
power level, it comprises upwards of 37% of the saturated signal. The coupling between
the beam and the TM;, mode was weaker than for the TE modes, and never accounted

for more than a few percent of the total signal. Comparison with a previous single-mode
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analysis?® indicates that the efficienicy of the total signal is somewhat higher than that
found for single modes in the case of a uniform wiggler. A more dramatic difference
between the multi-mode and single-mode treatments is found for a tapered wiggler
interaction. In this case, it is found that the selective enhancement of the TE,, mode
is possible and, indeed, has been experimentally observed.'* However, the power levels
to be obtained in the TE,; mode through the multi-mode tapered wiggler interaction
were found to be substantially higher than found in the single-mode simulation. This

constitutes an important question for future study.

The configuration and parameters described in this paper nominally correspond to
the experiment performed by Orzechowski and coworkers.®'!® The principal differences
between the analytical configuration and the experiment are that in the experiment
(1) the beam was injected into the wiggler through an entry taper region one wiggler
period long, and (2) a quadrupole field was used to provide additional electron focussing
instead of parabolically tapered pole pieces. Since the fringing fields associated with
the wigyler field in the entry taper region are not included in the analytical model, it
would be invalid to apply the analysis for N, = 1. However, the choice of N, = 5
is made as a compromise and gives good agreement with experiment subject to the
additional assumption of an axial energy spread of A+, /v, = 1.5%. This is within
an upper bound of 2% on the axial energy spread established by means of an electron
spectrometer measurement.?® The experimental measurement for a uniform wiggler
interaction resulted in a saturated power level of 180 MW over a length of 1.3m. As
shown by Fig. 1, the simulation gives a peak power of 204MW which, if we average over
the fast A, /2 oscillation, is reduced to 185 MW. Given the experimental uncertainties
in high power measurements, the latter figure is more relevant for comparison and
is in substantial agreement with the experiment. The saturation length found from
simulation (that is, the length of the uniform wiggler region plus one wiggler period to
account for the entry taper region) is 1.1m, which is also in good agreement with the
experiment. Note that rapid oscillation in the power and relative phase at a period of

Ay /2 is likely to introduce a 10-20% uncertainty in the measurement of these quantities.
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A comparison can also be made with the tapered wiggler experiment!? in which the
wiggler field was decreased by 55% (AB, /B, = 0.55) over a length of 1.1m (i.e.,
€w = —0.0078) and the efficiency was found to increase to 34% for a total power of
1 GW. The evolution of the total signal power, and that of the TE modes, is shown
in Fig. 9 for parameters consistent with the tapered wiggler experiment (the optimal
start-taper point found in simulation was k, 2, = 86). As shown in the figure, the
maximum efficiency obtained by tapering the wiggler field to zero is approximately
40.6%, of which more than 95% of the power is contained in the TE,, mode. However,
over a length of only 1.1m beyond the start-taper point (i.e., k, z — k, 2, = 70.5) the
efficiency is 34%, of which approximately 90% of the power is in the TE,, mode. The
evolution of the relative phase for this case is shown in Fig. 10, in which the relative
phase saturates at a value in the neighborhood of 120° downstream from the start-
taper point. This is in good agreement with reported measurements of the evolution of
the relative phase in the tapered wiggler experiment.?® Thus, within the uncertainties.
imposed by th= choices of N, and A~;z, the nonlinear analysis is found to be in good
agreement with the experimental measurements for both uniform and tapered wiggler

interactions.
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Fig. 2

Fig. 4

Fig. 6

Fig. 7

Fig. 9

Fig. 10

FIGURE CAPTIONS
The evolution of the wave power (both total and TE,, mode) with axial position.

Plots of the evolution of the relative phase versus axial position for (a) the TE,,

mode, (b) the TE;, mode, and (c) the TM;, mode.

Variations of the saturation efficiencies of the total signal and the T E modes versus

axia. energy spread.

Graph showing the scaling of the efficiency of the total signal with beam current

for Av,/4, =0 and 1%.

Plot showing the evolution of the total signal and the TE modes for a tapered

wiggler interaction characterized by ¢, = —0.007 and k,, z, = 86.

Graph of the evolution of the relative phase of the TE,, mode during the course

of the tapered wiggler interaction.

Illustration of the effect of an axial energy spread on the tapered wiggler interac-
tion. Observe that each point corresponds to the optimal start-taper point of the

associated A~,.

The variation in the efficiency of the tapered wiggler interaction with fluctuations

in the bulk energy of the beam.

Plot of the evolution of the total signal and the TE modes for a tapered wiggler
characterized by ¢, = —0.0078 and k, z, = 86.

Graph of the evolution of the relative phase for a tapered wiggler interaction

characterized by ¢, = —0.0078 and k,, 2, = 86.
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EFFICIENCY ENHANCEMENT IN
FREE -ELECTRON LASERS DRIVEN BY
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Efficiency Enhancement in Free-Electron Lasers
Driven by Electromagnetic-Wave Wigglers

- HENRY P.

Abstract—A scheme for efficiency enhancement in free-electron la-
sers which are driven by electromagnetic-wave wigglers is described
which employs a tapered axial guide magnetic field. While tapered
magnetostatic wiggler designs have been proven to be an effective means
of enhancing the efficiency of free-electron lasers, practical difficulties
occur in the design of tapered electromagnetic-wave wigglers. For this
reason, it is shown that a tapered axial guide field can be used in con-
cert with an electromagnetic-wave wiggler for the purpose of efficiency
enhancement.

N extensive body of literature currently exists dem-

onstrating the application of the free-electron laser as
a source of radiation over an extensive range of wave-
lengths ranging from the microwave to the optical spectra
[1]-[8]. The physical mechanism depends upon the prop-
agation of an electron beam through a periodically rippled
magnetic field referred to as the wiggler or undulator. Co-
herent radiation results from the undulatory motion of the
electron beam which permits a wave-particle coupling to
the output radiation by means of the ponderomotive po-
tential formed by the beating of the wiggler and radiation
fields. The wiggler field itself may be either magnetostatic
or electromagnetic in nature. Although the bulk of exper-
iments to date have relied on magnetostatic wigglers, the
fundamental principle has also been demonstrated using a
large-amplitude electromagnetic wave to induce the req-
uisite undulatory motion in the electron beam [9]. The
basic difference between the two classes of wiggler lies in
the frequency of the output radiation, which depends upon
both the wiggler period and the electron beam energy. In
the case of a magnetostatic wiggler. the wavelength of the
output radiation scales as A = \,/2y; where A, denotes
the wiggler period and v, is the relativistic factor for the
beam. In contrast, the wavelength of the output radiation
for an electromagnetic-wave wiggler scales as N = A,/
4v;. As a result, for fixed wiggler periods and electron
beam energies, the electromagnetic-wave wiggler will
produce shorter output wavelengths.

The question addressed in this papet is a method of en-
hancing the efficiency of a free-electron laser driven by
an electromagnetic-wave wiggler. The largest efficiencies
observed with uniform magnetostatic wigglers are in the
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was supported by the Office of Naval Research and the Office of Navai
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neighborhood of 13 percent [10], [11]. The term *‘uni-
form’ in this sense refers to a wiggler with a constant
amplitude and period. Although such efficiencies have not
yet been observed with electromagnetic-wave wigglers,
the number of such experiments is small and there is no
reason to think that such efficiencies are not possible.
However, for many applications, higher efficiencies are
desirable. The theory of efficiency enhancement by means
of tapered magnetostatic wigglers has been amply dis-
cussed in the literature [12]-[17] and may be affected by
either a tapered amplitude or period. Recently, experi-
mental confirmation of the theory has demonstrated that
efficiencies in the neighborhood of 35 percent are possible
using tapered magnetostatic wigglers (18]. As in the case
of magnetostatic wigglers, efficiency enhancement can
also be achieved in free-electron lasers using tapered elec-
tromagnetic-wave wigglers. However, while tapered
magnetostatic wigglers are relatively easy to design and
construct, tapered electromagnetic-wave wigglers present
technical difficulties in design due to problams in mode
control. In particular, the coupling cocfficient betwz=en
modes in a tapered waveguide depends .pon the slope of
the taper. Difficulties may ensue, therefore. if the slope
of the taper is comparable to the coupling coetficient de-
scribing the free-electron laser interaction.

For this reason, an altemate efficiency :nhancement
scheme is described in this paper which relies on a con-
figuration in which a tapered axial guide field is used in
addition to an electromagnetic-wave wiggler. This ap-
proach has the advantage of extreme ease of construction.
Configurations in which an axial guide field 15 used have
been analyzed both for magnetostatic and electromag-
netic-wave wigglers [19]-(21]. The axial guide field 15
often employed for the purpose of confining the electron
beam against the effects of self-fields. and enhancements
in both the gain and efficiency are found beth in theory
and experiment [3] for a sufficiently strong wniform axial
guide field that the Larmor period is comparable to the
wiggler period. The essential point which should be em-
phasized here is that a tapered axial guide field can be
used to enhance the efficiency of a free-electron laser
without the necessity of a strong guide field.

Efficiency enhancement by means of a tapered guide
field has been analyzed for free-electron lasers with mag-
netostatic wigglers [17]. [22]. In order to formulate the
problem for an electromagnetic-wave wiggler, we assume
that the axial guide field is uniform forz < 2, and displays

0018-9197/87/0900-1590$01.00 © 1987 IEEE
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a linear taper thereafter. Thus,

B(_)_EBO; I< Y (1
ot BO[l + Ko(Z - Zo)]l > 2

~—

(4]

where By is a constant amplitude and «y( = d In By(z)/dz)
represents the inverse scale length fof variation of the ax-
ial field. The electromagnetic wiggler is represented by a
vector potential of the form

B

~—[é, cos (k.z + w,t)

A1) = Pe

(2)

where B, denotes the amplitude of the wiggler magnetic
field and (w,. &, ) are the frequency and wave vector. Ob-
serve that for positive w,. the Poynting flux is directed
antiparailel to the : axis. The radiation field is assumed to
be propagating parallel to the ; axis. and is represented
by a plane wave

bA(z. 1) = BA(2) [, cos (kz — wr) — é, sin (kz — wr)]
(3)

where 64 (2) denotes the slowly varying amplitude of the
vector potential, w is the frequency. and & is the wave
vector. The electron beam equilibrium is described by the
steady-state trajectories of electrons in the combined wig-
¢'er and axial fluid fields {19]. {20]; hence. the equilib-
7:om velocity is

+ &, sin (k.2 + w,1)]

vy = 0, € cos (k2 + w.1)
+ é.sin (ko + w,1)] + vé. (4)
wheare ¢+ is the constant axial velocity,
Qlw, +k,2) (5)
r, = .
/\';‘[Qn = Yyolw, + k, v )]
Q,. = '¢B,,./mcl.and
I': l':‘ -1 2
‘r(>=(l—_;'__:> 16)
\ ¢ C

We now determine the response of the electron beam to
the radiation field. and write ¢ = vy + dvrand y = v, +
7 to first order in 6A4. The perturbed orbit equations have
been solved for the case of a uniform axial guide field
{21]. Based upon this analysis, the perturbed orbit equa-
tions can be shown to reduce to

d:

— ¢ = K° (sin y — sin ¢n.)

dz- (7)

where y = (k + k)2 — (w — w, )1 is the particle phase
with respect to the ponderomotive wave,

’ k"k“:
Kim )¢

= 5 8.8ad,
YoY '

(8)

1591
and
. - 59_ Yo ! W, Uy -
SIN Yy o, B—“éa {—q) } {l + J(-: ?}
W, + kul"l 9
(k + k,)c’ (9)

In (8) and (9), 6a = edA/mc*, B, = v, /vy, vy = (] -
vi/c*)™'/?, and

k.t :12 [
- | ——— 1
l [ww + ka"
- w})

2 3k2 :
[] +L—; (ke :} Q — volw. + kovy)
¢ (ww + ku'u!()

2
+ W Uy ]
ck, ¢

‘Yﬁ Biﬂo

=

(10)

Equation (7) describes the trapping of electrons in the
ponderomotive potential formed by the beating of the
wiggler and radiation fields, and is formally identical to
the dynamical equation derived for magnetostatic wig-
glers. In panticular, it should be noted that the term in sin
Y., describes the bulk acceleration or deceleration of
electrons due to the tapered guide field. )

In order to determine the implications of this equation
for the phese trapping on the efficiency enhancement in a
tapered system we now calculate the small-signal gain.
We assume the system has run to saturation at £ = Z,, at
which point the tapered guide field begins. and we define
the gain over a length L relative to this point as

G = da'z =z + L) ~ da(z = 2;)
L= 50(2 = Z()) ’

(11)

As a consequence. it may be shown that [21]

o+l
Wh U, .
G = —57—— S dz (sin (12)
t 2ke” cda(zy) Jw (sin ¥)
where ( - - - ) denotes a phase average over an ensemble

of electrons. Since the system is assumed to have reached
saturation at : = 2, the bulk of the electron beam has
been trapped in the ponderomotive potential and ¥ = Yres-
Hence,

L3 2 -1
wi _voBt [l - 4’] [ @ '_1
= =~ 5 L 1 +
20k sa(z) L @ k. ©

k(w, + k, )
k(w — w,)

G
(13)

The efficiency enhancement An(L) can be calculated by
taking the ratio of the increase in the Poynting flux to the
power flux of the electron beam. Since the Poynting flux
increases by an amount AS = (wk/2%)G, 64%(z = 25).
the efficiency enhancement is
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I~-¢

(14)

An(L) = Bi(xoL) {———]
_w_wy_"jl_l wlw, + k1)
ck, ¢ kovi(w — w,)

$
i+

Observe that the efficiency enhancement for the case of
the magnetostatic wiggler [22] is recovered in the limit as
w, — 0.

In order to obtain estimates of the efficiency enhance-
ments possible, we consider parameters consistent with
those discussed previously [21], [22]. Specifically, we
choose 7o = 3.5, 0, /vock., = 0.05, w,/vo'*ck. = 0.1,
and we assume that A, = | cm. We first consider Group
I orbits for which Q) < yy(w. + k.vy) and we let
Qo/vock, = 0.5. This corresponds to an axial magnetic
field of 18.7 kG. In order to obtain the frequency of the
electromagnetic wiggler, we must solve the electron orbit
equations {(5) and (6}] together with the dispersion equa-
tion for an electromagnetic wave in a uniformly magne-
tized plasma {21]. For this choice of parameters, we ob-
tain w,, /ck, = 1.007 (i.e., 30.2 GHz). and the interac-
tion occurs at a resonant frequency w/ck, = 44.57 with
a wavelength of 0.22 mm. The orbit parameters are 3, =
0.956, v, /c = 0.067, and & = 1.018. As a consequence,
the efficiency enhancement per unit length is approxi-
mately Ap(L)/L ~ —0.035 xo. Thus, if we taper the
axial field downward, then we obtain an efficiency en-
hancement of 3.5 percent if we taper the field to zero (i.e.,
koL = —1). As the resonance is approached more clusely,
the efficiency enhancement increases. To see this, we ob-
serve that if we double the magnetic field (B, = 37.5 kG
and Qg /yock, = 1.0) while remaining on Group [ 'rajec-
tories, than we find that w,/ck, = 1.010 (30.3 CGHz),
w/ck, =41.66 (A =0.24 mm), 8, =0.9529, w,/c =
0.1019, and & = 1.117. Hence, An(L)/L = —0.10 «,.
and an efficiency enhancement of 10 percent is possible if
the axial field is tapered to zero. The efficiency enhance-
ment continues to increase as the resonance at 0y ~ yo(w,,
+ k, ) is approached further; however, v, and the res-
onant interaction frequency decrease rapidly and it be-
comes increasingly difficult to obtain short wavelength
output radiation. Finally, the mechanism is also operative
for Group Il trajectories where Q; >, yo(w. + k. 0), but
at the cost of prohibitively high magnetic fields.

While the specific theory of efficiency enhancement de-
scribed here is directly applicable only to the strong-pump
{or Compton) regime of operation in which space-charge
fields are negligible, the fundamental mechanism is also
appropriate to the collective Raman regime as well. The
principal advantage to the tapered-guide field approach to
efficiency enhancement is the technical simplicity with
which a tapered-guide field can be controlled. This con-
trasts with the difficulties inherent in the control of a ta-
pered electromagnetic-wave wiggler. It should be re-
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marked that the effect of the tapered guide field i
resonantly enhanced when Q ~ yo(w,, + k,vy) which,
depending upon the specific experimental parameters, may
require a strong axial field. However, the efficiency en.
hancement mechanism is operable at all levels of the axia)
field, and does not require strong guide fields near reso-
nance.
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