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ABSTRACT

The research program during the contract period

consisted of the analysis of the Ubitron/FEL amplifier in

three-dimensions. The principai. configuration of interest

consisted of the propagation of an energetic electron beam

through a loss-free rectangular waveguide in the presence of

a linearly polarized wiggler field with parabolically

tapered pole pieces. The purpose of the tapered pole faces

is to provide a mechanism for focussing the electron beam

in the plane of the bulk wiggler induced oscillation. A

nonlinear theory and simulation code has been developed to

stuiy this configuration which can treat a multiple mode

interac(tion, harmonic growth, efficiency enhancement by

means of a tapered wiggler, the effect of beam thermal

spread on the interaction, the injection of the beam into

the wiggler, and detailed facets of the particle dynamics

such as Betatron oscillations and velocity shear.

Comparisons of the experiment at the Lawrence Livermore

National Laboratory are excellent. Some of the principal

results of the simulation relate to the harmonic and tapered

wiggler interactions. rn the case of the harmonic

interaction, the nonlinear simulation shows both high gain

and good efficiency at the harmonics, although the

interaction is increasingly sensitive to the effects of

. . . . . .. . . . .... ...



velocity spread at the higher harmonics. The tapered

wiggler interaction shows high efficiencies are possible

and that one effect of the tapered wiggler is to reduce the

sensitivity to beam velocity spread. An additional area of

study is the enhancement of the efficiency of a

configuration based upon an electromagnetic wave wiggler by

means of the tapering of an external axial guide field. The

purpose of the electromagnetic wave wiggler is to achieve a

higher operating frequency for a given beam energy (relative

to a magnetostatic wiggler), however, electromagnetic wave

wigglers are inherently more difficult to control (i.e.

taper) for Afficiency enhancement purposes. Thus, the use

of a tapered axial guide field for this reason may have

important applications.
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1. GENERAL DISCUSSION

The fundamental interaction mechanism of the Ubitron is

the same as that of the Free-Electron Laser (FEL), the

distinction between the two is that the term Ubitron

specifically refers to a microwave tube while the term FEL

is often used to describe devices operating over the entire

spectrum. The common Ubitron/FEL interaction mechanism

derives from the propagation of an energetic (but not

necessary relativistic) electron beam through a rippled

magnetic field (called a "wiggler" or "undulator"). The

effect of the wiggler field is to induce an oscillation in

the transverse velocity which is to induce an oscillation in

the transverse velocity which gives rise to spontaneous or

incoherent radiation. Coherent radiation arises from

electron bunching in tlhe ponderomotive potential formed by

the beating of the radiation and wiggler fields. The

wavelength of the output radiation depends on both the

period of the wiggler field and the energy of the electron

beam, and experiments have proven the mechanism to operate

over wavelengths ranging from the microwave through the

visible spectra. Within this context, therefore, the

Ubitron represents a specific application of the concept to

the microwave regime and we shall use the term to describe
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FEL's which employ electron beams with energies less than

about 500 keV.

The primary configuration studied during the contract

period consisted of the propagation of an electron beam

through a loss-free rectangular waveguide in the presence of

a linearly polarized wiggler field. The principal

motivation for this work derives from the interest in Code

6840 at the Naval Research Laboratory in Ubitrons based upon

extremely short period planar wigglers and/or higher

harmonic Ubitrons. The advantage to be derived from such

configurations is the possiblity of generating high

frequency radiation using low energy electron beams. The

detailed wiggler field model we employ describes a planar

wiggler with parabolically tapered pole faces. This type of

wiggler field provides for enhanced focussing in the

direction of the bulk--wiggler-induced motion, and was first

employed experimentally by Phillips'. An analytic model for

this type of field has been given by Scharlemann 2 , who found

that the field can be represented in the form

B Bwcos kwz sinh _ _I sinh [- J

+ cosh - cosh [~ y
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-2 sin kwz cosh _ sih 

where Bw denotes the amplitude and kw ( 2nlkw, where Xw is

the period) represents the wavenumber.

The analytical technique employed is based upon

experience gained in the extensive prior treatment of

Ubitron/FEL configurations based upon helical wiggler

fields 3 -5 . Since we are interested in an amplifier model

only single--frequency wave propagation is considered, which

permits Maxwell's equations to be averaged over a wave

period. As a result, the fast time scale phenomena are

eliminated from the problem. In additLon, only a "beamlet"

of electrons which enter the interac'ion region within one

wave period needs to be included in the analysis. These two

benefits result in major improvements in computational

efficiency in comparison with full-scale particle--in-cell

simulation codes. The boundary conditions imposed by the

waveguide wall may be treated by the expansion of the

radiation field in 'terms of the vacuum waveguide modes. In

previous work with helical wiggler configurations a

cylindrical waveguide was assumed; however, in treating the

planar wiggler, we have assumed the boundary conditions to

be determined by a rectangular waveguide.
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While our primary interest is in the use of short period

wigglers and higher harmonic interactions which permit high

frequency operation with moderate energy electron beams, the

only operational experiment against which our nonlinear

theory can be compared is the ELF experiment at Lawrence

Livermore National Laboratory 6 , 7. The ELF experiment makes

use of a 3.5 MeV electron beam and a planar wiggler field

with a 9.8 cm period and an amplitude of as much as 4 kG to

obtain operation at a frequency of 35 GHz. As a

consequence, the initial development and testing of the

simulation code were performed for this experiment.

The initial formulation described a single-mode

analysis, and gave results in reasonable agreement with the

experiment. The analytical treatment and numerical results

have been published in Physical Review A (see Appendix I).

Resonant interaction was found with the TE0 1 , TE 2 1 , TM 2 1

modes. The saturated powers found for the TE modes were of

the order of 200 MW which is comparable to that observed

experimentally. The coupling to the TM mode is weaker than

for either of the TE modes, and both the gain and saturated

power are substantially lower than for the TE0 1 and TE 2 1,

modes.

6
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The principal difference between the nonlinear analysis

developed under the present contract and other treatments,

such as described in the FRED code in use at the Lawrence

Livermore National Laboratory 7 , is in the treatment of the

particle dynamics. The particle orbits are treated by means

of a reduced set of orbit equations obtained by an average

of the Lorentz force equations over a wiggler period in FRED

and virtually every other nonlinear treatment of the

Free-Electron Laser. The average of the orbit equations is

not performed in the present analysis, however, and the full

set of Lorentz force equations (i.e., in three dimensions)

is integrated for each particle in the simulation. As a

result, the particle dynamics are treated more accurately in

the present analysis than in simulation codes such as FRED.

This is important in the description of the planar wiggler

interaction because the magnitude of the bulk wiggler

velocity is not constant for this configuration, and an

oscillation occurs in the axial velocity with a period of

half the wiggler wavelength. This rapid oscillation is lost

when the orbit equations are averaged over a wiggler period,

but manifests itself in an oscillation in both the wave

power and phase at a wavelength of kw/2 . While this does

not affect the bulk growth of the wave, it does introduce an

uncertainty in the measurement of the axial evolution of the

wave power and phase which may be as high as 10-20%.
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One advantage of the more accurate treatment of the

particle dynamics employed in the present analysis is that

the injection of the beam into the wiggler may be modelled.

The injection process is crucial to the efficient operation

of the Free-Electron Laser because poor matching of the beam

into the wiggler can result in a large axial energy spread

which degrades the interaction efficiency. In order to

minimize this problem most experimental configurations

employ an adiabatic entry taper on the wiggler amplitude

which, in most cases, exceeds four wiggler periods in

length. Simulation of the injection process shows that the

adiabatic injection process is effective for entry taper

regions longer than approximately 4-5 wiggler periods.

Entry taper regions shorter than this are found to result in

substantial declines in the operating efficiency.

A second advantage that derives from the improved

treatment of the particle dynamics is that the analysis is

applicable to the study of harmonic radiation. The harmonic

interaction holds promise for the production of high

frequency radiation using electron beams of moderate energy.

This is an important future application of the analysis.

However, in experiments designed to operate in the visible

spectrum, the harmonic radiation would occur in the

ultraviolet which can result in fatal damage to the optical
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system As a result, the efficiencies and growth rates of

the harmonic interaction can have important implications for

a wide variety of Free-Electron Laser applications. The

nonlinear simulation indicates that the harmonic interaction

in a planar wiggler can be significant with growth rates

comparable to that found at the fundamental. The saturation

efficiency is found to decrease most sharply between the

fundamental and the first harmonic, but shows a weaK

variation with harmonic number thereafter. Thus, the total

power carried by the harmonics can be a significant fraction

of that found at the fundamental. This is a particularly

encouraging result from the standpoint of the design of a

higher harmonic device. However, the simulation also shows

that the harmonics are substantially more sensitive to the

effect of an axial energy spread than the fundamental, and

more precise control of the electron beam will be required

to perform a harmonic experiment. These results have been

published in Physical Review A (see Appendix II).

Another important configuration employed in the

Free-Electron Laser interaction mechanism is the enhancement

of the saturation efficiency by means of a tapered wiggler.

The physical basis for the efficiency enhancement can be

explained by tirst noting that wave-particle resonance in

the Free-Electron laser occurs when w - (k + kw) vz, where

9



vz denotes the axial electron velocity, kw is the wiggler

wavenumber, and (w, k) denote the frequency and wavenumber

of the radiation. As the beam gives up energy to the waves,

the axial electron velocity decreases and the particles drop

out of resonance with the wave. The purpose of the wiggler

tapering is to accelerate the beam in the axial directon so

as to maintain the resonance over an extended interaction

length. This can be accomplished by means of a decrease in

the wiggler amplitude which affects the partition of energy

between motion in the perpendicular and parallel directions

by decreasing the perpendicular velocity of the bulk wiggler

motion while increasing the axial velocity. The tapered

wiggler interaction mechanism has been addressed in the

nonlinear analysis (see Appendix I), with particular

emphasis placed on the effects of an axial energy spread on

the maximum achievable saturation efficiency. The principal

result is that the tapered wiggler interaction is

significantly less sensitive to the effect of the energy

spread than is the case tor a uniform wiggler. This is

encouraging from the standpoint of the design of a tapered

wiggler harmonic experiment, since the higher sensitivity to

beam energy spread encountered for the harmonic interaction

may be compensated for by the tapered wiggler. This will be

an important area of future study.

10
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Recognizing that a single-mode representation is not

appropriate for an overmoded configuration in which the beam

is resonant with more than one mode, we undertook to include

multiple modes in the simulation. The procedure for the

inclusion of multiple modes within the present formulation

involves (1) the integration of particle trajectories in the

presence of the aggregate field, and (2) the computation of

the coupling of each mode to the total current to obtain the

growth of the wave mode. It should be remarked that

although multiple modes can be treated within the

framework of the analysis, all the modes are at the same

frequency in order to perform the average of the field

equations over a wave period. The results of the analysis

have been submitted for publication in the Physical Review A

(Appendix III). The analysis has also been applied to the

case of the experiment at LLNL 7 with excellent results. The

experiment made use of a 3.5 MeV/850 A electron beam with

an initial radius of I cm propagating through a waveguide of

9.8 cm x 2.9 cm cross section. The wiggler field was

characterized by an amplitude of 3.72 kG and a period of 9.8

cm. The input radiation source was a magnetron producing 50

kW at a frequency of 34.6 GKz predominantly in the TEOi mode

of the waveguide. The best estimates availableB indicate

that, perhaps, 1% of the total power is carried by the TE2 1

and TM 2 1 modes. The observed output power for a uniform
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wiggler (i.e. constant amplitude) was 180 MW, and rose to

IGW (for an efficiency of 34%) when the amplitude was

decreased by 55% over a distance of 1.1 m. The simulation

code for these parameters yield an output power of 185 MW

for the uniform wiggler case, and I GW for the tapered

wiggler interaction. It is important to remark, however,

that the theory is not in complete correspondence with the

experiment. The most important difference lies in the use

of tapered pole pieces to provide for beam focussing in the

plane of the bulk wiggler motion in the simulation, while

the experiment employed a quadrupole magnetic field for this

purpose. For this reason, the excellent agreement between

the theory and the experiment should not be overstated.

However, it does indicate that the essential physics of the

interaction is included in the theory, and the simulation

will now be turned to the study of harmonic interactions in

earnest.

Contributed papers on this work have been presented at

the 9th Free Electron Laser Conference in Williamsburg,

Virginia (9-13 September, 1987), and at the American

Physical Society/Division of Plasma Physics meeting in San

Diego, CA (2-6 November, 1987). In addition, recognition of

the importance of these contributions to the understanding

of the physics of the Ubitron/Free Electron Laser has
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resulted in an invited paper presented at the 9th

International Free-Electron Laser Conference.

An additional area of study is the configuration based

upon electromagnetic wave wigglers. The advantage of this

type of configuration is that a higher frequency interaction

may be obtained for a given electron beam energy relative to

a magnetostatic wiggler. However, one disadvantage of the

electromagnetic wave wiggler is that it is more difficult to

control (than magnetostatic wigglers) for the purpose of

efficiency enhancement through a tapered amplitude or

perild. In order to circumvent this problem, we have

proposed the use of an auxiliary axial guide field. The

axial guide field is useful from the standpoint of confining

(or focussing) the beam. However, the nonlinear interaction

efficiency may be enhanced by tapering the guide field as

easily as tapering the wiggler field 4 . As a consequence, we

have analyzed the effect of a tapered axial guide field on

the electromagnetic wave wiggler configuration, and the

results have been published in the IEEE Journal of Quantum

Electronics (see Appendix IV). The results indicate that

the tapered axial guide field may have important

applications to the enhancement of the efficiency in

electromagnetic wave wiggler configurations.

13
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Three-dimensional nonlinear analysis of free-electron-laser amplifiers with planar wigglers
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The nonlinear evolution of the free-electron-laser (FEL) amplifier is investigated numerically for a
configuration consisting of a planar wiggler with parabolically tapered pole pieces. A set of coupled
nonlinear differential equations is derived in three dimensions which governs the self-consistent evolu-
tion of the TE and TM modes in a loss-free rectangular waveguide as well as the trajectories of an
ensemble of electrons. The initial conditions are chosen to model the injection of a cylindrically sym-
metric electron beam into the wiggler by means of a region with an adiabatically tapered wiggler am-
plitude, and the effect of an initial beam momentum spread is included in the formulation. Both
self-field and space-charge effects have been neglected, and the analysis is valid for the high-gain
Compton regime. In addition, the phase stability of the FEL amplifier against fluctuations in the
beam voltage, the enhancement of the efficiency by means of a tapered wiggler amplitude, and har-
monic generation are also studied. Numerical simulations are conducted to model a 35-GHz
amplifier with an electron beam energy of 3.5 MeV, and good agreement is found between the simu-
lation and an experiment conducted by Orzechowski and co-workers. Significantly, the results indi-
cate that a tapered wiggler configuration is somewhat less sensitive to the beam thermal spread than a
uniform wiggler system.

I. INTRODUCTION been constructed using both helically 2- 8 " 0- 12,14,15 and
linearly ' 9.13,16-21 polarized wiggler fields. In addition, a

The free-electron laser (FEL) and the ubitron' have wiggler configuration has been proposed which makes use
been successfully demonstrated as radiation sources over a of a rotating quadrupole design. 22

broad frequency range from the microwave - 
13 through The motivation for the present work is to develop a

the optical" - ' spectra. The distinction between the ubi- nonlinear theory and simulation code for a ubitron or
tron and the FEL is not well defined in the literature; FEL amplifier based upon a linearly polarized wiggler
however, we find it convenient to differentiate between the field. The advantage of a planar wiggler design over that
FEL and the ubitron primarily on the basis of the of a helical configuration is ease of construction and
electron-beam energy. As such, we refer to those devices modification. Linearly polarized wigglers are readily con-
as ubitrons when the beam energy is below 500 keV. Al- structed from permanent magnet arrays which can be
though this definition is somewhat arbitrary, operation at easily adjusted to a tapered wiggler configuration. In this
these energies generally involves frequencies close to the paper we derive a fully three-dimensional nonlinear
waveguide cutoff of the device, and the ubitron may be analysis of the FEL and the ubitron for the planar wiggler
thought of as a weakly relativistic FEL operated as a mi- configuration. The analysis follows that described previ-
crowave tube. In either case, however, the physical- ously for a helical wiggler configuration, 2 3- 27 and involves
interaction mechanism is tie same, and relies on a period- the derivation of a set of coupled nonlinear differential
ically rippled magnetic field (referred to as the wiggler equations which self-consistently describe the evolution of
field) to induce an oscillatory motion in the electron both an ensemble of electrons and the electromagnetic
beam. The interaction between the transverse component fields in a rectangular waveguide. Space-charge fields are
of the oscillatory motion and the radiation field results in neglected in the analysis; therefore, the treatment is ap-
an axial bunching of the electron beam which is the plicable to the high-gain Compton (or strong-pump) re-
source of the instability. This axial-bunching mechanism gime. The nonlinear current which mediates the interac-
can be thought of as the result of the ponderomotive po- tion is computed from the microscopic behavior of the
tential formed by the beating of the wiggler and radiation electrons by means of an average of the electron phases
fields. The precise form for the wiggler field can take a relative to the ponderomotive wave formed by the beating
variety of configurations, and ubitrons and FEL's have of the wiggler and radiation fields. The detailed wiggler

36 2182 ©1987 The American Physical Society
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model we employ includes the effect of parabolically ta- Q ) variations in the length of the entry region on the qatu-
pered pole pieces in order to provide for electron focusing ration efficiency, (2) an initial momentum spread in the
in the plane of the bulk wiggler motion, Further, the in- electron beam (i.e., prior to the injection into the wigglerl,
jection of the electron beam into the wiggler field is (3) the scaling of the efficiency with beam current, and 4,
modeled by allowing the wiggler amplitude to increase the enhancement of the interaction efficiency through a
adiabatically from zero to a constant level. The procedure linearly tapered wiggler amplitude. These issues are treat-
dsed also permits the inclusion of an arbitrary taper of the ed in an abstract manner in Sec. III because the analysis
wiggler amplitude for the purpose of the enhancement of does no- correspond to all aspects of the experimental
the interaction efficiency, The overlap between the elec- configuration. However, a comparison between the simu-
tron beam and the transverse mode structure of the TE lation ard the experiment is made in Sec. IV in which we
and TM modes is included in a self-consistent manner, so give a summary and discussion.
that no arbitrary "filling factor" need be included in the
analysis. Since the problem of interest is that of a FEL or
ubitron amplifier, only single-frequency propagation is 11. GENERAL FORMULATION
considered. This permits an average over a wave period to
be performed which eliminates the fast-time-scale phe- The configuration we consider is that of a relativistic
nomena from the formulation, and results in a great in- electron beam propagating through a loss-free rectangu-
crease in computational efficiency over a full-scale lar waveguide in the presence of a linearly polarized

particle-in-cell simulation, wiggler magnetic field. The wiggler-field model that we

In organization of this paper is as follows. The general employ is that encountered when the individual magnets

equations are derived in Sec. II. The numerical solution in the wiggler have parabolically tapered pole faces,

to the dynamical equations is given in Sec. IV, in which a which provides for electron-beam focusing in the plane

particuiar example is treated in depth which corresponds of the principal wiggler motion. This technique was ftrst

to a recent experiment by Orzechowski and co-workers.1  empioyed experimentally by Phillips) A detailed

Three distinct waveguide modes are found to grow in analysis of the magnetic field produced by a wiggler with

simulation, and we consider each of these modes in detail parabolically tapered pole pieces was undertaken by

including the bandwidths and reiative growth rates and Scharlemann,' who showed that the wiggler field is of

saturation efficiencies. Also considered are the effects of the form

k, xi ky ±t shx k :'

B,xi -B,. cos(k, z) sinh sinh I  ; 4cosh cosh V2

J V' 7 -

- 2 cosh I-, I sinh I (

where B. denotes the wiggler amplitude, and that i e, <<1.

k,, =_ 27/;,) is the wiggler wave number. We model the The boundary conditions at the waveguide %Nall may be

injection of the electron beam into the wiggler by allowing satisfied by expanding the vector potential in terms of the

the wiggler amplitude to increase adiabatically from zero orthogonal basis functions of the vacuum waveguide.

to a constant level over N, wiggler periods In addition, Thus, we write the vector potential of the radiation in the

since we intend to study efficiency enhancement by means form

of a tapered wiggler, the wiggler amplitude will be tapered

starting at some point zo downstream from the entry re- 8A(x,r)- ' 8Atr~lei;',y)cosa

gion in a linear fashion. To this end, we choose .,n =0

B sin4(kz/4N,, , 0<z <N,-. for the TE modes, and

B4 8zb,,, V¥,Ak,,<zezC t,2) S A(]t,t, - 5AnZ) 1 e (x,y) Cosa

B.[I +ck,, ---z -2 >Zo J,=

where 
+ kin sin /

Idke, . .an r3 -
sina , 13)

. 72 Ukwdzlft~wX sin r sinai, f5i

describes the slope of the taper, Since the fringing fields

associated with the tapered wiggler amplitude are neglect- for the TM modes, where for frequency o and wave num-

ed, this representation is strictly valid only if the slope of ber k (z),
the taper is small. Within the entry region this implie
that .V,, must be large, while for z>20 we must require aZ f dz'k4) -t . 16)
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In addition, I' indicates that I and n are not both zero, that both SA1 ,(z) and k(z) vary slowly over a wave

and period.
The microscopic source current can be written as the

io)s nrr os I { sin following sum over individual particle trajectories:
a b NT

6J(x,t)= -e j vj(z;pio,x,o,y,o, to)
--- sin cos - Y, (7)

k1 a a b

IL) I1C7 IITX sin

ei, 'x~y -- cs IX __yI.

k-ln - __

si b[ 8x - x(z; pio,Xio,Yo, to)

k~na VZi(Z ;Pio,Xio,Y~o,tio)

+ i Cos b (8) where L is the length of the interaction region, NT is thetotal number of electrons, n, is the average electron densi-

are the polarization vectors. In this representation the ty, vi(z;pio,xio,yio,tio) is the velocity of the ith electron at

waveguide is assumed to be centered at the origin and position z which entered the interaction region (i.e.,

bounded by -a/2 <x <a/2 and -b/2 <y <b/2. As a crossed the z =0 plane) at time t,o and transverse position

consequence, X-x + a/2, Y-y + b/2, and (x,o,yi0 ) with momentum Pio, and

dz'
r, (Z; Pio,xi,,Yio, tio) t 0o + f0 Z - (k l , r r - ( 9 ) 0 v i ( z ; P io X o Y t o t o )

This discrete sum over particles can be replaced by an in-

denotes the cutoff wave vector. It is implicitly assumed tegration over the initial conditions, and we write
I

f(x, 0 enf dpovuoFo(p) f f dxodyoa1 (xoyo) f112 dtocr ,to)(Z;po,xo,Yo,to)4 - T/2f .4 T1

X8[x1 - xj(z;poXOyoto)] 6[t -r(.7;p,o,yo,to)] 12)
V( Z;Pxo,Yo,to)

where L,o is the initial axial velocity, Ag -ab is the area of permits cons'd&ration of a single "beamlet" that includes

the waveguide, T=L/(vzo) , and or,(xo,yo), or (t0 ), and electrons which enter the interaction region within one

FO (po) describe the distributions of the initial conditions ponderomotive (or wave) period.2 9 This greatly improves

subject to the normalizations ( Ab is the cross sectional the computational efficiency. It should be remarked that

area of the beam) the ponderomotive phase of each particle is followed self-

S= 13) consistently in the analysis, so that while the beamlet is
f fxodyoaiXo.yo)=Ab (13) initially distributed over one ponderomotive wave, the
4g final state may describe an electron distribution which has

f T12 dtoor t to) = T , (14) become trapped within several ponderomotive buckets. In

-r view of this, the equations which govern the evolution of

and the TEn mode are

f dp0F0 (po) =I I (15) d 2 S aI 2  
2

Substitution of the microscopic fields and the source

current into Maxwell's equations yields the equations = c4 / cosa , 1
which govern the evolution of the radiation amplitude and = - n )I,
wave number. The procedure is formally identical to that
described previously for 23the helical wiggler, cylindrical and

waveguide configuration, 23 and involves a modal orthogo- ,, d 1 sina
nalization in the transverse coordinates. In addition, a 2k /2d(k /2 al i)= - r 8 ln -- (17)
quasistatic assumption is made in the sense that particles dz c IV I

which enter the interaction region at times to separated by
integral multiples of a wave period are assumed I.) execute where 8an =e8An/mc 2 , wa -4nre~n,/m, v is the instan-
identical trajectories. As a result, viz;po,xo,Yo,to taneous velocity, and Fin={ when either I=0 or n =0

+21rN/&w=v(z;po,xo,yo,to) for the integer N, and a and unity otherwise. For the TMn mode we obtain a

time average over a wave period can be performed which similar result,
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Ki bCoa ir -- , Y ii

and

__ k 6ai ell, sill sck dz k~ V.~ a b '9

Observe tht theie is no noitn':ia] TM rnode solution wher. either 1 0) or n 0.
The averaging operator (; . ' is defined over the initial conditictns of 'he beamr .te that the instantaneous pc'si.

tions and momrental of the electrons are implicit fur.,:thirs of !he i t:ial conditionsi and min.udes trie effiect of an,
momrerturn spread by mheajis of the distriblitiort function

Fp1  4ex[-~p~ 1 'p'Jl~-> p (pt( 120;

where p,, and Ap descrine the initial bulk mornrittirn and rnoieniurn sprea: ,-r the 6earn. !Jx: is *,he Heaviside f'in-
tion. and th'e normalization constarit is

.4~ dp~oep[ - P~o-p~o)2/aPfl- 21

Obserxe t1hat th~e distribution is 'no'woenergeric, hujt contains ai pitF angle spircad which describes an axiai e'nergy sp!"eaa

'AS A. 11 as a transverse erierjy spread) given approximately by

Yo P0

wheire Y''I-~t~.1here is no fundazn~ntal dficuli: in the inclusion of an ove.rall energy spread in thle
analy.s:s; howevtr, the additional degree of freedom requires an itcrea~d imbrner of particles in the siznulatlon. ThZ; 5
fuuliction allows us to perform one of the niornertuum-spacce integralS 3aa:Vi~aily, and to write the averagi ng operator iii

the form

f !" dbl dpPCp J- i-) -0, f __1 dx,. f yc bo /2

where ~(~-c.is the initial ponderontivr phase, where D, is given by Eqs. E and and the radiation
60 an~and !$,0 _v,,c. It is impo.-tant ',r fieds are given by tht vector Potentials

recognize that this average includes the effect of the over- Ia
lap between the electron beam and the trarns*erse mode - 5A.,3 =xA 27;
structure of the radiation field in a self-consistent way.

The phase variation of each mode can be analyzed oy Finalfly. '&.e electron coordirlates obey the equations
the addition of an equation to integrate the relative phase d V128,

40.(Z) 4 2 dz'kz)-k0l , '24) U;dzX?

where 40 ~ 2 c-~' s the wave number of th: U - 9
,. cuum guide Since the departure of k (z ) from the vacu- d

umn wave number describes the effect of the wave-partirle and
interaction, &2): represents it measure of the dielectric d
effect of the FEL interaction. Thus, we integrate the ad- 0 k --t , - 3 01
ditional equation dz

d 0=--k , 25) describes the evoltion. of ponderotnotive phase

dz

for both the TE iand TM modes, Lidt -- k,~- ~1
In order to complete the formnulation, the electron-orbit f

equations must also be specified. Since we describe an
amnplifier model, we choose to integrate in z and write the 111. NUMERICAL ANALYSIS
Lorentz fiorce equations in the form The set of coupled differential equations described in

d ~ B -B~ ,*E. - 26) Sec. II is solved for an amplifier configuration in which a
dz'C single mode of frequency a) is injected into the system at
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z=0. The dynamical equations [Eqs. (16)-(19) and (25)] Axial Phase Space (kwz 0)
for the fields can be reduced to a set of four first-order _

ordinary differential equations for 5aln, (a)
r (k -'d(ln6al,)/dz], k, and the relative phase .

Hence, the numerical resolution of the problem consists in 0
the simultaneous solution of 6NT+4 first-order ordinary
differential equations, where NT is the number of elec-
trons. The algorithm we eiploy is the fourth-order
Runge-Kutta-Gill technique. While this technique is
somewhat less stable than the fourth-order Adams- .
Moulton predictor-corrector scheme, it has the advantage GSO-

of being less memory intensive. Indeed, the requirements
placed on the available size of computer memories
represents a critical practical limitation when momentum
spread is included. The averages in Eqs. (16)-(19) are
performed by means of an Nth-order Gaussian quadrature
technique in each of the variables (xo.y n, t' 0,P:0 ,60 ). 07-

The initial conditions on the radiation field are chosen
such that rFl(z=0)=0, k(z=0)=ko, and 4(z=0)=0
for an arbitrary initial power level. Observe that the 0

time-averaged Poynting flux Ptn for the waveguide modes 4)
is related to the field amplitude by the relation Beam Cross Section (kwz = 0)

M 2C4 ab 2b___
Pin = I wk~a (32) 2 "

32e 2  -,rF,, (t)

for the TEn mode, and

P:.- (t k 5 6ai I33)
- 0--

for the TMrn mode. The initial state of the electron beam
is chosen to model the injection of a continuous, axisym-
metric electron beam with a uniform cross section, hence,
we choose a, = I for - rr < V,0 :5 , and or. = I for r) < Rh.

The particular example we analyze is that of a 35-GHz
amplifier employing an electron beam with an energy of b

3.5 MeV, a current of 800 A. and an initial radius of 1.0 2 02a 0 012a
cm which propagates through a waveguide characterized X

by a = 9.8 cm and b = 2.9 cm. In order to obtain peak FIG. 1. Initialization of 'ai the axial phase space, and bl the
growth rates in the vicinity of 35 GHz we choose a beam cross section. Each point in the axial phase space
wiggler field with an amplitude of 3.72 kG and a period of represents the superposttion of tO0 particles distributed
9.8 cm. with an entry taper of ., = 5. For purposes of il- throughout the cross scction of the beam.
lustration, the first case we consider is that of a beam with
zero momentum spread (Ay, -0). For all cases discussed
in this work with Ay, =0 the choice of a tenth-order Gaussian algorithm is compensated for by a nonuniformi-
Gaussian algorithm in each of the coordinates (d,,,r ,,) ty in the weighting of tl'e electrons.
was found to provide an accuracy of the order of 0.1%. There are three modes which are resonant in the vi-
The initial electron distributions in the axial phase space cinity of 35 GHz; specifically, the TE01, TE 21, and TM,I
and beam cross section are shown in Fig. 1. Each dot in modes. The analysis presented in this work deals with
the illustration of the axial phase space describes a phase wave-particle interactions with single modes, and we
heet composed of 100 electrons distributed throughout shall deal with each of these modes individually. The

the cross section of the electron beam. Each phase sheet, first mode we treat is the TEO, mode which is the
therefore, represents a cross-sectional slice of the electron lowest-order resonant mode at the frequency of interest.
beam, which is chosen initially as shown in Fig. l(b). Al- The detailed evolution of the wave power as a function
though each phase sheet is initially chosen to be identical, of axial position is shown in Fig. 2 for the injection of a
the subsequent evolution of the electron traj ectories in the 50-kW signal at a frequency of co/ck,. = 11.3 (34.6 GHz.
presence of the radiation field is followed self-consistently. As shown in the figure, saturation occurs at k,,z -_ 115
It should also be remarked that the distribution shown (1.79 ml at a power level of approximately 214 MW
represents a uniform electron beam. The nonuniformity which corresponds to an efficiency of r/_-7.75%. Wave
in the positions of the electrons chosen by means of the amplification occurs principally within the uniform
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wiggler region !z > which is !,.30 m for this case of the power are affected. Indeed, the ltnstanrtaneous -.ana-
anid yields aii average gaiii 0! about 26 d8/rn. Although tion oL the relative phase also exhibits an oscillation at
this value for the average gain is lowtir than inai n6- half the wiggler period.
serned in svnie other experiments a gain of approxi- A full spectvum of the -1E,~ mode is shown in Fig. 3 in
mady) 120 dU3/in has been ubsirved by Gold anid co- which we plot the saturation e4ciency and dittance to
'.Norkers ', the average normalizec growth rate saturation as a function of frequency within the unstable
r,,: -k, m.0.15 is qirte high and is attributable to the tel- band- As ihown ir. the figure, wave amplifiatior. is found
at~veiy h~gh wiggler amplitude and long wviggler pnrod. fo~r frequencies extendig fromn ij ck., 10 f30,6 jHz;

One feature of ieres! glhown in Fig. "' .hich merits through c'k.14.2 (43.5 0tHz- W1.th a peak efficienry
somre dtscussion is thz oscillation rt the :.nstantaneous of the order of' approximately 9.8%1,. The peak growth
pc%;wfr which :occurs with a eriod of K 2 This is not. ,ate as rnea3ured by the distance, to saturation) cccurs for
found far the case of helical wiggler configuratiors !'or o/ek,~ = 12.3 _17.7 GIlz,, wh~ch is somewhat higher than
vhich the boulk trantsverse wiggler motion describes a helix the targeted 35 GHz. Hlowever, the gain bandw:dth is
with a zrans-verse velocity of relatively constant tnagni- sufficiently broad that the arowth rate, hit not decreased
tude. In conitrast, a iiicarily poliarzed wiggler will Indaice igfia frorm ihe peak valoe.
a tbuk wiggler mtotion in the piane normtal to m~at of the Thei ,ariation of the relative phase versus axial position
vwiggler 5eld .:haracterized oy an oscllatory velocity. In is il.ustrated ir Fig. 4 for (a/ck, = 10.4, 10.7. 11.0, 1 1.3,
order :o illustrate this qualitativ6ely, we obsetrv.e that for and 11.9. As is evident from the figure, the oscillation at
th.e present configuration the biilk transverse -;iggler one l'alf the wiggler period is also manifested in the rela-
icwition is aligned along the x axis and varies approximate- tive phase. T he bulk variation e.. averaged over a
ly as wiggler period shows the same q ualitative behavior as

v ~ n~z ~ .that found for a helical wiggler.' Specifically, for fre-
v sii k; z1,quencies at the low end of the gain band the relative phase

y ok, deeorcases up o a point just short of the position at which
The cuzc- zrms ontinedP. te cuatjons the power saturates lindicated in the figure by) an arrow,
The cucc tems ontaned~n te dnarnica equO.. after which the phaue remains relatively constant. As the

19 are derived essentially from a calcuiation of nress the variationi in, the relative phase oe-
'JS5E ; he-nce. 7he principal waNe-particle Coupling is

wut th .~coponnt f he adi~o 5e~i.Ifwe ssue reases until e critical frequency is reached , c/k

that 6E, -6-P sinwkz-c.ra, then ii is c-vident that for tht par-ticulA.- ,csse ander consideration, for wIicih the
phase is fouLnd t) 'vary little over tb.& course of he interac-

i 81 - - ht-b ( osv- Cos._k,,Z won.. Tlkis Ln~cal frtquenny is typically found to lbe about
2, ok,

The interaction oc;curs when the pcnidcrotoive phase is a
slowly varying fliction. of axiuJ positiofl Lie., TEoi Mode t - 9.8 cm; b 2.9 cm; Pin= 5 0 kW)

k - k 11,, and the upper beat wave whch varies as -

:osi descnb~es wave amplification, The lower btcat iwave
describes The oscillation at half 6he wiggler period. Al- W
though the spatial average of the contribution of the lower-
heat wave vanishes anid this term provides no contributiol)
to the bulk growth of the wave, the instantaneous val,.ies

TED, Mode (0=9.8 em: b-2.9cm:r;.,/ckWm1l 3; P,=6 IW)

00 §- .. 2

10. 11 13
-Kw wd,* tkw

FTC) 2.P)01CofthegTO~h o ih 1L, oewt xa o I rp hwngtedsaic! ~~~Lr n h
tio..efcecoh.I0 md sa ucinoffeuny
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TEoI Mode (a=9.8 cm; b=2.9 cm; Pin =50 kW) TEO Mode (a=9.8 cm; b=2.9 cm; c/ckw=11.3)

V! -311.V9 I

Rb . 1.0 cmAY, -
0  2

S 8w=3,kO -"
iw = 9.8 cmNw =6

N : =- b= -e

20-

ckw

Z

40h-

4 It, 
= 

O8Wc

-c0. 2 4 6 a 10 12

/ Zentry/Aw

so kz 100 15 FIG. 5. Plot of the distance to saturatioa1 and the ef~ficiency of"
kwz the TEI mode as a function of the length of the entry caper re-

FIG. 4. Plot of the relative phase of the TE,,r mode vs axial gion for a) /ck,. = 11I. 3.

position for w/ck,, = 10.4, 10.7, 11.0, 11.3, and 11.9.

10%7 below the frequency of peak growth. For frequen- the beam into the increasing wiggler field. It should also

cies above the critical frequency, the bulk phase increases be noted that the increase in the distance to saturation is

monotonically. It should be remarked that the gain band roughly linear for V,,. > 5 and corresponds to the increase

under discussion corresponds to the upper frequency in- in the length of the entry region (i.e., the length of the

tersection between the beam resonance line [(,)=(k uniform wiggler region remains relatively constant).
- k,, w: ] and the vacuum % aveguide dispersion curve. The particle dynamics during the course of the TE ,;

There is also a gain band associated with the lower- mode interaction are illustrated in Figs. 6 and 7. In the

frequency intersection which shows a similar variation in first place, we remark that saturation proceeds by mean,,

the relative phase, except, that there is an inversion in the of the phase trapping of the beam in the ponderomotne
frequency dependence. '6 potential. This is shown in Fig. 6 in which we plot the

The question of the effect of the injection- procL.ss of the phase-space distribution of the beam at saturation. The

electron beam can be addressed by varying the length of dashed line in the figure represents an approximate

the entry taper region. The results of this analysis are separatrix calculated for particles at the beam center;
shown in Fig. 5 in which we plot the saturation efficiency hence, many of the electrons which appear outside of the

and the distance to saturation as functions of the length of separatrix may instead be on trapped particle orbits at the

the entry taper region for . > 3. We have arbitrarily edge of the beam. The cross-sectional evolution of the

chosen the minimum length of the entry taper region to beam is shown in Fig. 7. The cross-sectional projection of

be three wiggler periods since the fringing fields associated the beart at the start of the uniform wiggler region 6.e.,

with the tapered wiggler field have been neglected, and we k,,z = 3 1) is shown in Fig. 7(a). The bulk motion of the

feel that below this value the fringing fields will be impor- beam exhibits four essential features. The first is the pri-

tant. The results indicate that the saturation efficiency in- mary wiggler-induced oscillatory notion which shifts the

creases markedly as the length of the entry region in- center of the beam off axis in the x direction, and this

creases from 3;L,, to approximately 6 ,,, after whi,'h the shift is clearly shown in Fig. 7(a). The second feature is

increase in the efficiency becomes more gradual. We attri- that the transverse wiggler gradient introduces a betatron

bute this increase in the efficiency to a decrease in the oscillation which causes a macroscopic scalloping of the

effective momentum spread induced by the injectioi, of beam envelope. In addition, on a microscopic level the
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Axial Phase Space (kZ 1151 growth rare fGT the TL-ji mode, it ik close to the frequcincy
- - ~ -of tranlVfum growth rate for the JL, mode.

[he evolution of thet wave powei versus uAiai poioxi
is shown iii Fig. 10 for d 50-kW input signal in the T -M- 'tiodel at W, Ck:, 11. 3 dLnd in ciectron heam with iero
iitial nomrentum sprcad. As showni in the figure. the
powe r saturbtes ait k~z - 2'1 with approximately 68.5
MW for an efficiency 2.45%. This is a much lowet,
growth rate anid efficiency than found for either the TZ)
or TF,j modes, despite the fact that the cutoff frequency

-~ and dispersion curves are degenerate for the TM., and
TLj, modes. The difference between the two modes ties
in the transverse mode structure. As mentioned prev[.
ousiy, the principal component of' the wiggler-induced
n otion is aligned with the x axis; hence, the wave-

particle interaction is governed largely by the x corn-
portent of the electric fleld. Comparison of the mode
structures for the TE, and TM. 1 modes gi~en by Ers.

- 4; and (3,; shows that for a giver mode amplitude
'41 5.,21 1the ratio of the x component of the electric field

FIG. 61. FPt of r'ie oeamn dwis bu,:on tr aval phase ipa,;e a Of The TM, ro that of the TE2,, mode is approximately
. 2b /a =O-59. As a result, the wave-particle coupling is

wtaker for the TM2 1 mode. Note that this conclusion
woulc! be reversed if the co-1- - ation were altered such
that the principal omr-)r~vn* of" -.he wiggler motion Acere
aligned with th" - !uis. However, one effect arising from

id,'% idva -liccions :omc into a fo,%-, aid ou, again. rn the dege, ! .cy of the dispersion curves is that the fre-
*he iptpos;1e side of the beam. This bef.omes evidem ;n quei1y cf Interest 'tk, 2i3 ies near to peak
Fig. -7 a' by noticing that the two closely spaced "spokes" grov h for bntl' TE:. anti TM 2 1 mo'des This is shown
are oriented in the ne;c,.i-,e-x direction while in the initial Clearly ir Fig. 11 in whiaiL we plot the distance to satu-
statc Ug i these same spokes were onenttei in the ration arid the saturation efficiency as a function of fre-
posivc-x direction. The third feature is that, .he Trans- quency foi the TM,,, -aode. As might be expected, the
ve~se wiggle r gradient also has a focusinig effect on ilhe reduce-' wave-particle coupling and growth rates for the
b-eanr %hich results, in a reduction in the maximurn bean, TM,I ooe result in a narrower bandwidth for instabili-

*aisrelative to the :nitWa state. The betatzront oscill3tion ty, and we obtain wave gzro-wth for frequenciesrain
oc:urs over a length of approximaiely A2,9- 3 M, _ i.e . frorm /ck 10. 2 - I Z
k.~ 9 : and the tvolution of the beamr crots sectz i ['he question of the variatiorn in the phase of FEL
iver *his distance is shown in Fill. 7 'fronm k,- _ 32-51: ampliffiers has impartant implicaions for many of the
Insti-y, the geometcy of the wiggler aud the transv-erse potential applikations of these cevices. Since high
gradients rends tc distczir the beam into an elliptical cross powers arid efficiencies have been demonstrated experi-
section While This is evident in Fig. 7 at an early stage of mentallv, !i one such application may be as a high-pov.er

-he iggler. it is shown even more drunatically in Fig. Microwave orc frth netgerio ofradio-
1", which shows the ;ross section at saturatiun fr-.quency electron accelerazors. llowev.er, one require-

*k .z 15 nient fom such an application is good phase stability of
Wi now coasider the TE;, mod-., and plot ,he evoiu- the output radiation against fluctuations in the electrcn-

*..o" of lhe wave power Ver~us axial position in Fig. S for a beam Voltage, EXamlonatiOn of Fig. 4 shows that the rel-
50-k0V input signal at vw/ck, . .3 ind an t~ectrrn beamn ative phase aT Saturation varies rapidly with frequency.
with a zero initila momentum spread. As is evident from Since there is a correspondence between variations in the
the figure, the power saturates at A3 1~u04 at about i94 frequency at fixed voltage and variaitions in the voltage
.MW flor an efficiency r-t6.Wfc In Qornparison with the at Axed frequiency, we might expect the phase at satura-
TE,, mode, therefor', we conclude -,hat the average tion to vary rapidly with beam voltage. This is indeed
growth rat- Is somewhat higher and the efficiency lower the case as shown in Fig, 12. in which we plot the rela-
for the TE,, mode at this frequency. A coinpiete spec- tive phase at a Atxed axial position ichosen to correspond
truni for the rEjj modc is shown in Fig. 9 in which we to the saturation point for a beamn voltage of 3.5 \{eV'
olot the distance tw saturation and the efficienm.y versui versuis beamn voltage for the TEn,, TE21, and TM.:
frequency. As shown in the figure, gain is found for fre- niodes. The Variation in the relative phase is approx!-
qutncies ranging f, om &)/ck,. S .9 through, /c k.4 ; 14 znate~y 51 '/1% variation in the beam voltage for the
with a peak efflciency of approximately 12%. As a result. TErc, mode, 4371/I% variation in the beam voltage for
both the bandwidth and peak efficiency ar- higher (or the the TEj mode, and W9/ 1% variation in the beam volt-
TL2 ? mode than for the TEO, mode. In addition. while age for the TM21 mode. Such rapid variations in the
thi.i frequency falls slightly below thle frequency of peak phase are consistent. with results obtained previously for
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F IG. 7. Plot of t he beam c ros section at (a) t he end of t he en try taper region i k., z= 3I1 (b) k. z=36, (c) k~z=41, Wd) k,,z =46, (e)
kz= 5 1, and (f) k, z = It5.
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TE21 Mode (a-g.8 cm: b-2.9 cm,w,'ckwl11.3; P;, =50 kW) TM21 Made (a=9.8 cm; b 2,8 cm; wlckw 1.3; P,. 50 kW?

V636M'V .1 *~MOV

- 1,.O -S A

* ~N .0 VS ,

kwitKh

FIG. S. Plot of the growth of the TE.1 mde with axal pos- Fi0 10. Piot of the growth of the TN12: mode with axial -
don ition.

a hehical wiggler, cylindrical waveguide confguration, resonance .onditlon, it is apparcnt that the transition to a
and contrasts with 871% variation in beam voltage for thermally dominated regime occurs when Av/ V - r,, /
a typical Stanford Linear Accelerator tSLAC) klysron .3 (k -k, ). Making use of Eq. 22) we q.nd that this trans:-
We conclude, therefore, that applications which require (ion occurs at about Aiyo-/0  18% for the TEO, and TEI!
an extremely phase-stable microv~avc source will aiso re modes, and . . 2,/l'o 8% for the TM : mode. Asaconse-
qtitre ati electron-beam source with a very low ievel of queace, the cases shown in Fig. 19 are well short of the
voltage fluctuations. thermal-beam regime, The efficienc: is found to decrease

The effect of an initial momentum spread i. sh;,wn in in an approx:nately linear fashion with increasing A-'. for
Fig. 13 in which we plot the efficiency versus A w /:, f~ r each of tilese modes, which .orr-spons with results ob-
the TEr,, TE,1 , and TM:i wodes. From the beam-

TEI Mode (a=9.8 cm; b=2.9 cm; P1,=50 kW)
TM21 Mode (v-9.8 cm; b- 2.9 cm: P1,-60 kW)

S .

IC.-C

Fill 1.V r. - - -- MOV

*Fb -k .. C-

3, W 3.72" kO @W - 72 I w il kG

.* I

. . i1 -- 13 14 1- 12

w/akw wckw

FIG. 9. Graph showing the distance to saturation and :he FIG. 11. Graph showing the distance to saturation and the
efficiency of the TEP2 mode as a function of frequency. efficiency of the TMzI mode as a function of frequency.
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TE01 Mode la =9.8 cm; b=2.9 cm; co/ckw =11.3) tained for a helical wiggler configuration.2 5 Note, however
|10 I ] that the present results were obtained with the same mod-

o 11,r Imw--s el distribution (20) as for the helica! wiggler, and the de-

70j tailed variation in the efficiency with momentum spread
* can be expected to vary with the choice of distribution. Be

(.
S lb-SmA that as it may, we find that the efficiency drops from

' b l z'O _-7.75% to ,q- 4.98% for the TEro mode as Ay,/yo in-
-- I creases to about 2.3%. For the TE 1 mode, the efficiency

t drops from 17:_6.85% to i7t 3.76% as Ay,/yo increases
TE21 Mode (a =9.8 cm; b =2.9 cm;c/ckw= 11.3) to 2.3%. The efficiency of the TM 21 mode decreases from

_.- w- 1 2.45% to -qn 1.27% as Ay,/yo increases to 1%. This
is more rapid than for the TE0 and TE 21 modes, and

.i- occurs because the transition to the thermal-beam regime
C" 8_w3 MG is found for a lower value of the momentum spread for the
'7 20-wS 

m  TM 2 1 mode.
"i low- The scaling of the saturation efficiency with beam

M Mode (a-- 9.8 cm; b = 2.9 ;wlkw=11.3 current for the TEO,, TE 21, and TM 21 modes is shown in
TM 21  Figs. 14-16, respectively, for Ay =0 and Ay./y 0 = 1%.

* n20w On the basis of an idealized one-dimensional model 29 it
has been shown that the saturation efficiency should scale

M -",., as 77 l for frequencies corresponding to peak growth
S40- rates. As shown in Fig. 14, this type of scaling law is ob-

,® 120 tained for the TE0 mode over a range of currents extend-
W ing from approximately 300-1000 A. Observe that the

346- 350 356 dielectric effect of the electron beam on the waveguide
Vb{MeV) mode is included in the formulation, and the bandwidth of

FIG. 12. Graph showing the variation in the relative phase at the interaction shifts with the beam current. As a conse-
saturation (for V, = 3.5 MeVI vs beam voltage. quence, the increasing divergence between the simulation

results and the scaling law for currents below 300 A is at-
tributed to a shift in the frequency of peak growth away
from toIck, z 11.3. It should also be noted that the curve
for Ay. /yo= 1% increases with current only slightly fas-
ter than that obtained for Ay, =0 and, other parameters
being equal, the Ih ' scaling law seems to be relatively in-

a=9.8 cm; b=2.9 cm; o/ckw= 11.3; Pin=50 kW

Vb=3.MeV _=3.72kG TE01 Made (a =9.8 cm; b=2.9 cm;V_- lb =800 A 'w = 9 ca -1250

Rb = 10c Nw _S w /ckw =11.3; Pn= 50 kW)

ST

1or . . .. . . ..0

T 5--

10
3r

* 23- V 3: M.V

i w . .ckO

I4-

I 2 100 M, A* Mow
Ayz/YO 1%)A)

FIG. 13. Plot of the saturation efficiencies of the TEr1, TE i, FIG. 14. Graph of the saturation efficiency of the TEoj mode
and TM2, modes vs axial energy spread for o/ck, = 11.3. vs beam current for o/ck, = 11.3.
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TE2 Mode fa(,.8 m. b=2.9 cm; Lckw-11.3; Pi,=50 kW1 mode for currents ranging frorm about 200-1000 A. The
, ..... , slightly larger range of currents over which the scaling
,V iaw seis to hold foi the i12; mode is attributed LO tle

previousiy mentionea result hat w/ck, 11.3 is closer
to the frequency of peak growth late for this mode than

-. - f.1 for the TEO1 mode. As a consequence, this frequency
.. reniains iL the vicinity of the maximum growth rate over

a broader range of currents for the TEZI mode. Al-
117 . ...- ' ..- " " - though thie expected scaling law is approximately ob-

, -I-tained for the TE 1 and TE:2 modes, three-dimensional
3- -q effects invoived in the beam propagation and the cou-

pling between the beam and the transverse mode struc-
ture do modify the scaling. This is most evident for the

- TM21 mode shown in Fig. 16 for which we find the
Vb - 3 5 MOV efficiency increasing somewhat faster than I l.

A.- i.0 Cm
a.- 3.2 kG We now address the issue of efficiency enhancemert by
A 9, a, means of a tapered wiggler field, and concentrate on the
NW" 0 TEo, mode. The fundamental theory of the efficiency

enhancement mechanism has been amply discussed in the
- - -i'z 4 w NO 1 NO literature.31 - 3 in order to understand the physical basis

1,A) of the process, we observe that the wave-particle reso-
FIG. 15. Graph of the saturation efficiency of he TE,. mode nance condition which gives rise to amplification is ex-

vs beam cu'rent for wck = 1.3. tremely sensitive to the axial electron velocity. However,
the axial velocity decreases as the wave is amplified until,
ultimately, the resonance conditior is broken and the
amplification ceases, The purpose of the tapered wiggler
field is to reduce the transverse velocity induced by the

dependent of the momentum spread. However, one point wiggler which, in Turn, results in an axial acceleration that
of caution is worth noting in regard to these conclusions. mairtains the resonance condition. Thus, the tapered
Specifically, if the variation in current were accompanied field is a means of "tapping" the transversc kinetic cnergy
by variations in the momentum spread and/or beam ra- of the oeam. This can be accomplished by a tapering of
dius fas might be expected if the beam were held P co- either the wiggler amplitude or period; however, in the
stant brightness), then the scalirg law might differ. The present work we shall confine ourselves to a tapered am-

b/13 icaling law is also approximately found for the TF2 : plitude configuration. The results of the simulation are in
qualitative agreement with those obtained for a helical
wiggler configuration,24 and indicate that the efficiency
enhancement is extremely sensitive both to the point at

TM21 MQio a-9.8 am; b-2.9 on; .i.11.3: Pl,,6f kW which the taper is begun and to the 5lope of the taper.
The optimal position at which to begin the taper is, typi.
cally, at a point shortly prior to saturation (for the unta-
pered system) which corresponds to the trapping of the
bulk of the electron beam in the ponderomotive potential

-Y- formed by the beating of the wiggler and radiation fields.
, ....-- For the case corresponding to the TEO, mode shown in

.C- -. Fig. 2, the optimal point at which to begin the taper
occurs for k.zo--110. In order to accelerate the beam in

I the axial direction the wiggler field must be decreased,
and the evclution of the wave power versus axial position
is shown in Fig. 17 for a taper of e, -- 0.007. The

7" efficiency enhancement (as measured by the growth in the
/ - wave power) continues for as long as the taper is main-

v .3 1MeV E tained, and a maximum efficiency of rnma, 3 4 .0% is ob-
*a - 1 0 am tamed if the wiggler field is tapered to zero at .,z -253
,, 3No (i.e., 3.95 ml. The effect of different choices for the

' wiggler taper is shown in Fig. 18, in which we pict the
1 maximum efficiency found by tapering the wiggler field to

la----- zero x.ersus e,,. As shown in the figure, optimal results
l,,Al are found for c, _ -0.002 at which point 7mu! 44 % and

the interaction region extends to kz =610 ti.e., 9.5 o).
FIG. 16 Graph of the saturation efficiency of the TM mode The variation in the relative phase for a tapered wiggler

"s beam current for o/ck, - 11.3. interaction is shown in Fig. 19, in which we plot the rela-
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TEO1 Mode (e=9.8 cm: b-2.9 cm;,/ckw= 11.3; Pin = 50 kW) TEO, Modea - 9.8 cm; b =2.9 cm; Pi= 50 kW)

I I

sm ,J 100 Vb-35 MOV C.- -0OW

Fb. 1O ,

-372 kG

C..

8 - £,. 000 -O110

__ _ FIG. 19. Plot of the evolution of the relative phase during the

k,, course of the tapered wiggler interaction for co/ck, = 10.7. 11.0,
and 11.3.

FIG. 17. Plot of the evolution of the TEr) mode for a tapered
wiggler interaction with E,, = -0.007 and k.,z,= 110.

The effect of an initial beam momentum spread on the
tapered wiggler-efficiency enhancement process has also

tive phase versus axial position for c,. = -0.007, and been investigated, and the results are summarized in Fig.

w/ck. = 10.7, 11.0, and 11.3. Note that the start taper 20 in which we plot the maximum realizable efficiency (if

point is chosen to be the optimum value for each frequen- the wiggler field is tapered to zero) versus Ay. /y- The

cy. and iq indicated in the figure by the airow. Three maximum efficiency at a fixed start-taper point

features are readily apparent from the figure. The first is (k., z0 =110) chosen to correspond to the optimum posi-

that the variation in the relative phase subsequent to the tion for Ay. =0 is shown in Fig. 20(a) versus the axial

start-taper point is approximately the same for each of the
three frequencies shown, and the spacing between the
curves remains approximately constant. Second, while
the phase variation within the tapered wiggler region ini- TE" Mode (a=9.8 cm; b=2.9 cm; c /ckw=11.3; Pin =50 kW)
tially increases immediately after the start-taper position, _o_

the phase variation appears to saturate and remain rela- (a)
tively constant over an extended interaction length. - k 1

Third. the oscillations at one-half the wiggler appear to i W

decrease in amplitude over the course of the tapered to = 3 5MV
E 20- b = BOD Awiggler region.

Rb = 10 CM
8w = 372kG

10i w = 98cm

TE01 Mode ia=9.8 cm; b=2.9 cm; w/ckw= 11.3; P, =50 kW) 2

Optimal Start-Taper Point
(b)

I k~z.117

.Z -It k30 12

JD- 
20 

124

'0, b IS I "'''

,0-0 .

o,, G 2

-" =AYR/YO (%I

FIG. 20. Illustration of the effect of beam momentum
00 2 o E ow - o " 00610- spread on the tapered wiggler interaction at (a) fixed zo, and bi

variable zo. Observe that in (b) the optimal start-taper point.

FIG. 18. Graph of the maximum efficiency of the TE,, mode correspond to k,,zo=110 for Ay,/yo<_ 1%, k,,z o = 117 for
vs wiggler taper (e',,. A y,/)'o= 1.5%, and k,.zo = 124 for Ay, /yo=2%.
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momentum spread. As is evident from the figure, the gatior, is considered, which permits an average over a
efficiency-enhancement proccss Ls unaffected by the wave period to be performed that eliminates the fast-
momentum spread for A7,,/yo:, 1%, but decreases rapid- time-scale phenomena formulation. This results in a
l for axial energy spreads above this value. Ihcre are great increase in computational efficiency over a full-
two priucipal reasons for this decrease in 7m, rhe first scale particle-in-all simulation code, and allows the ap
is that the phase-trapping mechanism becomes less plication of the technique to short ,i.e,, optical) wave-
effective as the momentum spread increases because a pro- lengths given an appropriate mode structure.
portionakly greater fraction of the beam remains outside The electron trajectories are integrated using the corn-
the trapped orbit region of the axial phase space. The plete Lorentz-force equations, so we are able tu study the
second reason is that the increase in the momentum detailed orbital dynamics in the combined wiggler-
spread results in a decrease in the growth rat. and a radiation field structure. The overall bulk motion of the
longer distance to saturation. Because of this, the op- electron beam exhibits a dominant oscillation a* the
timum start-taper point is an increasing function of the wiggler period, is well as a slow-time-scala betatron oscil-
momentum spread. Thus, if we determine the optimum lation due to the transverse inhomogeneity in the wiggler
start-taper point versus y then the maxisunm efficiency field. The dynamics of the adiabatic injection of the ciec-
can be expected to decrease less rapidly with axial energy iron beam were studied by means of a comparison of -he
spread than is shown in Fig. 20(a). This is indeed the saturation efficiency with the length of the entry taper re-
case, as shown in Fig. 20(b) in which we plot 17 versus gon. The results indicate that the saturation efficiency in-
Ay, for the optimum start-taper points. Note that for creases relatively quickly with the length of the entry

Sy /70 1% this point coincides with that for 4y, O taper region for N,, $ 6, and more slowly thereafter. The
'for the current choice of parameters). As seen in the reason for this is that the injection prooess itself in a real-
igure, ?7.,m=26.6% for Ay,/l,3 2% and a start-taper istic (i.e., .hrae-dimensional) wiggler field introduces a
point of k,z o -- 124, This contrasts with ar. 7,, -. 11.8% effective momentum spread on the beam which decreases
4and ,3 1,, =2%} when kz 0=110. As a consequence, as the axial wiggler gradient becomes more gradual. For
we conclude that although the untapered efficiency de- practical purposes N,, Z 5 appears to be an adequate
creases relatively quickly with increasing momentum compromise between the minimization of the overall
spread, the tapered-wiggler interaction can accept a small wiggler length and the maximization of the interaction
level of momentum spread without suffering a significant efficiency, and this is the regime in which manj mi-
degradation in the interaction efficiency. However, the crowave FEL's have been operated." -8*0 - 2 In addition.
upper limit on the allowable momentum spread must be the effect of a tapered wiggler amplitude on the enhance-
determined by the particular choice of experimental pa- ment of the interaction efficiency can be included in a
rameters, and the value of Al., /-yo ! 1% should not be straightforward manner.
construed to be a general result. The numerical analysis has been performed for the case

of a 35-OHz FEL amplifier which employs a 3.5-MeV,
800-A electron beam with an initial radius of 1.0 cm,
The beam propagates through a rectangular waveguide

In this paper a fully self-consistent nonlinear theory and with dimensions a - 9.8 cm and b - 2.9 cm, in the pres-
numerical simulation has been developed for the FEL ence of a wiggler field with a 3.72-kG amplitude and 9.-
amplifier in three dimensions. The particular corfig- cm period. Three distinct waveguide modes are found to
uration of interest consists of a cylindrically symmetric be amplified: the TEO, TE21, and TM21 modes. For this
electron beam of arbitrary cross section ton entry at " =0) choice of frequency, the TEO. mode exhibits the highest
injected into a loss-free rectangular waveguide in the pres- untapered) efficiency, while the TE1 mode has ,he
ence of a linearly polarized wiggler magnetic field, the highest growth rate. The wave-particle coupling for the
wiggler-field model is that generated by a magnet stack in TM2: mode is the weakest of the three modes and has the
which the individual magnets have parabolically tapered lowest growth rate and efficiency as well as the narroest
pole pieces in order to provide for electron focusing in the bandwidth. The effect of an initial momentum spread is
plane of the bulk wiggler-induced motion. In addition, investigated for axial energy spreads Ay,,-yO ! 2% which,
the adiabatic injection of the electron beam is modeled by for this choice cf parameters, is well within the cold-beam
the inclusion of an initial taper of the wiggler amplitude, regime. Results inaicate that over this range of -the
The system of equations derived is a generalization of a efficiency decreases in an approximately linear fashion
previously described analysis of a helical wiggler- with increasing axial energy spread. This is in substantial
cylindrical waveguide confguration 2- " which treats agreement with the results obtained for a helical wiggler
the self-consistent evolution of :he trajectories of an en- configuration, 5 however, it should be remarked that the
semble of electrons and the radiation fields. The analysis same distribution has been used for both the planar and
includes both the TE and TM modes, and includes the helical wiggler configurations. Thus, while the planar and
overlap of the transverse mode structure and the electron helical wigglers behave in substantially the same manner,
beam i.e., the filling factor) in a self-consistent way. the detailed scaling of the efficiency with the momentum
Space-charge fields have been neglected; hence, the spread can be expected to vary with the detailed choice of
analysis is restricted to the high-gain Compton (strong- distribution.
pump) regime of operation. Since the proble". of in- The phase variation of the planar wiggler configuration
terest is the FEL amplifier, only single-frequency propa, discussed herein is also in qualitative agreement with that

:. > .
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found for helical wiggler configurations. 26 The principal errors). In addition, the relative phase also exhibits this
difference is that an oscillation at one-half the wiggler oscillation, which indicates a periodic modulation in wave
period is superimposed on the bulk variation in the phase refraction also occurs. It is, therefore, an open question
due to details of the wave-particle coupling with a planar whether this may affect the focusing (i.e., optical guiding)
wiggler. Specifically, for the gain band associated with of the radiation, and this will be addressed in a future
the upper (high-frequency) intersection between the work by the inclusion of multiple modes in the formula-
beam-resonance line and the waveguide-dispersion curve, tion. However, this question may be moot for tapered
we observe that the bulk variation of the relative phase de- wiggler configurations since the oscillation appears to be
creases with axial position up to a point short of that at attenuated (Fig. 19).
which the power saturates for frequencies at the low end Although the configuration described in this paper does
of the band. As the frequency increases, the phase varia- not precisely coincide with the experiment conducted by
tion decreases until a critical frequency is reached for Orzechowski and co-workers, 9'1 3 the parameters chosen
which the phase remains relatively constant over the for the numerical analysis coincide with those of the ex-
course of the interaction. This critical frequency has been periment and it is useful to compare the simulation with
found to occur at approximately 10% below the frequen- the experiment. The fundamental differences between the
cy of peak growth rate for all parametric cases studied for experimental configuration and the analytical model are
both the helical and planar wigglers. Above this critical that in the experiment (1) the beam was injected into the
frequency the average relative phase tends to increase with wiggler by means of an entry taper region one wiggler
axial position. In view of the high power potential of the period in length, (2) a quadrupole field was used to pro-
FEL amplifier, applications such as microwave sources for vide electron focusing instead of parabolically shaped pole
the next generation of radio-frequency electron accelera- pieces, and (3) in the tapered wiggler experiment 13 the am-
tors are natural considerations and the question of the plitude was tapered nonlinearly. A 50-kW 34.6-GHz i.e.,
phase stability of these devices against fluctuations in the w/ck,,= 11.3) magnetron was used to drive the FEL
electron-beam voltage is of importance. Again, we find amplifier, and the signal was injected in such a way as to
qualitative agreement on this issue between simulations of couple primarily to the TE0 mode. As a result, the TEO,
helical and planar wiggler configurations. The results in- mode was the predominant component of the output sig-
dicate a much poorer phase stability than the current gen- nal; however, significant power levels were also detected
eration of SLAC klystrons, and we conclude that applica- in the TE, 1 and TM,1 modes. The detailed experimental
tions of FEL amplifiers which require an extremely parameters we choose to compare with the experiment in-
phase-stable microwave source will also require an elec- volve a 3.5-MeV, 850-A electron beam used in the tapered
tron beam with a very low level of voltage fluctuations. wiggler experiment. Although the beam is thought to ex-

The enhancement of the interaction efficiency by means hibit a slightly elliptical cross section, the average of the
of a tapered wiggler amplitude shows maximum semimajor and semiminor radii is about 1.0 cm and we
efficiencies of the order of 35-45 % are possible for this choose this value for the beam radius in the numerical
choice of parameters. This brings maximum power levels simulation. The waveguide and wiggler parameters are
into the GW range. The simulation results also indicate those used previously in Sec. III, and we note that since
that the tapered wiggler-efficiency-enhancement mecha- the fringing fidds are not included in our model of the en-
nism is relatively less sensitive to the effect of momentum try taper region the choice of N. = 5 is a compromise.
spread than the uniform-wiggler case, and no degradation The evolution of the wave power in the TE0, mode as a
in the maximum efficiency is found for Ay./yo 5 1% in function of axial position for these parameters is shown in
the present case. Examination of the phase variation dur- Fig. 21 for a uniform wiggler (e, =0), and for
ing the tapered wiggler interaction shows similar results e,, = -0.007. The results are similar to those described
over the entire gain band (Fig. 19), and there is no de- in the preceding section for an 800-A beam, and the best
crease in the phase separation for the various frequencies fit with the experiment is found for an axial energy spread
observed in the tapered wiggler region. Since variations in of Ay,/)'0 1%. As shown in the figure, the untapered
the frequency at fixed beam voltage are fundamentally wiggler results give a saturated power of 194 MW over a
equivalent to a variation in the voltage at fixed frequency uniform wiggler-interaction region (i.e., Z,,,-5k ! of 1.4
(i.e., both processes sweep through the gain band), we find m in length. This compares well with the experimental
that our conclusion regarding the phase stability of FEL measurement of 180 MW over an interaction length of 1.3
amplifiers is unaltered for the case of tapered wiggler in- m, and the discrepancies are within the experimental un-
teractions. certainty. We remark, however, that the simulation re-

Indeed, the bulk features of the FEL interaction mecha- suits may be affected by as much as 20% by the choice of
nism are found to be in substantial agreement for both the length of the entry taper region. It is more difficult to
helical and planar wiggler configurations. The most evi- compare the simulation (with a linear wiggler taper) and
dent distinction is the rapid oscillation in both the power the experiment (with a nonlinear taper) in such a detailed
and relative phase which appears for planar wigglers at fashion. It is certainly reasonable to expect that a non-
half the wiggler period. While the bulk wave linear taper might be more efficient than a linear one in
amplification is unaffected by this oscillation, it may intro- the sense that the efficiency enhancement can be accom-
duce an uncertainty in the measurement of the gain plished over a shorter interaction region. Thus, in the
and/or power from planar wiggler configurations which is comparison of the tapered wiggler results we interpret the
of the order of 10% (apart from systematic instrumental simulation as an indication of limits on the energy extrac-
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~1M~a (1.S m; b2.5 fli w~Cw=113P~-6~k) :ep ;: texeperimnent. It is important to recogrze :hat

~. simulatiortal znodeik and computer codes undergo iapid
V- 3.9 M.V difficult; hence, I will confine my remarks to fundamerntai

,0 properties %%hich iti.Jude the particle dynamics and )i e
1% treatment of the radiation field. The paiticle dynamics it;

ad a5,,w equations over at wiggler perorm bye tanversne obt!
VOL. MmA -35.adescribed in terms of th ukwiggler and beatron oscii-

lations by means of an analytical approximation, and the
self-consistent effect of the radiation fteld on the trans-
verse motion is not .included. The dynamics in the axial

A - direction are handled by integration of equations for the
- particle phase and energy. This is the most common ap-

~ MWproach used in the simnulation of free-electron lasers and,
* '' - as shown by 'he comparison between FR-ED aind the exper-

ki* 121 irnental results,911 it works well. However, certain effects
It~s are excluded from this formuiation. First, we observe

FIG 21Plo sowig te voltio ofth TE , nie lq ai- that the rapid oscillation at the second wiggler harmonic
F1oIG.o :o1 Pliot m h n teedwiggler theati~ on.'~ ii lost entirely due to the averaging of the orbit equations

al cs;;on~c' a nifrm nd apeed ;5~er nteact~nover a wiggler period. Second, the injection of the elec-
tron bean into the wiggler is excluded from the simula-
tion, and must be described explicitly. Third, because the
self-consistent effect of the radiation field on the trains-

tion. With this in mind we observe that the optimal verse electron motion is riot included, the initial transients
start-taper point is at k~z0, n:Ill (slightly more than one associated with the injection of the radiation into the
wigglev peroid short of the saturation point for a uniform omplifier are not properly handled. As a result, launching
wiggler). We choose the slope of the taper to correspond losses cannot be described by FRED~, and the wave power.
roughly wit~h the average taper in the experiment, and find must be initialized at a lower vatLue than that actually in-
a maximumn efficiency of about 77,=56% at a power jected into the amplifler.0 Thus, it is our opinion that the
Level of 1.06 GW. This dxiers by oly about 9% from approach to the particle dynamics described in this paper
that found in the experiment, and we interpret this as is superior to that employed in- FRED. The advantage of
good agreement within the uncertainty itide byth FRED over the single-mode analysis we have described is
differences in the slope of the taper. We conclude, there- that the radiation field is treated by means of a field solver
fore. that the simulation is consistent with the interpreta- which implicitly handles multiple modes and, thus, de-
tion of a 1% axial beam energy spreqd, which is support- scrihes the optical guiding (i.e., fousing) of the rad.,aticr.
ed by an electron-spectrometer measurement indicating an dvle to the electron-beam interaction, However, cptical
upper limit oni the energy spread of 2 %.3' Furthermore, guiding can be treated via a multirnode formulation of the
;n view 0-' the relative insensitivity of the tapered wiggler present analysis as well. Indeed, such an analysis is now
interaction isee Fig. 204, we conclude that the perfor- kinder study, and the results will be presented in the fo-,th-
manice of the tapered wiggler experiment would not be coming work.
markedly improved by a further improvement in beam
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A nonlinear formulation of the free-electron-laser amplifier with a linearly polarized wiggler
magnetic field is used to study harmonic generation. Substantial emission is found to occur at the
harmonics for a cold beam; however, the harmonics are far more sensitive to beam thermal effects
than is the fundamental.

The question of harmonic generation in free-electron
lasers (FEL's) has become increasingly important in re- of d helical wiggler field, 2 and emission was shown to
cent years. The operation of an FEL oscillator at visible occur at all harmonics of the resonant frequency. How-
wavelengths driven by the ACO (les Anneaux de Col- ever, due to the modulation of the axial electron velocity
lisions de 'Accelirateur Lineaire d'Orsay) storage ring I  in linearly polarized wiggler fields, only the odd harmon-
has shown that the generation of harmonics at uv wave- ics are excited. In this paper we study both the linear
lengths can limit performance due to severe degradation growth rates and nonlinear saturation efficiencies at the
of the optical system. In contrast, there is interest in the odd harmonics, as well as the effect of thermal spread on
generation of harmonics in an effort to achieve ever harmonic generation.
shorter wavelengths without the necessity of ever higher The configuration we consider is that of a relativistic
electron beam energies. In order to address these ques- electron beam propagating through a loss-free rectangu-
tions, we have develop:d a fully three-dimensional for- lar waveguide in the presence of a linearly polarized
mulation of the FEL amplifier for a configuration which wiggler magnetic field. The wiggler-field model we em-
consists of an electron b!am propagating through a rec- ploy is that encountered when the individual magnets in
tangular waveguide in the presence of a linearly polar- the wiggler have parabolically tapered pole faces. The
ized wiggler magnetic field. A set of nonlinear wiggler field generated in this way provides for electron
differential equations is derived which self-consistently beam focusing in the plane of the principal wiggler
describes the evolution of both an ensemble of electrons motion, and was first employed experimentally by Phil-
and the electromagnetic fields. The issue of harmonic lips.3 A detailed analysis of the magnetic field produced
generation [i.e., w = (k + lk,, )v, for I> 1] has been ad- by a wiggler with parabolically tapered pole pieces was
dressed previously for the case of an electron beam prop- undertaken by Scharlemann,4 who showed that the
agating through a cylindrical waveguide in the presence wiggler field is of the form

I

I V2 h I k 1 + os 'i ~ c s -i-B,(x)=B . cos(k,.z) (sinh -
k

=- sin- cooh

-2cosh [ '/ sinh k sin(k~z re, ()

where B, denotes the wiggler amplitude and Note, however, that fringing fields associated with the
k. (-=2r/X.) is the wiggler wave number. In addition, tapered wiggler amplitude are neglected, and this repre-
we model the injection of an electron beam into the sentation (for z <N.X.) is valid only for large N,. For
wiggler by allowing the wiggler amplitude to increase the purposes of the present analysis, we choose N, = 10.
adiabatically from zero to a constant level over N The boundary conditions at the waveguide wall may
wiggler periods as follows: be satisfied by expanding the vector potential in terms of

the orthogonal basis functions of the TE modes, and we

. z ]write the vector potential of the radiation field in the
B, siN . 0<z N Xi form

(2) A(xt)= 8A,. (z)e..(xy)osa , (3)
, M-0
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where for frequency w and wave number k (z) d 2 8 L2 -

a- f dz'k(z')-ot ,  (4) z2  Ica +
02

' indicates that mn and n are not both zero, and - c: cs e,,,, ()

rn MirX nr and2

e,(Xy) cos - sin - r2k 1/2 A(k 1/2a,= - F i s , . (8)

amb ( b jdz 5a. ma :0( inaeu1  8

i}m n ]upon orthogonalization in x and y, and an average over
si Cos , (5) the wave period. In Eqs. (7) and (8),

kma a b 5a ,, =eSAmn /mc , cob is the ambient plasma frequen-
cy, 3o--vo/c (where vu0 is the initial axial beam veloci-

is the polarization vector. In this representation the ty), v is the instantaneous velocity, and F,, =4 (8) when
waveguide is assumed to be centered at the origin and either m =0 or n =0 (m 0 and n 0). The averaging

bounded by -a/2<x <a/2 and -b/2<y <b/2. As a operator ( ( ... )) describes the source current and in-
consequence, X=x +a/2, Y =y +b/2, and cludes the effect of an initial (i.e., at z=0) thermal

m n2(1/2 spread in the beam by means of the distribution function

kn =Jr , +.12 (6) F0 (p 0)= A exp[ -(P.o-po) 2 /Ap,]

8(p -po -P )O(p ) (9)

denotes the cutoff wave number. It is implicitly assumed where p0 and Ap, describe the initial bulk momentum
that both the mode amplitudes 8A,Iz) and the wave and the momentum spread of the beam, e(x) is the
number k (z) vary slowly over a wave period. Heaviside function, and the normalization constant is

A detailed derivation of the equations which describe
the evolution of the mode amplitudes and wave number A= " OdpC0exp[-(pzo-P()2/Ap ] (10)
has been presented' for both the TE and TM modes;
however, the method follows that employed for a helical This distribution describes an initially monoenergetic
wiggler.2 Here we note that substitution of the fields (3) beam with a pitch-angle spread. The average is over the
into Maxwell's equations yields initial conditions and defined as

P0 P) 2- / 2

2rab fP dob fO d

P daoa (ao) f 2 dxo f b dy 0 ..(x,y 0 )( .11l

where ao ( -wto and to is the time the electron crosses ing the orbit equations, we solve an initial-value problem
the z =0 plane) is the initial phase, bo0 =tan- (po/po h, composed of a set of 6NV+3 coupled nonlinear
and a,(ao) and or(xo,y o ) describe the electron distribu- differential equations, where N is the number of parti-

tions in initial phase and initial cross section. For sim- cles. The field quantities are initialized such that
plicity, we assume the beam to be uniformly distributed 8am,,(z =0) describes an arbitrary input power level.
in phase (a,,=l) and cross section for an initially cylin- r,,(z =0)=0, and k(z =0)=W(2o/c 2 -k0,, )'/Z. Thus,

drical beam (i.e., a,= I for r0 < Rb). In order to corn- while the initial state describes a vacuum mode, the sys-
plete the formulation, the electron trajectories are fol- tern evolves into a dielectrically loaded waveguide mode
lowed by means of the Lorentz force equations in the in the presence of the beam.
combined wiggler and radiation fields. It should be The particular example we consider involves a 3.3-
remarked that although the fast-time-scale behavior of MeV, 100-A electron beam with an initial radius of 0.2
Maxwell's equations have been eliminated by means of cm propagating through a rectangular waveguide (a = 10
the average over a wave period, no average of the cm, b =3 cm) in the presence of a wiggler with a 4.2-kG
Lorentz force equations is undertaken. This is impor- amplitude and a 9.8-cm period. A spectrum of the
tant in order to resolve the interaction at higher har- efficiency, i/, of the TE01 mode is shown in Fig. I as a
monics. function of frequency for the fundamental through the

Equations (7) and (8) can be reduced to a set of three ninth harmonic in the absence of any thermal spread
first-order differential equations describing the evolution (i.e., Ap,=0). The doublet at the fundamental corre-
of the amplitude 8a,,, the growth rate r,,. sponds to the upper and lower intersections between the

(=d InSa.,/ dz), and the wave number. Hence, includ- waveguide dispersion curve and the beam-resonance line
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TEo, Mode (a = 10cm; b = 3 cm) TEO, Mode (a = 10cm; b = 3 cm)
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FIG. I. Plot of the efficiency vs frequency at the fundamen-
tal, third, fifth, seventh, and ninth harmonics. W/Ck. "SO

wCkw = 6625

(co=(k +k,)v,]. It is evident from the figure that there
is a sharp drop in the efficiency between the fundamental
and the third harmonic. However, the subsequent de-
crease of the efficiency with harmonic number is rather 05 1 0 1 5 20

slow, and substantial power may be found at the higher Ay./y. %)

harmonics. In addition, the decrease in the growth rates
with harmonic number is relatively slow. Bcaue cf
variations in the launching loss associated with the vari-
ous harmonics, as well as oscillations in ihe growth rat-
over the course of the interaction, it is difficult to obtain Ay,/Yo -: 0 .7 % at the third harmonic. At higher har-

estimates of the average growth rates. However, the Ois- monics the decrease is even more rapid. In addition, as
tance to saturation (Zsat ) for a fixed input signal of 6 kW found by Da% idson,' the growth rates are also more sen-
provides a measure of the average growth rate. Fcr e.,. sitive to the thermal spread at the harmonics than at the
ample, the peak growth rate is obtained at co/ck, _7 1, fundamental. While the saturation length increases from
for the fundamental (upper intersection), and saturation k.,Zat - 199 to kz,_ -:209 at (o/ck,, =7.0 (fundamental)
occurs at k,, z 184 with an efficiency r1 5.57%. At as the thermal spread increases to Ay,/yo"- 1%, the de-
the third harmonic, peak growth is found for crease is more rapid at the third harmonic. For this
co/ck,, z-27.25, and saturation occurs at k.gzsat -- 172 case, the saturation length increases from kz,,, - 205 to

with an efficiency 1 -_ 0.81%. In view of the shorter sat- k, z,,, -- 241 at u) /ck, -_ 27.25 as the axial energy spread
uration length and lower efficiency at the harmonic, it is increases to A.: /yo0_0.5%. At w /ck =65.25 , seenth
clear that the third-harmonic growth rate is a substantial harmonic) the saturation length increases from
fraction of that at the fundamental. A similar con- kz, sat 205 to kz,,z- 257 as the thermal spread in-
clusion is obtained at the seventh harmonic which creases to Ay: /yo-0.27%.
displays a peak growth rate at w/ck_, _-65.5 and a satu- The question of the effect of the thermal spread on
ration length kwzsa -172 with 7:_0.39%. harmonic generation has been addressed in an analytic

The effect of the thermal spread is shown in Fig. 2 in model of the low-gain, single-particle regime by Coisson
which we plot the normalized efficiency 1?/r70 (i is the and de Martini. 7 The results of the analytic model also
efficiency for Ap,=0) versus the axial energy spread showed that the sensitivity of the interaction to the
Ay,/yo. Observe that since the initial distribution is beam thermal spread increased with the harmonic num-
monoenergetic ber. The reason for this can be understood by considera-

- tion of the resonance condition w,-(k +lk, ?v, -_0, so
S +2(yZ-l) - (12) that the transition to the thermally dominated regime

Yo Po occurs when (Rek +1k. )Av, = (Imk), where Av, is the
axial velocity spread, U, is the bulk axial velocity of the

where yg= I +pPnP" c 2. The principal conclusion to be beam, Rek is the wave number, and link is the growth
drawn from the figure is that the harmonic emission is rate. Since the growth rate typically decreases with in-
far more sensitive to the effect of the thermal spread creasing harmonic number6 while the wave number in-
than the fundamental. While 'the efficiency decreases by creases (i.e., it is a higher-frequency interaction), it is
an order of magnitude for Ay , /y- 2% at the funda- clear that the transition to the thermally domirated re-
mental, a corresponding decrease occurs for gime occurs for progressively lower values of Av, /1U as
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the harmonic number increases, oscillator at ACO were due to spontaneous (rather than
The issue of beam propagation through the wiggler coherent) emission, :me higher beam currents obtainable

can also be addressed with this formulation. Results in- on the forthcoming super-ACO storage ring could lead
dicate that while the entire beam propagates through the to coherent harmonic generation. Such problems are
system in the absence of a thermal spread, a substantial due, in large part, to the excellent beam quality (i.e.,
fraction of the beam can be lost to the wall for even Ay. /y0o-0. 1%) obtainable with a storage ring.
moderate thermal spreads (i.e., Ay 1/y 0 > 1%) at this
beam energy.

In summary, the results indicate that substantial This work was supported by the Office of Naval
growth rates and efficiencies at the higher harmonics are Research and the Office of Naval Technology. The au-
obtainable at the cost of more stringent requirements on thors would like to thank Dr. A. K. Ganguly, Dr. R. K.
beam quality. It should also be remarked that while the Parker, Dr. A. T. Drobot, and Dr. R. H, Jackson for
difficulties harmonic emission posed for the optical FEL helpful discussions.
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ABSTRACT

The nonlinear evolution of a Free-Electron Laser (FEL) amplifier is investigated

for a configuration in which an electron beam propagates through an overrnoded rect-

angular waveguide in the presence of a planar wiggler with parabolically tapered pole

pieces. The analysis is fully three-dimensional and describes the evolution f an arbi-

trary number of resonant TE and/or TM modes of the rectangular guide as well as the

trajectories of an ensemble of electrons. Numerical simulations are conducted for pa-

rameters consistent with the 35-GHz amplifier experiment performed by Orzechowski

and coworkers, in which the TEOI,TE21 , and TM21 modes were observed. The the-

ory is found to be in good agreement with the experiment. Surprisingly, comparison

with a single-mode analysis shows that the enhancement of the efficiency of the TEo1

mode obtained by means of a tapered wiggler is significantly greater (as well as being

in substantial agreement with the experiment) when the TE21 and TM21 modes are

included in the simulation.
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I. INTRODUCTION

The Free-Electron Laser (FEL) has been shown to be a high power radiation

source over a broad spectrum extending from microwave' - 13 through optical 14-21

wavelengths. For operation at relatively low beam energies (typically below about 500

keV) and long wavelengths, the device is termed a Ubitron ' and the interaction occurs

in the vicinity of the lowest order waveguide cutoff. As a consequence, the system

can be designed in such a way that the beam is resonant only with the lowest order

waveguide mode, and a single-mode analysis is sufficient to describe many aspects of

the interaction. However, at higher energies and shorter wavelengths, the interaction is

overmoded in the sense that the electron beam can be resonant with several (perhaps

many) modes, and the competition between the modes has important consequences for

the interaction.

The motivation for the present work is to develop a multi-mode nonlinear tleory

and simulation code for a Ubitron/FEL amplifier. The analysis is based on previ.

ously described single-mode analyses of helical wiggler/axial guide field 22- 25 and pla-

nar wiggler 28 configurations. The development of a multi-mode analysis represents a

straightforward generalization of the single-mode theories, and involves the calculation

of J * E for each mode as well as the integration of electron trajectories in the aggre-

gate field composed of the sum of all the resonant modes. The particular configuration

considered in the present work is that of a planar wiggler geometry in which the elec-

tron beam propagates through a rectangular waveguide. The detailed wiggler model

we employ includes the effect of parabolically shaped pole pieces in order to provide

for electron focussing in the plane of the bulk wiggler motion, 1,27 and we model the

injection of the electron beam into the wiggler by allowing the wiggler amplitude to

increase adiabatically from zero to a constant level. In addition, we consider the effect

of a tapered wiggler amplitude on efficiency enhancement in overmoded systems. As in

the case of the single-mode analysis, 2 the overlap between the electron beam and the

transverse mode structure of either TE or TM modes is included in a self-consistent

2



way, and no arbitrary "filling-factor" is necessary. Although the problem of interest

is that of an overmoded FEL amplifier which requires a multi-mode treatment, only

single-frequency propagation need be considered. As a result, Maxwell's equations may

be averaged over a wave period which results in the elimination of the fast-time- scale

phenomena from the formulation.

The organization of the paper is as follows. The general formulation is described

in Sec. II, and allows for the inclusion of an arbitrary number of modes of TE and/or

TM polarization, subject to the restriction that all are propagating modes at the

same frequency. A direct application of the multi-mode analysis is to the description

of a recent experiment by. and coworkers, 9"' 3 in which the TEo1 ,TE 21, and TM2 1

modes of a rectangular waveguide were observed. Numerical examples appropriate to

this experiment are discussed in Sec. III, and good agreement with the experiment is

found. A summary and discussion is given in Sec. IV.

3



H. GENERAL FORMULATION

The configuration we employ is that of an electron beam propagating through an

overmoded rectangular waveguide in the presence of a planar wiggler field generated

by a magnet array with parabolically tapered pole pieces." 27 As a result, the wiggler

field is assumed to be of the form:

k k,,y .kz. k,,y
B. (x) = B, {cos k., z(sinh[- -] sinh[ -Y]6. cosh[ "-] cosh[--- 6,)

V2cosh[- -] sinh[-Y-] sin k. zl, } (1)

where B. denotes the wiggler amplitude, and k. (- 21r/A.) is the wiggler wavenumber.

The injection of the beam into the wiggler is modeled by an adiabatic increase in the

wiggler amplitude over N,, periods. In addition, since the enhancement of the efficiency

by means of a tapered wiggler is also studied, the wiggler amplitude will be tapered

downward starting at some point zo downstream from the entry region in a linear

fashion. For this purpose we choose

B. sin2 (k.z/4N.) ;0 < z < N.A,
B,. (z) = B. ;N,. A, < z < zo, (2)

Bw[1+,E.k,.Z-Zo)J ;z>zo

where

4



1ldk---n Bz (3)

describes the slope of the taper. Since the fringing fields associated with the tapered

wiggler amplitude are neglected, this representation requires the slopes of the taper to

be small (i.e., N, must be large and Ie. I < 1).

The boundary conditions at the waveguide wall may be satisfied by expanding the

vector potential in terms of the orthogonal basis functions of the vacuum waveguide.

Thus, we write the vector potential of the radiation in the form

6A(x, t) = 6Afn(z)e(') (z, y) cos a (4)
t,n= 0

for the TE modes, and

0. ken . grX. n~rY.

6A(x,t) = > 6a,(z)[e) (x,y)cos a + -sin(-) sin( sin a. (5)

tn= I

for the TM modes, where for frequency w and wavenumber k(z)

a- zk~' - wt (6)

In addition, ' indicates that t and n are not both zero, and

e,., =a)sin(2,,)A -- sin(trX) o(7)
ken --- b a ----b ka a(7



i2 1irX, . n+rY nr .irX CnirY,
fnos(-)sin (- - ) +- sin(- cos----) , (8)
kna a b ke a b

are the polarization vectors. In this representation, the waveguide is assumed to be

centered at the origin and bounded by -a/2 < x < a/2 and -b/2 < y :_ b/2. As a

consequence, X = x + a/2, Y =- y + b/2, and

t2 2 (9)

denotes the cutoff wavevector. It is implicitly assumed that both 6 Aen (z) and k(z)

vary slowly over a wave period.

The multi-mode treatment includes an arbitrary number of propagating modes of

TE and/or TM polarization. The detailed equations which describe the evolution of

the amplitudes and wavenumbers of these modes are identical to those derived in the

single-mode analysis,2" and we merely restate the results here. The equations which

govern the evolution of the TEE, mode are

d (W 2 /cosa
dZ2aen + k2

- c - k ,)bae,. = 8-'±Fen ( e ".), 10

and

2 d 2d

where 6 at. = e6Ae /mc 2 ,W - 47rnbe2/m (where nb is the bulk density of the beam),

v is the instantaneous electron velocity, and F. - 1/2 when either t = 0 or n = 0 and

unity otherwise. For the TMt, mode we obtain a similar result

6



d2  
b

2  w
dz2  3tnC

fvj vs

coSae) + sin (-w-) sin in. (12)

and

21 k 2),/3 drk k2l/ 6 w

2k+k dz(+ k C3

Ksin e. (2) . v k ink ( -TrX nrY (13)

× .1v I n IV.-- .vin sin( -- ) cos ct(13)

waere we note that there is no nontrivial TM mode solution when both t - 0 and

n= 0.

Equations (10) - (13) are equivalent to a calculation of J 6E Ef for each mode.

The av,,raging operator ((...)) is defined over the initial conditions of the beam, and

includes the effect of an initial momentum spread by means of the distribution function

Fo(po) = Aexp[-(po - po)'/Ap ] 6 (po - p'o - p2 )H(p..) (14)

where p0 and Ap, describe the initial bulk momentum and momentum spread, H(x)

is the Heaviside function; and the normalization constant is

P0

A- (7r f dp, 0 exp[-(po - po) 2 /Ap]) - '  (15)
0

7



Observe that this distribution is monoenergetic, but contains a pitch angle spread which

describes an axial energy spread given approximately by

- 1 -[1 + 2(_o _ 1)--o 1/2 (16)

where /2 (C + o/n 2 c2)1 / 2 . As a result, the averaging operator takes the form

A 2r P2
- f d4o f dp, 0 .oexp[-(po - P.) 2 /Ap.]

2 orabo o

a/2 b/2

x f dtoka,,( 0 ) I dxo f dyoao(x,yo)(...) (17)
- i -a/2 -b/2

where ao(- -wi,) is the initial ponderomotive phase, €o tan-'(pyo/p.o), 0,

vo/c, and all '0o) and a1 (x0 , y.) describe the initial beam distributions in phase and

cross section.

The phase vvariation of each mode can be analyzed by the addition of an equation

to integrate the relative phase.

$(z) f dz'(k(z') - ko) , (18)
0

where k. (w 2 /c 2 - kj)'/ 2 is the wavenumber of the vacuum guide. Since the

departure of k(z) from the vacuum wavenumber describes the effect of the wave-particle

interaction, '1(z) represents a measure of the dielectric effect of the FEL interaction.

Thus, we integrate the additional equation

8



d* - = k-ko , (19)

for each TE and TM mode.

Each mode will interact resonantly with the electrons and be coupled through the

electron motion in the combined wiggler and bulk radiation fields. Thus in order to

complete the formulation, the electron orbit equations must also be specified. Since we

describe an amplifier model, we choose to integrate in z, and write the Lorentz force

equations in the form

d ev.zp = -e6E- -vs• (Be, + 6B) (20)

where B, is given by Eq. (1) and the radiation fields are given by

bE 6A,. , (21)
C o~t

all modes

and

B =: V 6A . (22)
all modes

Finally, the electron coordinates obey the equations

d
V,-TZ = V2 (23)

d Y y(24)
dz 9, y= , (4



and

d O~k~k.(25)

which describes the evolution of ponderomotive phase

0 V,

10



III. NUMERICAL ANALYSIS

The dynamical equations for the particles and fields described in Sec II are now

solved for an overmoded amplifier configuration in which several modes may be in

resonance with the beam at a fixed frequency w. The numerical problem involves the

solution of a set of 6NT + 4Nm ordinary differential equations (whereNT is the number

of particles, and Nm is the number of modes) as an initial value problem. Observe that

equations for the amplitude, growth rate, wavenumber, and phase are integrated for

each mode. The integration is accomplished by means of a fourth order Runge-Kutta-

Gill technique, and the particle average described in Eq. (17) is performed by and Nh

order Gaussian quadrature in each of the initial variables. The initial conditions on the

fields are chosen to model the injection of an arbitrary power level of each mode, and

the initial wavenumbers correspond to the vacuum state (i.e., k(z = 0) = ko). Further,

the initial value of the relative phase of each mode is zero, and both the wiggler field

and growth rate are initially zero. The initial state of the electron beam is chosen to

model the injection of a continuous, axisymmetric electror beam with a uniform cross

section so that or, = 1 for -7r < io, 5 7r, and o = 1 for r,, < Rb. A more detailed

description of the procedure is to be found in refs. 22 and 26.

The particular example we consider is that of a 35-GHz amplifier employing an

electron beam with an energy of 3.5 MeV, a current of 850A, and an initial radius of

1.0 cm propagating through a waveguide characterized by a = 9.8cm and b = 2.9cm.

Wave-particle resonance is obtained in the vicinity of 35-GHz for a wiggler field of

3.72 kG amplitude and 9.8- cm period,and beam injection is accomplished over an en-

try length of five wiggler periods. For this choice of parameters three wave modes

are resonant; specifically, the TEO,, TE21 , and TM21 modes. The multi-mode results

described herein will be compared with a previous single-mode treatment. In addi-

tion, the parameters correspond with an experiment conducted by Orzechowski and

coworkers, '" 3 and a comparison of the simulation with the experiment will be given in

Sec. IV.

11



The detailed evolution of the total wave power as a function of axial position is

shown in Fig. 1 for an axial energy spread of A /y, 1-f = 1.5% on thc. beam and the

injection of a signal at wck,, = 11.3(34.6GHz) composed of the TEO, mode at 50

kW, the TE21 mode at 500 W, and the TM 21 mode at 100 W. As shown in the figure,

saturation of the total signal occurs at k,. z = 96(1.5m) at a power level of 201 MW

for a total efficiency of 1 - 6.87%. It is also evident that although the TEO, mode

was the overwhelming dominant mode upon injection, it comprises only about 60% of

the signal at saturation. The remaining power is composed primarily of the TE 21 (at

37% of the signal) with only a relatively small contribution of the TMo, mode. As

discussed in ref. 26, the reason for this is that at this frequency the growth rate of

the TE 21 mode exceeds that of the TEO, mode, and compensates for the lower initial

power level. Due to the polarization of the TM2 , mode, the growth rate and efficiency

are smaller than for the TE modes, and the TM 21 mode never accounts for more than

about 7 MW. The rapid oscillation shown in the figure has a period of approximately

A,,, /2 and occurs because the evolution of J 9 E for a plana:- wiggler exhibits both a slow

variation corresponding to the ponderomotive phase and a rapid oscillation at A /2.26

Observe that the single-mode analysis showed a saturated power of 162 MW for the

TEO, mode, 126 MW for the TE 2, mode, and 25 MW for the TM21 mode. Thus,

while the total power of the signal in the multi-mode analysis somewhat exceeds that

shown in the single-mode cases (for the TE modes), the power levels of the individual

modes are lower.

The phase variation of each of these modes is shown in Fig. 2 as a function of

axial position, where the arrow denotes the point at which the total power saturates.

Of these modes, the TEO, behaves in qualitatively the same way as in the single-mode

case. Specifically, the bulk phase at this frequency (apart from the rapid oscillation at

A,, /2) increases monotonically with axial position through, and beyond, the saturation

point. In contrast, the relative phases of both the TE 21 and TM21 modes are decidedly

not monotonic and exhibit a decrease with axial position starting at a point somewhat

beyond saturation. This is a multi-mode effect since the relative phases of the TE 21

12
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and TM 21 modes also exhibit a monotonic increase with axial position at this frequency

in the single-mode analysis. Finally, we observe that the curves of relative phase for the

TE 21 and TM21 modes are almost identical. The reason for this is that the dispersion

curves for the TEt,, and TMt,, modes are degenerate in a rectangular waveguide.

The effect of an initial momentum spread on the saturation efficiency of the total

signal and the TEO, and TE 21 mode components is shown in Fig. 3. The TM21 mode

is excluded from the figure because it composes such a small fraction of the signal. As

shown in the figure, the saturation efficiency is relatively insensitive to the axial energy

spread over the range A-y, /-I, < 2.5%, and decreases from Y7 = 8.6% at A. t_ 0 to

Y7 = 5.9% at A-y,/-I, = 2.5%. The reason for this is that the coupling coefficient (and,

hence, the growth rate) depends upon the product of the wiggler amplitude and period.

Since this product is large for the present choice of parameters, the growth rate is large

and the interaction can accept a relatively large axial energy spread without suffering

a severe degradation.

The saturation efficiency is known to scale as the cube root of the beam current at

the frequency of peak growth from the idealized one-dimensional theory of the high-6,in

Compton (i.e., the strong-pump) regime, and this type of scaling law waz also found

from the three-dimensional single-mode simulation of this configuration. The scaling

of the total power as a function of beam current for the multi-mode analysis is shown

in Fig. 4 for A-y, = 0 and Ay, /-I,, = 1%, the efficiency is found to scale approximately
1 /3

as 7 - •

Turning to the question of the enhancement of the efficiency by means of a tapered

wiggler, we plot the evolution of the power with axial position in Fig. 5 for parameters

corresponding to those shown in Fig. 1. The optimal start-taper point for this case

is k. z. = 86, and we choose a slope of e,, = -0.007 which was also studied for the

single-mode analysis. The central conclusion to be drawn from the figure is that it is

possible to selectively enhance the TEO, mode. The uniform wiggler interaction for this

example yields a total efficiency of 6.8%, of which the TEO, mode comprises only 60%

13



of the signal. By contrast, careful choice of both the start-taper point and the slope of

the taper show that the efficiency can be enhanced to %7,.. = 41.29% (if the wiggler

field is tapered to zero) with 99% of the power in the TEO I mode. Both the TE 21

and TM 21 (not shown in the figure) ultimately decay to extremely low intensities. One

surprising result of the present multi-mode analysis is that the maximum efficiency to be

obtained by tapered wiggler fields is enhanced relative to the single-mode analysis. By

comparison, the single-mode analysis for these parameters yields a maximum efficiency

of 17,,f. = 34% which is substantially lower than the 41.29% found in the multi-mode

simulation. The phase variation of the TEO, mode for this example is shown in Fig.

6, and exhibits the same qualitative variation as in the single-mode analysis. Another

characteristic of the tapered wiggler interaction observed in the single-mode treatment

is that the overall efficiency appears to be relatively insensitive to the axial energy

spread. As shown in Fig. 7, in which we plot the maximum obtainable efficiency versus

A /y,, this is also found to be the case in the multi-mode analysis. As shown in the-

figure, the maximum efficiency decreases from 43.6% at - = 0 to as much as 39.4% at

A%-Y /Y, = 2%. This is a much lower proportional sensitivity to the axial energy spread

than is illustrated in Fig. 3 for the uniform wiggler case.

Finally, we address the question of the sensitivity of the tapered wiggler interaction

to fluctuations in the bulk energy of the beam. The reason for concern with this

issue is that the tapered wiggler interaction is known to be sensitive to the start-taper

point. In particular, the taper should begin at a point shortly prior to saturation

(for the untapered wiggler) corresponding to the trapping of the bulk of the beam in

the ponderomotive potential. Changes, or fluctuations, in the beam energy at fixed

frequency are equivalent to variation of the frequency at fixed energy, and result in

shifts in the growth rate and saturation point. For this reason, it might be expected

that the tapered wiggler interaction is sensitive to fluctuations in the bulk energy of the

beam. In order to address this question, the variation in the efficiency has been studied

as a function of beam energy, and the results are shown in Fig. 8. For convenience, this

figure has been generated for the limiting case of zero axial energy spread for which the
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optimal start-taper point is k. z, = 83 at a beam energy of 3.5 MeV. Hence, choosing

c. = -0.007 and the aforementioned start-taper point, Fig. 8 describes the variation in

the efficiency with beam energy when (1) the wiggler is tapered to zero (AB /B, = 1),

and (2) when the wiggler is tapered to half its ambient level (AB/ 1B,, = 0.5). As

shown in the figure, there is a sharp decline in the efficiency above approximately 3.55

MeV. In contrast, there is a more gradual decrease in the efficiency for energies down to

3.3 MeV, below which the resonant interaction at wIck,., = 11.3 is lost. As a result, the

tapered wiggler interaction will tolerate a bulk energy fluctuation of the order of 8.6 %

for these parameters without severe degradation in performance for these parameters.
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IV. SUMMARY AND DISCUSSION

In this paper, a multi-mode analysis and simulation of FEL amplifiers in three-

dimensions has been given for a configuration in which a relativistic electron beam

propagates through an overmoded rectangular waveguide in the presence of a planar

wiggler generated by means of an array of magnets with tapered pole pieces. The

multi-mode analysis is accomplished by expansion of the radiation field in terms of

the vacuum waveguide modes, and an arbitrary number of propagating TE and/or

TM modes is included in the analysis. Although multiple modes are included in the

analysis, the problem of interest is that of an amplifier and single frequency propagation

is considered. As a result, the field equations are averaged over a wave period in order

to eliminate the fast-time scale phenomena. However, no average of the orbit equations

was performed, and the electron dynamics were treated by means of the fully three-

dimensional Lorentz force equations. As a result, the effects of the adiabatic injection

process, bulk wiggler motion, Betatron oscillations, velocity shear, beam focussing

due to the wiggler gradients, and phase trapping of the beam in the ponderomotive

potential formed by the beating of the wiggler and radiation fields, are all included in

a self-consistent manner.

The numerical example describes a 35-GHz amplifier which employs a 3.5

MeV/850A electron beam with a 1.0 cm initial radius propagating through a rect-

angular waveguide with dimensions a = 9.8cm and b = 2.9cm in the presence of a

wiggler field with a 3.72 kG amplitude and 9.8cm period. Three distinct wave modes

are found to be resonant; specifically, the TEO,, TE21 , and TM21 modes. The simula-

tion is carried out under the assumption that the injected signal consists primarily of

the TEO, mode at a 50kW power level, the TE 21 mode at 500W, and the TM21 mode

at 100W. Results indicate that although the TE 21 mode was at a relatively low initial

power level, it comprises upwards of 37% of the saturated signal. The coupling between

the beam and the TM21 mode was weaker than for the TE modes, and never accounted

for more than a few percent of the total signal. Comparison with a previous single-mode
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analysis 26 indicates that the efficiency of the total signal is somewhat higher than that

found for single modes in the case of a uniform wiggler. A more dramatic difference

between the multi-mode and single-mode treatments is found for a tapered wiggler

interaction. In this case, it is found that the selective enhancement of the TEO, mode

is possible and, indeed, has been experimentally observed.' 3 However, the power levels

to be obtained in the TEO, mode through the multi-mode tapered wiggler interaction

were found to be substantially higher than found in the single-mode simulation. This

constitutes an important question for future study.

The configuration and parameters described in this paper nominally correspond to

the experiment performed by Orzechowski and coworkers. ' The principal differences

between the analytical configuration and the experiment are that in the experiment

(1) the beam was injected into the wiggler through an entry taper region one wiggler

period long, and (2) a quadrupole field was used to provide additional electron focussing

instead of parabolically tapered pole pieces. Since the fringing fields associated with

the wiggler field in the entry taper region are not included in the analytical model, it

would be invalid to apply the analysis for N. = 1. However, the choice of N. = 5

is made as a compromise and gives good agreement with experiment subject to the

additional assumption of an axial energy spread of Ay, /-y = 1.5%. This is within

an upper bound of 2% on the axial energy spread established by means of an electron

spectrometer measurement. 28 The experimental measurement for a uniform wiggler

interaction resulted in a saturated power level of 180 MW over a length of 1.3m. As

shown by Fig. 1, the simulation gives a peak power of 204MW which, if we average over

the fast A. /2 oscillation, is reduced to 185 MW. Given the experimental uncertainties

in high power measurements, the latter figure is more relevant for comparison and

is in substantial agreement with the experiment. The saturation length found from

simulation (that is, the length of the uniform wiggler region plus one wiggler period to

account for the entry taper region) is 1.Lm, which is also in good agreement with the

experiment. Note that rapid oscillation in the power and relative phase at a period of

A. /2 is likely to introduce a 10-20% uncertainty in the measurement of these quantities.
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A comparison can also be made with the tapered wiggler experiment'" in which the

wiggler field was decreased by 55% (AB,,/B,, = 0.55) over a length of 1.m (i.e.,

c, = -0.0078) and the efficiency was found to increase to 34% for a total power of

1 GW. The evolution of the total signal power, and that of the TE modes, is shown

in Fig. 9 for parameters consistent with the tapered wiggler experiment (the optimal

start-taper point found in simulation was k. zo = 86). As shown in the figure, the

maximum efficiency obtained by tapering the wiggler field to zero is approximately

40.6%, of which more than 95% of the power is contained in the TE0 mode. However,

over a length of only 1.1m beyond the start-taper point (i.e., k. z - k. z. = 70.5) the

efficiency is 34%, of which approximately 90% of the power is in the TEO, mode. The

evolution of the relative phase for this case is shown in Fig. 10, in which the relative

phase saturates at a value in the neighborhood of 1200 downstream from the start-

taper point. This is in good agreement with reported measurements of the evolution of

the relative phase in the tapered wiggler experiment. 29 Thus, within the uncertainties-

imposed by th! choices of N. and A-jz, the nonlinear analysis is found to be in good

agreement with th, experimental measurements for both uniform and tapered wiggler

interactions.

18



ACKNOWLEDGMENTS

This research was supported by the Office of Naval Research and the Office of

Naval Technology. The author would like to thank Dr. A.K. Ganguly, Dr. R.K. Parker

and Dr. R.H. Jackson for helpful discussions.

19



REFERENCES

1. R.M. Phillips, IRE Trans. Electron Devices -7, 231 (1960).

2. V.L. Granatstein, S.P. Schlesinger, M. Herndon, R.K. Parker, and J.A. Pasour,

Appi. Phys. Lett. 30, 384 (1977).

3. D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker, and V.L. Granat-

stein, Phys. Rev. Lett. 41, 1368 (1978).

4. R.K. Parker, R.H. Jackson, S.H. Gold, H.P. Freund, V.L.Granatstein, P.C.

Efthimion, M. Herndon, and A.K. Kinkead, Phys. Rev. Lett. 48, 238 (1982).

5, J. Fajans, G. Bekeft, Y.Z. Yin, and B. Lax, Phys. Rev. Lett. 53, 246 (1984).

6. J.A. Pasour, R.F. Lucey, and C.W. Roberson, in Free-Electron Generators of

Coherent Radiation, edited by C.A. Brau, S.F. Jacobs, and M.O. Scully [Proc.

SPIE 453, 328 (1984)].

7. J.A. Pasour, R.F. Lucey, and C.A. Kapetanakos, Phys. Rev. Lett. 53, 1728

(1984).

8. S.H. Gold, D.L. Hardesty, A.K. Kinkead, L.R. Barnett, and V.L. Granatstein,

Phys. Rev. Lett. 52, 1218 (1984).

9. T.J. Qrzechowski, B. Anderson, W.M. Fawley, D. Prosnitz, E.T. Scharlemann, S.

Yarema, D. Hopkins, A.C. Paul, A.M. Sessler, and J. Wurtele, Phys. Rev. Lett.

54, 889 (1985).

10. J. Fajans, G. Bekefi, Y.Z Yin, and B. Lax, Phys. Fluids 28, 1995 (1985).

11. J. Masud, T.C. Marshall, S.P. Schlesinger, and F.G.Yee, Phys. Rev. Lett. 56,

1567 (1986).

20



12. 3. Fajans, J. Wurtele, G. Bekefi, D.S. Knowles, and K. Xu, Phys. Rev. Lett. 57,

579 (1986).

13. T.J. Orzechowski, B. Anderson, 3.0. Clark, W.M. Fawley, A.C. Paul, D. Prosnitz,

E.T. Scharlemann, S. Yarema, D.B. Hopkins, A.M. Sessler, and J. Wurtele, Phys.

Rev. Lett. 57, 2172 (1986).

14. L.R. Elias, W.M. Fairbanks, J.M.J. Madey, H.A. Schwettman, and T.I. Smith,

Phys. Rev. Lett. 36, 717 (1976).

15. D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, and

T.I. Smith, Phys. Rev. Lett. 38, 892 (1977).

16. R.W. Warren, B.E. Newnam, J.G. Winston, W.E. Stein, L.M. Young, and C.A.

Brau, IEEE J. Quantum Electron. QE-19, 391 (1983).

17. M. Billandon, P. Ellaume, J.M. Ortega, C. Bazin, M. Bergher, M. Veighe, Y.

Petroff, D.A.G. Deacon, K.E. Robinson, and J.M.J. Madey, Phys. Rev. Lett. 51,

1652 (1983).

18. J.M. Slater, J.L. Adarnski, D.C. Quimby, T.L. Churchill, L.Y. Nelson, and R.E.

Center, IEEE 3. Quantum Electron. QE-1, 374 (1983).

19. J.A. Edighoffer, G.R. Neil, C.E. Hess, T.I. Smith, S.W. Fornaca, and H.A.

Schwettman, Phys. Rev. Lett. 52, 344 (1984).

20. B.E. Newnam, R.W. Warren, R.L. Sheffield, W.E. Stein, M.T. Lynch, J.S. Fraser,

J.C. Goldstein, J.E. Sollid, T.A. Swann, J.M. Watson, and C.A. Brau, IEEE 3.

Quantum Electron. OE-21, 867 (1985).

21. C.R. Pidgeon, S.D. Smith, W.J. Firth, D.A. Jorosynski, D.M. Tratt, J.S. Mackay,

M.F. Kimmitt, J.M. Reid, M.G. Kelliher, M.W. Poole, G. Saxon, R.P. Walker,

W.A. Gillespie, and P.F. Martin, IEEE J. Quantum Electron. Q&21, 1083 (1985).

21



22. A.K. Ganguly and H.P. Freund, Phys. Rev. A 32, 2275 (1985).

23. H.P. Freund and A.K. Ganguly, Phys. Rev. A 33, 1060 (1986).

24. H.P. Freund and A.K. Ganguly, Phys. Rev. A 34, 1242 (1986).

25. H.P. Freund and A.K. Ganguly, IEEE J. Quantum Electron. QE-23, 1657, (1987).

26. H.P. Freund, H. Bluem, and C.-L. Chang, Phys. Rev. A 36, 2182 (1987).

27. E.T. Scharlemann, J. Appl. Phys. 58, 2154 (1985).

28. T.J. Orzechowski, personal communication.

29. T.J. Orzechowski, E.T. Scharlemann, and D.B. Hopkins, Phys. Rev. A 35, 2184

(1987).

22



FIGURE CAPTIONS

Fig. 1 The evolution of the wave power (both total and TEO, mode) with axial position.

Fig. 2 Plots of the evolution of the relative phase versus axial position for (a) the TEO,

mode, (b) the TE 21 mode, and (c) the TM21 mode.

Fig. 3 Variations of the saturation efficiencies of the total signal and the TE modes versus

axia. energy spread.

Fig. 4 Graph showing the scaling of the efficiency of the total signal with beam current

for &/, = 0 and 1%.

Fig. 5 Plot showing the evolution of the total signal and the TE modes for a tapered

wiggler interaction characterized by c. = -0.007 and k, z. = 86.

Fig. 6 Graph of the evolution of the relative phase of the TEo1 mode during the course

of the tapered wiggler interaction.

Fig. 7 Illustration of the effect of an axial energy spread on the tapered wiggler interac-

tion. Observe that each point corresponds to the optimal start-taper point of the

associated A-1,.

Fig. 8 The variation in the efficiency of the tapered wiggler interaction with fluctuations

in the bulk energy of the beam.

Fig. 9 Plot of the evolution of the total signal and the TE modes for a tapered wiggler

characterized by e., = -0.0078 and k.. zo = 86.

Fig. 10 Graph of the evolution of the relative phase for a tapered wiggler interaction

characterized by e, = -0.0078 and k, z0 = 86.
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Efficiency Enhancement in Free-Electron Lasers
Driven by Electromagnetic-Wave Wigglers

- HENRY P. FREUND

Abstract-A scheme for efficiency enhancement in free-electron I- neighborhood of 13 percent [101, [1 1. The term "uni-
sers which are driven by electromagnetic-wave wigglers is described form" in this sense refers to a wiggler with a constant
which employs a tapered axial guide magnetic field. While tapered
magnetostatic wiggler designs have been proven to be an effective means amplitude and period. Although such efficiencies have not
of enhancing the eficiency of free-electron lasers, practical difficulties yet been observed with electromagnetic-wave wigglers,
occur in the design of tapered electromagnetic-wave wigglers. For this the number of such experiments is small and there is no
reason, it is shown that a tapered axial guide field can be used in con- reason to think that such efficiencies are not possible.
cert with an electromagnetic-wave wiggler for the purpose of efficiency However, for many applications, higher efficiencies are
enhancement. desirable. The theory of efficiency enhancement by means

A N extensive body of literature currently exists dem- of tapered magnetostatic wigglers has been amply dis-
onstrating the application of the free-electron laser as cussed in the literature [121-[17] and may be affected by

a source of radiation over an extensive range of wave- either a tapered amplitude or period. Recently, exper-
lengths ranging from the microwave to the optical spectra mental confirmation of the theory has demonstrated that
[11-[8]. The physical mechanism depends upon the prop- efficiencies in the neighborhood of 35 percent are possible
agation of an electron beam through a periodically rippled using tapered magnetostatic wigglers [181. As in the case
magnetic field referred to as the wiggler or undulator. Co- of magnetostatic wigglers, efficiency enhancement can
herent radiation results from the undulatory motion of the also be achieved in free-electron lasers using tapered elec-
electron beam which permits a wave-particle coupling to tromagnetic-wave wigglers. However, while tapered
the output radiation by means of the ponderomotive po- magnetostatic wigglers are relatively easy to design and
tential formed by the beating of the wiggler and radiation construct, tapered electromagnetic-wave -igglers prese,.
fields. The wiggler field itself may be either magnetostatic technical difficulties in design due to probl.!ms in niode
or electromagnetic in nature. Although the bulk of exper- control. In particular, the coupling coefficient between
iments to date have relied on magnetostatic wigglers, the modes in a tapered waveguide depends Lpon the slope of
fundamental principle has also been demonstrated using a the taper. Difficulties may ensue, therefore, if the slope
large-amplitude electromagnetic wave to induce the req- of the taper is comparable to the coupling coefficient de-
uisite undulatory motion in the electron beam [91. The scribing the free-electron laser interaction.
basic difference between the two classes of wiggler lies in For this reason, an alternate efficiency !nhancement

the frequency of the output radiation, which depends upon scheme is described in this paper which relie on a con-
both the wiggler period and the electron beam energy. In figuration in which a tapered axial guide field is used in

the case of a magnetostatic wiggler. the wavelength of the addition to an electromagnetic-wave wiggler. This ap-

output radiation scales as X = Xl2-z where X.~ denotes proach has the advantage of extreme ease of construction.I'pu Configaation inle whic an axa gu/ide fiere is usenotes
the wiggler period and -y, is the relativistic factor for the Configurations in which an axial guide field is used hae
beam. In contrast, the wavelength of the output radiation been analyzed both for magnetostatic and electromag-
for an electromagnetic-wave wiggler scales as X x, netic-wave %igglers [191-[21]. The axial guide field is

4-y2. As a result, for fixed wiggler periods and electron often emplo.ed for the purpose of confining the electron

beam energies, the electromagnetic-wave wiggler will beam against the effects of self-fields, and enhancements

produce shorter output wavelengths, in both the gain and efficiency are found both in theory
The question addressed in this papet is a method of en- and experiment [31 for a sufficiently strong uni/orm axial

hancing the efficiency of a free-electron laser driven by guide field that the Larmor period is comparable to the
an electromagnetic-wave wiggler. The largest efficiencies wiggler period. The essential point which should be em-
observed with uniform magnetostatic wigglers are in the phasized here is that a tapered axial guide field can be

used to enhance the efficiency of a free-electron laser

Manuscript received October 17. 1986. revised May 5. 1987 This work without the necessity of a strong guide field.
was supported by the Office of Naval Research and the Office of Naval Efficiency enhancement by means of a tapered guide
Technology, field has been analyzed for free-electron lasers with mag-

The author is with Science Applications International Corporation. netostatic wigglers [171, [22). In order to formulate the
McLean. VA 22102, on leave at the Naval Research Laboratory, Wash-
ingion. DC 20375. problem for an electromagnetic-wave wiggler. we assume

IEEE Log Number 8715826, that the axial guide field is uniform for z < zo and displays

0018-9197/87/0900-1590S01.00 © 1987 IEEE
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a linear taper thereafter. Thus, and

B0(z) = < I sin+ - 0 'o +
Bo[ + Ko(Z - Zo) Z > Zo Lo,, 6 + ck C

where B0 is a constant amplitude and Ko( d in Bo(z) /dz) x( + k,
represents the inverse scale length fo? variation of the ax- (k + k,c (9)
ial field. The electromagnetic wiggler is represented by a
vector potential of the form In (8) and (9). 6a m ebA/mc 2, = i,/,, - = (1 -

A,(z, t) = - -'i. cos (k,,.z + wt) and ]2,an
ko k - vl +

+ i. sin (k,,.z + .,,t)] (2) , ,

where B,, denotes the amplitude of the wiggler magnetic X,7 y12o
field and (,_ k,, ) are the frequency and wave vector. Ob- x V_ (ck2 . "
serve that for positive w,. the Poynting flux is directed + c + k fo - yf0(w. + k ',,)

antiparallel to the z axis. The radiation field is assumed to
be propagating parallel to the z axis. and is represented (10)
by a plane wave Equation (7) describes the trapping of electrons in the
bA(z. t) = A(z) [, cos (kz - t) - i, sin (kz - wt)] ponderomotive potential formed by the beating of the

(3) wiggler and radiation fields, and is formally identical to
the dynamical equation derived for magnetostatic wig-

, here 6A (z) denotes the slowly varying amplitude of the glers. In particular, it should be noted that the term in sin
'.ector potential. o is the frequency. and k is the wave ,e describes the bulk acceleration or deceleration of
%ector. The electron beam equilibrium is described by the electrons due to the tapered guide field.
steady-state trajectories of electrons in the combined wig- In order to determine the implications of this equation
L,'er and axial fluid fields (19], 1201; hence, the equilib- for the phzse trapping on the efficiency enhancement in a
r."m velocity is tapered system we now calculate the small-signal gain.

We assume the system has run to saturation at z = zo, at
,[ cos (k,, z + tt) which point the tapered guide field begins, and we define
i, sin (k~z + w,,t)] + Ie- (4) the gain over a length L relative to this point as

6a': = z0+ L) - 6a(: Zo)
\Qire v is the constant axial velocity, GL I, z I )

R , +- k~ ) GL=_6a(z = zo)

k,, [ Q, - -y0(+,, + k,, )] As a consequence. it may be shown that [211

Q ,_ = eB,,,, m cl. and G L = 2 W; 'll d z (sin '(12),, -V 2kc2 c~a(zo),o dz si ) 12

= , -; 6)
c- c - where ( ...) denotes a phase average over an ensemble

We now determine the response of the electron beam to of electrons. Since the system is assumed to have reached
te radiationrfien te sponse +f the eeron eam to +saturation at z = z0. the bulk of the electron beam hasthe radiation field, and write v, = t'0 + 6t and.-1 = 'o + been trapped in the ponderomotive potential and f f,

6-y to first order in 6A. The perturbed orbit equations have Hence,
been solved for the case of a uniform axial guide field
1211, Based upon this analysis, the perturbed orbit equa- -; 0
tions can be shown to reduce to GL -- L +

d2 k.(t. + k v',) (13)

2 = K (sin . - sin ) (7) k( - .)

where ( - (k + k,, w - - w, )t is the particle phase The efficiency enhancement Ai7(L) can be calculated by
with respect to the ponderomotive wave. taking the ratio of the increase in the Poynting flux to the

(k -k c power flux of the electron beam. Since the Poynting flux

K - k,* ,a.(8) increases by an amount AS = (wk/21r)GL 6A(z = Zo),
7o'11 the efficiency enhancement is
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= 02 ]  marked that the effect of the tapered guide field is
A (L) 1 K2(,oL) resonantly enhanced when o - -yo( Ww + k, vl ) which,

L depending upon the specific experimental parameters, may

-, W(w. + k,.vi) require a strong axial field. However, the efficiency en.
• 1 + " J k,,v1)( - "). (14) hancement mechanism is operable at all levels of the axial

field, and does not require strong guide fields near reso-

Observe that the efficiency enhancement for the case of nance.
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