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SURFACE ROUGHNESS CHARACTERIZATION OF ROCK MASSES
USING THE FRACTAL DIMENSION AND THE VARIOGRAM

PART I: INTRODUCTION

1., This report summarizes the first known attempt to describe the
roughness of rock surfaces using the concepts of the fractal dimension and the
variogram. For this investigation, joint surfaces adjacent to Libby Dam, MT,
were used., One joint surface was part of a rock slide designated as the
DS + 122 slide. The objective of this study was to examine the utility of the
fractal dimension and the variogram for the classification of surface rough-

ness of rock masses.

General Description of the DS + 122 Rock Slide

2. The DS + 122 rock slide occurred at Libby Dam, MT, on January 31,
1971 (Hamel 1974). This slide consisted of a rock wedge which slid toward the
dam abutment, The volume of this rock wedge was approximately 46,000 m3. The
DS + 122 wedge was formed and bounded by the intersection of a bedding plane
and a fracture (joint). From a qualitative viewpoint, the surface of the
bedding plane was quite smooth whereas the joint surface had a rougher texture
(Banks and Strohm 1974)., This report presents a quantitative description of
the roughness of the joint surface.

3. This description involved the characterization of the spatial varia-
tion in the roughness across the planar surface of this joint. In analyses of
the sliding stability of rock masses, asperities along a potential slip sur-
face are a key consideration (Patton 1966; Patton and Deere 1970; Hoek and
Bray 1974; and Goodman 1976). This report does not describe the characteris-
tics of the asperities along the DS + 122 joint surface. A quantitative
description of the roughness of this slide surface derived from a field survey
is presented. From this description, it is hoped that a method for deriving

properties of slip surface asperities can be developed,




Fractal Dimensions and Variograms

4, A quantitative assessment of the rcughness of the DS + 122 slide
surface was completed using the concept of the fractal dimension. This con~
cept describes the degree of variation a natural surface has from its topolog-
ical facsimile. Topology is a branch of mathematics devoted to the study of
geometrical configurations. For example, the topological model of a joint in
a rock is a plane. In reality, a joint is not a perfect plane, but has sur-
face irregularities which impart a greater surface area to the joint when
compared to its topological model. The fractal dimension describes the degree
of variation a curve, a surface, or a volume has from its topological ideal.

5. For example, a coastline is modeled topologically as a line or a
semi-circle. The topological dimension is therefore one (a one dimensional
feature). A coastline is rarely linear or circular, however, and is often
highly irregular, This irregularity gives the coastline a greater length
compared with its topological model. Hence, the fractal dimension of such an
irregular coastline is greater than one. A fractal is a curve, a surface, or
a volume whose dimension exceeds its topological dimension. The more irregu-
lar or rough a surface is, the greater will be its rractal dimension.

6. Once the irregularity of a surface has been described by the fractal
dimension, the spatial variation of the surface irregularities, or asperities,
can be described using variograms. The variogram describes the spatial con-
tinuity and relationship inherent to a type of regionally distributed natural
data. The variogram can be used to show the spatial behavior of the asperi-
ties whether these irregularities are of a local extent with little spatial
continuity or are continuous with a more regular spatial variation. Further-
more, the variogram can be used to evaluate the different magnitudes of asper-
ity sizes which are present on a rock surface. The resolution of these
asperities is important. Goodman (1976) has shown, for example, that asperi-
ties increase the friction angle of a joint by an amount equal to the mean or
predominate asperity angle. Hence, any investigation of the sliding stability

of a joint (or, in general, any rock surface) must be concerned with the

characteristics of the asperities along the surface.




PART II: FRACTAL DIMENSION OF JOINT SURFACES

Fractal Dimension

7. A detailed description of fractals and the fractal dimension is pro-
vided in Appendix A, In summary, a fractal is a line, a surface, or a volume
whose Hausdorff-Besicovitch dimension (i.e., fractal dimension, see Appen-

dix A) exceeds its topological dimemnsion. In Appendix A, the coastline of
Great Britain is used as an example. The topological dimension of this coast
is 1 (a line or a semi-circle). The length of this coast can be measured by
selecting a particular segment length, y , then counting the number, N , of
these y-length segments which are needed to approximate the total length, L ,
of the coastline., This length is computed as

L = Ny (1)

But, as we are realizing when we measure with increasing resolution, we
encounter an increasing number of microvariabilities, thus equation (1) should

be expressed as
L = Ny (la)

This is a phenomenon that has no real mathematical proof and is conceptually
shown in Appendix A.

8. It is an interesting phenomenon that as y decreases, L 1increases
without bound (for the actual coast, not for its mapped representation; a map
has a certain resolution limit and increments of y below that limit yield
the same measure of length, L , hence with a map, L does have a limit).
Despite this fact, if we plot loglo(N) versus loglo(y), a straight line is
obtained. The negative of the _lope of this line is the Hausdorff-Besicovitch
dimension, D . This dimension is the fractal dimension (Mandelbrot 1982).

9. The fractal dimension can be incorporated into equation (1) to

become

L = Ny (2)

10




If, throughout the plot of 10g10(N) versus 1og10(y), D 1is found to be greater
than the topological dimension, a fractal is defined. In Appendix A, for
instance, the fractal dimension of the west coast of Great Britain is shown to
be 1.25. This is greater than the topological dimension, 1 ; hence, the west
coast of Great Britain is a fractal.

10. For the analysis of the surface roughness of the joint bounding the
DS + 122 slide, the concept of the fractal dimension is intuitively useful.
The more irregular a surface is, the larger will be its fractal dimension.
The DS + 122 joint surface, however, is planar with a topological dimension of
two (DT = 2). To measure the fractal dimension of this surface, equation (2)

is rewritten to become
A = Na (3)

where A 1is the total area of the surface and a 1is some small, regular area
analogous to y 1in equation (2). From equation (3), D 1is found by plotting
loglo(N) versus loglo(a). For two dimensional surfaces, a fractal surface is

defined if D exceeds 2.

Cross—-Section Segmentation of the DS + 122 Joint Surface

11. For the elevation of the DS + 122 siide surface, the solution for
D using equation (3) is difficult to obtain. As an alternative, cross sec-
tions were plotted along discrete sections of the joint surface. These cross
sections were plotted using a contour plot derived from ground-based photo-
grammetry. The map scale was 1:40 and the contour interval was 2 cm. In
total, thirty cross sections were analyzed. Of these, twenty were orthogonal
to the direction of shear failure, and ten were parallel to the direction of
shear failure. The locations of these thirty cross sections are shown in
Figure 1.

12, Selected cross sections are plotted in Figures 2 and 3. By analyz-
ing cross sections, the two-dimensional analysis offered by equation (3) was
transformed :o thirty one-dimensional analyses using equation (20). Topologi-
cally, the trace of each cross section is a line. A particular cross section
was determined to be a fractal if its fractal dimension was greater than 1.

Once calculated for each cross section, the fractal dimension served as an

11
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indicator of surface roughness. Because each cross section represented a uni-
que spatial location along the DS + 122 slide, the analysis of thirty cross
sections described the spatial variation in the surface roughness along the
slide.

Fractal Dimension of Selected Cross Sections

13. A fractal dimension was computed for each of the thirty cross sec-
tions plotted in Figure 1. To minimize the length of this report, Table 1
presents calculations only for those cross sections shown in Figures 2 and 3.
Calcula;ions of fractal dimensions for other cross sections and presented in
Appendix C.
Table 1
Fractal Dimension Calculations (Method 2)

Cross Number of Segment Increments, N

Section y =305 cm y =100 cm . y =20 cm -slope = D*
AD 4,056 12.400 62.500 1.0038
AE 3.810 11.680 58.900 1.0050
AL 3.900 9.240 60.968 1.0091
AS' 4,118 12.610 63.700 1.0052
BA 7.793 23.770 118.843 1.0000
BF 6.832 20.940 105.330 1.0040

* Slope = (logIO(NZO) - 1og10(N305))/(10g10(20) - log10(305)).

14, For each cross section, several consistently smaller segment
lengths, y , were selected for the calculation of the fractal dimension.
Usually, three different lengths were chosen: 305 cm, 100 cm, and 20 cm.

This was an arbitrary choice and seemed to work well for this application. In
no way do these lengths conform to a special property of these cross sections.
For the calculation of the fractal dimension, measurable lengths, y , must be
selected by arbitrary decision. For this study, the lengths 200 cm, 50 cm,
and 5 cm could have been chosen and would have yielded similar results,

15. For each cross section, the fractal dimension, D , was evaluated

quantitatively using a pair of segment lengths, y . In addition, loglo(N)

15




versus loglo(y) plots were developed for each cross section for graphical
analysis. These plots are shown in Figures 4 through 9 with visually best fit
lines. The negative of the slope of each plot is the fractal dimension. The
fractal dimension for each cross section was determined by comparing the
1og10(N) versus loglo(y) graphical results to the quantitative calculation

results,

Results of the Fractal Dimension Calculations

16. The results of the fractal dimension calculations for all thirty
cross sections are presented in Table 2. To make these results more meaning-
ful, Figure 10 shows the fractal dimension for each cross section plotted on
the map of the DS + 122 joint surface. This figure demonstrates the spatial
variation in the fractal dimension across the DS + 122 joint surface.

17. Figure 10 shows the DS + 122 joint surface between cross sec-
tions AB through AF to be rather smooth. The joint surface becomes rougher
toward the AZ cross section. The direction parallel to sliding has a rough-
ness which increases from cross sections BA and B. to cross sections BI
and BJ. The direction of shear failure along this surface was from cross
sections AZ, BI, BJ toward cross sections AB, BA, BB.

18. It is important to evaluate the method used to calculate the
fractal dimension for each cross section. As we reviewed previously, the
calculation of the fractal dimension begins by selecting a segment length,

y . Then, beginning from one end of an irregular line, the number of steps,
N , is counted to reach the opposite end. Here a dilemma 1is reached.

In counting the number of steps, N , what happens if a small section of the
irregular line remains at the end and this remainder is smaller than the
length, y ? It is necessary to add the remainder, normalized by y , to the
number of steps, N ; i.e., N = N + remainder/y (Mandelbrot 1985). Table 2
shows that this remainder is considerably important for calculations. The
method 1 calculation does not consider the remainder whereas the method 2
calculation does include the remainder. Hereafter, in this study, only the
method 2 calculation 1s used to determine the fractal dimension of rock

surfaces.

16
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Table 2

Fractal Dimension Summary

Cross

Section

AB
AD
AE
AF
AG
AH
AJ
AL
AN
AP
AQ
AR
AS
AS'
AT
AU
AW
AX
AY
AZ
BA
BB
BC
BD
BE
BF
BG
BH
BI
BJ

Fractal Dimension

Method 1*

1.020
1.007
1.060
1.007
1.020
1.030
1.020
1.070
1.010
1.010
1.030
1.020
1.030
1.030
1.050
1.010
1.010
1.050
1.070
1.110
1.040
1.0u3
1.007
1.008
1.040
1.040
2030
1.020
1.010
1.040

Method 2%*

1.0027
1.0038
1.0050
1.0000
1.0072
1,0119
1.0060
1.0100
1.0012
1.0009
1.0061
1.0107
1.0100
1.0052
1,0200
1.0040
1.0268
1.0189
1.0100
1,0030
1.0000
1.0000
1.0000
1.0000
1.0000
1.0040
1.,0000
1.0020
1.0030
1.0050

* For method 1, only whole numbers are used for N

%% For method 2, the fractional remainder 1s added to

23
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Control Calculation: Fractal Dimension of the
Australian Coast

19. A control calculation was sought to verify the fractal dimension
calculation procedure. In a previous study, Mandelbrot (1967) reviewed the
fractal dimension of coastlines. He found the fractal dimension of coastlines
varied from a maximum of 1.25, for the west coast of Great Britain, to a
minimum of 1.02, for the South African coast. For the Australian coast,
Mandelbrot found the fractal dimension to be 1.13. This work is a standard
reference because Mandelbrot was the first to demonstrate the fractal dimen-
sion of coastlines; moreover, he developed the concept of the fractal
dimension,

20. Mandelbrot's results give interesting examples which can be used
for control calculations. For this purpose, the coastline of Australia was
chosen., The outline of this continent 1s shown in Figure 11. Using the seg-
ment lengths, y , shown in Table 3, the fractal dimension was found to be
1.11 using the method 2 technique; this fractal dimension was determined from
the plot shown in Figure 12, This result is close to the value reported by
Mandelbrot. Mandelbrot used the method 2 calculation for his research
(Mandelbrot 1985). There is no proof that has been presented which supports
the use of the method 2 technique. 1Its use is justified by the realization
that the exclusion of the remainder can introduce considerable error in the
calculation especially if the segment length, y , is large with respect to

the line being measured.
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Table 3

Fractal Dimension* Calculation, Australian Coast

10810(Y)

2.700
2.477
2.000

Segment

Counts, N loglO(N)
24,442 1.3881
43.868 1.6421
154,471 2.1889

* Fractal dimension is 1.11.
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Figure 12. Loglo(N) versus loglo(y) plot for the Australian coast
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PART III: VARIOGRAM ANALYSIS OF THE DS + 122 JOINT SURFACE

Variogram

21, In brief overview, the variogram is a mathematical function which
describes the spatial similarity between the value of a geological phenomenon
at one location and the value at a different location. The variogram is
described in detail in Appendix B, This function is an important concept in

modern geostatistics and has the form:

2 y(h) = 1/NZ[Z(X1) - zé«i + h)]z (4)

where Z 1is a vector containing the data which represents the spatial pheno-
menon under study, N 1s the number of pairs of these data separated by a
distance, h , and y 1is the variogram function. By describing the spatial
similarity, the variogram also captures spatial continuity; that is, the
variogram shows how rapidly the similarity between two data locations
decreases with increasing distance separating them.

22. For rock mechanics applications, the variogram function, along with
geostatistics, has received some use. These applications have been for the
analysis of the spatial variation in rock mass features, particularly fracture
density and orientation (LaPointe 1980). Early work with this type of analy-
sis has been extended to the simulation of rock mass properties (Miller and
Borgman 1985). The variogram has also been used to describe the spatial vari-
ation in rock mass features adjacent to and involved in ground subsidence over
abandoned mines (Van Besien 1985). Hence, the variogram is known technique in

the field of rock mechanics.

Variograms of Selected Cross Sections

23, Variogram analysis was used for this study to describe the spatial
correlation and continuity of joint surface asperities. The objectives of
this application were to: (a) simply evaluate the utility cf the varilogram
function for this type of analysis; (b) investigate the spatial correlation
and continuity of rock mass asperities; and (c) determine the correlation, if

any, between the variogram and the fractal dimension.
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24. Selected cross sections are chosen and presented for t' ‘s applica-
tion. These are shown in Figures 13 and 14, The variograms for ithese cross
sections are presented in Figures 15 through 20. The actual variogram results
used to develop these figures are presented in Appendix D. The variograms of
Figures 15 through 20 are representative of the types of results observed for
variograms in this study.

25. Many of the cross sections of the DS + 122 joint surface were asso-
ciated with variograms showing a behavior attributable to the data being non-
stationary (see Appendix B for an explanation of the Intrinsic Hypothesis).
This type of behavior results when a change in data values occurs in a regular
fashion over a particular direction, such as elevation values which increase
as one travels upslope. Cross sections which yielded such variograms did show
a distinct inclination. Non-stationary variograms are parabolic and concave
upward in shape. Figure 15 shows a variogram of this type for cross section
BG. In Figure 13, this cross section is seen to be inclined.

26. For this study, and non-stationary variogram in general, one proce-
dure to make the data more amenable to geostatistical analysis is to filter
the non-stationary component from the data. If the data are denoted as Z(x),

two components comprise these data, S(x) and N(x), such that

Z(x) = s(x) + N(x) (5)

where S(x) is the stationary component and N(x) is the non-stationary compo-

nent. For this study, S(x) is the elevation value due to surface asperities

and N(x) is the elevation value due to the inclination of the cross section.
27. For an enhanced analysis, N(x) was filtered from the cross section

data, such as cross section BG, to yield

S(x) = Z(x) - N(x) (5a)

The procedure used to remove N(x) is shown in Figure 21. The angle of incli-
nation was calculated, and the elevation of the plane defined by this angle
was removed from each of the cross section elevation values. This resulted in
filtered cross sections. A variogram computed for cross section BG, after

filtering, is shown in Figure 22.
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Figure 15. Variogram for cross section BG, an example of
non-stationary behavior in the variogram
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Variogram for cross section AF. Variogram is stationary,

but at h = 400 ecm , it becomes non-stationary
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Figure 17, Variogram for cross section AL, an example of
stationary variogram
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Figure 18. Variogram for cross section AS', an example of
stationary behavior
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Variogram for cross section BA, an example of
stationary behavior
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Figure 20. Variogram for cross section BB, an example of a
non-stationary variogram
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Results of the Variogram Analysis

28, Stationary variograms (Figures 17, 18, 19, and 22) show that asper-
ity undulations along a joint surface are spatially correlated. Table 4 lists
the properties of these four variograms. The sill, a more or less constant
value the variogram attains at a certain separation distance, of each vario-
gram is slightly larger than the variance of the elevation values along each
cross section, The range, that separation distance at which the variogram
attains the sill, of‘each variogram shows the spatial continuity of asperity
values; there is not spatial correlation for separation distances greater than
the range. The nugget value, the intercept of the variogram with the ordinant
axis, shows the level of noise (random variations) present in the elevation
data; for each cross section, the nugget value is small as expected for this
type of precisely measured data. Finally, each variogram is compared to the
fractal dimension for a particular cross section. There appears, on the basis
of at least these four variograms, to be little correlation between the vario-
grams and the fractal dimension. The fractal dimension offers a unique method
for the description of surface roughness, The variogram, while yielding no
clear information on surface roughness, analyzes other features of a joint

surface, particularly the spatial distribution of asperities.

Table 4

Properties of Stationary Variograms

Fractal
Cross Section Nugget Sill Range (cm) Dimension
AL 0.0 1400.00 300.00 1.0100
AS' 0.0 650,00 330.00 1.0052
BA 0.0 130.00 150.00 1.0000
BG (filtered) 0.0 6.00 80.00 1.0000

Potential Application of the Variogram: Kriging

29. One value result of this study was the demonstration that vario-
grams can be developed for elevation data measured along a joint surface.
Because these data are shown to be spatially correlated, this correlation can

be used to estimate elevation values at locations where such values were not
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measured. This estimation process is achieved using the geostatistical esti-
mator known as kriging. This technique is described in Appendix B.

30. For geostatistical analyses, such as were reviewed in this study,
kriging is useful in mapping available data. For the cross sections used for
this study, kriging could be used to develop greater detail in these plots.
For example, kriging could be used to estimate an elevation value between two
measured locations. This estimate would be based on the two known elevation
measurements and the variogram. 1In this manner, the spatial correlation and
continuity shown by the asperities could be used to better define each
asperity (i.e., to fill in data between measurement points).

31, More importantly, this study relied on a plotted contour map of the
DS + 122 joint surface as a source of data. Elevation values of such detail,
already mapped, are rare. More often, elevation values are typically measured
across a joint surface at irregular locations with a rather sparse sampling
interval, The results of this study imply that a variogram could be developed
for this type of sparse data., Kriging could be used to estimate elevation
values at intersections of a regular grid superimposed over the joint surface.
In this manner, kriging could be useful in developing the type of contour map
which served as the data base for this study without the need for photogramme-
trically mapping the entire surface.

32. Kriging is often used for gridding purposes (i.e., the interpola-
tion of data at intersections of a regular grid; Olea 1974). This 1is done
especially in preparation for data contouring; an algorithm for contouring
usually requires a regular grid of data. A rock joint is a two dimensional
surface and can be represented by a two dimensional grid. This report, how-
ever, examines one dimensional profiles along certain directions across a
joint surface. Kriging might be used in a broader investigation to form a two
dimensional digital grid of a joint surface. Such a grid could then be used
to calculate a fractal dimension for the entire surface, rather than for
discrete profiles. This might lead to a significant contribution to the pro-

cedures used for the analysis of sliding stability of rock masses.
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PART IV: COMPARISON OF THE USE OF THE FRACTAL DIMENSION
AND THE VARIOGRAM TO ACCEPTED ROCK SURFACE
ROUGHNESS EVALUATION TECHNIQUES

33. It is emphasized that the use of the fractal dimension and the
variogram supplements, but does not replace, classic surface roughness evalu-
ation techniques. 1t has been noted in the past that different types of joint
and fault surfaces display quite different surface roughness patterns (Patton
1966). It was further observed that the surface roughness varies with direc-
tion across a rock surface (Patton and Deere 1970). These orientation differ-
ences are especially important for sliding stability analyses.

34, Surface roughness is caused by irregularities, also called asperi-
ties. There are usually several orders of magnitudes of surface asperities,
from microscopic pits to megascopic folds (Piteau 1970). For the analysis of
sliding stability, it is often assumed that small magnitude asperities bear
the initial shear load, but quickly shear. Subsequent to this, the megascopic
asperities bear the load and control the sliding stability (Hoek and Bray
1974).,

35. The different magnitudes of asperities are easily recognized in
Figure 23, which is reproduced from Patton and Deere (1970). This figure

shows an actual cross section along a bedding plane and is analogous to the

a) Second - Order
Irregularities

i213¢

b) First-Order

Irregularities
average dip
39°

Figure 23. Cross section form Patton
and Deere (1970)
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cross sections plotted for the DS + 122 joint surface. The fractal dimension
of the cross section of Figure 23 is 1.01.

36. It is evident from this example that the fractal dimension does not
clearly identify the different orders of asperity magnitudes. The fact that
there are different magnitudes of asperities, however, does follow the concept
of self-similarity (Mandelbrot 1982). Each of the small asperities is self-
similar to the next larger size of asperity, and so on. It is hypothesized
that the more magnitudes of asperity sizes a joint surface has, the larger
will be its fractal dimension. In this sense, the fractal dimension might
serve as an indicator of the presence of different magnitudes of asperities.

37. The variogram is more valuable for the analysis of asperity magni-
tudes. The cross section of Figure 23 is replotted in Figure 24 to remove the
inclination and increase the scale. Assigned for this study to be consistent
with the horizontal scale, an elevation scale is shown. This scale was not
originally provided by Patton and Deere (1970), but can be assumed to be cor-
rect based on the inclination values noted in Figure 23, A variogram was
developed for this cross section and is plotted in Figure 25.

38, Of particular interest to this study, the variogram of Figure 25
shows a periodic behavior. The variogram increases initially away from the
origin, attains a plateau (the sill), then decreases, but subsequently
increases to a second plateau., The distance, h , between the origin and the
point at which the variogram begins its second increase is approximately
100 cm.

39. In Figure 24, there is a 100 cm distance between the peaks of the
megascopic asperities. The variogram of Figure 25 is interpreted to represent
the spatial correlation between the small asperities (the first increase and
plateau) and the spatial correlation between the larger and more widely spaced
asperities (the second increase and plateau). This is a valuable application
of the variogram because it appears from this example that the variogram can
help to describe the various magnitudes of asperities.

40. For the cross sections of the DS + 122 joint surface, several
variograms displayed the type of behavior shown by the variogram of Figure 25.
Two of these variograms are again plotted in Figures 26 and 27; the cross sec-
tions are plotted in Figure 28. For cross section Al, the variogram identi-

fies a second, larger asperity group with an average spacing of 600 cm. For
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Figure 25. Variogram for the cross section of Patton and Deere
(1970). Note the periodic (bimodal) behavior
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Figure 26. Variogram for cross section AL, presented here to
emphasize its periodic behavior

46




gamma (h)

2000

1800

1600

1400

1200

1000

800

600

400

200

U

AS

O 80 160 240 320 400 480 560 640 720 800
distance, h

Figure 27, Variogram for cross section AS', presented here
to emphasize its subtle periodic behavior
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Figure 28. Cross sections AL and AS', plotted for comparison
with the variograms of Figures 26 and 27
cross section AS', the spacing of the larger asperities is found from the
variogram to be 680 cm.

41, Directional characteristics of surface roughness, as noted by
Patton and Deere (1970), can be evaluated using the fractal dimension or the
variogram. Cross sections along the DS + 122 joint surface had specific ori-
entations. Hence, each computed fractal dimension and variogram indicated a
specific directional characteristic. The combination of fractal dimension and
variogram is ideally suited for the description of joint properties. The
qualitative descriptions offered by Patton (1966), Patton and Deere (1970),
and Piteau (1970) can be quantitatively describéd by the fractal dimension and

the variogram.
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PART V: APPLICATION OF THE FRACTAL DIMENSION AND VARIOGRAM
TO STRING LINE DATA FOR ROCK SURFACES NEAR
LIBBY DAM, MT

42, Previous sections of this report reviewed the application of the
fractal dimension and variogram to the analysis of the DS + 122 slide surface
adjacent to Libby Dam, MT. Subsequent to this slide, ground-based reconnais-
sance was made of older joint and bedding plane surfaces in proximity to the
DS + 122 slide, During the reconnaissance, string line measurements were made
of several rock surfaces. This process involved the placement of a string
approximately parallel to and above the rock surface. Elevations were mea-
sured from the string line to the rock surface at 0.5 ft* intervals. The rock
surfaces for which string line data were collected are listed in Table 5,
These data are plotted in Figures 29 through 33,

43, These string line data provided a different means for evaluating
the fractal dimension and spatial continuity of rock surfaces. The data used
previously to describe the fractal dimension of the DS + 122 slide were
derived from a highly detailed contour map of the rock surface plotted at 2 cm
contour intervals. At times, this contour map was difficult to read. More-
over, the map was plotted from stereo photo pairs, and the true data resolu-
tion is estimated by observations during this study to be 20 cm. Hence, the
string line data may be a higher resolution data source and possibly more

reliable than the data obtained from the contour map.

Fractal Dimension of String Line Cross Sections

44, Fractal dimensions were calculated for the rock surfaces listed in
Table 5. The procedure used was the one reviewed for the DS + 122 cross sec-
tion using the technique whereby the fractional remainder is added to the
number of counts, N , for each segment length, y . The results are listed
in Table 6.

45, For this application, 1og10(N) versus loglo(y) plots were not drawn

to determine the fractal dimension., Instead, a least squares regression

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 4,
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Table 5
List of Rock Surfaces Associated with String Line Data

Rock Surface (Names from Nearest

Topographic Feature) Type ui Feature

1. Backus Notch No., 1 Bedding plane

2. Backus Creek Notch No. 1 Bedding plane

3. DS + 122, C Joine

4, TIsland Notch Joint

5. DS + 122 (minor) Joint

6. DS + 122, No. 2 Joint

7. 914 Rib* Joint

8. Dunn Creek Notch Joint

9. 930 joint Joint

10. Island Notch Joint/bedding plane

intersection

11. 1Island Notch Bedding plane

12, Wolf Creek Jct. Joint

13. Dunn Creek Notch Bedding plane

14. 01d Notch No, 1 Joint

15. Backus Notch No., 1 Joint
*

Note: The 914 Rib joint, the 930 joint and the 01ld Notch No. 1 joint are
prehistoric slide scars. The DS + 122 C, DS + 122 minor and DS + 122 No. 2
profiles are in situ traces of joints exposed on the primary DS + 122
bedding surface and are members of the same set as the failed joint. The
remainder of the surfaces are natural surfaces exposed during construction
of the highway and the Burlington Northern railroad relocations.
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Figure 29. Plot of string line cross sections: Backus
Notch No. 1 (bedding); Backus Creek Notch No. 1 (bedding);
and DS + 122 (C joint)
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Figure 30. Plot of string line cross sections:

Island Notch (joint); DS + 122 (minor joint);

and DS + 122 (joint No. 2)
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Plot of string line cross sections: 914 Rib (joint);

Dunn Creek Notch (joint); and 930 (joint)
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Figure 32. Plot of string line cross-sections: Island
Notch (joint/bedding plane intersection); Island Notch
(bedding); and Wolf Creek Ject. (joint)
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Figure 33. Plot of string line cross sections: Dunn Creek

Notch (bedding); 01d Notch No. 1 (joint); and Backus Notch

No. 1 (joint)
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Table 6

Fractal Dimension Calculation for String Line Cross Section

Number of Counts, N Fractal

Rock Surface *y = 2,0 y=1,5 y=1.,0 y =0.,5 Dimension

Backus Notch No. 1 (bed) 46.375 61.847 92,790 185.84 1.001320
Backus Creek Notch (bed) 31,835 42.493 63.615 127.80 1.002256
DS + 122 (C joint) 50.330 67.093 100.73 201,99 1.002557
Island Notch (joint) 10.265 13,690 20.580 40,210 1,002831
DS + 122 (minor joint) 50.070 66.860 100.38 201.13 1.002907
DS + 122 (joint No. 2) 50,175 66.893 100.52 201.52 1.003175
914 Rib (joint) 33.080 44,173 66,370 132,92 1.003190
Nunn Creek Notch (joint) 10.020 13.400 20,050 40,300 1.003220
930 (joint) 35,025 46.720 70.280 141,08 1.005294
Island Notch (joint/bed) 9.290 12.380 18.680 37.420 1.005762
Island Notch (bed) 42,625 56.840 85.280 171.970 1.006291
Wolf Creek Jct. (joint) 37.750 50.490 76.180 152.84 1.008842
Dunn Creek Notch (bed) 14,165 18.990 28.400 57.560 1.010249
N1d Notch No. 1 (joint) 38.305 51,487 77.700 157.20 1.017850
BRackus Notch No. ! (joint) 41.230 54.980 82.730 166.08 1.005408

‘ar v re in feet; these correspond to 60.96 cm, 45.72 cm,

iy, oand 15,24 com,

avpronci wir used to calculate the fractal dimension., A linear regression

a2gnatioen 3 ogsoomed of the form:
log, () = D, + D, log ((y) (6)

In this equation, DO is the value of 1og10(N) when loglo(y) is zero and

D1 is the slope of this line. Because the fractal dimension, D , is the

negative of the slope of this line, then

D = -D (7)
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46. Using the principle of least squares regression, D 1is calculated
as (McCuen 1985, p 187):

I(Log;,(MLog,,(y)) - (ILog,,(N)iLlog, ,(y))/K

I(Log o ()7 = (tLog o (»)/K

where K 1s the number of different trial segment lengths, y , used to cal-
culate D . In Table 6, for example K 1s equal to 4 and the fractal dimen-
sion values listed were calculated using equation (8). The fractal dimension
values range from 1.000132 for the Backus Notch No. 1 bedding surface to
1.01785 for the Old Notch No. 1 joint surface. These values are comparable to
those determined for the DS + 122 joint surface listed in Table 2 for the
Method 2 calculation.

Computer Calculation of the Fractal Dimension

47. Results presented in Tables 2 and 6 were developed by selecting a
segment length, y , then physically walking a pair of dividers opened a dis-
tance equal to y along a plotted cross section or string line. This is a
tedious task and is susceptible to error during the counting of the number of
steps, N ; the calculation of the remainder at the end of the plot; or from
stretching of the paper on which the cross sections are plotted due to humid-
ity; etc. A computer program was developed to enable easier calculation of
the fractal dimension by a numerical algorithm of counting segment lengths in
addition to equation (8). This program is presented in Appendix E.

48. 1Input to the program consists of the number of segment lengths,

y , to be considered; specification of these segment lengths; and the eleva-
tion and distance coordinates along a cross section or string line. This pro-
gram is limited at present to one dimensional analyses. The algorithm on
which the program is based is graphically presented in Figure 34.

49, Fractal dimensions calculated for the rock surfaces listed in
Table 5 using the computer program of Appendix E are listed in Table 7.
Although the fractal dimension values do not appear to be much different than
those shown in Table 6, a different result was obtained when analyzing the

cross sections in terms of roughness. The fractal dimension values are so
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Stepi: N=0

Step 2: N=N+1=1
Ry

etc

Final Step N+1: N=N+ %

Figure 34, Algorithm for fractal dimension calculation program
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Table 7

Computer Calculation of String Line Fractal Dimensions

Number of Counts, N Fractal
Rock Surface *y = 2.0 y=1.5 y=1,0 vy =20.5 Dimension

Backus Notch No. 1 (bed) 46.303 61.755 92,682 185.48 1.001059
Backus Creek Notch (bed) 31,785 42,391 63.603 127.30 1.000891
DS + 122 (C joint) 50.334 67.105 100.78 202.14 1.003045
Island Notch (joint) 10.252 13.670 20.504 41,013 1.000107
DS + 122 (minor joint) 50.089 66.824 100.337 201.28 1.003369
DS + 122 (joint No. 2) 50.127 66.887 100.55 201.44  1.003469
914 Rib (joint) 33,048 44,171 66.248 132.88 1.003334
Dunn Creek Notch (joint) 10.028 13.387 20.110 40.377 1.004735
930 (joint) 35.018 46,731 70.256 140,93 1.004516
Island Notch (joint/bed) 9.278 12.389 18.586 37.285 1.003104
Island Notch (bed) 42,592 56.829 85.272 170.72 1.001409
Wolf Creek Jct. (joint) 37.850 50,555 76.094 152.57 1.005641
Dunn Creek Notch (bed) 14,189 19.076 28.458 57.588 1.008608
01d Notch No. 1 (joint) 38.345 51.624 77.055 158,28 1.021994
Backus Notch No. 1 (joint) 41,231 55.004 82.666 166.86 1.004233

* Units for y are in feet; these correspond to 60.96 cm, 45.72 cm,
30.48 cm, and 15.24 cm,

close in value to 1 that considerable error can occur when measuring these
values by hand. Small changes in the number of counts, N , determined for a
segment length, y , can result in a significantly different fractal dimen-
sion. A computer calculation of the fractal dimension is, therefore, pre-

ferred over a hand calculation procedure.

Variogram Analysis of String Line Cross Sections

50. Variograms were calculated for each rock surface listed in Table 5.
These variograms are presented in Appendix F. Table 8 lists the string line
cross sections, their fractal dimensions, and variogram characteristics, The
following observations are made of these variograms:

a. The variogram nugget 1is strongly correlated with the fractal
dimension (the correlation coefficient is 0.979).

b. The variogram sill is strongly correlated with the fractal
dimension (the correlation coefficient is 0,914).
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Table 8

Variogram Results for String Line Cross Sections

Rock Surface

Backus Notch No. 1 (bed)
Backus Creek Notch (bed)
DS + 122 (C joint)
Island Notch (joint)

DS + 122 (minor joint)
DS + 122 (joint No. 2)
914 Rib (joint)

Dunn Creek Notch (joint)
930 (joint)

Island Notch (joint/bed)
Island Notch (bed)

Wolf Creek Jct. (joint)
Muno Creek Notch (bed)

01ld Notch No. 1 (joint)

Backus Notch No. 1 (joint)

Fractal Dimension

Fractal Dimension

Fractal Dimension

4., Fractal Dimension

Fractal Variogram
Dimension  Nugget Sill Range  Behavior
1.001059 0.0009 0.0149 10.00 2 periods
1.000891 0.0008 0.,0848 27,00 O periods
1.003045 0.0039 0.0450 16.00 4 periods
1.000107 0.0001 0.0010 7.20 1 period
1,003369 0.0026 0.0651 16.00 O periods
1.003469 0.0027 0.1590 25.00 O periods
1.003334 0.0028 0.0200 30.00 2 periods
1.004735 0.0035 0.0200 6.50 2 periods
1.004516 0.0050 0.2680 14,00 O periods
1.003104 0.0025 0.0552 6.00 O periods
1.001409 0.0016 0.0164 23.00 2 periods
1.005641 0.0040 0.0349 14,00 O periods
1.008608 0.0134 0.0677 5.50 2 periods
1.021994 0.0254 1.8800 12,20 O periods
1.004233 0.0045 0.3840 16.20 O periods
Correlation Coefficient

and Nugget 0.979

and Sill 0.914

and Range -0.217

and Behavior -0.206

* The fractal dimension values shown are from Table /.
The behavior category describes the appearance of the variogram

are feet.
relative to Figure 25,
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c. There is a poor correlation between variogram periodicity (a
behavior similar to Figure 25) and the fractal dimension; the
correlation coefficient is -0.206; hence, the variogram is less
likely to be periodic for large fractal dimensions (a negative
correlation).

d. The variogram range is poorly correlated with the fractal
dimension (the correlation coefficient is -0.217).

From these variogram analyses, the strongest correlation is found between the
variogram nugget (an indicator of data randomness) and the fractal dimension.
A strong correlation is also found between the variogram sill and the fractal
dimension. Other variogram characteristics are seemingly unrelated to the
fractal dimension,

51. A numerical example is forwarded to explain the relationship
between the fractal dimension and variogram nugget. A random number generator
was used to simulate elevation values at a spacing of 0.5 ft along a ficti-
tious 50 ft string line. These simulated elevation values were scaled to have
a range between 0 and 4 ft. The result is plotted in Figure 35. Using the
computer program listed in Appendix E, the fractal dimension was calculated to
be 1.2952. The variogram of this cross section, shown in Figure 36, is ran-
dom, as expected for random numbers; the nugget value is equal to sample
variance, 1.20.

52. Three different low pass filters were applied to these random ele-
vation values. These filtered results are plotted in Figure 37, and vario-
grams are plotted in Figures 38 through 40. The filtering process results in
spatially correlated elevation values; hence, the variograms develop an
appearance similar to the spherical shape (Appendix B). As the filter size
increases, the variance of the data decreases; thus, the variogram sill
decreases. This smoothing results in a lower fractal dimension and a reduc-
tion in data randomness; hence, the nugget value decreases. This demonstrates
that the nugget and sill values of a variogram are directly proportional to
the fractal dimension; as the fractal dimension approaches unity, the vario-

gram nugget and sill approach zero.
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D= 1.30

Figure 35. Artificial string line cross section formed using random
elevation values
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Figure 36. Variogram for string line cross section shown in
Figure 35
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Figure 37. Three filtered results developed from the string line
cross section shown in Figure 35; filter sizes are shown
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Figure 39. Variogram for the 7X1 filtered string line cross
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PART VI: REGRESSION: THE RELATIONSHIP BETWEEN THE FRACTAL

DIMENSION AND JOINT ROUGHNESS COEFFICIENT

53. Joint roughness (and the roughness of bedding planes) is a factor
in the sliding stability of rock masses, The rougher the surface of a joint
is, the greater stability it has against sliding. An accepted value which

describes the roughness of rock surfaces is known as the Joint Roughness

Coefficient or JRC (Barton and Choubey 1977).

54. Typical roughness profiles for various JRC values are shown in Fig-

ure 41, reproduced from Barton and Choubey (1977). JRC values were assigned

to each cross section listed in Table 5 using Figure 41.

This assignment is

TYPICAL ROUGHNESS PROFILES for JRC range:

10 W‘M

1 — — 0-12
] — — 2-4
3 F”""—“N"“—"‘_’_“\"-———f-4 4-6
4 - 6-8
5 ——— 8-10
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; e 12-14
8 FN\“““\\\~__,,z’“/’-\“-*~’"‘"'4 1416
9 y~\\,,__ﬁ—_/f~’"”‘““/“\~~—4 16 -18
18- 20

- J tm

-

SCALE

Figure 41. JRC profiles (Barton and Choubey

1977)
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shown in Table 9. It is noted that one cross section is assigned a value of
22, which is larger than any profile shown by Barton and Choubey (1977). This
high value was extrapolated based on the nature of the other Libby Dam area
sections. Moreover, the sections shown by Barton and Choubey (1977) refer to
the laboratory specimens they examined and are not thought to represent maxi-
mum possible values. Each cross section is listed along with the assigned JRC
value, the fractal dimension and the variogram nugget. A fictitious, ideal
cross section is also included for the subsequent discussion. This fictitious
rock surface is an ideal plane with a JRC value equal to zero, a fractal
dimension equal to one, and a nugget equal to zero. The purpose of including
this ideal surface is explained subsequently.

55. From the information listed in Table 9, a regression equation can

be developed to predict a JRC value based on:

a. The fractal dimension alone.
b. The variogram nugget alone.
c. The fractal dimension and variogram nugget.

The development of such a regression equation has a simple objective. It is a
difficult exercise in judgment to use Figure 41 to assign a JRC value to a
specific cross section. By developing a regression of JRC on the fractal
dimension and/or the variogram nugget, the JRC value can be estimated rather
than visually assigned.

56. The calculation of JRC is not a new approach. A calculation proce-
dure was developed based on laboratory shear tests of rock samples (Barton and

Choubey 1977):

arctant(T/oN) -
LoglO(JCS)/ON)

b

JRC = (9)

where

t = shear stress

Og = effective normal stress
¢b = basic friction angle
JCS = joint wall compression strength

The solution to equation (9) requires the use of laboratory rock shear tests.
57. The development of a regression equation based on the fractal

dimension and variogram nugget requires only elevation data measured along a
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Table 9
Joint Roughness Coefficient (JRC) for String Line Cross Section

) Rock Surface JRC* D Co

Fictitious Ideal 0 1.0000 0.0000
Backus Notch No. 1 (bedding) 3 1.0011 0.0009
Backus Creek Notch No, 1 (bedding) 2 1.0009 0.0008
DS + 122 (C joint) 4 1.0031 0.0039
Island Notch (joint) 1 1.0001 0.0001
DS + 122 (minor joint) 4 1.0034 0.0026
DS + 122 (joint No. 2) 5 1.0035 0.0027
914 Rib (joint) 3 1.0033 0.0028
Dunn Creek Notch (joint) 7 1.0047 0.0035
930 (joint) 8 1.0045 0.0050
Island iotch {joint/bed) 5 1.0031 0.0025
Island Notch (bedding) 2 1.0014 0.0016
Wolf Creek Jct. (joint) 8 1.0056 0.0040
Dunn Creek Notch (bedding) 13 1.0086 0.0134
01d Notch No. 1 (joint) 22 1.0220 0.0254
Backus Notch No. 1 (joint) 6 1.0042 0.0045

* JRC is the Joint Roughness Coefficient; D is the fractal dimension; and CO
is the variogram nugget. For this table, N is 16,

consistent linear direction. These data can be collected in the field without
the need for expensive laboratory equipment, The development of such an equa-
t.on will not duplicate, but will supplement or be an alternative to

equation (9).

Regression Analysis

58. Regression analysis involves the estimation of a dependent variable
using one or several independent variables. Such a procedure begins by plott-
ing the dependent variable versus the independent variables, one plot per

independent variable, Such a plot reveals the type of correlation between the
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dependent and independent variables. There may be a lack of correlation, or
the relationship may be linear, quadratic or some other functional form,

59. Suppose, for example, the two variables are linearly correlated and
only one independent variable is considered. Figure 42 is an example. In
this case, the dependent variable, y , can be estimated from the independent
variable, x , as

y = AO + Alx (10)
Once the form of this equation has been chosen, it remains to solve for the
coefficients, A0 and A1 » to define the equation explicitly.

60. In regression analysis, one possible method for the solution of the

coefficients is the method of least squares. This involves the minimization

Variable y

Variable x

Figure 42. Example case of two linearly correlated
variables
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of the errors when estimating the dependent variable, y . To explain this
procedure, Figure 42 is recalled. Each point plotted on this figure is asso-
ciated with twe known values, x and y . At each of these points, an esti-
mate of y can be calculated as

*

y = AO + Alx (11)
with an error, e , calculated as e2 = (y - y*)2

6l. Using this procedure, a regression equation is defined which, when

applied, has a zero mean error and a minimum error variance. The same proce-
dure outlined above 1s used for linear equations of more than one independent
variable or for nonlinear functional equations. A modification is required,
however, to accommodate additional variables or to introduce the nonlinear

functional form.

Regression Analysis for Estimation of the Joint
Roughness Coefficient

62. Plots of JRC versus fractal dimension and JRC versus variogram
nugget are shown in Figure 43. A linear correlation is observed between the
JRC and each of the independent variables. Based on this preliminary visual

analysis, three forms of a regression equation are proposed:

a. JRC = A0 + AID'
b. JRC = AO + AICO.
c. JRC = A0 + AID + A2CO.
where
D = fractal dimension
CO = variogram nugget

Each of these functional forms was tested to determine the optimal regression
equation.

63. The data used to define the coefficients of these equations are
presented in Table 9. The fictitious, ideal cross section was used to include
the ideal case where JRC is equal to zero. Each equation was evaluated for

accuracy relative to the mean square error resulting from its application.
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64, Using the method of least squares, the following regression equa-
tions were derived:

a. For the fractal dimension only:

JRC = -1022.55 + (1023.92)D (19)

b. For the variogram nugget only:

JRC = 2,042 + (818.53)CO (20)

c. For the fractal dimension and variogram nugget:

JRC = -758.41 + (759.93)D + (215.05)CO (21)

For each of these equations, D and CO must be represented by at least four
digit precision after the decimal point. Table 10 lists the results of the
application of each equation for the estimation of JRC. The most accurate
equation is the one based on the two independent variables.

65. It is acknowledged that the accuracy of the three equations is
similar. Moreover, these equations are empirical and are forwarded only as a
procedure for the estimation of JRC, It is difficult for users unfamiliar
with variograms to interpret the nugget value., It is therefore recommended to
use the regression equation based solely on the fractal dimension to estimate

JRC, This equation, in review, is

JRC = -1022.55 + (1023.92)D (19)

This equation has an error standard deviation equal to 1.24 JRC values, When
using this equation, it is essential that the fractal dimension, D , be
represented by at least four digit precision after the decimal point, even
though the coefficients have a precision less than this., For rock surfaces,
the fractal dimension has a range from 1 to about 1.03; hence, these values
are small and the precision is therefore necessary.

66. A rough approximation of equation (19) is developed as

JRC = 1000(D - 1) (22)

74




Table 10
Application of Regression Equations for the Estimation of JRC

Rock Surface JRC JRCI* JRC2 JRC3

Fictitious Ideal 0 1.37 2.04 1.52
Backus Notch No. 1 (bedding) 3 2.50 2.78 2.55
Backus Creek Notch No. 1 (bedding) 2 2.29 2.70 2.38
DS + 122 (C joint) 4 4,54 5.23 4,71
Island Notch (joint) 1 1.47 2.12 1.62
DS + 122 (minor joint) 4 4.85 4,17 4.66
DS + 122 (joint No. 2) 5 4.95 4,25 4.76
914 Rib (joint) 3 4.75 4.33 4.63
Dunn Creek Notch (joint) 7 6.18 4.91 5.84
930 (joint) 8 5.98 6.13 6.01
Island Notch (joint/bed) 5 4.54 4.09 4.41
Island Notch (bedding) 2 2.80 3.35 2.93
Wolf Creek Jct. (joint) 8 7.10 5.32 6.64
Dunn Creek Notch (bedding) 13 10.18 13,01 10.94
01d Notch No. 1 (joint) 22 23.90 22.83 23.70
Backus Notch No. 1 (joint) 6 5.67 5.73 5.68

Mean Square Error 1.54 1.77 1.39

Mean Standard Deviation 1.24 1.33 1.18

* Superscripts on the JRC headings represent the equation used for estima-
tion. Superscript 1 represents the equation based on the fractal dimension
alone; superscript 2 represents the equation based on the variogram nugget
alone; and superscript 3 represents the equation based on the fractal dimen-
sion and variogram nugget,

and this equation is more conservative than equation (19); that is, a lower
estimate of JRC results from equation (22). Moreover, this equation is useful
for the calculation of other rock surface parameters, such as shear stress.

For example, equation (9) is recalled:

arctant(T/ON) - ¢
LoglO(JCS)/UN)

b

JRC = (9)

If the shear stress, T , 1s to be calculated based on a known JRC value, then

tan'l(r/oN) = JRC(log,,(JCS/0)) + ¢,) (23)




or
T = oNtan(JRC(loglo(JCS/oN)) + ) (24)
Incorporating the fractal dimension, D , into the equation is most easily

done using equation (22):

T = oNtan(loo(D - 1)(1og10(JCS/ON)) + ¢b) (25)
Equation (25) is an expression for the calculation of shear stress as a func-
tion of the fractal dimension.

67. An additional study was made to investigate the accuracy of equa-
tions (19) and (22). An enlargement of Figure 41 was made, and a fractal
dimension was computed for each of the ten profiles. The results of these
calculations are presented in Table 11 with a plot of JRC versus fractal dimen-
sion shown in Figure 44, It is interesting that through the JRC range of 14,
the plot of JRC versus fractal dimension is steeper in Figure 44 than what is
shown by Figure 43; i.e., based on Figure 41, an increase in the fractal
dimension should indicate a larger increase in the JRC value than what is
predicted by equations (19) and (22). For the JRC range greater than l4, how-
ever, Figure 44 shows a distinct change in the slope of the plot of JRC versus
fractal dimension. Several explanations are possible. The resolution of the
enlargement (a photographic enlargement) was poor, and this might account for
the change. Barton and Choubey (1977) seemed to assign high JRC values to
profiles which had a sinusoidal shape but were otherwise smooth (i.e., similar
to a3 sine curve). A low fractal dimension would result for such a curve.

Some of the profiles for higher JRC values appear to have such a shape (Fig-
ure 41). 1t 1s observed from Table 12 that the application of equations (19)
and (22) to the profiles of Figure 41 result in lower estimates of JRC than
what is shown in Table 1l1. Thus, equations (19) and (22) are useful for a

conservative analysis of joint surface roughness.

76




Fractal Dimension Calculations for Profiles of Figure 41

Table 11

JRC ' Number of Segments, N Fractal
Range y=1cm y =2 cm y=3cm y=4cm y=5cn Dimension
0-2 173.267 86.589 57.708 43,277 34,621 1.000603
2-4 178.600 89.242 59.465 44,570 35,656 1.001199
4-6 178.408 89.047 59.332 44,450 35,552 1.002287
6-8 176.569 88.117 58.691 43,948 35.138 1.003124
8-10 176.468 88.036 58.616 43.893 35.073 1.003822
10-12 177.890 88.701 59.028 44,207 35,301 1.004689
12-14 172,990 86.251 57.401 42,963 34.317 1.005596
14-16 184,614 92,123 61.238 45,788 36.560 1.006203
16-18 182,133 90.697 60.244 44,942 35,874 1.009647
18-20 184.560 91.550 60.686 45,321 36.205 1.012453

20
18
16
14
12
g 10
x
8
6
4
2
o o
1.00 1.01 1.02
FRACTAL DIMENSION (D)
Figure 44. Plot of JRC versus fractal dimension for

the profiles shown in Figure 41
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Table 12
Predicted JRC Values for Profiles of Figure 41

JRC Range Fractal Predicted JRC Values
(actual) Dimension Eq. (19) Eq. (22)
0-2 1.000603 1.99 0.60
2-4 1.001199 2,60 1.20
4-6 1.002287 3.71 2.29
6-8 1.003124 4,57 3.12
8-10 1.003822 5.28 3.82
10-12 1.004689 6.17 4.69
12-14 1.005596 7.10 5.60
14-16 1.006203 7.72 6.20
16-18 1.009647 11.25 9.65
18-20 1.012453 14,12 12.45
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PART VII: CONCLUSIONS

Implication of Results

68. Applications of bcth the fractal dimension and the variogram were
novel for the analysis of the texture of a joint surface. The objective of
this study was to evaluate each of these techniques for the description of
rock surfaces. As was reviewed in this report, both of these techniques are
valuable for rcck mass characterization.

69. The fractal dimension accurately measured the roughness of discrete
cross sections across the DS + 122 joint surface. Regions which appeared to
be smooth on the contour map were found to have a lower fractal dimension com-
pared with regions of greater complexity. Moreover, the value of the fractal
dimension is directly proportional to surface roughness. The greater the
difference, D - 1 , the rougher is the surface. The fractal dimension offers
a unique approach to the quantitative description of surface roughness, which
has otherwise been qualitatively described. These results were also verified
for the string line cross sections.

70. As a complement to the fractal dimension, variograms for selected
cross sections demonstrated that elevation values were spatially correlated.
The variance in elevation values along each cross section presented in this
report 1is a function of the asperities along the joint surface. Variograms
were able to show that asperities are spatially correlated and have a finite
spatial continuity. Moreover, at least for the example of Figure 25, the
variogram is useful for the investigation of asperity magnitude differences
across a joint surface. Occasionally, the variogram yields ambiguous results
concerning asperity magnitude and spatial structure. This ambiguity was

evident for some of the string line cross sections.

Problems Encountered in this Research

71. The only problems which occurred during this research resulted from
the application of existing techniques to a novel problem. The concept of the
fractal dimension is a recent development. The literature, except for publi-
cations by Mandelbrot, only sparsely contains publications whic! discuss the

fractal dimension. It is therefore difficult, at present, to check the
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correctness of a research procedure which involves the calculation of a
fractal dimension. Such verification was provided in this report using a con-
trol calculation.

72, With respect to the variogram, geostatistical techniques are based
on the principle oft he Intrinsic Hypothesis. This hypothesis simply requires
that the local mean of the data in one location be identical to the local mean
in a different location. This is an hypothesis required by the geostatistical
techniques. For this study, the elevation data for some of the cross sections
conformed to the hypothesis. Elevation values for other cross sections, how-
ever, did not conform well to this hypothesis. In these latter cases, it was
necessary to filter the data to allow a conformity with the Intrinsic Hypothe-
sis. This was not necessary for the string line data. These data were sam-
pled relative to a string stretched above and parallel to the rock surface.

This method of data collection yields stationary data.

Solutions to Research Problems

73, For the calculation of the fractal dimension, some experimentation
is required. The better approach to this calculation involves four steps:
(a) select a finite, small segment length, vy ; (b) count the number of
times, N , the segment length, y , can be laid, end to end, along an irregu-
lar line; at the end of this irregular line, add the remainder, k , norma-
lized by vy to the counts, N (i.e., N =N+ k/y); (c) repeat steps a and b
for different segment lengths, y ; (d) plot 1°g10(N) versus 1og10(y); the
negative of the slope of this line is the fractal dimension. As an alterna-
tive, the fractal dimension can be calculated using the computer program

listed in Appendix E.

Research Contribution

74, Once the fractal dimension has been calculated, a JRC value can be
estimated using the fractal dimension. This study found that JRC and the
fractal dimension are strongly correlated. This is a contribution to the
state-of-the-art in rock mechanics because a procedure 1s now available to
estimate, or calculate, the JRC rather than guessing its value from a figure,

such as Figure 41, The relationship between JRC and the fractal dimension is
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JRC = -~1022.55 + (1023.92)D

(19)

with D , the fractal dimension, having a precision of at least four digits

after the decimal point. Such precision is easily obtained from the computer

program listed in Appendix E.
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APPENDIX A: THE CONCEPT OF THE FRACTAL DIMENSION

Introduction

1. Geometry is the branch of mathematics that addresses the measurement,
properties, and relationships of points, lines, angles, surfaces and solids.

In a broad context, this branch of mathematics studies the preperties of given
elements which remain invariant under specified transformations. Geometry
also represents an arrangement of objects or parts which suggest a particular
shape or figure.

2. In nature, shapes are geometrically unique. The shapes of the Amazon
drainage system, a butterfly's wings, a blood cell, or a cubic crystal of
galena are unique. Moreover, these shapes are often difficult to describe.

The crystal of galena is geometrically familiar: a cube. A blood cell,
although more complex in shape than a cube, is described well as a thin, hol-
lowed cylinder or disk. In contrast, there is no easy geometrical way to
describe the shape of the Amazon drainage system.

3. From a topological viewpoint, the shape of the Amazon River is a
curve. The same is true of any coastline. A curve is a line, a one dimen-
sional entity. Hence, the topological dimension of a river system or a coast-
line is one. This characterization is, however, disturbing. The Amazon
drainage system does not look like a familiar curve or line. It looks instead
like a complex system of smaller curves and lines, randomly oriented into a
dendritic collage. As a result of this example, a topological description of

a river system is incomplete.

Fractal Dimension

4. Rather than attempting to describe the shape of the Amazon River
system, or any other natural and irregular form, an effort can be made to
classify this irregularity. This effort can be achieved through the attempt
to measure the length of the irregular form, in this case, the length of the
Amazon River.

5. The Amazon River is shown to scale in Figure Al. The length of this

stream can be approximated by selecting a particular ruler length, y , then

Al
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counting the number of times, N , the length, y , can be laid along the
stream. The length of the stream, L , is approximated as Ny .

6. If the ruler length, vy , is progressively decreased and allowed to
converge to zero, the length, L , of the stream is found to increase without
bound (Mandelbrot 1967)*. This statement seems to be incorrect because it is
thought that L converges to some finite value as y converges to zero,
This is not the case, however, as is graphically demonstrated in Figure A2.
Imagine if one were to measure the length of the Amazon in situ, not from a
map trace. If y 1is 1l km, one result for L would be obtained. As y is
decreased, say to 1 m, a different result for L would be obtained because
features, such as embankment undulations, become important at the scale of 1 m
that were overlooked at the scale of 1 kmi. As y 1is further decreased, say
to ! mm, individual rock fragments in the embankment of the river become
important and add to the length, L . This describes the unbounded increase
in the length, L .

7. Because of the unbounded increase of the global length, L , this
parameter is not satisfactory for the description of natural shapes., The
relationship between the ruler length, y , and the global length, L , is
valuable, however, for the description of natural shapes. This relationship

was given before as

L = Ny (Al)

This relationship can be expressed in a slightly different fashion as

L = NyP (A2)

where D 1is called the Hausdorff-Besicovitch dimension (Mandelbrot 1982). In
equation (Al), this dimension is equal to 1.

8. For the Amazon River, each of the ruler lengths, y , (1l km, 1 m,
1 mm), is associated with a particular number of steps, N , used to approxi-
mate the global length, L . Figures A3 through A5 show the results for the

Amazon River less its tributaries with ruler lengths of 160 km, 80 km and

* References cited in this appendix are included in the references at the end
of the main text.
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25 km. As y decreases, N increases without bound; hence, L increases
without bound.
9. By examining equation (A2), however, and rearranging terms, the

following relationship is found:
Ly ~ =N (A3)

and there is a constant relationship between y and N . If the base-ten log
of N 1is plotted against the base~ten log of y , the slope of this plot is
-D . This relationship is expressed by equation (A3). Moreover, the slope of
this plot is a straight line; hence, it is constant. Therefore, despite the
divergent behavior of the global length, L , the Hausdorff-Besicovitch dimen-
sion is constant.

10. The results from Figures A3 through A5 are plotted in Figure A6.
From this plot, it is evident that the relationship between loglO(N) and
loglo(y) is constant, The slope of this line is -1.02. Therefore, the
Hausdorff-Besicovitch dimension is 1.02,

11, 1If the Amazon River were perfectiy straight, as shown in Figure A7,
a different result would be obtained for the Hausdorff-Besicovitch dimension.
The loglo(N) versus loglo(y) plot for this idealized river is shown in Fig-
ure A8. The slope of this plot is exactly -1 , thus, the Hausdorff-
Besicovitch dimension is 1.

12. The hypothetical stream of Figure A7 is represented perfectly by
the topological line. For this stream, D = 1; therefore, equation (Al) accu-
rately measures the length. As was stated before, the topological dimension
of any river is 1. For the stream of Figure A7, the Hausdorff-Besicovitch
dimension is exactly equivalent to the topological dimension.

13. This is not the case for tbe Amazon River. Its Hausdorff-
Besicovitch dimension was found to be 1,02. This value is greater than 1. In
nature, any curve, surface, or volume whose Hausdorff-Besicovitch dimension
exceeds its topological dimension is a fractal. Furthermore, the Hausdorff-
Besicovitch dimension is known as the fractal dimension (Mandelbrot 1982),

14, The fractal dimension provides the capability for the description

of irregular, natural shapes, Whereas the fractal dimension 1is simply a

numerical value and does not describe a shape such as a line, it does describe
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the coniplexity or irregularity of a curve, a surface, or a volume. This

offers considerable capability for the description of natural surfaces.

Example Calculations

15. An example calculation of the fractal dimension has been provided
in Figures A3 through A6. The concept of the fractal dimension has also been
applied previously for the description of coastlines (Mandelbrot 1967).

16, Two coastlines are chosen as examples. Figure A9 shows the west
coast of Great Britain; Figure Al0 shows the coast of southern California.
The southern California coast qualitatively appears to be smoother than the
west coast of Great Britain. Therefore, it 1is expected that the fractal
dimension of the southern California coast will be less than the fractal
dimension for the west coast of Great Britain.

17. Using the scales plotted on each map, the selection of the ruler
length, y , is as shown in Tables Al and A2. The technique for determining
N for each y 1is the same as was reviewed in Figures A3 through A5. The
only difference in the procedure involved the use of different ruler lengths,
Yy .

18. From Tables Al and A2, the 1og10(N) versus loglo(y) plots for each
coastline are shown in Figures All and Al2, From these plots, the fractal
dimension for the west coast of Great Britain is 1.25. The fractal dimension
of the southern California coast is 1.02. Hence, the fractal dimension veri-
fied the intuition that the southern California coast is smoother than the

west coast of Great Britain.

Mandelbrot Set

19, The Mandelbrot Set is a recent discovery in mathematics. This set
consists of a region at the contact between the plane of real numbers and the
plane of complex numbers. Within this region, numerical vectors defined by
the real and complex planes remain of finite numerical value following an
infinite number of iterations in which the value of each vector is consis-

tently squared.
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Table Al

Fractal Dimension* Calculation, West Coast of Great Britain

Ruler Length

y (km) 1og10(y) Segment Counts, N 10gIO(N)
125 2.097 7.57 0.879
50 1.699 24,25 1.385
25 1.398 56.10 1.749

* Fractal Dimension is 1.25.

Table A2

Fractal Dimension* Calculation, Southern California Coast

Ruler Length

y (km) 10310(y) Segment Counts, N IOgIO(N)
100 2.000 7.600 0.880
40 1,600 16.330 1.290
10 1.000 80.000 1.903

* Fractal Dimension is 1.02.
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20,
Figure Al3.

this set resides inside this fringe.

An example of the fringe surrounding the Mandelbrot Set is shown in

The fringe (shaded region) is not part of the Mandelbrot Set;

The IBM~PC compatible, BASIC language

program used to create this figure (Dewdney 1985) is listed in Figure Al4.

21,

The Mandelbrot Set is a fractal.

This set is not the result of a

contrived mathematical function used to create an intevesting graphical image.

This set is, instead, a fascinating property of real and complex numbers.

This set provides one more example of the fractal geometry of nature.
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Mandelbrot Set.

The border shows the range of

real and imaginary numbers used to create this object.

(ACORNER =

-2.0, BCORNER =

1.25, SIDE = 2.5)

Al8




KEY OFF: SCREEN 1: COLOR Q.0
INFUT "ENTER THE VALUE:
INFUT "ENTER THE VALUE:
INFUT "ENTER THE VALUE:
GAF =

ICOUNT
U_—

Vv

-
L

CJ

= 5IDE / 130.0
I 1 70 150

1 TO 150

(J ¥ BAF + ACORNER)
(BCORNER - 1 % GAF)
C

E

0o

Q
(Z2XRXW + E)
SERU™2 + V2

[SINL

ICOUNT = ICOUNT + 1
IF Z » 2 THEN 150
IF ICDUNT > 90 THEN 150

R = U
W=V
GO TO 101
L = ¢

IF ICOUNT < 10 THEN 164
IF ICOUNT > 16 THEN 155

L

1

GO0 TOQ 164
IF ICOUNT > 22 THEN 1858

L

-
-

G0 TO 164
IF ICOUNT > Z0 THEN 164

L

-
-t

FSET (J.I), L
NEXT J

NEXT 1

STOF

Figure Al4.

ACORNER": ACORNER
BCORNER"3 ERCORNER
SIDE "s SIDE

IBM compatible BASIC language program used to create
the Mandelbrot Set of Figure Al3
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APPENDIX B: THE THEORY OF REGIONALIZED VARIABLES,
A GEOSTATISTICAL TECHNIQUE

1. The theory of regionalized variables was developed by Georges
Matheron in the late 1950's. Matheron demonstrated that spatially dependent
variables can be estimated on the basis of this spatial structure and known
samples (Matheron 1963)*, This estimation is one aspect of geostatistics, a
concept concerned with describing the distribution, in space, of geologic
phenomena.

2. A random variable distributed in space is said to be regionalized.
These variables, because of their spatial aspect, possess both random and
structured components. On a local scale, regionalized variables can behave
randomly or erratically. Two regionalized variables separated by a distance,
h , beowever, are not independent, but are related by a structured aspect
dependent upon h ., Usualiy, as the length of h dincreases, the similarity
between two regionalized variables decreases.

3. At first glance, a regionalized variable appears to be a contradic-
tion. In one sense, it is a random variable which locally may have no rela-
tion to surrounding variables., On the other hand, there is a structured
aspect to a regionalized variable which depends on the distance separating the
variables., Both of these characteristics can, nevertheless, be described by a
random function of which each regionalized variable is a single realization.
By incorporating both the random and structured aspects of a regionalized
variable in a single function, spatial variability can be accommodated on the

basis of the spatial structure shown by these vuriables.

Variogram

4, One way to examine the sratial structure of a regionalized variable
is to analytically relate the change in samples, or measurements, of the vari-
able as a function of distance separating the samples. In general, if the
average difference between samples increases as their distance of separation

increases, a spatial structure exists, and the variable is regionalized.

* Refeiences cited in this appendix are included in the references at the end
of the main text.




5. The function which defines the spatial correlation, or structure, of
a regionalized variable is the variogram. This function is denoted as Yy and
is defined as

y(h) =

=l

N
2
> o 2+

i=1 (B1)
where N 1is the total number of data pairs separated by a distance, h . The
variogram is simply one half the average square of the difference between sam-
ples, Z(Xi) , separated by a distance, h . 1If a spatial relationship
exists, the value of y(h) increases as the separation distance, h ,
increases. This implies that samples located close in space are more similar
in value than those separated by a considerable distance.

6. For most geostatistical applications, the variogram has a spherical
shape (Journel and Huijbregts, 1978). This function can be modeled by the

following equation:

1.5h - O.Sh3
R R3

Nugget + C h <R

y(h) = (B2)

Nugget + C, h 2 R

Each component of this equation is illustrated in Figure Bl. The "nugget"
value indicates the amount of white, or random, noise present in a set of
data. This value is the intercept of the variogram with the abscissa axis.
The value, R , is the distance at which the variogram stops increasing and
becomes flat; this value is known as the range. The quantity, C , is
obtained by subtracting the nugget from the sill. The sill is the variogram

value at the distance, h = R , and is usually equal to the sample variance.

Linear Estimation of the Regionalized Variables: Kriging

7. Once the spatial structure of a regionalized variable has been

determined through computation of the variogram, the spatial structure can be
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Figure Bl. Example of a spherical variogram showing
the nugget, range, sill and shape
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used to estimate the value of a variable at an unsampled location. This esti-~
mation, or interpolation process, is known as kriging (Matheron, 1963).

8. The estimate, Z*(Xo) , of a regionalized variable at a location,
XO , 1s given by

N
Z%(X,) =Z N2, (83)

where N 1is the number of closest surrounding locations used for estimation.

9. In equation (B3), X 1is the vector of weights applied to each of
the closest surrounding locations. Generally, the largest weights are
assigned to the closest locations. Kriging is an unbiased estimator and
results in a minimum variance of the error. These objectives are controlled
by the weights, ) . For the unbiased condition, the sum of the weights is
unity:

in= 1 (B4)

N
i=1

where N 1is the same as for equation (B3). To compute the vector, X , the

following procedure is used:

N N
Z MOjg ~ W = Z %1 (BS)
1=1 1=1

Where u 1s an unknown, solved along with A , and is the Lagrangian multi-

plier used to achieve a minimum error variance. In equation (BS), ooj and
0,4 are respectively the intersample and point-sample covariances. These are

obtained by solving
o(h) = §i11 - v(h) (B6)

For the intersample covariance matrix, , the distance, h , is that sepa-

o
1j
rating each of the N known locations used for estimation. For the
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point-sample covariance vector, Oy * the distance, h , is that between the
location, Xo » and each of the N known locations used for estimation. 1In
equation (B6), y is obtained from equation (B2).

10. Once the weighting vector, ) , is known, the kriging variance, which

is the variance of the estimation error, is computed as

N
Krig Var = Sill - E AOgo™ ¥ (B7)

i=1

where the terms sill, i , and py are defined as above. In a practi-

(¢ ’
oi
cal sense, the kriging variance is analogous to the mean square error of the

estimate.

Intrinsic Hypothesis

11. This hypothesis 1s also known as the concept of data stationarity
(Journel and Huijbregts 1978). The Intrinsic Hypothesis holds that the mean
of the data in one location, X, , is equivalent to the mean at another loca-

1
tion, X, . This requires that data values be more or less equal throughout a

space, eicept for their natural variation (variance).

12. Kriging is a technique which expects each estimate to be the mean of
the data., This explains why kriging is most accurate where the Intrinsic
Hypothesis holds. The natural variability in the data is captured by the
variogram. Thus, kriging is really attempting to model data fluctuations.

13. The Intrinsic Hypothesis cannot hold everywhere in space; otherwise,
a natural phenomenon would be ubiquitous throughout the universe, Eventually,
a natural phenomenon diminishes and becomes non-existent, An ore body gradu-
ally grades to barren country rock; earthquake ground motion gradually dimin-
ishes away from an epicenter; and the concentration of oxygen in the earth's
atmosphere gradually lessens as one ascends through the atmosphere. These are
all examples of nonstationary data behavior. That is, the mean is not con-
stant, but gradually decreases. For these examples, the Intrinsic Hypothesis
does not hold.

14, Despite the examples of non-stationary behavior, the data will still

show natural fluctuations. By invoking the concept of quasi-stationary

BS




behavior (Journel and Huijbregts 1978), we can restrict the size of the space
over which we require the Intrinsic Hypothesis to hold. This allows us to

analyze most natural situations, including those listed above.

Example Calculations

15, The previous description of a variogram is admittedly confusing. To
better explain the variogram function, a short numerical example is forwarded.
Let a linear arrangement of data be as shown in Figure B2, At each data loca-
tion, A through G, a numerical value is given. These locations and data
values provide the information needed to compute a variogram,

16. This computation is given in Table Bl., We begin by examining a
separation distance that is close, but not equal, to zero. (For a separation
distance of zero, we would be looking at the difference between a data value
with itself, which is zero. Hence, no useful information is really obtained
for h equal to zero). This example begins with a separation distance of one
unit (h=1) . All data pairs separated by this distance are obtained as shown
in Table Bl; in this case, six pairs are found. For each pair, the difference
between values is squared. These squared differences are then summed and
divided by twice the number of pairs. This becomes the variogram value for a
particular separation distance,

17, Subsequent to this, the separation distance is incremented until a
distance is reached which exceeds the separation distance between the farthest
spaced pairs. For real data whose locations are irregularly spaced, the sepa-
ration distance h , is incremented in the same manner from a small value to a
larger value. An exception is that h is considered to be an average value.
For example, for h = 2 , we would find all pairs separated by a distance
between 1.5 and 2.5 with an average separation distance of 2.0.

18. The results of a variogram calculation are displayed graphically.
For the computation developed in Table Bl, the graphical result is shown in
Figure B3. This variogram is seen to increase from the origin as expected.
Beyond a separation distance of three units, however, the variogram begins to
decrease. This is occasionally encountered with variogram computation and, in
this instance, shows that data locations are similar at the ends of this
linear array. It is essential to remember, nevertheless, that each set of

data has a unique variogram. This is a valuable aspect of geostatistics.
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Table Bl

Computation of a Variogram for the Data of Figure Bl

Pairs
A~-B
B-C
C-D
D -E
E-F
F -G
N =6

moaw»
1
QEEoO O

N=35
A-D
B -E
C-F
D -G
N =4
A-E
B-F
C -G
N=3
A-F
B -G
N=2
A -G
N =1

(Continued)

B8

Difference (Squared)

(2.54
(2.49
(2.43
(2.39
(2.41
(2.49

2.49)%%2
2.43)%*2
2.39)%*2
2,41)%%2
2.49)%%x2
2.56)*%%2

sum

y(1) = 0.0194/2(6)

(2.54
(2.49
(2.43
(2.39
(2.41

¥(2) =

(2.54
(2.49
(2.43
(2.39

o

2.43)%%2
2.39)%*2
2.,41)%%2
2.49)*%2
2.56)*%2

sum

.055/2(5)

2.39)**2
2,41)%%*2
2.49)**2
2.56)%*%2

sum

y(3) = 0.0614/2(4)

(2.54 = 2.41)%*2
(2.49 - 2.49)%*%2
(2.43 - 2,56)*%*%2

sum

y(4) = 0.0338/2(3)

(2.54 = 2.49)%*2
(2.49 = 2.56)%%*2

sum

vy(5) = 0.007.:/2(2)

(2.54 - 2.56)%*%2

y(6) = 0.0004/2(1)

No pairs found

0.0025
0.0036
0.0016
0.0004
0.0064
0.0049

0.0194
0.0016

0.0121
0.0100
0.0004
0.0100
0.0225

0.055
0.0055

0.0225
0.0064
0.0036
0.0289

0.0614
0.0077

0.0169
0
0.0169

= 0.0338

0.0056

0.0025
0.0049

0.0074
0.0019

0.0004

0.0002




Table Bl (Concluded)

AN W N =T

Summar

y(h)
0.0016

0.0055
0.0077
0.0056
0.0019
0.0002
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19, Variogram estimation is fundamental to the understanding of spatial
structure, Moreover, because the variogram is estimated from data represent-
ing a particular spatial phenomenon, geostatistics is adaptable to any spatial
situation without the need for modification., The variogram is, as a result, a
powerful analytical procedure,.

20, The variogram is the foundation of the regionalized variables esti-
mator, known as kriging (Matheron 1963). Kriging is developed for one primary
objective: everywhere estimates are made, the variance of the error of these
estimates is a minimum. Further, this noble objective must be achieved within
the constraint that estimation proceeds without changing the mean value of the
spatial phenomenon. Hence, kriging is a constrained, optimal estimator.

21. A numerical example is useful for showing how the weights, Xi s
are computed in the kriging system. Returning to Figure B2, suppose an esti-
mate is to be made at location H on the basis of locations B, C , and
D . The geometry of this example is simple and allows for a clear description
of kriging. This does not suggest, however, that kriging always requires such
regular geometries.

22, For this example, a function is required to model the variogram of
Figure B3. For most applications of kriging, a spherical variogram model is
useful. Such a model has the form of equation (B2).

23. In this example, let equation (B2) be adapted to fit the variogram
of Figure B3. For this simple case, the following is true:

a. Nugget = 0.
. 8ill = 0,0077.

|o*

(]

c. Range = 3.
On this basis, equation (B2) becomes

0.0077(h/2 - h3/54), h < 3
y(h) = (B8)
0.0077, h 2 3

This is the variogram model for this example.
24, The procedure used to form the kriging system for this example is
shown in Table B2. Some explanation is required concerning the formation of

the matrix system. For the matrix, [o ] , the last row, (1110,

ZiZj
assures that the sum of the weights is equal to 1. Further, with respect to
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Table B2
Example Kriging Computation

Step 1. Form intersample covariance matrix

—o o o 1-
2,2, 2,2, 2,2,
= 92.2 92.2 92.2 1
%2.2 2°1 22 293
173
92.z 92.z 92.2 1
3“1 342 3“3
1 1 1 0
where
1) ¢ = sill = 0.0077
224
2) © = g = 5111 - yv(h,.)
2,2, 2,2 1j
From this
i 3 hij Yij(equation 12) Uzizj
1=B 2=C 1 0.0037 0.0040
1=B 3=D 2 0.0065 0.0012
2=C 3=D 1 0.0037 0.0040
Hence
[ 0.0077 0.0040 0.0012 1]
o = | 0.0040 0.0077 0.0040 1
2,2,
0.0012 0.0040 0.0077 1
1 1 1 0
(Continued)

(Sheet 1 of 3)
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Table B2 (Continued)

Step 2. Form point - sample covariance vector

@ ~N
Z*(H)Z,
92%x(H)Z ~ CZ*(H)ZZ
5 >
*
2% (H)Z,
\1J
Z*(H) Zi Distance, h y(h)
H B 1.414 0.0050
H C 1.000 0.0037
H D 1.414 0.0050
Hence
0.0027
O px(i)z " 0.0040
0.0027

1

Step 3. Solve the following system

0.0077 0.0040 0.0012 1 Al
0.0040 0.0077 0.0040 1 AZ
0.0012 0.0040 0.0077 1 AB
1 1 1 0 u
From Gauss Elimination:
Al = 0.289 Az = 0.422 A3 = 0.289 u =
(Continued)

B13

o(h)
0.0027
0.0040
0.0027

0.0027
0.0040

0.0027
1

-1.56E-03

‘Sheet 2 of 3)




Table B2 (Concluded)

Step 4. Compute the estimate

Z*(H) A ZB + A2, + 2,2

1 2°C 3D

(0.289)(2.49) + (0.422)(2.43) + (0.289)(2.39)

2.44

Step 5. Compute the kriging variance

Z

Sill =

Krig Var X1°z*(ﬂ)z -y

i=1

0.0077 - [(0.289)(0.0027) + (0.422)(0.0040)

+ (0.289)(0.0027)] - (-1.56E-03)

0.0060

Standard Deviation = 0,0060 = 0.078

(Sheet 3 of 3)
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this matrix, the unity values in the fourth column are included because the
Lagrangian multiplier helps relate the covariances of the left hand side of
the equation with those of the right hand side., This multiplier assures the
minimization of the variance of the error.

25. From this example, it is observed that the largest weight is
associated with location C , closest to the estimation location, H . The
weights, Ai » are a function of a separation distance, and closer points will
receive greater weight, in general, than farther points. The estimate
obtained in this example is 2,44 with an error having a standard deviation of
0.078. Hence, kriging not only yields an estimate but also provides an

estimate of its error.
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APPENDIX C: FRACTAL DIMENSION CALCULATIONS

1. Table Cl presents the information used to calculate the fractal
dimensions of cross sections using the method 1 calculation. Table C2 pre-
sents the information used to calculate the fractal dimensions of cross sec~-
tions using the method 2 calculation. These tables are included to show the
significant difference between these techniques for the calculation of the

fractal dimension of rock surfaces. The method 2 calculation is the correct

procedure.

Ci




Table Cl
Fractal Dimension Summary (Method 1 Calculation)

Number of Segment Counts, N Fractal
Cross Section y=305 cm y=100 cm y=20 cm Dimension

AB 4 13 65 1.023
AF 4 12 62 1.006
AG 5 15 78 1.008
AH 4 12 64 1.018
AJ 5 15 79 1.013
AN 3 9 46 1.002
AP 3 10 50 1.033
AQ 3 10 51 1.040
AR 4 12 63 1.012
AS 3 10 51 1.040
AT* 2 7 36 1.061
AU* 1 5 25 1.181
AWx 2 8 41 1.109
AX* 2 6 33 1.029
AY* 2 7 39 1.090
AZ* 1 4 24 1.166
BB 8 24 123 1.003
BC 8 24 123 1.003
BD 8 24 125 1.009
BE 7 23 119 1.040
BG 6 19 100 1.033
BH 7 22 113 1.021
BI1 6 19 96 1.018
BJ 6 20 101 1.036

* The cross-sectional length of sections AT through AZ is less than that of
sections AB through AS., Hence, the segment length, y = 305 cm , was too
large. As a result, the use of whole numbers to represent the number of
segment counts, N , was incorrect.
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Table C2
Fractal Dimension Summary (Method 2 Calculation)

Number of Segment Counts, N Fractal
Cross Section y=305 cm y=100 cm y=20 cm Dimension

AG 4,951 15,200 77.000 1.0072
AH 4,164 12,750 65.600 1.0119
AJ 4,974 15.480 77,100 1.0060
AN 3.013 9.200 46,100 1.0012
AP 3.328 10.170 50.200 1.0009
AQ 3.302 10.160 51.200 1.0061
AR 4,000 12.490 62.800 1.0107
AT 2.285 7.140 36.800 1.0200
AW 2,551 8.140 41,850 1.0268
AX 2,049 6.290 32,900 1.0189
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APPENDIX D: NUMERICAL VARIOGRAM RESULTS

1. This appendix presents the numerical results used to plot the
variograms which were presented in Part III. These results are presented to
verify each variogram plot and to provide numerical precision beyond what can

be interpreted from each plot. Only results for the variograms of Part III
are presented.
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Table D1

Variogram Results for Cross Section BG

h(cm)

0- 50
51 - 100
101 - 150
151 - 200
201 - 250
251 - 300
301 - 350
351 - 400
401 - 450
451 - 500
501 -~ 550
551 - 600
601 - 650
651 - 700
701 - 750
751 - 800
801 - 850
851 - 900
901 - 950
951 - 1000

y(h)
6.00
16.96
30.32
49.38
73.94
117.47
164.15
237.89
311.95
377.23
416.96
517.00
671.00
722.03
821.73
915.75
1057.55
1161.12
1321.39
1474 .82

No. of
Pairs (N)

48
49
53
42
49
44
40
41
39
28
38
41
26
19
22
20
22
17
18
17

D2

Sample Variance = 427,81




Table D2

Variogram Results for Cross Section AF

No. of

h(cm) Y (h) Pairs (N)

0-~- 80 85.71 28

81 - 160 232,26 31
161 - 240 242.19 32
241 - 320 258.33 24
321 - 400 364.58 24
401 - 480 707.14 21
481 - 560 816.67 21
561 - 640 871.88 16
641 - 720 1125.00 18
721 - 800 1635.00 20
801 - 880 2261.77 17
881 - 960 2335.71 14
961 - 1040 2512.50 16
1041 - 1120 2875.00 16
1121 - 1200 3290.00 15
1201 - 1280 4783.33 18
1281 - 1360 5525.00 10
1361 - 1440 4075.00 4
1441 - 1520 6658.33

Sample Variance = 1525.64
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Table D3

Variqgram Results for Cross Secti-n AL

D4

No. of
h(cm) y(h) Pairs (N)
0 - 40 67.38 71
41 - 80 207.85 80
81 - 120 418.24 76
121 - 160 600,19 75
161 - 200 848,87 76
201 - 240 912.32 74
241 - 280 1165.48 65
281 - 320 1217.34 64
321 - 360 1663.28 58
361 - 400 1679.67 61
401 -~ 440 1581.,22 49
441 -~ 480 1279.12 57
481 - 520 1087.29 42
521 - 560 815.43 42
561 - 600 684,22 37
601 - 640 1034,19 31
641 - 680 1587.79 28
681 - 720 2254.17 24
721 - 760 2758.40 30
761 - 800 4054.22 18
Sample Variance = 1392.00




Table D4

Variogram Results for Cross Section AS'

No. of
h(cm) y(h) Pairs (N)
0 40 15,57 54
41 80 72.24 59
81 - 120 137.14 61
121 - 160 204.16 55
161 - 200 279.22 48
201 - 240 401.56 47
241 - 280 411,65 44
281 - 320 548.44 48
321 - 360 775.49 41 |
361 - 400 944,30 33
401 - 440 870.51 45
441 - 480 1029.90 34
481 - 520 1030.64 36
521 - 560 978.05 28
561 - 600 885.94 26
601 - 640 912,30 23 L
641 - 680 875.28 16
681 - 720 1083.47 17
721 - 760 1511.42 13
761 - 800 2043,61 9
Sample Variance = 649,39
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Table D5

Variogram Results for Cross Section BA

h(cm)

0 - 50
51 - 100
101 - 150
151 - 200
201 - 250
251 - 300
301 - 350
351 - 400
401 - 450
451 - 500
501 - 550
551 - 600
601 - 650
651 - 700
701 - 750
751 - 800
801 - 850
851 - 900
901 - 950
951 -~ 1000

Y (h)
26.60

93,65
129.00
127.79
108,22

75.55

41.86

49.67

78.40

45.89

39.69

44,00

55.71
128.43

86.00

32.77

60.55

28.00

20.00
103.14

No. of
Pairs (N)

37
40
34
29
36
31
29
18
20
19
13
13
14
14
16
13
11
11

9

7

D6
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Table D6

Variogram Results for Cross Section BB

No. of
h(cm) Y (h) Pairs (N)

0- 50 10,52 84
51 - 100 28,45 71
101 - 150 38.96 71
151 - 200 42,11 68
201 - 250 49,86 69
251 - 300 66.79 58
301 - 350 80.38 63
351 - 400 85.70 54
401 - 450 91.88 69
451 - 500 110.67 63
501 - 550 175.91 46
551 - 600 196.44 45
601 - 650 256.33 55
651 - 700 292.09 47
701 - 750 323.66 41
751 - 800 394.04 56
801 - 850 436.00 50
851 - 900 579.28 39
901 - 950 509.30 37
951 - 1000 512,12 34

Sample Variance = 263,77
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Table D7

Variogram Results, Cross Section From Patton and Deere (1970)

h(cm) y(h)

0- 8 0.25

9 - 16 0.75
17 - 24 1.68
25 - 32 2.53
33 - 40 3.35
41 - 48 3.76
49 - 56 3.84
57 - 64 3.71
65 - 72 3.28
73 - 80 2.63
81 - 88 1.90
89 - 96 1.14
97 - 104 0.78
105 - 112 0.86
113 - 120 1.70
121 - 128 3.04
129 - 136 4,32
137 - 144 5.11
145 - 152 5.17
153 - 160 4.13

No. of
Pairs (N)

269
342
326
310
294
274
258
242
226
210
194
178
162
146
130
114

98

79

62

55

D8

Sample Variance = 2,42




Table D8

Variogram Results for Cross Section BG (Filtered)

No. of
y(h) Pairs (N)

0 20 1.15 15
21 40 2.65 23
41 60 2.94 20
61 80 6.29 21
81 100 6.62 18
101 120 5.45 20
121 140 7.47 20
141 160 8.87 19
161 - 180 9.11 19
181 - 200 6.32 17
201 - 220 4,92 21
221 - 240 4,54 19
241 - 260 4.17 19
261 - 280 4.96 18
281 - 300 3.92 16
301 - 320 2.66 14
321 - 340 2.16 18
341 - 360 4,16 16
361 - 380 7.55 15
381 - 400 8.16 22

Sample Variance = 5.92
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APPENDIX E: FORTRAN PROGRAM FOR CALCULATION
OF THE FRACTAL DIMENSION

l. This appendix presents a FORTRAN program for the calculation of the
fractal dimension of a one-dimensional irregular line. This program was
developed to analyze the string line cross sections presented in Part V of

this report. A short user's guide follows.

User's Guide

2. Input to this program is afforded through a free format structure;
this facilitates data entry. Input consists of three sections:
a. Record 1: READ(5,%) K
where K is the number of step sizes, y , to be
used to calculate the fractal dimension. For
Table 6, K is 4.

b. Record 2: READ(5,*%) (SL(I), I = 1,K)
where SL is a vector which contains the step sizes,
y . For Table 6, these values are 0.5, 1.0, 1.5,
and 2.0.

c. Record(s) 3: Data entry; one record is required for each
coordinate location. For a 50-ft cross section,
for example, sampled every 0.5 ft, 100 records
are required. Each record is of the form:
READ(5,%) ELEVATION, X~COORDINATE

The last record is

ELEVATION
X~COORDINATE

-999.0
-999.0

El
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PROGRAM FRACTAL FORTRAN

(A2 2 22 la s i sl ittty ey

"
*u
L 2.2
L 2.2
"
* %
L 2.4

el THIS PROGRAM PERFORMS TO DETERMINE THE PARTICULAR
"o NUMBER OF STEPS, EN, USED TO APPROXIMATE THE

baief GLOBAL LENGTH FOR FRACTAL DIMENSION CALCULATION,
" AND TO CALCULATE THE FRACTAL DIMENSION,

L2 4
*%
*%

el CARD 1. K,
*a

* CARD 2. SL,
“a

* CARD 3.

*n Y
X
*n

hoded LAST CARD

"o

GUIDE TO DATA INPUT
NUMBER OF PARTICULAR SEGMENTS
LENGTH VALUES OF SEGMENTS
DATA ENTRY
1ST PART, ELEVATION
2ND PART, X-COORDINATE

2ND PART (X) = NEGATIVE VALUE

»H
L2
"4
"o
L2

L2

LA L X222 22 X222 a2 i il e a2 2 22 s sty ey

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/COORD/ X(10600), Y(1000)
COMMON/DIST/ DT(1000), SL(10), EN(10)
COMMON/CONST/ D(10,10), X<(10)
COMMON/CENTER/ XC, YC, X1, Y1

DIMENSION TEMP(10,11), F(10), CK(10), LOC{10), B(10)

DOS5SJ =1, 10
DO5 1t =1, 10
D(1,J) = 0.0
XX(1) = 0.0
CONT INUE
DO 10 | = 1, 1000
X(1) = 0.0
Y(1) = 0.0
DT(1) = 0.0
CONT INUE

READ THE DATA
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17
18
19

21
22
23
24
25

20

woOOOOn

50

60

2000

READ(5,*) K

READ(5,%*) (SL(1), | = 1, K)

KOUNT = 0

READ(5,*) DUM1, DUM2

IF(DUM2.LT.0.0) GO TO 30
KOUNT = KOUNT + 1
Y(KOUNT) = DUM1
X(KOUNT) = DUM2

GO TO 20

CALCULATE ALL DISTANCES BETWEEN TWO POINTS
AND FIRST CENTER OF CIRCLE (XC, YC)

ND = KOUNT
N = ND - 1
0O 4O | = 1, N
XD = X(1) - X(1+1)
YD = Y(1) - Y((+1)
DT(1) = DSQRT(XD # XD + YD * YD)
CONTINUE

LOOP OF NUMBERS OF DIFFERENT SEGMENTS (R)

DO 10000 1} = 1, K

SUM = 0.0

NKOUNT = 0

R = SL{II)

WRITE(6,50) R

FORMAT(TH1, 5(/), 10X, '####suws SEGMENT LENGTH = ', F5.2,
& ' T YL Y T , 3(/7))

WRITE(6,60) ND

FORMAT(6X, ' THE NUMBER OF DATA = ', 14, 4(/),
& 19X, "INTERCEPT POINTS', /, 19X, 'mecmccecccccmaaaa ,
& //, 13X, 'NUMBER', 4X, '"X-COORD', u4X, 'Y-COORD', //)
XC = X(1)

YC = Y(1)

FIND DT(M) USING COMPARISION OF THE SUM OF EACH DISTANCE

J =1

Do 70 t = J, N
SUM = SUM + DT(!)
IF(SUM.GE.R) GO TO 80
IF(1.GE.N) GO TO 3000

CONT INUE

M=

. CALL SUBROUTINE TO CALCULATE THE INTERCEPT POINT

CALL CROSS (M, R)
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78
79

.

OO0

. CHECK WHETHER THE INTERCEPT POINTS ARE INTERVAL BETWEEN TWO

POINTS, (X(M), Y(M)) & (X(M+1), Y(M+1))

FF(X1.GE.X(M) .AND. X1.LE.X(M+1)) XC = X1
YY = (Y(M) = Y1) #* (Y(M+1) - Y1)
IF{(YY.LE.G.0) GO TO 90

M=M+1

GO TO 2000

YC = Y1

NKOUNT = NKOUNT + 1

WRITE(6,100) NKOUNT, XC, YC

FORMAT( 13X, 14, 4X, F8.3, 3X, F8.3)

CALCULATE THE DISTANCE (DN) BETWEEN THE INTERCEPT POINT (NEW
CENTER OF CIRCLE) AND NEXT POINT (X{M+1), Y(M+1))

XN XC = X(M+1)

YN YC =~ Y(M+1)

DN DSQRT(XN * XN + YN * YN)

SUM = DN

IF(SUM.GE.R) GO TO 2000

J =M+ 1

GO TO 1000

CALCULATE THE REMAINING DISTANCE (DR)
FROM CENTER OF CIRCLE AT LAST PORTION

IR

XR = XC = X(ND)
YR = YC - Y(ND)
DR = DSQRT{XR # XR + YR * YR)

. CALCULATE THE EXACT NUMBER OF STEPS (EN)

EN(11) = NKOUNT + DR / R

WRITE(6,110) EN(II)

FORMAT(5(/), 5X, 'NUMBER OF STEPS (N) =', F10.4)

CONT INUVE

WRITE(6, 120)

FORMAT(1H1, 5(/), 10X, 'SEGMENT LENGTH', ux, 'NUMBER OF STEPS',
OX,

& /y 10X, Tiecceiaaacaos , BX, Telemeio-na- ~===", 7/

WRITE(6,130) (SL(1), EN(1), | = 1, K)
FORMAT(15X, F5.¢, 11X, F8.h4, /)

. CALCULATION OF FRACTAL DIMENSION

USING SEGMENT LENGTH AND NUMBER OF STEPS

. CALCULATION OF LOG 10 SCALE FOR DATA

DO 5100 | = 1, K
SL(1) = DLOG1O (5L(1))

E4




80 EN(1) = DLOG10 (EN(1))

81 2100 CONT INUE
C.... FORM THE MATRIX {D]
c
82 D(1,1) = K
83 DO 5200 1 = 1, K
8l D(1,2) = D(1,2) + SL(1)
85 D(2,1) = D(1,2)
86 D(2,2) = D(2,2) + SL{1) * SL(1)
87 5200 CONTINUE
c
C.... FORM THE VECTOR §XX]
c
88 DO 5300 | = 1, K
89 XX(1) = XX(1) + EN(1)
90 XX(2) = XX(2) + SL(1) * EN(1)

91 5300 CONTINUE
C

C.... SOLVE THE LINER COEFFICIENTS, VECTOR |F}
c

92 CALL EQSOLD (2, F)
c

93 FD = - F(2)

9y WRITE(6,5400) FD

95 5400 FORMAT(5(/), 5X, 'FRACTAL DIMENSION = ', F13.9, 5(/))
96 sToP
97 END

c
C.... SUBROUTINE TO CALCULATE THE INTERCEPT POINTS
c BETWEEN STRAIGHT LINE AND CIRCLE,
c

98 SUBROUT INE CROSS (M, R)

99 IMPLICIT REAL*8 (A-H,0-2)

100 COMMON/COORD/ X(1000), Y(1000)

101 COMMON/DIST/ DT(1000), SL{10), EN(10)

102 COMMON/CENTER/ XC, YC, X1, Y1
c
C.... CALCULATE THE COEFFICIENTS OF STRAIGHT LINE
c USING { X(M), Y(M) ) & ( X{M+1), Y(M+1) )
c Y= YM/ XM * (X = X(M)) + Y(M)
c

103 XM = X(M+1) = X(M)

104 YM = Y(M+1) - Y(M)

105 Al = YM / XM

106 A2 = (=A1) * X(M) + Y(M)
c
C.... CALCULATE THE COEFFICIENTS Of 2ND-ORDER EQUATION
c USING STRAIGHT LINE AND CIRCLE
c

E5




c CIRCLE : (X = XC)*%*2 + (Y - YC)##2 = R#%2
C
c 2ND-ORDER EQ : A * X#%2 4+ B # X + C = 0
C
107 A = Al * A1 + 1,0
108 B =2.0% A1 # A2 - 2.0 % XC - 2.0 * A1 * YC
109 CC = XC * XC + YC * YC - R *R
110 C = A2 * A2 - 2.0 * A2 * YC + CC
C
c.. CALCULATE THE SOLUTION OF 2ND-ORDER EQUATION
c USING X = (-B +OR- SQRT(B*B-4*A®C)) / (2 * A)
c
1M DR=B*B-4,0*A*C
112 DD = DSQRT{DR)
113 X1 = (-B + DD) / (2.0 * A)
114 Y1 = A1 % X1 + A2
115 RETURN
116 END
c
17 SUBROUT INE EQSOLD (N, F)
C
c.. SUBROUTINE TO PERFORM EQUATION SOLUTION
c USING GAUSS ELIMINAION
c
118 IMPLICIT REAL*8 (A-H,0-Z)
119 COMMON/CONST/ D(10,10), XX{10)
120 DIMENSION TEMP(10,11), F({(10), CK(10), LOC(10), B(10)
121 MP = N + 1
122 po20 t = 1, N
123 po10 J = 1, N
124 TEMP(1,4) = D(1,J)
125 10 CONTINUE
126 TEMP(1,MP) = XX{1)
127 20 CONT INUE
128 00O 30 + = 1, N
129 CK(!1} = 0.0
130 30 CONT INUE
131 00 100 | = 1, N
132 1P = 1+ 1
c
C.. FIND MAX. NUMBER IN THE 1TH COLUMN
c
133 AMAX = 0.0
134 DO 40 K = 1, N
135 [F(AMAX -~ DABS(TEMP(K,1))) 35, 40, 40
136 35 IF(CK(K)) 36, 36, u0
137 36 Loc(1) = K
138 AMAX = DABS{TEMP(K, 1))
139 40 CONTINUE
140 IF(AMAX .EQ. 0.0) GO TO 100

E6




C
C.... MAX, ELEMENT IN THE ITH COLUMN IS A(L,1)
C

141 L = LOC(1)
142 CK(L) = 1.0

143 DO 50 J = 1, N

144 IF{L=J) 41, 50, 41

w5 41 G = -TEMP(J,1) / TEMP(L,I)

146 DO 45 K = P, MP

W7 45 TEMP(J,K) = TEMP(J,K) + G * TEMP(L,K)
148 50 CONTINUE

149 100 CONTINUE

150 DO 200 | = 1, N

151 L = LoC(!)

152 F(1) = TEMP(L,MP) / TEMP(L,!)

153 200 CONT INUE
154 999 CONTINUE
155 RETURN
156 END

E7




APPENDIX F: VARIOGRAMS FOR STRING LINE CROSS SECTIONS

1. This appendix presents the variograms for the string line cross
sections introduced in Part V of this report. Because these variograms are of
minor significance to the conclusions of this report, no further discussion of

them is made other than their presentation in this appendix.
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