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Abstract

This paper describes the development of DEPEND, an integrated simulation environment for the design

and dependability analysis of fault-tolerant systems. DEPEND models both hardware and software

components at a functional level, and allows automatic failure injection to assess system performance

and reliability. It relieves the user of the work needed to inject failures, maintain statistics and output

3 reports. The automatic failure injection scheme is geared toward evaluating a system under high stress

(workload) conditions. The failures which are injected can affect both hardware and software com-

3 ponents. To illustrate the capability of the simulator, a distributed system which employs a prediction-

based, dynamic load-balancing heuristic is evaluated. Experiments are conducted to determine the

impact of failures on system performance and, to identify the failures to which the system is especially

susceptible.

Keywords: Fault-tolerance, Design, Evaluation, Simulation, Fault-Injection Distributed Systems.I
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1. Introduction

3 The application of computers in commercial, military, health and industrial environments has increased

rapidly and along with it has risen the need for these computers to be reliable and offer high perfor-

3 mance. Tools are now needed to assist in the design and dependability analysis of reliable computer

systems. Currently there are a few tools which allow some automated design and evaluation. Analyti-

3 cal tools like SHARPE [Sahner 87], SAVE [Goyal 86], and METASAN [Sanders 86] have been in use

for some time. Recent research has been directed toward the creation of simulators and test environ-

3 ments. For example, FIAT [Segall 88] is a testing environment which is designed to inject errors into a

software application in order to validate error detection and recovery mechanisms. OODRA [Hwang

3891 is a visually-oriented workbench that is used for evaluating the performance and reconfiguration

capabilities of highly concurrent application specific architectures. FOCUS [Choi 89] is a hierarchical

mixed-mode simulator that is used to evaluate the fault-tolerance and reliability of VLSI systems with

specific emphasis on transient errors. In [Kubiak 89], the authors describe an event-driven simulator

called GRACE and use it to study the dependability of a bit-serial processing element.

3 This paper describes the development of DEPEND, an integrated simulation environment for the

design and dependability analysis of fault-tolerant systems. DEPEND models both hardware and

software components at a functional level, and allows automatic failure injection to assess system per-

formance and reliability. Complex hardware/software interactions can also be studied. The environment

is designed to expedite and simplify the process of simulating a fault-tolerant architecture. It relieves the

user of the work needed to inject failures, maintain statistics and output r ports. The automatic failure

3 injection scheme is geared toward evaluating a system under high stess (workload) conditions. The

failures which are injected can affect both the hardware and the software components. To illustrate the

capability of the simulator, a distributed system which empioys a prediction-based, dynamic load-

balancing heuristic is evaluated. Experiments are conducted to determine the impact of failures on sys-

tem performance and, to identify the failures to which the system is especially susceptible.

3 2. The DEPEND Simulation Tool

In DEPEND a library of objects is ised to simulate hardware components (e.g., CPUs, communi-

cation channels and disks). The fault-tolerant characteristics of an object are specified by the user. The

I
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U
degradation), the type of failures injected (permanent or transient) and the method by which failures are

injected. Each object contains routines which automatically inject failures, maintain a record of all

failures injected, keep error statistics (e.g., mean time between failures) and output reports. The

software components are modeled by C++ routines written by the user.

U The simulation environment is shown in Figure 1. It is based on CSIM [Schwetman 86] which is

a process-based simulation language written in C. The user sees an object-oriented interface because the

DEPEND library is written in C++. The simulator contains a viewing system called PARAGRAPH,

which graphically displays the key performance indicators during a simulation [Lee 89]. Both actual

programs or trace files from actual workloads can be used in the simulations. The next subsection,
3 PARAGRAPH

I On-line ViewingIi -- Offnliine V ie wing

Input Simulation model Fault
trac- written in C++
trace - uses objects in DEPEND Injector

Ifile

graphics depend's

3 viewing DEPEND objectibrylibrary

l C++ interface to csim

3 csim

Figure 1. The DEPEND simulation environment.
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3 describes the main objects defined in the DEPEND library.

.2.1 The Objects

The most basic object in the DEPEND library is called Basicsvr. This object is used to simulate

3 servers like CPUs and disks and it is also used to build more complex objects. Basicsvr consists of

methods which can be invoked by a user to simulate the functions of a server, inject failures and repair

3 servers. For example, the Faulty method is used to inject a failure into a server. Both transient and

permanent failures can be injected. When a server is injected with a failure it becomes inoperative, (i.e.,

3 all processes using the server are deleted and no others are accepted until the server is repaired). In

addition, event flags associated with the server are set to notify the user of a change in the server's

3 status. These event flags can be monitored by calling methods like, wait forfault 0 and

wait for repairO and then can be used to trigger remedial action such as reconfiguration. The

No_fault 0 method is used to repair a server or its spare (for stand-by redundanc ,. By controlling the

time between a call to Fault 0 and No_fault 0, the duration of a failure can be controlled. The reserve 0,

use 0 and release 0 methods are used to simulate the acquisition, use and release of a server. In addition

3 to these methods, there are many others which allow the user to check the server's status and acquire

performance measurements like the server's utilization, queue length and throughput. More complex

3 objects like the Distributedsystem objects and the Communicationchannel objects are built using

Basic svr objects.

3 A Distributedsystem object simulates a distributed set of processors. This object does not specify

the connectivity of these processors. The connectivity is specified by Network objects which are used in

U conjunction with the Distributed-system object. A Distributed-system object consists of many instances of

Basicsvr and a set of failure injection routines. The instances of Basic.svr are used to simulate the pro-

Icessors. The failure injection routines automatically inject transient and permanent failures into the pro-

3 cessors based on the specifics of the injection strategies described in Section 2.2. These routines are also

responsible for maintaining a record of all injected failures and for keeping performance measurements.

3 They also provide a full report of all injected failures, (e.g., where and when failures were injected, the

mean time between failures and the mean failure/recovery duration).

3 A Network object is used to define the connectivity of the processors in a Distributed-system. A

Communication-channel object is a type of a Network object which simulates a single bus communication

5*
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channel. It consists of a Basicsvr object (to simulate the communication channel), several Port objects

(to simulate the I/O ports) and failure injection routines. Currently, three types of channel failures can

be simulated. The first simply makes the Communicationchannel inoperative, (i.e., no messages can be

sent via the channel). The second causes the communication channel to occasionally lose messages.

The third failure type causes the channel to intermittently corrupt messages. The latter two failure types

simulate a 'noisy' communication channel.

2.2 The Fault Injection Schemes

3 Three fault injection strategies are currently available in DEPEND. All three are incorporated

into the Distributed system and the Communication channel objects described above. In the first scheme,

faults are injected at a constant rate. In the second scheme, faults are injected based on an exponential

distribution; the duration of transients is based on exponential or normal distributions. The third

approach injects faults such that there is a high probability of injections under heavy workloads. On one

3 hand this ensures that the system is tested under stress conditions. On the other, it models the

workload/failure dependency observed in [Iyer 82) & [Castillo 821. The duration of transients is based

3 on exponential and normal distributions.

In order to implement a workload dependent injection strategy, a statistical clustering algorithm is

3 first used to identify high-density regions of the workload. These regions (defined as states) are used to

build a state transition diagram to characterize the workload [Hsueh 88]. Associated with each state is a

3 visit counter which counts the number of visits to that state. Also associated is a fault rate, X, which the

system experiences in that state. Periodically, the workload is monitored to identify the workload state

and to update the appropriate visit counter. Based on the injection interval, the information from the

3 state transition diagram is used to estimate a weighted average failure arrival rate (Wgtlambda) as fol-

lows:

Wgt lambda = Evisit_ratioi x (1)

where:
N = the number of states
visit-rattoi = counter for statej,

total visits to all the states

I Once Wgtlambda is determined, it is used to compute the probability of a failure injection (Pinject (t))

over the last interval t (= injection interval) as follows:

16
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3 Pinject (t= I-e -WV-I a  x I

3| 3. The Simulated Distributed System

This section briefly describes the distributed system used to demonstrate some of the features of

3 DEPEND. A detailed description can be found in [Goswami 89].

Figure 2 is a framework for the distributed system. The simulated system contains a homogene-

ous set of processors connected by a single communication channel. The system is assumed to have a

3 reconfiguration mechanism that repairs faulty processors and restarts the processes, which were execut-

ing on the processor, within a short period of time (e.g., in less than 2 minutes). Processor 0 contains

3 the central scheduler which consists of a predictor and a scheduler. The predictor uses a statistical

pattem-recognition method to predict the CPU, I/O and memory requirements of a program prior to its

3 execution [Devarakonda 89]. The scheduler executes a load-balancing heuristic called MINQ which

uses predicted process resource requirements to determine the processor load and send incoming

3 processes

0 0 process arrives

status update
Preito r ll message

I aodeO Scheduler

3 r scheduled

000 node

3 Figure 2. MINQ: Centralized load-sharing with prediction.
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3 processes to the processor with the least load. The formula used by MINQ to estimate the processor

load is as follows:

I N CPUREQi(2
CPULOADi = , (2)

j=1 CPUREQi+IOREQj

Ni = the number of processes in processor i
IOREQj is the predicted I/O requirement

of process j in units of time
CPUREQj is the predicted CPU requirement

of process j in units of time

3 When a process completes its execution the processor sends the actual resources used by the pro-

cess to the central scheduler via a status update message. This message is used to update the databases

maintained by the predictor and decrement the CPU-LOAD value of the processor which sent the mes-

sage.

In this study, we define the workload on a processor to be its CPU utilization. To characterize the

3 workload, each processor has its own state transition diagram in which a state represents a specific utili-

zation level of the processor. Each processor's utilization is measured every second and, its state transi-

3 tion diagram is appropriately updated. Every 20 seconds the state transition diagram of a processor is

used to compute the processor's weighted average fault rate by equation 1. This value is then used to

3 determine the probability of a fault injection (Pinject (t)). Since this procedure is followed for each pro-

cessor independently, multiple processors can fail at a given time.I
4. The Fault Models

3 In DEPEND, components are simulated at a functional level, therefore, the impact of physical

faults is modeled by a change in the functional behavior. The fault models used in this study simulate

I failures in the processor and the communication channel. Both transient and permanent failures can be

injected. The duration of transients and intermittents is selected based on a normal distribution.

The processor fault model used to inject failures into a processor is defined as follows:

3 1. All processes executing on the processor are ejected.

2. Ejected processes hang until the processor is revived and then are restarted from the beginning.

3. All messages sent to the processor, while it is failed, are collected but not processed until the pro-

3 cessor is revived.

8



1 4. If the processor contains the central scheduler, the databases maintained by the predictor and the

scheduler are erased.

3 Two fault models are used for communication channel faults. In the first, a message loss fault

model, the communication channel is assumed to incur intermittent failures that cause a specified per-

II centage of all messages processed by the communication channel to be lost. A message that is lost is

simply destroyed and not delivered to its destination. In the second, a message garble fault model, the

communication channel is assumed to incur intermittent failures that corrupts pre-specified bytes in a

3 Imessage. Only messages that are processed by the communication channel when the channel is fauliy

(or 'noisy') are garbled.

3 These fault models were selected because they can be used to inject faults in areas that are crucial

to the functionality of the distributed system discussed above. A centralized load-balancing heuristic is

3 especially vulnerable to failures in the processor which houses the scheduler and, to failures that affect

the status update messages received by the scheduler.

5. The Experiments

3 Our experiments showed that, for the type of system studied, a single failure, even in the proces-

sor containing the central scheduler, has an insignificant impact on the response time so long as

I reconfiguration is achieved within a small period of time. The problems that impact system perfor-

mance quite significantly are due to intermittents [Iyer 90] occurring in close succession (e.g., 5 to 10

I failures per hour). In this paper, we consider the impact of intermittent failures.

I Table 1. The transition diagram used by all processors.

3 State Low Util. High Util. Lambda (failure/hr)
1 0.0 0.4 0.1
2 0.4 0.8 0.3

3 0.8 1.0 1.0

The experiments were conducted on a ten processor system. An actual trace file containing

3 processes run on a VAX-l1/780 was used as input to the simulation. The trace file was also used to

derive the state-transition diagram, shown in table 1, to characterize the workload for failure injection

3 9



I
Spurposes. The failure rates shown in the table were selected to create frequent intermittents. For each

experiment, the simulation was executed five to six times with different random seeds and an average of

these results is shown in the graphs below. The main performance metric used in the study is the

response times for all of the processes.

5.1 Processor Failures

The processor fault model was used to inject failures into the processors in the system. Figure 3

shows the response times of MINQ for the 10 processor system, when transients of 0, 10, 30, 60, 90 and

3 120 second duration were injected. Each simulation lasted atoout 1.5 hours and approximately 7 failures

were injected during this period. Of these failures, typically 16% were injected to the processor contain-

ing die central scheduler.

Results in figure 3 show that persistent intermittents degrade system performance considerably.

For two minute transients, there was a 46% increase in the response time. However, as stated earlier,

in simulations where only one or two failures were injected, there was little or no performance degrada-

tion.

1 5.2 Corrupted Status Update Messages

I
7 -

* 6.5
6 MINQ

I Mean 5.5

Response 53 time
in sec. 4.5

4

0 30 60 90 120

Transient Duration (sec)

3 Figure 3. Impact of transient failures.
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I
3 An important issue in the design of these systems is the impact of corrupted messages. To evalu-

ate this effect, the message garble fault model was used in conjunction with the constant fault injection

3I scheme to corrupt status update messages. Specifically, the fault injections were designed to corrupt the

CPUREQx field in the status update message. The CPUREQx field is used by MINQ to decrement the

3I CPULOAD value. Corruption of the CPUREQx field has the most adverse impact on the database main-

tained by the scheduler and hence allows a worst case evaluation of the system. Figure 4 shows the

U results from experiments where 0, 5, 10 and 20% of the messages were corrupted. There is a 15%

degradation in the response time when 5% of the messages are corrupted. The degradation more than

doubles to 35% when 10% of the messages are corrupted.

3I  5.3 Losing Status Update Messages

The message loss fault model was used in this experiment to destroy the status update messages

sent to the central scheduler. Figure 5 is a graph of MINQ's response times when 0, 5, 10, 20 and 30%

3 of the status update messages were destroyed. Relative to figures 3 and 4, MINQ seems to be extremely

sensitive to lost status update messages. With only 10% of the messages destroyed there is nearly a

3 300% increase in the response time.

Upon close examination it became apparent that the poor performance was not due to the predic-

3 tor or the scheduler but due to an implementation detail. MINQ uses status update messages, sent by

7
U 6.5-

6-
Mea 5.5-

e Mean -Response 4.5 _....

time
in sec. 435

I 2.5-

0 5 10 15 20

Percent of Messages Corrupted

3 Figure 4. Impact of corrupted status update messages.
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Mean
Response

time 14-

in sec.

0 10 20 30

Percent of Messages Lost

Figure 5. Impact of lost status update messages.

the processors, to decrement the processor load. When messages are lost, due to a faulty communica-

tion channel, the load values are not decremented. Processor 0, however, houses the scheduler and does

not use the communication channel to send status update messages. Hence, processor O's load is always

decremented and appears lower than that of the other processors. This causes MINQ to assign a dispro-

portionate number of processes to processor 0, resulting in the extremely poor performance shown in

3 Figure 5. In fact, the simulations showed that processor 0 had 4 to 20 times more processes assigned to

it than the other processors. Thus, faults that impair the communication channel for a reasonable period

Sof time and prevent status update messages from reaching the scheduler can cause severe problems

unless the implementation is changed.

I To reduce this problem, processor 0 was forced to use the communication channel when sending

status update messages. The experiment was re-run with this set up. The results for the ten processor

system are shown in Figure 6. The sensitivity seen in Figure 5 has disappeared because, now all the pro-

3 cessors lose their status update messages. MINQ (with the new set up) shows only a 16% increase in the

response time when 10% of the messages are lost as opposed to the 300% increase seen in Figure 5.

3 An additional result can be deduced from figures 4 and 6. After approximately 10% of the status

update messages are lost or corrupted, the increase in the response time levels out. At this stage, the

3 database used by MINQ is so corrupted that MINQ seems to schedule processes randomly. Thus,

increasing the number of destroyed or corrupted messages does not further degrade system performance.

12
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4.5- MiNQ

Mean
Response

time
in sec.

I I I I I

0 5 10 15 20

3 Percent of Messages Lost

Figure 6. Impact of uniform message loss.

In the experiments, where up to 50% of the status update messages were destroyed the response time

3 was still approximately 4.5 seconds.

3 6. Conclusion

This paper presented DEPEND, a simulation-based tool for design and reliability analysis of com-

3 puter systems. DEPEND consists of a library of basic objects that simulate components like CPU's,

communication channels and disks. The failure characteristics of an object, such as the type of fault-

3 tolerance mechanism (e.g. stand-by redundancy or graceful degradation) used and the type of failures

(transients or permanent) injected can be specified by the user. These objects serve as the building

I blocks with which a complex system can be simulated for dependability evaluation.

3 DEPEND also features a workload-based fault injection scheme which ensures an increased pro-

bability of fault injection under heavy workload conditions. One of the advantages of DEPEND is that

3 it readily allows the user to simulate complex architectures as well as simulate the interaction between

the hardware and the software.

3 To illustrate some of the features of DEPEND, a distributed system employing MINQ, a

prediction-based centralized load-balancing heuristic, was modeled and analyzed to determine its suscep-

I tibility to intermittent failures. The results show that frequent intermittents cause significant perfor-

mance degradation. MINQ was moderately sensitive to corrupted status update messages. However,

*13



3_ simulations using DEPEND helped identify an implementation problem which made MINQ extremely

susceptible to failures that destroy status update messages.
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