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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) unit as follows:

Multiply By To Obtain

feet 0.3048 metres
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SURFACE ROUGHNESS CHARACTERIZATION OF ROCK MASSES

USING THE FRACTAL DIMENSION AND THE VARIOGRAM

PART I: INTRODUCTION

1. This report summarizes the first known attempt to describe the

roughness of rock surfaces using the concepts of the fractal dimension and the

variogram. For this investigation, joint surfaces adjacent to Libby Dam, MT,

were used. One joint surface was part of a rock slide designated as the

DS + 122 slide. The objective of this study was to examine the utility of the

fractal dimension and the variogram for the classification of surface rough-

ness of rock masses.

General Description of the DS + 122 Rock Slide

2. The DS + 122 rock slide occurred at Libby Dam, MT, on January 31,

1971 (Hamel 1974). This slide consisted of a rock wedge which slid toward the

3
dam abutment. The volume of this rock wedge was approximately 46,000 m . The

DS + 122 wedge was formed and bounded by the intersection of a bedding plane

and a fracture (joint). From a qualitative viewpoint, the surface of the

bedding plane was quite smooth whereas the joint surface had a rougher texture

(Banks and Strohm 1974). This report presents a quantitative description of

the roughness of the joint surface.

3. This description involved the characterization of the spatial varia-

tion in the roughness across the planar surface of this joint. In analyses of

the sliding stability of rock masses, asperities along a potential slip sur-

face are a key consideration (Patton 1966; Patton and Deere 1970; Hoek and

Bray 1974; and Goodman 1976). This report does not describe the characteris-

tics of the asperities along the DS + 122 joint surface. A quantitative

description of the roughness of this slide surface derived from a field survey

is presented. From this description, it is hoped that a method for deriving

properties of slip surface asperities can be developed.
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Fractal Dimensions and Variograms

4. A quantitative assessment of the roughness of the DS + 122 slide

surface was completed using the concept of the fractal dimension. This can-

cept describes the degree of variation a natural surface has from its topolog-

ical facsimile. Topology is a branch of mathematics devoted to the study of

geometrical configurations. For example, the topological model of a joint in

a rock is a plane. In reality, a joint is not a perfect plane, but has sur-

face irregularities which impart a greater surface area to the joint when

compared to its topological model. The fractal dimension describes the degree

of variation a curve, a surface, or a volume has from its topological ideal.

5. For example, a coastline is modeled topologically as a line or a

semi-circle. The topological dimension is therefore one (a one dimensional

feature). A coastline is rarely linear or circular, however, and is often

highly irregular. This irregularity gives the coastline a greater length

compared with its topological model. Hence, the fractal dimension of such an

irregular coastline is greater than one. A fractal is a curve, a surface, or

a volume whose dimension exceeds its topological dimension. The more irregu-

lar or rough a surface is, the greater will be its fractal dimension.

6. Once the irregularity of a surface has been described by the fractal

dimension, the spatial variation of the surface irregularities, or asperities,

can be described using variograms. The variogram describes the spatial con-

tinuity and relationship inherent to a type of regionally distributed natural

data. The variogram can be used to show the spatial behavior of the asperi-

ties whether these irregularities are of a local extent with little spatial

continuity or are continuous with a more regular spatial variation. Further-

more, the variogram can be used to evaluate the different magnitudes of asper-

ity sizes which are present on a rock surface. The resolution of these

asperities is important. Goodman (1976) has shown, for example, that asperi-

ties increase the friction angle of a joint by an amount equal to the mean or

predominate asperity angle. Hence, any investigation of the sliding stability

of a joint (or, in general, any rock surface) must be concerned with the

characteristics of the asperities along the surface.
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PART II: FRACTAL DIMENSION OF JOINT SURFACES

Fractal Dimension

7. A detailed description of fractals and the fractal dimension is pro-

vided in Appendix A. In summary, a fractal is a line, a surface, or a volume

whose Hausdorff-Besicovitch dimension (i.e., fractal dimension, see Appen-

dix A) exceeds its topological dimension. In Appendix A, the coastline of

Great Britain is used as an example. The topological dimension of this coast

is 1 (a line or a semi-circle). The length of this coast can be measured by

selecting a particular segment length, y , then counting the number, N , of

these y-length segments which are needed to approximate the total length, L

of the coastline. This length is computed as

L = Ny (1)

But, as we are realizing when we measure with increasing resolution, we

encounter an increasing number of microvariabilities, thus equation (1) should

be expressed as

L = Ny (La)

This is a phenomenon that has no real mathematical proof and is conceptually

shown in Appendix A.

8. It is an interesting phenomenon that as y decreases, L increases

without bound (for the actual coast, not for its mapped representation; a map

has a certain resolution limit and increments of y below that limit yield

the same measure of length, L , hence with a map, L does have a limit).

Despite this fact, if we plot log1 0 (N) versus log1 0 (y), a straight line is

obtained. The negative of the -lope of this line is the Hausdorff-Besicovitch

dimension, D . This dimension is the fractal dimension (Mandelbrot 1982).

9. The fractal dimension can be incorporated into equation (1) to

become

L = NyD (2)

10



If, throughout the plot of logl0 (N) versus logl0 (y), D is found to be greater

than the topological dimension, a fractal is defined. In Appendix A, for

instance, the fractal dimension of the west coast of Great Britain is shown to

be 1.25. This is greater than the topological dimension, I ; hence, the west

coast of Great Britain is a fractal.

10. For the analysis of the surface roughness of the joint bounding the

DS + 122 slide, the concept of the fractal dimension is intuitively useful.

The more irregular a surface is, the larger will be its fractal dimension.

The DS + 122 joint surface, however, is planar with a topological dimension of

two (DT = 2). To measure the fractal dimension of this surface, equation (2)

is rewritten to become

A = NaD (3)

where A is the total area of the surface and a is some small, regular area

analogous to y in equation (2). From equation (3), D is found by plotting

log 1 0 (N) versus log1 0 (a). For two dimensional surfaces, a fractal surface is

defined if D exceeds 2.

Cross-Section Segmentation of the DS + 122 Joint Surface

11. For the elevation of the DS + 122 slide surface, the solution for

D using equation (3) is difficult to obtain. As an alternative, cross sec-

tions were plotted along discrete sections of the joint surface. These cross

sections were plotted using a contour plot derived from ground-based photo-

grammetry. The map scale was 1:40 and the contour interval was 2 cm. In

total, thirty cross sections were analyzed. Of these, twenty were orthogonal

to the direction of shear failure, and ten were parallel to the direction of

shear failure. The locations of these thirty cross sections are shown in

Figure 1.

12. Selected cross sections are plotted in Figures 2 and 3. By analyz-

ing cross sections, the two-dimensional analysis offered by equation (3) was

transformed Zo thirty one-dimensional analyses using equation (20). Topologi-

cally, the trace of each cross section is a line. A particular cross section

was determined to be a fractal if its fractal dimension was greater than 1.

Once calculated for each cross section, the fractal dimension served as an

11



0 0

0
-H

co

0

H U)

dvc
ww Lj1

rsv cc
0

iv

0

N V
xv)

00

12C



AD

0
10

C)3§Q CMA

AL

AS

Figure 2. Cross Sections AS', AL, AE, AD for fractal
dimension calculations

13



Im

0

-4

(0

0

V43090

0

&J

0

14-



indicator of surface roughness. Because each cross section represented a uni-

que spatial location along the DS + 122 slide, the analysis of thirty cross

sections described the spatial variation in the surface roughness along the

slide.

Fractal Dimension of Selected Cross Sections

13. A fractal dimension was computed for each of the thirty cross sec-

tions plotted in Figure 1. To minimize the length of this report, Table 1

presents calculations only for those cross sections shown in Figures 2 and 3.

Calculations of fractal dimensions for other cross sections and presented in

Appendix C.

Table 1

Fractal Dimension Calculations (Method 2)

Cross Number of Segment Increments, N

Section y = 305 cm y = I00 cm y = 20 cm -slope = D*

AD 4.056 12.400 62.500 1.0038

AE 3.810 11.680 58.900 1.0050

AL 3.900 9.240 60.968 1.0091

AS' 4.118 12.610 63.700 1.0052

BA 7.793 23.770 118.843 1.0000

BF 6.832 20.940 105.330 1.0040

* Slope = (log10 (N2 0) - log10 (N3 0 5))/(loglo(20) - iogi0 (305)).

14. For each cross section, several consistently smaller segment

lengths, y , were selected for the calculation of the fractal dimension.

Usually, three different lengths were chosen: 305 cm, 100 cm, and 20 cm.

This was an arbitrary choice and seemed to work well for this application. In

no way do these lengths conform to a special property of these cross sections.

For the calculation of the fractal dimension, measurable lengths, y , must be

selected by arbitrary decision. For this study, the lengths 200 cm, 50 cm,

and 5 cm could have been chosen and would have yielded similar results.

15. For each cross section, the fractal dimension, D , was evaluated

quantitatively using a pair of segment lengths, y . In addition, log1 0 (N)

15



versus loglO(y) plots were developed for each cross section for graphical

analysis. These plots are shown in Figures 4 through 9 with visually best fit

lines. The negative of the slope of each plot is the fractal dimension. The

fractal dimension for each cross section was determined by comparing the

log 1 0 (N) versus log1 0 (y) graphical results to the quantitative calculation

results.

Results of the Fractal Dimension Calculations

16. The results of the fractal dimension calculations for all thirty

cross sections are presented in Table 2. To make these results more meaning-

ful, Figure 10 shows the fractal dimension for each cross section plotted on

the map of the DS + 122 joint surface. This figure demonstrates the spatial

variation in the fractal dimension across the DS + 122 joint surface.

17. Figure 10 shows the DS + 122 joint surface between cross sec-

tions AB through AF to be rather smooth. The joint surface becomes rougher

toward the AZ cross section. The direction parallel to sliding has a rough-

ness which increases from cross sections BA and BK to cross sections BI

and BJ. The direction of shear failure along this surface was from cross

sections AZ, BI, BJ toward cross sections AB, BA, BB.

18. It is important to evaluate the method used to calculate the

fractal dimension for each cross section. As we reviewed previously, the

calculation of the fractal dimension begins by selecting a segment length,

y . Then, beginning from one end of an irregular line, the number of steps,

N , is counted to reach the opposite end. Here a dilemma is reached.

In counting the number of steps, N , what happens if a small section of the

irregular line remains at the end and this remainder is smaller than the

length, y ? It is necessary to add the remainder, normalized by y , to the

number of steps, N ; i.e., N = N + remainder/y (Mandelbrot 1985). Table 2

shows that this remainder is considerably important for calculations. The

method I calculation does not consider the remainder whereas the method 2

calculation does include the remainder. Hereafter, in this study, only the

method 2 calculation is used to determine the fractal dimension of rock

surfaces.

16



I II I I I I I

2.6

AD
2.4

2.2

2.0

1.8

991.6
0

0 1.4-

0
J 1.2 -

1.0-

0.8-

0 METHOD 1
0.6-

* METHOD 2

0.4

0.2

o L I I I I I I I I I I I
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

LOG 10(y)

Figure 4. Logl0 (N) versus logl0 (y) plot for cross section AD

17



2.6-
24 AE

2.4

2.2

2.0

1.8

z 1.2

0

-.j 1.2

1.0

0.8

0.6 - 0 METHOD 1

* METHOD 2
0.4

0.2

o I I I 1 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

LOG 1o(y)

Figure 5. Log1 0 (N) versus log1 0 (y) plot for cross section AE

18



2.8

AL
2.4-

2.2-

2.0-

1.2

1.06

1.4-

0.2

1.09



2.6
AS'

2.4

2.2

2.0

1.8

Iz11.6

0
~1A

0
... j 1.2

1.0

0.8 * METHOD 1

0.6 *METHOD 2

0.4

0.2

0
0 0.2 0O4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

L0G1 (y)

Figure 7. Log 10 (N) versus 1ogl0 (y) plot for cross section AS'

20



I I I II 1

2.6
BA

2.4

2.2

2.0

1.8

52 1.6

0

1.2

1 .0-

0.8 * METHOD 1

0.6 * METHOD 2

0.4

0.2-

0 I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

LOG 10(y)

Figure 8. Logl0 (N) versus log1 0 (y) plot for cross section BA

21



I I 1 1

2.6
BF

2.4

2.2

2.0

1.8

Z1.6-

1.4

.. J 1.2 -

1 .0-

0.8 * METHOD I

0.6 * METHOD 2

0.4

0.2-

0 I I I I I I i L

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

LOG 10(y)

Figure 9. Log1 0 (N) versus logl0 (y) plot for cross section BF

22



Table 2

Fractal Dimension Summary

Cross Fractal Dimension
Section Method 1* Method 2**

AB 1.020 1.0027
AD 1.007 1.0038
AE 1.060 1.0050
AF 1.007 1.0000
AG 1.020 1.0072
AH 1.030 1.0119
AJ 1.020 1.0060
AL 1.070 1.0100
AN 1.010 1.0012
AP 1.010 1.0009
AQ 1.030 1.0061
AR 1.020 1.0107
AS 1.030 1.0100
AS' 1.030 1.0052
AT 1.050 1.0200
AU 1.010 1.0040
AW 1.010 1.0268
AX 1.050 1.0189
AY 1.070 1.0100
AZ 1.110 1.0030
BA 1.040 1.0000
BB 1.0u3 1.0000
BC 1.007 1.0000
BD 1.003 1.0000
BE 1.040 1.0000
BF 1.040 1.0040
BG 1 030 1.0000
BH 1.020 1.0020
BI 1.010 1.0030
BJ 1.040 1.0050

* For method 1, only whole numbers are used for N

** For method 2, the fractional remainder is added to N
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Control Calculation: Fractal Dimension of the
Australian Coast

19. A control calculation was sought to verify the fractal dimension

calculation procedure. In a previous study, Mandelbrot (1967) reviewed the

fractal dimension of coastlines. He found the fractal dimension of coastlines

varied from a maximum of 1.25, for the west coast of Great Britain, to a

minimum of 1.02, for the South African coast. For the Australian coast,

Mandelbrot found the fractal dimension to be 1.13. This work is a standard

reference because Mandelbrot was the first to demonstrate the fractal dimen-

sion of coastlines; moreover, he developed the concept of the fractal

dimension.

20. Mandelbrot's results give interesting examples which can be used

for control calculations. For this purpose, the coastline of Australia was

chosen. The outline of this continent is shown in Figure 11. Using the seg-

ment lengths, y , shown in Table 3, the fractal dimension was found to be

1.11 using the method 2 technique; this fractal dimension was determined from

the plot shown in Figure 12. This result is close to the value reported by

Mandelbrot. Mandelbrot used the method 2 calculation for his research

(Mandelbrot 1985). There is no proof that has been presented which supports

the use of the method 2 technique. Its use is justified by the realization

that the exclusion of the remainder can introduce considerable error in the

calculation especially if the segment length, y , is large with respect to

the line being measured.
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Table 3

Fractal Dimension* Calculation, Australian Coast

Ruler
length log 0 (Y) Segment log(N )
y (km) 10 Counts, N 10

500 2.700 24.442 1.3881
300 2.477 43.868 1.6421
100 2.000 154.471 2.1889

* Fractal dimension is 1.11.
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Figure 12. Log10 (N) versus logl0 (y) plot for the Australian coast
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PART III: VARIOGRAM ANALYSIS OF THE DS + 122 JOINT SURFACE

Variogram

21. In brief overview, the variogram is a mathematical function which

describes the spatial similarity between the value of a geological phenomenon

at one location and the value at a different location. The variogram is

described in detail in Appendix B. This function is an important concept in

modern geostatistics and has the form:

2 y(h) = I/NZ[ ~~ -Zxi + h)]2 (4)

where Z is a vector containing the data which represents the spatial pheno-

menon under study, N is the number of pairs of these data separated by a

distance, h , and y is the variogram function. By describing the spatial

similarity, the variogram also captures spatial continuity; that is, the

variogram shows how rapidly the similarity between two data locations

decreases with increasing distance separating them.

22. For rock mechanics applications, the variogram function, along with

geostatistics, has received some use. These applications have been for the

analysis of the spatial variation in rock mass features, particularly fracture

density and orientation (LaPointe 1980). Early work with this type of analy-

sis has been extended to the simulation of rock mass properties (Miller and

Borgman 1985). The variogram has also been used to describe the spatial vari-

ation in rock mass features adjacent to and involved in ground subsidence over

abandoned mines (Van Besien 1985). Hence, the variogram is known technique in

the field of rock mechanics.

Variograms of Selected Cross Sections

23. Variogram analysis was used for this study to describe the spatial

correlation and continuity of joint surface asperities. The objectives of

this application were to: (a) simply evaluate the utility of the variogram

function for this type of analysis; (b) investigate the spatial correlation

and continuity of rock mass asperities; and (c) determine the correlation, if

any, between the variogram and the fractal dimension.
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24. Selected cross sections are chosen and presented for t 'is applica-

tion. These are shown in Figures 13 and 14. The variograms for Lhese cross

sections are presented in Figures 15 through 20. The actual variogram results

used to develop these figures are presented in Appendix D. The variograms of

Figures 15 through 20 are representative of the types of results observed for

variograms in this study.

25. Many of the cross sections of the DS + 122 joint surface were asso-

ciated with variograms showing a behavior attributable to the data being non-

stationary (see Appendix B for an explanation of the Intrinsic Hypothesis).

This type of behavior results when a change in data values occurs in a regular

fashion over a particular direction, such as elevation values which increase

as one travels upslope. Cross sections which yielded such variograms did show

a distinct inclination. Non-stationary variograms are parabolic and concave

upward in shape. Figure 15 shows a variogram of this type for cross section

BG. In Figure 13, this cross section is seen to be inclined.

26. For this study, and non-stationary variogram in general, one proce-

dure to make the data more amenable to geostatistical analysis is to filter

the non-stationary component from the data. If the data are denoted as Z(x),

two components comprise these data, S(x) and N(x), such that

Z(x) = S(x) + N(x) (5)

where S(x) is the stationary component and N(x) is the non-stationary compo-

nent. For this study, S(x) is the elevation value due to surface asperities

and N(x) is the elevation value due to the inclination of the cross section.

27. For an enhanced analysis, N(x) was filtered from the cross section

data, such as cross section BG, to yield

S(x) = Z(x) - N(x) (5a)

The procedure used to remove N(x) is shown in Figure 21. The angle of incli-

nation was calculated, and the elevation of the plane defined by this angle

was removed from each of the cross section elevation values. This resulted in

filtered cross sections. A variogram computed for cross section BG, after

filtering, is shown in Figure 22.
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Figure 15. Variogram for cross section BG, an example of
non-stationary behavior in the variogram
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Results of the Variogram Analysis

28. Stationary variograms (Figures 17, 18, 19, and 22) show that asper-

ity undulations along a joint surface are spatially correlated. Table 4 lists

the properties of these four variograms. The sill, a more or less constant

value the variogram attains at a certain separation distance, of each vario-

gram is slightly larger than the variance of the elevation values along each

cross section. The range, that separation distance at which the variogram

attains the sill, of each variogram shows the spatial continuity of asperity

values; there is not spatial correlation for separation distances greater than

the range. The nugget value, the intercept of the variogram with the ordinant

axis, shows the level of noise (random variations) present in the elevation

data; for each cross section, the nugget value is small as expected for this

type of precisely measured data. Finally, each variogram is compared to the

fractal dimension for a particular cross section. There appears, on the basis

of at least these four variograms, to be little correlation between the vario-

grams and the fractal dimension. The fractal dimension offers a unique method

for the description of surface roughness. The variogram, while yielding no

clear information on surface roughness, analyzes other features of a joint

surface, particularly the spatial distribution of asperities.

Table 4

Properties of Stationary Variograms

Fractal

Cross Section Nugget Sill Range (cm) Dimension

AL 0.0 1400.00 300.00 1.0100
AS' 0.0 650.00 330.00 1.0052
BA 0.0 130.00 150.00 1.0000
BG (filtered) 0.0 6.00 80.00 1.0000

Potential Application of the Variogram: Kriging

29. One value result of this study was the demonstration that vario-

grams can be developed for elevation data measured along a joint surface.

Because these data are shown to be spatially correlated, this correlation can

be used to estimate elevation values at locations where such values were not
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measured. This estimation process is achieved using the geostatistical esti-

mator known as kriging. This technique is described in Appendix B.

30. For geostatistical analyses, such as were reviewed in this study,

kriging is useful in mapping available data. For the cross sections used for

this study, kriging could be used to develop greater detail in these plots.

For example, kriging could be used to estimate an elevation value between two

measured locations. This estimate would be based on the two known elevation

measurements and the variogram. In this manner, the spatial correlation and

continuity shown by the asperities could be used to better define each

asperity (i.e., to fill in data between measurement points).

31. More importantly, this study relied on a plotted contour map of the

DS + 122 joint surface as a source of data. Elevation values of such detail,

already mapped, are rare. More often, elevation values are typically measured

across a joint surface at irregular locations with a rather sparse sampling

interval. The results of this study imply that a variogram could be developed

for this type of sparse data. Kriging could be used to estimate elevation

values at intersections of a regular grid superimposed over the joint surface.

In this manner, kriging could be useful in developing the type of contour map

which served as the data base for this study without the need for photogramme-

trically mapping the entire surface.

32. Kriging is often used for gridding purposes (i.e., the interpola-

tion of data at intersections of a regular grid; Olea 1974). This is done

especially in preparation for data contouring; an algorithm for contouring

usually requires a regular grid of data. A rock joint is a two dimensional

surface and can be represented by a two dimensional grid. This report, how-

ever, examines one dimensional profiles along certain directions across a

joint surface. Kriging might be used in a broader investigation to form a two

dimensional digital grid of a joint surface. Such a grid could then be used

to calculate a fractal dimension for the entire surface, rather than for

discrete profiles. This might lead to a significant contribution to the pro-

cedures used for the analysis of sliding stability of rock masses.
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PART IV: COMPARISON OF THE USE OF THE FRACTAL DIMENSION
AND THE VARIOGRAM TO ACCEPTED ROCK SURFACE

ROUGHNESS EVALUATION TECHNIQUES

33. It is emphasized that the use of the fractal dimension and the

variogram supplements, but does not replace, classic surface roughness evalu-

ation techniques. It has been noted in the past that different types of joint

and fault surfaces display quite different surface roughness patterns (Patton

1966). It was further observed that the surface roughness varies with direc-

tion across a rock surface (Patton and Deere 1970). These orientation differ-

ences are especially important for sliding stability analyses.

34. Surface roughness is caused by irregularities, also called asperi-

ties. There are usually several orders of magnitudes of surface asperities,

from microscopic pits to megascopic folds (Piteau 1970). For the analysis of

sliding stability, it is often assumed that small magnitude asperities bear

the initial shear load, but quickly shear. Subsequent to this, the megascopic

asperities bear the load and control the sliding stability (Hoek and Bray

1974).

35. The different magnitudes of asperities are easily recognized in

Figure 23, which is reproduced from Patton and Deere (1970). This figure

shows an actual cross section along a bedding plane and is analogous to the

i=320

i=540

a) Second-Order
irregularities

: -260

460

i -134

b) First-Order
Irregularities

average dip

0--391

Figure 23. Cross section form Patton

and Deere (1970)
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cross sections plotted for the DS + 122 joint surface. The fractal dimension

of the cross section of Figure 23 is 1.01.

36. It is evident from this example that the fractal dimension does not

clearly identify the different orders of asperity magnitudes. The fact that

there are different magnitudes of asperities, however, does follow the concept

of self-similarity (Mandelbrot 1982). Each of the small asperities is self-

similar to the next larger size of asperity, and so on. It is hypothesized

that the more magnitudes of asperity sizes a joint surface has, the larger

will be its fractal dimension. In this sense, the fractal dimension might

serve as an indicator of the presence of different magnitudes of asperities.

37. The variogram is more valuable for the analysis of asperity magni-

tudes. The cross section of Figure 23 is replotted in Figure 24 to remove the

inclination and increase the scale. Assigned for this study to be consistent

with the horizontal scale, an elevation scale is shown. This scale was not

originally provided by Patton and Deere (1970), but can be assumed to be cor-

rect based on the inclination values noted in Figure 23. A variogram was

developed for this cross section and is plotted in Figure 25.

38. Of particular interest to this study, the variogram of Figure 25

shows a periodic behavior. The variogram increases initially away from the

origin, attains a plateau (the sill), then decreases, but subsequently

increases to a second plateau. The distance, h , between the origin and the

point at which the variogram begins its second increase is approximately

100 cm.

39. In Figure 24, there is a 100 cm distance between the peaks of the

megascopic asperities. The variogram of Figure 25 is interpreted to represent

the spatial correlation between the small asperities (the first increase and

plateau) and the spatial correlation between the larger and more widely spaced

asperities (the second increase and plateau). This is a valuable application

of the variogram because it appears from this example that the variogram can

help to describe the various magnitudes of asperities.

40. For the cross sections of the DS + 122 joint surface, several

variograms displayed the type of behavior shown by the variogram of Figure 25.

Two of these variograms are again plotted in Figures 26 and 27; the cross sec-

tions are plotted in Figure 28. For cross section AL,, the variogram identi-

fies a second, larger asperity group with an average spacing of 600 cm. For
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Figure 25. Variogram for the cross section of Patton and Deere
(1970). Note the periodic (bimodal) behavior
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Figure 27. Variogram for cross section AS', presented here
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Figure 28. Cross sections AL and AS', plotted for comparison
with the variograms of Figures 26 and 27

cross section AS', the spacing of the larger asperities is found from the

variogram to be 680 cm.

41. Directional characteristics of surface roughness, as noted by

Patton and Deere (1970), can be evaluated using the fractal dimension or the

variogram. Cross sections along the DS + 122 joint surface had specific ori-

entations. Hence, each computed fractal dimension and variogram indicated a

specific directional characteristic. The combination of fractal dimension and

variogram is ideally suited for the description of joint properties. The

qualitative descriptions offered by Patton (1966), Patton and Deere (1970),

and Piteau (1970) can be quantitatively described by the fractal dimension and

the variogram.
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PART V: APPLICATION OF THE FRACTAL DIMENSION AND VARIOGRAM
TO STRING LINE DATA FOR ROCK SURFACES NEAR

LIBBY DAM, MT

42. Previous sections of this report reviewed the application of the

fractal dimension and variogram to the analysis of the DS + 122 slide surface

adjacent to Libby Dam, MT. Subsequent to this slide, ground-based reconnais-

sance was made of older joint and bedding plane surfaces in proximity to the

DS + 122 slide. During the reconnaissance, string line measurements were made

of several rock surfaces. This process involved the placement of a string

approximately parallel to and above the rock surface. Elevations were mea-

sured from the string line to the rock surface at 0.5 ft* intervals. The rock

surfaces for which string line data were collected are listed in Table 5.

These data are plotted in Figures 29 through 33.

43. These string line data provided a different means for evaluating

the fractal dimension and spatial continuity of rock surfaces. The data used

previously to describe the fractal dimension of the DS + 122 slide were

derived from a highly detailed contour map of the rock surface plotted at 2 cm

contour intervals. At times, this contour map was difficult to read. More-

over, the map was plotted from stereo photo pairs, and the true data resolu-

tion is estimated by observations during this study to be 20 cm. Hence, the

string line data may be a higher resolution data source and possibly more

reliable than the data obtained from the contour map.

Fractal Dimension of String Line Cross Sections

44. Fractal dimensions were calculated for the rock surfaces listed in

Table 5. The procedure used was the one reviewed for the DS + 122 cross sec-

tion using the technique whereby the fractional remainder is added to the

number of counts, N , for each segment length, y . The results are listed

in Table 6.

45. For this application, log 1 0 (N) versus loglo(y) plots were not drawn

to determine the fractal dimension. Instead, a least squares regression

* A table of factors for converting non-SI units of measurement to SI

(metric) units is presented on page 4.
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Table 5

List of Rock Surfaces Associated with String Line Data

Rock Surface (Names from Nearest
Topographic Feature) Type uf Feature

1. Backus Notch No. I Bedding plane

2. Backus Creek Notch No. I Bedding plane

3. DS + 122, C join#

4. Island Notch Joint

5. DS + 122 (minor) Joint

6. DS + 122, No. 2 Joint

7. 914 Rib* Joint

8. Dunn Creek Notch Joint

9. 930 joint Joint

10. Island Notch Joint/bedding plane
intersection

11. Island Notch Bedding plane

12. Wolf Creek Jct. Joint

13. Dunn Creek Notch Bedding plane

14. Old Notch No. 1 Joint

15. Backus Notch No. I Joint

Note: The 914 Rib joint, the 930 joint and the Old Notch No. I joint are
prehistoric slide scars. The DS + 122 C, DS + 122 minor and DS + 122 No. 2
profiles are in situ traces of joints exposed on the primary DS + 122
bedding surface and are members of the same set as the failed joint. The
remainder of the surfaces are natural surfaces exposed during construction
of the highway and the Burlington Northern railroad relocations.
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Figure 29. Plot of string line cross sections: Backus
Notch No. 1 (bedding); Backus Creek Notch No. I (bedding);

and DS + 122 (C joint)
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Figure 30. Plot of string line cross sections:
Island Notch (joint); DS + 122 (minor joint);

and DS + 122 (joint No. 2)
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Figure 31. Plot of string line cross sections: 914 Rib (joint);

Dunn Creek Notch (joint); and 930 (joint)

53



ISLAND NOTCH (UTG)

8 12 16 20

DISTANCE (FT)

ISLAND NOTCH (BEDDING)

I I

0 0 20 30 40 50 60 70 80

DISTANCE (FT)

WOLF CREEK JCT (JOINT)

0 0 20 30 40 50 60 70 80

DISTANCE (FT)

Figure 32. Plot of string line cross-sections: Island
Notch (joint/bedding plane intersection); Island Notch

(bedding); and Wolf Creek Jct. (joint)
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Figure 33. Plot of string line cross sections: Dunn Creek

Notch (bedding); Old Notch No. 1 (joint); and Backus Notch

No. 1 (joint)
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Table 6

Fractal Dimension Calculation for String Line Cross Section

Number of Counts, N Fractal

Rock Surface *y = 2.0 y = 1.5 y = 1.0 y = 0.5 Dimension

Backus Notch No. 1 (bed) 46.375 61.847 92.790 185.84 1.001320

Backus Creek Notch (bed) 31.835 42.493 63.615 127.80 1.002256

DS + 122 (C joint) 50.330 67.093 100.73 201.99 1.002557

Island Notch (joint) 10.265 13.690 20.580 40.210 1.002831

DS + 122 (minor joint) 50.070 66.860 100.38 201.13 1.002907

DS + 122 (joint No. 2) 50.175 66.893 100.52 201.52 1.003175

914 Rib (joint) 33.080 44.173 66.370 132.92 1.003190

Munn Craek Notch (joint) 10.020 13.400 20.050 40.300 1.003220

930 (joint) 35.025 46.720 70.280 141.08 1.005294

Island Notch (joint/bed) 9.290 12.380 18.680 37.420 1.005762

Island Notch (bed) 42.625 56.840 85.280 171.970 1.006291

Wolf Creek Jct. (joint) 37.750 50.490 76.180 152.84 1.008842

Dunn Creek Notch (bed) 14.165 18.990 28.400 57.560 1.010249

Old Notch No. I (joint) 38.305 51.487 77.700 157.20 1.017850

Backus Notch No. ! (joint) 41.230 54.980 82.730 166.08 1.005408

- ..re in feet; these correspond to 60.96 cm, 45.72 cm,
, vnA i . 24 cm.

wn- .ised to calculate the fractal dimension. A linear regression

T1 imed of the form:

log 0(N) = DO + DlOgl0(Y) (6)

In this equation, D is the value of log10 (N) when log1 0 (y) is zero and

DI is the slope of this line. Because the fractal dimension, D , is the

negative of the slope of this line, then

D = -D1  (7)
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46. Using the principle of least squares regression, D is calculated

as (McCuen 1985, p 187):

D -D1 = - 1(Log10 (N)Log1 0 (y)) - (ELog10 (N)ELog10 (y))/K (8)
1 (Log 1 0 (y)) 2  (ELog 1 0 (y)) 2/K

where K is the number of different trial segment lengths, y , used to cal-

culate D . In Table 6, for example K is equal to 4 and the fractal dimen-

sion values listed were calculated using equation (8). The fractal dimension

values range from 1.000132 for the Backus Notch No. I bedding surface to

1.01785 for the Old Notch No. 1 joint surface. These values are comparable to

those determined for the DS + 122 joint surface listed in Table 2 for the

Method 2 calculation.

Computer Calculation of the Fractal Dimension

47. Results presented in Tables 2 and 6 were developed by selecting a

segment length, y , then physically walking a pair of dividers opened a dis-

tance equal to y along a plotted cross section or string line. This is a

tedious task and is susceptible to error during the counting of the number of

steps, N ; the calculation of the remainder at the end of the plot; or from

stretching of the paper on which the cross sections are plotted due to humid-

ity; etc. A computer program was developed to enable easier calculation of

the fractal dimension by a numerical algorithm of counting segment lengths in

addition to equation (8). This program is presented in Appendix E.

48. Input to the program consists of the number of segment lengths,

y , to be considered; specification of these segment lengths; and the eleva-

tion and distance coordinates along a cross section or string line. This pro-

gram is limited at present to one dimensional analyses. The algorithm on

which the program is based is graphically presented in Figure 34.

49. Fractal dimensions calculated for the rock surfaces listed in

Table 5 using the computer program of Appendix E are listed in Table 7.

Although the fractal dimension values do not appear to be much different than

those shown in Table 6, a different result was obtained when analyzing the

cross sections in terms of roughness. The fractal dimension values are so
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Step 1: N = 0

&0
R Step 2: N=N+I=I

A R2

Xc= R,

etc

Final Step N+1: N=N+ -t

Figure 34. Algorithm for fractal dimension calculation program
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Table 7

Computer Calculation of String Line Fractal Dimensions

Number of Counts, N Fractal
Rock Surface *y = 2.0 y = 1.5 y = 1.0 y = 0.5 Dimension

Backus Notch No. 1 (bed) 46.303 61.755 92.682 185.48 1.001059
Backus Creek Notch (bed) 31.785 42.391 63.603 127.30 1.000891
DS + 122 (C joint) 50.334 67.105 100.78 202.14 1.003045
Island Notch (joint) 10.252 13.670 20.504 41.013 1.000107
DS + 122 (minor joint) 50.089 66.824 100.337 201.28 1.003369
DS + 122 (joint No. 2) 50.127 66.887 100.55 201.44 1.003469
914 Rib (joint) 33.048 44.171 66.248 132.88 1.003334
Dunn Creek Notch (joint) 10.028 13.387 20.110 40.377 1.004735
930 (joint) 35.018 46.731 70.256 140.93 1.004516
Island Notch (joint/bed) 9.278 12.389 18.586 37.285 1.003104
Island Notch (bed) 42.592 56.829 85.272 170.72 1.001409
Wolf Creek Jct. (joint) 37.850 50.555 76.094 152.57 1.005641
Dunn Creek Notch (bed) 14.189 19.076 28.458 57.588 1.008608
Old Notch No. I (joint) 38.345 51.624 77.055 158.28 1.021994
Backus Notch No. 1 (joint) 41.231 55.004 82.666 166.86 1.004233

* Units for y are in feet; these correspond to 60.96 cm, 45.72 cm,

30.48 cm, and 15.24 cm.

close in value to I that considerable error can occur when measuring these

values by hand. Small changes in the number of counts, N , determined for a

segment length, y , can result in a significantly different fractal dimen-

sion. A computer calculation of the fractal dimension is, therefore, pre-

ferred over a hand calculation procedure.

Variogram Analysis of String Line Cross Sections

50. Variograms were calculated for each rock surface listed in Table 5.

These variograms are presented in Appendix F. Table 8 lists the string line

cross sections, their fractal dimensions, and variogram characteristics. The

following observations are made of these variograms:

a. The variogram nugget is strongly correlated with the fractal

dimension (the correlation coefficient is 0.979).

b. The variogram sill is strongly correlated with the fractal

dimension (the correlation coefficient is 0.914).
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Table 8

Variogram Results for String Line Cross Sections

Fractal Variogram
Rock Surface Dimension Nugget Sill Range Behavior

Backus Notch No. 1 (bed) 1.001059 0.0009 0.0149 10.00 2 periods

Backus Creek Notch (bed) 1.000891 0.0008 0.0848 27.00 0 periods

DS + 122 (C joint) 1.003045 0.0039 0.0450 16.00 4 periods

Island Notch (joint) 1.000107 0.0001 0.0010 7.20 1 period

DS + 122 (minor joint) 1.003369 0.0026 0.0651 16.00 0 periods

DS + 122 (joint No. 2) 1.003469 0.0027 0.1590 25.00 0 periods

914 Rib (joint) 1.003334 0.0028 0.0200 30.00 2 periods

Dunn Creek Notch (joint) 1.004735 0.0035 0.0200 6.50 2 periods

930 (joint) 1.004516 0.0050 0.2680 14.00 0 periods

Island Notch (joint/bed) 1.003104 0.0025 0.0552 6.00 0 periods

Island Notch (bed) 1.001409 0.0016 0.0164 23.00 2 periods

Wolf Creek Jct. (joint) 1.005641 0.0040 0.0349 14.00 0 periods

Dun Creek Notch (bed) 1.008608 0.0134 0.0677 5.50 2 periods

('1d Notch No. I (joint) 1.021994 0.0254 1.8800 12.20 0 periods

Backus N'otch No. I (joint) 1.004233 0.0045 0.3840 16.20 0 periods

Correlation Coefficient

1. Fractal Dimension and Nugget 0.979

2. Fractal Dimension and Sill 0.914

3. Fractal Dimension and Range -0.217

4. Fractal Dimension and Behavior -0.206

The fractal dimension values shown are from Table . Units for the range

are feet. The behavior category describes the appearance of the variogram
relative to Figure 25.
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c. There is a poor correlation between variogram periodicity (a
behavior similar to Figure 25) and the fractal dimension; the
correlation coefficient is -0.206; hence, the variogram is less
likely to be periodic for large fractal dimensions (a negative
correlation).

d. The variogram range is poorly correlated with the fractal

dimension (the correlation coefficient is -0.217).

From these variogram analyses, the strongest correlation is found between the

variogram nugget (an indicator of data randomness) and the fractal dimension.

A strong correlation is also found between the variogram sill and the fractal

dimension. Other variogram characteristics are seemingly unrelated to the

fractal dimension.

51. A numerical example is forwarded to explain the relationship

between the fractal dimension and variogram nugget. A random number generator

was used to simulate elevation values at a spacing of 0.5 ft along a ficti-

tious 50 ft string line. These simulated elevation values were scaled to have

a range between 0 and 4 ft. The result is plotted in Figure 35. Using the

computer program listed in Appendix E, the fractal dimension was calculated to

be 1.2952. The variogram of this cross section, shown in Figure 36, is ran-

dom, as expected for random numbers; the nugget value is equal to sample

variance, 1.20.

52. Three different low pass filters were applied to these random ele-

vation values. These filtered results are plotted in Figure 37, and vario-

grams are plotted in Figures 38 through 40. The filtering process results in

spatially correlated elevation values; hence, the variograms develop an

appearance similar to the spherical shape (Appendix B). As the filter size

increases, the variance of the data decreases; thus, the variogram sill

decreases. This smoothing results in a lower fractal dimension and a reduc-

tion in data randomness; hence, the nugget value decreases. This demonstrates

that the nugget and sill values of a variogram are directly proportional to

the fractal dimension; as the fractal dimension approaches unity, the vario-

gram nugget and sill approach zero.
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D= 1.30

Figure 35. Artificial string line cross section formed using random

elevation values
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Figure 36. Variogran for string line cross section shown in
Figure 35
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Figure 37. Three filtered results developed from the string line

cross section shown in Figure 35; filter sizes are shown
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Figure 38. Variogram for the 3XI filtered string line cross
section
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Figure 39. Variogram for the 7XI filtered string line cross
section
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Figure 40. Variogram for the 15XI filtered string line cross
section
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PART VI: REGRESSION: THE RELATIONSHIP BETWEEN THE FRACTAL

DIMENSION AND JOINT ROUGHNESS COEFFICIENT

53. Joint roughness (and the roughness of bedding planes) is a factor

in the sliding stability of rock masses. The rougher the surface of a joint

is, the greater stability it has against sliding. An accepted value which

describes the roughness of rock surfaces is known as the Joint Roughness

Coefficient or JRC (Barton and Choubey 1977).

54. Typical roughness profiles for various JRC values are shown in Fig-

ure 41, reproduced from Barton and Choubey (1977). JRC values were assigned

to each cross section listed in Table 5 using Figure 41. This assignment is

TYPICAL ROUGHNESS PROFILES for JRC range:

1 0-2

2 2-4

3 4-6

4 6-8

5 8-10

6 V-10- 12

7 12-14

8 1-. ,4-16

9 -A 16-18

10 18- 20

0 5 10
______________________ ."m SCALI

Figure 41. JRC profiles (Barton and Choubey

1977)
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shown in Table 9. It is noted that one cross section is assigned a value of

22, which is larger than any profile shown by Barton and Choubey (1977). This

high value was extrapolated based on the nature of the other Libby Dam area

sections. Moreover, the sections shown by Barton and Choubey (1977) refer to

the laboratory specimens they examined and are not thought to represent maxi-

mum possible values. Each cross section is listed along with the assigned JRC

value, the fractal dimension and the variogram nugget. A fictitious, ideal

cross section is also included for the subsequent discussion. This fictitious

rock surface is an ideal plane with a JRC value equal to zero, a fractal

dimension equal to one, and a nugget equal to zero. The purpose of including

this ideal surface is explained subsequently.

55. From the information listed in Table 9, a regression equation can

be developed to predict a JRC value based on:

a. The fractal dimension alone.

b. The variogram nugget alone.

c. The fractal dimension and variogram nugget.

The development of such a regression equation has a simple objective. It is a

difficult exercise in judgment to use Figure 41 to assign a JRC value to a

specific cross section. By developing a regression of JRC on the fractal

dimension and/or the variogram nugget, the JRC value can be estimated rather

than visually assigned.

56. The calculation of JRC is not a new approach. A calculation proce-

dure was developed based on laboratory shear tests of rock samples (Barton and

Choubey 1977):

JRC = arctant(r/N) - b(9)
Log 10 (JCS)/ ON)

where

T = shear stress

aN = effective normal stress

Ob = basic friction angle

JCS = joint wall compression strength

The solution to equation (9) requires the use of laboratory rock shear tests.

57. The development of a regression equation based on the fractal

dimension and variogram nugget requires only elevation data measured along a
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Table 9

Joint Roughness Coefficient (JRC) for String Line Cross Section

Rock Surface JRC* D CO

Fictitious Ideal 0 1.0000 0.0000

Backus Notch No. I (bedding) 3 1.0011 0.0009

Backus Creek Notch No. 1 (bedding) 2 1.0009 0.0008

DS + 122 (C joint) 4 1.0031 0.0039

Island Notch (joint) 1 1.0001 0.0001

DS + 122 (minor joint) 4 1.0034 0.0026

DS + 122 (joint No. 2) 5 1.0035 0.0027

914 Rib (joint) 3 1.0033 0.0028

Dunn Creek Notch (joint) 7 1.0047 0.0035

930 (joint) 8 1.0045 0.0050

Island Potch (joint/bed) 5 1.0031 0.0025

Island Notch (bedding) 2 1.0014 0.0016

Wolf Creek Jct. (joint) 8 1.0056 0.0040

Dunn Creek Notch (bedding) 13 1.0086 0.0134

Old Notch No. 1 (joint) 22 1.0220 0.0254

Backus Notch No. I (joint) 6 1.0042 0.0045

* JRC is the Joint Roughness Coefficient; D is the fractal dimension; and CO

is the variogram nugget. For this table, N is 16.

consistent linear direction. These data can be collected in the field without

the need for expensive laboratory equipment. The development of such an equa-

L~on will not duplicate, but will supplement or be an alternative to

equation (9).

Regression Analysis

58. Regression analysis involves the estimation of a dependent variable

using one or several independent variables. Such a procedure begins by plott-

ing the dependent variable versus the independent variables, one plot per

independent variable. Such a plot reveals the type of correlation between the
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dependent and independent variables. There may be a lack of correlation, or

the relationship may be linear, quadratic or some other functional form.

59. Suppose, for example, the two variables are linearly correlated and

only one independent variable is considered. Figure 42 is an example. In

this case, the dependent variable, y , can be estimated from the independent

variable, x , as

y = A0 + AIX (10)

Once the form of this equation has been chosen, it remains to solve for the

coefficients, A0 and A1 , to define the equation explicitly.

60. In regression analysis, one possible method for the solution of the

coefficients is the method of least squares. This involves the minimization

> 0

.00

0 0

Variable x

Figure 42. Example case of two linearly correlated
variables
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of the errors when estimating the dependent variable, y . To explain this

procedure, Figure 42 is recalled. Each point plotted on this figure is asso-

ciated with two known values, x and y . At each of these points, an esti-

mate of y can be calculated as

y =A 0 + A1X (11)

2 2
with an error, e , calculated as e = (y - y*)

61. Using this procedure, a regression equation is defined which, when

applied, has a zero mean error and a minimum error variance. The same proce-

dure outlined above is used for linear equations of more than one independent

variable or for nonlinear functional equations. A modification is required,

however, to accommodate additional variables or to introduce the nonlinear

functional form.

Regression Analysis for Estimation of the Joint
Roughness Coefficient

62. Plots of JRC versus fractal dimension and JRC versus variogram

nugget are shown in Figure 43. A linear correlation is observed between the

JRC and each of the independent variables. Based on this preliminary visual

analysis, three forms of a regression equation are proposed:

a. JRC = A0 + A1D.

b. JRC = A0 + A1CO.

c. JRC = A0 + AID + A2CO.

where

D = fractal dimension

CO = variogram nugget

Each of these functional forms was tested to determine the optimal regression

equation.

63. The data used to define the coefficients of these equations are

presented in Table 9. The fictitious, ideal cross section was used to include

the ideal case where JRC is equal to zero. Each equation was evaluated for

accuracy relative to the mean square error resulting from its application.
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Figure 43. Two regression plots: JRC versus fractal dimension and

JRC versus variogram nugget
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64. Using the method of least squares, the following regression equa-

tions were derived:

a. For the fractal dimension only:

JRC = -1022.55 + (1023.92)D (19)

b. For the varlogram nugget only:

JRC = 2.042 + (818.53)CO (20)

c. For the fractal dimension and variogram nugget:

JRC = -758.41 + (759.93)D + (215.05)CO (21)

For each of these equations, D and CO must be represented by at least four

digit precision after the decimal point. Table 10 lists the results of the

application of each equation for the estimation of JRC. The most accurate

equation is the one based on the two independent variables.

65. It is acknowledged that the accuracy of the three equations is

similar. Moreover, these equations are empirical and are forwarded only as a

pro cedure for the estimation of JRC. It is difficult for users unfamiliar

with variograms to interpret the nugget value. It is therefore recommended to

use the regression equation based solely on the fractal dimension to estimate

JRC. This equation, in review, is

JRC = -1022.55 + (1023.92)D (19)

This equation has an error standard deviation equal to 1.24 JRC values. When

using this equation, it is essential that the fractal dimension, D , be

represented by at least four digit precision after the decimal point, even

though the coefficients have a precision less than this. For rock surfaces,

the fractal dimension has a range from 1 to about 1.03; hence, these values

are small and the precision is therefore necessary.

66. A rough approximation of equation (19) is developed as

JRC = 1000(D - 1) (22)
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Table 10

Application of Regression Equations for the Estimation of JRC

Rock Surface JRC JRC * JRC 2  JRC3

Fictitious Ideal 0 1.37 2.04 1.52
Backus Notch No. 1 (bedding) 3 2.50 2.78 2.55
Backus Creek Notch No. 1 (bedding) 2 2.29 2.70 2.38
DS + 122 (C joint) 4 4.54 5.23 4.71
Island Notch (joint) 1 1.47 2.12 1.62
DS + 122 (minor joint) 4 4.85 4.17 4.66
DS + 122 (joint No. 2) 5 4.95 4.25 4.76
914 Rib (joint) 3 4.75 4.33 4.63
Dunn Creek Notch (joint) 7 6.18 4.91 5.84
930 (joint) 8 5.98 6.13 6.01
Island Notch (joint/bed) 5 4.54 4.09 4.41
Island Notch (bedding) 2 2.80 3.35 2.93
Wolf Creek Jct. (joint) 8 7.10 5.32 6.64
Dunn Creek Notch (bedding) 13 10.18 13.01 10.94
Old Notch No. 1 (joint) 22 23.90 22.83 23.70
Backus Notch No. 1 (joint) 6 5.67 5.73 5.68

Mean Square Error 1.54 1.77 1.39

Mean Standard Deviation 1.24 1.33 1.18

Superscripts on the JRC headings represent the equation used for estima-

tion. Superscript 1 represents the equation based on the fractal dimension
alone; superscript 2 represents the equation based on the variogram nugget
alone; and superscript 3 represents the equation based on the fractal dimen-
sioi, and variogram nugget.

and this equation is more conservative than equation (19); that is, a lower

estimate of JRC results from equation (22). Moreover, this equation is useful

for the calculation of other rock surface parameters, such as shear stress.

For example, equation (9) is recalled:

JRC = arctant(T/CN) - b(9)Log 10 (JCS)/U N)

If the shear stress, T , is to be calculated based on a known JRC value, then

tan-1 (T/N) = JRC(log10o(JCS/cN)) + 4b) (23)
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or

T = Ntan(JRC(log10(JCS/oN)) + Ob)  (24)

Incorporating the fractal dimension, D , into the equation is most easily

done using equation (22):

T = CNtan(100(D - l)(log10(JCS/oN)) + 4 b )  (25)

Equation (25) is an expression for the calculation of shear stress as a func-

tion of the fractal dimension.

67. An additional study was made to investigate the accuracy of equa-

tions (19) and (22). An enlargement of Figure 41 was made, and a fractal

dimension was computed for each of the ten profiles. The results of these

calculations are presented in Table 11 with a plot of JRC versus fractal dimen-

sion shown in Figure 44. It is interesting that through the JRC range of 14,

the plot of JRC versus fractal dimension is steeper in Figure 44 than what is

shown by Figure 43; i.e., based on Figure 41, an increase in the fractal

dimension should indicate a larger increase in the JRC value than what is

predicted by equations (19) and (22). For the JRC range greater than 14, how-

ever, Figure 44 shows a distinct change in the slope of the plot of JRC versus

fractal dimension. Several explanations are possible. The resolution of the

enlargement (a photographic enlargement) was poor, and this might account for

the change. Barton and Choubey (1977) seemed to assign high JRC values to

profiles which had a sinusoidal shape but were otherwise smooth (i.e., similar

to a sine curve). A low fractal dimension would result for such a curve.

Some of the profiles for higher JRC values appear to have such a shape (Fig-

ure 41). It is observed from Table 12 that the application of equations (19)

and (22) to the profiles of Figure 41 result in lower estimates of JRC than

what is shown in Table 11. Thus, equations (19) and (22) are useful for a

conservative analysis of joint surface roughness.
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Table 11

Fractal Dimension Calculations for Profiles of Figure 41

JRC Number of Segments, N Fractal

Range = 1 cm y = 2 cm y = 3 cm y = 4 cm y = 5 cm Dimension

0-2 173.267 86.589 57.708 43.277 34.621 1.000603

2-4 178.600 89.242 59.465 44.570 35.656 1.001199

4-6 178.408 89.047 59.332 44.450 35.552 1.002287

6-8 176.569 88.117 58.691 43.948 35.138 1.003124

8-10 176.468 88.036 58.616 43.893 35.073 1.003822

10-12 177.890 88.701 59.028 44.207 35.301 1.004689

12-14 172.990 86.251 57.401 42.963 34.317 1.005596

14-16 184.614 92.123 61.238 45.788 36.560 1.006203

16-18 182.133 90.697 60.244 44.942 35.874 1.009647

18-20 184.560 91.550 60.686 45.321 36.205 1.012453

20
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FRACTAL DIMENSION ( D

Figure 44. Plot of JRC versus fractal dimension for

the profiles shown in Figure 41
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Table 12

Predicted JRC Values for Profiles of Figure 41

JRC Range Fractal Predicted JRC Values

(actual) Dimension Eq. (19) Eq. (22)

0-2 1.000603 1.99 0.60

2-4 1.001199 2.60 1.20

4-6 1.002287 3.71 2.29

6-8 1.003124 4.57 3.12

8-10 1.003822 5.28 3.82

10-12 1.004689 6.17 4.69

12-14 1.005596 7.10 5.60

14-16 1.006203 7.72 6.20

16-18 1.009647 11.25 9.65

18-20 1.012453 14.12 12.45
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PART VII: CONCLUSIONS

Implicati-n of Results

68. Applications of both the fractal dimension and the variogram were

novel for the analysis of the texture of a joint surface. The objective of

this study was to evaluate each of these techniques for the description of

rock surfaces. As was reviewed in this report, both of these techniques are

valuable for rock mass characterization.

69. The fractal dimension accurately measured the roughness of discrete

cross sections across the DS + 122 joint surface. Regions which appeared to

be smooth on the contour nap were found to have a lower fractal dimension com-

pared with regions of greater complexity. Moreover, the value of the fractal

dimension is directly proportional to surface roughness. The greater the

difference, D - 1 , the rougher is the surface. The fractal dimension offers

a unique approach to the quantitative description of surface roughness, which

has otherwise been qualitatively described. These results were also verified

for the string line cross sections.

70. As a complement to the fractal dimension, variograms for selected

cross sections demonstrated that elevation values were spatially correlated.

The variance in elevation values along each cross section presented in this

report is a function of the asperities along the joint surface. Variograms

were able to show that asperities are spatially correlated and have a finite

spatial continuity. Moreover, at least for the example of Figure 25, the

variogram is useful for the investigation of asperity magnitude differences

across a joint surface. Occasionally, the variogram yields ambiguous results

concerning asperity magnitude and spatial structure. This ambiguity was

evident for some of the string line cross sections.

Problems Encountered in this Research

71. The only problems which occurred during this research resulted from

the application of existing techniques to a novel problem. The concept of the

fractal dimension is a recent development. The literature, except for publi-

cations by Mandelbrot, only sparsely contains publications whic! discuss the

fractal dimension. It is therefore difficult, at present, to check the
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correctness of a research procedure which involves the calculation of a

fractal dimension. Such verification was provided in this report using a con-

trol calculation.

72. With respect to the variogram, geostatistical techniques are based

on the principle oft he Intrinsic Hypothesis. This hypothesis simply requires

that the local meao of the data in one location be identical to the local mean

in a different location. This is an hypothesis required by the geostatistical

techniques. For this study, the elevation data for some of the cross sections

conformed to the hypothesis. Elevation values for other cross sections, how-

ever, did not conform well to this hypothesis. In these latter cases, it was

necessary to filter the data to allow a conformity with the Intrinsic Hypothe-

sis. This was not necessary for the string line data. These data were sam-

pled relative to a string stretched above and parallel to the rock surface.

This method of data collection yields stationary data.

Solutions to Research Problems

73. For the calculation of the fractal dimension, some experimentation

is required. The better approach to this calculation involves four steps:

(a) select a finite, small segment length, y ; (b) count the number of

times, N , the segment length, y , can be laid, end to end, along an irregu-

lar line; at the end of this irregular line, add the remainder, k , norma-

lized by y to the counts, N (i.e., N = N + k/y); (c) repeat steps a and b

for different segment lengths, y ; (d) plot log 1 0 (N) versus log 1 0 (y); the

negative of the slope of this line is the fractal dimension. As an alterna-

tive, the fractal dimension can be calculated using the computer program

listed in Appendix E.

Research Contribution

74. Once the fractal dimension has been calculated, a JRC value can be

estimated using the fractal dimension. This study found that JRC and the

fractal dimension are strongly correlated. This is a contribution to the

state-of-the-art in rock mechanics because a procedure is now available to

estimate, or calculate, the JRC rather than guessing its value from a figure,

such as Figure 41. The relationship between JRC and the fractal dimension is
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JRC = -1022.55 + (1023.92)D (19)

with D , the fractal dimension, having a precision of at least four digits

after the decimal point. Such precision is easily obtained from the computer

program listed in Appendix E.
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APPENDIX A: THE CONCEPT OF THE FRACTAL DIMENSION

Introduction

1. Geometry is the branch of mathematics that addresses the measurement,

properties, and relationships of points, lines, angles, surfaces and solids.

In a broad context, this branch of mathematics studies the properties of given

elements which remain invariant under specified transformations. Geometry

also represents an arrangement of objects or parts which suggest a particular

shape or figure.

2. In nature, shapes are geometrically unique. The shapes of the Amazon

drainage system, a butterfly's wings, a blood cell, or a cubic crystal of

galena are unique. Moreover, these shapes are often difficult to describe.

The crystal of galena is geometrically familiar: a cube. A blood cell,

although more complex in shape than a cube, is described well as a thin, hol-

lowed cylinder or disk. In contrast, there is no easy geometrical way to

describe the shape of the Amazon drainage system.

3. From a topological viewpoint, the shape of the Amazon River is a

curve. The same is true of any coastline. A curve is a line, a one d!-nen-

sional entity. Hence, the topological dimension of a river system or a coast-

line is one. This characterization is, however, disturbing. The Amazon

drainage system does not look like a familiar curve or line. It looks instead

like a complex system of smaller curves and lines, randomly oriented into a

dendritic collage. As a result of this example, a topological description of

a river system is incomplete.

Fractal Dimension

4. Rather than attempting to describe the shape of the Amazon River

system, or any other natural and irregular form, an effort can be made to

classify this irregularity. This effort can be achieved through the attempt

to measure the length of the irregular form, in this case, the length of the

Amazon River.

5. The Amazon River is shown to scale in Figure Al. The length of this

stream can be approximated by selecting a particular ruler length, y , then
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counting the number of times, N , the length, y , can be laid along the

stream. The length of the stream, L , is approximated as Ny .

6. If the ruler length, y , is progressively decreased and allowed to

converge to zero, the length, L , of the stream is found to increase without

bound (Mandelbrot 1967)*. This statement seems to be incorrect because it is

thought that L converges to some finite value as y converges to zero.

This is not the case, however, as is graphically demonstrated in Figure A2.

Imagine if one were to measure the length of the Amazon in situ, not from a

map trace. If y is 1 km, one result for L would be obtained. As y is

decreased, say to 1 m, a different result for L would be obtained because

features, such as embankment undulations, become important at the scale of I m

that were overlooked at the scale of 1 km. As y is further decreased, say

to I mm, individual rock fragments in the embankment of the river become

important and add to the length, L . This describes the unbounded increase

in the length, L .

7. Because of the unbounded increase of the global length, L , this

parameter is not satisfactory for the description of natural shapes. The

relationship between the ruler length, y , and the global length, L , is

valuable, however, for the description of natural shapes. This relationship

was given before as

L = Ny (Al)

This relationship can be expressed in a slightly different fashion as

L = NyD (A2)

where D is called the Hausdorff-Besicovitch dimension (Mandelbrot 1982). In

equation (AI), this dimension is equal to 1.

8. For the Amazon River, each of the ruler lengths, y , (1 km, I m,

1 mm), is associated with a particular number of steps, N , used to approxi-

mate the global length, L . Figures A3 through A5 show the results for the

Amazon River less its tributaries with ruler lengths of 160 km, 80 km and

* References cited in this appendix are included in the references at the end
of the main text.
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25 km. As y decreases, N increases without bound; hence, L increases

without bound.

9. By examining equation (A2), however, and rearranging terms, the

following relationship is found:

-D
Ly = N (A3)

and there is a constant relationship between y and N . If the base-ten log

of N is plotted against the base-ten log of y , the slope of this plot is

-D . This relationship is expressed by equation (A3). Moreover, the slope of

this plot is a straight line; hence, it is constant. Therefore, despite the

divergent behavior of the global length, L , the Hausdorff-Besicovitch dimen-

sion is constant.

10. The results from Figures A3 through A5 are plotted in Figure A6.

From this plot, it is evident that the relationship between log10 (N) and

log1 0 (y) is constant. The slope of this line is -1.02. Therefore, the

Hausdorff-Besicovitch dimension is 1.02.

11. If the Amazon River were perfectly straight, as shown in Figure A7,

a different result would be obtained for the Hausdorff-Besicovitch dimension.

The log 10 (N) versus log 10 (y) plot for this idealized river is shown in Fig-

ure A8. The slope of this plot is exactly -1 , thus, the Hausdorff-

Besicovitch dimension is 1.

12. The hypothetical stream of Figure A7 is represented perfectly by

the topological line. For this stream, D = 1; therefore, equation (Al) accu-

rately measures the length. As was stated before, the topological dimension

of any river is 1. For the stream of Figure A7, the Hausdorff-Besicovitch

dimension is exactly equivalent to the topological dimension.

13. This is not the case for tl'e Amazon River. Its Hausdorff-

Besicovitch dimension was found to be 1.02. This value is greater than 1. In

nature, any curve, surface, or volume whose Hausdorff-Besicovitch dimension

exceeds its topological dimension is a fractal. Furthermore, the Hausdorff-

Besicovitch dimension is known as the frac,:al dimension (Mandelbrot 1982).

14. The fractal dimension provides the capability for the description

of irregular, natural shapes. Whereas the fractal dimension is simply a

numerical value and does not describe a shape such as a line, it does describe
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The fractal dimension, D , is 1.02
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the complexity or irregularity of a curve, a surface, or a volume. This

offers considerable capability for the description of natural surfaces.

Example Calculations

15. An example calculation of the fractal dimension has been provided

in Figures A3 through A6. The concept of the fractal dimension has also been

applied previously for the description of coastlines (Mandelbrot 1967).

16. Two coastlines are chosen as examples. Figure A9 shows the west

coast of Great Britain; Figure A1O shows the coast of southern California.

The southern California coast qualitatively appears to be smoother than the

west coast of Great Britain. Therefore, it is expected that the fractal

dimension of the southern California coast will be less than the fractal

dimension for the west coast of Great Britain.

17. Using the scales plotted on each map, the selection of the ruler

length, y , is as shown in Tables Al and A2. The technique for determining

N for each y is the same as was reviewed in Figures A3 through A5. The

only difference in the procedure involved the use of different ruler lengths,

y .

18. From Tables Al and A2, the log 10 (N) versus log 1 0 (y) plots for each

coastline are shown in Figures All and A12. From these plots, the fractal

dimension for the west coast of Great Britain is 1.25. The fractal dimension

of the southern California coast is 1.02. Hence, the fractal dimension veri-

fied the intuition that the southern California coast is smoother than the

west coast of Great Britain.

Mandelbrot Set

19. The Mandelbrot Set is a recent discovery in mathematics. This set

consists of a region at the contact between the plane of real numbers and the

plane of complex numbers. Within this region, numerical vectors defined by

the real and complex planes remain of finite numerical value following an

infinite number of iterations in which the value of each vector is consis-

tently squared.
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Figure A9. Outline of the coast of Great Britain
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Table Al

Fractal Dimension* Calculation, West Coast of Great Britain

Ruler Lengthlo ()lg (Ny (kin) lo 10 ()Segment Counts, N 10___

125 2.097 7.57 0.879

50 1.699 24.25 1.385

25 1.398 56.10 1.749

* Fractal Dimension is 1.25.

Table A2

Fractal Dimnension* Calculation, Southern California Coast

Ruler Length log10 (Y) Semet outsoN_____

y_(kmn) 10___ Segment ____ Counts,_N

100 2.000 7.600 0.880

40 1.600 19.330 1.290

10 1.000 80.000 1.903

* Fractal Dimension is 1.02.
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20. An example of the fringe surrounding the Mandelbrot Set is shown in

Figure A13. The fringe (shaded region) is not part of the Mandelbrot Set;

this set resides inside this fringe. The IBM-PC compatible, BASIC language

program used to create this figure (Dewdney 1985) is listed in Figure A14.

21. The Mandelbrot Set is a fractal. This set is not the result of a

contrived mathematical function used to create an interesting graphical image.

This set is, instead, a fascinating property of real and complex numbers.

This set provides one more example of the fractal geometry of nature.

-2.0 -. 75 +.50
+1.25 1 .+1.25

< 0 .. - l :: .. iIh. -. 0
,Is

C<

-1.25 I:- 1.25
-2.0 -. 75 +.50

REAL PART

Figure A13. Mandelbrot Set. The border shows the range of
real and imaginary numbers used to create this object.

(ACORNER = -2.0, BCORNER -- 1.25, SIDE = 2.5)
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5 KEY OFF: SCREEN I: COLOR 0.0
10 INPUT "ENTER THE VALUE: ACORNER"; ACORNER
20 INPUT "ENTER THE VALUE: BCORNER"; BCORNER
50 INPUT "ENTER THE VALUE: SIDE "; SIDE
55 GAP = SIDE / 150.0
56 CLS
60 FOR I = I TO 150
70 FOR J = 1 TO 150
90 C = (J * GAP + ACORNER)
95 E = (BCORNER - I * GAP)
96 R = C

97 W = E
I0 ICOUNT = 0
101 U = (R"2 - W-'2 + C)
102 V = (2*R*W + E)

110 Z = SQR(U-"2 + V'2)
120 ICOUNT = ICOUNT + 1
130 IF Z ' 2 THEN 150
135 IF ICOUNT 90 THEN 150
136 R = U

137 W = V
138 GO TO 101
150 L = 0
151 IF ICOUNT 10 THEN 164
152 IF ICOUNT 16 THEN 155
153 L = 1

154 GO TO 164
155 IF ICOUNT 23 THEN 158
156 L = 2
157 GO TO 164
158 IF ICOUNT 30 THEN 164
159 L = 3
164 PSET (J, I). L
170 NEXT 3
175 NEXT I
180 STOP

Figure A14. IBM compatible BASIC language program used to create
the Mandelbrot Set of Figure A13
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APPENDIX B: THE THEORY OF REGIONALIZED VARIABLES,

A GEOSTATISTICAL TECHNIQUE

1. The theory of regionalized variables was developed by Georges

Matheron in the late 1950's. Matheron demonstrated that spatially dependent

variables can be estimated on the basis of this spatial structure and known

samples (Matheron 1963)*. This estimation is one aspect of geostatistics, a

concept concerned with describing the distribution, in space, of geologic

phenomena.

2. A random variable distributed in space is said to be regionalized.

These variables, because of their spatial aspect, possess both random and

structured components. On a local scale, regionalized variables can behave

randomly or erratically. Two regionalized variables separated by a distance,

h , bnwever, are not independent, but are related by a structured aspect

dependent upon h . Usually, as the length of h increases, the similarity

between two regionalized variables decreases.

3. At first glance, a regionalized variable appears to be a contradic-

tion. In one sense, it is a random variable which locally may have no rela-

tion to surrounding variables. On the other hand, there is a structured

aspect to a regionalized variable which depends on the distance separating the

variables. Both of these characteristics can, nevertheless, be described by a

random function of which each regionalized variable is a single realization.

By incorporating both the random and structured aspects of a regionalized

variable in a single function, spatial variability can be accommodated on the

basis of the spatial structure shown by these variables.

Variogram

4. One way t, examine the spatial structure of a regionalized variable

is to analytically relate the change in samples, or measurements, of the vari-

able as a function of distance separating the samples. In general, if the

average difference between samples increases as their distance of separation

increases, a spatial structure exists, and the variable is regionalized.

* Refe;ences cited in this appendix are included in the references at the end

of the main text.
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5. The function which defines the spatial correlation, or structure, of

a regionalized variable is the variogram. This function is denoted as y and

is defined as

y(h) N [Z2(Xi) + Z(Xi + h)] 2

i~l (BI)

where N is the total number of data pairs separated by a distance, h . The

variogram is simply one half the average square of the difference between sam-

ples, Z(X i ) , separated by a distance, h . If a spatial relationship

exists, the value of y(h) increases as the separation distance, h ,

increases. This implies that samples located close in space are more similar

in value than those separated by a considerable distance.

6. For most geostatistical applications, the variogram has a spherical

shape (Journel and Huijbregts, 1978). This function can be modeled by the

following equation:

l.5h - 0.5h 3

Nugget + C R 3 , h < R
R R 3

y(h) = (B2)

Nugget + C, h a R

Each component of this equation is illustrated in Figure BI. The "nugget"

value indicates the amount of white, or random, noise present in a set of

data. This value is the intercept of the variogram with the abscissa axis.

The value, R , is the distance at which the variogram stops increasing and

becomes flat; this value is known as the range. The quantity, C , is

obtained by subtracting the nugget from the sill. The sill is the variogram

value at the distance, h = R , and is usually equal to the sample variance.

Linear Estimation of the Regionalized Variables: Kriging

7. Once the spatial structure of a regionalized variable has been

determined through computation of the variogram, the spatial structure can be
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used to estimate the value of a variable at an unsampled location. This esti-

mation, or interpolation process, is known as kriging (Matheron, 1963).

8. The estimate, Z*(X0) , of a regionalized variable at a location,

X0 I is given by

N

Z*(X O) = iZ(Xi) (B3)

where N is the number of closest surrounding locations used for estimation.

9. In equation (B3), X is the vector of weights applied to each of

the closest surrounding locations. Generally, the largest weights are

assigned to the closest locations. Kriging is an unbiased estimator and

results in a minimum variance of the error. These objectives are controlled

by the weights, A . For the unbiased condition, the sum of the weights is

unity:

N

E i = 1 (B4)

f=J

where N is the same as for equation (B3). To compute the vector, X , the

following procedure is used:

N N

AiiCF = C Coi (B5)
i~ i= 1

Where v is an unknown, solved along with X , and is the Lagrangian multi-
plier used to achieve a minimum error variance. In equation (B5), aoj and

aol are respectively the intersample and point-sample covariances. These are

obtained by solving

o(h) = Sill - y(h) (B6)

For the intersample covariance matrix, aij , the distance, h , is that sepa-

rating each of the N known locations used for estimation. For the
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point-sample covariance vector, aoi , the distance, h , is that between the

location, X0 , and each of the N known locations used for estimation. In

equation (B6), y is obtained from Pquation (B2).

10. Once the weighting vector, X , is known, the kriging variance, which

is the variance of the estimation error, is computed as

N

Krig Var= Sill- X Ci io- U (B7)

i=1

where the terms sill, X , aoi , and p are defined as above. In a practi-

cal sense, the kriging variance is analogous to the mean square error of the

estimate.

Intrinsic Hypothesis

11. This hypothesis is also known as the concept of data stationarity

(Journel and Huijbregts 1978). The Intrinsic Hypothesis holds that the mean

of the data in one location, X1 , is equivalent to the mean at another loca-

tion, X2 * This requires that data values be more or less equal throughout a

space, except for their natural variation (variance).

12. Kriging is a technique which expects each estimate to be the mean of

the data. This explains why kriging is most accurate where the Intrinsic

Hypothesis holds. The natural variability in the data is captured by the

variogram. Thus, kriging is really attempting to model data fluctuations.

13. The Intrinsic Hypothesis cannot hold everywhere in space; otherwise,

a natural phenomenon would be ubiquitous throughout the universe. Eventually,

a natural phenomenon diminishes and becomes non-existent. An ore body gradu-

ally grades to barren country rock; earthquake ground motion gradually dimin-

ishes away from an epicenter; and the concentration of oxygen in the earth's

atmosphere gradually lessens as one ascends through the atmosphere. These are

all examples of nonstationary data behavior. That is, the mean is not con-

stant, but gradually decreases. For these examples, the Intrinsic Hypothesis

does not hold.

14. Despite the examples of non-stationary behavior, the data will still

show natural fluctuations. By invoking the concept of quasi-stationary
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behavior (Journel and Huijbregts 1978), we can restrict the size of the space

over which we require the Intrinsic Hypothesis to hold. This allows us to

analyze most natural situations, including those listed above.

Example Calculations

15. The previous description of a variogram is admittedly confusing. To

better explain the variogram function, a short numerical example is forwarded.

Let a linear arrangement of data be as shown in Figure B2. At each data loca-

tion, A through G, a numerical value is given. These locations and data

values provide the information needed to compute a variogram.

16. This computation is given in Table BI. We begin by examining a

separation distance that is close, but not equal, to zero. (For a separation

distance of zero, we would be looking at the difference between a data value

with itself, which is zero. Hence, no useful information is really obtained

for h equal to zero). This example begins with a separation distance of one

unit (h=l) . All data pairs separated by this distance are obtained as shown

in Table BI; in this case, six pairs are found. For each pair, the difference

between values is squared. These squared differences are then summed and

divided by twice the number of pairs. This becomes the variogram value for a

particular separation distance.

17. Subsequent to this, the separation distance is incremented until a

distance is reached which exceeds the separation distance between the farthest

spaced pairs. For real data whose locations are irregularly spaced, the sepa-

ration distance h , is incremented in the same manner from a small value to a

larger value. An exception is that h is considered to be an average value.

For example, for h = 2 , we would find all pairs separated by a distance

between 1.5 and 2.5 with an average separation distance of 2.0.

18. The results of a variogram calculation are displayed graphically.

For the computation developed in Table B1, the graphical result is shown in

Figure B3. This variogram is seen to increase from the origin as expected.

Beyond a separation distance of three units, however, the variogram begins to

decrease. This is occasionally encountered with variogram computation and, in

this instance, shows that data locations are similar at the ends of this

linear array. It is essential to remember, nevertheless, that each set of

data has a unique variogram. This is a valuable aspect of geostatistics.
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Table B1

Computation of a Variogram for the Data of Figure B1

h Pairs Difference (Squared)

A - B (2.54 - 2.49)**2 = 0.0025
B - C (2.49 - 2.43)**2 = 0.0036
C - D (2.43 - 2.39)**2 = 0.0016
D - E (2.39 - 2.41)**2 = 0.0004
E - F (2.41 - 2.49)**2 = 0.0064
F - G (2.49 - 2.56)**2 = 0.0049

N= 6 sum = 0.0194
y(1) = 0.0194/2(6) = 0.0016

2 A -C (2.54 - 2.43)**2 = 0.0121
B -D (2.49 - 2.39)**2 = 0.0100
C -E (2.43 - 2.41)**2 = 0.0004
D -F (2.39 - 2.49)**2 = 0.0100
E -G (2.41 - 2.56)**2 = 0.0225

N= 5 sum = 0.055
y(2) = 0.055/2(5) = 0.0055

3A - D (2.54 - 2.39)**2 = 0.0225
B - E (2.49 - 2.41)**2 = 0.0064
C - F (2.43 - 2.49)**2 = 0.0036
D - G (2.39 - 2.56)**2 = 0.0289

N= 4 sum = 0.0614
Y(3) = 0.0614/2(4) = 0.0077

4 A -E (2.54 - 2.41)**2 = 0.0169
B -F (2.49 - 2.49)**2 = 0
C -G (2.43 - 2.56)**2 = 0.0169

N= 3 sum = 0.0338

y(4) = 0.0338/2(3) = 0.0056

5A - F (2.54 - 2.49)**2 = 0.0025
B - G (2.49 - 2.56)**2 = 0.0049

N= 2 sum - 0.0074
Y(5) = 0.007A/2(2) = 0.0019

6 A -G (2.54 - 2.56)**2 - 0.0004
N= 1

y(6) = 0.0004/2(1) = 0.0002

7 No pairs found

(Continued)
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Table BI (Concluded)

Summary

h y (h)

1 0.0016

2 0.0055

3 0.0077

4 0.0056

5 0.0019

6 0.0002
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19. Variogram estimation is fundamental to the understanding of spatial

structure. Moreover, because the variogram is estimated from data represent-

ing a particular spatial phenomenon, geostatistics is adaptable to any spatial

situation without the need for modification. The variogram is, as a result, a

powerful analytical procedure.

20. The variogram is the foundation of the regionalized variables esti-

mator, known as kriging (Matheron 1963). Kriging is developed for one primary

objective: everywhere estimates are made, the variance of the error of these

estimates is a minimum. Further, this noble objective must be achieved within

the constraint that estimation proceeds without changing the mean value of the

spatial phenomenon. Hence, kriging is a constrained, optimal estimator.

21. A numerical example is useful for showing how the weights, X,

are computed in the kriging system. Returning to Figure B2, suppose an esti-

mate is to be made at location H on the basis of locations B , C , and

D . The geometry of this example is simple and allows for a clear description

of kriging. This does not suggest, however, that kriging always requires such

regular geometries.

22. For this example, a function is required to model the variogram of

Figure B3. For most applications of kriging, a spherical variogram model is

useful. Such a model has the form of equation (B2).

23. In this example, let equation (B2) be adapted to fit the variogram

of Figure B3. For this simple case, the following is true:

a. Nugget = 0.

b. Sill = 0.0077.

c. Range = 3.

On this basis, equation (B2) becomes

0.0077(h/2 - h 3/54), h < 3

y(h) = (B8)

0.0077, h Z 3

This is the variogram model for this example.

24. The procedure used to form the kriging system for this example is

shown in Table B2. Some explanation is required concerning the formation of

the matrix system. For the matrix, [azizj ] , the last row, ( 1 1 1 0)

assures that the sum of the weights is equal to 1. Further, with respect to
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Table B2

Example Kriging Computation

Step 1. Form intersample covariance matrix

a Z I 1 Z Z2 aa 1ZZ3

z3zI z3z 2  3Z30 0 1

where

1) a~~ =f sill =0.0077

2) a~~ M a~ sill - Y(hij

zz zz zz z

From this
i h ij yij (equation 12) a Zi Z

1-B 2-C 2 0.0037 0.0040

fi-B 3-D 2 0.0065 0.0012
2-C 3-D 10.0037 0.0040

Hence
0.0077 0.0040 0.0012 1

[aZiZ J] - 0.0040 0.0077 0.0040 1

0.0012 0.0040 0.0077 1

1 I I 0

(Continued)
(Sheet w of 3)
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Table B2 (Continued)

Step 2. Form point - sample covariance vector

Z*(H)ZI

Z*(H)Z Z*(H)Z2

crZ*(H)Z 
3

Z*(H) z i  Distance, h y(h) a(h)

H B 1.414 0.0050 0.0027

H C 1.000 0.0037 0.0040

H D 1.414 0.0050 0.0027

Hence

F0.0027
0yZ*(H)Z = )0.0040

Step 3. Solve the following system

0.0077 0.0040 0.0012 1 A 0.002 7
0.0040 0.0077 0.0040 1004

0.0012 0.0040 0.0077 1 x2 0.0027J

From Gauss Elimination:

X = 0.289 x2 = 0.422 x3 = 0.289 = -1.56E-03

(Continued) 
(Sheet 2 of 3)
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Table B2 (Concluded)

Step 4. Compute the estimate

Z*(H) =~ X IZB + x 2 zC + x 3 D

- (0.289)(2.49) + (0.422)(2.43) + (0.289)(2.39)

= 2.44

Step 5. Compute the kriging variance

N

Krig Var = Sill - x ia Z*(H)Z -1

i= 1

= 0.0077 - [(O.289)(0.0027) + (0.422)(0.0040)

+ (0.289)(0.0027)] -(-1.56E-03)

= 0.0060

Standard Deviation = 0.0060 =0.078

(Sheet 3 of 3)
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this matrix, the unity values in the fourth column are included because the

Lagrangian multiplier helps relate the covariances of the left hand side of

the equation with those of the right hand side. This multiplier assures the

minimization of the variance of the error.

25. From this example, it is observed that the largest weight is

associated with location C , closest to the estimation location, H . The

weights, X i , are a function of a separation distance, and closer points will

receive greater weight, in general, than farther points. The estimate

obtained in this example is 2.44 with an error having a standard deviation of

0.078. Hence, kriging not only yields an estimate but also provides an

estimate of its error.
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APPENDIX C: FRACTAL DIMENSION CALCULATIONS

1. Table Cl presents the information used to calculate the fractal

dimensions of cross sections using the method 1 calculation. Table C2 pre-

sents the information used to calculate the fractal dimensions of cross sec-

tions using the method 2 calculation. These tables are included to show the

significant difference between these techniques for the calculation of the

fractal dimension of rock surfaces. The method 2 calculation is the correct

procedure.
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Table CI

Fractal Dimension Summary (Method 1 Calculation)

Number of Segment Counts, N Fractal
Cross Section y=305 cm y-lO0 cm y-20 cm Dimension

AB 4 13 65 1.023
AF 4 12 62 1.006
AG 5 15 78 1.008
AH 4 12 64 1.018
AJ 5 15 79 1.013
AN 3 9 46 1.002
AP 3 10 50 1.033
AQ 3 10 51 1.040
AR 4 12 63 1.012
AS 3 10 51 1.040
AT* 2 7 36 1.061
AU* 1 5 25 1.181
AW* 2 8 41 1.109
AX* 2 6 33 1.029

AY* 2 7 39 1.090
AZ* 1 4 24 1.166
BB 8 24 123 1.003
BC 8 24 123 1.003
BD 8 24 125 1.009
BE 7 23 119 1.040
BG 6 19 100 1.033
BH 7 22 113 1.021
BI 6 19 96 1.018
BJ 6 20 101 1.036

* The cross-sectional length of sections AT through AZ is less than that of

sections AB through AS. Hence, the segment length, y - 305 cm , was too
large. As a result, the use of whole numbers to represent the number of
segment counts, N , was incorrect.
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Table C2

Fractal Dimension Summary (Method 2 Calculation)

Number of Segment Counts, N Fractal
Cross Section y=305 cm y=100 cm y-20 cm Dimension

AG 4.951 15.200 77.000 1.0072

AH 4.164 12.750 65.600 1.0119

AJ 4.974 15.480 77.100 1.0060

AN 3.013 9.200 46.100 1.0012

AP 3.328 10.170 50.200 1.0009

AQ 3.302 10.160 51.200 1.0061

AR 4.000 12.490 62.800 1.0107

AT 2.285 7.140 36.800 1.0200

AW 2.551 8.140 41.850 1.0268

AX 2.049 6.290 32.900 1.0189
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APPENDIX D: NUMERICAL VARIOGRAM RESULTS

1. This appendix presents the numerical results used to plot the

variograms which were presented in Part III. These results are presented to

verify each variogram plot and to provide numerical precision beyond what can

be interpreted from each plot. Only results for the variograms of Part III

are presented.
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Table DI

Variogram Results for Cross Section BG

No. of

h(cm) y(h) Pairs (N)

0 - 50 6.00 48

51 - 100 16.96 49

101 - 150 30.32 53

151 - 200 49.38 42

201 - 250 73.94 49

251 - 300 117.47 44

301 - 350 164.15 40

351 - 400 237.89 41

401 - 450 311.95 39

451 - 500 377.23 28

501 - 550 416.96 38

551 - 600 517.00 41

601 - 650 671.00 26

651 - 700 722.03 19

701 - 750 821.73 22

751 - 800 915.75 20

801 - 850 1057.55 22

851 - 900 1161.12 17

901 - 950 1321.39 18

951 - 1000 1474.82 17

Sample Variance f 427.81
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Table D2

Variogram Results for Cross Section AF

No. of
h(cm) y(h) Pairs (N)

0 - 80 85.71 28

81 - 160 232.26 31

161 - 240 242.19 32

241 - 320 258.33 24

321 - 400 364.58 24

401 - 480 707.14 21

481 - 560 816.67 21

561 - 640 871.88 16

641 - 720 1125.00 18

721 - 800 1635.00 20

801 - 880 2261.77 17

881 - 960 2335.71 14

961 - 1040 2512.50 16

1041 - 1120 2875.00 16

1121 - 1200 3290.00 15

1201 - 1280 4783.33 18

1281 - 1360 5525.00 10

1361 - 1440 4075.00 4

1441 - 1520 6658.33 6

Sample Variance = 1525.64
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Table D3

Variogram Results for Cross Section AL

No. of

h(cm) X(h) Pairs (N)

0 - 40 67.38 71

41 - 80 207.85 80

81 - 120 418.24 76

121 - 160 600.19 75

161 - 200 848.87 76

201 - 240 912.32 74

241 - 280 1165.48 65

281 - 320 1217.34 64

321 - 360 1663.28 58

361 - 400 1679.67 61

401 - 440 1581.22 49

441 - 480 1279.12 57

481 - 520 1087.29 42

521 - 560 815.43 42

561 - 600 684.22 37

601 - 640 1034.19 31

641 - 680 1587.79 28

681 - 720 2254.17 24

721 - 760 2758.40 30

761 - 800 4054.22 18

Sample Variance = 1392.00
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Table D4

Variogram Results for Cross Section AS'

No. of

h(cm) y(h) Pairs (N)

0 - 40 15.57 54

41 - 80 72.24 59

81 - 120 137.14 61

121 - 160 204.16 55

161 - 200 279.22 48

201 - 240 401.56 47

241 - 280 411.65 44

281 - 320 548.44 48

321 - 360 775.49 41

361 - 400 944.30 33

401 - 440 870.51 45

441 - 480 1029.90 34

481 - 520 1030.64 36

521 - 560 978.05 28

561 - 600 885.94 26

601 - 640 912.30 23

641 - 680 875.28 16

681 - 720 1083.47 17

721 - 760 1511.42 13

761 - 800 2043.61 9

Sample Variance = 649.39
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Table D5

Variogram Results for Cross Section BA

No. of

h(cm) y(h) Pairs (N)

0 - 50 26.60 37

51 - 100 93.65 40

101 - 150 129.00 34

151 - 200 127.79 29

201 - 250 108.22 36

251 - 300 75.55 31

301 - 350 41.86 29

351 - 400 49.67 18

401 - 450 78.40 20

451 - 500 45.89 19

501 - 550 39.69 13

551 - 600 44.00 13

601 - 650 55.71 14

651 - 700 128.43 14

701 - 750 86.00 16

751 - 800 32.77 13

801 - 850 60.55 11

851 - 900 28.00 11

901 - 950 20.00 9

951 - 1000 103.14 7

Sample Variance 105.47

D6



Table D6

Variogram Results for Cross Section BB

No. of
h(cm) y(h) Pairs (N)

0 - 50 10.52 84

51 - 100 28.45 71

101 - 150 38.96 71

151 - 200 42.11 68

201 - 250 49.86 69

251 - 300 66.79 58

301 - 350 80.38 63

351 - 400 85.70 54

401 - 450 91.88 69

451 - 500 110.67 63

501 - 550 175.91 46

551 - 600 196.44 45

601 - 650 256.33 55

651 - 700 292.09 47

701 - 750 323.66 41

751 - 800 394.04 56

801 - 850 436.00 50

851 - 900 579.28 39

901 - 950 509.30 37

951 - 1000 512.12 34

Sample Variance = 263.77
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Table D7

Variogram Results, Cross Section From Patton and Deere (1970)

No. of

h(cm) y(h) Pairs (N)

0 - 8 0.25 269

9 - 16 0.75 342

17 - 24 1.68 326

25 - 32 2.53 310

33 - 40 3.35 294

41 - 48 3.76 274

49 - 56 3.84 258

57 - 64 3.71 242

65 - 72 3.28 226

73 - 80 2.63 210

81 - 88 1.90 194

89 - 96 1.14 178

97 - 104 0.78 162

105 - 112 0.86 146

113 - 120 1.70 130

121 - 128 3.04 114

129 - 136 4.32 98

137 - 144 5.11 79

145 - 152 5.17 62

153 - 160 4.13 55

Sample Variance = 2.42
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Table D8

Variogram Results for Cross Section BG (Filtered)

No. of
h y(h) Pairs (N)

0 - 20 1.15 15

21 - 40 2.65 23

41 - 60 2.94 20

61 - 80 6.29 21

81 - 100 6.62 18

101 - 120 5.45 20

121 - 140 7.47 20

141 - 160 8.87 19

161 - 180 9.11 19

181 - 200 6.32 17

201 - 220 4.92 21

221 - 240 4.54 19

241 - 260 4.17 19

261 - 280 4.96 18

281 - 300 3.92 16

301 - 320 2.66 14

321 - 340 2.16 18

341 - 360 4.16 16

361 - 380 7.55 15

381 - 400 8.16 22

Sample Variance = 5.92

D9



APPENDIX E: FORTRAN PROGRAM FOR CALCULATION
OF THE FRACTAL DIMENSION

1. This appendix presents a FORTRAN program for the calculation of the

fractal dimension of a one-dimensional irregular line. This program was

developed to analyze the string line cross sections presented in Part V of

this report. A short user's guide follows.

User's Guide

2. Input to this program is afforded through a free format structure;

this facilitates data entry. Input consists of three sections:

a. Record 1: READ(5,*) K

where K is the number of step sizes, y , to be

used to calculate the fractal dimension. For

Table 6, K is 4.

b. Record 2: READ(5,*) (SL(I), I = 1,K)

where SL is a vector which contains the step sizes,

y . For Table 6, these values are 0.5, 1.0, 1.5,

and 2.0.

c. Record(s) 3: Data entry; one record is required for each

coordinate location. For a 50-ft cross section,

for example, sampled every 0.5 ft, 100 records

ar2 required. Each record is of the form:

READ(5,*) ELEVATION, X-COORDINATE

The last record is

ELEVATION = -999.0

X-COORDINATE = -999.0
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C
C PROGRAM FRACTAL FORTRAN
C
C

C ** **
C 4 *
C **

C ** **
C *

C THIS PROGRAM PERFORMS TO DETERMINE THE PARTICULAR **
C NUMBER OF STEPS, EN, USED TO APPROXIMATE THE **
C GLOBAL LENGTH FOR FRACTAL DIMENSION CALCULATION, **
C AND TO CALCULATE THE FRACTAL DIMENSION. **
C ** **
C ** GUIDE TO DATA INPUT
C **

C CARD 1. K, NUMBER OF PARTICULAR SEGMENTS
C
C CARD 2. SL, LENGTH VALUES OF SEGMENTS
C
C CARD 3. DATA ENTRY
C Y 1ST PART, ELEVATION
C X 2ND PART, X-COORDINATE
C
C LAST CARD 2ND PART (X) = NEGATIVE VALUE
C
C

1 IMPLICIT REAL* 8 (A-H,O-Z)
2 COMMON/COORD/ X(10001, Y(1O00)
3 COMMON/DIST/ OT(1000), SL(1O), EN(IO)
4 COMMON/CONST/ D(10,10), XX(1O)
5 COMMON/CENTER/ XC, YC, Xl, Y1
6 DIMENSION TEMP(1O,11), F(1O), CK(1O), LOC(1O), B(1O)

C
7 DO 5 J = 1, 10
8 DO 5 1 = 1, 10
9 D(I,J) = 0.0
10 XX(I) = 0.0
11 5 CONTINUE
12 DO 10 I = 1, 1000
13 X(I) = 0.0
14 Y(I) = 0.0
15 DT(I) = 0.0
16 10 CONTINUE

C
C.... READ THE DATA
C
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17 READ(5.*) K
18 READ(5,*) (SL(I), I = 1, K)
19 KOUNT = 0
20 20 READ(5,*) DUM1, DUM2
21 IF(DUM2.LT.O.O) GO TO 30
22 KOUNT = KOUNT + 1
23 Y(KOUNT) = DUM1
24 X(KOUNT) = DUM2
25 GO TO 20

C
C.... CALCULATE ALL DISTANCES BETWEEN TWO POINTS
C AND FIRST CENTER OF CIRCLE (XC, YC)
C

26 30 ND = KOUNT
27 N = ND- 1
28 DO 40 1= 1, N
29 XD = X(I) - X(I+1)
30 YD = Y(I) - Y(I+1)
31 DT(I) = DSQRT(XD * XD + YD - YD)
32 40 CONTINUE

C
C.... LOOP OF NUMBERS OF DIFFERENT SEGMENTS (R)
C

33 DO 10000 II = 1, K
34 SUM = 0.0

35 NKOUNT = 0
36 R = SL(II)
37 WRITE(6,50) R
38 50 FORMAT(1H1, 5(/), 1OX, ' SEGMENT LENGTH = ', F5.2,

& ********, 3(/))
39 WRITE(6,60) ND
40 60 FORMAT(6X, ' THE NUMBER OF DATA = ', 14, 4(/),

& 19X, 'INTERCEPT POINTS', /, 19X --------------------
& 11, 13X, 'NUMBER', 4X, 'X-COORD', 4X, 'Y-COORD', //)

41 xC = X(1)
42 YC = Y(1)

C
C.... FIND DT(M) USING COMPARISION OF THE SUM OF EACH DISTANCE
C

43 J1
44 1000 DO 70 I = J, N
45 SUM = SUM + DT(I)
46 IF(SUM.GE.R) GO TO 80
47 IF(I.GE.N) GO TO 3000
48 70 CONTINUE
49 80 M= I

C
C.... CALL SUBROUTINE TO CALCULATE THE INTERCEPT POINT
C

50 2000 CALL CROSS (M, R)
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C
C.... CHECK WHETHER THE INTERCEPT POINTS ARE INTERVAL BETWEEN TWO
C POINTS, (X(M), Y(M)) & (X(M+1), V(M+1))
C

51 IF(XI.GE.X(M) .AND. Xl.LE.X(M+1)) XC =Xl

52 VY = (Y(M) - Vi) * (Y(M+1) - Vi)
53 IF(YY.LE.O.O) GO TO 90
54 M =M+ 1
55 GO TO 2000
56 90 YC = Y
57 NKOUNT = NKOUNT + 1
58 WRITE(6,100) NKOUNT, XC, YC
59 100 FORMAT(13X, 14, LIX, F8.3, 3X, F8.3)

C
C.... CALCULATE THE DISTANCE (DN) BETWEEN THE INTERCEPT POINT (NEW
C CENTER OF CIRCLE) AND NEXT POINT (X(M+1), Y(M+1))
C

60 XN = XC - X(M+l)
61 YN =YC - Y(M+l)
62 ON = DSQRT(XN * XN + YN * YN)
63 SUM=DON
64 IF(SUM.GE.R) GO TO 2000
65 j =M+ 1
66 GO TO 1000

C
C.... CALCULATE THE REMAINING DISTANCE (DR)
C FROM CENTER OF CIRCLE AT LAST PORTION
C

67 3000 XR = XC - X(ND)
68 YR = YC - Y(ND)
69 DR = OSQRT(XR * XR + YR * YR)

C
C.... CALCULATE THE EXACT NUMBER OF STEPS (EN)
C

70 EN(II) = NKOUNT + DR / R
71 WRITE(6,11O) EN(II)
72 110 FORMAT(5(/), 5X, 'NUMBER OF STEPS (N) =', F10.4)
73 10000 CONTINUE
74 WRITE(6,120)
75 120 FORMAT(1H11, 5(/j), lOX, 'SEGMENT LENGTH', 4IX, 'NUMBER OF STEPS',

& /, lox------------ ------- LIX, '--------------------' //
76 WRITE(6,130) (SL(I), EN(I), 1 1, K)
77 130 FORMAT(15X, 1 .. 11X, F8.4, I

C
C .... CALCULATION OF FRACTAL DIMENSION
C USING SEGMENT LENGTH AND NUMBER OF STEPS
C .... CALCULATION OF LOG 10 SCALE FOR DATA
C

78 DO 5100 1 = 1, K
79 SL(1) = LOG10 ('3L(I))
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80 EN(I) = DLOG10 (ENCI))
81 5100 CONTINUE

C
C.... FORM THE MATRIX 101
C

82 0(1,1) = K
83 DO05200 1 1, K
814 D(1,2) D (1,2) + SL(I)
85 D(2,1) =D(1,2)
86 D(2,2) =D(2,2) + SL(I) *SL(I)

87 5200 CONTINUE
C
C.... FORM THE VECTOR JXXJ
C

88 DO053001= 1, K
89 XX(l) = XX(l) + EN(I)
90 XX(2) = XX(2) + SL(I) * EN(I)
91 5300 CONTINUE

C
C.... SOLVE THE LINER COEFFICIENTS, VECTOR JF
C

92 CALL EQSOLD (2, F)
C

93 FD- F(2)
94 WRITE(6,5400) F'D
95 51400 FORMAT(5(/), 5X, 'FRACTAL DIMENSION = ,F13.9, 5(/))
96 STOP
97 END

C
C.... SUBROUTINE TO CALCULATE THE INTERCEPT POINTS
C BETWEEN STRAIGHT LINE AND CIRCLE.
C

98 SUBROUTINE CROSS (M, R)
99 IMPLICIT REAL*8 (A-H,O-Z)
100 COMMON/COORD/ X( 1000), Y( 1000)
101 COMMON/DIST/ DT(1000), SL(10), EN(1O)
102 COMMON/CENTER! XC, YC, Xl, Yl

C
C.... CALCULATE THE COEFFICIENTS OF STRAIGHT LINE
C USING {X(M), Y(M) ) & ( X(M+1), Y(M+1)
C Y YM /XM * (X - X(M)) + Y(M)
C

103 XM = X(M+1) -X(M)

104 VM = V(M+1) -Y(M)

105 Al = YM / XM
106 A2 = (-Al) * X(M) + V(M)

C
C.... CALCULATE THE COEFFICIENTS OF 2ND-ORDER EQUATION
C USING STRAIGHT LINE AND CIRCLE
C
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C CIRCLE : X - XC)**2 + (Y - YC)**2 = R**2
C
C 2ND-ORDER EQ : A *X**2 +B*X +C=O0
C

107 A = Al * Al + 1.0
108 B = 2.0 * Al * A2 -2.0 * XC -2.0 * Al * YC
109 CC =XC *XC +YC*YC -R *R
110 C = A2 *A2 -2.0 A2 *YC +CC

C
C.... CALCULATE THE SOLUTION OF 2ND-ORDER EQUATION
C USING X (-B +OR- SQRTCB*B-4*A*C)) / (2 *A)
C

ill DR = B * B8 4.0 * A *C
112 DD = DSQRT(DR)
113 Xl = (-B + DD) / (2.0 *A)

114 Y1 = Al * Xl + A2
115 RETURN
116 END

C
117 SUBROUTINE EQSOLD (N, F)

C
C.... SUBROUTINE TO PERFORM EQUATION SOLUTION
C USING GAUSS ELIMINA)ON
C

118 IMPLICIT REAL*8 (A-H,O-Z)
119 COMMON/CONST/ D(10,10), XX(l0)
120 DIMENSION 1EMP(10,1l), F(10), CK(1O), LOC(lO), B(10)
121 MP = N + 1
122 DO 20 1 1, N
123 DO 10 J =1, N
124 TEMP(I,J) =D(I,J)

125 10 CONTINUE
126 TEMP(I,MP) =XX(I)

127 20 CONTINUE
128 DO 30 1 1, N
129 CK(I) 0.0
130 30 CONTINUE
131 DO 100 1 1, N
132 IP = I +1

C
C.... FIND MAX. NUMBER IN THE ITH COLUMN
C

133 AMAX = 0.0
134 DO 40 K =1, N
135 IF(AMAX -DABS(TEMP(K,I))) 35, 40, 40
136 35 IF(CK(K)) 36, 36, 40
137 36 LOCW) =K

138 AMAX =DABS(TEMP(K,I))

139 40 CONTINUE
140 IF(AMAX .EQ. 0.0) GO TO 100
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C
C.... MAX. ELEMENT IN THE ITH COLUMN IS A(L,I)
C

141 L = LOW()
142 CK(L) = 1.0
143 DO 50 J = 1, N
1414 1IF(L-J) 41, 50, 141
145 141 G = -TEMP(J,I) / TEMP(L,I)
146 DO 45 K =IP, MP
147 45 TEMP(J,K) =TEMP(J,K) + G TEMP(L,K)
148 50 CONTINUE
149 100 CONTINUE
150 DO 200 1 = 1, N
151 L = LOCCI)
152 F(I) = TEMP(L,MP) /TEMP(L,I)
153 200 CONTINUE
1514 999 CONTINUE
155 RETURN
156 END
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APPENDIX F: VARIOGRAMS FOR STRING LINE CROSS SECTIONS

1. This appendix presents the variograms for the string line cross

sections introduced in Part V of this report. Because these variograms are of

minor significance to the conclusions of this report, no further discussion of

them is made other than their presentation in this appendix.
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