AGARDograph No. 301

Aircraft Trajectories
Computation—Prediction—Control
(La Trajectoire de l’Avion
Calcul—Prédiction—Contrôle)

Volume 3
NORTH ATLANTIC TREAY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

AGARDograph No.301

Aircraft Trajectories
Computation—Prediction—Control

(La Trajectoire de l'Avion
Calcul—Prédiction—Contrôle)

VOLUME 3

Part IX Book of Abstracts
Part X Bibliography
Part XI List of Contributors

Edited by

André Benoît
Programme Director

This AGARDograph has been sponsored by the Guidance and Control Panel of AGARD.
The Mission of AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community;

- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application);

- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;

- Improving the co-operation among member nations in aerospace research and development;

- Exchange of scientific and technical information;

- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;

- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the authors.
Introduction

This third volume of the AGARDograph devoted to the Computation, Prediction and Control of Aircraft Trajectories includes three main parts, namely:

(a) a Book of Abstracts limited to those for which the complete paper or at least an adequate executive summary was available at the date of publication;

(b) an extensive Bibliography which incorporates in particular, most of the references cited by the authors of the contributions to this work. It is completed by an index of authors' names giving for each year a list, in alphabetical order, of the names of authors referred to in the bibliography; for each author, it gives the year of publication and each year the number of publications listed.

(c) the List of Contributors, ordered by countries alphabetically, with applications and professional addresses; this being completed by an index of the contributors' names giving in particular, the type of contribution and whenever applicable, the reference of the paper contributed.

André Benoît
Directeur du programme
Membre de la Commission Guidage et Pilotage
Guidance and Control Panel Officers

Chairman: Ir P.Ph. van den Brock
Department of Aerospace Engineering
Delft University of Technology
Kluyverweg, 1
2629 HS Delft
Netherlands

Deputy Chairman: Prof. E.B.Stear
Executive Director
Washington Technology Center
University of Washington
376 Loew Hall — FH-10
1013 NE 40th Street
Seattle, WA 98195
United States

TECHNICAL PROGRAMME

Programme Director and Editor: Dr André Benoit
Faculté des Sciences Appliquées
Université Catholique de Louvain
B-1348 Louvain-la-Neuve
Belgium

European Organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate
72, rue de la Loi
B-1040 Bruxelles
Belgium

PANEL EXECUTIVE

From Europe
CDT Moustafa Mouhamad (FAF)
Executive, GCP
AGARD-NATO
92200 Neuilly-sur-Seine
France
Telephone: 33(1)4738 5780 — Telex: 610 176F

From USA and Canada
Executive, GCP
AGARD-NATO
APO New York 09777

ACKNOWLEDGEMENT/REMERCIEMENTS

The Guidance and Control Panel wishes to express its appreciation to all authors and co-ordinators who contributed to this AGARDograph, and made its publication possible.

La Commission Guidage et Pilote tient à remercier tous les auteurs et coordonnateurs qui contribuerent à la réalisation et la publication de cette AGARDographie.
Activities in Air Traffic Handling

Over the past 20 years, the Guidance and Control Panel of the Advisory Group for Aerospace Research and Development to the North Atlantic Treaty Organization has devoted part of its activities to the fascinating field known historically as Air Traffic Control.

The Panel's contributions listed below cover in particular, the air and ground components considered as parts of a single system, the methods, techniques and technologies applicable to or usable for the management of the flows of aircraft and the control of individual flights, the integration of control phases over extended areas such as in the Zone of Convergence type concepts, the 4-D guidance of aircraft in critical conditions, the ever-increasing level of automation and its impact on the essential role of the human acting on-line in the control loop.

AIR TRAFFIC CONTROL SYSTEMS
Guidance and Control Symposium, Edinburgh, Scotland.
26-29 June 1972.

A SURVEY OF MODERN AIR TRAFFIC CONTROL
AGARDograph AG-209, Vols. I and II
July 1975.

PLANS AND DEVELOPMENTS FOR AIR TRAFFIC SYSTEMS
Guidance and Control Panel Symposium, Cambridge, Mass., United States
20-23 May 1975.

AIR TRAFFIC MANAGEMENT: Civil/Military Systems and Technologies
Guidance and Control Symposium, Copenhagen, Denmark.
9-12 October 1979.

AIR TRAFFIC CONTROL IN FACE OF USERS' DEMAND AND ECONOMY CONSTRAINTS
Guidance and Control Symposium, Lisbon, Portugal.
15 October 1982.

EFFICIENT CONDUCT OF INDIVIDUAL FLIGHTS AND AIR TRAFFIC
or Optimum Utilisation of Modern Technology
(Guidance, control, navigation, surveillance and processing facilities)
for the Overall Benefit of Civil and Military Airspace Users
Guidance and Control Symposium, Brussels, Belgium.
10-13 June 1986.

AIRCRAFT TRAJECTORIES: Computation — Prediction — Control
AGARDograph AG-301, Vols. 1, 2 and 3:
Volume 1 FUNDAMENTALS
FLIGHT IN CRITICAL ATMOSPHERIC CONDITIONS
IMPACT OF NEW ON-BOARD TECHNOLOGIES ON AIRCRAFT OPERATION

Volume 2 AIR TRAFFIC HANDLING AND GROUND-BASED GUIDANCE OF AIRCRAFT

Volume 3 ABSTRACTS — BIBLIOGRAPHY — CONTRIBUTORS

ON-LINE HANDLING OF AIR TRAFFIC
Guidance & Control Aspects
AGARDograph AG-321, in preparation
Condensed Contents
Detailed Contents of all three volumes follow

VOLUME 1

PREFACE

PART I FUNDAMENTALS

PART II FLIGHT IN CRITICAL ATMOSPHERIC CONDITIONS

PART III IMPACT OF NEW ON-BOARD TECHNOLOGIES ON AIRCRAFT OPERATION

VOLUME 2

PART IV AIR TRAFFIC HANDLING

PART V GUIDANCE OF AIRCRAFT IN A TIME-BASED CONSTRAINED ENVIRONMENT

PART VI SURVEILLANCE

PART VII METEOROLOGICAL FORECASTS

PART VIII AIRCRAFT OPERATION IN AIR TRAFFIC HANDLING SIMULATION

VOLUME 3

PART IX BOOK OF ABSTRACTS

PART X BIBLIOGRAPHY (with Index)

PART XI LIST OF CONTRIBUTORS (with Index)
Contents

VOLUME 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>iii</td>
</tr>
<tr>
<td>GUIDANCE AND CONTROL PANEL OFFICERS AND PROGRAMME DIRECTOR</td>
<td>iv</td>
</tr>
<tr>
<td>GCP ACTIVITIES IN AIR TRAFFIC HANDLING</td>
<td>v</td>
</tr>
<tr>
<td>CONDENSED CONTENTS</td>
<td>vi</td>
</tr>
</tbody>
</table>

PART I — FUNDAMENTALS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A — GENERAL OUTLINE OF THE PROBLEM</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION A L’ETUDE DES TRAJECTORIES D’AVION: Schéma Général</td>
<td>1F</td>
</tr>
<tr>
<td>des Problèmes Posés</td>
<td></td>
</tr>
<tr>
<td>par Frédéric Haus</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION TO THE STUDY OF AIRCRAFT TRAJECTORIES: General Outline</td>
<td>1E</td>
</tr>
<tr>
<td>of the Problem</td>
<td></td>
</tr>
<tr>
<td>by Frédéric Haus</td>
<td></td>
</tr>
<tr>
<td>B — COMPUTATION OF OPTIMAL TRAJECTORIES</td>
<td></td>
</tr>
<tr>
<td>OPTIMAL TRAJECTORIES OF AIRCRAFT AND SPACECRAFT</td>
<td>2</td>
</tr>
<tr>
<td>by Antonio Miele</td>
<td></td>
</tr>
<tr>
<td>C — NON-LINEAR MODELS OF AIRCRAFT</td>
<td></td>
</tr>
<tr>
<td>COMPARISON OF A MATHEMATICAL ONE-POINT MODEL AND A MULTI-POINT MODEL OF</td>
<td>3</td>
</tr>
<tr>
<td>AIRCRAFT MOTION IN MOVING AIR</td>
<td></td>
</tr>
<tr>
<td>by R.Brockhaus</td>
<td></td>
</tr>
<tr>
<td>DETERMINATION DES LOIS DE GUIDAGE QUASI-OPTIMALES EN TEMPS REEL POUR</td>
<td>4</td>
</tr>
<tr>
<td>DES TRAJECTOIRES D’AVIONS DE COMBAT</td>
<td></td>
</tr>
<tr>
<td>(Computation of Sub-Optimal Real-Time Guidance Laws for Combat Aircraft</td>
<td></td>
</tr>
<tr>
<td>Trajectories)</td>
<td></td>
</tr>
<tr>
<td>par H.T.Huynh</td>
<td></td>
</tr>
</tbody>
</table>

PART II — FLIGHT IN CRITICAL ATMOSPHERIC CONDITIONS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A — GENESIS OF WIND AND INFLUENCE ON AIRPLANE TRAJECTORIES</td>
<td></td>
</tr>
<tr>
<td>CRITICAL ASPECTS OF TRAJECTORY PREDICTION: Flight in Non-Uniform Wind</td>
<td>5</td>
</tr>
<tr>
<td>by Bernard Etkin and David Alexandre Etkin</td>
<td></td>
</tr>
<tr>
<td>EFFECT OF WIND AND WIND VARIATION ON AIRCRAFT FLIGHT — PATHS</td>
<td>6</td>
</tr>
<tr>
<td>K.U.Hahn, T.Heintsch, B.Kaufmann, G.Schänzer and M.Swolinsky</td>
<td></td>
</tr>
<tr>
<td>B — FLIGHT CONTROL IN WINDSHEAR</td>
<td></td>
</tr>
<tr>
<td>AIRCRAFT FLIGHT IN WINDSHEAR</td>
<td>7</td>
</tr>
<tr>
<td>by D.McLean</td>
<td></td>
</tr>
<tr>
<td>HOW TO FLY WINDSHEAR</td>
<td>8</td>
</tr>
<tr>
<td>by Paul Camus</td>
<td></td>
</tr>
</tbody>
</table>
C — FLIGHT SIMULATION

WIND MODELS FOR FLIGHT SIMULATION
by K.U. Hahn, T. Heintsch, B. Kaufmann, G. Schänzer and M. Swolinsky

PART III — IMPACT OF NEW ON-BOARD TECHNOLOGIES ON AIRCRAFT OPERATION

A — FLIGHT MANAGEMENT IN AIR TRANSPORT

AIRCRAFT TRAJECTORY — PREDICTION AND CONTROL IN THE AIR TRANSPORT
FLIGHT MANAGEMENT COMPUTER SYSTEM
by Peter J. Howells

B — CREW/AUTOMATION INTERFACE

IMPACT OF NEW TECHNOLOGY ON OPERATIONAL INTERFACE: From Design Aims
to Flight Evaluation and Measurement
by J.J. Speyer, C. Monteil, R.D. Blomberg and J.P. Fouillot

VOLUME 2

PART IV — AIR TRAFFIC HANDLING

A — REQUIREMENT: INTEGRATION OF CONTROL PHASES

OPTIMUM ON-LINE HANDLING OF AIR TRAFFIC OVER WESTERN EUROPE
by André Benoit and Sip Swierstra

REGULATION TEMPS REEL OPTIMALE DU TRAFIC AERIEN EN EUROPE OCCIDENTALE
par André Benoit et Sip Swierstra

B — PROSPECT: A FUTURE EUROPEAN AIR TRAFFIC SYSTEM CONCEPT

THE EUROCONTROL FUTURE ATS SYSTEM CONCEPT AND THE PROGRAMME OF STUDIES, TESTS AND TRIALS
by V. Vachiéry

LE CONCEPT DU FUTUR SYSTEME ATS EUROCONTROL ET LE PROGRAMME D'ETUDES, ESSAIS ET EXPERIMENTATIONS
par V. Vachiéry

C — ON-LINE PREDICTION OF AIRCRAFT TRAJECTORIES

(i) General Discussion

PREDICTION OF AIRCRAFT TRAJECTORIES
by Stanley Ratcliffe

(ii) Fundamentals

AIRCRAFT DYNAMICS FOR AIR TRAFFIC CONTROL
by P.Y. Willems

(iii) Applications

THE APPLICATION OF TRAJECTORY PREDICTION ALGORITHMS FOR PLANNING PURPOSES IN THE NETHERLANDS ATC-SYSTEM
by J.P. Beers, T. B. Dalm, J.M. ten Have and H. Visscher

GENERATION OF AIRCRAFT TRAJECTORIES FOR ON-LINE OPERATION
by André Benoit and Sip Swierstra
<table>
<thead>
<tr>
<th>Reference</th>
<th>Abstract Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-16</td>
<td>A-16</td>
</tr>
<tr>
<td>A-17</td>
<td></td>
</tr>
<tr>
<td>A-19</td>
<td>A-20</td>
</tr>
<tr>
<td>A-21</td>
<td>A-21</td>
</tr>
<tr>
<td>A-21</td>
<td>A-22</td>
</tr>
<tr>
<td>A-22</td>
<td>A-22</td>
</tr>
<tr>
<td>A-23</td>
<td>A-23</td>
</tr>
<tr>
<td>A-24</td>
<td>A-24</td>
</tr>
</tbody>
</table>

D — AIR TRAFFIC MANAGEMENT

(i) *Optimisation: Models and Techniques*

OPTIMIZATION MODELS AND TECHNIQUES TO IMPROVE AIR TRAFFIC MANAGEMENT
by Lucio Bianco

(ii) *Man/Computer Interface*

THE HIGH-RESOLUTION GRAPHIC DISPLAY
A possible man/machine interface for a computer assisted ATC management system
by Carlos Garcia Avello

PART V — GUIDANCE OF AIRCRAFT IN A TIME-BASED CONSTRAINED ENVIRONMENT

A — CONTEXT — OBJECTIVES — PLANS

4-D CONTROL OF CURRENT AIR-CARRIERS IN THE PRESENT ENVIRONMENT:
Objectives — Status — Plans
by André Benoit

REGULATION 4-D DANS L’INFRASTRUCTURE ACTUELLE: Point de la Situation et Objectifs à Atteindre
par André Benoit

NAVIGATION 4-D EN CIRCULATION AERIENNE
par Nicole Imbert et Marc Pélégrin

B — GENERAL DISCUSSION

ON THE AUTOMATION OF FUTURE ATC CENTRES IN THE LIGHT OF THE CONCEPT OF THE “ZONE OF CONVERGENCE”
by Victor Attwood

C — GUIDANCE AND CONTROL: PRINCIPLES AND CONCEPTS

THE CONTROL OF INBOUND FLIGHTS: Basic Principles
by André Benoit and Sip Swierstra

LE GUIDAGE DES VOLS JUSQU’AU SEUIL DE PISTE: Principes Généraux
par André Benoit et Sip Swierstra

GUIDANCE CONCEPTS FOR TIME-BASED FLIGHT OPERATIONS
by Dan D.Vicroy

4-D DESCENT TRAJECTORY GENERATION TECHNIQUES UNDER REALISTIC OPERATING CONDITIONS
by David H.Williams and Charles E.Knox

D — CONDUCT OF AIR TRAFFIC CONTROL IN A ZONE OF CONVERGENCE

EXPERT SYSTEMS FOR THE GENERATION OF TERMINAL AREA ARRIVAL PATHS FOR CIVIL TRANSPORT
by Robert W.Simpson

A DESCRIPTION AND EVALUATION OF “TIMER”: A Time-Based Terminal Flow-Control Concept
by Léonard Credeur and William R.Capron

USE OF 4D RNAV IN TIME-BASED EN ROUTE ARRIVAL METERING
by R.L.Erwin and K.H.Izumi

AIR TRAFFIC MANAGEMENT AND AIRCRAFT GUIDANCE IN A ZONE OF CONVERGENCE
by André Benoit and Sip Swierstra
<table>
<thead>
<tr>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E - GROUND-BASED 4-D GUIDANCE OF AIRCRAFT IN MOVING ATMOSPHERE</td>
<td></td>
</tr>
<tr>
<td>GROUND-BASED 4-D GUIDANCE OF FLIGHTS IN STRONG WIND by André Benoit and Sip Swierstra</td>
<td>30 A-25</td>
</tr>
<tr>
<td>A PILOTED SIMULATOR EVALUATION OF GROUND-BASED 4D DESCENT ADVISOR ALGORITHM by Thomas J. Davis, Steven M. Green and Heinz Erzberger</td>
<td>31 A-25</td>
</tr>
<tr>
<td>F - THE COMPUTER/CONTROLLER/PILOT DIALOGS</td>
<td></td>
</tr>
<tr>
<td>THE AIR TRAFFIC CONTROLLER FACING AUTOMATION: Conflict or Co-Operation by André Benoit, Sip Swierstra and René de Wispelaere</td>
<td>32E A-26</td>
</tr>
<tr>
<td>LE CONTRÔLEUR DE LA CIRCULATION AÉRIENNE ET L'AUTOMATISATION: Conflit d'Intérêts ou Convergence? par André Benoit, Sip Swierstra et René de Wispelaere</td>
<td>32F A-27</td>
</tr>
<tr>
<td>PART VI - SURVEILLANCE</td>
<td></td>
</tr>
<tr>
<td>A - RADAR TRACKING</td>
<td></td>
</tr>
<tr>
<td>AIRCRAFT TRAJECTORY RECONSTITUTION ON THE BASIS OF MULTI-RADAR PLOT INFORMATION by Pieter van der Kraan</td>
<td>33 A-28</td>
</tr>
<tr>
<td>BAYESIAN MULTI-SENSOR TRACKING FOR ADVANCED AIR TRAFFIC CONTROL SYSTEMS by H.A.P. Blom, R.A. Hogendoorn and F.J. van Schaik</td>
<td>34 A-28</td>
</tr>
<tr>
<td>THE USE OF DOWNLINKED MEASUREMENTS TO TRACK CIVIL AIRCRAFT by Chris C. Lefas</td>
<td>35 A-29</td>
</tr>
<tr>
<td>B - SATELLITE TECHNIQUES</td>
<td></td>
</tr>
<tr>
<td>L'APPORT DES TECHNIQUES SATELLITAIRES À LA SURVEILLANCE DE LA NAVIGATION AÉRIENNE (Contribution of the Satellite Techniques to the Surveillance of Air Traffic) par Olivier Carel</td>
<td>36 A-30</td>
</tr>
<tr>
<td>PART VII - METEOROLOGICAL FORECASTS</td>
<td></td>
</tr>
<tr>
<td>A - IMPACT OF FORECASTS QUALITY ON TRAJECTORY PREDICTION</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENTS TO ENHANCE METEOROLOGICAL FORECASTING FOR AIR TRAFFIC SERVICES by M.E. Cox and D.A. Forrester</td>
<td>37 A-31</td>
</tr>
<tr>
<td>PART VIII - AIRCRAFT OPERATION IN AIR TRAFFIC HANDLING SIMULATION</td>
<td></td>
</tr>
<tr>
<td>A - REALISTIC OPERATION AND MOTION OF AIRCRAFT</td>
<td></td>
</tr>
<tr>
<td>INTEGRATION OF AIRCRAFT CAPABILITY IN AIR TRAFFIC HANDLING SIMULATIONS by André Benoit, S. Swierstra and Yves Delnatte</td>
<td>38 A-32</td>
</tr>
<tr>
<td>B - FLIGHT OPERATIONS WITHIN A TERMINAL AREA</td>
<td></td>
</tr>
<tr>
<td>SIMULATION OF AUTOMATED APPROACH PROCEDURES CONSIDERING DYNAMIC FLIGHT OPERATIONS by Manfred Ficke and Adreas Hörmann</td>
<td>39 A-33</td>
</tr>
</tbody>
</table>
PART IX

Book of Abstracts
PART I - FUNDAMENTALS

A - GENERAL OUTLINE OF THE PROBLEM
B - COMPUTATION OF OPTIMAL TRAJECTORIES
C - NON-LINEAR MODELS OF AIRCRAFT

A - GENERAL OUTLINE OF THE PROBLEM

Reference 1F

INTRODUCTION A L'ETUDE DES TRAJECTOIRES D'AVION
Schéma général des problèmes posés
par
Frédéric Haus
Professeur Emérite aux universités de Gand et de Liège

RESUME

La détermination d'une trajectoire d'avion comporte un nombre élevé d'opérations. Dans cet article, nous essayons de classer celles-ci et de les répartir en 12 groupes.

Reference 1E

INTRODUCTION TO THE STUDY OF AIRCRAFT TRAJECTORIES
General Outline of the Problem
by
Frédéric Haus
Emeritus Professor Universities of Gand and Liège

ABSTRACT

The determination of the trajectory of an aircraft comprises a large number of operations. In this paper, an attempt is made to classify these into 12 groups.
B - COMPUTATION OF OPTIMAL TRAJECTORIES

OPTIMAL TRAJECTORIES OF AIRCRAFT AND SPACECRAFT

by

A. Miele

Aero-Astronautics Group
Rice University
Houston, Texas 77251-1892

SUMMARY

This paper summarises some of the work done by the Aero-Astronautics Group of Rice University on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft.

Part 1 deals with general considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems.

Part 2 deals with the sequential gradient-restoration algorithm (SGRA) for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed.

Part 3 deals with aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimised by minimising the peak deviation of the absolute path inclination from a reference value. The survival capability of an aircraft in a severe wind shear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories.

Parts 4 and 5 deal with spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer. Both the coplanar case (problem without plane change, Part 4) and the noncoplanar case (problem with plane change, Part 5) are discussed within the frame of three problems; minimisation of the total characteristic velocity; minimisation of the time integral of the square of the path inclination; and minimisation of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful engineering compromise between energy requirements and aerodynamics heating requirements.

Part 6 presents the conclusions. The references are given in Part 7.
C - NON-LINEAR MODELS OF AIRCRAFT

Reference 3
COMPARISON OF A MATHEMATICAL ONE-POINT MODEL AND A MULTI-POINT MODEL OF AIRCRAFT MOTION IN MOVING AIR
by
R. Brockhaus
Technische Universität Braunschweig

SUMMARY

The steady growing capacity of computers favours increasingly exact simulation of even complex processes. On the other hand, parameter identification and state estimation require much more precise models than are generally used for the design of feedback systems. In this paper, therefore, a multi-point model of the aircraft motion is proposed in which the different coupling effects between the two sub-processes, "aircraft" and "air flow", can be modelled with much higher accuracy than is obtained by using the ordinary one-point model, where all the force, moment and velocity vectors are referred to the aircraft centre of gravity. The modelling of the effects of aircraft rotation, wing down-wash, wind gradients and other unstationary effects should be greatly improved by a multi-point approach, provided that the aerodynamic effects on the aircraft components (wing, fuselage, tail) can be described appropriately. The nonlinear equations of the total process are set up for the one-point and multi-point models and compiled into block-diagrams, from which the physical background of the interrelations between air and aircraft motion can be seen very clearly. The possible improvement in model quality and the additional computer capacity needed are estimated by comparing the two approaches.

Reference 4
DETERMINATION DES LOIS DE GUIDAGE QUASI-OPTIMALES EN TEMPS REEL
POUR
DES TRAJECTOIRES D'AVIONS DE COMBAT
par
H.T. Huynh
Office National d'Etudes et de Recherches Aérospatiales
23, Avenue de la Division Leclerc,
F - 92320 Chatillon-sous-Bagneux (Hauts-de-Seine)

RÉSUMÉ

Cet article présente une application de la théorie des systèmes multi-échelles de temps au contrôle en temps réel des trajectoires d'avions de combat.

Après avoir rappelé les principes de la théorie des perturbations singulières dans la résolution des systèmes différentiels multi-échelles de temps, son application à l'optimisation des systèmes non-linéaires est présentée. Les principales difficultés rencontrées dans la détermination des lois de guidage "temps réel" sont ensuite mentionnées, puis différentes techniques utilisées pour les résoudre sont indiquées.

Des lois de guidage "temps réel" en boucle fermée sont ensuite développées pour différents types de trajectoires d'avions de combat: montée en temps minimum, interception dans un plan horizontal, dans un plan vertical et dans l'espace tridimensionnel. Les performances fournies par ces lois sont ensuite évaluées en simulation numérique sur un modèle d'avion type, par comparaison avec les lois optimales en boucle ouverte obtenues par un algorithme numérique de gradient projeté, sans approximation de type multi-échelles de temps.
COMPUTATION OF SUB-OPTIMAL REAL-TIME GUIDANCE LAWS FOR COMBAT AIRCRAFT TRAJECTORIES

by

H.T. Huynh Huu Thanh

Office National d'Etudes et de Recherches Aérospatiales
29, Avenue de la Division Leclerc,
F - 92320 Chatillon-sous-Bagneux (Hauts-de-Seine)

SUMMARY

This chapter presents an application of singular perturbation theory (SPT) for the computation of real-time control laws for Combat Aircraft trajectories.

The principle of SPT is first briefly reviewed for solving a multiple-time scale differential equations, then its application to optimization of non-linear systems is presented. The main drawbacks and difficulties which have been encountered in the computation of real-time control laws for Aircraft trajectories are described, then various techniques are also pointed out in order to overcome with these problems.

Basing of this SPT, real-time guidance laws, of closed-loop type, have been developed for minimum time to climb in a vertical plane and three-dimensional interception for a combat Aircraft. The performances of these sub-optimal guidance laws have been then compared, in numerical simulation using a typical Aircraft model, with optimal control laws, of open-loop type, provided by an iterative numerical algorithm, using a generalized projected gradient technique.

A better than 1% accuracy has been obtained for the performance index (time-to-climb) for vertical climb trajectories. The real-time guidance laws are slightly less accurate for interception trajectories.

The sub-optimal guidance laws can fulfill final conditions on altitude or/and flight path angle and remain valid for a large flight envelope domain. Their computation times are very small and are compatible with real-time on board computer applications.
PART II - FLIGHT IN CRITICAL ATMOSPHERIC CONDITIONS

A - GENESIS OF WIND AND INFLUENCE ON AIRPLANE TRAJECTORIES
B - FLIGHT CONTROL IN WIND SHEAR
C - FLIGHT SIMULATION

PART II-A - GENESIS OF WIND AND INFLUENCE ON AIRPLANE TRAJECTORIES

Reference 5

CRITICAL ASPECTS OF TRAJECTORY PREDICTION:
FLIGHT IN NON-UNIFORM WIND

by

Bernard Etkin
University Professor Emeritus
Institute for Aerospace Studies, University of Toronto
Toronto, Canada.

and

David Alexander Etkin
Meteorologist
Canadian Climate Centre, Atmospheric Environment Service
Downsview, Ontario, Canada.

SUMMARY

The genesis of natural wind is described from a meteorological standpoint. Its influence on airplane trajectories is discussed with reference to steady winds, turbulence, and wind shear. The main problems exist when flight is close to the ground, during landing, take-off, or terrain following. A model for analysis and simulation is presented consisting of four components - dynamics, kinematics and transformations, aerodynamics, and wind. The axis systems chosen are well suited to simulation of landing and take-off.

Reference 6

EFFECT OF WIND AND WIND VARIATION ON AIRCRAFT FLIGHT - PATHS

by

Hahn, K.-U.; Heintsch, T.; Kaufmann, B.
Schänzer, G.; Swolinsky, M.

Institute of Flight Guidance and Control
Technical University of Braunschweig,
Hans-Sommer-Str. 66. D-3300 Braunschweig

SUMMARY

Wind shear accidents during landing and approach could generally be avoided by using modern flight control systems. The problem is to inform the pilot by an adequate wind shear warning display, that he can understand the reaction of the control system. Wind shear is particularly dangerous if it occurs in a height of approximately 80m - 120m, where the attention of the cockpit crew is affected by getting view contact to the ground. Wind shear during take-off and go-around is a pure flight performance problem. Pilots should avoid a take-off into a thunderstorm. In moderate downbursts a practicable escape manoeuvre is to maintain the flight level at a low height to pass the core of the downburst before starting the climb. This procedure can also be applied on the go-around.
PART II-B - FLIGHT CONTROL IN WINDSHEAR

Reference 7

AIRCRAFT FLIGHT IN WINDSHEAR

by

D. McLean

Westland Professor of Aeronautics
Department of Aeronautic and Astronautics
The University of Southampton
GB - Southampton SO9 5NH

SUMMARY

A brief account of wind-shear and some representations is given before discussing the effects of wind-shear on aircraft motion. A procedure for estimating the vertical and horizontal velocity components of a wind-shear microburst, based on observer theory is developed, and a brief discussion of flying in wind-shear concludes the paper.

Reference 8

HOW TO FLY WINDSHEAR

by

Paul Camus

Group Manager Flight Controls
AIRBUS INDUSTRIE
1 round-point M. Bellonte
F - 31707 BLAGNAC CEDEX

SUMMARY

Aviation safety history is a long fight against severe environmental constraint. Modern aircraft are able to face safely most of them but one still remain a potential killer, that is what is generally described as a windshear situation.

What can be done, necessarily fall either in how to timely detect such a situation in order to avoid it or/and what tools could be given to the crew to better escape should they are trapped in.

Latest state of build-in equipment, 3-D Navigation, Electronic displays and Flight Control, provide now all necessary tools to develop an efficient on-board detection and protection system. Such system will be described altogether with a review of some fundamental criteria to be considered when assessing their efficiency.
PART II-C - FLIGHT SIMULATION

Reference 9

WIND MODELS FOR FLIGHT SIMULATION

by

Hahn, K.-U.; Heintsche, T.; Kaufmann, B.
Schänzer, G.; Swolinsky, M

Institute of Flight Guidance and Control,
Technical University of Braunschweig,
Hans-Sommer-Str. 66, 3300 Braunschweig, FRG

SUMMARY

Wind shear, downdraft and turbulence can endanger take-off and landing approach. The effects of wind result in a modified dynamic response of the aircraft as well as in flight performance variation. In each case flight path deviation can occur, more or less controlled by the pilot. For the analysis of the aircraft's behaviour in changing wind field, a mathematical model of the aircraft is used including the wind effects. It can be said, that gusts and turbulence will have more influence on the pilot's work load and his reaction to this short scale wind disturbances. Large scale wind variations can produce significant flight paths respectively safety problems. An important aspect for the flight safety is the energy situation of an aircraft affected by wind. Therefore this is chosen as a useful criterion for the determination of the influences of the wind and wind variation.
SUMMARY

The declining cost of computing power and memory has enabled avionic manufacturers to develop sophisticated airborne computing systems. These systems can predict and control the airplane along complex three and four dimensional flight plans. The most complex airplane system on modern air transport airplanes is the Flight Management Computer System (FMCS) which has reduced pilot workload by taking over the mundane but complex functions - such as navigation - and enabled the transition from the three to two crew airline cockpit. This paper describes the algorithms used in prediction and control and identifies the difficulties and requirements for successful implementation.
PART III-B - CREW/AUTOMATION INTERFACE

IMPACT OF NEW TECHNOLOGY ON OPERATIONAL INTERFACE:
FROM DESIGN AIMS TO FLIGHT EVALUATION AND MEASUREMENT

by
J.J. Speyer and C. Monteil
Operations Engineering, Flight Division
Airbus Industrie, B.P. 33, 31707 Blagnac Cedex, France

and
R.D. Blomberg
Dunlap & Associates Inc.
17, Washington Street, Norwalk, Connecticut 06854, USA

and

Dr J.P. Fouillot
Laboratoire de Physiologie
Faculté de Médecine Cochin,
24, Rue du Faubourg St Jacques, F-75104 Paris, France

SUMMARY
Since the early 1980's Airbus Industrie has conducted a progressive research programme investigating the ergonomic, physiological and psychological factors affecting flight crew in their working environment, and progressively refining the data acquisition and analysis techniques. This self-imposed commitment to a dedicated appreciation of man-machine aspects was met in two ways:

Informally, by stringent application of human engineering principles, although in short supply in as far as their explicit formulation is concerned,

Formally, by continuous development of statistical methods and engineering experiments, concentrating on pilot questionnaires, performance evaluations and workload models.

The purpose of this paper is to review the span between initial design aims and subsequent flight evaluation and measurement with regard to that aspect of the Airbus programme. Much of our work appears to be relevant to the topic of this Agardograph since air traffic control will not be modernized without improvements in aircraft trajectory control studies. A statistical workload calculation model will for instance highlight the link that permits a correlation of pilot performance (and hence aircraft trajectory) parameters with estimates of the impact of new technology on the operational interface.

Except for the general recommendations of Fitts, Wanner, Nagel, Wiener and Curry, few fundamental design guidelines appear to be available in the scientific field of human factors. A practical review is presented of the operational objectives and technological modules that marked the outgrowth of the Airbus family of commercial aircraft. Progressively integrated, several waves of innovations engineered an evolutionary process that brought to bear growing functionality at the operational interface. The emerging role of the pilot is becoming more that of a systems monitor than that of a controls handler, devoting himself to overall intelligence functions which new technology features were precisely aimed to support. Several contemporary human factors views are mentioned in the paper suggesting that the pilot be brought back into a more active role to avoid automation- or design-induced errors. What has been achieved with the early 1980's A310/A300-600 cockpit however is, in our view, still in the vicinity of the Wiener and Curry philosophy on automation and cockpit design. In the step that was to be taken in the latter 1980's A320/A330/A340 design aims have moreover been intended to cover even more error- tolerance or- protection against incidents of the Wanner scheme.

Reviewing aircrew comments on design aims and achievements from flight evaluation became a practice in the early 1980's when soliciting crewmember opinions received considerable impetus. Conclusions are presented from questionnaire surveys on new technology aircraft conducted successively by Airbus Industrie, Wiener, Curry and Lufthansa. Commonly criticized on most new aircraft types are the autopilot/autothrottle interactions and the FMS whose training definitely needs more emphasis on basic know-how and practice. It appears that crews want automation even further developed to improve system integration and crew interface, with no significant fear for the possibilities of errors or potential loss of flying skill. But what also seems to be requested is intuitive design allowing the pilot to understand more straightforwardly the automation systems at work and to monitor more easily their performance, limits and crew errors.
Measuring the impact of new technology on the operational interface could precisely help setting up this human factors capability. Which in turn should eventually influence on design guidelines and specifications.

The success of the questionnaire technique prompted Airbus Industrie to use it again for its Fly-by-wire proof-of-concept experiment on the A300 testbed. The unanimous enthusiasm of airline & authority pilots for the fly-by-wire/sidestick combination was also confirmed by the fact that, as a group, they did not feel uncomfortable with the idea of being primarily responsible for the management of system interfaces rather than the direct operation of their aircraft. It would appear from these studies that older technology aircraft can more often be discredited on the basis of human factors principles than new ones. It is however with the coming of the latter that more emphasis was gradually put on human factors by all those concerned, manufacturers, airworthiness authorities, pilots and airlines. Even more systematic efforts on man-machine interface analysis were put in the wake of the crew complement question which triggered the development of several evaluation methods. One of these, the Performance Criteria Methodology, was developed to statistically investigate the impact of new technology features such as the EFIS, the FMS and Fly-by-Wire/Sidestick. A brief review is given of engineering experiments' results for the first two to conclude on the contribution of this equipment towards improving smoothness of performance and alleviating workload. The advantages of a FbW system over conventional controls are operationally demonstrated with the third experiment. Performing analysis of variance on basic flight parameter measures allows again to demonstrate marked smoothness and stability improvements, flight efficiency, reduced task- and workload.

Our previous research suggested that workload ratings collected in minimum crew certification campaigns might be modelled using data extraneous to the pilot (aircraft flight performance parameters and flight status measures) and data intraneous to the pilot (heart rate variability measures). The aim was to achieve an objective analysis of an until-then subjective process (workload rating) which had received too little scientific attention. A computer model was evolved from the A310-200 certification process, which indeed conformed well with the subjective data. Certification of the A310-100, a generally similar but sufficient different aircraft, provided a further check on the degree of objectivity attained, helped to simplify the model's formulation. As part of the development program for the A320, the A300 FbW flying testbed had numerous visiting pilots involved in extensive demonstrations as well as special manoeuvres such as simulated engine failure at take-off and a demonstration of the inherent stall protection of the control system. The model was again successfully applied to these flights in order to determine if it could cope with the new control system and the unusual profiles. Finally, the very first flight of the A320 also had both pilots equipped with heart rate monitoring equipment so as to test the model. Cleared for experimental use, the Airbus Workload Model was then used in January 1988 for the A320 Minimum Crew Certification to generate second-by-second estimates of pilots' subjectively estimated workload. The purpose of this demonstration was to provide a range of low to high workload situations by means of 12 scenarios which provided varying flying problems. In all, 48 simulated line flights, which involved different levels of automation, were flown. Crew errors were also recorded and classified according to their severity and awareness. As a tool to investigate the impact of new technology, the Airbus Workload Model presents a novel opportunity to study workload and its relationship to both errors and automation. The findings are descriptive in nature because the certification data base was not constructed to support research on these issues. But they suggest that there is a relationship between the severity and type of error and workload, and that automation and workload are inversely related.
PART IV - AIR TRAFFIC HANDLING

A - REQUIREMENT: INTEGRATION OF CONTROL PHASES
B - PROSPECT: A FUTURE EUROPEAN AIR TRAFFIC SYSTEM CONCEPT
C - ON-LINE PREDICTION OF AIRCRAFT TRAJECTORIES
D - AIR TRAFFIC MANAGEMENT

PART IV-A - REQUIREMENT: INTEGRATION OF CONTROL PHASES

Summary

For today's airlines Western Europe is not very large and the flights they make within it do not last very long. Consequently it should be possible within such an area as Western Europe (defined for simplicity as the non-oceanic area covered by the EUROCONTROL route charges system) to arrange ATC clearances and instructions so that any flight will, from departure clearance to touch-down (including therefore departure and arrival routes, standard or otherwise), be conducted in accordance with airline policy and without the changes to route and profile due to short-term planning which are so disruptive to air traffic.

The present paper recommends an approach for the on-line handling of air traffic over such an area, covering in particular the integration of control phases from departure to destination. This leads to (a) a central on-line optimal definition of departure/arrival sequences and essential characteristics of all flights and (b) a series of regional units to implement the relevant proposals/directives. This should provide the optimum integration of adjacent Zones of Convergence in which the time and altitude at which aircraft enter and leave each Zone are precisely controlled and are affected by the traffic conditions in their corresponding space/time sphere of influence.

As a prerequisite to the above, a system is hereby proposed for the purpose of accurately predicting and controlling the 4-D trajectory of an aircraft over any part of a flight, and in particular that part which extends from entry into until exit from the airspace of a given control centre.

Reference 12F: REGULATION TEMPS REEL OPTIMALE DU TRAFIC AERIEN EN EUROPE OCCIDENTALE

par

André Benoit et Sip Swierstra
Organisation Européenne pour la Sécurité de la Navigation aérienne
EUROCONTROL
Direction Technique
rue de la Loi, 72, B - 1040 Bruxelles (Belgique)

SOMMAIRE

Pour les compagnies aériennes, l'Europe occidentale est devenue un espace bien exigu et les vols y sont de courte durée. Pour plus de commodité, nous entendons ici par "Europe occidentale" la région desservie par le système EUROCONTROL de relevances de route ; à une telle échelle, il devrait être possible de délivrer les autorisations et les instructions de contrôle de telle manière que tout vol, depuis son départ jusqu'au point de prise de contact avec la piste d'atterrissage (c'est-à-dire pour la totalité de l'itinéraire, ce qui inclut notamment les routes d'arrivée, normalisées ou non) puisse être exécuté en conformité de la politique générale décidée par sa compagnie et sans subir les déroutements et modifications de profil de vol qu'impose la planification à court terme et qui perturbent tant la fluidité du trafic aérien.

Le présent exposé vise à recommander une méthode pour la régulation des vols en temps réel pour l'ensemble de cette région, en particulier l'intégration des différentes phases de contrôle depuis le départ jusqu'à l'arrivée. A cette fin, il faut que les séquences d'arrivée et les séquences de départ, ainsi que les principales caractéristiques de tous les vols en cause soient définies au mieux, en direct et à partir d'un point central, et que soient mis en place une série d'organismes régionaux chargés de veiller à l'application des propositions ou directives de régulation. Un tel système optimiserait l'intégration de zones de convergence adjacentes pour lesquelles les heures et les altitudes à l'entrée deviendraient - tout comme les instants d'atterrissage dans une zone unique - subordonnées aux conditions de trafic prévalant dans l'ensemble d'une telle région étendue.

Dans un premier temps, le système de calcul, de prédiction et de contrôle de la trajectoire dans les quatre dimensions mis au point pour la zone de convergence est étendu à l'ensemble du vol depuis son entrée - éventuellement un décollage - jusqu'à sa sortie - éventuellement un atterrissage - de la région de contrôle étendue ainsi constituée, l'ensemble de l'espace aérien concerné relevant d'un centre de gestion déterminé.
PART IV-B - PROSPECT: A FUTURE EUROPEAN AIR TRAFFIC SYSTEM CONCEPT

Reference 13E

THE EUROCONTROL FUTURE ATS SYSTEM CONCEPT

and

THE PROGRAMME OF STUDIES, TESTS AND TRIALS

by

V. Vachiéry

European Organisation for the Safety of Air Navigation

EUROCONTROL

Engineering Directorate

72, rue de la Loi, B - 1040 Bruxelles (Belgium)

SUMMARY

The era of parallel, uncoordinated development of ground systems and guidance, navigation and communications avionics is at an end. The pursuit of optimum economic operating conditions, coupled with the need to handle an increasing volume of traffic, demand that those responsible for Air Traffic Management apply solutions that harmoniously combine available ground and air technologies. Close cooperation between pilot and controller actions constitutes one of the keystones of the future systems.

It will be possible to increase the capacity and efficiency of air traffic management, while at the same time maintaining essential safety requirements, only by making more intensive use of automation for control planning functions. It is considered that increased automation cannot provide real advantages, however, unless the accuracy of aircraft trajectory prediction is substantially improved.

This was made quite clear in the description of the Future ATS Concept drawn up by the EUROCONTROL Organisation. The Concept, the principles of, which were approved by the EUROCONTROL Commission of Ministers in July 1987, will be presented in broad outline.

Its implementation will call for a number of studies and trials, and a rundown will be given of EUROCONTROL's programme. Furthermore, the idea of a Harmonised Programme of Research for ATM (PHARE) is developed.

As will be seen, the EUROCONTROL's programme places considerable emphasis on analysis of the conditions that need to be met to enable ground systems in future to have available facilities for the acquisition and exploitation of aircraft state vector parameters.

The key aspects of the programme are:

- Improvement of the surveillance system (Mode S).
- Improvement of Air/Ground communications (Automatic data link).
- Increased automation.
- Improvement of evaluation methods by recourse to a realistic representation of the airborne side.
RESUME

L'ére des développements parallèles et non concertés des systèmes au sol et de l'avionique de guidage, de navigation et de communications est révolue. La recherche de conditions d'exploitation économique optimales d'une part, et la nécessité de faire face à un trafic croissant d'autre part, imposent aux responsables de la Gestion du Trafic Aérien des solutions qui marient harmonieusement les technologies disponibles au sol et à bord. Une concertation étroite entre le pilote et le contrôleur constitue une des clefs de voûte des systèmes futurs.

Accroître la capacité et l'efficacité de la gestion du trafic tout en respectant les impératifs de sécurité, n'est possible que par un recours plus intensif à l'automatisation dans les fonctions de planification du contrôle. Il est considéré que l'automatisation ne peut apporter un bénéfice réel que si la précision dans la prédiction de la trajectoire de l'avion est fortement améliorée.

Cet aspect a bien été mis en lumière dans la description du concept ATS futur élaboré par l'Organisation EUROCONTROL. Ce concept, approuvé sur le plan des principes par la Commission des Ministres d'EUROCONTROL en juillet 1987 sera présenté dans ses grandes lignes.

Sa mise en œuvre implique un certain nombre d'études et expérimentations. Le programme d'EUROCONTROL sera passé en revue. Par ailleurs l'idée d'un Programme harmonisé de recherche "ATM" (PHARE) est évoqué.

On verra que le programme d'EUROCONTROL fait une large place à l'analyse des conditions à réunir pour que les systèmes au sol puissent disposer dans l'avenir des moyens permettant d'acquérir et d'exploiter les paramètres du vecteur d'état de l'avion.

Les points clefs du programme sont:

- L'amélioration du système de surveillance (Mode S).
- L'amélioration des communications Air-sol (Liaison automatique de données).
- L'augmentation de l'automatisation.
- L'amélioration des méthodes d'évaluation en faisant appel à une représentation réaliste de la partie "air".
PART IV-C - ON-LINE PREDICTION OF AIRCRAFT TRAJECTORIES

(1) GENERAL DISCUSSION
(II) FUNDAMENTALS
(III) APPLICATIONS

Reference 14

PREDICTION OF AIRCRAFT TRAJECTORIES
by
Stanley Ratcliffe BSc, FRIN, FRAeS
2, Mason Close, Malvern, WR14 2NF, U.K.

SUMMARY

Air traffic management, in designing route structures, drawing up rules for flight in various types of airspace, and in framing the instructions for air traffic controllers, are concerned with predicting the behaviour, often on "worst-case" assumptions, of each class of traffic with which they may have to deal. The present paper will concentrate on the problems of on-line trajectory prediction to a time-horizon perhaps a little longer than the estimated time of the flight or as short as a few tens of seconds, the object being to predict and avoid collision with terrain or with another aircraft, and to ensure that any in-flight delays due to traffic congestion along the route are absorbed as economically as possible. Military aircraft are concerned with the avoidance of anti-aircraft missiles and in intercepting airborne targets. This latter problem may, very loosely, be regarded as collision avoidance in reverse, and will be briefly discussed in what follows, as will the problem of terrain-following by high performance low-flying military aircraft. The conclusion will draw attention to areas where further R & D would seem desirable.

Reference 15

AIRCRAFT DYNAMICS FOR AIR TRAFFIC CONTROL
by
P.Y. Willems
Université Catholique de Louvain, Département de Mécanique
Bâtiment Stévin
B - 1348 Louvain-la-Neuve, Belgique

SUMMARY

This paper presents the equations of motion of airplanes with special emphasis on the kinematical description of the trajectory. The various concepts introduced in ISO norms are presented from a dynamical point of view. The equations are obtained in a form which can easily be implemented in a simulation programme. Furthermore, various approximations are presented together with their implications on the dynamics, and the limitations of their application.
SUMMARY

The paper first describes briefly some relevant aspects of the Netherlands ATC-environment, it then gives the basic set-up of the trajectory prediction module, the improvements that have been realised so far and the performance figures. Furthermore it lists the applications of the trajectory prediction results in the system. Some of these applications such as data distribution rules, presentation of Estimated Times of Arrival (ETAs), Boundary Estimates etc. are only briefly mentioned. Others are given more attention; among these are: long-term detection of conflicts for overflying aircraft, planning of inbound traffic for Schiphol Airport and planning of departure times for an efficient engine start-up procedure.

SUMMARY

An appreciable amount of work has been conducted within the Engineering Directorate of the Agency in the division responsible for the Study of Long-Term ATC System Requirements, in order to generate accurate aircraft trajectory predictions for use in both ATC real-time simulations and on-line operation, in current and most realistic conditions, human interfaces included.

This paper will outline two basic approaches developed for two distinct classes of application: on the one hand, the on-line generation of predictions for use in actual operation and accessorially for real-time ATC simulations, on the other the introduction of realistic response and motion of aircraft in ATC simulations with pilot/auto-pilot interfaces included.
PART IV-D - AIR TRAFFIC MANAGEMENT

(I) OPTIMISATION: MODELS AND TECHNIQUES
(II) MAN/COMPUTER INTERFACE

Reference 18

OPTIMISATION MODELS AND TECHNIQUES TO IMPROVE AIR TRAFFIC MANAGEMENT

by

Lucio Bianco

Director, Progetto Finalizzato Trasporti and Istituto di Analisi dei Sistemi ed Informatica
Consiglio Nazionale delle Ricerche, Viale Manzoni, 30 - 00185 - Roma - Italy

SUMMARY

In this paper a survey of earlier works of our is given with particular emphasis on optimisation models and solution techniques. Firstly, in section 2, a multilevel model of the different ATC functions is proposed. Then, in the successive sections 3, 4 and 5 attention is devoted to the on-line control functions (flow control, on-line strategic control of flights and aircraft sequencing in the terminal area); for each problem, an optimisation model is established and a solution technique is illustrated. The numerical behaviour is also discussed.
THE HIGH-RESOLUTION GRAPHIC DISPLAY:
A possible man/machine interface for a computer assisted
ATC management system.

by

Carlos Garcia Avello.

Engineering Directorate
EUROCONTROL
European Organisation for the Safety of Air Navigation
72, Rue de la Loi - B-1040 Brussels

SUMMARY

This article describes an application of high-resolution graphic display in the field of
management and control of air traffic in an extended area including a major terminal, the radius of the
area being liable to vary from 150 to 300 nm.

Reference is made to air traffic management and 4-D guidance techniques for individual
aircraft in a Zone of Convergence, ZOC, in the knowledge that the graphic display techniques are
applicable virtually to all systems affording the controller assistance at the decision-making level.

For the purpose of presenting data to the controller we employ a graphic rectangular
display having a resolution of 1280 by 1024 points, capable of displaying 16 colors. A circular display
similar to most existing radar scopes could of course be used if it had equivalent resolution and color
characteristics.

The management directives and orders for guidance are presented to the operator, area
manager or controller of an individual sector as part of the set of data displayed on the radar
surveillance and control scope without the use of additional special tabular displays.

RESUME

Cette communication traite d’une application des écrans graphiques à haute résolution dans
le domaine de la gestion et du contrôle du trafic aérien dans une vaste zone comprenant un aéroport
important, le rayon de cette zone variant de 150 à 300 miles nautiques.

Les aspects de la gestion du trafic aérien et les techniques de guidage et de contrôle 4D
pour chaque avion sont ici appliquées dans une Zone de Convergence. (concept ZOC) Il faut cependant
garder à l’esprit que les techniques graphiques employées peuvent être appliquées à tous les systèmes
appartenant à un contrôle au niveau décisionnel.

L’écran choisi pour la présentation des données au contrôleur est de forme rectangulaire, à
une résolution de 1280 par 1024 points et peut présenter 16 couleurs. Un écran de forme circulaire
similaire à la plus part des écrans radar actuellement en service peut évidemment être employé pourvu
qu’il ait une résolution et des possibilités de couleur semblables.

Les directives de gestion du trafic et de conduite des vols sont présentées à l’opérateur,
qui peut être le gestionnaire de la zone ou le contrôleur d’un secteur, sur l’écran radar même intégrées
dans l’étiquette de l’avion : cette approche ne nécessite aucun écran tabulaire supplémentaire.
PART V - GUIDANCE OF AIRCRAFT IN A TIME-BASED CONSTRAINED ENVIRONMENT

A - CONTEXT - OBJECTIVES - PLANS

B - GENERAL DISCUSSION

C - GUIDANCE AND CONTROL: PRINCIPLES AND CONCEPTS

D - CONDUCT OF AIR TRAFFIC CONTROL IN A ZONE OF CONVERGENCE

E - GROUND-BASED 4-D GUIDANCE OF AIRCRAFT IN MOVING ATMOSPHERE

F - THE COMPUTER/CONTROLLER/PILOT DIALOGS

PART V-A - CONTEXT - OBJECTIVES - PLANS

Reference 20E 4-D CONTROL OF CURRENT AIR CARRIERS IN THE PRESENT ENVIRONMENT

Objectives - Status - Plans

by

André Benoît

European Organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate
72, rue de la Loi, B-1040 Bruxelles (Belgium)

SUMMARY

The accurate control of the time of arrival of aircraft will play an essential role in the efficient conduct of air traffic in terms of both economy and capacity. A technique has been developed to select efficiently and control accurately each aircraft trajectory inbound to medium to high density traffic airports.

The selection is made in terms of the overall traffic on the basis of the airline or pilot-preferred criterion, either cost, consumption or time, and the subsequent control is made in a ground/air co-operative manner, using whenever applicable "speed" and/or "track" corrections. This paper concentrates on the 4-dimensional control of individual trajectories as applicable to current air carriers in the present environment, and directly adaptable to future automated air/ground digital communications.

The overall control loop has been simulated in an environment representing in particular the Belgian airspace configuration, using various flight simulators in conjunction with airline pilots and air traffic controllers. The results obtained to date make it possible to envisage on-line tests in the near future, aiming at a 10-second accuracy at the runway threshold for current commercial aircraft.

Reference 20F REGULATION 4-D DANS L'INFRASTRUCTURE ACTUELLE

Point de la situation et objectifs à atteindre

par

André Benoît

Organisation Européenne pour la Sécurité de la Navigation Aérienne
EUROCONTROL
Direction Technique
72, rue de la Loi, B - 1040 Bruxelles (Belgium)

SOMMAIRE

Le contrôle précis de l'heure d'arrivée des vols sera un élément essentiel de la régulation efficace du trafic aérien au double plan de l'économie du transport et de la capacité de prise en charge. Une technique a été mise au point pour déterminer efficacement et contrôler avec précision les trajectoires d'arrivée aux aéroports de moyenne à forte activité.

Le sélection des trajectoires porte sur l'ensemble du trafic en fonction du critère que retiennent les compagnies ou les pilotes, à savoir coût, consommation de carburant ou temps de vol; le contrôle intervient ensuite, avec les éléments "sol" et "air" opérant en synthèse et les corrections de "vitesse et/ou de "route" appliquées chaque fois que cela est possible. Le présent exposé s'attache au contrôle 4-D de chaque trajectoire applicable aux avions de transport actuels utilisant l'infrastructure existante, lequel est directement adaptable aux communications air-sol numérisées de demain.

L'ensemble de la boucle de contrôle a fait l'objet de simulations en un environnement représentant en particulier la configuration de l'espace aérien belge, avec utilisation de divers simulateurs de vol et conjointement avec des pilotes de ligne et des contrôleurs de la circulation aérienne. Sur la base des résultats enregistrés à ce jour, on pourrait envisager dans un proche avenir des essais "on line" qui permettraient d'obtenir une précision de 10 secondes au seul de piste pour les avions commerciaux actuels.
NAVIGATION 4-D EN CIRCULATION AERIENNE
par
N. Imbert et M. Pélegrin
Centre d'Etudes et de Recherches de Toulouse
Complexe Aérospatial de Lespinet
2, Avenue Edouard Belin
B.P. 4025
F - 31055 Toulouse Cedex

SOMMAIRE

Historique et Principe de la Navigation 4-D
Partant de la constatation que les délais d'attente avant atterrissage sont croissants alors que les cadences maximales possibles ne sont pas atteintes, on a proposé d'introduire une consigne supplémentaire lors de la procédure d'approche consistant en 2 corrections de vitesse et une correction de cap (Nav. 4-D, D pour dimension).

Le premier problème à résoudre fut le choix du modèle mathématique à adopter pour simuler l'avion. La méthode utilisée consistait à partir d'un modèle "le plus complet" (on est parti d'un modèle du 18ème ordre) et à le dégrader jusqu'à ce qu'un critère ne soit plus satisfait. Ce critère consistait à mesurer l'erreur entre le modèle complet et le modèle dégradé sur une trajectoire de référence (approche Roissy) longue de 54 km. On admettait que l'erreur apportée par le modèle dégradé ne devait pas atteindre ± 320 m à la balise d'entrée de l'ILS. Un modèle de 6ème ordre convenait.

Après un certain nombre de simulations il a été montré que les corrections devaient se placer après l'entrée dans la zone de contrôle (zone de convergence) sur le vol à niveau constant (correction de vitesse), au milieu de la descente effectuée à vitesse indiquée constante (correction de vitesse) et dans la dernière branche avant l'interception de l'ILS.

Par une méthode d'ordonnancement on peut, grâce à l'utilisation du modèle utilisé en temps accéléré, affecter un instants de passage optimal à la balise d'entrée de l'ILS, en vérifiant qu'une telle trajectoire peut être obtenue par un "pilotage asisté" (termes qui seront définis dans l'article). Bien entendu, un modèle de l'atmosphère doit être utilisé; on a vérifié que la sensibilité de la méthode proposée par rapport à ce modèle n'était pas critique. On a également vérifié que l'erreur sur le passage à la balise due à l'incertitude sur la masse de l'avion à sa prise en compte n'était pas critique.

Résultats de simulation et mesures en vol
On a comparé par simulation les dispersions des instants de passage à la balise sans correction et avec correction. Pour ce faire le pilote était simulé par les erreurs qu'il introduisait dans le pilotage (erreurs définies stochastiquement par rapport à la "procédure compagnie"); les corrections étaient calculées par l'erreur constatée aux 3 points indiqués précédemment et étaient quantifiées (corrections non inférieures à 5 kts) puis retardées pour tenir compte des délais de transmission.

Sur un lot de 200 simulations on a constaté une division par 3 de l'erreur quadratique moyenne des instants de passage à la balise lorsque les corrections étaient envoyées à l'équipage (9 s au lieu de 27 s), toutes autres conditions étant égales par ailleurs.

Grâce à la collaboration de la compagnie Air Inter, 4 expérimentations en vols réguliers ont été faites. Les corrections étaient données à bord, grâce à des tables prédéfinies et à l'aide du contrôle sol pour les positions exactes de l'avion. Après analyse des résultats et corrections dues au vent, les résultats obtenus par simulation ont été confirmés.

Le NASA/Langley a de son côté repris la même méthode (deux corrections de vitesse et une de cap) et a procédé à des simulations (approche Denver, Colorado; avion B737) qui ont confirmé nos premiers résultats (un rapport commun NASA/CERT a été publié).

Perspective pour un ordonnancement temps réel
Dès leur origine nos études ont été suivies par EUROCONTROL et sur contrats de cet organisme nous avons pu étudier des procédures optimales de descentes pour des avions réels (B727; B737, DC10, Caravelles 12, A300) en tenant compte des contraintes réelles d'aéroport (Bruxelles, Londres, Francfort). Les lois de descente devaient minimiser le temps total de circulation des avions et la consommation totale de carburant dans la zone de convergence. La prise en compte d'un nouvel avion dans la zone, oblige à reprendre l'ordonnancement et les instants de passage à la balise. Les algorithmes proposés sont décrits.

Avenir
Les études initiales datent de 1975-77 ; elles restent valables aujourd'hui et des expérimentations du trafic réel sur des algorithmes mis au point par EUROCONTROL (voisins de ceux proposés) vont avoir lieu prochainement à Bruxelles.

Cependant le développement des FMS conduit à poser le problème en de nouveaux termes : il y a mélangé de 2 catégories d'appareils. Le "pilotage asisté" mentionné au paragraphe 1 sera confirmé pour les avions non munis de FMS. Par contre ceux munis de FMS pourront recevoir une seule information, celle du passage à l'heure à la balise après calcul par le "contrôle sol" (ATC). Le FMS, possédant un modèle de l'avion, doit pouvoir retrouver la solution indiquée par le sol. Mais la solution peut ne pas être unique, aussi est-il nécessaire d'assurer la conformité des 2 trajectoires (celle calculée au sol et celle restituée par le FMS) par l'envoi de paramètres supplémentaires.

L'usage d'une transmission automatique air-sol sol-air s'impose.
PART V-B - GENERAL DISCUSSION

Reference 22

ON THE AUTOMATION OF FUTURE ATC CENTRES IN THE LIGHT OF THE CONCEPT OF THE "ZONE OF CONVERGENCE"

by

Victor Attwooll

Civil Aviation Authority
National Air Traffic Services
CAA House, Kingsway 45-59
GB - London WC2 BGTE

INTRODUCTION

Describes the Zone of Convergence concept briefly and its potential benefits.

ASPECTS OF SOFTWARE AT ATC CENTRES

Automated assistance will be required by ATC controllers engaged in sequencing arrivals in a Z.O.C. Important sub-routines are the aircraft performance model and the Conflict Detection process.

The Aircraft Performance Model

This is a model to predict the 4D profile of an aircraft for a given pilot (or autopilot) inputs. Once the model is developed, it is a trivial problem to enhance it so as to answer the reverse question: what pilot input is necessary to achieve a desired profile, specifically to achieve a stated gate time. The output from this process forms the basis of the ATC instructions given to the pilot.

Conflict Detection and Resolution

Having estimated the arrival profiles of a number of aircraft which give the correct sequence at the "gate", they should be further checked for infringement of separation standards along their length. Where such conflict exists, the corresponding profile must be modified to remove the conflict and still, hopefully, achieve the correct time at the gate.

INPUTS REQUIRED FOR THE SEQUENCING PROCESS

The basic aerodynamic or performance information on each type of aircraft must be obtained from the manufacturers, hopefully, in a standard format, for insertion into the aircraft performance model. Other, more transient inputs are:

Meteorological

Up-to-date wind, and perhaps temperature information covering the "playing area". Direct measurement from aircraft is preferred - forecasts may not be accurate enough.

Information on the Aircraft's Intentions

Flight Plan information, suitably updated, intended flight levels, speeds, way-points etc.

METHODS OF COMMUNICATION

These include both air to ground and controller to computer (man-machine interface or MMI)

Air to Ground

It is desirable for reduction in both workload and RT loading that, as much as practicable, communication air to ground should be by data-link (Mode S or satellite). The order of implementation of data-link facilities is likely to be: first ground data held in store (VOLMET etc) ground to air, then ambient meteorological data air to ground, then data on the current state of the aircraft (content of Flight Management Systems) air to ground and finally executive ATC instructions ground to air.

MMI

Possible modes of rapid insertion of updated information to the computer include Direct Voice Input as well as more conventional means.

SUMMARY AND CONCLUSIONS

This would include comments on the potential benefits and likely time-scales of the projects considered. Attention would be drawn to the need for developments to proceed in step with each other and to the need for proper validation before operational service.
SUMMARY

This paper describes the basic principles of the method developed to guide aircraft accurately down to
the runway in a time-of-arrival constrained environment. The method is to be used in a Zone of
Convergence context or in any similar advanced ATC system characterized by the integration of control
phases over an extended area on the one hand and a true "computer assistance" to the air traffic
controller on the other, that is to say an assistance given at the decision level through the automatic
generation of guidance directives.

The method includes two basic components closely coupled, namely a "predictor" which computes a
trajectory once initial conditions and plans are known and a "controller" which adapts the plans to meet
the time constraint and generates the guidance directives on the basis of present position - , actual
surveillance information - aircraft operation and route constraints.
GUIDANCE CONCEPTS FOR TIME-BASED FLIGHT OPERATIONS

by

Dan D. Vicroy

NASA Langley Research Centre
Hampton, Virginia 23665-5225

SUMMARY

Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. The National Aeronautics and Space Administration in conjunction with the Federal Aviation Administration, is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. This paper presents the results of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

4D DESCENT TRAJECTORY GENERATION TECHNIQUES UNDER REALISTIC OPERATING CONDITIONS

by

David H. Williams and Charles E. Knox

NASA Langley Research Centre
Hampton, Virginia 23665

SUMMARY

The NASA Langley Research Centre has been conducting and sponsoring research in airborne energy management for a number of years. During the course of this research, two fundamental techniques for the generation of 4D (fixed time) descent trajectories have emerged as viable candidates for advanced flight management systems. The first technique utilises speed schedules of constant Mach number transitioning to constant calibrated airspeed chosen empirically to produce minimum fuel usage. The second technique computes cost optimised speed schedules of variable airspeed developed through application of optimal control theory. Both techniques have been found to produce reasonable and flyable descent trajectories. This paper evaluates the formulation of the algorithms for each technique and discusses their suitability for operations in realistic conditions. Operational factors considered include: airplane speed, thrust, and altitude rate constraints; wind, temperature, and pressure variations; Air Traffic Control altitude, speed, and time constraints; and pilot interface and guidance considerations. Time flexibility, fuel usage, and airborne computational requirements were the primary performance measures.
PART V-D - CONDUCT OF AIR TRAFFIC CONTROL IN A ZONE OF CONVERGENCE

Reference 26 EXPERT SYSTEMS FOR THE GENERATION OF TERMINAL AREA ARRIVAL PATHS FOR CIVIL TRANSPORT

by

Robert W. Simpson
Flight Transportation Laboratory, Room 33-412
Department of Aeronautics & Astronautics
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

SUMMARY

There are efficiencies to be gained from scheduling the takeoff and landing operations for the system of runways at a major civil airport. It is then necessary to be able to generate a conflict-free set of flight paths which implements this schedule, and which can be easily changed. For arrival aircraft, these flight paths start at a known time, point and speed in the descent towards the airport, and end at a reduced speed and time at the outer marker of the final approach to the assigned runway where desired in-trail separations must be achieved.

To generate sets of conflict-free arrival paths, an "expert systems" approach finds and selects a path feasible within the performance limits of each aircraft from a set of "patterns" which are easily understandable by the human controller. This technique is easily adaptable to the geometric characteristics of different terminal areas and runway configurations, and is subject to rules and procedural limitations which can be easily specified and implemented by ATC controllers themselves, as desired.

The patterns always include a downwind, base, and intercept legs of varying lengths and locations, prior to merging with a "bubble" representing the scheduled position and speed of the arrival aircraft. Arriving aircraft are expected to conform to the early parts of the assigned arrival paths with a known accuracy which ensures safe separations. However, on the downwind and base legs, radar tracking of position, speed and direction is used to dynamically issue commands to turn to base and intercept legs, and to reduce to final approach speed on the intercept leg. The expert system ensures that patterns are selected with a sufficient number of radar scans to ensure steady-state tracking by the primitive straight-line trackers used in current ATC surveillance systems.

Reference 27 A DESCRIPTION AND EVALUATION OF "TIMER" -- A TIME-BASED TERMINAL FLOW-CONTROL CONCEPT

by

Leonard Credeur
National Aeronautics and Space Administration
Langley Research Centre
Hampton, Virginia 23665

and

William R. Capron
PRC Kentron
Hampton, Virginia 23666

SUMMARY

A description of a time-based ATC concept called TIMER (Traffic Intelligence for the Management of Efficient Runway-scheduling) and the results of a fast-time and real-time computer evaluation are presented. The concept was designed to improve the efficiency of extended terminal area operations 'en route approach, transition, and terminal flight to the runway). TIMER integrates en route metering, fuel-efficient cruise and profile descents, terminal sequencing and spacing together with computer-generated controller aids, in order to fully use runway capacity and improve efficiency of delay absorption. The concept, by using simplified aircraft models, accommodates both 4-D and non 4-D equipped aircraft and is designed for integration into the manual, voice-linked ATC system in an evolutionary manner and still be able to accommodate proposed system upgrade features such as data link and further ground automation.

Fast-time and real-time computer simulation results identify and show the effects and interactions of such key variables as horizon of control, metering fix and final approach delivery time errors, aircraft separation requirements, delay discounting, wind, flight technical error, and knowledge of aircraft final approach speed. The current ATC system has a runway interarrival-error standard deviation of approximately 26 seconds. Simulation results indicate that, with computer aiding, the runway interarrival-error standard deviation for non 4-D equipped traffic can be reduced to the region of 8 to 12 seconds if expected-final-approach speed is known; however, the reduction is only in the region of 16 to 20 seconds if expected-final-approach speed is unknown. Another major finding is that en route metering fix delivery-error standard deviation should be kept to less than a number somewhere between 35 to 45 seconds to achieve full runway capacity. This requirement implies the need for either airborne automation or assistance to the controller since the current manual performance in today's en route metering environment is in the order of 1.5 minutes.
SUMMARY

Arrival metering in en route airspace can match the demand rate to the airport acceptance rate. Air traffic control (ATC) is evolving time-based control techniques to facilitate en route arrival metering. This allows fuel savings by using speed reduction to absorb delay. The logic for en route arrival metering: 1) estimates the undelayed landing time of each arrival, 2) assigns the earliest available landing time, and 3) controls each arrival to its terminal area arrival (feeder) fix according to the common schedule developed for all arrivals.

The airplane flight management system (FMS), used along with the ATC computer as part of distributed data processing system, can define a minimum fuel cruise and descent flight profile which is consistent with ATC constraints. A study of four-dimensional area navigation (4D RNAV) operational requirements for use in en route arrival metering has determined the functions and time-guidance accuracies needed for ATC-compatible operations. Special investigations have evaluated the use of clean-idle Mach/CAS, constant flight path angle Mach/CAS, and fuel optimal cruise/descent arrival profiles individually and in combination. Significant differences in these descent strategies only appear at high arrival rates.

A 4D RNAV capability is most easily achieved by "wrapping" a time-navigation capability around a 3D FMS. It is estimated that fifty percent of U.S. jet transports will have been delivered with a full 3D FMS by 1995 without any special effort to implement 4D RNAV ATC operations. Inclusion of systems such as performance management systems as candidates for 4D RNAV will bring this estimate well above fifty percent.

Concepts for controlling a mix of 4D RNAV equipped and unequipped aircraft in a time-based en route arrival metering system have been the subject of on-going analyses and simulations by the National Aeronautics and Space Administration (NASA) Ames Research Centre. Meanwhile, Boeing on contract to NASA Langley Research Centre, used a fast-time simulation to show that even with a small percentage of equipped aircraft, the 4D RNAV user could expect a 4D RNAV clearance a high percentage of the time.

The use of 4D RNAV in en route arrival metering operations can save the operator fuel, reduce both pilot and controller workload, and reduce terminal airspace congestion. Eventually, the extension of 4D RNAV to the runway and 4D RNAV departures can increase airport capacity. ATC operational units have shown enthusiasm toward aircraft capable of precisely achieving assigned fix times. The key issue remains of how to get the jet transport fleet to equip so that 4D RNAV operations can grow.

SUMMARY

The basic principles of the air traffic management and the guidance of individual aircraft in a Zone of Convergence have been presented by the authors in previous papers at successive stages in the development of the project (1980, 1982, 1984, 1986). The subject is dealt with in general terms by V. Attwool in Section 5.2.

The purpose of this paper is to summarise these principles and to discuss the level of applicability to the actual operational environment, compatibility with present technology and direct adaptability to future developments, the quality of the interfaces involving the air traffic controller and the aircraft crew and the resultant benefits for the community in terms of economy, use of available capacity and safety.
PART V-E - GROUND-BASED 4-D GUIDANCE OF AIRCRAFT IN MOVING ATMOSPHERE

Reference 30

GROUND BASED 4-D GUIDANCE OF FLIGHTS IN STRONG WIND

by

André Benoit and Sip Swierstra

European organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate
72, rue de la Loi, B - 1040 Bruxelles (Belgium)

ABSTRACT

In strong wind, the ground speed may vary appreciably over a turn as is the case for landing after a U-turn preceding the localiser intercept. Such conditions are critical for maximum use of the runway and human estimation of aircraft motion then becomes extremely difficult.

This paper summarises the tests which were conducted using a ground-based 4D-guidance program developed to assist the air traffic controller in maintaining the predicted landing time sequence with an accuracy better than 10 seconds for each arrival.

Reference 31

A PILOTED SIMULATOR EVALUATION OF A GROUND-BASED 4D DESCENT ADVISOR ALGORITHM

by

Thomas J. Davis, Steven M. Green, and Heinz Erzberger

NASA Ames Research Centre
Moffett Field, California 94035, USA.

SUMMARY

A ground-based, four-dimensional (4D) descent-advisor algorithm has been developed that combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate fuel-efficient descent advisories. This paper investigates the ability of the algorithm to provide advisories for controlling arrival time of aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the algorithm predicts the trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of winds and initial aircraft weight were also evaluated. A description of the algorithm as well as the results of the piloted simulation are presented.
PART V-F - THE COMPUTER/CONTROLLER/PILOT DIALOOGS

Reference 32E

THE AIR TRAFFIC CONTROLLER FACING AUTOMATION: CONFLICT OR CO-OPERATION

by

André Benoit et Sip Swierstra

European Organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate
72, rue de la Loi, B - 1040 Bruxelles (Belgium)

and

René De Wispelaere

Belgian Airports and Airways Agency
Air Traffic Services
Rue du Progrès, 80, B-1210 Bruxelles (Belgium)

SUMMARY

Today, developments in ground-based and on-board computers, navigation and digital air/ground/air communications make it possible to envisage for tomorrow extensive automation of the overall air traffic control process, always provided that reliability, safety and responsibilities can be absolutely covered in all possible eventualities, however remote.

Accordingly, before "tomorrow", an appreciable amount of traffic will cross our skies and be handled by air traffic controllers without the support of advanced automated tools. Nevertheless, at the same time, the potential of automation will continue to increase.

Its inherent benefits for the overall community may be refused and lost for a long period; in contrast, it may contribute to the production of more sophisticated and powerful tools and assist the controller in achieving a degree of efficiency which he could never have dreamed of before. What is it which will tip the scales in favour of one or the other option?

This subject will be discussed in the light of the experience gained during the development of an approach to the definition, assessment and testing in an operational environment of a procedure suitable for guiding aircraft along 4-D trajectories illustrative of the next system generation of ATC. The paper will cover the essential aspects of the computer/controller/pilot/aircraft chain of dialogues, placing the emphasis on the connivance between the computer and the controller, the intelligent interpretation of the surveillance information by the computer, the definition and generation of guidance directives, their relay to the pilot and finally, the use of navigation aide.

The paper concludes by showing the integration of the ground-based 4-D guidance and control system messages on a standard ATC radar display, illustrating this for the guidance of flights conducted by SABENA crews operating B-737 and DC-10 aircraft.
SOMMAIRE

Les progrès réalisés dans le domaine de l'ordinatique aéronautique (qu'il s'agisse de l'infrastructure au sol ou de l'élément embarqué), des systèmes de navigation et des télécommunications numérique air-sol-air nous autorisent à imaginer pour "demain" un processus de contrôle de la circulation aérienne hautement automatisé pour autant que dans toutes les éventualités - même dans les moins probables - la fiabilité, la sécurité et la stricte délimitation des responsabilités soient totalement garanties.

Mais bien avant cela, nos cieux auront été traversés d'innombrables vols que les contrôleurs de la circulation aérienne auront pourtant dû prendre en charge sans l'aide de ces techniques de pointe. Entre-temps, toutefois, les possibilités qu'offre l'automatisation ne cesseront de croître.

On pourrait certes vouloir se passer des avantages intrinsèques qu'elle présente pour toute la communauté aéronautique, mais on en perdrait alors le bénéfice pour longtemps; à l'opposé, on peut en tirer parti pour l'élaboration de moyens plus perfectionnés et plus puissants et aider ainsi le contrôleur à atteindre un niveau d'efficacité dépassant tout ce qu'il aurait pu concevoir.

Quel est donc l'élément qui déterminera le choix de l'une ou l'autre option?

Tel est précisément le problème que nous nous proposons d'aborder ici, à la lumière de l'expérience acquise dans la mise au point, l'évaluation et la mise à l'essai, en conditions réelles d'exploitation, d'une procédure qui permet de guider les aéronefs sur des trajectoires quadridimensionnelles et qui est représentative de la prochaine génération de systèmes ATC. Nous décrirons par ailleurs les principaux aspects des maillons calculateur/contrôleur/pilote/aéronef constitutifs de la chaîne du dialogue (en nous attachant particulièrement à l'alliance ordinateur-contrôleur), l'interprétation intelligence, par l'ordinateur, des informations destinées à la surveillance, la définition et la production de directives de guidage, la transmission de celles-ci au pilote et, enfin, l'emploi des aides à la navigation.

Dans la conclusion, nous montrons comment on intègre les messages du système sol de guidage et de contrôle quadridimensionnel au dispositif sur les écrans standard de visualisation radar dont sont dotés les services ATC; les exemples choisis pour les besoins de la démonstration sont des vols exécutés par des équipages de la SABENA sur B-737 et DC-10.
PART VI - SURVEILLANCE

A - RADAR TRACKING
B - SATELLITE TECHNIQUES

PART VI-A - RADAR TRACKING

Reference 33

AIRCRAFT TRAJECTORY RECONSTITUTION
on the basis of
MULTI-RADAR PLOT INFORMATION

by
Pieter van der Kraan
Eurocontrol Organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate
rue de la Loi, 72, B - 1040 Bruxelles (Belgium)

SUMMARY

A short description of the various techniques in use for the establishment of aircraft reference trajectories is presented. Then a description of the principles and operation of the EUROCONTROL program MURATREC (Multi-Radar Trajectory Reconstitution) follows, covering in particular:

- estimation of systematic radar errors;
- curve fitting by the use of B-splines and dynamically adaptable spline steps;
- accuracy of the reconstructed positional information;
- reconstruction of altitude, accelerations and speed.

Applications of the Muratrec program are outlined, including (a) application for the analysis of radar plot and track accuracy (examples) and (b) possible applications for incident investigations, on-line alignment of multi-radar information and simulation of aircraft trajectories in a given radar environment.

Reference 34

BAYESIAN MULTI-SENSOR TRACKING FOR ADVANCED AIR TRAFFIC CONTROL SYSTEMS

by
H.A.P. Blom, R.A. Hogendorn and F.J. van Schaik
National Aerospace Laboratory NLR
P.O. Box 90502
NL - 1006 BM Amsterdam
The Netherlands

SUMMARY

An overview is given of a Bayesian tracking system for a multi-sensor environment. The main modules perform track initiation, track continuation and systematic error estimation, respectively. The track continuation module plays for Air-Traffic Control the most important role. It consists of a combination of those approximate Bayesian methods that proved to be the most efficient for the main problems of track continuation: Extended-Kalman filtering for non-linear dynamics, Probabilistic Data Association for unassociated measurements and Interacting-Multiple-Model filtering for sudden manoeuvres.

Comparisons of this new tracking system with off-the-shelf, Kalman based and state-of-the-art tracking systems show its superiority for application to Air-Traffic-Control surveillance. It provides better track continuity, more accurate expectations of position and velocity and more complete additional information in the form of probabilities of modes of flight (turning, accelerating and straight modes) and consistent estimates of its own accuracy. With this track information, advanced Air-Traffic-Control systems may better cope with the many uncertainties that are inherent to air traffic.

The results in this paper were obtained partly under contract with the Dutch Organization of Civil Aviation (RLB).
SUMMARY

This paper describes the use of measurements made on board civil aircraft to improve tracking accuracy in air traffic control (ATC) systems. The measurements are transmitted to the ground station via the SSR mode S data link.

First the widely used d-B filter and the first order Kalman filter are reviewed. Next the problem of maneuver handling is described and it is established that significant improvements, in terms of tracking accuracy, are expected when tracking maneuvering aircraft. The shape of maneuvers is examined using recordings made on board civil aircraft during normal scheduled services.

The on board measurements considered are roll angle, heading and true air speed (TAS). Roll angle and the rate of change of heading are theoretically equivalent, since they are related through aircraft velocity. Maneuver tracking filters using either roll angle or heading are described and compared. It is shown that the filter using heading provides a better performance in the event of missing replies, since changes of heading are eventually detected. Both filters cannot track longitudinally accelerating targets.

Next the use of velocity measurements, derived from TAS and heading, is considered. A filter is described that is capable of estimating the wind speed in the vicinity of the aircraft. The same filter provides satisfactory tracking accuracy during maneuvers and can handle longitudinal accelerations.

Under monoradar coverage, where the data rate and accuracy are fairly constant, the filters reduce to a particular simple form, that may be regarded as an enhanced d-B filter.

The performance of the filters is evaluated using data recorded during normal scheduled services.
PART VI-B - SATELLITE TECHNIQUES

L'APPORT DES TECHNIQUES SATELLITAIRES
A LA SURVEILLANCE DE LA NAVIGATION AÉRIENNE

par
Olivier Carel,
Ingénieur en Chef de l'Aviation Civile
Chef du Département Radiocommunication et Radioguidage du
Service Technique de la Navigation Aérienne
Membre français du Comité Spécial FANS de l'OACI
246, rue Lecourbe, F-75015 Paris, France

RESUMÉ

La mise en œuvre des satellites pour les communications, navigation et surveillance de l'aviation a été étudiée et a commencé à être planifiée par l'Organisation de l'Aviation Civile Internationale qui a créé le comité spécial Future Air Navigation Système (FANS) à cet effet. Ce comité vient de rendre son rapport final. La note présente ses travaux et analyse les conséquences de l'introduction des satellites dans le cas particulier de la surveillance du trafic. L'élément le plus important sera la "surveillance dépendante automatique" (ADS) qui consiste en une retransmission automatique de l'avion vers le sol de divers paramètres mesurés à bord, principalement sa position telle qui fournie par les moyens de navigation de l'appareil. Ce système permettra un contrôle bien plus efficace dans les zones sans infrastructure sol. Dans les zones continentales à fort trafic, les satellites ne substituent pas au radar secondaire, cependant les nouvelles techniques permettront plus de souplesse dans la conception de l'infrastructure.

SUMMARY

The International Civil Aviation Organisation asked a special committee FANS (Future Air Navigation Systems) to study satellite system implementation for communication navigation and surveillance applications. This committee issued recently its final report. The paper presents FANS work and analyses the consequences of satellite system implementation upon the surveillance of air traffic. The most important element will be automatic dependent surveillance (ADS) which implies the automatic air to ground return transmission of various airborne measured parameters, i.e. mainly aircraft position as supplied by the aircraft navigation equipments. This concept is to allow a much more efficient air traffic control in every area lacking a ground infrastructure. In continents areas with heavy air traffic, satellites will not substitute the secondary surveillance radar. The new techniques, however, will allow a flexible design of the ground infrastructure.
PART VII - METEOROLOGICAL FORECASTS

IMPACT OF FORECASTS QUALITY ON TRAJECTORY PREDICTION

Reference 37

DEVELOPMENTS TO ENHANCE METEOROLOGICAL FORECASTING FOR AIR TRAFFIC SERVICES

by

M.E. Cox

European Organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate

rue de la Loi, 72, B - 1040 Bruxelles (Belgium)

and

D. Forrester

The Meteorological Office,
London Road, Bracknell,
Berkshire, U.K., RG12 2SZ

SUMMARY

In the future, the quality of the meteorological data available for use both in ground-based systems and on the aircraft will become even more important as ATC strives to handle increasing volumes of traffic in the most efficient manner. This paper, which deals primarily with European work, commences with an indication of the effect of errors in meteorological data on the precision of predictions of aircraft trajectories and then discusses the variability of wind and temperature, showing the influence of location, altitude and season, in the European area. An outline of present-day forecasting methods follows: the data used and accuracies achieved are included. Potential sources of improvements are then discussed with the emphasis being placed on the use of aircraft-derived data: details are given of the accuracy of such data, possible methods of recovery and their application within the Meteorological Services. A further short section describes the impact of turbulence on both the safety of air traffic and the accuracy of flight profile predictions: possible methods of providing aircraft with the means for the automatic reporting of turbulence are included. The final section of the paper describes some of the experimental work either performed or being planned in the European area, aimed at improving the quality of the meteorological data available for ATS purposes as a result of using data recovered from aircraft through both satellite and ground-based (Mode S SSR) systems.
PART VIII - AIRCRAFT OPERATION IN AIR TRAFFIC HANDLING SIMULATION

A - REALISTIC OPERATION AND MOTION OF AIRCRAFT
B - FLIGHT OPERATIONS WITHIN A TERMINAL AREA

PART VIII-A - REALISTIC OPERATION AND MOTION OF AIRCRAFT

Reference 38

INTEGRATION OF AIRCRAFT CAPABILITY
in
AIR TRAFFIC HANDLING SIMULATIONS
by
André Benoît and Sip Swierstra
European Organisation for the Safety of Air Navigation
EUROCONTROL
Engineering Directorate
72, rue de la Loi, B-1040 Bruxelles (Belgium)
and
Yves Delmatte
Direction des Opérations
Belgian World Airlines
SABENA
Brussels - National Airport - B - 1930 Zaventem (Belgium)

SUMMARY

Incorporation of airline/aircrew/aircraft specific procedures and performances in simulations and operations of air traffic handling is a prerequisite for the next generation of management and control techniques. This matter is analysed in the light of the shortcomings inherent to the present situation to meet operators demand in terms of capacity and efficiency.

A practical approach is then proposed to include the operators (aircrew/aircraft/avionics) in the overall ground/air/ground control loop at the development, assessment, validation and real-time simulation levels.

As an illustration of the potential offered, this approach is followed to assess a ground/air coordinated 4-D guidance technique, and the results obtained are presented.
During peak hours almost all major commercial airports operate close to their capacity limits. Moreover, the traffic demand often exceeds the offered capacities leading to more or less stringent restrictions in slot allocation.

Purpose of the fast-time air traffic simulations performed at the Technical University of Berlin, was to analyze and assess the performance and the practicability of automated time-based approach concepts, currently being developed to optimize the terminal area air traffic process with respect to safety, capacity and economy.

The developed program system TASIMD (Terminal Area SIMulation considering the aircraft Dynamics) simulates flight operations of arriving aircraft within a terminal area during a specified time interval. TASIMD models all major elements of a TMA scenario related to the control and operations of automated approach procedures on the ground and in the air (e.g. surveillance, control procedures, aircraft dynamics, flight guidance).

The aircraft fly along 4D-trajectories, described by a horizontal profile, an altitude profile and a speed profile to integrate the time element, considering influences on the path following accuracy in space and time. Sources of error impact are: entry fix time deviation, navigation, wind, airspeed error and profile management algorithm error. Errors are modeled in Monte-Carlo technique.

Two types of automated approach procedures were developed and analyzed: a variable path speed control concept (VPSC) and a fixed path speed control concept (FPSC). Both concepts presume a shared air/ground responsibility for profile control.

Being a typical representative of an airport with capacity problems the terminal scenario of Frankfurt/FRG has been taken as data base for the developed simplified model TMA. The layout of the different scenarios (e.g. configuration with navigation systems) was chosen on the basis of requirements for future terminal navigation previously derived from results of a simplified macroscopic Monte-Carlo simulation. TASIMD is written in FORTRAN and kept as general as possible to allow similar investigations for almost any future terminal scenario.

Generally, the analysis indicated the practicability of applying automated terminal procedures based on a shared air/ground responsibility. In order to adapt such concepts to a real environment, however, many details as e.g. emergency procedures or procedures for aircraft with less sophisticated equipment, have to be considered. The analysis of such questions which would require real time simulations in cooperation with pilots and controllers, however, goes beyond the scope of TASIMD.
PART X

Bibliography

A — Glossary
B — Reference
C — Index
PART X-A - GLOSSARY
GLOSSARY

This glossary lists the abbreviations currently used for the names of institutions and the titles of journals and reports frequently cited in the bibliography.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFNOR</td>
<td>Association française de normalisation</td>
</tr>
<tr>
<td></td>
<td>Tour EUROPE, CEDEX 7, F-92080 Paris</td>
</tr>
<tr>
<td>AGARD</td>
<td>Advisory Group for Aerospace Research and Development</td>
</tr>
<tr>
<td></td>
<td>North Atlantic Treaty Organisation, 7, rue Ancelle, 92290 Neuilly-sur-Seine, France</td>
</tr>
<tr>
<td>AIAA J</td>
<td>Journal of American Institute of Aeronautics and Astronautics, 1290 Avenue of the Americas, New York, NY-10019, USA</td>
</tr>
<tr>
<td>DFVLR</td>
<td>Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Flughafen, Institut für Flugmechanik, 3300 Braunschweig, R.F.A.</td>
</tr>
<tr>
<td>EUROCONTROL</td>
<td>European Organisation for the Safety of Air Navigation, 72, rue de la Loi, B-1040 Bruxelles</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration, Washington, DC-20590, USA</td>
</tr>
<tr>
<td>FFA</td>
<td>Flygtekniska Försöksanstalten</td>
</tr>
<tr>
<td></td>
<td>The Aeronautical Research Institute of Sweden, Stockholm</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers, New York</td>
</tr>
<tr>
<td>JA</td>
<td>Journal of Aircraft</td>
</tr>
<tr>
<td>JAS</td>
<td>Journal of the Aeronautics Sciences</td>
</tr>
<tr>
<td>JGC</td>
<td>Journal of Guidance; Journal of Guidance and Control; Journal of Guidance, Control and Dynamics</td>
</tr>
<tr>
<td>JSR</td>
<td>Journal of Spacecraft and Rockets</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology, Cambridge</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Washington, DC-20546, USA</td>
</tr>
<tr>
<td>NLR</td>
<td>National Aerospace Laboratory, P.O. Box 90502, 1006 BM Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>RAE</td>
<td>Royal Aircraft Establishment, Farnborough, England</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers, Warrendale, PA, USA</td>
</tr>
<tr>
<td>UTIAS</td>
<td>Institute for Aerospace Studies</td>
</tr>
<tr>
<td></td>
<td>University of Toronto, 4925, Dufferin Street, Downsview, Ont. Canada, M3H 5T6</td>
</tr>
</tbody>
</table>
Subjects

(ACP) Aircraft Performance Evaluation

(ATM) Atmospheric and Meteorologic Sciences (see also (WND))

(CST) Computer Simulation / Prediction Techniques

(EMY) Economy Aspects / Fuel Savings / Noise

(POF) Flight Optimization

(GEN) General Considerations

(HSC) Handling, Stability and Control

(LDG) Approach and Landing / Miscellaneous

(MEQ) Flight Mechanics / Equations of Motion

(NCG) Navigation Control and Guidance

(RFI) Research Facilities and Instrumentation

(RRP) Rules, Regulations and Procedures

(SIM) Simulation, Flight simulators

(TCS) Traffic Control Systems / Strategies

(WND) Wind Impact on Aircraft Motion (see also (ATM))
PART X-B - REFERENCES
1938

1940

KUSSNER H.G. "Das zweidimensionale Problem der beliebig bewegten Tragflächen unter Berücksichtigung der Partialbewegung der Flüssigkeit", Luftfahrtforschung Band 17, Lfg 11/12, 1940

1941

POSNER E.C. "A simplified method for predicting the change in airplane performance due to a change in parameter", JAS, Vol. 8, No. 4, p. 419, 1941 (MEQ)

WELLING O. "An approximate method to predict the transition or 'Flare' flight path in the take-off or landing of an airplane", JAS, Vol. 8, Juli 1941 (LDG)

1942

PHILIPS F.C. "A kinetic energy correction to predicted rate of climb", JAS, Vol. 9, No. 5, p. 172, January 1942 (CST-MEQ)

1943

1944

SANGER E. and BREIT I. "A Rocket Drive for Long Range Bombers", Navi Department, Bureau of Aeronautics, Translation No. GGD-32, 1944

1945

ETKIN B. "Turning in a wind", Engineering Journal (Canada), March 1945 (WMD)

1946

1972

JAKOB N. "An engineering optimisation method with application to STOL aircraft approach and landing trajectories".
1947

ETKIN B. "Effect of wind gradient on glide and climb",
JAS, June 1947 (WND)

FREEMAN "Simple analytical equations for the velocity of an airplane in unaccelerated level, climbing
and diving flight";
JAS, Vol. 14, p. 185, 1947 (MEQ)

1948

HEISENBERG W. "Zur statistischen Theorie der Turbulenz",
Zeitschrift fUr Physik, pg. 628, 1948

WEIZSÄCKER C.F. "Das Spektrum der Turbulenz bei Grossen Reynold'schen Zahlen",
Zeitschrift fUr Physik 124, 628, 1948 (ATM)

1951

REICHARDT K. "Gesetzmässigkeiten der freien Turbulenz",
VDI-Forschungsheft 414 (1942), 2. Auflage 1951

RUSSEL M.H. et al "Flight Test Engineering Handbook",
APTR N° 6273, May 1951

1954

LUSH K.J. "Optimum Climb Theory and Techniques of determining Climb Schedules from Flight Tests",
NATO AGARD Flight Test Manual, 1954 (FOP)

RUTOWSKI E.S. "Energy Approach to the General Aircraft Performance Problem",

1956

MORREL J.S. "Fundamental Physics of the Aircraft Collision Problem",

1957

ALLEN H.J. and EGGERS A.J. "A Study of the Motion and Aerodynamic Heating of Missiles Entering the
Earth's Atmosphere at High Supersonic Speeds",
NACA, Technical Note N° 4047, 1957

BLACKADAR A.K. "Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal
Inversions",

EGGERS A.J., ALLEN H.J. and NEICE S.E. "A Comparative Analysis of the Performance of Long-Range
Hypervelocity Vehicles",
NACA, Technical Note N° 4046, 1957
1958

ETKIN B. "A theory of the response of airplanes to random atmospheric turbulence", UTIAS Report 54, 1958, also JAS, July 1959 (WND)

1959

1960

CARSTOIV J. "Minimum time to climb of an airplane", JAS, Vol. 27, No. 4, p. 311, 1960 (CST-MEQ)

TROMBLEY "The approximate solution of the equations of motion of an airplane moving in a vertical plane", JAS, Vol. 27, No. 5, p. 396, May 1960 (MEQ)

1961

BRYSON A.E. Jr. and DENHAM W.F. "Multivariable Terminal Control for Minimum Mean-Square Deviation from a Nominal Path", Raytheon Company, Missile and Space Division, Report No. BR-1333, 1961

1961

MIELE, A. "The calculus of variations in applied aerodynamics and flight mechanics", BOEING Scientific Research Laboratories, DI-82-0113, June 1961 (MEQ)

1962

1963

MARKS B.L. "ATC Probabilities, Separation Standards and Collision Risk", RAE Tech. Note Math 91 (TCS)

OVERESCH E. "The problems of exact calculation of take-off and landing characteristics of c"nventional transport aircraft", AGARD-741, Jan. 1963 (ACP-LNC)
1963

1964

ICAO/OACI "Manual of the ICAO standard atmosphere extended to 32 kilometres (105.000 feet)", International Civil Aviation Organisation, Doc. 7488/2, 2nd edition, 1964

1965

ISAACS R. "Differential Games", Wiley, New York (TCS)

PRANDTL L. "Strömungslehre", Vieweg-Verlag, Braunschweig, 1965

1966

CAIGER B. "Some problems in control arising from operational experiences with jet transports (Jet transport control problems induced by turbulence and pilot misinterpretation of flight instrument data)", NC 052609 National Aeronautical Establishment, Ottawa, Ontario. Also in AGARD, September 1966 (GEN)

FLORA C.C. "Dynamic motions of Aircraft - Survey and Introduction (Dynamic stability and flight handling problems induced by mass and inertial properties of future transport Aircraft - survey and introduction I)", AGARD Stability and Control (Sept. 1966) (MEQ)

ADAMS H.W. "Reliability and operational economics of the next decade of jet transports", JA, Vol. 5, p. 570, November-December 1968 (EMY)

DRAKE H.M. "An overview of hypersonic aircraft missions and technology (mission and design studies for Hypersonic transport and air launch aircraft)", Aviation and Space conference. American Society of Mechanical Engineers (1968). (GEN)

PROWGAY D.M. "Data systems and data analysis methods to support on board in-flight operations", JA, Vol. 5, p. 578, November-December 1968 (FOP)

WEISS H.G. "A concept for air traffic control (air traffic control of commercial aircraft in allocated computer monitors)", Lincoln laboratories, MIT, by digital Lexington LQ054005, 1968 (TCS-RFI)
B-14

1969

ISHIHARA T. "Generation of suboptimal, closed loop guidance for minimum time aircraft trajectories (generation of suboptimal closed loop guidance for minimum time aircraft trajectories", ARIZONA UNIV., TUCSON (AX852975) 1969 (CST).

NEMEREVER W.J. "ATC of the Future (ATC systems Analysis including Airports, ground access and air transportation)", INIT-FLIGHT INTERNATIONAL (Jul. 1969) (TCS).

POPPLETON E.D. "A generalization of Zermelo's condition for the minimum-time flight path (Jet aircraft quasi-level above flat earth, deriving equation of path minimizing linear combination of fuel consumption and flight time)", Zeitchrift für angewandte Mathematik und Mechanik, Vol. 49, p. 363-365, June 1969 (FOP)

VANDER VEELDE W.E., BENTLEY G.K., FAGAN J.H. & MCDONALD W.T. "Onboard computer requirements for navigation of a spinning and maneuvering vehicle", JSR, Vol. 6, p. 1371, December 1969 (CST)

AIR REGISTRATION BOARD "Civil Aircraft airworthiness data recording programme. En route use of flap
(En route aircraft flap control during descent and holding),

ARDEMA M.D., GREGORY T.J. & WATERS M.H. "Hypersonic transport preliminary performance estimates for an
all-body configuration (All-body configuration hypersonic transport aircraft performance by
computer synthesis, considering sonic boom constraint, maximum payload ratio and optimal cruise
speed)",

BENOIT A. "Aircraft Trajectories. An approach to the calculation of aircraft trajectories for possible
application in Air Traffic Control",
Half-yearly Information Review of the European Organisation for the Safety of Air Navigation,

BENOIT A., CHARVET Y., KUYFERS P. & MARTIN R.H.G. "Study of automatic conflict detection and resolu-
tion in Air Traffic Control planning",
7th, ICAS 70-58, Consiglio Nazionale dello Ricerche, Roma, Italy, September 14-18, 1970 (TCS)

BERNERT J.H. & THELANDER J.A. "Aircraft operating procedure development using integral-variational
performance analysis methods",
AIAA Paper 70-876, July 1970 (GEN)

BOX G.E.P. & JENKINS G.M. "Time series analysis, forecasting and control",

BRUSCH R. & SCHAPELLE R.M. "Solution of highly constrained optimal control problems using non linear
programming",
AIAA Paper 70-964, Aug. 1970 (FOP)

BURNHAM J. "Atmospheric gusts - a review of the results of some recent RAE research (gust and wind
effects near thunderstorms and mountains and during aircraft takeoff and landing)",
RAE-TR-68244, 1970 (WND)

AIAA J, Vol. 8, p. 753-758, April 1970 (ACP)

CODOBAN A. "Range and optimum angle of attack for aircraft flying in a windy atmosphere (flight range
and optimum angle of attack under wind conditions of constant velocity and direction, consider-
ing fuel consumption for given distance)",

DIN LN 9300 Flugmechanik, Normenstelle Luftfahrt, 1970

GRAHAM V. "Separation of Traffic by Visual Means - An Estimate of the Effectiveness of the See and
Avoid Doctrine",
Proc. IEEE, Vol. 58, No. 3, March (HUM)

HAGUE D.S. "Application of the variational steepest - Descent Method to high performance aircraft tra-
jectory optimization (application of steepest descent method to trajectory optimization and
aircraft performance problems",
Aerophysics Research Corp., Bellevue.

HAMEL P. "On the effect of gusts and crosswind on the dynamic response of aircraft in the landing
approach"

HAMEL P. & NICOLHE F.G. "Gust effects on the dynamics of aircraft during landing approach",
NASA-TT-F-12, 751, 1970 (SNC)

ICAO/OACI "Procedures for Air Navigation Services, Rule of the Air and Air Traffic Services",
ICAO Doc. 4644-RAC/501/10, 1970

ICAO/IDCI "Procedures for Air Navigation Services, Rule of the Air and Air Traffic Services",
ICAO Doc. 4644-RAC/501/10, 1970

BARONI A. "Meteorologic influence on the flight of a commercial SST (Atmospheric wind, temperature, turbulence, hydrometeors, ozone, cosmic radiation and radio activity effects on commercial SST Concorde flight)", Rivista di Meteorologia Aeronautica, Vol. 31, p. 301-305, Italia, September 1971 (ATH)

BENOIT A. "Applicability of the EROCOA trajectory prediction module to actual scheduled flights", EUROCONTROL Report 722016, September 1971 (CST-NCG)

BROWN A.D. "A simulation study of low visibility approaches and landings at night", RAE-TR-71044, March 1971

DENHARD W.G. "Technology of tomorrow's commercial air traffic control (Commercial ATC, considering VFR, flight control and inertial navigation)", MIT Cambridge 1971 (TCS).

KELLEY H.J. "Flight path optimisation with multiple time scales", JA, Vol. 8, p. 238, April 1971 (NGC)

1971

MACKINNON D. & MADDEN P. "Path accuracy limitations of inertially based flight trajectory control systems in a turbulent environment (Optimization algorithms for jet transport aircraft inertially based flight trajectory control in turbulent atmosphere, comparing with ILS)", Symposium on Automatic Control in Space, 4th, Dubrovnik, Yugoslavia, Proceedings, 1971 (NCG-WND)

MERRICK R.B. "A simplified Kalman estimator for an aircraft landing display", JA, Vol. 8, p. 44, January 1971 (TCS)

WISMOR D.A. "Optimization Methods for Large-Scale System with Applications", McGraw-Hill, 1971

BECKMAN D.L. "PB-75 Flight guidance system. (PB-75 Flight guidance system for subsonic commercial transport aircraft operation under category III A. Conditions, describing cruise and ILS operation)", Electronics and civil aviation (June 1972) (LDG)

BOER W.P. de "Behaviour of very large aircraft disturbed by wind shear and atmospheric turbulence", NLR Report TR 72023 U, 1972 (WND)

BROWN A.D. "Cat. 2: A simulation study of low visibility approaches and landings at night (Flight simulator exercises for investigation of pilot performance in low visibility conditions during approach and landing)", Royal Aircraft Establishment RAE-TR-71044 1972 (LDG).

FRANKLIN J.A. "Flight investigation of the influence of turbulence on longitudinal flying qualities", JA, Vol. 9, p. 273, April 1972 (FOP)

ILLARIONOV V.F. & FASHTINTSEV V.T. "Properties of the extremal field in an optimal control problem (applied to aircraft flight over assigned distance with minimum fuel consumption)", Soviet Physics, Doklady, Vol. 16, p. 820-822, April 1972 (FOP)
1972

TOBIAS L. "Automated aircraft scheduling methods in the near terminal area", JA, Vol. 9, p. 520, August 1972 (TCS)
BENOIT A. (Program Chairman) "Air Traffic Control Systems", AGARD CP-105, April 1973 AGARD Symposium, Edinburgh, June 1973

CLYMER D.J. & FLORA C.C. "Approach path control for powered-lift STOL aircraft (Characteristics of flight control system for approach flight path control of augmentor wing on powered-lift short takeoff aircraft configuration)", NASA-CR-114574, April 1973 (LDG)

DIBLEY H. "Optimum descent operations", BOAC Safety Digest, August 1973, Issue 127 (FOP)

FOERSTER P. "Numerical analysis of minimum time climbing procedure and minimum fuel climbing procedure for typical subsonic aircraft", AGARD-L5-56, March 1973 (ACP)

FRIEDEL H. "Flight manoeuvre and climb performance prediction", AGARD-L5-56, March 1973 (ACP)

HAVE J.M. ten "Proposal for the trajectory prediction in SARP I1 (in Dutch)", NLR Memorandum VG-71-013, (CST)

HOUBOLD J.C. "Atmospheric Turbulence", (Dryden Research Lecture), AIAA Journal Vol. 11, No. 4, April 1973

LEAN D. (Chairman) "Flight in turbulence", AGARD-CP-140, 14-17 May 1973, Woburn Abbey, Bedfordshire, U.K., Published November 1973 (WND)

LUERS J.K. & REEVES J.B. "Effect of shear on aircraft landing (Flight Simulation on to determine effects of wind shear on aircraft landings for various commercial and military aircraft)", NASA-CR-2287, July 1973 (WND)

MIDDLETON P. "Minimum time trajectory computation: development of the balakrishnan method", AGARD-LS-56, March 1973 (FOP-MEQ)

NEWMAN, T.J. "Area navigation systems for air transport aircraft (Area navigation technology for air transportation in USA, discussing present systems and projections as related to airline and FAA activities)", AIAA and GKNT (July 1973) (TCS).

PARK S.K., STRAETER T.A. "Near Terminal Area Optimal Sequencing and Flow Control as a Mathematical Programming Problem", Symposium on Non-Linear Programming, George Washington University, 1973

SKRIPNICHENKO S. "The regimes of climbing flight ... optimization conditions", (in German), Technisch-Ökonomische Information der Zivilen Luftfahrt, Vol. 11, No. 1, p. 45-51, 1973 (FOP)

THOMASSON F.Y. & COOK G. "Solving flight-path optimization problems on a minicomputer (Maximum range flight path during climb with specified fuel supply and variable lift coefficient, solving differential equations systems by conjugate gradient procedure)", Astronautica Acta, Vol. 18, p. 45, February 1973

WILLIAMS J. (Edited by) "Aircraft performance-prediction and methods optimization", AGARD-LS-56, March 1973 (ACP)
1974

AFNOR "Symboles et vocabulaire de la mécanique du vol", Norme française enregistrée, AFNOR, MP-X02-115, Décembre 1974 (MEQ)

ATIAS M. & WEING D. "Motion of aircraft trailing vortices near the ground", JA, Vol. 21, p. 783-786, Oct. 1974 (WND)

BENOIT A. & SWIERSTRA S. "A presentation of actual climb data collected during regular scheduled flights of KLM B-747 aircraft", EUROCONTROL Report 742025, September 1974 (ACP)

BOER W.P. de & MOOI H.A. "Flight characteristics of very large subsonic transport aircraft during landing approach", Nederlandse Vereniging voor Luchtvaarttechniek, Yearbook 1974 (Avail. NLR) (LDG-ACP)

DAYTON A.D. "The digital airplane and optimal aircraft guidance", AGARD-CP-137, May 1974 (NCG)

DIBLEY H. "How to reduce noise and save fuel—Now", Journal of the guild of air pilots and air navigation, March 1974 (FOP)

FIEDLER F. "Die Grenzschicht der Atmosphäre: Struktureller Aufbau", in: Promet 4, Heft 1, 1974, S. 1-3
FOUDRIAT E.C. "Aircraft 4-D constant velocity control system", JA, Vol. 11, p. 326, June 1974 (NCG)

HOLLAND F.C., GARCEAU T.V. "Genealogy of Terminal ATC Automation", M70-9, REV. 2, MITRE Corporation, March 1974

HUNTLEY E. "Landing transition paths which optimize fuel, time, or distance for jet-lift VTOL transport aircraft in steep approaches", AFCR-R/M-3732 1974 (LDG).

MATHENY N.W. "Flight investigation of approach and flare from simulated breakout altitude of a subsonic jet transport and comparison with analytical models", NASA-TN-D-7645, April 1974 (LDG-ACP)

McNamara J.E. "The fuel crisis and the controller ... turbojet aircraft descent trajectories for fuel consumption reduction", Journal of Air Traffic Control, Vol. 16, p. 5-9, Jan.-Feb. 1974 (FOP)

NAGARAJAN N. "Discrete optimal control approach to a four-dimensional guidance problem near terminal areas", International Journal of Control, Vol. 20, p. 277, August 1974 (NCG-LDG)

RATCLIFFE S. "Computer Representation of Air Traffic Route Structure", Royal Radar Establishment Memorandum N. 2880, Malvern, 1974

SCHAENZLER G. & BOEHRET H.H. "Integrated flight control system for steep approach", AGARD-CP-137, 1974 (NCG)

STOREY J. "A method for the prediction of aircraft trajectories in the vertical plane", EUROCONTROL-CEE Report No. 73, August 1974 (FOP)

BENOIT A. (Program Director and Editor) "A Survey of modern Air Traffic Control", AGARD-AG-209, Vols. I and II, July 1975

BIEN Z. "Optimal control of delay systems", Thesis, University of Iowa, Iowa City, December 1975 (FOP)

ERZBERGER H., BARMAN J.F., McLEAN J.D. "Optimum flight profiles for short haul missions", AIAA Paper 75-1124, August 1975 (FOP)

HAVE ten J.M. "Infrastructure for the evaluation of the SARP II trajectory prediction module on the basis of MiDAP radar measurements of actual trajectories" (in Dutch), NLR Memorandum VG-75-015 L, 1975 (CST)

1975

LAX P.M. "Design and simulation of a descent controller for strategic four-dimensional aircraft navigation", NASA-CR-146127 Nov. 1975 (NCG)

LEE H.Q., NEUMAN F. & HARDY G.G. "4-D area navigation system description and flight tests", NASA-TN-D-7874, August 1975 (NCG)

PELEGRIN M. "Navigation 4-D en zone terminale considérée comme un problème d'automatique" AGARD/GCP 1975 (TCS, NCG).

SUSSMAN M.B. "Terminal area considerations for an advanced CTOL transport aircraft", NASA-12018, January 1975 (GEN-LDG)

SWIERSTRA S. "Results of an analysis of the vertical error associated with short term trajectory prediction methods", EUROCONTROL Report 752011, April 1975 (CST)

ATTWOOLL V. "The optimization of traffic flow around a network" AGARD CP-188, pp. 15-1 to 15-6, February 1976

BENOIT A. & ISRAEL D. (Program Chairmen, Symposium Chairmen and Editors) "Plans and Developments for Air Traffic Systems", AGARD CP-188, February 1976

BENOIT A. & SWIERSTRA S. "A presentation of actual descent data collected during regular scheduled flights of KLM B-747 and DC-10 aircraft", EUROCONTROL Report 762034, September 1976

DEAR R.G. "The Dynamic Scheduling of Aircraft in the Near Terminal Area", FTL R76.9, Flight Transportation Laboratory, MIT Cambridge, 1976

FAZI, C. "Research for a trajectory with zero incidence and such that the product of dynamic pressure and incidence is a minimum for the Europe 3 launcher (orbit 200/3600 km)", S/DEA-3-30-16-518 1976 (MEQ).
1976

FAZI, C. "Research for a trajectory with zero incidence and such that the product of dynamic pressure and incidence is a minimum for the Europa 3 launcher (orbit 200/3600 km)", S/DEA-3-30-16-918 1976 (MEQ).

GIPFARD Ch. & MARVILLET J.P. "The STRADA landing trajectography system", AGARD-AC-219, Feb. 1976 (NOG-LOG)

JOPPA R.G. "Wind shear detection using measurement of aircraft total energy change", NASA-CR-137839, 1976 (WND)

LITCHFORD G.A. "SSR-CAS", ICAO Bulletin, March (SUR, TCS)

MARSH J.H. "747 Climb and descent speeds for fuel economy", Boeing Airliner, p. 7-11, October 1976 (FOP)

SPEYER J.L. "Nonoptimality of the steady-state cruise for aircraft",

SPEYER J.L. "Non-optimality of the steady-state cruise for aircraft",
pp. 19-25, New York, AIAA, 1976 (FOP)

1977

BRINKLEY C.W. "B-1 Terrain Following Development", AGARD GCP Symposium on "Guidance and Control Design Considerations for Low Altitude and Terminal Area Flight", AGARD-CP-240 October (NCG)

BROCKHAUS R. "Flugregelung I", R. Oldenbourg, München 1977

CUNNINGHAM F.L. "The profile descent", AIAA Paper 77-1251, August 1977

FABER B. "Optimization of quasi-stationary long distance flights in the case of different directions for conducting the flight according to a model which has been idealized to a large extend", German thesis Darmstadt, Technische Hochschule, Fachbereich Maschinenbau, Dr. Ing. Dissertation, 1977 (FOP)

FÜLLINGER O., SARTORIUS H. "Anwendungen der Kalmanfiltertechnik (Applications of the Kalman Filter Technique)", Methoden der Regelungstechnik München, Oldenburg, 1977

B-34

1977

HAVE J.M. ten "The computation of atmospheric properties and flying speed for Air Traffic purposes at altitudes below 20 000 meters", (in Dutch), NLR Memorandum VO-77-048 U, (ATM)

HAVE J.M. ten "Some remarks concerning additional performance information to be supplied to ATS-units in order to improve the prediction of aircraft trajectories", MEMORANDUM VO-77-055 L, NLR, December 1977 (ACP-OCT)

KLOPPSTEIN G. "Piloting a path in 1976", AGARD-CP-212, January 1977 (NCG)

LUKINS J.W. "Role of future automated flight deck displays in improving operating costs", AIAA Paper 77-1252, August 1977 (GEN)

MORRISON J.A. "Operational requirements for flight control and navigation systems for short haul transport aircraft", NASA-CR-137975, 1977 (NOG)

ROZEMA D.J. "A computer programme to calculate aircraft fuel consumption and flight trajectories", NLR Memorandum VO-76-039 U and VO-77-025 U, EMY, 1977

WILT M.v.d. "Comparison of some methods to determine the delays of landing aircraft with respect to runway capacity", NLR Report TR 77028 U, (TCS)

WILT M.v.d. "A method to determine the delays of landing aircraft with respect to runway capacity", NLR Report HP 77016 U, (TCS)
ALLES W., SUNDERMEYER P. "Die Verwendung von Näherungsmodellen für die Dynamik eines geregelten Flugzeuges zur Untersuchung von Fragestellungen der Flugführung", TU Braunschweig, 1978

COX M. & SWIERSTRA S. "Sensitivity of trajectory predictions to variability of input data", EUROCONTROL Report 782023, November 1978

ECKERT K.D. "DME-based system for en-route/terminal navigation, all weather landing and air traffic control", AGARD-CP-240, April 1978 (RPI)

FABER B. "A simple criterion to distinguish between point and integral performance problems and its use to simplify flight profile optimisations", AGARD-CP-242, May 1978 (ACP)

FUCHTER C. & SWIERSTRA S. "A presentation of actual climb and descent data collected during regular scheduled flights of SABENA B-707, B-737, B-747 and DC10 aircraft", EUROCONTROL Report 782009, March 1978

HAINES A.L. "Parameters of Future ATC Systems Relating to Airport Capacity/Delay”, PAA-EM-78-9, April, 1978

HAVE J.H. ten "Trajectory prediction Software for SARP II Description and Conclusions of the dynamical evaluation” (in Dutch), NLR Memorandum VG-78-J39L, 1978 (CST)

KNOX C.E. "Experimental determination of the navigation error of the 4-D navigation, guidance and control systems on the NASA B-737 Airplane”, AGARD-CP-240, April 1978

LOWE J.R. "Improving the accuracy of HUD approaches in wind shear with a new control law”, AIAA Paper 78-1494, August 1978 (SDG)

PELEGRIN M. & IMBERT N. "Accurate timing in landings through air traffic control”, AGARD-CP-240, April 1978 (NCG)

ROZEMA D.J. "Calculated aircraft fuel savings as a result of continuous descent approach and low power/low drag procedures", NLR Report TR 78151 L, 1978

1979

ADAM V., LEYENDECKER H. "Erhöhung der Führungsgenauigkeit durch den Einsatz eines integrierten digitalen Flugführungsystens. (Increasing the guidance accuracy by using an integrated digital flight-guidance system)", Symposium "Flying in the terminal manoeuvering area", DGON, Order No. 120-1, Hamburg 1979 (NCG)

ARDEMA M.D. "Linearization of the boundary layer equations of the minimum time-to-climb problem", JGC, Vol. 2, No. 5, p. 434, September-October 1979 (ACF)

ASHFORD N., WRIGHT P.H. "Airport Engineering", John Wiley & Sons, 1979

BIANCO L., CINI M., GRIFFO L. "A Strategic Approach to Air Traffic Control", 9th IFIO Conference on Optimization Techniques, Warsaw, September, 1979

BROCKHAUS R. "Flugregelung II", R. Oldenbourg, München 1979

BROCKHAUS R. "Grössen zur Beschreibung des Windeinflusses auf das Flugzeug", or "Variables characterizing the wind effects on the aircraft", Z. Flugwiss. Weltraumforsch. 3, Heft 4, 1979 (WND)

BROKOF U., HURRASS K.H. "Ein einfaches integriertes Navigationsystem beseriernd auf mehrfach DME (A simple integrated navigation system based on multiple DMPE)", Symposium "Flying in the terminal manoeuvering area", DGON, Order No. 120-1, Hamburg 1979 (NCG)

COLLINS B.P. "Analysis of potentially correctable landing delays at Atlanta", FAA-EM-7923, Nov. 1979 (LDC-TCS)

1979

COX M.E. "Data Link - The key to improvements in civil/military air traffic management?", AGARD-CP-273, Guidance und Panel Symposium in Copenhagen, Oktober 1979 (Published February 1980) (GEN)

ERWIN R.L. "Strategic control of terminal area traffic", Boeing Commercial Airplane Co., Seattle, Wash. BR 798021 (TCS)

FAA "Report of the FAA task force on aircraft separation assurance", FAA-EM-78-19, Jan 1979 (TCS)

FORRESTER D.A. "Data Link Application Study: the exploitation of aircraft-derived meteorological data", EUROCONTROL 792030 (GEN)

GREPPER P.O. & HUGUENIN F.E. "Four-dimensional helical approach of aircraft in an air traffic control environment", JGC, Vol. 4, No. 3, p. 262, 1979 (POP)

GREPPER P.O. & HUGUENIN F.E. "4-D helical approach of a transport aircraft in an ATC environment", AIAA Paper 79-1776, 1979 (NCG-CST)

GUSTAFSSON A.L. "How to choose take-off and landing direction for minimum fuel consumption", FAA-TN-AU-1443, Part 2, PFA, August 1979

HOTOP H.J., LECHNER W., and STIELER B. "Probleme bei der bordseitigen Bestimmung des Windes mit Optimalfiltern. (Problems in the on-board determination of the wind by optimal filters)", Symposium "Flying in ther terminal maneuvering area", DGON, Ord No. 120-1, Hamburg, 1979 (ATM)

IMBERT N., FOSSARD A.J. and COMES M. "Gestion à moyen terme du trafic aérien en zone de convergence", IFAC/IFOR symposium, Toulouse, France, March 5-8, 1979

KOENIG R. "Missed approach of commercial aircraft regarding wind shear in the ground boundary layer", DGLR Paper 79-028, Deutsche Gesellschaft für Luft- und Raumfahrt und Deutsche Gesellschaft für Ortung und Navigation, April 1979 (Avail. Technische Universität, Braunschweig, West Germany) (WND)

MOYER H.G. "The computation of optimal aircraft trajectories", Grumman Aerospace Corp. System Science 1979 (CST)

SCHROEPL H. "Telax Taschenbuch der Navigation", Teldix Heidelberg, 1979

WILHELM K. & MARCHAND M. "Investigation of landing flare in presence of wind shear", DFVLR-F8-79-20, June 1979 (LDG-WND)

WILLIAMSON W.F. "Minimum and maximum endurance trajectories for gliding flight in a horizontal plane", JGC, Vol. 2, No. 6, p. 457, November-December 1979 (ACP)

ALLES W. "Investigations into the manual computer-aided piloting of a transport airplane along unconventional approach paths", German Thesis, p. 179, Technische Universität, Fakultät für Maschinenbau und Elektrotechnik, Braunschweig, 1980 (LDG-CST)

ALLES W. "A contribution to the investigation of the dynamic behavior of a controlled aircraft under wind shear condition", TUBS/FB-80-07-01, p. 97, Inst. für Flugführung, Technische Universität Braunschweig, West Germany, July 1980 (NCG-HSC-WND)

BANNISTER J.D. & HICKS R. "The role of the aircraft model in avionics systems simulation", AGARD-CP-268, January 1980 (CST)

BEDDOES T.S. "Application of identical aerodynamic functions", AGARD-R-679, June 1980 (MEQ)

BENOIT A. (Program Chairman) "Air Traffic Management - Civil/Military Systems and Technologies", AGARD CP-273, February 1980

BENOIT A. & SWIERSTRA S. "Basic fuel and trajectory data to investigate economy aspects of cruise-descent profiles", EUROCONTROL Report 802019, September 1980 (ACP-EMY)

BENOIT A. & THORNE B. "Aircraft trajectory prediction and fuel conservation", EUROCONTROL Report 812005, September 1980 (EMY)

1980

COVERY R.R., MASCETTI G.J., ROESSLER W.U. & BOWLES R.L.

ETKIN, B. "The turbulent wind and its effect on flight", The AIAA Wright Brothers lecture, 1980. Also UTIAS Review No. 44, Toronto, Canada, 1980 (WND)

GRIEM H. "Some aspects of advanced flight management systems and their application to modern transport aircraft", ICAS Congress, 12th, Oct. 1980, Munich, West Germany (TCS)

HUFF J.W. ten "Trajectory prediction updating using filtered track speed data", NLR Memorandum VG-80-037 L, 1980

1980

JOHNSON T.L. & RADER J.E. "Minimum time turns with thrust reversal ... high performance aircraft trajectory control", AIAA Paper 80-1595, 1980 (ACP)

KNOX Ch.E. "Capturing and tracking performance of the horizontal Guidance and Control Systems of the terminal configured vehicle", NASA Tech. Memo 80068 (TCS)

KRAFT D. "FORTRAN-Programme zur numerischen Lösung optimaler Steuerungsprobleme", DFVLR, Mitteilung 80-03, March 1980 (FOP)

O'BRIEN P.J., WILLET F.M. Jr. & TOBIAS L. "Dynamic air traffic control simulation of profile descent and high-speed approach fuel conservation procedures", FAA-RD-80-12 (and FAA-NA-79-28), May 1980 (EMY-FOP)

RICHARDSON D.W. & RICH P. M. "The integration of area navigation and the microwave landing system", AGARD-CP-273, February 1980 (TCS)

SLIWA S.M. "Impact of longitudinal flying qualities upon the design of a transport with active controls", NASA Langley Research Center AIAA 80-1570 (FOP)

1980

STRIUKOV B.A. "Secondary processing optimal algorithms and circuits ... for aircraft trajectory measurement", Radiotekhnika July 1980 (CST)

STRIUKOV B.A. "Optimal algorithms and secondary processing devices ... for aircraft trajectory measurement", Radiotekhnika vol 35, July 1980 (CST)

URBAN L.J. (Editor) "Guidance and control software", AGARD-AG-256, May 1980 (NCG)

ANDREWS J.W. "An Improved Technique for Altitude Tracking of Aircraft", MIT Lincoln Lab. Project Report ATC-105 (SUR, TCS)

CALISE A.J. "Singular perturbation techniques for on line optimal flight path control", JGC, Vol. 4, No. 4, p. 398, 1981 (FOP)

1981

ERZBERGER H. "Optimum climb and descent trajectories for airline missions", AGARD-AG-251, July 1981 (FOP)

ETKIN B. "Turbulent wind and its effect on flight", JA, Vol. 18, No. 5, May 1981 (WND)

HARGRAVES Ch., JOHNSON F., PARIS St. & RETTIE I. "Numerical computation of optimal atmospheric trajectories", JGC, Vol. 4, No. 4, 1981 (CST-FOP)

HELD V., KNAPP L., KRICKE D. "Single Aircraft Analysis for Definition of Operational Requirements", ESC München, August 1981

HUGUET M.P., ZANELLI R., FAGE J.M. "Low level wind shear detection system for airport landing approach areas using the Bertin Doppler acoustic sounder/Sodar/", AMS, May 1981 (WND)

KÖNIG R., KRAUSPE F. "The Influence of Wind Shear and Vertical Winds on Take-Off and Go-around", Airport Forum No. 5, 1981

KRAUSPE F., SWOLINSKY M. & VOERSMANN P. "Wind determination and wind shear detection from flight test and airline flight data", International Conference on Aviation Weather System, 1st., Montreal, Canada, 4-6 May 1981, Proceedings, Boston, MA, American Meteorological Society, p. 79-86, 1982 (WND)

KREINDLER E. & NEUMAN F. "Minimum fuel horizontal flight paths in the terminal area", NASA TM-81313, August 1981 (LDG-EMY)

MARKOV A.B., REID L.D., MACKENZIE R.B. "On-line wind shear generation for flight simulator applications", AIAA 81-0970 (WND-LDG)

SAMMS K.H. & MORELLO S.A. "Pilot guidance and display considerations for energy efficient flight profiles", NASA Langley Research Center, Hampton, Va., June 1981 (FOP-CST)

SAUER "Evaluation of aircraft prediction methods applied to low altitude phases in the present mode of operation based on AF, BA and LH actual flight data", EUROCONTROL Report 812004, March 1981 (CST)

SHEPTUNOV V.N. "Application of a dimensionless criterion of transport efficiency in evaluating aircraft modifications", Aviatsionnai Ts Teknica, No. 4, p. 65-70, 1981 (EMY)

THRIFT P.R. "The impact of increasing energy costs upon the design philosophy of avionic fuel management systems", RAS (March 1981) (EMY)

ACHTEMEIER G.L. “Short range prediction of mesoscale wind fields”,
American Meteorological Society, 1982 (ATM-WND)

ADAM V. & LECHNER W. “A concept for 4D-guidance of transport aircraft in the TMA”,

ADAM V., LECHNER W. “Investigations on four-dimensional guidance in the TMA”,
AGARD Conference Proceedings No. 340, October 1982

BACH R.E. JR. “A mathematical model for efficient estimation of aircraft motions”,
Identification and system parameter estimation 1982; Proceedings of the Sixth Symposium,
Ones Research Center, Moffett Field (CA) (MEQ)

BENOIT A. & SWIERSTRA S. “Available tools for the prediction, control and economy assessment of flight
profiles”,
International Seminar on “ATC Contributions to Fuel Economy, Institute of Air Navigation
Services, Luxembourg, 26-28 October, 1982. Also EUROCONTROL Report 822033, September 1982
(FOP-CST)

BENOIT A. & SWIERSTRA S. “The dynamic control of aircraft for minimum cost operation”,
International Seminar on “ATC Contributions to Fuel Economy”, Institute of Air Navigation
Services, Luxembourg, 26-28 October, 1982. Also EUROCONTROL Report 822034, September 1982 (FOP)

BENOIT A. & SWIERSTRA S. “Integrated dynamic control for flight economy”,
Prepared for Pergamon Encyclopedia of Systems and Control.
Also EUROCONTROL Report 822042, December 1982 (FOP-NCG)

BENOIT A. & SWIERSTRA S. “The dynamic control of inbound flights. Experiments conducted on the SABENA
DC-10 flight simulator”,
EUROCONTROL Report 822028, June 1982 (NCG-CST)

BENOIT A., SWIERSTRA S. “Dynamic Control of Inbound Flights for Minimum Cost Operation”,
AGARD Conference Proceeding No. 340, October 1982

BENOIT A. & SWIERSTRA S. “A ground/air coordinated control procedure for minimum cost operation over
an extended area”,
Conference on “Today & Tomorrow Mini & Micro Computers in Airline Operations”, Royal
September 1982 (EMY-TCS)

BENOIT A. & SWIERSTRA S. “Simulation of air traffic operation in a zone of convergence. Aircraft
(PARZOC) Performance Data”,
EUROCONTROL Report 812031-2, April 1982 (TCS-CST)

BEST M.R. “Two-dimensional flight-path reconstruction by means of spline approximation”,
NLR Report TR 82075 U, July 1982 (LDG)

BIELLI M., CALICCHIO G., NICOLETTI B., and RICCIARDELLI S. “The Air Traffic Flow Control Problem as an
Application of Network Theory”,

BISIAUX M., COX M.E., FORRESTER D.A., STOREY J.T. “Possible improvements in meteorology for aircraft
navigation”,
EUROCONTROL Doc. 822037, November 1982, Brussels, Belgium (ATM)

BLANK D. & SHINAR J. “Efficient combinations of numerical techniques applied for aircraft turning per-
formance optimization”,

BOWES R.C. “Improvements to Secondary Radar for ATC”,
B-SI
1982

CAMPBELL W. "A conceptual framework for using Doppler radar acquired atmospheric data for flight simulation", NASA/MSFC NASA-TP-2182 (ATM-CST)

CARR A., GOFF C. "Numerical Simulation of Wind Fields Calculated from Assumed Mode S Data Link Inputs", DOT/FAA/RD 81-100, FAA Techn. Center, Atlantic City, USA, June 1982 (ATM)

DREW A.D., HUNT B.A., and LOGAN H.K. "Departure Runway Capacity at Heathrow Airport", UK Civil Aviation Authority paper 83013, August (TCS)

ETKIN B. "Dynamics of flight stability and control", I. Wiley & Sons, New York, 1982 (HSC)

FROST W., TURKEL B.S., MCCARTHY J. "Simulation of phugoid excitation due to hazardous wind shear", AIAA Jan 1982 (WND)

GOLDBERG J.H. "Gust response of commercial jet aircraft including effects of autopilot operation", NASA-CR-165919, June 1982 (HSC)

HEIMBOLD R.L. & LEFFLER M.F. "The fourth dimension ... flight management system for airline operations",
Lockheed Horizons, Summer 1982, Avail. Lockheed California Co., Burbank, CA (NCG-POP)

JACOB H.G. "Optimal open-loop aircraft control for go-around maneuvers under wind shear influence",
ICAS Congress, 13th, and AIAA aircraft systems and technology conference, Seattle, WA,

KNORR W. "Einflüsse verschiedener Hügelumströmungen auf dem Steigflug von Flugzeugen",
Studienarbeit am Institut für Flugführung der TU Braunschweig, 1982

KONIG R. "Erhöhung der Flugsicherheit bei Scherwindanflügen durch Modifikation von Schubregelungs-
systemen und bestehender Cockpit-Instrumentierung",
Jahrestagung der DGLR, Stuttgart, 5. - 7. Oktober 1982, Vortrag Nr. 82 - 033 und Wissenschaft-
liche Berichte, SFB 58 "Flugführung", TU Braunschweig u. DFVLR, 1982

KOTTMEIER C. "Die Vertikalstruktur nördlicher Grenzschichtstrahlströme",
Dissertation am Institut für Meteorologie und Klimatologie der Universität Hannover, 1982

KRAUSPE P., SWOLINSKY M., VOERSMANN P. "Wind determination and wind shear detection from flight test
and airline flight data",
AMS 1982 (WND-ATM)

KREINDLER E. & NEUMANN F. "Minimum fuel horizontal flight paths in the terminal area",

LECOMpte P. "L'avion de transport de demain : élément d'un système lui-même",
Aéronautique et Astronautique, N° 96-5, 1982 (GEN)

LEE H.P. & LEFFLER M.F. "Development of the L-1011 four-dimensional flight management system",

LOVERING P.B. & BURDESS S.B. "Advanced display for complex flight trajectories",
AGARD-CP-329, July 1982 (RFI)

LUERS J.K., HAINES P. "Heavy rain/wind shear accidents",
AMS, 1982 (ATM)

MAHAPATRA P., DOVLAK R.J. & ZRNIC D.S. "Radar detection of low level wind shear affecting aircraft
terminal navigation",
National Airspace Meeting, Moffett Field, CA, March 1982, Proceedings, p. 52-59, Washington,
DC, Institute of Navigation, 1981 (WND)

MARKOV A.B. "The landing approach in variable winds: curved glidepath geometries and worst-case wind
modelling",
UTIAS-254, p. 376, Dec. 1982 (LDG-WND)

MELTON R.G. "Minimum noise impact aircraft trajectories",
Virginia University, Charlottesville, 1982 (EMY)

MOHLEJI S.C. "Operational and Functional Requirement for the Navigation system in Terminal areas",
Mitre McLean, VA, February 1982

MOOIJ N.A. & VAN COOL M.F.C. "Handling qualities of transports with advanced flight control systems",
AGARD-CP-333, June 1982 (HSC)

NADKARNI A.A. "Suboptimal trajectory following during flare maneuvers in presence of wind shears",
Annual Pittsburgh Conference, 13th, Pittsburgh, PA, April 1982, Proceedings, Part 1, p. 35-44,
Research Triangle Park, Instrument Society of America, 1982 (WND)
1982

ONKEN R., ADAM V., and LECHNER W. "Zeitgenaues Fliegen von Verkehrsflugzeugen - ein Weg zur Leistungssteigerung durch bord- und bodenseitige Hilfen. (Accurately timed flying of commercial aircraft - a way to increase in performance by aircraft- and ground based aids)", DGLR Symposium "Increase in Performance of plane-flying aircraft", dglr advance copy 82-095, Frankfurt, Oct. 1982 (NCG)

RUCKER R.A. "Potential fuel savings of specific ATC system improvements", FAA-EM-82-11, February 1982 (EMY - TCS)

SCHLICHTING M. "Grenzschicht-Theorie", Verlag G. Braun, Karlsruhe 1982

SHANNON J.A. "Direct aircraft velocity determination by L-band moving target detector radar", DOT/FAA-RD-82-41, June 1982

WIGGS J.P. "Cost and fuel consumption per nautical mile for two engine jet transports using OPTIM and TRACEN", NASA-CR-168973, April 1982 (EMY-CST)
BENOIT A. (Program Chairman) "Air Traffic Control in Face of User's Demand and Economy Constraints", AGARD-CP-340, February 1983

BENOIT A. & SWIERSTRA S. "Potential fuel consumption savings in medium - to high density extended terminal areas", EUROCONTROL Report 832004, March 1983 (EMV)

B-56

1983

BEST M.R. "Three-dimensional flight-path reconstruction by means of spline approximation", NLR REPORT TR 83091 U, July 1983

BIRD M.W., SCHNEBBLE R. "Predictive controller issues for trajectory control ... of military aircraft", SAE PAPER October 1983 (LDC)

BOUCHARVARTY A. & VAGHERS J. "4-D aircraft flight path management in real time", American Control conference, San Francisco, California, June 1983 (NCG)

DENTON R.V., JONES J.E. "Optimal TF/TA route planning using digital terrain elevation data ... terrain following/terrain avoidance", IEEE 1983 (NCG)

ETKINS B., ZHU S. "Control logic for landing-abort autopilot mode", UTIAS-258 1983 (LDG)

FITZJARRALD D.E., DIMARZIO D.A. "Aviation-related wind data obtained with an airborne and ground-based Doppler lidar system", NASA Conference on Aerospace and Aeronautical Meteorology (June 1983) (ATM-WND)

FRIEDEL R. "Flight simulation investigations for the problem of flyability of noise optimal approach and takeoff paths", Technische Hochschule, Darmstadt, West Germany, Oct. 1983 (ENY)

KIM B.K., BOSSI J.A. "Wind shear estimation by frequency shaped optimal estimator", IEEE 1983 (ATM-WND)

KNOX Ch.E. "Planning fuel - conservative descents with or without time constraints using a small programmable calculator. Algorithm development and flight test results", NASA-TP-2085, March 1983 (CST-FOP-EMY)

KNOX Ch.E. "Application of Fuel/Time Minimization Techniques to Route Planning and Trajectory Optimization", 1st Annual NASA Aircraft Controls Workshop, Hampton, USA, 1983 (CST-FOP-EMY)

KÖPP P. "Erstellung und Erprobung des Laser-Doppler-Anemometers zur Fernmessung des Windes. (Designing and testing the laser Doppler anemometer for remote wind measurement)", DVLAR Forschungsbericht 83-14, 1983 (ATM)

LAMBERTS A.A. "Operational aspects of the integrated vertical flight path and speed control system", SAE Paper 831420, 1983 (NCG)

LECHNER W. "Zeitgenaues Fliegen durch die Verwendung von Kalmanfilters zur Windvorhersage. (Accurately time flying by using Kalman filters for the wind prediction)", DGLR Annual Meeting 1982, Munich, 1983 (ATM)

1983

LUERS J., HAINES P. "Heavy rain influence on airplane accidents", J.A. vol. 20 Feb. 1983 (ATH)

MAHAPATRA P.R., ZRNIC D.S., DOVIAK R.J. "Optimum siting of NEXRAD to detect hazardous weather at airports", JA vol. 20 Apr. 1983 (ATH)

QUANBECK D.B. "Methods for generating aircraft trajectories", Center for Naval Analyses, Alexandria 1983 (NCG-CST)

RALAITSIZAFY A.M.C. "Generalized flight optimization equations for commercial aircraft", Revue Roumaine des Sciences Techniques, Série de mécanique appliquée, ISSN 0035-4074, Vol. 28, p. 413, July-August 1983 (PDP)

SAUNDERS A.F. "Evaluation of a simple aircraft model", Royal Signals and Radar establishment, Memorandum 3634, November 1983 (CST)

SCHNEIDER G. "Influence of Windshear on Flight Safety", 62nd Symposium of the Flight Mechanics Panel, AGARD, Athen, Greece, 1983

1983

SHELKOVNIKOV M.S. "Strujnye techeniya na malykh vysotakh (Strahlstrame in geringer HShe)", Meteorologiya i gidrologiya, 1983, Nr. 11, Moskau, S. 44-46

SIMPSON C.H. "Advanced navigation systems and fuel conservation", Canadian Aeronautics and Space Journal, Vol. 29, Air Canada, Montreal, Canada, March 1983 (EMY)

SOBOCINSKI R. "Flight test results with collision avoidance systems", IEEE 1983 (TCS)

STIKLE J.W., HALL A.W. "Operating safety in adverse weather environments", NASA (nov. 1983 (ATM)

SWOLINSKY M., and WORSMANN P. "Windmessung an bord des Forschungsflugzeuges DO 28 Skyservernt fUr des Merkur-Experiment. (Wind measurement on board the DO 28 Skyservernt research aircraft for the mercur experiment)", Universitat Braunschweig, August 1983 (ATM)

TOBIAS L. "Time Scheduling of a Mix of 4-D Equipped and Unequipped Aircraft", NASA TM-84327, 1983 (NCG, TCS)

VOELCKERS U. "The COMPAS system for more efficient approach traffic ... for aircraft", DFVLR-Nachrichten, p. 75-28, June 1983 (in German)

ADAM V. & LECHNER W. "Guidance and control research flight testing with HFB 320 Test aircraft", AGARD-AG-262, Dec. 1984 (NCG)

BEDARD A.J. JR., MACCARTHY J. "A case study illustrating time scales and operational responses for a wind shear episode during the JAWS project ... Joint Airport Weather Studies Project", AIAA-Aerospace Sciences Meeting, 22nd Jan. 1984 (ATM-WND)

BEERS J.N.P. Evaluation and Adoptions of the SARP Trajectory prediction model", NLR Memorandum VG-84-004 L, 1984

BENOIT A. & SWIERSTRA S. "Ground-air coordinated control of time of arrival. Part II: Integration of final descent, approach and landing (Tests conducted using SABENA DC-10 and NLR FK-28 aircraft flight simulators" EUROCONTROL Report, 1984 (NCG)

1984

BLYTHE J.H. (Editor) "Propagation influences on digital transmission systems. Problems and solutions", AGARD CP-363, October 1984

BROUSSARD J.R. & HALYØ N. "Investigation, development and application of optimal output feedback theory, Vol. 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation", NASA CR-3829, August 1984 (NCG)

BUHRMAN J. (Editor) "Future requirements for airborne simulation", AGARD-AR-188, April 1984

CAMPELL C.W. "A spatial model of wind shear and turbulence for flight simulation", NASA TP-2313, p. 131, May 1984 (WND-CST)

FROST W. "Wind shear terms in the equations of aircraft motion", JA, Vol. 11, No. 11, p. 866, 1984 (WND-MEQ)

FROST W., ELMORE K.L. & McCARTHY J. "Simulated flight through JAWS wind shear - In-dept analysis results ... Joint Airport weather studies", AIAA Paper 84-0276, January 1984 (WND)

HAVE J.M. ten "Fuel saving by optimal integration of on-board avionics and air traffic control", NLR Report MP 84035U 1984 (EMY-CST)

HOTOP H.J. "Anwendung der Regressionsanalyse zur Ermittlung der Luftdaten-Sensorfehler mittels eines Trägheitsnavigationsystems. (Application of regression analysis to determining the air-data sensor errors by means of an inertial navigation system)", DFVLR-Mitteilung 84-03, 1984 (ATM)

1984 (Suite)

KIM B.K. "Frequency-shaped estimation and robust controller design for aircraft flight control in wind disturbances", Washington Univ., Seattle. 1984 (WND)

KNOX C.E., and IMBERT N. "Ground-Based Time Guidance Algorithm for Control of Airplanes in a Time-Metered Air Traffic Control Environment", NASA TP-2616, Nov. 1986 (NCG, TCS)

KUHN P.M., KURKOWSKI, R.L. "Airborne infrared low-altitude wind detection test", NASA AIAA 1984 (ATM)

LENSCHOW D.H. "Probing the Atmospheric Boundary Layer", American Meteorological Society, Boston, Massachusetts, 1984

MONAN W.P. "Cleared for the visual approach: Human factor problems in air carrier operations", NASA-CR-166573 1984 (LDC)

MYLER T.R. "NEMAR plotting computer program", NASA-CR-165831 1984 (CST)

Office of Management Systems (Federal Aviation Adinistration) and Office of Aviation Information Management (Research and Special Programs Administration) "Airport Activity Statistics of Certified Route Air Carriers", December 1984

SCHRÖN G. "Einführung in die Flugphysik", Vorlesungsscript am Institut für Flugführung der TU Braunschweig, 1984

1984

SWOLINSKY M. & KRAUSPE P. "Wind determination on the basis of data measured during the flight of an airliner", Meteorologische Rundschau, Vol. 37, p. 72-81, June 1984 (in German) (Avail. Technische Universität Braunschweig, West Germany) (ATM-WND)

URBATEKA E. "The route structure in the commercial air traffic of the Federal Republic of Germany", DFVLR-Nachrichten (ISSN 0011-4901), June 1984 (TCS)

VORSMANN, P. "An on-line realization for precise wind vector measurements on board the DO 28 Research Aircraft", 14th Congress of the International Council of the Aeronautical Sciences, September 9-14, 1984, Toulouse, France

VORSMANN P. "Ein Beitrag zur bordautonomen Windmessung", Dissertation am Institut für Flugführung der TU Braunschweig, 1984

ANONYMOUS N.N. "Flight Path Control in Windshear", Boeing Airliner, pp. 1-12, January-March 1985

BENOIT A. "Accurate Aircraft Time-of-Arrival Control for ATC Utilisation in Present and Future Communications Environments", Seminar in Aerospace Sciences, Institute for Aerospace Studies, University of Toronto, Toronto, Canada, 15th October 1985

BIANCO L., RICCIARDELLI S., RINALDI G., SASSANO A. "Sequencing Tasks with Sequence Dependent Processing Times", TIMS XXVI International Meeting, Copenhagen, 1985. To appear also on Naval Research Logistic Quarterly

BIANCO L. "A Multilevel Approach to the ATC Problem: the On-Line Strategic Control of Flights", Seminar CEE-CNR-PFr on Informatics in Air Traffic Control, Capri, October 1985

ERZBERGER H., and CHAPEL J.D. "Ground Based Concept for Time Control for Aircraft Entering the Terminal Area", Proc. AIAA Guidance and Control Conference, Snowmass, CO, August 1985

1985

FUJITA T.T., "The Downburst", Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, 1985

HORMANN A., "Accuracy Requirements for Terminal Area Navigation", Seminar on "Informatics in Air Traffic Control", Capri, October 1985

ICAO "Airborne Collision Avoidance Systems", ICAO Circular 195-AN/118 (CAS)

McLAUGHLIN M.P. "Experimental Detection of Anomalous Mode C Reports Using Radar Data", ICAO SICASP Working Group 2, November (SUR)

RATCLIFFE S. "Devices for the Avoidance of Collision in the Air", Electronics and Power, July 1985 (CAS)

TOBIAS L., ERZBERGER H., LEE H.Q., and O'BRIEN P.J. "Mixing Four-Dimensional Equipped and Unequipped Aircraft in ther Terminal Area", J. Guidance, Control, and Dynamics, vol. 8, May-June 1985, pp. 296-303

BENOIT A. "4-D Control of Current Air Carriers in the Present Environment. Objectives - Status - Plans", Paper presented at the Seminar on "Informatics in Air Traffic Control" organised by the Consiglio Nationale della Ricerca and the Commission of the European Communities

BENOIT A., and SWIESTRA S. "Ground-Air Coordinated Control of Time of Arrival. Part II: Integration of Final Descent, Approach and Landing (Tests conducted using the SABENA DC-10 aircraft flight simulator)", EUROCONTROL Report 862022, August 1986

BLOODWORTH M., "Speed Control of aircraft by ATC" Navigation News, Vol. 1 N° 4 July (TCS, MEQ)

1986

ERZBERGER H., and TOBIAS L. "A Time Based Concept for Terminal Area Traffic Management", AGARD CP-401, November 1986

FORD R.L. "The Definition of an Unnecessary Alert", ICAO SICASP Panel Working Group 2, WP/112 March (CAS)

FUJITA T.T., "DFW Microburst", Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, 1986

MEREDITH J.P. "Exploiting the capabilities of flight management systems in solving the airport arrival problem", AGARD CP-401, November 1986

RLO "SARP II programmatuur specificaties", (in Dutch, release 16 included), 1986

RENEUX J.L. "Aircraft Performance Data for ATC needs", EUROCONTROL Report 862021, July 1986 (CST, SIM)

SEIFERT R. "MLS: Its Technical Features and Operational Capabilities", AGARD CP-410, pp. 42-1 to 42-10, December 1986
1986

SHAW J.M. "Review of Data-Processing Methods for ATC", RSRE Report 86010, October (SUR)

VACHIERY V. "La navigation aérienne et l'avion à l'horizon 2000", AGARD CP-410, pp. 11F-1 to 11F-8, December 1986

VOELCKERS U. "Computer Assisted Arrival Sequencing and Scheduling with the COMPAS System", AGARD CP-401, November 1986

1987

ABBOTT T.S., and STEINMETZ G.G. "Integration of Altitude and Airspeed Information into a Primary Flight Display Via Moving-Tape Formats", NASA TM-89064, 1987

ANONYMOUS N.M. "Windshear Training Aid, Vols. 1 and 2", Federal Aviation Administration, Washington, DC, 1987

BENOIT A. "On-Line Management and Control of Air Traffic", Paper presented at the Advanced Workshop on "Flow Control of Congested Networks: The case of Data Processing and Transportation" organized by the Consiglio Nazionale delle Ricerche (Research Project on Transportation) in cooperation with the Scientific Affairs Division of NATO, Capri, Italy, 12-17 October 1986
Also EUROCONTROL Report 872005, April 1987

Proceedings published by the Royal Institute of Navigation 1, Kensington Gore, London, SW7 2AT, U.K., September 1987
Also EUROCONTROL Doc. 872008, July 1987

Also EUROCONTROL Doc. 872008-F, July 1987

BENOIT A., and SWIERSTRA S. "Ground-Based 4-D Guidance of Flights in Strong Wind", EUROCONTROL Report 872010, August 1987

BENOIT A., GARCIA C., and SWIERSTRA S. "Illustration of the role of data link in the future computer/controller/aircraft dialogue", EUROCONTROL Report 872009, August 1987

BLOM H.A.P. "Hybrid State Markov Processes obtained from Stochastic differential equations", NLR Report, to be published in 1987

1987

ICAO "Wind Shear", ICAO Circular 86-AN/122, Montreal, 1987

IMBERT N. "Traffic Control in Terminal Area - Encyclopedia on System", Pergamon 1987 (TCS, NCG, LDG)

PROSKAWETZ K.O., "Identification of the longitudinal motion of a Dornier DO 28 airplane", IFAC Congress München 1987, Paper Nr. 1053

SCHÄZL G., HEINTSCH T., HOYER H., TETZLAFF G. "Untersuchung der Scherwindverhältnisse an der Weidacher Höhe", Gutachten, 10.07.1987, Braunschweig

Wind Shear
ICAO Circular 186-AN/122, Organisation, Montreal, 1987

BAUSCHAT M. "Entwicklung eines dreidimensionalen, mathematischen Gewittermodells zur Untersuchung des Flugverhaltens in Gewitterstürmen", Diplomarbeit am Institut für Flugführung der TU Braunschweig, Januar 1988

PROSKAWETZ K.O., and WANG W. "ML-Data-Compatibility-Check of General Flight-Test-Data by use of a nonlinear Six Degrees of Freedom Model", IFAC-Symposium Beijing, 1988

PART X-C - INDEX
BIBLIOGRAPHY

Index of Authors' names

This index presents in alphabetical order the names of the authors of publications referred to in the bibliography. For each author, it gives the year of publication and in each year, the number of publications listed.
BEDDOES T.S., 1980
BENKKE R.W., 1971
BENEDICT T.R., 1962
BENHOW R.L., 1972
BENNETT L., 1983, 1984
BENOIT A., 1970 (2 x), 1971, 1972 (2 x), 1973 (3 x), 1974 (2 x), 1975 (2 x), 1976 (5 x), 1977 (2 x), 1981 (2 x), 1982 (7 x), 1983 (8 x), 1984 (3 x), 1985 (2 x), 1986 (8 x), 1987 (8 x), 1988 (3 x)
BENSCH R.R., 1978
BENTLEY G.K., 1969
BERG E., 1977, 1982
BERNERT J.H., 1970
BERT C.W., 1981
BERTONE C.M., 1967
BEST M.R., 1982, 1983
BIEZ E., 1975
BILIMORIA K.D., 1984
BIRDE M., 1980, 1983
BISIAUX A.K., 1957
BLACKMANN S.S., 1986
BLANK D., 1980, 1982
BLICK E.F., 1978
BLISS G.A., 1946
BLOODWORTH M., 1986
BLYTHE J.H., 1984
BOCHEM J.H., 1977
BOCHIS V., 1984
BOEHRET H.H., 1974
BOER W.P. de, 1972, 1974
BOGDANOFF S.M., 1971
BOGOLY B.P., 1987
BOLYANSKI V.G., 1962
BOLZA O., 1961
BROTHE E.M., 1972
BOSSI J.A., 1983
BOUCEK G.P., 1983
BOWES R.C., 1982
BOYCE C.E.P., 1970
BRAFMAN J.C., 1984
BRAY R.S., 1984, 1985, 1986
BREAKWELL J.V., 1977, 1978
BRETT J., 1944
BRENNAN J.H., 1984
BRINKLEY C.W., 1977

A

A'HIRAHAN R.C., 1979
ABBOTT T.S., 1987
ACHTEMEIER G.L., 1982
ADAMS H.W., 1968
ADAMS M.B., 1983
AIKEN W. Jr., 1975
ALEXANDER M.B., 1983, 1984
ALLEN H.J., 1957
ALLES W., 1978, 1980
AMBLARD P., 1977
AMOEDO P., 1979
ANDERSON G.M., 1975, 1976
ANDREUS T., 1981
ANDREWS J.M., 1961
ANTHES R.A., 1978
ARMSTRONG J.H., 1979
ASHFORD N., 1979
ASSAD A.A., 1976
ASSEC J.S., 1983
ASSEML JR., 1971
ATLAS M., 1974

B

BACH R.E., 1982, 1987
BADGER J., 1979
BARNISTER J.D., 1980
BAR-SHALOM Y., 1988
BARBOZA G., 1981
BARMAH J.F., 1975 (2 x), 1976
BARNES A.G., 1985
BARONI A., 1971
BARR M.M., 1974
BASAPUR V.K., 1985, 1986 (2 x), 1987 (2 x)
BASSANI M., 1983
BAUERAT M., 1988
BEALE G.O., 1978
BEATTY A.J., 1979
BECKMAN D.L., 1972
BEDARD A.J., 1984
BRITTING K.R., 1973
BROKOF U., 1979, 1981, 1982
BROMLEY G.R., 1980
BROOKER P., 1983, 1984
BROUSSARD J.R., 1984
BROWN A.D., 1971, 1972
BROWN H.A., 1983
BROWN J.E., 1967
BROWN P., 1973
BROWN S.C., 1984
BRUSCH R., 1970
BRUSH E.G., 1966
BUCHOLZ F.G., 1970
BUCKHAM C.A., 1986
BUHRMAN J., 1984
BULL J.S., 1974, 1976
BUNDICK W.T., 1981
BURDESS S.B., 1982
BURNHAM J., 1970
BURNS H.C., 1969
BUSENMANN A., 1980

C

CAHIR J.J., 1978
CAIGER B., 1966
CAMP D.W., 1982 (2 x), 1983 (3 x), 1984
CAMPBELL G.S., 1974
CAMPOS L.M.B.C., 1984
CANGASOS G.C., 1968
CANNON D.G., 1979, 1980
CARPON W.R., 1981
CARPO A., 1982
CARSTOIV J., 1960
CASPARI M., 1981
CAVALCANTI S.G., 1984
CERIMELE C.H., 1988
CHAFFIN D.E., 1981
CHAMBER E., 1959
CHANDLER C.L., 1982
CHANG C.B., 1984

CHANG H.P., 1984 (2 x)
CHANG K.C., 1988
CHAPMAN J.D., 1984, 1985
CHAPMAN D.R., 1958, 1960
CHAPMAN G.T., 1970
CHARVET Y., 1970
CHELINI J., 1981
CHINAPPI U., 1980
CHONG C.Y., 1982
CHU P.Y., 1987
CICOLANI L.S., 1983
CLARK D.E., 1979
CLIFF E.M., 1984
CLOUTIER J.R., 1974
CLYMER D.J., 1973
CODOBAN A., 1970
COFFIN M.R., 1979
COLLIN S., 1983
COLLINS B.P., 1979
COMES M., 1979
COOPER F.L., 1972
COOTE M.A., 1986
CORMIER P., 1973
CUNIENIAN J., 1975
COVERY R.R., 1979, 1980
CRAIG A., 1972
CRAWFORD D.J., 1975
CREDIEUR L., 1981, 1986
CRUZ M.I., 1983
CULBERTSON J.D., 1971
CULP R.D., 1980
CURRY C.I., 1977
Czechowski R., 1978

D

DAGNINO P., 1972
DANESI A., 1980
DAVIES P.D., 1967
DAVIS C.M., 1981
DAYTON A.D., 1974
DEAR R.G., 1976, 1986
DECKER D.M.T., 1983
DECUYPER M., 1981
DEJARNETTE F.R., 1984
ILLARIOV, V.F., 1972
INNIS, R.C., 1973, 1974
IOZZIA, S., 1981
ISAACS, R., 1965
ISHIHARA, T., 1969
ISRAEL, D., 1976
IVAN, M., 1986
IYER, R.R., 1970, 1971 (2 x)
IZUMI, K.H., 1986
JACOB, H.G., 1982
JACOBSON, I.D., 1981
JAGAU, A., 1984
JAKOB, H., 1972
JAMES, R.L., Jr., 1984
JAZMINSKI, A.H., 1970
JENKINS, G.M., 1970
JOERCK, H., 1984
JOHNSON, C.D., 1981
JOHNSON, F., 1981
JOHNSON, T., 1980
JOLITZ, J., 1973
JONES, J.E., 1983
JOJSTEIN, B.K., 1981
JOPPA, R.G., 1974, 1976
KANNING, G., 1983
KARMAKER, J., 1980
KAUFMAN, J., 1984
KAUL, R., 1983
KAYLOR, J.T., 1985
KECHICHIAN, J.A., 1983
KEHAN, M.G., 1978
KELLY, G.M., 1984
KHAN, MOHAMMADI, S., 1983
KIM, B.K., 1983, 1984
KIRK, D.B., 1970
KISHI, F.H., 1971
KLEHR, J.T., 1983, 1984
KLEIN, R.H., 1970, 1971 (2 x)
KLENNER, J., 1979
KLOPPSTEIN, G., 1977
KLOSTERMEYER, J., 1978
KNAPP, L., 1981
KNORR, W., 1982
KOLMOGOROFF, A.N., 1941
KOPP, F., 1983
KOTTMEIER, C., 1982
KRAFT, D., 1977, 1980
KRAICHNAN, R.H., 1962
KRAKER, P.C., 1985
KRAUSE, P., 1979
KRICKE, D., 1981 (2 x)
KRIPPNER, R.A., 1974
KROTOV, V.F., 1963
KUHN, P.M., 1984
KURKOWSKI, R.L., 1984
KUYPERS, F., 1970
KZUCHZY, ANDREW, J., 1968
LADEMAN, J., 1973, 1974
LAMBRECHTS, A.A., 1983
LAMING, J., 1984
LANGE, W.R., 1971
LANGSTON, M.A., 1987
LANIER, P.D., 1977
LARGE, E., 1981
LASTMAN, G.J., 1968, 1969
LATYPPOV, A.F., 1981
LAX, F.M., 1975, 1976
LAYENDECKER, H., 1979
LEAN, D., 1973
LECHNER, W., 1979, 1982 (2 x), 1983, 1984
LECOMpte, F., 1982
LEE, H., 1978, 1979
LEE, J.T., 1981
LEE, J.Y., 1980
LEE W.Y., 1987 (2 x), 1988
LEFAS C., 1981, 1982
LEFAS C.C., 1985
LEFFLER M.F., 1980, 1982 (2 x), 1984
LEITMANN G., 1962, 1981
LEMAITRE J., 1987
LEMANNA W.J., 1979
LENSCHOW D.H., 1972, 1984
LENTZ R.H., 1981
LEY V.A., 1971, 1975
LEWALLEN J.M., 1971
LEWIS W., 1981
LEWALLEN J.M., 1987
LEFAS C., 1981, 1982
MARTIN D.W., 1978
MARTIN D.W., 1982
MARTIN R., 1976
MARTIN D.W., 1978
MARTIN R., 1976
MARVILLET J.P., 1976
MASCETTI G.J., 1979, 1980
MATCALS, 1975
MATHENY N.W., 1974
MATTHEWS R.J., 1979
MAUS J.R., 1973
MC CONNELL W.J., 1979, 1984
MC CLENDON J.R., 1988 (2 x)
MC DONALD W.T., 1969
MC DONELLS J.D., 1979
MC KENZIE R.B., 1981
MC LAUGHLIN M.P., 1985
MC NAMARA J.E., 1974
MEDINAH E.M., 1980
MELTS I.O., 1972
MELVIN W.W., 1982, 1986 (2 x), 1987 (4 x), 1988 (5 x)
MENGA G., 1978
MERARI A., 1980
MEREDITH J.P., 1986
MEREDITH J.P., 1986
MRONEY R.N., 1979
MERRICK R.B., 1971
MERRITT D.A., 1983
MESAROVIC M.D., 1970
MEYER D., 1979
MEYER G., 1984
MEYERSBURG R.B., 1966
MIDDLETON P., 1973
MILLER H.H., 1980
MISHCHENKO E.F., 1962
MITTENDORF M., 1984
MOAGLAND M.R., 1982
MOERDER D.D., 1982
MONAN W.P., 1984
MONIN A.S., 1958
MONROE R.D., 1967
MOORE D.A., 1984
MOORE T.R., 1988
MORAN K.P., 1983

MACARTHUR J., 1983
MACKINNON D., 1971, 1973
MACKO D., 1970
MADDALON D.V., 1984
MADDEN P., 1971
MAGGS R., 1983, 1984
MAHAPATRA P.R., 1982, 1983
MALTHOUSE N.S., 1983 (2 x), 1984 (2 x)
MAPAR J., 1985
MARCUS F.J., 1976
MARKHAM C.H., 1986
MARKS G.L., 1963
MARNISOLLE-TAGUERKE E., 1972
MARS J.H., 1976, 1978
MARTIN D.A., 1968

M
MORI S., 1982
MORREL J.S., 1956, 1958
MORRISON J.A., 1977
MOSSMAN D.C., 1976, 1977
MOYER H.G., 1979
MUSZYNSKI F., 1981
MYLER T.R., 1984
MUNNICH W., 1987

NACKARNI A.A., 1980, 1982
NAFTEL P.B., 1985
NACARAJAN N., 1974, 1976
NAQVI S., 1971
NASA, 1976
NEIGE S.E., 1957
NEMEREVER W.J., 1969
NEWBERY R.R., 1982
NEWMAN T.J., 1973
NICHOLS D.W., 1967
NICHOLS M.A., 1973, 1974
NIEUWPOORT A.M.H., 1984

OBERLE H.J., 1988
OBUCHON A.M., 1958
OFFI D.L., 1981
OLIVER J.G., 1982
OLIVER R.J., 1979
ONKEN R., 1982
OOSTGAARD M.A., 1984
ORNELAS J.R., 1983
OSDER S.S., 1976
OSTGOLLSVSKI J.V., 1971
OSTROFF A.J., 1984
OUTHLING W.L. JR., 1976
OVERESCH E., 1963

PACHTER W., 1987
PAILEN W., 1979
PAINE J.P., 1967
PAINTER J.A., 1973
PANOFSKY H.A., 1970
PANOFSKY H.W., 1964
PARIS ST., 1981
PARK S.K., 1972, 1973
PARKER R.H., 1968
PARSOMS M.G., 1976
PASHINTSEV V.T., 1972
PATMORE L.C., 1983
PATTENSON G.A. JR., 1968
PATTIPATI K.R., 1983
PECKHAM D.H., 1973
PECSVARADI T., 1975
PERFITT T.E., 1982
PERGUSON D.R., 1981
PERRY A.E., 1984
PETERSON R.E., 1984
PETRIN D.M., 1968
PFACK T.A., 1983
PFEFFER I., 1971
PHILIPS CH.L., 1983
PHILIPS F.C., 1942
PIATELLI M., 1972
PIERSON B.L., 1981
PINTY B., 1983
POLHEMUS W.L., 1963
PONTYAGIN L.S., 1962
POOL D.A., 1983, 1984
POPPLETON E.D., 1969
PORITZKI S.B., 1971, 1986
POSNER E.C., 1941
POWERS W.F., 1969
PRANDTL L., 1965
PRICE C.B., 1984
PRICE CH.F., 1968
PRICE D.B., 1983
PRICE W.L., 1974
PRINTEMPS A., 1977
PRITCHARD F.E., 1965, 1970
PRONGAY D.M., 1968
PROSKAMETZ K.O., 1987, 1988
PSIAXI M.L., 1984, 1986
PYRON E., 1972
V

VACHIERY V., 1986
VAN DE MOESDIJK G.A.J., 1975
VAN DINE C.P., 1969
VANDENBOUWELLERTE A., 1986
VANDER VELDE W.E., 1969
VENKAKATAMAN P., 1984, 1985
VERNET J.F., 1969
VERNON M.D., 1962
VICOY D.D., 1984, 1985
VINCENT T.L., 1966
VIVIER C., 1973
VOIGT J., 1979

W

WAHI K.M., 1977
WALBEEF J.G.D., 1985
#ALDMAN R.H., 1969
WALSH TH.M., 1978
WANG H., 1988
WANG T., 1985, 1986 (5 X), 1987 (4 X), 1988 '6 X)
WANG W., 1988
WANNEER J.C., 1969
WARKSON M.A., 1969
WARNER D.N., 1974
WARKOCH A., 1975
WASHBURN R.B. Jr., 1979
WAUER J.C., 1981
WEDDEL D., 1976
WEENER E.F., 1978
WEINS D., 1974
WEINGARTEN N.C., 1981
WEIR D.J., 1971
WEISS H.G., 1968
WEIZSACKER C.F., 1948
WELL K.H., 1977, 1982
WELLING O., 1941
WESTDIJK J.A., 1984
WESTON J.I., 1981
WESTWATER E.R., 1941

Y

YAER T.J., 1985
YAVIN Y., 1987
YOUNG J.C., 1981
YOUNG W.L., 1982

Z

ZAGALSky N.R., 1971, 1972
ZANELLi R., 1981
ZARETT H., 1971
ZELLMEYER A., 1987
ZINNIC N.S., 1982, 1983
ZVABA J., 1973
PART XI

List of Contributors
A — Contributors and Affiliations
B — Index
PART XI-A - CONTRIBUTORS AND AFFILIATIONS
BELGIUM (B)

Benoît, André, Ir., Dr., (Programme Director and Editor)
Université Catholique de Louvain
Faculté des Sciences Appliquées (MENA)
Place du Levant, 2
B-1348 Louvain-La-Neuve.

Delnatte, Yves, Commandant, Ir. (Author)
SABENA, Belgian World Airlines
Direction des Opérations
Aéroport de Bruxelles-National
B-1930 Zaventem.

Haus, Frédéric, Pr. Emeritus (Author)
Universités de Liège et de Gand
Rue Colonel Chaltin, 99
B-1180 Bruxelles.

Willems, Pierre-Yves, Pr. (Author)
Université Catholique de Louvain
Faculté des Sciences Appliquées (AUTO)
Place du Levant, 2
B-1348 Louvain-La-Neuve.

CANADA (CDN)

Etkin, Bernard, Pr. (Author)
University of Toronto
Institute for Aerospace Studies
Dufferin Street, 4925
Downsview, Ontario M3H 5T6.

Etkin, David A. (Author)
Canadian Climate Center
Atmospheric Environment Center
Downsview, Ontario M3H 5T6.

EUROCONTROL (EU)

EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION
ORGANISATION EUROPEENNE POUR LA SECURITE DE LA NAVIGATION AERIENNE

Benoît, André, Ir., Dr., (Author)
EUROCONTROL HEADQUARTERS
Engineering Directorate
Rue de la Loi, 72
B-1040 Bruxelles.

Cox, Maurice (Author)
EUROCONTROL HEADQUARTERS
Engineering Directorate
Rue de la Loi, 72
B-1040 Bruxelles.

Garcia Avello, Carlos, Ir. (Author)
EUROCONTROL HEADQUARTERS
Engineering Directorate (consultant)
Rue de la Loi, 72
B-1040 Bruxelles.
Kraan, P. van der, Ir.
(Author)
EUROCONTROL HEADQUARTERS
Engineering Directorate
Rue de la Loi, 72
B-1040 Bruxelles.

Swierstra, Sip
(Author)
EUROCONTROL HEADQUARTERS
Engineering Directorate
Rue de la Loi, 72
B-1040 Bruxelles.

Vachiéry, Victor, Ir.
(Author)
EUROCONTROL HEADQUARTERS
Engineering Directorate
Rue de la Loi, 72
B-1040 Bruxelles.

FRANCE (F)

Baud, Pierre
(Co-ordinator)
Airbus Industrie
Division des Vols
Rond-Point M. Bellonte, 1
F-31070 Blagnac Cedex.

Camus, Paul
(Author)
Airbus Industrie
Group Manager Flight Controls
Rond-Point M. Bellonte, 1
F-31070 Blagnac Cedex.

Carel, Olivier, Ir.
(Author)
S.T.N.A.-3
Rue Decourbe, 246
F-75015 Paris.

Fouillot, J.P., Dr.
(Author)
Laboratoire de Physiologie
Faculté de Médecine, Cochin,
Rue du Faubourg St Jacques, 24
F-75104 Paris.

Huynh, H.T.
(Author)
O.N.E.R.A.
Av. de la Division Leclerc, 29
F-92320 Chatillon-sous-Bagneux.

Imbert, Nicole, Ir.
(Author)
C.E.R.T.
B.P. 4025
Av. E. Belin, Complexe Aérospatial
F-31055 Toulouse.

Monteil, C., Ir.
(Author)
Airbus Industrie
Operations Engineering, Flight Division
Rond-Point M. Bellonte, 1
F-31070 Blagnac Cedex.

Pélegrin, Marc, Dr., Ing. Général
(Author, Co-ordinator, GCP)
C.E.R.T.
Complexe Aérospatial, BP 4025
Avenue E. Belin, 2
F-31055 Toulouse Cedex.
Speyer, Jean-Jacques, Ir. (Author)
Airbus Industrie
Rond-Point M. Bellonte, 1
F-31707 Blagnac Cedex.

GERMANY (G)

Brockhaus, Rudolf, Pr. Dr.-Ing. (Author)
Institut fuer Flugfuehrung Braunschweig
Technische Universitaet Braunschweig
Hans-Sommer-Strasse, 66
D-3300 Braunschweig.

Fricke, M., Pr. Dr.-Ing. (Author)
Technische Universitaet Berlin (Sekr F3)
Institut fuer Luft-und Raumfahrt
Marchstrasse, 14
D-1000 Berlin 10.

Gunther, F., (Co-ordinator)
Bundesministerium der Verteidigung
RuPo 4
Postfach 13 28
D-5300 Bonn.

Hörmann, Andreas, Dr.-Ing. (Author)
Technische Universitaet Berlin
Fachgebiet Flugfuehrung und Luftverkehr
Marchstrasse, 14
D-1000 Berlin 10.

Schänzer, G., Pr. (Author)
Institut fuer Flugfuehrung Braunschweig
Technische Universitaet Braunschweig
Hans-Sommer-Strasse, 66
D-3300 Braunschweig.

Winter, Heinz, Dr.-Ing. (Co-ordinator,GCP)
D.F.V.L.R.
Flughafen
D-33 Braunschweig.

GREECE (GR)

Lefas, Chris C., Dr. (Author)
NRC Democritos, Dept. of Electronics
P.O. Box 60228
153, 10 A Paraskevi
G-Athens.

ITALY (I)

Bianco, Lucio, Pr. (Author)
Consiglio Nazionale delle Ricerche
Viale Manzoni, 30
I-00185 Roma.
NETHERLANDS (NL)

<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vischer, H.</td>
<td>The Netherlands Department of Civil Aviation (RLD)</td>
<td>PO Box 7601, Havenmeesterweg NL-1118 ZJ Schiphol.</td>
</tr>
</tbody>
</table>

UNITED KINGDOM (UK)

<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attwool, Victor</td>
<td>Civil Aviation Authority House</td>
<td>D PA3 Room T 1311 Kingsway 45-59 GB-LONDON WC2 B6TE.</td>
</tr>
<tr>
<td>Forrester, D.A.</td>
<td>Regional Meteorological Office</td>
<td>London Road GB-Bracknell, RG12 2SZ.</td>
</tr>
</tbody>
</table>
McLean, D., Pr. Westland Professor of Aeronautics
University of Southampton
GB-Southampton S09 5NH.

Ratcliffe, Stanley ATC System Analyst
Mason Close, 2
GB-Malvern WR14 2NF.

U.S.A. (US)

(Author) 17, Washington Street,
USA-Norwalk, Connecticut 06854

Capron, R. NASA Advanced Transport Operating
(Author) System Program Office
USA-Hampton, Virginia 23665.

Credeur, Leonard NASA Langley Research Center
(Author) Advanced Transport Operating
System Program Office
USA-Hampton, Virginia 23665.

Davis, Thomas J. NASA Ames Research Center
(Author) MS 210-9
USA-Moffett Field, CA94035.

Erwin Jr, Ralph L. Boeing Commercial Airplanes
(Author) Mailstop 9W-38, P.O. Box 3707
USA-Seattle, Washington 98124-2207.

Erzberger, Heinz, Dr. NASA Ames Research Center
(Author) MS 210-9
USA-Moffett Field, CA 94035.

Green, Steven M. NASA Ames Research Center
(Author) MS 210-9
USA-Moffett Field, CA 94035.

Howell, William E. NASA Langley Research Center
(Co-ordinator) USA-Hampton, Virginia 23665.

Howells, Peter J. Smiths Industries
(Author) Aerospace Defense Systems, Mail Stop 240
4141 Eastern Avenue, S.E.
USA-Grand Rapids, MI49518-8727.
Izumi, K.H.
(Author)
Boeing Commercial Airplanes
Mail Stop 9W-38, PO Box 3707
USA-Seattle, Washington DC98124-2207.

Knox, Charles E.
(Author)
NASA Langley Research Center
Advanced Transport Operating System Program Office
USA-Hampton, Virginia 23665.

McIver, Duncan E.
(Co-ordinator, GCP)
NASA Headquarters
Independence Avenue, 600 SW
USA-Washington, DC 20546.

Miele, Angelo, Pr.
(Author)
Rice University
Aero-Astronautics Group
230 Ryon Building, P.O.B. 1892
USA-Houston, Texas 77251.

Simpson, Robert, Pr.
(Author)
Massachusetts Institute of Technology
Dept. of Aeronautics and Astronautics Building 33, Room 411
USA-Cambridge, MA 02139.

Vicroy, Dan D.
(Author)
NASA Langley Research Center
Advanced Transport Operating System Program Office
USA-Hampton, Virginia 23665.

Williams, David H.
(Author)
NASA Langley Research Center
Advanced Transport Operating System Program Office
USA-Hampton, Virginia 23665.
INDEX OF CONTRIBUTORS' NAMES

This index presents in alphabetical order the names of the authors of contributions to this AGARDograph. For each author, it gives the reference of the paper (Ref.) and the affiliation as listed in Part XI-A (Loc.).

Baud, Pierre, France, Co-ordinator, Loc. p. C-6
Benoit, André, EUROCONTROL, Author, Refs. 12, 17, 20, 23, 29, 30, 32, 38, Loc. p. C-5
Benoit, André, Belgium, Programme Director and Editor, Loc. p. C-5
Bianco, Lucio, Italy, Author, Ref. 18, Loc. p. C-7
Blom, H., Netherlands, Author, Ref. 34, Loc. p. C-8
Brockhaus, Rudolf, Germany, Author, Ref. 3, Loc. p. C-7
Camus, Paul, France, Author, Ref. 8, Loc. p. C-6
Capron, R., U.S.A., Author, Ref. 27, Loc. p. C-9
Carel, Olivier, France, Author, Ref. 36, Loc. p. C-6
Cox, M.E., EUROCONTROL, Author, Ref. 37, Loc. C-5
Dalm, T.B., Netherlands, Author, Ref. 16, Loc. p. C-8
Delnatte, Yves, Belgium, Author, Ref. 38, Loc. p. C-5
Etkin, Bernard, Canada, Author, Ref. 5, Loc. p. C-5
Etkin, David A., Canada, Author, Ref. 5, Loc. p. C-5
Fouillot, J.P., France, Author, Ref. 11, Loc. p. C-6
Fricke, M., Germany, Author, Ref. 39, Loc. p. C-7
Green, Steven M., U.S.A., Author, Ref. 31, Loc. p. C-9
Gunther, F., Germany, Co-ordinator, Loc. p. C-7
Haus, Frédéric, Belgium, Author, Ref. 1, Loc. p. C-5
Have, J.M. ten, Netherlands, Author, Ref. 16, Loc. p. C-8
Hollington, John, U.K., Co-ordinator, Loc. p. C-8
Huynh, H.T., France, Author, Ref. 4, Loc. p. C-6
Hörmann, Andreas, Germany, Author, Ref. 39, Loc. p. C-7
Imbert, Nicole, France, Author, Ref. 21, Loc. p. C-6
Kraan, P. van der, EUROCONTROL, Author, Ref. 33, Loc. p. C-6
Lefas, Chris C., Greece, Author, Ref. 35, Loc. p. C-7
McIver, Duncan E., U.S.A., Co-ordinator GCP, Loc. p. C-10
Monteil, C., France, Author, Ref. 11, Loc. p. C-6
Félegrin, Marc, France, Co-ordinator GCP, Author, Ref. 21, Loc. p. C-6
Schänzer, G., Germany, Author, Refs. 6,9, Loc. p. C-7
Speyer, Jean-Jacques, France, Author, Ref. 11, Loc. p. C-7
Swierstra, Sip, EUROCONTROL, Author, Refs. 12,17,23,29,30,32,38, Loc. p. C-6
Vachiéry, Victor, EUROCONTROL, Author, Ref. 13, Loc. p. C-6
Vicroy, Dan D., U.S.A., Author, Ref. 24, Loc. p. C-10
Visscher, H., Netherlands, Author, Ref. 16, Loc. p. C-8
Willems, Pierre-Yves, Belgium, Author, Ref. 15, Loc. p. C-5
Williams, David H., U.S.A., Author, Ref. 25, Loc. p. C-10
Winter, Heinz, Germany, Co-ordinator GCP, Loc. p. C-7
1. Recipient's Reference: AGARD-AG-301 Volume 3
2. Originator's Reference: ISPN 92-835-0563-8
3. Further Reference: UNCLASSIFIED

5. Originator: Advisory Group for Aerospace Research and Development
 North Atlantic Treaty Organization
 7 rue Ancelle, 92200 Neuilly sur Seine, France

6. Title: AIRCRAFT TRAJECTORIES — Computation — Prediction — Control
 VOLUME 3

8. Author(s)/Editor(s): Various Edited by André Benoit

9. Date: May 1990

10. Author's/Editor's Address: Various

11. Pages: 158

12. Distribution Statement: This document is distributed in accordance with AGARD policies and regulations, which are outlined on the Outside Back Covers of all AGARD publications.

13. Keywords/Descriptors:
 - Computation
 - Prediction
 - Control
 - Bibliography
 - Abstracts
 - Contributors to AG-301

14. Abstract:

 This volume — part of a set of three — is composed of a short introduction, a Book of Abstracts of the 39 papers included in the overall work, an extensive Bibliography which incorporates, in particular, most of the references cited by the 56 authors and co-authors, and a List of Contributors ordered by countries alphabetically.

 Both the Bibliography and the List of Contributors are each completed by an adequate index.

 This AGARDograph has been sponsored by the Guidance and Control Panel of AGARD.
<table>
<thead>
<tr>
<th>AGARDograph No.301 Volume 3</th>
<th>AGARD-AG-301 Vol.3</th>
<th>AGARDograph No.301 Volume 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisory Group for Aerospace Research and Development, NATO</td>
<td>Computation Prediction Control Bibliography Abstracts Contributors to AG-301</td>
<td>Advisory Group for Aerospace Research and Development, NATO</td>
</tr>
<tr>
<td>AIRCRAFT TRAJECTORIES, COMPUTATION — PREDICTION — CONTROL. VOLUME 3</td>
<td>This volume — part of a set of three — is composed of a short introduction, a Book of Abstracts of the 39 papers included in the overall work, an extensive Bibliography which incorporates, in particular, most of the references cited by the 56 authors and co-authors, and a List of Contributors ordered by countries alphabetically.</td>
<td>This volume — part of a set of three — is composed of a short introduction, a Book of Abstracts of the 39 papers included in the overall work, an extensive Bibliography which incorporates, in particular, most of the references cited by the 56 authors and co-authors, and a List of Contributors ordered by countries alphabetically.</td>
</tr>
<tr>
<td>Edited by André Benoit</td>
<td>P.T.O.</td>
<td>P.T.O.</td>
</tr>
<tr>
<td>Published May 1990</td>
<td>158 pages</td>
<td>158 pages</td>
</tr>
<tr>
<td>158 pages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This volume — part of a set of three — is composed of a short introduction, a Book of Abstracts of the 39 papers included in the overall work, an extensive Bibliography which incorporates, in particular, most of the references cited by the 56 authors and co-authors, and a List of Contributors ordered by countries alphabetically.
<table>
<thead>
<tr>
<th>Both the Bibliography and the List of Contributors are each completed by an adequate index.</th>
<th>Both the Bibliography and the List of Contributors are each completed by an adequate index.</th>
</tr>
</thead>
<tbody>
<tr>
<td>This AGARDograph has been sponsored by the Guidance and Control Panel of AGARD.</td>
<td>This AGARDograph has been sponsored by the Guidance and Control Panel of AGARD.</td>
</tr>
</tbody>
</table>