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1. Introduction

Plasticity, as it is currently understood, embraces wide ranging fields of
study which involve difficult phenomena in the mechanics of inelastic
behavior of solids. Most often the current interest in the subject refers to the
construction of a general theory for finitely deforming ‘rate-independent’
behavior of elastic-plastic materials in which viscous effects are ignored.
Such a theory should. of course, be sufficiently broad enough to: (i) cover
a fairly general class of matenals (including metals and geomatenials), (ii)
include anisotropic matenals, (1i1) be valid for all possible motions, and (iv)
admit constitutive equations which are not too special'. Moreover, as is
well-known, many of the basic features of the ‘rate-independent’ theory are
shared by several closely related areas of inelastic matenal behavior which
include time effects such as creep and reiaxation, as well as thermal effects.
Consequently, attention in this review is mainly focussed on the various
unresolved (or not fully understood) aspects of the ‘rate-independent’
theory, although the nature of a number of closely related areas of the
subject are also discussed.

It is fruitful to take a geometrical point of view in plasticity and this has
been utilized since the early development of the subject. Thus, for example,
the components of a symmetric stress tensor may be regarded as a point in
a six-dimensional stress-space and the boundary of an elastic region in this
space can be interpreted as a yield surface in stress space?.

Similarly, the components of a symmetric strain tensor is a point in a
six-dimensional strain space and the boundary of the elastic domain in this
space is a yield surface in strain space. The equation representing the latter
surface can be easily obtained from the corresponding yield surface in stress
space once the stress response (such as the generalized Hooke's law) is
specified. However, historically all developments on the subject relating to
the classical infinitesimal deformation of elastic-plastic matenals have
adopted a stress-based approach and have admitted yield surfaces and
associated loading criteria only in stress space. Such a stress-based approach
to date remains one of the main ingredients of the majority of research in
finite deformation of elastic-plastic materials, the development of which
began with the work of Green and Naghdi (1965, 1966). A point of
departure which employs a strain-based formulation of finite plasticity has
been pursued by the present writer and co-workers since 1975. In this
formulation, both the strain space and the stress space are utilized, although

! While special constitutive equations are useful and of interest in a parucular context or for special
applications. often they are a source of anomalies in the construction of a ressonably general theory.
" Such geometncal interpretations correspond to the elasuc range and the iniual yeld of the famuliar
one-dimensional stress-strain cur - ‘or many matenals, including ducule metals.
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the former is taken as primary. Keeping this background in mind, both the
strain-space and the stress-space formulations of the subject are presented
throughout this review; and their differences, along with their predictive
capabilities, are discussed in considerable detail.

As is well-known, the existing formulations of a general theory of
elastic-plastic matenal in the presence of finite deformation are somewhat
controversial and there remains strong disagreements on a number of
important issues between several existing schools of plasticity.’ Because of
these disagreements, the areas of agreement in this review are separated
entirely from a large number of unresolved issues on the subject. Thus,
following some preliminary remarks in section 2, areas in which there is
agreement among workers in the field are placed in section 3. This is
followed in section 4 by separate discussions of each of the basic ingredients
which enter the ‘rate-independent’ theory for finitely deforming elastic-plas-
tic materials. The content of section 4, which covers the areas of disagree-
ment, comprises nine subsections (4A to 4I). Some of these subsections
necessarily occupy more space than others; but, in each case, the a:m of this
review is to describe the basic nature of each unresolved issue, present the
necessary argument(s) (both pro and con) in as simple a manner as possible
and arrive at a definite conclusion regarding the current state of the
unresolved issue in question. Some aspects of the strain-space formulation
are necessarily included in section 4 as part of the comparative discussions
which are the main purpose of this critical review. The remaining develop-
meants of a strain-based theory are summarized and discussed separately in
section 5 and comprises three subsections (SA to 5C). A number of special
features or limiting cases of the general theory are discussed in subsection
5B and include the important limiting case of the rigid-plastic materials in
the presence of finite deformation and a demonstration that the well-known
Prandtl-Reuss constitutive relations are strain-based even though this fact
was not onginally recognized. The remaining three sections of this review
(sections 6-8) are devoted to several closely related areas of the subject
pertaining to thermal effects and rate-dependent theory of plasticity, certain
features of experimental and computational aspects so far as their beanng
on the theory is concerned, as weil as microstructural effects and crystal
plasticity.

An =ffort is made to keep the number of mathematical equations to a
minimum so that attention can be centered mainly on conceptual issues.
When necessary, standard vector and tensor notations are used throughout

3

This type of disagreement is aiways present n all difficult areas of physical sciences and should not
come as 3 surpnse. Indeed. even 1n the context of smail deformauon, there were senous disagreements
dunng the period of approximately [930-1960 between the proponents of the “flow™ theory versus the
“deformation” theory of plasucity. In this connection. see a paper by Drucker (1949) which contains a
discussion of inadequacies of deformation theones of plasucity 1n the presence of small deformaton.
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this review. Generally, vanous entities are represented in coordinate-free
forms, but it is understood that they are defined with reference to a fixed set
of orthonormal basis, ex (K =1, 2, 3) say, in a three-dimensional Euclidean
space.

The list of references included is far from complete or even comprehen-
sive, but rather is intended to be representative of the existing different points
of view and pertinent to the issues discussed. Since this review is mainly
concerned with finite deformation of elastic-plastic materials, references to a
large number of important earlier works pertaining to small elastic-plastic
deformations are not included, but these and related references not explicitly
cited in a particular context can, however, be easily traced from those cited
here. Some of the references by the present writer and co-workers contain
developments which directly bear on the content of this review. A number
of statements or descriptions of physical phenomena from these earlier
papers are freely quoted or paraphrased in subsequent sections.

The contents of this review article 1c necessarily addressed to those who
have some familiarity with the subject of plasticity (at least in the context of
small deformation) and who have an inkling of the nature of the existing
controversies. Nevertheless, throughout this article, an effort i1s made to
provide sufficient background so that it could be also of some use to a wider
range of readers. Although all symbols are defined when first introduced, for
readers’ convenience a glossary of notation listing frequently used symbols
is provided in a table below. It has not been possible to maintain a complete
uniformity in notations and on occasion we have found it necessary to deviate
from the scheme of the table and use the same symbols in different context.

A glossary of notation
Place of definition

Symbol  Name or description or first occurrence
b Body force per unit mass (3.2)
A Body Sec. 2
D Rate of deformation tensor (2.3),
D,.D, Measures of “elastic” and “plastic” parts  (4.23),
of the tensor D in an additive
decomposition
él,é,l Spherical parts of total and plastic strains  Subsection 4H
in the linearized theory associated with (before (4.27))

the decomposition of (£, E,) into their
deviatoric and sphenical parts

ex Orthonormal basis (K=1,2.3)in a Sec. 1
three-dimensional Euclidean space
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Young's modulus of elasticity
Lagrangian measure of strain and its rate
Plastic strain and its rate

Yield function in stress space

Inner product of the normal to the yield
surface in stress space and the stress
rate

Deformation gradient relative to the
reference position

Factors in the muitiplicative
decomposition of F associated with an
intermediate stress-free configuration
(see also Fig. 1)

Yield function in strain space

[nner product of the normal to the yield
surface in strain space and the strain
rate

The temperature gradient relative to the
reference position

Second order identity tensor

Fourth order unit tensor

Components of unit tensor 5 referred to
basis e, ® e, defined similar to that
following (5.11)

Velocity gradient

Measure of “elastic’” and “‘plastic’ parts
of the tensor L in an additive
decomposition

The mechanical (or stress) power

The first (nonsymmetric) Piola-Kirchhoff
stress tensor

The heat flux vector measured per unit
area in the reference configuration

Proper orthogonal tensor-valued functions
of time representing different rigid body
rotations

Spherical part of the stress tensor in the
linearized theory associated with the
decomposition of § into its deviatoric
and spherical parts

Abbreviation standing for superposed
rigid body motions

(7.9

(2.2), (2.3),

Subsection 4A,
(4.22)

(4.11)

(4.17),

(2.1),

(4.1)

(4.14)
(4.17),

Subsection 6A
(2.2)

(5.10)
(5.27)

Sec. 2
(4.23),

(3.6)

(3.1

Subsection 6A

(2.9), (4.9)

Subsection 4H
(before
(4.27)

Sec. 4 (opening
paragraph)

39
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T

The second (symmetric) Piola-Kirchhoff
stress tensor

Time

The stress vectors measured, respectively,
per unit area of the current and
reference configurations

The Cauchy stress tensor

Abbreviations for the set of variables
(E.E,.x) and (E —E,. E,, x)

Particle velocity

Abbreviation for the set of variables
(3. E,. x)

Spin (or vorticity) tensor

Measures of “elastic’’ and ‘‘plastic’ parts
of the tensor W in an additive
decomposition similar to those in (4.23)

Abbreviation for the set of vanables
(E,, k. 2)

Constitutive coefficient pertaining to a
measure of strain-hardening

The shift tensor (or the *back stress’) and
its rate

Deviatoric parts of total and plastic
strains in the lineanzed theory
associated with the decomposition of
(E. E,) into their deviatoric and
spherical parts

Rectangular Cartesian components of y, y,

Strain-hardening (or work-hardening) and
1ts rate

Shear modulus of elasticity

Mass densities in the reference and current
configurations

A symmetric second order tensor which
occurs in (5.10)

Deviatoric part of the stress tensor in the
linearized theory associated with the
decomposition of § into its deviatoric
and sphencal parts

Rectangular Cartesian components of ¢

A scalar potential. specific Helmholtz free
energy

A scalar function representing
strain-hardening charactenzation as
defined by (4.20)
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Sec. 3, Sec. §

(3.1)
(4.7,

Sec. 2
(4.10)

Subsection 4G
Subsection 4G

(5.4)
(4.27)

Subsection 4H,
(4.28)

Subsection 4H
(before
(4.27)

(5.18)

Subsection 4B,
(4.26)

(4.27)

(3.2). (3.3

(5.12)

Subsection 4H
(before
(4.27)

(5.20)
(5.30), (6.2)

(4.19)
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2. Preliminary remarks

Prior to 1960, the developments in the rate-independent theory of
elastic-plastic materials were chiefly confined to small deformation and to a
large extent dealt with special material responses such as elastic-perfectly
plastic or with special hardening laws such as ‘isotropic’ or ‘kinematic’
hardening®. This earlier state of the subject is evident from the contents of
the books by Hill (1950) and by Prager and Hodge (1951), among others,
as well as the coverage of several review articles, e.g., by Prager (1955),
Drucker (1960), and Naghdi (1960). Nevertheless, some of the basic ideas
and features of the theories with small deformation either wholly or
partially can be readily extended to finitely deforming elastic-plastic materi-
als. An account of ongoing developments in plasticity, confined mainly to
infinitesimal theory, can also be found in a recent review article by Drucker
(1988) which includes some material on finite plasticity and microstructure.

As noted in section |, because of the strong disagreements on several
important unresolved issues most of which also bear on conceptual charac-
terization of the ‘rate-independent’ theory of plasticity, our exposition of the
subject begins in section 3 with areas of agreement among the various
schools of plasticity. For example, the vanious schools all agree on the
nature of statements of the classical conservation laws and the associated
invariance requirements which must hold for all theories of material behav-
ior’. These include the laws of conservations of mass, linear momentum and
moment of momentum.

Preparatory to the developments that follow, it is expedient to recall
some basic formulas and introduce some notation and background material.
Consider a body # with particles (maternial points) X and identity X with its
position X in a fixed reference configuration x, in a three-dimensional
Euclidean space® £°. Let x be the position vector in & occupied by X in the
current configuration x of # at time ¢. Also let g, and ¢ be, respectively, the
mass densities of # in the configurations x, and x. A motion of # is a
mapping g defined by x = z(X. ), and the deformation gradient relative to
X and its determinant are:

cx
=3y det F > 0. (2.1

‘ An exception to the limitation of “small deformation™ i1s the development of a special theory of
ngd-plastic matenals, mouvated mainly by metal-formung processes, but these developments were also
somewhat restnctive or were effected for rather special classes of motion or deformation.

* But there 13 a disagreement on invanance requirement associated with plastc stran (and work-hard-
ening) which will be discussed n section 4.

*  The reference configuration x, 1s not necessanly the imitial configuration but for many purposes may
be identified with one.
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The particle velocity and the velocity gradient are denoted, respectively, by
v =xand L =grad v = FF~', where a superposed dot denotes the material
time derivative with respect to the current time ¢ holding X fixed, F~' is the
inverse of F and the notation ‘‘grad’ stands for the gradient operator with
respect to the place x keeping ¢ fixed. The relative (Lagrangian) symmetric
strain tensor E is defined by

E=%4F"F -, (2.2)

where F7 stands for the transpose of F and [ is the identity tensor. The rate
of strain calculated from (2.2) is

E = FDF, D=4L+LM, (2.3)

where a superposed dot denotes material time derivative and D is the rate
of the deformation tensor.

Under another motion, which differs from the given one only by a
superposed rigid body motion, the material point X’ moves to the place x -
in the configuration x* at time ¢* =1 + a, where a is constant. For all
quantities associated with the configuration x *, we use the same symbols as
those for the configuration x but with an attached plus ** + ™ sign. Thus, for
the motion resuiting in the configuration x *, the deformation gradient, the
strain and rate of strain transform according to

F  -=QF E+*=E E*=E, (2.4)

while the velocity gradient and the rate of deformation tensor in x * are
related to the corresponding quantities in x by

L-=QLQ"+Q, D*=QDQ". (2.5)

In (2.4)-(2.5), Q = Q1) is a proper orthogonal tensor-valued function of
time which represents rigid body rotation and (1) = Q(+)Q7(¢) represents
ngid body angular velocity. Also, the Jacobian of transformation and the
mass density in the configuration x * are related to those in x by

det F* =det F, e =g (2.6)

Similar relationships can be caiculated for other kinematical quantities but
these will not be recorded here.

3. Areas of agreement

Let T be the Cauchy stress tensor (true stress), P the first (nonsymmet-
ric) Piola-Kirchhoff stress tensor (engineering stress), S the second (symmet-
ric) Piola-Kirchhoff stress tensor and recall the following relationships
between these three stress tensors:

(det AT = PF™ = FSF'. (3.1
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As is well-known, the distinction between the three stresses T, P and §
disappear in a linearized theory in which the motion and all its time and
space derivatives are small in a sense that can be made precise, but we do
not elaborate on this point here.

Setting aside the consequence of conservation of mass, we recall that the
balance of moment of momentum either leads to the requirement that T be
symmetric (in the Eulerian description) or imposes a similar symmetry
restriction on PF7 (in the Lagrangian description). Keeping this back-
ground in mind, we record here the differential equations of motion which
follow from the balance of linear momentum. In the Eulerian description,
these equations can be represented as

div T + gb = go. (3.2)
while in the Lagrangian description they have the form
Div P + gob = ¢,9, (3.3)

where the notations *div’" and " Div" stand for the divergence operator with
respect to x and X, respectively.

Physical considerations demand that certain fields and functions enter-
ing the theory be indifferent (or objective)’ to any transformation which
takes the present configuration x of a body rigidly into a configuration x *.
It is well-known that this requirement is met by the three stress tensors in
(3.1) if they transform according to

T+=QTQ", P*=QP, S*=S, (3.4)

while the difference between the acceleration ¢ and the body force 8 in either
of the equations of motion (3.2) or (3.3) transforms as

(o -8)" =Qv - ), (3.5

where Q in (3.4)-(3.5) is a proper orthogonal function of time ¢ defined
following (2.5). It is important to note here that the invariance requirement
(3.4), ,—and hence also (3.4); and (3.5)—are deduced from a single
physical requirement that the invariance properties of the stress vector ¢~ in
the configuration x * be related to those of the stress vector ¢ in x according
to the stipulation that both the magnitude of ¢ (which acts on any boundary
surface of the body with outward unit normal a) and its orientation relative
to a remain unchanged. For a more detailed discussion of this requirement
and additional related results, see Naghdi (1972, p. 485) and Green and
Naghdi (1979).

The equations of motion (3.2) or (3.3), as well as the fields which occur
in these equations, are properly invariant under superposed rigid body

* We use the term wndifferent (or objectne) for brewvity 10 mean wnaltered or unaitered apart from
onentauon as defined by Green and Naghd: ( 1979). However, 1t should be emphasized that the use of
the term objectve here differs from the corresponding usage by some authors who appeai to the
“pnnciple of matenal frame-indifference™ and allow Q to be any orthogonal tensor.
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motions. The invariance requirements such as those in (3.4) place restrictions
on the constitutive equations of any theory including, of course, those of the
theory of plasticity under discussion here. Although the invariance require-
ments are generally accepted in continuum mechanics in the discussion of
constitutive theories of material behavior, on occasion the validity of
invariance requirements is questioned in the literature and some authors have
stated that they could not be applicable to all materials. Response to such
views will be considered in vanious specific contexts of plasticity in section
4. We take this opportunity, however, to draw the reader’s attention to the
consistency of the invariance requirements under superposed rigid body
motions and the balance laws in the three-dimensional theory of continuum
mechanics (Naghdi 1972, pp. 484-486) and to the additional related
discussion of the invanance requirements by Green (1982) in the contexts of
both continuum mechanics and molecular theory, and Woods's (1983, p.
432) acknowledgement of the importance of invariance in the latter category.

It is useful to recall here the expression for the mechanical (or stress)
power P, which occurs also in the local form of balance of energy, in terms
of the Lagrangian variables. Thus,

P=P Gradv=S"E, (3.6)

where the notation “Grad™ stands for the gradient operator with respect
o X

The relation between (3.6) and the corresponding representation in terms
of the Eulerian vanables is simply P =(det /)T - D, in view of (3.1) and
(2.3),. The latter differs by the factor (det F) from the expression T - D for
the stress power in the Eulerian formulation of any theory except, of course,
incompressible materiais (det F = 1). It is worth noting that in the Lagran-
gian formulation of any theory of material behavior the constitutive equa-
tions may be specified in terms of the symmetric stress tensor S but it is the
nonsymmetric stress tensor P that occurs in the equations of motion (3.3).

We now turn to some areas of plasticity for which there is a substantial
degree of conceptual agreement, but will postpone the details of their
mathematical representations until section 4. In the context of the rate-
independent theory, the additional areas of agreement comprise:

(1) The existence of some measure of permanent deformation, e.g.,
plastic strain. This can be easily motivated by simple expennments when a
specimen is subjected to small deformation.

(2) The idea of distinguishing between elastic and plastic regions in an
elastic-plastic material. This suggests an assumption for the existence of a
yield criterion (corresponding to a yield limit, for example, in a simple
tension test) and more generally yield or loading surface dunng the plastic
deformation.
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(3) A constitutive equation for the stress response. This could, for
example, be of the type of a gereralized Hooke's law and may be motivated
by unloading and reloading in a2 simple tension test from a state of the
material beyond its purely elastic range.

(4) The necessity for adopting a constitutive equation for the rate of
plastic strain. often called a flow rule.

(5) The introduction of at least one additional scalar variable and a
corresponding constitutive equation connected with hardening behavior,
often called a hardening rule.

4. Areas of disagreement

There is some degree of disagreements on nearly all of the main
constitutive ingredients and features of plasticity in the presence of finite
deformation. These features pertain to issues which arise in the phenomeno-
logical approact: for characterization of the material behavior in plasticity.
Some of the issues of disagreements are basic and of fundamental impor-
tance; for example. those pertaining to the definition of plastic strain and its
invariance property under superposed rigid body motions (frequently ab-
breviated in this section as s.r.b.m.). Certain other issues while essential to
the formulation of a satisfactory theory, nevertheless could be regarded as
less important. In the remainder of this section, each of the issues involved
is discussed separately.

4A. [dentification of plastic strain

Although the majority of the authors of papers on plasticity introduce
some measure of plastic strain, at present there is much disagreement as to
exactly how this concept of plastic strain should be introduced into the
theory of finitely deforming elastic-plastic materials. Part of the difficulty
with the complete definition of plastic strain, denoted here by E,, arises
from the fact that it involves more than just kinematical considerations.
Indeed. even in the infinitesimal theory of plasticity, strain is defined in
conjunction with elastic unloading during which generalized Hooke's law
(or a similar constitutive equation) is assumed to hold.

Thus far, in the context of finite plasticity, two different approaches
toward a satisfactory definition of plastic strain have been pursued: In one
line of development investigators have attempted to define plastic strain in
terms of a more primitive quantity. or in terms of a measure of strain that
remains after a suitably defined unloading process; in another, plastic strain
is regarded as the solution of a rate-type differential equation with the idea
that the plastic strain can then be uniquely determined once appropnate
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imtial conditions are specified. A number of different interpretations of
plastic strain have been suggested over the years, but none of these are
sufficiently general to accommodate all features of permanent deformation
in a finitely deforming elastic-plastic material. In fact, in the context of finite
deformation, the only case so far without any ambiguity is that of finite
ngid plasticity where E = E, [or equivalently F = F, using the notation of
(2.1) and (2.3)}. Because of these difficuities, in their general theory of
elastic-plastic materials Green and Naghdi (1965, 1966) regarded plastic
strain as a primitive vanable, stating certain of its properties but not
defining 1t explicitly, and thus relegated its explicit identification to special
assumptions or situations. For example, one way of identifying plastic strain
is through the requirement that it be equal to the value of the total strain
at zero value of stress; see the related property (3) on p. 122 of Green and
Naghdi (1966)%.

In the context of the (classical) rate-independent theory of elastic-plastic
materials with small deformation, it is usual to define plastic strain as the
difference between total strain and elastic strain, the latter being determined
from the stress through generalized Hooke's law. The plastic strain at a
material point is then equal to the value of the total strain when the stress
is zero at that point. For a homogeneous maternial undergoing homogeneous
deformation, the stress can be reduced to zero throughout the body by
removing the applied loads and body forces; and, in this manner, the plastic
strain can be readily identified. It is this notion of plastic strain that enters
the usual discussion of the familiar one-dimensional tests of ductile metals.

For finite deformations, attempts have been made by several authors to
define plastic strain in terms of an intermediate stress-free configuration &
(see Fig. 1) and the associated decomposition of the deformation gradient
as a product of two tensors in the form

F=F,F, (4.1)
and then E, and E, can be defined by

E,=YFJF,—-D, E,=4FIF -D. (4.2)
Further. in view of (4.2),,. it can be readily verified that

E-E,=F]E,F,. (4.3)

It should be emphasized that neither of the two factors on the right-hand
side of (4.1) is necessarily the gradient of a deformation field nor satisfies
any compatibility conditions.

3 [n the present context of the purely mechanical theory, this property stipulates that upon removal

1 not necessartly by untoadingj of all stress components in the neighborhood of a point. the plasuc strain
E, becomes identical to the strain tensor E.




Vol. 41, 1990 A cntical review of the state of fimite plasucity 327

[3

Figure 1

A schematic sketch showing the reference configuration x, and the current configuration x. Also shown
is an intermediate stress-free configuration & and the associated decomposiion of the deformation
gradient £ into the factors representing the “elasuc’™ part F, and the “plasuc” part F,.

The form (4.1) was apparently first introduced by Kroner (1960, p. 286.
Eq. (4)) with reference to linearized theory, but was subsequently utilized by
Backman (1964), Lee and Liu (1967) and Lee (1969) in the context of finite
deformation®. Issues regarding nonuniqueness and possible nonexistence of
the multiplicative decomposition (4.1), as well as the matter of appropriate
invariance requirements under s.c.b.m. and F, and F,, have been discussed
by Green and Naghdi (1971) and by Casey and Naghdi (1930, 1981b).

Setting aside the nature of invariance of E, or F, (and F,), we discuss
now some limitations of the use of such an intermediate stress-free configu-
ration, and the associated multiplicative decomposition, which have been
raised by Green and Naghdi (1971) and also by Casey and Naghdi (1980).
The most serious shortcoming of this scheme lies in the fact that the stress
at a point in an elastic-plastic material can be reduced to zero without
changing plastic strain only if the origin in stress space remains in the region
enclosed by the yield surface. This implies a definite limitation on the
usefulness of the above-mentioned definition: Indeed, except for special
hardening rules (such as isotropic hardening), the yield surface may move
about in stress space in a general manner as a consequence of deformation
of the material. A further shortcoming is that even if the stress can be

0

As has been remarked also by Casey ( 1985, p. 672). Backman used the inverse of the decomposition
t4 1) 1n order to calculate an Eulenan strain but he then considered Lagrangian strains, while Lee and
Liu added the condition that the intermediate configuration be locally stress-(ree.
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reduced to zero at each material point, the resulting configuration will not,
in general, form a configuration for the body as a whole, but only a
collection of local configurations'?.

A different interpretation for the factor representing “‘the elastic part”
of the decomposition (4.1) was proposed by Nemat-Nasser (1979); but, as
Lee (1981, section 4) has argued, Nemat-Nasser’s proposal is anomalous
and leads to an additive decomposition of the respective gradients of the
type F, and F, (Lee 1981, Eqs. (4.8) and (4.11)). For additional comments
on this point. see Lee (1981, pp. 868-870).

The multiplicative decomposition (4.1) as used by Lee and Liu (1967)
and Lee (1969) assumes that the intermediate configuration is locally
stress-free and this is the reason for the restriction noted in the above
penuitimate paragraph. Some authors, instead of assuming an a priori
existence of (4.1), introduce an assumption for the decomposition of the
rate of deformation D in the form (4.21) of subsection 4G and then
postulate a constitutive equation for D, (see, for example, Lee 1981, Lee er
al. 1983, and Nemat-Nasser 1982, 1983). If with reference to a particular
problem this latter equation for D, can be integrated, one can then calculate
F,. along with other desired quantities, and at the same time avoid the type
of restriction noted in the previous paragraph. However, such an approach
also has a drawback associated with the ad hoc nature of the decomposition
(4.21) discussed in subsection 4G.

Before ending this subsection, it may be observed once more that the
notion of deformation gradient in the context of classical continuum
mechanics is a purely kinematical concept. It then seems that there is no
reason for expecting the same (or similar) structure as (2.2) for plastic
deformation (plastic strain), which is not entirely a kinematical quantity;
and, its identification, involves the notion of unloading from an existing
elastic-plastic state. Indeed, instead of introducing F, through (4.1), for the
present it appears to be preferable to introduce the notion of plastic strain
as a primitive variable represented by a symmetric second order tensor such
as E,. This will avoid the restriction regarding (4.1) noted in the preceding
paragraph and (at least for the present) allows a more flexible setting for the
identification of E,, albeit a posteriori. In light of these remarks and until
further progress on the nature of its identification, as in the papers of Green
and Naghdi (1965, 1966) and Naghdi and Trapp (1975a) we regard plastic
strain as a primitive variable represented by a second order tensor E, and
defined by its rate through an appropriate constitutive equation. In any
case, such 1 procedure also accommodates the use of (4.1) should this be

©  This 1s because the removal of loads 1s assumed to be performed on arbitrarily small matenal
clements of the body. The resulting stress-(ree elements no longer fit together to form a conunuum which
can be mapped smoothly back to the present configuration of the body.
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preferred by some as a starting point in the construction of a general theory
as was demonstrated by Green and Naghdi (1971).

4B. Admissibility of additional variables representing strain-hardening

In the developments of theories of elastic-plastic materials usually one
scalar. denoted here by . is admitted in order to represent strain-hardening
(or work-hardening). In subsection 4H. however, we motivate the desirabil-
ity of introducing another tensor variable, denoted by a, which represents
the so-called shift tensor (or the *back stress’). Should one admit more than
one such scalar or tensor vanables? It is a straightforward matter to include
additional variables in the structure of most of the existing theories, as was
noted by Green and Naghdi (1965). The inclusion of the additional van-
ables may give a better fit with expenmental data. but such additions will
not alter the basic structure of the theory and no fundamentally new
features will emerge. In any case, the inclusion of additional variables along
with the corresponding added complexity in the constitutive equations does
not seem to be fruitful at this time. With this background. for the time being
we regard strain-hardening and the shift tensor as primitive variables
represented by a scalar x and a second order tensor a defined by their rate
through appropriate constitutive equations.

4C. Invariance properties of variables characterizing plastic strain and
work -hardening

The invariance properties under s.r.b.m. of variables such as £, and «x,
whicii describe plastic deformation and the effect of work-hardening, repre-
sent a crucial issue in the construction of a general theory of elastic-plastic
materials. As was noted in subsection 4A, the plastic strain E, is not a
purely kinematical vanable. Nevertheless, remembering also the property
(3.4),, in the construction of the Lagrangian formulation of the theory
(Green and Naghdi 1965, 1966) the plastic strain £, was assumed to have
the same invariance properties as £, i.c.,

E; =E, (4.4)

In the same vein the effect of work-hardening characterized by the scalar x
was assumed to have the invariance property x * = x under superposed ngd
body motions.

Turning now to the invariance of F, and F,, first we observe that the
intermediate stress-free configuration & is locaily just another configuration.
Then, the same line of reasoning that justifies the argument preceding (3.4)
in section 3 leads us to assume that F, and F, should aiso be indifferent to
a transformation (through a s.r.b.m.) that independently takes the configu-
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ration & to &£°. In this way, as in the papers of Green and Naghdi (1971)
and Casey and Naghdi (1980), we are led to the transformations £ — F *,
F,—~F; and F, -~ F; with

F*=F;F;, F; =QF,Q7(n), F; = QU)F,, (4.5)

where F* is defined by (2.4), and (X¢) is a proper orthogonal teasor-valued
function of time, different from Q(s) introduced previously (in section 2)''.
[t can be casily verified that £, and £, defined by (4.2),, will remain
unaitered under the transformations (4.5) and again the work-hardening
parameter x is assumed to remain unaltered also. The reason for the
appearance of two differeat rigid body rotation tensors in (4.5), is simple
and can be explained even without appeal to either the stress-free nature of
the intermediate configuration or the elastic-plastic character of the matenal
(Casey and Naghdi 1983a).

A number of authors., who acknowliedge the existing structure of the
multiplicative decomposition and its current interpretation, begn the con-
struction of their theories with (4.1); and subsequently introduce an addi-
tional special assumption in violation of the invariance requirements for
either F, or F,, despite the aforementioned argument. For example,
Lubarda and Lee (1981) and again Lee (1981) argue that (i) it is not
necessary to demand independent invariance requirements for the intermedi-
ate stress-free configuration x in Fig. | associated with the decomposition
(4.1) and that (ii) the factor F, can be chosen to be a symmetric positive
definite tensor. Both of these are faulty assumptions, as pointed out by
Casey and Naghdi (1981b). With reference to the first point (i), it should be
recalled that the intermediate stress-free configuration &, if it exists, is a
possible configuration of the body; and can, in the words of Lee (1981, p.
863). “be achieved physically by . .. destressing.” It is precisely because of
this that the configuration & must be subject to exactly the same invanance
requirements as any other possible configuration of the body, as brought
out in the preceding two paragraphs. To see the fallacy of point (ii), we first
note that the polar decomposition of F, = R,U,, where the teasors R, and
U, are proper orthogonal and symmetric positive definite, respectively, and
recall the following statement from Lubarda and Lee (1981, p. 36): “For
analytical convenience and with no basic loss of generality, we take the
elastic deformation F,, associated with destressing to be rotation free and
hence given by U,, a symmetric matrix.” With this assumption, Lubarda
and Lee choose R, = I, a choice which is easily seen to violate the invanance
requirements'?. In fact, even if F, is symmetric for a particular choice of &,

"' Resuits of the same form as thoss in (4 $) were independently adopted also by Sidoroff (1970) who,
however. appesls 10 the pnnciple of matensl frame-indifferencs.
‘2 For detals. so¢ Gresn and Naghd: ( 1971) and Casey and Naghdi (1960, 1981b).
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it will not be true that F, will be symmetric in a// intermediate stress-
free configurations that result from the first by arbitrary rigid displace-
ments. Indeed, inspection of (4.5), at once reveals that even with F,
symmetric, in general (since J(¢) is not equal to Q(f)) the factor F; will
not be symmetric.

Similarly, in a recent paper intended to account for microstructural
anisotropy in crystalline media, Dashner (1986) adopts the decomposition
(4.1) but he then concludes that in the context of his analysis of finite
“elastoplasticity” the intermediate stress-free configuration & cannot be
subjected to invariance requirements under arbitrary superposed rigid body
rotation. The error in Dashner’s argument has been pointed out in Casey's
(1987) discussion, where it is shown that Dashner’s faulty conclusion stems
from his incomplete characterization of the basic kinematical ingredients
required for an elastic-plastic material with microstructure.

4D. The stress response

By way of background, we first observe that in most developments in
nonlinear continuum mechanics, for example elasticity, the deformation
gradient F is well-defined through the mapping z which carries the refer-
ence position X to the place x in x. Then, in the context of the finite
elasticity, the idea that the stress response be a function of the strain £ is a
meaningful one. It may be noted that geometrically the strain E may be
regarded as a point in six-dimensional strain space and similarly stress
tensor (either § or T) may be regarded as a point in a six-dimensional
stress space.

In plasticity, however, the relevant variables are the strain E and those
which describe plastic deformation specified by E, and x (see sub-
sections 4A,B). Thus, for a rate-independent theory of elastic-plastic mate-
rials, the stress response may be specified by a constitutive equation of the
form

stress = function of variables ¥ (or equivalently #), (4.6)
where the abbreviations # and # stand for
% = (E. E,, x), ¥ =(E-E,E,nx). (4.7)

The difference between the two sets of variables (4.7),, is simply in their
first entry. The set & is useful for certain purposes, including a derivation
of the linearized theory from the nonlinear theory.

It is important to make some remarks at this point regarding the choice
of E — E, in the set (4.7),. In their first paper on the subject, Green and
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Naghdi made use of the set of variables of the type'® - but in the
following year they also presented an alternative form r theory in
terms of the vanables (4.7), and pointed out that the sions of the

theory are equivalent (Green and Naghdi 1965, 1966). (t should be,
therefore, clear that the choice (4.7), does not imply the additivity of elastic
and plastic strains (as in the infinitesimal theory), contrary to the assertion
made by Lee (1969) and similar misinterpretations by others (e.g., Simo and
Ortiz 1988, p. 223). The argument refuting Lee’s contention is included in a
paper of Green and Naghdi (1971), where it is again emphasized that the
difference E — E, is not an elastic strain except in a restricted or a special-
ized theory such as the infinitesimal theory.

Restricted forms of the constitutive equation (4.6) in which one or both
of the last two entries in the arguments # is suppressed, ¢.g., a stress
response of the form

stress = function of the vanable (E — E,) (4.8)

has been utilized in many important applications. The restricted form (4.8)
includes the special case of the generalized Hooke's law and is utilized in the
development of the weil-known Prandtl-Reuss constitutive relations for
small deformation of elastic-perfectly plastic materials. In a discussion of a
paper of Naghdi and Trapp (1974), which deals mainly with the develop-
ment of the stress response for a class of ductile metals undergoing finite
deformation, Nemat-Nasser (1974, second paragraph) has questioned the
explicit inclusion of the plastic strain E, among the arguments of 4 on the
right-hand side of (4.6). To see the necessity for including E,, it will suffice
to note that without the presence of this variable in # one could not write
the right-hand side of (4.6) as a function of # and thus the restricted form
(4.8) and hence also the Prandtl-Reuss equations could not be recovered.

For later use, we now assume the invertibility of the stress constitutive
equation so that for fixed values of E, and «, (4.6) in terms of ¥ may be
inverted to yield an expression for E in the form

E=E¥), (4.9)
where the abbreviation ¥  stands for
¥ =(S. E,, x) (4.10)

"’ Recall that the theory developed 1n the two papers of Green and Naghdi (1965, 1966) s
thermodynamcal. It was developed in the context of the stress-space formulation and by its specializa-
uon to the isothermal case may be identified with the corresponding purely mechancal theory under
discussion. The difference measure E — E, was denoted by £’ in Green and Naghdi (1965), while the
Helmholtz free energy (and hence the stress) was assumed to depend on the set of vanables of the type
{4.7),. Further, it was stated in the 1965 paper that (1) in general £’ depends on the stress and £, (apant
from any dependence on temperature) and that (1) aiternatively the stress may be taken to be a funcuion
of the vanables of the type (4.7),. see the footnotes on pages 265 and 268 of the 1965 paper.
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and where in writing (4.10) and in anticipation of certain later conclusions
we have chosen S to represent the stress. Alternatively, an inverted form
such as (4.9) could be displayed in terms of the Cauchy stress tensor T with
the use of (3.1), but this would involve dependence on the deformation
gradient F in addition to the set ¥

With a view toward the clanfication of an important issue in the
construction of finite plasticity theory, it is necessary to comment here in
regard to the choice of the stress tensor in the constitutive equation for the
stress response. In this connection, we recall that interpretations of the
physical processes associated with elastic and elastic-plastic materials have
been advanced in the paper of Palgen and Drucker (1983, section 2).
Despite this, it is difficuit to understand their (Palgen and Drucker 1983)
preference for the Eulerian description in terms of the Cauchy stress tensor
T especially since the transformation between T and the (Lagrangian)
symmetric stress S simply requires the use of (3.1). Similar preferential
status has been indicated or assumed by others, for example by Onat (see
his discussion included at the end of the paper of Green and Naghdi 1966,
p. 131) and by Lee (1969). In addition to his preference for the Cauchy
stress, Lee (1969) seems to insist that the stress response must be a function
of only the elastic strain E, defined by (4.2),. As already noted earlier in this
subsection, such a special assumption is useful in a particular application
but it is much too restrictive in the development of a general theory.

4E. Yield criteria

Historically, within the framework of what is now referred to as the
stress-space formulation of plasticity, the notion of yield condition was first
introduced in the work of Tresca (1867, 1878)'* and utilized by Saint-
Venant (1870) and Lévy (1870) in their development of a theory of
nigid-perfectly plastic solid. Another well-known yield condition is that of
von Mises (1913) and was utilized in the development of a system of
equations for rigid-perfectly plastic materials (known as St. Venant-Lévy-
Mises equations), as well as in the Prandtl-Reuss constitutive relations for
an elastic-perfectly plastic material undergoing small deformation.

Subsequently, within the scope of the theory of elastic-plastic matenals
with small deformation, the notion of yield in the stress-space formulation
was generalized to cover work-hardening matenals, i.e., the existence of a
vield function, say f, which depends on the stress, as well as on plastic strain
and a work-hardening parameter. Such a scalar-valued yield (or loading)

'“  These two papers. which are in English. represent a survey of Tresca's own work dunng the period
(864-1872. Addiuonal related background on Trescs's work and that of other invesugators can be
found 1n Bell's (1973) monograph.
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function, which may be expressed in terms of the variables (4.10), is such
that for fixed values of (£,, x) the equation

f) =0 (4.11)

represents a closed orientable hypersurface 0% of dimension five, enclosing
an open region % in stress space'’. The function f is chosen such that
f(¥") <0 for all points in &, and the hypersurface 6% is called the yield (or
loading) surface in stress space (see Fig. 3).

Once a constitutive equation of the type (4.6) is adopted for S, i.e.,

S =5%), (4.12)

then it is always possible to construct a yield function g in strain space'.
Thus, from the left-hand side of (4.11) and using also (4.12), an expression
for g can be found through the formula

fO¥) =f(S(X), E,. x) = g(¥). (4.13)

Conversely, a constitutive relation of the type (4.9) can be used to obtain f
from g. Again for fixed values of (E,, x), the equation

gH#) =0 (4.14)

represents a hypersurface ¢€ which encloses an open region & in strain
space (see Fig. 2) and has the same geometrical properties as the yield
surface ¢& in stress space. In particular, for later use we note the following
relationship between the normals dg,cE and Jf/éS:

‘g _ ef
a£~£f"[as], (4.19)
where
k)
Y=E_E' (4.16)

It 1s clear from the identity (4.13) that a point in stress space belongs to
the elastic region & if and only if the corresponding point in strain space
belongs to £. Likewise, a point in stress space lies on the yield surface ¢
if and only if the corresponding point in strain space lies on é&. In view of
these properties, we may refer to g as the yield (or loading) function in
strain space, to ¢& as the yield (or loading) surface in strain space and to &
as the elastic region in strain space.

'S Although we have elected to wnite here the condition 1n terms of the tensor S. such a yield condition
can alternatively be wnitten in terms of the Cauchy stress tensor T wath the use of (3.1), but the result
will involve dependence on the deformation gradient £ in addiuon to the set »".

'*  This s a point of departure in the strain-space formulation to which reference was also made n
secion |. The advantages of this formulation becomes clear in the remainng subsections of section 4
and the first two subsections of section §.

.
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Figure 2

A sketch of the yield surface 2& and the elastic region £ in six-dimensional strain space. Also shown are
a strain trajectory C,. its langent vector £, the normal vector Jg/3E to 4. as well as vectors representing
¢ and the rate of plasuc stran E,. Dunng loading the yieid surface ¢4 is pushed outwards by the strain
trajectory C,.

Figure 3

A sketch of the yield surface ¢ and the elastic region ¥ in six-dimensional stress space. Also shown
are a stress trajectory C,. its tangent vector $. the normal vector Jf/0S to 0. as well as vectors
representing ¢ and the rate of plasuc stramn E,.

It follows from the remarks in the preceding paragraph, that it is equally
acceptable to introduce the notion of yield condition (and yield function)
first with reference to strain space and then caiculate the corresponding
yield function in stress space by a formula of the type (4.13). There is no
basic reason for limiting the consideration of yield to only the stress space.
Both stress and strain variables must occur in any theory of plasticity, as is
obvious also from a plot of typical uniaxial stress-strain curve, so both
stress space and strain space should be considered. In the early development
of the theory for rigid-plastic solids, the natural ingredients of the idealized
“rigid-perfectly plastic” model necessarily required that the yield condition
be stated only in terms of stress; and, historically speaking, this seems to be
the main reason for the consideration of yield in stress space alone for
almost a century.

In the usual development of plasticity theory, a single loading function
is admitted for characterization of plastic flow throughout the entire history
of deformation in the manner described in the preceding paragraphs of this
subsection. However, in recent years a number of investigators have at-
tempted to provide improvements in the theory and its predictability by the
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introduction of additional yield (or loading) surfaces. The notion of a
family of loading surfaces, distinct from the yield surface (i.e., the boundary
of a region in stress space) within which both unloading and reloading result
in elastic strains only, was evidently first introduced in a paper of Phillips
and Sierakowski (1965). Such multi-loading (or multi-yield) surfaces were
further discussed by Mroz (1967) and adopted by others'’ for the purpose
of describing special phenomena such as hardening characterization, cyclic
stress-strain response which exhibit saturation hardening, etc. While the
idea of introducing multi-loading surfaces may have had some merit at the
time of its inception, at least as a measure of expediency for certain
applications, its role in any acceptable general theory appears to be unnec-
essary. In fact, in several recent calculations and comparisons of theoretical
predictions with experimental results for cyclic loading and related phenom-
ena, the use of multi-loading surfaces ( Eisenberg 1976, Dafalias and Popov
1976 and others) has not shown any improved capability or predictability
over and above those resulting with the use of a single loading surface'®.

Again, in recent years some investigators appear to have placed special
emphasis either on the possibility of developing a theory of plasticity
without introducing a "‘yield surface” or on requiring that the theory be
capable of predicting the existence of a ‘“‘yield surface” (Owen 1970,
Tokuoka 1971), rather than postulating the existence of a yield or loading
surface ab initio. As has been pointed out by Green and Naghdi (1973),
such endeavors at present appear to be somewhat illusory in the following
sense: whichever way the theory is developed. it must necessarily involve
some assumptions that ultimately result in a surface separating an elastic
region from an elastic-plastic one; and it appears to be largely a matter of
taste as to which kind of assumptions are preferred at the outset of the
development of the theory.

The nature of yield criteria has been discussed so far in terms of smooth
yield or loading functions in the sense that a unique normal exists at each
point of the hypersurfaces ¢.¥ and ¢4, as indicated also in Figs. 2 and 3. In
the rest of this subsection, we briefly comment on the nature of singular
yield or loading surfaces. An example of such yield surfaces is, of course, the
yield condition of Tresca which has corners in principal stress space'’. In the
context of small deformation, Koiter (1953a) was the first to recognize the
potential advantage of using such piecewise linear yield functions; and, with
the use of Tresca's yield condition, obtained an analytical solution for

" For example. the papers of Eisenberg and Phillips (1971). Kneg (1979), Eisenberg (1976), Dafalias
and Popov (1976), among others.
'8 See the results of Caulk and Naghd: (1978) and Naghdi and Nikkel (1984, 1986) who have obtained
their results with the use of a single loading surface.

The corresponding yield surface in pancipal strain space. which can be obtaned with the use of the
lineanzed version of (4.8), will aiso have corners.
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partially plastic thick-walled tubes which includes the effect of elastic
compressibility??. Further discussions of a number of features of singular
yield conditions can be found in the papers of Koiter (1953b), Prager (1953)
and Hodge (1956a,b).

The existing state of the knowledge on singular yield surfaces and their
features are all limited to infinitesimal plasticity, but the corresponding
development in the context of finite plasticity is worth exploring. In fact, it
is natural to expect that the use of piecewise linear yield functions within the
scope of finite plasticity is likely to lead to a fruitful endeavor in obtaining
both analytical (or at least partially analytical) and numencal results.

4F. Primacy of strain-space formulation. Loading criteria

The basic ingredients of any finite theory of elastic-plastic matenals that
admits a yield (or loading) function in a stress-space setting involve two
features which are generalizations of corresponding ideas in the classical
infinitesimal plasticity for work-hardening materials. These two features are:
(a) the rate of plastic strain (and the rate of work-hardening) depend
linearly on the rate of stress; and (b) loading critena in terms of a scalar £
which represents the inner product of the rate of stress and the normal to
the yield surface (4.11) in stress space. Such a stress-space formulation in
terms of the variables (4.10) leads to unreliable results in regions of material
behavior such as those that correspond to the flat and falling portions of the
typical engineering stress-strain curve for uniaxial tension of ductile metals
(see Fig. | of Naghdi and Trapp 1975a). Moreover, the stress-space
formulation does not reduce directly to the theory of elastic-perfectly plastic
materials even for infinitesimal deformation?'. In order to overcome these
difficulties, Naghdi and Trapp (1975a) proposed an alternative strain-space
formulation whose main features are: (a°) the rate of plastic strain (and also
the rate of work-hardening) depend on the rate of strain; and (b’) loading
criteria in terms of a scalar ¢, which represents the inner product of the rate
of strain and the normal to the yield surface (4.13) in strain space®.

It is clear from the discussion of the previous subsection that a unique
yield surface in strain space can be constructed from a given yield surface in
stress space; and, moreover, the normal to the yield surface in strain space

9 An analytical solution of this type with the use of Prandu-Reuss constitutive relations (which
emplovs the von Mises yield condition), for example for a thick-walled cylinder in the state of plane
strain. prior 10 Konter's (1953a) paper was available only for the incompressible case. For further
background informauon pnor to Koiter's paper on thus problem. see Prager and Hodge (1951, pp
100 - 109).

“* Recall that the condition for /oading in the stress-space formulation of the elastic-perfectly plastic
case 1s not the same as the corresponding condition for work-hardening matenals.

2 As will become evident below. the strain-space formulation of plasucity renders the theory valid for
the full range of elastic-plastic deformation and includes the theory of elastic-perfectly plastic matenals
as a special case.
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can be calculated from the normal to the yield surface in stress space. Given
this background, we take the loading function (4.14) in strain space as
primary and preliminary to the discussion of the loading criteria define the
quantities ¢ and f (introduced in the preceding paragraph) by

;-8 _Y.
-2e j=%s (4.17)

Corresponding to the motion which results in the configuration x, we
associate with each particle of the continuum a smooth oriented curve C,
which lies in strain space and is parameterized by time. The curve C, may
be referred to as a strain trajectory. In the present discussion, the strain
trajectories are restricted to lie initially in & or on 0&. When evaluated on
the yield surface ¢&, (4.15), can be interpreted as the inner product between
the (six-dimensional) tangent vector to a strain trajectory and the outward
unit normal to ¢& (assuming that ¢g/J0E is not zero). Then, the loading
criteria of the strain-space formulation are defined to be:

{a) g <0 (elastic state),

(b) g=0 and ¢ <0 (unloading from an elastic-plastic state), (4.18)
(c) g=0 and § =0 (neutral loading), '

(d) g=0 and g >0 (loading).

In light of the criteria (4.16), in an elastic state the strain trajectory C, lies
in &; during unloading, C, intersects the yield surface d& and is directed
inwards; during neutral loading, C, is tangent to 0¢; and during loading, C,
intersects ¢& and is directed outwards. Figure 2 illustrates various quantities
associated with the strain-space formulation discussed in this subsection.

For a given motion x (introduced in section 2) and associated strain
trajectory C,, with the use of the constitutive equations (4.6), we may
obtain the corresponding stress trajectory C,, a continuous oriented curve in
stress space; see, in this connection, Fig. 3 which illustrates various quanti-
ties in the theory associated with the stress space. Once the yield condition
and the loading criteria of the strain-space formulation are adopted as
primary, f can be calculated from (4.17), and the loading conditions (not
criteria) in stress space can be deduced from those of the strain space, but
the former conditions in stress space are not equivalent to the latter and the
conditions involving f alone cannot be used as loading criteria. As pointed
out by Naghdi and Trapp (1975a), the induced conditions in stress space
which accompany the strain space loading critena are g(¥) =f(¥") by
(4.13). as well as § = f associated wicth (4.18a,b.c). The latter conditions
imply, respectively, f < 0 (elastic state), f =0, f < 0 (during unloading) and
f =0, f=0 (during neutral loading). Also, the interpretation that may be
associated with f =0, /> 0 will become clear presently.
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The loading conditions in stress space that can exist in conjunction with
(4.18) suggest a natural classification of strain-hardening into three distinct
types—hardening, softening and perfectly plastic. It tums out that alge-
braically the three categones are distinguished, respectively, by positive,
negative and zero values of the quotient (Casey and Naghdi 1981a, 1983b,
1984a.b; Naghdi 1984a)

§= ® (say), (4.19)
so that

(a) >0 (hardening),

(b) ® <0 (softening), (4.20)

(c) D=0 (perfectly plastic).

The relationships between the loading critena (4.18) of the strain-space
formulation and the associated conditions in stress space are summarized in
Table 1. It is seen that during hardening behavior, the loading conditions in
stress space and those in strain space imply one another. However, during
softening and perfectly plastic behavior. no such equivalence exists; in this
connection, see Fig. 4 of the present paper (which corresponds to Fig. 2 of
Casey and Naghdi 1981a) illustrating the three types of material behav.or
defined by (4.20). It then follows that the stress-space and the strain-space
formulations of plasticity are not equivalent.

For reasons that will be evident below, we observe that the expression
for ¢ defined by (4.17), may be partially recast in terms of the normal df/dS
to the yield surface (4.11) in stress spa~~ . .her than the normal dg/dE to
(4.14). Thus, using (4.17), and the rel: .ion between dg/dE and 3f/0S, we have®

S\ 2 :
§ ’(E%)r[é."ﬂ . sa%-{ﬁ_m}. (4.21)
Tabdle |

Relauons between loading cntena in straun-space and associated conditions in stress
space (with g = / = 0).

Strain-space Hardemung Softening Perfectly plasuc
loading cntenon (9> 0) (9 <0) (@=0)
Unloading §<0ef<0 $8<0m/<0 $<0ef<0
Neutral 1-00/-0 ‘-0-]’-0 ‘-0-]-0
loading

Loading i>0=/>0 $>0m /<0 $§>0m /=0

23 For details. see Casey and Naghd: ( [984¢).
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Figure 4

A sketch rllustrating the motion of yield surfaces 1n sirain spsce and stress space. which can be regarded
as corresponding t0 an idealized stress-strain (s -e¢) diagram of a typical ductile metal 10 2 uniaxial test.
Dunng loading the yield surface ¢€ 1n strain space moves outwards with the stran trajectory C, through
positions indicated by the intersection of dashed curves and C,. The corresponding yeid surface &7 n
stress space moves outwards through positions indicated by the intersecuon of dashed curves and C,
dunng hardening behavior. 1s stationary dunng perfectly plasuc behavior. and moves awards dunng
softening behavior.

If the quantity between the brackets { } in (4.19), is denoted by S° (say),
then the scalar ¢ when evaluated on g = f =0 admits an interpretation
(which is only an analogy) in stress space, namely that it represents the
inner product of the normal to the yield surface in stress space and the
tensor S* which has the physical dimension of stress rate. It is easily seen
from (4.13) and (4.21) that the loading cnteria of strain space can be
rewritten in terms of f, éf ¢S and $* = {(3S/dEYE)} which involves the rate
of strain (not the rate of stress); and, despite the geometncal interpretation
mentioned above, it should not be confused with criteria in stress space.
Indeed. as noted previously (Casey and Naghdi 1984b.¢c), parts of plasticity
theory can be stated interchangeably in terms of either stress or strain. For
example, it is clear from (4.13) and the foregoing discussion that the yield
surface in stress space and its normal can be transformed into the yieid
surface in strain space and its normal. Similarly, during elastic behavior,
unloading and neutral loading (with £, = x = 0) the tensor $* coincides
with $ = (3S/0EXE). During loading, however, S*® is only a part of $ and
cannot always be obtained from § (see Eqs. (14) and (44) of Casey and
Naghdi 1984b). It may be emphasized that conditions of the type (4.21), are
characteristic of a strain-space formulation and should not, therefore, be
regarded as stress-space loading cntena.




Vol. 41, 1990 A cnucal review of the state of faute plasticity 341

The nonequivalence of the strain-space and the stress-space formula-
tions in plasticity is not an idle issue, inasmuch as the question of the
significance of the strain-space formulation and the primacy of its loading
criteria has been a source of misconception and has been viewed by some
with skepticism. Some workers in the field accept certain features of the
strain-space formulation (alas interpreting it as belonging to the stress-space
formulation), but do not appear to recognize the full significance of the
strain space setting and its implications discussed in this subsection. For
example, with the use of special constitutive equations, loading criteria
involving §'® have been used in the computational literature (Hughes 1983).
In fact. Hughes (1983) dismisses the strain-space formulation as unneces-
sary, yet the loading cntena and constitutive equations used by him
presuppose a knowledge of the rate of strain rather than the rate of stress®.
Similarly, Yoder and Iwan (1981) have claimed that the stress-space and the
strain-space formulations of plasticity are equivalent. This was refuted in a
discussion of their (Yoder and Iwan 1981) paper by Casey and Naghdi
(1982) and need not be repeated here; for a detailed analysis on the issue of
“‘nonequivalence,” which also bears on the misleading statements of Yoder
and Iwan, see Casey and Naghdi (1983c) and Naghdi (1984a).

Another example of misconception regarding the significance of the
strain-space formulation and its predictive capabilities has surfaced in
connection with the curious softening responses that have been observed in
uniaxial compression tests of geological matenals (Wawersik and Fairhurst
1970). To elaborate, we recall that the phenomenon known as ‘‘critical
softening™ (or “perfectly brittie” behavior) is typified by a vertical stress-
strain curve in a uniaxial compression; and ‘“‘subcritical” and ‘‘normal™
softening correspond, respectively, to stress-strain curves which fall to the
left and to the right of the vertical. Because of the verticality of the
stress-strain response in a uniaxial compressive stress test, it may at first
appear that critical softening corresponds to £ being zero®® and conse-
quently to the vanishing of g defined by (4.17),. Such a viewpoint is
inherent in the argument presented by Dafalias (1984a, p. 157), and would
imply that the critical softening during loading cannot be dealt with in the
strain-space formulation of plasticity. However, Casey and Lin (1986) have
shown that critical, subcritical and normal softening can be accommodated
within the scope of the strain-space formulation with ¢ > 0 while loading is
taking place. The relevant definition in the development of Casey and Lin
(1986) hinges on the sign or vanishing of the quantity § - £ (rather than just
E) during loading.

4 For addiuonal remarks on thus point see Casey and Naghdi (1984c, pp. 60-62).
3 It should be observed that even in the case of uniaxial stress although the strain component £,, = 0.
the remaining strain components in the lateral directions of the specunen are not necessanly zero.
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4G. Flow rule

The term flow rule in most of the literature of plasticity refers to a constitutive
equation for plastic strain rate. In a general theory of plasticity, it is usual
to assume that the rate of plastic strain can be expressed as a linear function
of the rate of strain (or the rate of stress) with coefficient which is independent
of rate quantities but may depend on vanables such as & (or ¥"). Thus, for
example, in a strain-space setting and in the context of the Langrangian
formulation of the theory the rate of plastic strain has the form

£ = function of variables #)E, during loading defined by (4.16d),
» 710, otherwise™.

(4.22)

Alternatively. in a stress-space setting but again in the Lagrangian form of
the theory the nght-hand side of an equation similar to (4.22) would be linear
in $ and with coefficient which is a function of the variables v .

Recent and current literature representing efforts of the majority of the
various schools of plasticity are directed toward an Eulenan formulation of
the theory constructed in a stress-space setting. The preference for the
Eulenan formulation is evidently based on one or both of the following
presuppositions: (1) the belief, founded perhaps in analogy with viscous fluid
flow, that such formulations are more relevant to large elastic-plastic
deformations; and (ii) the view that the construction of the theory in terms
of the Cauchy stress and its rate is more fundamental. Most workers who
share the preference for the Eulerian version of the theory, begin by
considering the decomposition of the velocity gradient L or rate of the
deformation tensor D into additive “elastic”” and *‘plastic™ parts L, and L,
or D, and D, respectively, so that?’

L=L,+L, D=D,+D, (4.23)

Subsequently, they prescribe a constitutive equation for D, in terms of a rate
of Cauchy stress; the rate operator here is not the usual material derivative
but an objective rate such as the corotational (or Jaumann) rate** which
renders the stress rate properly invariant under s.r.b.m. Thus, the constitutive
equation for D, will have the form

D, x an objective rate of T, (4.24)

‘¢ By the word “othermise.” we mean the conditions (4.18a.b.c) for an elasuc state. unloading and
neutral loading.

** Some authors wriing 1n the context of a macroscopic theory also decompose the vorucity (ot the
spin) tensot Into elasuc and plastic parts (see, for example, Nemat-Nasser 1983, Dafalias 1984b, Drenes
1986. and Agah-Tehram er o/ 1987).

‘% For a discussion of objective rates in conunuum mechanics. see Truesdell and Toupin (1960, Secs.
148-150) and Truesdell and Noil ( 1965, Sec. 16).
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with coefficient function which may depend on 7, as well as E, and E, (or
F and F,). It should be noted at this point that various schools of plasticity
which embrace the Eulerian approach just described do not all agree on the
same objective rate: and this, in turn, has given impetus in -ecent years to
a variety of proposals for the choice of rate of stress and the rate of other
variables in the Eulenan formulation (see, e.g., Atluri 1984; Dafalias 1983;
Dienes 1979, 1986; Lee er al. 1983; Loret 1983; Nemat-Nasser 1983, among
others).

Some justifiable criticism of the foregoing Eulerian approach and a
constitutive equation of the type (4.24) is as follows:

(1) Remembering the relation between L and the rate of deformation
gradient, as well as the decomposition (4.1). it follows that not all three
quantities L, L,, L, can be simply related (in the form L = FF~') to the rate
of their respective parts in (4.1). For example, if L, is taken in the form
L, =F,F;', then necessanly L, will not have the same form; and, similarly,
if L, is specified in the form L, = F,F;'. then L, will not have the desired
form. This suggests an essential arbitraniness in the decomposition
L =L, + L, and the extent to which the results of a theory are influenced by
this arbitrariness remains unclear. A parallel remark applies to D, and D, in
the decomposition (4.23),.

(2) Presumably, D, is calculated from L, and is given by a relation of
the same form as (2.3);, while D, is related to £, by a relation of the form
(2.3), with F replaced by £,. But. 1s this an acceptable physics for character-
ization of the flow rule?

(3) At best it seems that the decompositions (4.23), ; are a generaliza-
tion of corresponding expressions in infinitesimal plasticity, since (to the
order of approximation) in the linear theory the expression (4.23), would be
identical to the rate of strain = rate of (elastic part + plastic part). A parallel
comment holds in regard to (4.23),.

The Eulenan formulation of the flow rule discussed in the preceding two
paragraphs is based on (4.23),,. In a related development to some of his
earlier papers (e.g., Lee 1969 and Lubarda and Lee 1981), Lee (1981, Sec. 2)
adopts a different procedure. He begins by recalling the decomposition
(4.1), defines the strain measures (4.2), ,, identifies the factor F, with the
nght polar decomposition F, = R, ¥, ; and then, with the rotation R, = [, he
specifies F, = the stretch ¥, and arrives at the expression L, = F,F;'. Even
with this approximation, Lee himself observes that D # D, + D,; see Eq.
(2.17) of Lee (1981). However, next he states that . .. the elastic strain in
metals is usually small, ~10-%, ¥, =1+8 where 8§ ~ 1073, so that by
neglecting 8 . . . * he approximates D and obtains an expression in the form
(4.23);. Fundamentally, there 1s hardly any difference between Lee’s (1981)
line of argument and an ad hoc approach which motivates (4.23), as a
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generalization of the usual expression for the total strain rate in infinitesimal
plasticity (see item (3) in the preceding paragraph). Moreover, such approx-
imate schemes as that advocated by Lee (1981) avoids the issue —even aside
from violation of invariance under s.r.b.m. associated with his choice
F, = V, (see subsection 4C). Even if this type of approximation is proven
successful in some special cases it will not ensure its appropriateness in the
construction of a general theory of finite plasticity, which after all must be
valid for all types of motion and not just for certain special motions. Also,
it should be noted that despite his statement regarding his approximations
for metals (Lee 1981), in a later paper Lee (1984, p. 234) himself recognizes
some exceptions.

Because of the important status that is relegated to the structure of the
constitutive equations representing the flow and hardening rules within the
framework of a general finite theory of elastic-plastic matenals, it is
desirable to comment further on the nature of some related developments
pertaining to the constitutive equations for the flow rule (e.g., Nemat-
Nasser 1983, Agah-Tehrani er a/. 1987, among others). The developments in
these papers, while not identical to the Eulenan format of the references
cited earlier in this subsection, advocate points of view that are akin to the
decomposition of the type (4.23), , and a flow rule of the form (4.24). Thus,
in a discussion which employs macroscopic variables, Nemat-Nasser (1983,
Sec. 3) begins with the decomposition of the rate of the deformation D and
the spin W [see his Eqs. (3.2) to (3.4)] in the form®

D=D.+D’v W=W‘+W’v (425)

identifies the quantities D, and W, as “‘the accommodating elastic coatn-
bution.” and specifies a constitutive equation for a “‘stress change” by an
equation which refates the Jaumann rate of the Kirchhoff stress ( =¢7/g,)
linearly to Do with his Jaumann rate (see his Eq. (3.4);) defined as
Jaumann rate of ( ) =(( ) — Wa( ) +( )W,]. He then obtains a constitu-
tive equation for the rate of plastic deformation D, which is more special
than the form (4.24). The development in Nemat-Nasser's (1983) paper.
along with his constitutive equation for the rate of hardening (to be
considered in the next subsection 4H), does not appear to be of any help
towards clarifying the relevant issues. In fact, the relation of his develop-
ment (Nemat-Nasser 1983) to the work of others is ambiguous. Similarly, a
recent paper by Agah-Tehrani, Lee, Mallet and Onat (1987) represents still
another attempt towards the clarification of the unresolved issues in finite
plasticity. Employing a combination of a varety of kinematical variables
already discussed in subsections 4A, 4C and 4G, Agah-Tehrani er g/. admut

® The notauons D, and W, in (4.25) correspond to the symbols D® and W* in Nemat-Nasser's
(1983) paper.
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(see their Eq. (1)) a polar decomposition of the deformation gradient that
implicitly incorporates an approximative scheme which violates invariance
under s.r.b.m. associated with their choice of F, = ¥, (a choice that has
been already criticized in subsection 4C). This is followed by the introduc-
tion of a kinematical variable identified as the *‘plastic™ strain rate B, which
in their words (Agah-Tehrani ef al. 1987, Eq. (2) and the sta. >ments on p.
320) *. .. expresses the component of strain rate in the curr. ° elastically-
plastically deformed configuration associated with D, in the intermediate
unstressed configuration based on the plastic deformation F,.” Their flow
rule is subsequently stated in terms of B,. It does not appear that this
development for the flow rule represents any improvement over and above
those discussed in the preceding paragraph of this subsection. We postpone
comments on the development of the hardening rule in the paper of
(Agah-Tehrani er al. 1987) until the next subsection 4H. Again, with
reference to the constitutive equation for a flow rule, mention should be
made of the fact that vaniants of the decompositions (4.23) along with a
flow rule of the form (4.24) are being opted in a large number of recent
papers (e.g.. Lee 1987, Anand and Lush 1987) and these are subject to the
same criticisms discussed in the preceding two paragraphs.

4H. Hardening rule

The term hardening rule refers to a constitutive equation for the rate of the
work-hardening parameter x. In the context of the Lagrangian formulation
of a general theory of the type considered in the papers of Green and
Naghdi (1965.1966) and Naghdi and Trapp (1975a), the rate of x is
assumed to be linear in £, with coefficient function which depends on the
vanables (4.7), in the strain-space formuiation®®. But, in view of the
assumed form (4.22), the rate of x can be expressed as a linear function of
£ in the form”

‘- (function of variables #)E, during loading defined by (4.16d),
10, otherwise.

(4.26)

A general form for the loading function in both the stress and strain
spaces has been already indicated in this section (see subsection 4E); how-
ever. less general forms may be assumed for a special class of matenals, as

©  The coefficient function in the stress-space formulation depends on the vanables (4.10) but the result
can be expressed 1n terms of a different function of (4.7), with the use of (4.6).

" Constitutive equations of the form (4 26) include as a special case the classical charactenzation of
work-hardening 1n terms of plastic work or equivaient plasuc strun (Hill 1950, pp. 26-30). The word
“otherwise™" (n (4.26), has the same meaming as that in (4.22),.
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in the Prandtl-Reuss type constitutive equations for elastic-perfectly plastic
solids. The assumed special form of the loading function depends largely on
one’s objective either in describing certain physical phenomenon (e.g., the
Bauschinger effect. or the material response to cyclic loading, etc.) or in the
context of particular application. To elaborate on this point, it is best to
consider a special choice for the form of the loading function and then
illustrate in the presence of small deformation certain features of both the
loading functions g and f, as well as those of the work-hardening scalar «.
To this end. let (y, y,. ) be the deviatoric parts of (E, E,, S), respectively,
denote their spherical parts by (él, é,1, 51), and temporanly specify a loading
function in the context of infinitesimal plasticity in the form

f=|:‘—§%c27p]'['—%c_)rn]—x
(k) i(x)
=4p’[y—(l +’i—';>7,]'[v—(l +%)n]-~=g. (4.27)

where the expression (4.27), for g is obtained from f with the use of
generalized Hooke's law, u i1s the shear modulus of elasticity and i may
depend on*? k. The loading function f specified by (4.27), is a generalization
of the von Mises yield function in stress space and tacitly incorporates the
assumption that it is independent of the mean normal stress §. With 2 =0
and x = constant, (4.27), becomes identical to the von Mises yield function
for an elastic-perfectly plastic solid®. It is of interest to note that for the
special case in which # = 0 and x = constant the yield condition (4.11) with
/ given by (4.27), is stationary, while the corresponding yield condition
(4.14) with g given by (4.27), would still depend explicitly on y,.
Returning to (4.27) with neither x nor i necessarily a constant, the
following rough geometrical observations may be made: (i) the size of the
loading surface at any instant (which represents the extent of the elastic
region) is determined by the work-hardening parameter x, (ii) the factor
24y, may be interpreted as the center of the yield surface in the deviatonic
stress space. (iil) the quantity {1 + (1,4a)a}y, may be interpreted (in anal-
ogy with a sphere in 3-space) as the center of the yield surface in deviatonc
strain space, and (iv) the translation of the yield surface in stress space is
represented by (1/2)y,. Clearly, if % is specified to be nonzero but only a
constant, then at a given value of the plastic strain (here y,) the translation
of the yield surface is determined independently of the loading history. On

[n wnting (4.27). we have used the symbol 7 in order to reserve the corresponding symbol without
an overbar for later use. As will be brought out presently, a more general approach 1s to ntroduce a
second order tensor g (in place of (2 2y, as an independent vanable with its own rate-type constitutive
equation.
"' The constant x here corresponds to k* in the usual statement of Mises yield condition. k being the
yield hmit in simple shear.
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the other hand, one may account for the effect of loading history on the
translation of the yield surface by regarding & to depend on x as displayed
in (4.27)%.

The discussions in the last two paragraphs easily suggest a less restric-
tive loading function simply by replacing the quantity (4/2)y, in each of the
square brackets in (4.26), by a shift tensor 2 which depends linearly on
plastic strain with a coefficient which may depend on** x. But this is still
too special. Returning to finite plasticity, as was n.'~d earlier a more
general approach would be to regard the shift tensor (or the *back stress’)
as an independent vanable defined by a constitutive equation (of the
Prager-Ziegler type’®) for the evolution of « in the Lagrangian formulation
of finite plasticity by

1 = (function of variables ¥ and 2)E. (4.28)

By contrast, in the Eulerian formulation of the theory, a constitutive
equation corresponding to (4.27) may be stated as’”:

an objective rate of z = (function of T, F, F,, x, 2)D,. (4.29)

In connection with the objective rate on the left-hand side of (4.29), a
number of authors who prefer the Eulerian formulation have assigned a
preferred status to one particular rate or another. With reference to the
spurious oscillatory shearing stress response to a monotonic simple shearing
observed by Nagtegaal and DeJong (1982), who specified their hardening
rule by an expression which can be categorized as a very special case of the
form (4.29) with the operator on the left-hand side being the Jaumann
derivative of @ = 2 — Wa + aW, several authors have proposed to replace
the corotational (or Jaumann) rate in such constitutive equations as (4.29)
by some other special objective rate (see, e.g., Dienes 1979 and 1986, Lee er
al. 1983, Dafalias 1983, Nemat-Nasser 1983, Onat 1984, among others). For
example, Nemat-Nasser (1983, Sec. 3) in his discussion of hardening rule
attempts to partly justify his choice of a particular objective rate on the
left-hand side of his expression for the rate of the back stress (see his Eqs.
(3.20) and (3.24)) on the basis of some special consideration of microme-
chanical effects. Equally troublesome is a different line of argument put

" In fact. only a linear dependence of i on x will suffice for descnbing (with good accuracy) matenal
response dunng stress and strain cyching in 2 umiaxial homogeneous deformation (Naghdi and Nikkel
1984).

% A constitutive equation for the shuft tensor 2 which depends linearly on plasuc strain was evidently
first proposed by Kadashevich and Novozhilov (1958, Eq. (1.10)). A similar assumpuon has been
utibzed by Caulk and Naghdi ( 1978), Naghd: and Nikkel (1984, 1986) and Dogw and Sidoroff (1985).
'*  See Prager (1955, 1956) and Ziegler (1959) who considered a constitutive equation for & only in the
context of ngpd-plastc matenals.

" Actually the vanous developments in the Eulenan formulation employ special vanants of (4.29). For
example, Lee er al. (1983, Eq. (7)) for the coefficient on the nght-hand side of (4.29) assume a function
of the equivalent plastc strain.
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forward in a recent paper of Agah-Tehrani, Lee, Mallet and Onat (1987):
First, they recall the spurious observation of Nagtegaal and DeJong (1982)
and by transferring the last two terms of the Jaumann derivative to the
right-hand side, they record the hardening rule of Nagtegaal and DeJong in
the form

a2 = (function of an equivalent plastic strain) D, + Wa —aW.

Next, they observe the anomalous behavior of the above expression and this
suggests to them the remedy that the hardening rule should take the form
(see their Egs. (5) and (6))*

1 = (function of an equivalent plastic strain) D, + W.a —aW,, (4.30)

where W, "is the deformation imposed angular velocity of the embedded
back stress . . . ."" This vague definition is later supplemented (see their Egs.
(31), (32) and (34)) by the specification of W¢= W + W, where the
skew-symmetric W is a tensor function of z and the *“plastic”* strain rate D,
introduced in the last paragraph of the last subsection. In effect, the
hardening rule (4.30) is of the same form as (4.29) with part of the special
objective rate transferred to the nght. The stipulation that any particular
rate in the development of a constitutive theory should emjoy such a
preferred status is questionable and requires further consideration as will be
discussed in the next subsection.

4l. Lagrangian versus Eulerian descriptions

It is well-known that the theory of nonlinear elastic materials can be
formulated either in terms of the Cauchy stress tensor T or the symmetric
Piola-Kirchhoff stress tensor®® S. In fact, in the context of nonlinear
elasticity any question of preference for either Lagrangian or Eulenan
formulation can be immediately disposed of since the two formulations can
be brought into correspondence through the transformation (3.1). By
contrast, the preference for the use of the Cauchy stress tensor T (rather
than the symmetric Piola-Kirchhoff stress §) in finite plasticity has surfaced
in the literature from time to time (see e.g., the discussion by Onat of the
paper of Green and Naghdi 1966, p. 131; and the papers of Lee 1969 and
Paigen and Drucker 1983, among others).

The preference of several schools of plasticity for adopting the Eulenan
formulation. including a special status for a particular objective rate in the

' The use of the temporary notation W, in (4.30) with reference to the paper of Agah-Tehrani er al.
{1987 should not be confused with the same symboi introduced to represent a different quanuty (with
reference to a paper of Nemat-Nasser 1983) in the last paragraph of the previous subsection 4G.

' By an elastc matenal we mean one for which a potenual 1s assumed to exst (Green. G. 1839). Such
a matenal in the current literature 1s sometimes referred to as Green-elastic or hyper-elastic. In this
connection, see Truesdell and Noll (1965, pp. 13 and 119).
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expressions of the rate of Cauchy stress in the flow rule (4.24) and the rate
of the shift tensor in (4.29), was indicated previously in this section (see
subsections 4D, 4G and 4H). Motivated by a desire to clarify this issue,
Casey and Naghdi (1988) have examined the relationship between the
Lagrangian and Eulerian strain-space formulations of finite plasticity with
the limitation to nigid-plastic materials. This restriction to rigid-plastic
matenals is made for conceptual simplicity, although it is accompanied by
a general (“anisotropic”) hardening law. It is then demonstrated that the
Lagrangian and Eulenian formulations are equivalent and that the choice of
an objective rate is immaterial. This conclusion conflicts with the procedure
adopted in a number of recent papers pertaining to Eulerian formulations in
which preference is given to one particular objective rate or another. Thus,
it becomes clear that the difficuities which have been encountered in the past
are due not to the special choice of the rate of stress or rate of the shift
tensor, but rather to the restrictive nature of the constitutive assumptions®.
Indeed once sufficiently general constitutive relations are assumed, a//
objective rates are acceptable.

The outcome of Eulerian versus Langrangian descriptions for rigid-
plastic materials (Casey and Naghdi 1988) is not fully conclusive until it is
substantiated in a more genera] setting; it is being currently studied (by
Casey and Naghdi) in the context of clastic-plastic materials and the
possibility of extending the nature of the previous (Casey and Naghdi 1988)
conclusions is being investigated.

5. A strain-based ‘ormulation of plasticity

The detailed review of ‘“‘the state of the art” in section 4 spells out the
naturs of disagreements and the implication of the varnied starting assump-
tions in the construction of a general theory of finite plasticity based entirely
on a stress-based formulation. It is very likely that it may be some tme
before the differences in basic viewpoints regarding the issues addressed in
section 4 will be fully resolved.

None of the existing developments in finite elastic-plastic materials have
so far been able to provide a complete definition of plastic strain to any
degree of finality, even though one or more developments may be preferred
depending on one's viewpoint and taste. Apart from this, it is evident from
the detailed discussions in the subsections 4A to 41 of the previous section
that the strain-space formulations of the theory are free from various special

“  To see this, consider for example a restrictive form of (4.29) with its left-hand side specified by the
Jaumann rate of ® and with the coefficient function on 1ts night-hand side being just a constant. Then.
1t can be easily venfied that such a special form of (4.29) 13 not form-invanant under change to another
objective rate.
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anomalous behavior that has accompanied the developments of the Eulerian
version of plasticity based wholly on a stress-space formulation. Moreover,
a close examination of the strain-space formulation exhibits agreeable
features that share commonality with other physically acceptable macro-
scopic theories of material behavior. Given this background and the fact
that enough justification for a strain-based formulation is indicated in
section 4, it seems best to discuss the main results of the strain-space
formulation and the final steps of its development (as is currently under-
stood) 1n a separate section. Thus, we include here a summary of the basic
constitutive results of the strain-space formulation of a purely mechanical
theory of elastic-plastic materials, a discussion of some of its important
features and special cases, as well as a rapid account of developments
pertaining to constitutive restrictions that have been derived from a work
inequality over a strain cycle.

SA. A svstem of Lagrangian constitutive equations for finite plasticity

In view of the remarks in section 4, it is clear that the insistence (in
some of the literature of the past two decades) that a meaningful finite
theory must necessanly be formulated only in Eulenian form is unfounded
on physical grounds. Keeping this background in mind and given the
primacy of the strain-space formulation (proposed in subsection 4F), we
now choose to further elaborate on an existing Lagrangian formulation of
finite plasticity which possesses considerable conceptual simplicity. Thus, we
summarize below the basic constitutive ingredients of a strain-space formu-
lation of the purely mechanical theory developed by the present writer and
co-workers during the past two decades of the original thermodynamical
theory of Green and Naghdi (1965, 1966).

We begin by recalling a constitutive assumption for the stress response
in the form (4.12) and its inverted form (4.9), but now also enlarge the
number of independent variables in order to include the additional second
order symmetric tensor variable z introduced in subsection 4H (the para-
graph containing (4.28)). Thus, we write

S=8#&) =84, E=EM¥), (5.1
where the abbreviations ¥, 4 and ¥ now stand for

U =(E, W), Y(E-E, ¥), (5.2)

v =(S. %) (5.3)
and

w =(E, «, a). (5.4)
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It should be noted that the shift tensor a (or the ‘back stress’) has the same
invanance property under s.r.b.m. as the plastic strain E,, i.e.,a* = a. Also,
the yield functions g and f are now, respectively, functions of the variables
(5.2), and (5.3). Similarly, the function ® defined by (4.19) and other
relevant quantities now depend on the variables (5.2),. It is clear that if the
effect of 2 is suppressed, then the variables (5.2), , and (5.3) reduce to those
defined by (4.7),, and (4.10), respectively, and similarly the response
functions for § and E reduce to (4.12) and (4.9). Next, from the assump-
tions of the forms (4.22), (4.24) and (4.28) for E,,. K, and a, as well as the
“consistency™ condition that during loading the strain trajectory C, (intro-
duced in subsection 4F) remains on the yield surface ¢4 so that g =0 (with
g =0, ¢ > 0), follow the reduced expressions*'

E,=¢8, k=i da=p8 (g=0420) (5.5)

and the “‘consistency” condition

.Cg <Cg ‘g

1+AEK+(?EP 0+6a =0, (5.6)
where ¢ and # are symmetric second order tensor-valued functions of ¥ and
A is a scalar-valued function of ¥. Equations (5.5),.;. as well as E, =0,
k =0, 2 = 0 for states specified by the loading cntenia (4.18a,b,c), constitute
the flow and the hardening rules of the strain-space formulation of finite
plasticity. Then, in addition to the response function S in (5.1), an elastic-
plastic material is completely specified by four functions g, 4, ¢ and §
subject to the restriction (5.6). In fact, if dg/dx # 0, (5.6) may be used to
solve for A.

Returning to the basic constitutive developments (in the early part of
this subsection), it should be emphasized that the constitutive ingredients
represented by the stress response (5.1), and the four functions g, 4, ¢ and
B are fully general for characterization of the rate-independent behavior of
elastic-plastic materials. But for most or many applications a somewhat
simpler form of these would be sufficient. It is, therefore, desirable to
simplify these and provide physically acceptable restrictions to be placed on
the various constitutive response functions, which are discussed in subsec-
tion 5C.

The constitutive results summarized in this subsection, in view of the
presence of a in (5.4), possess a more general structure than those consid-
ered in section 4 prior to subsection 4H. However, while the addition of a
variable such as a and its evolution equation (5.5), are useful ingredients,
they do not alter the basic structure of the theory. For this reason and in

*' Qur notauon here is patterned after that used recently by Casey and Naghdi (1984b.c), where the
relationstup between the symbols in (5.5) -(5.6) and corresponding results in earlier papers 18 indicated.
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order to continue the discussion in as simple a manner as possible, in the
-zst of this section and most of the developments that follow in sections 6-8
the etfect of x in (5.4) and hence in various constitutive response functions
will be suppressed.

SB. Some special cases of the general theory

In this subsection. we elaborate on some noteworthy features of the
basic constitutive results (5.1)-(5.6) in the absence of the vanable « and
also discuss important special cases of the general theory*.

(1) The definition (4.19) holds dunng loading from an elastic-plastic
state (g =/ = 0). It then follows from (4.19) and the conditions (4.20) that
dunng loading in a region of hardening or softening the reduced constitu-
tive equations (5.5), , may be expressed in terms of f as

&=£m k=£L (5.7)
and these can be regarded as the induced stress-space flow and hardening
rules for loading in a region of hardening or softening. In a region of
perfectly plastic behavior, E, and & cannot be expressed in terms of f and
must be calculated directly from (5.5), .

(2) The invertibility issue of the main constitutive resuits, i.e., the
invertibility of the stress rate $ and the strain rate £ represent an important
aspect of the general theory. For example. in some boundary-value (or
initial-value) problems. it may be desirabie to calculate $ in terms of a
specified history of deformation and hence E. For this purpose, a detailed
examination of the expression for § along any strain trajectory C, during
loading can be reduced to the form

S =XLE] (5.8)
and its inverse
E=2%"'Xx""3), (5.9)

where & = ¢8/¢E and
cf
=5 +é®=c 10
N =F+d® s (5.10)
is a dimensionless fourth order tensor which has a sixth order determinant

and satisfies the relation
det K = ® on the nght-hand side of (4.19). (5.11)

4! We discuss here only a few of these. For details and additiona! results see Casey and Naghd:

( 1984b).
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Also. in (5.10)-(5.11), the symbol ® denotes tensor product, S =
(1:2XOkmOrn + Oxndia)ex D e D ene D ey, 5y, is the Kronecker delta rep-
resenting the components of the fourth order unit tensor referred to basis
ex ® e, and the symmetric second order tensor ¢ is defined by

L .

0=4§;+Elol=dr- (5.12)
The tensor X contains contributions from all of the fundamental properties
embodied in the rate-independent theory, namely the functions ¢, 4 and g
(or f). In this connection, it is particularly noteworthy that the quaatity
®(=/'§) in (5.11) —which is directly measurable in an experiment—can
vary as a function of deformation to which the matenal is subjected: and
that, at a given time, assumes different vaiues at different points in strain
and stress spaces®’.

(3) The nature of a finite theory of ngid-plastic matenals (E = E,)
developed by Casey (1986) as a limiting case of the strain-space formulation
of plasticity summarized in the previous paragraphs of this subsection. By
considering the limiting case as E — E, — 0 of the general theory of elastic-
plastic matenials with all dependent variables regarded as functions of the
variables # defined by (4.7),, the loading criteria can be reduced to

(a) E=0 andlimf<0 (nonloading),
(b) £#0 andlimf=0 (loading),

where the yield function f is still of the form (4.11)*. During loading
(f =0) the flow and the hardening rules have the forms (Casey 1986, Secs.
III and V):

E =y, K =7vA, (y > 0), (5.14)

where 7 is a scalar function which does not require a constitutive equation
and is determined from the various ingredients of the theory. The three
classifications of strain-hardening characterization corresponding to
(4.18a,b,c) in the elastic-plastic theory are now provided by

(a) ['>0 (hardening),
(b) ' <0 (softening), (5.15)

(5.13)

(¢) =0 (perfectly plastic),

4 A special case of such a vanauon of the function ® was studied by Casey and Lin (1983). and.
in a different context of two-dimensional strain cycling with small deformauon. a plot of ® as a
function of plastic strain that charactenzes strain-hardening 1s inciuded 10 a paper of Naghdi and Nikkel
¢ 1986).

“4 In the theory of elastic-plastic matenals. yield surfaces exist in both strain and stress space. but in
the npd-plastic hmint the yeld surface 1n strain space collapses to a point.
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where
e (;Y I
r= (‘ax’*“ es) (5.16)

1s the “consistency” condition for rigid plastic materials ensuring that
loading from a plastic state leads to another plastic state. The constitutive
expressions (5.14), ; and the condition (5.16) are the analogue of (5.5), , and
(5.6) for ngid-plastic materials. Also, during hardening or softening the flow
and the hardening rules (5.14), ; can be rewritten in the forms

E=%o. k=-£—i (F=0) (5.17)

where f is still given by (4.17),. During loading, the current value of the
strain (E = E,) has a nonzero velocity in strain space and the yield surface
in stress space locally may (i) expand in a region of hardening, (ii) contract
in a region of softening, or (iii) remain stationary in a region of perfectly
plastic behavior. There are significant differences between the theory of
ngid-plastic materials outlined between (5.13)-(5.15) and other existing
formulations of ngid plasticity, including that of Hill (1962). The differences
are elaborated upon in the last paragraph of Casey’s (1986, p. 274) paper
and need not be repeated here.

(4) The well-known Prandtl-Reuss constitutive equations for small
deformation of elastic-perfectly plastic matenals actually employ a strain-
based flow rule even though the significance of the strain-space formulation
was not yet recognized. In order to verify the truth of this statement, recall
that the specific assumptions employed in the derivation of the Prandti-
Reuss relations are (a) the total strain is the sum of the elastic and plastic
parts (an assumption which holds in any constitutive development of the
lineanzed theory of elastic-plastic solids and not just Prandtl-Reuss equa-
tions), (b) the assumption of plastic incompressibility, (c) the stress response
1s specified by the generalized Hooke's law, (d) the yield function in stress
space is specified by the von Mises yield function (in stress space) which
does not depend on the mean normal of stress and is quadratic in the
deviatoric components of stress, (¢) the matenal is perfectly plastic beyond
the elastic range and that the flow rule for the rate of (infinitesimal) plastic
strain is linear in the deviatoric components of the stress. The specific
assumptions (a) to (e) in the order stated can be recorded as

(@) v, =y, +7v5,, e, =e, +ef, (5.18)
(b) e~ =0, and hence e,6 =ef (or € =¢é°), (5.19)

() t, =2uyi, §=73ke, (5.20)
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(d) f=3t,1, - K*=0 and g=2u%iy:, - K%,
=2u’(y,, = O Xy, = 75) — K2,
=0 (5.21)
(e) 75 =y, (5.22)

where the notations (7,. 7%, t,) and (€., é%.5,) are the rectangular Carte-
sian components of the tensor quantities (y, y,. 1), (él, é,/, 5D introduced in
subsection 4H (before Eq. (4.27)). In the above formulae. X corresponds to
the yield limit in simple shear, u is the shear modulus introduced earlier in
subsection 4H and k is the bulk modulus of elasticity. Also, the yield
function g in strain space given by (5.21), is obtained from (5.21), with the
use of (5.20) by virtue of (4.13) and the coefficient ¥ in (5.22) may depend
on strain and strain rate. A number of special results appropriate for
Prandtl-Reuss equations follow from (5.18) to (5.21) by straightforward
calculations. Thus, from the time derivatives of the yield conditions (5.21), ;
and the use of (5.20) we obtain

/= rUf:’ =,0 = Tt =.O. (5.23)

g=4au7,7=0=1,7=0
From the inner product of t,, and the time rate of (5.18), as well as (5.23),,
follows the identity

Tl =T, (5.29)
Also, expressions for ¢ and f calculated from (4.17),, and (5.21),, are
g = 2/“:,'/.':p f= t:/f:/' (525)

Next, substitute the flow rule (5.22) on the right-hand side of (5.24) to
obtain t,,;, = 2K}y which can be solved for § and written in the form
r l . g
V=3
in view of (5.25),. Finally, by considering the time derivative of (5.20), after
substituting from (S5.18), for y{ =7, — 7%, and using (5.26),, we may obtain
the following constitutive equation holding during plastic flow

(5.26)

. 1 .
T, = 2#<J,,k1 - EI? T,,fu)’/uv (5.27)

where f,,, are the components of the fourth order unit tensor defined
following (5.11). Clearly, the results obtained between (5.23)-(5.27) are
consistent with the conditions for perfectly plastic behavior in the context of
strain-based formulation; in this connection, see (4.20); and Table | in
subsection 4F.
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SC. Restrictions on constitutive equations

An important aspect of the development of macroscopic theories of the
type under discussion involves obtaining realistic material response—in
accordance with well-conceived ideas and/or experimental observations—
by imposing physically plausible restrictions on the constitutive equations.
For example, such restrictions may be effected by some appropriate state-
ment (or statements) of the Second Law of thermodynamics, or by an
appeal to a physically acceptable concept regarding the existence of a strain
energy density in the purely mechanical theory of elastic materials (G.
Green 1839).

The idea of placing some sort of restrictions on the constitutive equa-
tions of work-hardening elastic-plastic materials (e.g., the normality of
plastic strain rate and convexity of yield surfaces) was originated by
Drucker. Thus, with the limitation to smail deformation and in a stress
space setting, he advanced the fruitful idea (Drucker 1952) involving the
notion that a certain work-like expression be nonnegative in a stress cycle*.
A related postulate, again in the context of the linearized theory with small
deformation and involving a “‘postulate of plasticity’ that the integral of the
stress power be nonnegative in a strain (rather than stress) cycle, was later
introduced by Il'iushin (1961). As noted by Il'iushin, his postulate is less
restrictive than Drucker’'s postulate (1952, 1959). Additional related re-
marks or developments in the context of infinitesimal plasticity can be
found in the papers of Naghdi (1960, section 4), Drucker (1964) and
Palmer, Maier and Drucker (1967).

Within the scope of the nonlinear theory, thermodynamical restrictions
so far have produced rather {imited resuits. For exampie, thermodynamical
restnictions (to the extent that they were explored by Green and Naghdi
1965, 1966 using the Clausius-Duhem inequality) result in an expression for
the stress in terms of the specific Helmhoitz free energy function and a
further restriction on this function in the form of an inequality involving
partial derivatives of the Helmholtz free energy with respect to E,, x and the
normal to the yield surface in stress space. With this background and a
desire for obtaining some systematic constitutive restrictions in the purely

43 The restnction proposed by Drucker (1952) was stated in the context of the purely mechanical
rate-independent theory of plasucity and may be summanzed as follows: Consider an element of an
clasuc-plastc matenal having an eusting state of stress on or inside a loading surface, to which (by an
external agency) an additional set of stresses 15 siowly applied and siowly removed: then. in an
infinitesimal cycle of application-and-removal of the added stresses. the work done by the external
agency 1s nonnegauive. An extension of thus postulate 1o rate-dependent theory, again 1n the presence of
small deformauon, was subsequently advanced by Drucker (1959) and was called by lum a “stablity
postulate.”

‘¢ A close reading of [I'iushin’s paper seems to suggest that his “postulate of plasticity” may have been
intended as an energetic cntenon for plasuc flow (1n conjuncuon with the definstion of plasuc stran), 1n
contrast to Drucker's postulate which clearly was intended as a restnction on constitutive aspects of the
theory.
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mechanical theory, the following work assumption was proposed by Naghdi
and Trapp (1975b): The external work done on the body by surface tractions
and by body forces in any sufficiently smooth spatially homogeneous cycle
during the time interval (1, t,) is nonnegative, i.e.,

"U‘ Rl-vdA+[ Qob‘vdV]dIZO (5.28)
vio g v Ro

for all cycles (1, t,), where the times ¢, and t, designate the time of the
beginning and end of the cycle. Also in (5.28), &, is the region occupied by
the body in the fixed reference configuration x,, ¢, designates the closed
boundary surface of #, having the outward unit normal N, d4 and dV are,
respectively, the elements of area and volume in x, and ¢ = PN is the stress
vector which acts across any surface in the current configuration x but is
measured per unit area of the surface in x,. It should be emphasized here
that given any smooth closed strain trajectory in &, a corresponding smooth
homogeneous motion can always be found such that at every particle of the
elastic-plastic medium the strain calculated from the homogeneous motion
equals that on the strain trajectory. Such a motion can be maintained by a
suitable choice of the body force field in the consequence of the balance of
linear momentum (3.3).

With the use of the expression (3.6) for mechanical power, the equations
of motion (3.3) and the fact that for the homogeneous cycle associated with
(5.28) the kinetic energy returns to its initial value at the end of the cycle,
the work assumption (5.28) leads to the inequality (for details, see Naghdi
and Trapp 1975b):

1=j's-£dzzo, (5.29)

0

where / defines the integral in (5.29). Having obtained the inequality (5.29),
we now proceed to denive both the necessary and sufficient conditions for
the validity of the work inequality (5.28). However, because the derivations
of the necessary conditions have evolved in the literature by different
procedures and at various levels of relative simplicity, in the interest of
clanty we postpone identifying the original sources of these derivations until
later in this subsection.

The inequality (5.29) implies an expression for the stress S in terms of
the partial denvative with respect to E of a scalar potential y, namely

v
=5 ¥ = J(#). (5.30)

With the use of the result (5.30), the integral in (5.29) can be reduced to the
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following equivalent integral:

y

I =J H() de, (5.3
’oLoudm.

where the term "Loading’ below the integral signifies that the integral (5.31)

has a nonzero value only during loading (or any sequence of loading) in the

cycle of motion and where

o - &y ,
H(t) = [(FE 0 -z (Me)))eﬂz)
Moo @
+ <%£ @y -9 (MO))MM]&(!)- (5.32)
K CK

The expression (5.31) is derived from (5.29), by considering a smooth
homogeneous cycle €(t,. ¢, ) which begins at an interior point E(t,) = E, of
the loading surface ¢& and returns to the same value E,= E(1,) at the
completion of the cycle. Also, the abbreviation ¥ in (5.29) stands for

U =Ugeg,=(E, E,x), gH) <0, (5.33)

and the remaining quantities in (5.32) are defined earlier in this section (see
Egs. (4.7),.(4.14), (4.17),.(5.5).,).

Now the combination of the integral (5.31) and the inequality (5.29) at
once results in an aiternative representation of the latter inequality in the
form

integral / defined by (5.31) 2 0. (5.34)

The inequality (5.34) implies the following conditions during loading
(g >0)*"

H(t) § 20 (g(&) =0,g(#) s0), (5.35)
. P
¢=— E%' s =) 20 (g¥) =0), (5.36)

where the scalar function A and the tensor function & are defined by (5.32)
and (5.12), respectively. The constitutive restrictions (5.30), (5.35) and
(5.36) are necessary conditions for the validity of the work inequality (5.28).
The condition (5.30) establishes the existence of a stress potential ¥ for the
elastic-plastic materials under consideration. The condition (5.35) represents
an additional constitutive restriction on the first partial derivatives of ¢
which is also related to convexity of yield surfaces. Finally, the result (5.36)
may be referred to as the normality condition—it represents the fact that
the tensor @ is directed along the normal to the yield surface in strain space.

.

The details are not included here but will be found in the references that will be cited presently
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The condition (5.30) was first given by Casey and Naghdi (1984a),
although it was assumed in the paper of Naghdi and Trapp (1975b,
section 2). The restriction (5.35) was first derived by Casey and Tseng
(1984) from (5.29); and, as was noted by them, it is possible to recast this
inequality in a variety of forms. The normality condition (5.36) was first
derived by Naghdi and Trapp (1975b) from (5.28), although a much
simpler proof was supplied later by Casey (1984). Sull, a more direct
derivation of the necessary conditions (5.35)-(5.36) is included in a recent
paper by Lin and Naghdi (1989), where (5.30) and (5.35) have been also
identified as the conditions sufficient for the validity of the work inequality
(5.28). The fact that the normality condition is only necessary but not
sufficient may not come as a surprise. There are certainly examples, both
in the case of metals and geological matenals, where the normality does
not hold and one must return to the more basic constitutive results (often
referred to as nonassociative flow rules) in the forms (5.5)-(5.3) in the
absence of*® z.

In a recent discussion of a paper by Carroll (1987) on finite inelastic
deformation, Hill and Rice (1987) have claimed that they have also
derived a normality condition corresponding to the result (5.36). This
claim can be disputed for the following reasons: The derivation by Hill
and Rice (1973) starts with a generalized version (to finite deformation) of
II'iushin’s integral of the stress power and utilizes infinitesimal quantities of
different orders, as has been pointed out also in Carroll's response to their
discussion*®. Since the steps between an inequality involving the integral of
the stress power and a result such as (5.36) are purely mathematical, the
use of “infinitesimals of different order” hardly qualifies as a proof. In
addition, the development by Hill and Rice (1973) begins with an integral
of the stress power which is not the same as the work inequality (5.28);
the latter is a physically motivated dynamical restriction which is valid for
every smooth homogeneous cycle of motion*, where™® the former is not.

6. Thermal effects. Rate-dependent behavior

As remarked in section 1, many of the basic features of the rate-inde-
pendent behavior are also exhibited in closely related regimes such as
thermoplasticity and viscoplasticity. We, therefore, take advantage of the

“  An example of nonassocative flow rule (1.e.. when normality does not hoid) in the case of metals
anses in connection with the phenomenon of the strength-differential effect wiuch has been discussed 1n
the literature from both theoretical and expenmental points of view (see Drucker 1973. Sping et al.
1975. Casey and Jahedmotiagh [984. Casey and Sullivan 1985).

“  Carroll's response appears under Author's Closure in the Discussion of Hill and Rice (1987).

“  See. in this connection. the last two sentences of the paragraph contaning (5.28).
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detailed background material pertaining to various constitutive ingredients®'
already discussed in section 4 and will be brief in the introduction of the
parallel features in this section. Indeed, as will become evident presently,
many of the basic features associated with the rate-independent plastic
deformation in thermoplasticity —aside from an extra dependence on the
temperature —remarkably parallel the same format as in the rate-indepen-
dent mechanical theory.

6A. Thermal effects in plasticity

The inclusion of thermal effects necessarily requires consideration of a
complete thermomechanical theory and will be deait with here only in the
context of the rate-independent theory of elastic-piastic materials. It may be
recalled that in the development of any thermomechanical theory of mate-
nal behavior, the usual kinematics and kinetics of the purely mechanical
theory (summarized in sections 2 and 3) must be supplemented by a number
of thermal variables®?, i.e.. an absolute (positive) temperature 6 = 6(X., 1),
temperature gradient g, = ¢0:C X, the specific external rate of supply of heat
r. the heat flux vector g, measured per unit area in the reference configura-
tion, the specific entropy n. the specific internal energy ¢ and the specific
Helmbholtz free energy defined by ¢ =¢ — 6n. In addition to the balance
laws of the purely mechanical theory, we also have a balance of energy (or
the First Law of thermodynamics) which we record here in the local form*?

Qf — € —Divga + P =0, (6.1)
or in terms of the specific Helmholtz free energy as
Qor — QoY + nd + 6h) — Divga + P =0. (6.2)

The “Div"” operator in (6.1)-(6.2) has been previously defined following
(3.3) and the mechanical power P is given by (3.6).

In the presence of thermal effects, the structure of the constitutive
assumptions for the stress response, the rate of plastic strain E, and the rate
of hardening x —apart from an extra dependence on temperature—remain
the same as the corresponding assumptions in the purely mechanical theory
discussed in sections 4 and 5. Keeping this in mind, we observe that nearly
all developments in the literature of thermoplasticity during the past two

‘' By these we have 1n mind such constitutive ingredients as the concept of yield, yield surfaces 1a strain
and stress spaces, the loading chtena. strain trajectory in struin space and the corresponding stress
trajectory in stress space and so on.

31 All these thermal vanables are functions of position and ume. although this dependence s
emphasized n the text only 1n the case of absolute temperature.

' Equations (6.1) and (6.2) represent the Lagrangiaa forms of the belance of energy. The correspond-
ing Eulenan forms are not needed in the present discussion and can be readily (ound in the literature
( see, for example, secuon 3 of Green and Naghdi 1965).
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decades are stress-based and often employ an Eulerian representation if the
discussions and derivations are carried out in the coantext of finite deforma-
tion. Also, nearly all the papers which include thermal effects, regardless of
whether the deformation is assumed to be finite or infinitesimal, after
introducing a set of constitutive equations for the thermal vaniables (such as
the specific Helmholtz free energy, the specific entropy and the heat flux
vector) appeal to a statement of the Second Law of thermodynamics usually
in the form of the Clausius-Duhem inequality. Setting aside temporarily the
thermodynamical aspects, we briefly comment here on the inadequacies of
the mechanical part of the constitutive structure in a few representative
papers on thermoplasticity.

In a frequently cited paper, Mandel (1973) addresses the general formu-
lation of an elastic-plastic theory in the presence of thermal effects. After
some discussion of the so-called hidden and internal variables®, he men-
tions that the theory may be formulated in terms of an Eulerian description
(which he also calls “'present stressed configuration™) or in terms of a
“present released configuration” (Mandel 1973, p. 285, subsection 15.3.1)
and states that it is necessary to determine in some way the orientation of
the present (stressed or released) configuration, so that an orientation
variable must be added to the state variables.” He then represents the
“orientation variable” by an “‘orthonormal triad,” which he calls a director
triad**. Subsequently. with the use of a multiplicative decomposition of the
type (4.1) and its rate involving the velocity gradient L (see his Egs.
(15.4)-(15.6)), Mandel's analysis culminates in his expressions representing
constitutive equations (Mandel 1973, p. 296) for an “‘elastic rate of defor-
mation”” denoted by D, and for a “'plastic rate of deformation.” These latter
constitutive ingredients in Mandel's paper, apart from the fact that they
include the effect of his “orientation variable,” are variants of the decompo-
sition (4.23) and a constitutive equation of the type (4.24); and, at the very
least, are subject to the same criticisms as those already discussed in
subsections 4A and 4G. Also, it should be noted that Mandel’s choice of an
“"orientation variable’ is much too restrictive. Indeed, since this vanable is
represented by an orthonormal set of directors, then (i) there would be no
change in the magnitude of the directors and (ii) the angles between the
directors are fixed and will remain the same during the entire motion.

In the same vein, the structure of the constitutive equations for the flow
and hardening rules in many of the recent papers on thermoplasticity are

“  The termunology of hidden or internal vanabie 1s sometimes used in the literature to identify those
vanables that are not directly observable. A vanable of this kind requires an evolution equation: and,
1n the context of inelastic behavior, s specified by a rate-type constitutive equation such as those for £,
2 and x.

' Presumably, the “onentation vanable” is intended to account for the effect of orientation of a
mucroelement (such as a crystal) in the macroscopic theory. Mandei's paper also contans some
discussion on mucromechanics. but we defer comments on thus aspect of his paper until section 8.
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subject to the same type of criticism already discussed in subsections 4G and
4H regarding the decomposition of the rate of deformation D and the spin
tensor W into their respective elastic and plastic parts (D,, D, and W,, W,),
together with a constitutive equation of the type (4.24) for D,. Among these
mention may be made of the papers by Anand (1985) and by Anand and
Lush (1987), which contain additional references to earlier similar develop-
ments. In another typical approach to thermoplasticity, Eisenberg, Lee and
Phillips (1977) employ internal variables which are not explicitly defined
and use an additive decomposition for strain*. In addition, as in many
similar papers on the subject that utilize internal vanables, Eisenberg et al.
(1977) also confine attention to a restricted class of constitutive equations.

In the preceding two paragraphs, we have bniefly pointed out some of
the shortcomings of the mechanical aspects of representative papers on
thermoplasticity. Keeping this in mind, we now proceed to the presentation
of an outline of a strain-based formulation of plasticity extended to include
thermal effects. Thus, having already argued for the primacy of strain-space
formulation, we regard the set of quantities

{E,0, w}, (6.3)

with the abbreviation %" standing for the set of variables defined by (5.4).
Then, in parallel with the development of strain-space formulation of the
purely mechanical theory, we admit the existence of a scalar-valued yield
function g in the strain-temperature space in the form

g(E. 0, %) =0. (6.4)

For fixed values of w', the equation (6.4) represents a closed orientable
hypersurface of dimension six enclosing an open region in the seven-dimen-
sional strain-temperature space’’. The function g on the left-hand side of
(6.4) is chosen such that g(E, 8, ") <0 for all points in the interior of the
yield surface in strain-temperature space. Next, we introduce a constitutive
equation for the stress response in the form*

S = function of the vanables (6.3) (6.5)

¢ These authors write ¢, = ¢, +¢;, and go on to assume that inside the yield surface in stress-temper-
ature space the rate of ¢, i3 2 finur function of the rate of stress and the rate of temperature without
an explicit 1denufication of e, as elastc strain, or even a mention of whether the strain 18 finite or
infimtesimal.

" The yield condition g in (6.4) corresponds to (4.14) in the mechanical theory; and. similarly, the
yield condition (6.8) given below corresponds to (4.11) 1n the mechanical theory. Yield surfaces of the
type (6.5) have been shown expenmentally to exist in stress-temperature space and have been reported
by Phullips (1974) on the basis of data obtained from small deformation of thin-walled specimens of pure
aluminum subjected to combined tension-compression and torsion at vanous temperatures well above
the room temperature. For additional remarks on these expenments, see subsection 7A.

% Sinular 1o (4.6). a constituive equation of the form (6.5) can also be expressed in terms of an
equivalent set of variables (E - E,, 8. »).
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and assume that for fixed values of (6, ") this can be inverted to yield
E = function of {S, 6, ¥'}. (6.6)

Once a constitutive equation of the type (6.5) and its inverse (6.6) is
adopted, then an expression for the yield function f in stress-temperature
space can be easily found through the relation

g(E.0, %) =g(E(S.0.%),0,%)=[(S,0, ). (6.7)
Again, for fixed values of ¥, the equation
f(8.6,%) =0 (6.8)

represents a closed hypersurface of dimension six which encloses an open
region in stress-temperature space and has the same geometrical properties
as the yield surface (6.4) in the strain-temperature space. In parallel to the
development of loading criteria in subsection 4E, we take the yield (or
loading) function and the loading cnteria in strain-temperature space as
primary and define the quantities ¢ and f by*®

;-8 p 8 Y e
§=<F E+580. f‘es $+586. (6.9)

Then, analogously to (4.18), the loading cniteria of the strain-temperature-
space formulation are defined to be

(a) g <0, (thermoelastic state),

(b) g=0, g <0 (unloading from a thermoelastic-plastic state),

(c) g=0, ¢=0 (neutral loading),

(d) g=0, ¢>0 (loading), (6.10)

and the derived conditions in stress-temperature space corresponding to
(6.10), ;5.4 are: f <0 (thermoelastic state); £ =0, f < 0 (during unloading);
and f =0, f =0 (during neutral loading). Also, the loading conditions in
stress-temperature space that can exist in conjunction with (6.10) permit a
classification of strain-hardening charactenzation identical to (4.20) but
with ® now dependent on the vanables (6.3), i.e,,

/

o =NE. D0, #’)=§. (6.11)

Moreover, the relations between the loading criteria in strain-temperature
space and associated conditions in stress-temperature space have the same

% The quanuues defined by (6.9), , represent the counterpans of ¢ and / defined by (4.17), ; n the
mechanical theory.
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forma: as those summarized in Table | (of subsection 4F). Just as in the
mechanical theory, it should be evident that the formulation of the ther-
momechanical theory in the strain-temperature and the stress-temperature
spaces are not equivalent.

We now discuss the nature of the remaining constitutive ingredients of
the thermomechanical theory®®. The constitutive equations for the rate of
plastic strain E, and for x and & during loading will have the same form as
those in the mechanical theory but their coefficient functions in (5.5), , ; now
depend on the vanables (6.3) instead of # defined by (5.2). As in the
development of the constitutive results of the purely mechanical theory
during loading, it can be readily verified that the constitutive assumptions of
the forms (4.22),, (4.26), and (4.28), as weil as the ‘“‘consistency’ condition,
again reduce to the forms (5.5),,; and (5.6), except that g and the various
coefficients are now functions of the variables (6.3).

In order to complete the discussion of our constitutive assumptions, we
introduce the constitutive equations for ¥ and n in the form

v =W(E. 0. %), n=nE.6 %), (6.12

and specify a constitutive equation for ¢, with the heat flux response being
dependent on the variables (6.3) and the temperature gradient g, defined in
the opening paragraph of this subsection.

At this stage of the development of any thermomechanical theory, it is
desirable to place some restrictions on the various response functions in the
theory such as those which occur in (6.5) and (6.12); and this is effected by
an appeal to ideas arising from the Second Law of thermodynamics. In most
of the current literature this is carried out with the help of the Clausius-
Duhem or s:milar inequalities, where often the concept of entropy first
appears. An aiternative procedure—motivated by the structure of balance
of energy in the special case of inviscid fluids—has been developed by
Green and Naghdi (1977, 1978a) where an entropy balance is postulated in
addition to other balance principles®'. It then foliows that the local equation
for the balance of entropy for the special case of an inviscid fluid (but not
for other materials) has the same form as the energy equation (6.1) or (6.2),
and hence is not an independent equation. Further, substitution of the local
equation for the balance of entropy and the equations of motion (3.3) into
the balance of energy (6.2) results in a reduced energy equation, which is
then regarded as cu identity for all thermomechanical processes. For details
of this development, we refer the reader to Green and Naghdi (1977) but

% A discussion of constitutive equations of the thermomechanical theory in the coatext of strain-space
formulaton 13 contained in a paper of Green and Naghdi (1978b).

*' The nature of thermodynamical restncuons discussed in these papers can be further suppiemented
by a broader set of restnctions which readily foilow from the Second Law statements discussed n a
paper of Green and Naghdi (1984) after suppressing the electromagneuc effects.
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only note here that the reduced energy equation may be expressed in the
form

= QY +n9)+P—009§~$qn'gn=0. (6.13)
where the variable Z in (6.13) represents the specific internal rate of
production of entropy which requires a constitutive equation that depends
on the vanables (6.3), the rate quantities E, k. 1 and the temperature
gradient g, (Green and Naghdi 1978b).

We now proceed to indicate the nature of the thermodynamical restric-
tions for an elastic-plastic material and introduce the various constitutive
assumptions into the reduced energy equation (6.13) which must be satisfied
identically for every motion. Several restrictions then follow from (6.13) and
are given by®’

& &b
=0y —. = - 14
$=0 cE 1 c6 (6.14)
and an equation of the form
&y oo & L
WFE B ek v 2+l 4 ge ga=0. (613

The equation for the local entropy balance (not displayed here) can be
reduced to

A 1 .
2or — Div g ‘*'qu "8r + QB¢ = 0,0n (6.16)

and is an equation for the determination of the temperature field, once the
constitutive equations for ¢, 7 and ¢, are known. Further restrictions can
be placed on the constitutive equations with the help of appropriate
statements of the Second Law in a manner discussed by Green and Naghdi
(1984) but so far in this development no appeal has been made to a Second
Law of thermodynamics®®.

To illustrate how further simplifications can be introduced into the basic
development of the theory., we first recall that the various constitutive
ingredients can alternatively be expressed in terms of the following equiva-
lent set of vanables

(E~E,.0.%), (6.17)

>* With the stipulation that the reduced energy equation be sausfied idenucally for all motions. 1n the
procedure of Green and Naghd: (1977) the local balance of entropy (rather than the energy equanion)
15 used as the equation for the determination of the temperature fieid.

"' 1t 1s perhaps of interesi to note that the results (6.14), ; and (6.15), but not (6.16), are of the same
form as those that can be deduced with the use of the Clausius-Duhem inequality referred 1o eartier 1n
this subsection.




—“

366 P M. Naghdi ZAMP

with the abbreviation %~ defined by (5.4). Then, assuming that the specific
Helmholtz free energy (but not necessanly the other dependent variable) :
does not depend explicitly on*™ ¥, ie., |

¥ =Y(E - E,, 0). (6.18)

by the procedure that led previously to (6.14)-(6.15) and tne tact that
¢y CE, = & éx =0, we now obtain

'] &

S=Q°Z‘(E_—Ep_)' n=-=g (6.19)
and the restriction
1
—S'Ep+9095+§QR'3R=0- (6.20)

The equation for the determination of temperature is again given by (6.16),
but can now be simplified in view of (6.20). The special results (6.19)-(6.20)
and (6.16) are particularly of interest in regard to small deformation of
elastic-plastic materials with J taken as a quadratic function of (E — E,, 0),
while both ¢ and ¢ depend linearly on temperature gradient with coefficient
functions which may be dependent on (6.17). Additional restrictions can be
imposed on ¢; with the use of a Second Law statement, but we do not
pursue the matter further.

6B. Viscoplasticity

While a general study of rate-dependent theory of inelastic behavior of
materials in the context of a purely mechanical theory is intrinsically of
definite interest, such rate-dependent behavior of materials is frequently
observed in conjunction with deformations at elevated temperatures. In this
subsection, however, we discuss mainly the purely mechanical theory of a
class of rate-dependent behavior of materials which is often categonzed as
elastic-viscoplastic or simply referred to as viscoplasticity.

Theoretical developments pertaining to rate-dependence of most struc-
tural matenals at elevated temperatures, which also involves permanent (or
plastic) deformation of the type generally admitted in the construction of
rate-independent theones, have been largely confined to small deformation,
although some recent studies have also been carried out in the presence of
finite deformation. Historically, the existing literature on the subject may be
grouped into two categories depending on whether or not a yield func-
tion—and hence also a yield condition —is admutted as part of the constitu-
tive ingredients of the theory.

™ This assumption corresponds to the special form (4 8) in the purely mechanical theory.
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In a category that does not admit the existence of a yield function,
mention should be made of the papers of Bodner and Partom (1975) and
Stouffer and Bodner (1979), Lee and Zaverl (1978, 1979), Liu and Krempl
(1979), among others. The paper of Bodner and Partom (1975) appears to
strive for the construction of a finite rate-dependent theory and begins with
the decomposition of the form (4.21). Their development, so far as finite
deformation is concerned. is subject to the same type of criticism discussed
in subsection 4G (following Eq. (4.22))%. Apart from this, the work of
Bodner and Partom (1975) and other papers cited in this paragraph represent
efforts towards the development of appropnate constitutive equations for
small deformation of elastic-viscoplastic materials. In all of these studies,
since a yield condition is not admitted, there is no separation between the
elastic and the inelastic parts of deformation and the mode/ in question
necessarily has the feature that the inelastic part of the deformation can occur
corresponding to any stress level no matter how smaii. A related deveiopment
by Valanis (1971, 1975), which again does not admit a yield function (or yield
condition), is a functional type theory known as the endochrounic theory of
plasticity. This work has been reviewed in some detail by Rivlin (1981a); in
this connection, see also the rebuttal by Valanis (1981) and a further response
on the subject by Rivlin (1981b).

In contrast to the developments outlined in the preceding paragraph.
there is another category of papers on the subject of viscoplasticity with small
deformation that admits the yield condition but the issue involving loading
cntena either 1s not addressed in these papers or is discussed only vaguely.
Among the papers in this category, we mention the work of Perzyna
(1963, 1966) and the papers of Phillips and Wu (1973), Chaboche (1977) and
Eisenberg and Yen (1981). In this category, the inelastic deformation is
regarded to occur beyond the initial yield and is comprised of permanent (or
plastic) and rate-sensitive (or viscous) parts. A modified version of
Chaboche’s (1977) procedure is discussed in a recent paper by Eftis,
Abdel-Kader and Jones (1989), which also provides a comparison between
the predictions of the modified Chaboche model and the Bodner-Partom
constitutive equations, as well as with availabie experimental results for the
uniaxial behavior of* INCONEL 718 at 1200°F for cyclic loading. While
such a comparison may be interesting, it does not provide a crucial basis for
distinguish:ng between different theories and their predictions. In fact, there
seems to be several such comparisons in the literature between vanous
Jevelopments in viscoplasticity but the comparisons are inconclusive.

®* A generalization of the work of the theory of Bodner and Partom (1975) in the presence of finite
deformation but still without employing a vield condition has been discussed in several recent papers by
Rubin (1986, 1987a.b).

" Thus abbreviation refers to a nicke! based superalioy. For a2 more detailed description. see Eftis ef a/.
(1989. Sec. IV). where onginal references for the expenmental data in cyclhic tests for determinauon of
the mechanical »roperues of INCONEL 718 at 1200 F can be found.
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The existing literature in the theory of elastic-viscoplastic materials,
which are mainly stress-based, represent largely ad hoc developments even in
the presence of small deformation. The inadequacy of a stress-based formu-
lation, addressed in some detail for the ra‘e-independent theory, equally
applies to the case of rate-dependent materials. In view of this, it is desirable
to spell out here the ground rules for a satisfactory theoretical development
of the subject. Indeed. as was pointed out previously in the context of a
finitely deforming rate-dependent theory (Naghdi 1984b.c), any idealized
elastic-viscoplastic model should at least accommodate the following fea-
tures: (1) For sufficiently low strain rates (i.e., as the strain rate tends to
zero), the rate-dependent response of the material should approach that of
the rate-independent theory with the yield function (and hence also the yield
condition) as one of its constitutive ingredients; (2) it should allow for a
suitable definition of plastic strain (for the present at least for small
deformation); (3) the constitutive model should be capable of describing the
rate-sensitive material response during both loading and unloading; and (4)
the stress constitutive equation during loading should accommodate the
response of the medium both in the elastic range and the rate-dependent
response during loading beyond the elastic limit (or initial yield). It should
be noted that the above requirements are in conformity with the view that
any hierarchical theory (such as an elastic-viscoplastic theory) should
include a lower hierarchy (e.g., rate-independent elastic-plastic theory or
ordinary nonlinear elasticity) as a special case.

We close this subsection by calling attention to an idealized model
described in terms of a strain-based Lagrangian formulation of an elastic-
viscoplastic material which admits: (i) a yield condition in the form (4.14)
and the loading criteria (4.18) together with a yield condition in the form
(4.11) and the loading conditions described in subsection 4F [see the two
paragraphs preceding that which includes (4.21)], as well as the strain-hard-
ening characterization in terms of @ defined by (4.19); (ii) constitutive
equations for the rate of plastic strain £, and for k and & during loading in
the forms (4.22),. (4.26), and (4.28); and (1ii) a constitutive equation for the
stress in the form (Naghdi 1984b):

S = S during unloading and neutral, (b) (6.21)

S + £E, during loading when g =0, ¢ >0, (a)
loading when g =0, ¢ <0,

where the second order tensor S and the fourth order tensor & depend on
the variables # defined by (5.2),, i.e.,

S = S(¥), & =L, (6.22)
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and satisfy obvious symmetries. The stress response characterized by (6.21)
and (6.22) is linear in the strain rate £ through the constitutive equation of
the form (4.22), during loading. As elaborated in Naghdi (1984b), the
second part of the stress response during loading in this idealized model,
namely SE,, represents a jump in the stress S and will assume different
values depending on the rate of strain with which loading is taking place (in
this connection see Figs. 1 and 2 of Naghdi 1984b). Restrictions on the
constitutive equations of this idealized model can also be obtained with the
use of the work inequality (5.28) of subsection 5C (see Naghdi 1984b), but
we do not discuss this development here.

It should be evident from the foregoing discussion of viscoplasticity that
even though the subject is of considerable interest in applications and has
received increasing attention during the past three decades, as a whole the
current state of the subject is unsatisfactory. However, one would hope that
the combination of decisive new experiments and further work on the
foundations of the subject would lead to a better state of understanding of
rate-dependent behavior of matenals in the near future.

7. Expesimental and computational aspects

The conduct of fundamental and crucial experiments is of utmost
importance to the theoretical development of any scientific field of research,
especially one as complex as the inelastic behavior of materials. In addition,
given the current and future computational capabilities, well-conceived
numerical simulations will supplement the knowledge gained from the
experimental data and will enormously enhance our understanding of the
field. It may be emphasized that all three directions of research, i.e.,
theoretical, experimental and computational, are essential in fostering fur-
ther advancement of finite plasticity. Thus, in this section we discuss
separately experimental interpretations and computational potential in light
of the theoretical developments summarized in sections 5 and 6. Although
the discussions that follow are intended to emphasize finite deformation,
they are also of interest in the context of infimitesimal piasticity.

TA. Some suggestions for experiments in plasticity

Given the present state of our understanding of inelastic behavior of
materials in general and finite plasticity in particular, it is not completely
clear as to which experimental directions will be fruitful and which ones
will not be. Despite this, it is still desirable to sketch a broad outline of an
experimental program of research in finite plasticity. Such an experimen-
tal program is esseatial in the further development of plasticity theory,
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especially because of the large number of competing theoretical develop-
ments that now exist and continue to flourish in different directions and on
the basis of a variety of viewpoints. Moreover, such a program of research
should supply raw data in the context of both strain and stress spaces. It
should be noted that in the past, experimental data in plasticity have been
reported mainly relative to stress space and almost exclusively for small
deformation only. Such partial results cannot possibly reveal the complete
scope of material behavior in the full elastic-plastic range.

In line with the spinit of this review article, our discussion of the
experimental topics will be largely confined to those aspects which especially
bear on the rate-independent behavior of elastic-plastic materials. However,
because of the important role that must necessarily be played by future
experiments, we indicate here the nature of a much broader scope of
experimental topics. Thus, before embarking on a detailed discussion in this
subsection., we provide below a list of topics of current interest for an
effective experimental program:

(a) Determination of yield (or loading) surfaces and their geometric features,
e.g., their shape, size, normals to the surfaces, etc., in both strain and
stress spaces and for finite deformation.

(b) Evolution of yield surfaces in both strain and stress spaces during finite
motion and a general study of strain-hardening, including direct mea-
surement of the function ® defined by (4.17).

(c) Identification of the relationship between the rate of stress $ and the rate
of strain E by specifying a strain trajectory and measuring the relevant
coefficients (such an experiment can be carried out independently of
those for yield surfaces).

(d) Experiments for yield surfaces and their evolution, similar to those
mentioned in (a) and (b) above, but carried out at elevated temperatures.

(e) Experiments in viscoplasticity which could test the merits of some
idealized concepts in the further development of a theory for rate-
dependent behavior of materials such as the jump in stress response
associated with loading at different strain rates (see Naghdi 1984b,
Fig. 1).

(f) Experiments in metal-forming and extrusion processes. ( Existing data in
this area are rather crude and have been obtained largely for caiculating
force resultants rather than stresses and strains.)

(g) Wave propagation and penetration both in the context of rate-indepen-
dent and rate-dependent behavior.

(h) Experimental aspects of microstructural effects and crystal plasticity,
especially in the presence of finite deformation®’.

°’  Although a theoretical discussion of microstructural effects and crystal plasticity s not presented
untl the next section, it is felt that its inclusion is desirable.
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(1) Expenimental studies for polymeric and geological materials, especially
of the type noted under the topics (a)-(e) above.

[n what follows, we elaborate on the list of topics (a) -(e), not necessarily
in the order listed; and. with reference to past experiments, frequently
combine the discussions of the background information pertinent to two or
more topics (such as (a) and parts of (d)) in the same paragraphs. Consider
now a typical experiment which would involve at least two or three nonzero
components of (nearly) homogeneous strains as, for example, in the case of
expenments involving combined tension-compression and torsion tests of
thin tubular specimens. In such expenments, it is usual to report the
measured data, such as the loci of yield surfaces, only in stress space; and
this is effected by delineating the location of the new yield point in the space
of shear stress and axial stress. But since the corresponding values of the
strains are also known to the experimenter, it should not be difficult to
provide the relevant experimental data also for the yield surfaces in strain
space.

For a vanety of metallic materials (such as mild steel, copper and
aluminum alloys) and with the use of thin-walled specimens subjected to a
two-dimensional state of stress resulting from smail homogeneous deforma-
tions, considerabie experimental information pertinent to the shape and other
features of the initial and subsequent yield surfaces in stress space have been
accumulated over the years®. In the absence of thermal effects, the first
experiment of this kind on the shape of the initial yield surfaces was
conducted by Taylor and Quinney (1931) whose data were confined to the
first quadrant in the plane of shear stress-axial stress. Experimental studies
of initial and subsequent yield surfaces were carried out later by Naghdi,
Essenburg and Koff (1958), Ivey (1961) and Bertsch and Findley (1962),
among others. Corresponding experiments on the shape of the initial and
subsequent yield surfaces at elevated temperatures have been reported in the
papers of Phillips. Liu and Justusson (1972), Phillips and Kasper (1973) and
a detailed review of this aspect of the subject has been given by Phillips (1974).
Remembering that the experimental data on the shape of yield surfaces
reported under isothermal conditions (see, e.g., Taylor and Quinney 1931,
Naghdi er al. 1958, Ivey 1961) correspond to the nearly elliptical curves in
the two-dimensional stress space, it is interesting that the expenimental data
at elevated temperatures furnished by Phillips and co-workers seem to repre-

" Such two-dimensional states .. stress can be maintained 1n combined tension-compression and
torston or combined internal p.  ire and torsion expenments. [n connection with the expenmental
papers on the subject. 1t should be remembered that the guidelines for the interpretauon of the measured
data 1n such expenments were necessanly based on the state of the theory of plasucity which existed at
the ume.
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sent cross sections of a truncated cone in a three-dimensional stress-temper-
ature space; see Figs. 5. 9 and 20-22 of Phillips (1974)%.

In any experimental program of the type discussed in the preceding two
paragraphs for the determination of the initial yield surface, it is necessary
to adopt a procedure on how to identify the first occurrence of plastic
strain. A similar procedure must be used on reloading from an existing state
in the elastic region (enclosed by the yield surface) for the determination of
subsequent yield surfaces. Not all experimental results reported in the
literature (including those cited in this subsection) utilize the same proce-
dure. Often. on the assumption that the initial elastic region is delineated by
the porportional limit, deviation of the uniaxial stress-strain curve from
lineanty is regarded as coinciding with the first appearance of plastic strain.
Ancther commonly adopted procedure (the offset method) regards yielding
to have occurred once a preassigned small plastic strain has been accumu-
lated. The use of such different procedures has been widely noted in the
literature and is also discussed by Phillips (1974). In particular, Williams
and Svensson (1970). Helling and Canova (1985) and Stout, Martin,
Helling and Canova ( 1985) have examined initial yield surfaces in combined
tension and torsion determined by different values of offset (permanent)
strain. The influence of such different procedures on the shape of yield
surface, as well as other features such as the absence of cross-effect” in
combined tension and torsion tests (Naghdi er al. 1958, Ivey 1961) has been
reported for some maternials. However, regardless of the metallic matenal
used in the experiments. it is generally accepted that at room temperature
the initial yield surface (in combined tension-torsion-internal pressure ex-
periments) lies between the von Mises and Tresca yield conditions and is
frequently closer to the von Mises yield condition. Evidently, based on the
experimental data of Phillips and co-workers, the same conclusion holds in
the case of initial yield surfaces at elevated temperatures.

Again, with reference to experiments on the initial and subsequent yield
surfaces in stress space. mention should be made of past studies on the
existence of corners on yield surfaces. Among such studies we cite the
papers of Naghdi. Rowley and Beadle (1955), Naghdi. Essenburg and Koff
(1958). Phillips (1960). Phillips and Gray (1961) and Hecker (1972, 1976).
In all these experiments, thin-walled tubular specimens were subjected to
biaxial “"zig-zag" loading paths in stress space and in the majonty of the

~

Throughout this articie we have used the terminoiogies of “yield” and “loading” function and hence
also yield and loading surfaces synonymously However. in the recent literature some authors (eg.
Phillips 1974 and other papers of Phillips and co-workers) while making reference to an mmtial yield
surface have disunguished between subsequent yield surfaces and loading surfaces in the spint of a
two-surface model of Phillips and Sierakowsk: (1965) Comments on the use of such mulu-loading
surfaces were made previously in subsection 4E.

" The absence of “cross-effect”” in combined tension and torsion tests refers to the observation that
under a prestress in torsion there 1s no change n the size of the yield surface along the tensile stress axs.
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cases the relationship between the direction of the applied stress increment
(or stress rate) and the direction of the resulting plastic strain increment (or
plastic strain rate) has indicated the existence of corner or pointed vertex
(rather than only a localized region of high curvature) at the loading point
(see Fig. 1 of Naghdi et al. 1955). Even in the latest study on the subject
(Hecker 1972) the experimental results are inconclusive. There seems to be
some dichotomy between the direct yield surface measurements on the one
hand (which indicate smooth yield surfaces) and the “‘zg-zag™ loading
experiments on the other hand (which indicate corners). It is certainly of
interest to clarify the issue. Given today's laboratory instrumentation, it
appears that the existence of corners can now be directly tested by determin-
ing whether or not a unqiue normal exists at a given material point on the
ininal and subsequent yield surfaces. In the event that such experiments
unambiguously establish the absence of sharp comers, it would still be of
interest to clarify the results of earlier experiments (cited in this paragraph)
and if necessary repeat the experiments when the specimens are subjected to
biaxial “‘zig-zag' paths in strain space.

We now turn to the evolution of yield surfaces and the closely related
study of strain-hardening behavior. Here more than in any other aspect of
plasticity. simultaneous measurements in both strain and stress spaces are
essential. With reference to the strain-hardening charactenzation defined in
(4.17), it is clear that measurements of the increments of the normal outward
displacement u, of the yield surface in stress space and the normal outward
displacement u, of the yield surface in strain space enable one to directly
calculate the ratio Ay, :Au,; and this, in turn, permits measurement of the
function ® =/ §. We recall in this connection that the quotient f/g, which
is rate-independent is related to the ratio of the outward normal velocities
of the yield surfaces (in stress and strain spaces) during plastic flow according
to the formulae (see Casey and Naghdi 1983¢c, Egs. (30)-(31)):

l_du,_ c’f'éf -2
A ‘7(55 es) ' b
du, .(cg cg\~'?
el SO Il AL - 7.2
T g(es es) >0. (7:2)
so that
(‘-’_f.if_)"
J_du\iS 2S) (1.3)
g du, _616_8 12
¢E CE

The formula (7.3) also requires knowledge of the ratio of the magnitudes of
the normals &f/3S and ég,/¢E. But, at least in simple cases, this ratio can be
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readily determined from measurement of the elastic properties of the
material represented by the fourth order tensor & in the expression (4.15)
in subsection 4E.

To continue the discussion on the nature of the function ®, we observe
that this function depends on the variabies ¥ defined by (4.7), and possibly
on the shift tensor z introduced in subsection 4H, or equivalently on the
variables (5.2), i.e.,

O =NE ¥), (7.4)

where % is defined by (5.4). Plots of the function ® for various values of
its arguments should provide substantial information regarding the strain-
hardening charactenstics of the material (see also Table 1 of subsection
4F)”'. It is instructive at this point to consider a special choice for the yield
functions g and f; and, then, in the presence of small deformation, to
illustrate certain features of the function ®. To this end consider expen-
ments of the type reported by Lamba and Sidebottom (1978a,b) for
two-dimensional strain cycling that can be sustained by a biaxial state of
stress resulting from combined tension-compression and torsion of thin-
walled specimens of OFHC copper’®. Again, in the context of small defor-
mation and utilizing generalized Hooke's law, we recall from (4.27) the
expressions for the yield functions f and g in terms of the deviatornic and
spherical parts of strain and stress and now write the function g given by
(4.27); in the form (for details see Naghdi and Nikkel 1986)7*:

2 2 r s 2
g =§E{e” ‘-<l +%i>ef|] + 8ﬂzl_e|z —(l +4i#)efz] - K, (75)

where the coefficient 1 is defined by

(2o — 2,)K + 2,K0 ~ 29K,
Ko — K, !

(1.6)

I=1x)=

and in wnting (7.5) the lateral strain components ey, = ey, and e§; = ¢4,
have been eliminated from the yield function since they can be expressed in
terms of e, and ef,. Also, in (7.5)-(7.6), E is the Young's modulus of

" In this connection. menton should also be made of two interesting papers of Casey and Lin (1983,
1984), where strain-hardening topography of elastic-plastic matenals 18 discussed.

"* The abbreviauon OFHC stands for “oxygen-free hugh conductivity.” The expenmental data of
Lamba and Sidebottom (1978a.b) were obtained dunng loading while the matenal was hardening in the
sense summanzed in Table | of subsecuon 4F.

"' Recall that in the context of a general theory summarized 1n section 5, the yield function g 1n stran
space —apart from its dependence on E. is also a function of the vanables w defined by (6.4). As far
as dependence on the vanables ¥’ is concerned. a parallel statement holds for the yeld function fin
stress space. A special choice for the shift tensor wouid be the case 1n which s 1s taken to be a function
of (E,. x) and a more restnctive choice anses when 2 13 a scalar function of x only as 1n (4.27), ; and
(7.5) with i specified by (7.6).
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elasticity. u is the elastic -hear modulus and x, and «, are the values of x at
initiation of yield and at saturation, respectively. Moreover, i specified by
(7.6) has the property that when x = kg, 1 reduces to 2, and when x = x,,
1 reduces o z,.

For the sake of clarity in what follows, it is heipful to note certain
simplifications that occur in the representation of the function ® for the
special case in which the stress response does not depend on the second and
third entries in the set of variables (4.7), .. Then, remembering that general-
1zed Hooke's law has already been used in the preceding paragraph, by an
appeal to the work assumption of Naghdi and Trapp (discussed in subsec-
tion 5C). the right-hand side of (7.4) can be simplified considerably™. With
2 chosen to be a scalar function of x as in the expressions (4.27),, and (7.95),
it follows that ® depends only on the total strain £, and the plastic strain
E,. as well as x. Moreover, during plastic deformation the set of vanables
% =(E. E,, x) must satisfy the yield condition g =0 with g specified by
(7.5). It turns out that for the particular case under discussion the depen-
dence of @ on the variables # can be expressed in the form™

-1 -1
®=®[e‘{,—<l+§?> e...e’,’:-(l-\\—gﬁ) e,z.x], (7.7)

The last result must be solved simultaneously with the equation resulting
from setting the nght-hand side of (7.5) equal to zero, i.e.,

x = The expression resulting from (7.5) by setting g =0, (7.8)

Kg S K Sk,.

In order to obtain a suitable plot of the function ®, use was made of the
experimental data of Lamba and Sidebottom (1978a,b) in two-dimensional
strain cycling. In the course of identifying values for the various coefficients
from this data. 1t ‘vas found that the values of x, and x, differed only by less
than 0.3 percent and hence by neglecting this difference one could assume
the two coefficients to have the same value in this calculation, i.e., 2, = z,.
The values of all matenal constants used in the calculation are given in Eqgs.
(4.1) of Naghdi and Nikkel (1986). A plot of the vanation of ® with plastic
strains (e%,, e%,) for fixed values of (e,,,e;;) will represent a surface in a
3-space with coordinates (®.e%,.e%,). For Jefiniteness, we specify
e,, = ¢,; = 0 and then calculate the value of ® for each pair of (¢4, e4;) that

* For details of the simpiified form of the function ® which (instead of / §) depends only on the
partial denvatives of f and g. see Naghdi and Nikkel (1984, Eq. (7) and 1986. Eq. (2.10)). Ths
representation of ® 1s based on earhier developments in the papers of Casey and Naghd ( [981a, between
Eqs (36)-(42) and 1984a. Eq. (4 FIT—~2

" An exphicit form for the function ® 1s not recorded here, but can be readily calculated from the
detailed development given 1n Naghdi and Nikkel ( [986).
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et =0~ -

e?, = 00004

Figure 5

A geometncal representation of the strain-hardening function ® as a surface exhibiting its dependence
on the plastic strain compoaents ¢4, and ¢{,. plotied for fixed values of the total strains (taken 1n thus
figure to be ¢, =¢,, = 0) for OFHC copper tested in strain cycling expenments of Lamba and
Sidebotiom ( 1978a.b). The heavier closed curves on the surface are curves of constant x bounded by the
values x, at imtial yield and «, at saturation: the values of other xcurves shown are listed :n Table 2.
For different fixed values of ¢,, and e,,. the surface does not change its shape but merely translates
paraliel to the plane of (ef,.e%;).

also satisfy (7.8) for each’ x. A plot of a surface of the type just described
(a semi-ellipsoidal surface) was included in a paper of Naghdi and Nikkel
(1986) and is reproduced here as’” Fig. 5. The lighter curved lines in Fig. S,
which collectively represent the semi-ellipsoidal surface, are lines of constant
plastic strains (e4,, e4,) drawn at intervals of 0.0004 (only a few of these are
shown). The heavier curves on the surface are curves of constant x bounded
by the values of x, = 533 (MPa)? and x, = 25500 (MPa)?. Only a few of
these x-curves are shown in Fig. 5; see also Table 2 which provides a list of
values of @ for corresponding values of x. It should be noted that for a fixed
x in the range x, S x S x,, say for x = 10000 (MPa)?, any point on the
x -curve corresponds to a point on the yield surface g =0 with the same
value of «.

It should be emphasized that in such calcuiations the choice of (e,,. ¢,;) and (e],, ¢4,) cannot be
arbitrary and must be such that they sausfy the yieid condiion g = 0 wath g specified by (7.5).

" The present Fig. S is a different version of the previously published figure. | thank D. Nikkel for this
revised and perhaps more illuminating piot of the data ongnaily presented in Naghdi and Nikkel (1986,
Fig. 4).
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Table 2

Representative values of x (between x, and x,) and the corresponding
values of the {dimensioniess) strain-hardening measure ®. The heavier
curves of constant x shown on the surface in Fig. § correspond to the
values of x i1n Table,.z

& in (MPa)® & x 10°
533 204
2000 1.95
S000 1.78
10000 148
15000 118
20000 0.878
25500 0.545

It is clear from the arguments of the function ® in (7.9) that the single
calculation on which Fig. 5 is based provides all the relevant information on
the vanation of @ for strain-hardening charactenization; and that, for am:
other specified values of e¢,, and e,,. the surface plotted in Fig. 5 will not
change in shape but will simply translate parallel to the ¢4, — e%, plane by
the constant amounts

-1 ~1
(1+§’-§> e.,.<l+§%) e1s (1.9)

/

in the ¢4, and ¢4, directions, respectively. Some additional features of the
surface plotted in Fig. S should be noted: (1) it is symmetric with respect to
the ¢4, — ® and e, — ® planes in the sense that the values of ® will remain
unchanged if e4, is changed to —e4, and if e4, is changed to —~e4%,; (2) the
maximum value of ® occurs at the lower value of x = x; near the apex of
the surface (the closed curve at the top identified as x =k, = 533) and
decreases 10 its minimum at the higher value of k = «, on the bottom of the
semi-ellipsoidal surface (the closed curve identified as x = x, = 25500).
The foregoing discussions in this subsection have emphasized topics in
experimental plasticity involving ductile metals. even though many of the
suggested experiments could also be carried out for nonmetallic matenals.
One particular class of materials to which we expect a general theory of
elastic-plastic materials to be applicable is represented by geomaterials such
as rock. soil and concrete. In an interesting series of experiments pertaining
to softening of rock, Wawersik and Fairhurst (1970) and Hudson, Brown
and Faichurst (1972) have reported their test data in small deformation of
unconfined compression of cylindrical specimens of different marbles™ in

™ Six rock-type matenals. including Tennessee marble. Charcoal Gray gramite and Indiana limestone.
were used by Wawersik and Fairhurst ( 1970} while the specimens in the study of Hudson et al. (1972)

were made of Georna Cherokee marble
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order to establish whether the strain softening is entirely a real matenal
property or is a result of specimen size, shape or even testing techniques. In
a related informative review article on the subject, Read and Hegemier
(1984) have analyzed these experimental results and have noted the fact that
the softening behavior observed by Hudson er al. (1972) and others is partly
due to degradation of the material and does not necessarily represent
softening of the material itself. To see this, let ¢,, be the axial component of
the stress so that t,, = (F.a), where F is the applied compressive force and
A 1s the cross-sectional area of the specimen undergoing small deformation.
In an actual test the load-bearing cross-sectional area of the specimen
diminishes due to the slabbing (i.e., axial fractuning) of the material at or
near the lateral free surface and hence the actual cross-sectional area of the
specimen, say A, will be less than 4 and hence the actual axial stress
(instead of ¢,,) will be t;, =(F/4’). It then follows that ¢}, =(4/4"),,,
indicating a larger ultimate stress. Thus, unless the actual load-bearing area
A4’ is used in the calculation of the stress, the stress-strain curve will appear
increasingly lower than it should be.

All of the experimental results mentioned or discussed so far in this
subsection have been obtained in the context of small deformation. In the
future, such experiments should be repeated in the presence of large strains.
As may be surmised, fundamental experiments for finitely deforming elastic-
plastic matenals are rare. For example. in an interesting series of exper-
ments by Armstrong, Hockett and Sherby (1982), 1100 aluminum cubes at
room temperature were subjected to multidirectional compression in order
to study the material behavior at large plastic strain. In another recent and
noteworthy paper, Bell (1989) has reported expenimental data from a large
number of thin-walled tubular specimens of different materials, including
metal alloys. that have been twisted and extended well into the plastic range
(to as much as 360° in twist and in 30% in axial direction). These large
strains were obtained by subjecting the specimens to combined tensioa,
torsion and internal pressure, and the tests were conducted in such a
manner that the onginally circular cylindrical specimens remained so even
at large deformation. A particularly striking result of Bell's (1989) experi-
mental data is the demonstration that the twisting and extension to very
large strains is accompanied by only a small change in the rotation tensor™.
Mention should also be made of other experimental resuits discussed by Bell
(1986)%, which include some finite strain measurements and where a list of

B

Recall that ( by the polar decomposition theorem) the deformation gradient F can be expressed as a
product of two second order tensors. one being a symmetnc positive definite tensor representing stretch
and the other being an orthogonal tensor representing rotation.

“ In this paper Bell also indicates an observed parabolic relationship between a scalar “effective’” stress
measure T and a scalar “etfective”” strain measure [ (see Bell 1986, Eqs. (4) and ($)). The connection
between this relation and the constitutive ingredients of a general theory of elastic-plastic matenals 1s
unclear at this time.
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related experimental papers by him and his co-workers can be found.
Clearly the conduct of experimental studies of this kind should be more
widespread and should also be extended to include data from unloading
curves, as well as other experimental features in finite plasticity discussed in
this subsection.

7B. Computational aspects

In the computational literature, rather than incrementing the stress as
an independent vanabie, frequently strain increments are used to calculate
stress increments. While such a procedure is in harmony with the strain-
space formulation of plasticity, it is also important to ensure that any
special loading criteria used in the computation are compatible with the
loading criteria of the strain-space formulation defined by (4.16). Moreover,
it is also necessary to include the yield function in stress space along with its
loading conditions summarized in the paragraph following (4.16).

Apart from the obvious merits of the current computational capabilities
in facilitating calculation of specific results and theoretical predictions,
numerical simulations can be used to great advantage in supplementing the
experimental results by identifying and delineating new directions for fur-
ther theoretical developments. In fact, such numerical simulations could be
undertaken in parallel with some of the experiments suggested in subsection
7A and in some instances could have a clanfying influence in situations for
which experimentation is rather difficult if not impossible. For example, by
numerical simulations, it should be possible to construct a plot or plots of
the strain-hardening characterization represented by the function @ for
more general situations than that illustrated in Fig. S and discussed in the
previous subsection. Indeed, such numerically obtained results would com-
plement the direct experimental measurements of @ suggested in subsection
7A. Similarly, numerical simulation in both strain and stress spaces could
shed light on the geometric evolution of yield surfaces during plastic flow.

8. Microstructural effects and crystal plasticity

We discuss here aspects of microstructural effects in metallic matenals.
The term microstructure refers to the mechanical properties of metals which
occur on a microscale, i.e., a scale lower (or finer) than the macroscale®'. A
descriptive account of the subject, which also includes some historical
background, can be found in an easily readable article by Cottrell (1967).

‘' We exclude here other properties of metals. such as optical and eiectromagnetical, which occur on
a scale sull lower (or finer) than the mucroscopic scale.
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For more general background information on dislocation theory and plastic
flow in crystals, we refer the reader to the books by Cottrell (1953),
Nabarro (1987), Hirth and Lothe (1982) and Hertzberg (1983).

What is commonly referred to as physical plasticity attempts to incorpo-
rate into (macroscopic) continuum mechanics certain well-known expen-
mental observations at the microscopic level. Clearly, once a fairly general
structure of a continuum theory is available, it should possess sufficient
flexibility to also accommodate microstructural effects. In other words, the
point of view taken here is that (macroscopic) continuum theories should
have a fairly broad base and a general outlook that allow for the additional
microscopic ingredients if desired. Such a broad continuum theory was
presented in previous sections of this review article (such as sections S and
6); and while this theory does not explicitly account for microstructural
effects, it allows for possible inclusion of such microstructural notions.
These additional ingredients can be incorporated into the continuum theory
in a vanety of ways. In the present section, we focus attention on a widely
accepted framework for including crystallographic features in a macroscopic
theory of finitely deforming elastic-plastic materials. This line of research
actually predates not only the modern approach to finite plasticity but also
a good deal of the classical theory of elastic-plastic materials with small
deformation. Pioneering work on the subject was laid by Orowan (1934),
Polanyi (1934) and Taylor (1934), and subsequently was extended by Hill
(1966). More recently, the subject has been pursued in somewhat different
directions by Mandel (1973, 1981, 1982), Havner and Shalaby (1977), Asaro
and Rice (1977), Weng (1980), Havner (1982), Hill and Havner (1982),
Iwakuma and Nemat-Nasser (1984), and has been reviewed extensively by
Asaro (1983a.,b).

In order to make the context of this section accessible to those readers
who may not be intimately familiar with micromechanics of crystalline
materials, i.e., single crystals or polycrystalline grains. it is perhaps desirable
to include here some additional background information. Briefly, slip is
caused by glide of dislocations across a slip plane one lattice spacing at a
time. A relatively simple and informative description of slip in crystalline
materials can be found in Nabarro (1987, Ch. I) who describes vanious
types of dislocations and other developments on the subject (Nabarro 1987,
Ch. I, especially pp. 5-8). Central to the current understanding of the
crystallographic nature of slip is the work of Taylor and Elam (1923, 1925)
who studied in considerable detail plastic deformation of aluminum single
crystals. In these papers, which bear significantly on the physics of plastic
deformation of the crystalline structure of metals, Taylor and Elam (1923,
1925) provided an appropniate interpretation of the kinematics of deforma-
tion in terms of crystallographic structure. After identifying the slip planes
and the slip directions and observing that slip occurs preferentially, i.e., that
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some (but not all) slip directions are activated as a result of dislocation
motion, they go on to identify the component of the shear stress in the slip
plane and in the direction of slip, i.e., the resolved shear stress on the slip
plane. Moreover, they noted that plastic yielding occurs in a single crystal
in accordance with the Schmid law (Schmid 1924), i.e., when the resolved
shear stress on the slip plane reaches a cntical value. Remembering the
defimtion of slip (stated earlier in this paragraph), we now note that the
terminology of the slip system or ‘‘active™ slip system used in much of the
current literature refers to the combination of slip planes and slip directions.

The majonity of the recent contributors to the (macroscopic) continuum
theory which takes into account microstructural effects appear to subscribe
to the hypothesis that material moves across the crystal lattice structure as
a resuit of dislocation, while the lattice itself undergoes only elastic deforma-
tion (see Asaro 1983a, p. 36). Evidently these notions, suggested by experi-
mental observations, form the basis of the currently accepted point of view
for associating certain features with the macroscopic model upon which a
continuum theory can be constructed. Here, based on these observations,
we regard the deformation process from a reference configuration x, to the
current configuration x at time ¢ to be broken into three parts®?: (1) plastic
shearing of the material which does not alter the lattice structure, (2) a local
rotation of both the material and the lattice, followed by (3) an elastic
deformation in which both the matenal and the lattice participate.

In the remainder of this section we provide separately a discussion of
kinematics of deformation and the nature of constitutive laws in a (macro-
scopic) continuum theory for a single slip system, as well as an assessment
of existing constitutive developments in the continuum theory of elastic-
plastic crystals. Our discussion will focus only on the rate-independent
aspects of elastic-plastic crystals and this is in line with most of the existing
developments aimed at formulating a continuum theory of plasticity which
includes microstructural effects.

8A. Preliminary analysis of a single slip system

The purpose of this subsection is to provide in the context of (macro-
scopic) continuum mechanics a preliminary analysis for elastic-plastic defor-
mation of a single crystal. As in most of the recent literature cited earlier in
this section. our development will be based on the basic features of a simple
slip system and the related assumptions described in the fourth paragraph
of this section] for incorporating microstructural effects into the macro-
scopic theory. These features are schematically depicted in Fig. 6 with the
use of the multiplicative decomposition of the type (4.1) associated with an

*  The detailed nature of these assumptions are spelled out below 1n subsecuon 8A.
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Figure 6

A schemauc skeich representing (on the macroscopic scale) elastic-plastic deformation 1n a crystailine
medium resulting from the motion of a single shp plane from its reference configurauon &, to the current
configuration k. Also shown is an intermediate configurauon & and the assoctated multuiphcauve
decomposition of the deformation gradient F into the factors representing the “elasuc” part F, and the
“plasuc” part £, The motion between x, and & 1s composed of two parts, namely £, which has no effect
on the reference orthonormal vectors (3,. &g) and the rotation A, whuch only rotates (5,, &) 1nto (s,. 8,)
in the configuration &. Only the “elastic™ part F, of the deformation gradient acts on the umt vectors
1s,.&,) which become (s. &) 1n x.

intermediate stress-free configuration®. It should be noted here that the
details of Fig. 6 differ from the corresponding schematic diagram in Asaro
(1983a. p. 38, Fig. 29), but are compatible with the analysis given below in
this subsection. Asaro’s deformation process does not include the part
between x and & in Fig. 6, i.e., the local rotation 4, which is not a rigid body
rotation.

To continue the discussion, let X, £ and x be the position vectors in the
continuum theory corresponding to a single slip system in the reference
configuration x,, an intermediate stress-free configuration & and the current
configuration x at time /. Recalling the definition (2.1), for the deformation
gradient F relative to the reference position, we may wnte

dx = FdX, (8.1)

which is a linear transformation taking a line element 4X into dx. The use
of the multiplicative decomposition (4.1) then permits replacing (8.1) with

dx =F,di, di =F,dX. (8.2)

%% Qur main reason for adopting such a decomposmition in this subsection 13 to provide an easy

companson with the existing Uterature (see Asaro 1983a). most of which uulize a decomponiuon of the
form (4.1). We note. however. that such decompositions are too restnctive and are subject to the same
type of cnticism aiready discussed 1n subsection 4A. especially 1n the paragraph following (4.3).
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Again, with reference to Fig. 6, let the vector fields (s, 8) —not necessarily
unit vectors —represent, respectively, the slip direction and the normal to
the slip plane in the current configuration x. Further, let (s,, »,) and (s, #)
be the values of (s, #) in the intermediate configuration & and the reference
configuration x,. The vectors (8o, &) are assumed to be orthonormal and, as
will be seen presently, (s,.n,) are also orthonormal.

Remembering the background information for the single slip system
shown in Fig. 6, the deformation from x, to x consists of three parts. These
parts consist of a deformation measure representing plastic shearing of the
matenal and charactenzed by a second order tensor l", from x, to a
configuration K, followed by a local rotation of the slip system characterized
by a second order orthogonal tensor 4, from & to the intermediate
stress-free configuration K, and a subsequent elastic deformation measure F,
from & to x. Consistent with these assumptions (see also Fig. 6), it is seen
that F, can be related to £, and 4, in the form

F,=A,F,, F,=I+5Qn, (8.3)

where the scalar-valued function y in (8.3), represents a measure of shear
strain relative to the undeformed lattice in x,. Clearly, in view of (8.3),, the
multiplicative decomposition (4.1) can now be expressed in the form*

F=F.AkF,. (8.4)

In the first part of the deformation process discussed above the depicted
in Fig. 6, F, acts on the material line (8.2), but not on the orthonormal
vectors (s, my) representing the lattice structure. Thus, in the course of
motion from x, to K, the unit vectors (o, #y) remain unaffected by plastic
sheanng from x, to X and only rotate from & to & so that the unit vectors
(s,. m,) are also orthonormal. It then follows that the unit vectors (s,, &,) in
K are related to (s,, #y) in & by the transformations

s, = A,5, B, = AR, (8.9

It should be emphasized that the decomposition (8.3), necessanly implies
consideration of another configuration x as indicated in Fig. 6 such that the
deformation between x, and & involves the plastic deformation £, followed
by a pure rotation 4, between & and K.

So far as the kinematical aspect of the slip system is concerned, it
remains to indicate the relationship between the vector fields (s, ») in x and
the orthonormal set (s,, #,) in . Keeping in mind that by the nature of our
basic assumptions only F, acts on the lattice structure in &, it follows that

s=Fs, a=(det F,XF')n,. (8.6)

*  Companson of (8.4) with £, gven by (8.3), and (4.1) easily reveals the influence of microstructural
effects on the basis of simple ship system descnbed 1o this subsecuion and Fig. 6.
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The first of (8.6) readily follows from the fact that only F, acts on s,, but
the second of (8.6) is less obvious and can be verified as follows: Let the
scalars da and da denote, respectively, elements of surface area in the
configurations x and x. Then, recalling a well-known transformation rela-

tion between the area elements in & and x involving #,dd = da and da,
respectively, we have

da = (det F,\(F;')"n, da,

from which after dividing by the scalar dd follows the resuit (8.6),.

We now turn our attention to the invanance properties of the various
quantities utilized between (8.2)-(8.6) under s.r.b.m.** We recall from
subsection 4C that under s.r.b.m. the second order tensor functions F. F,. F,
transform according to (4.5),,3, where Q(/) and (1) are two different
proper orthogonal tensor functions of time, each representing a rigid body
rotation. Then, by standard arguments in continuum mechanics, we have
the following transformations

sy =0s,, ny =gn,,

s” =Qs, n* =Qn,
from which and with the use of (8.5), and (8.7), we also have the result

A; =04, (8.8)
Moreover, it follows from (4.5);, (8.3), and (8.8) that under s.r.b.m. F,
transforms by

F; =F, (8.9)
for all orthogonal tensors Q(¢). The results (8.8) and (8.9) were obtained
previously by Casey (1987) in his discussion of Dashner’s (1986) paper
concerning the role of invariance requirements under s.r.b.m.*

The foregoing preliminary analysis, mainly kinematical, is based on a
simple model of a single slip system. A more general analysis of microstruc-
tural effects should include multislip systems permitting several slip systems
to be simultaneously active. Such a scheme could be effected by expressing
the constitutive equations for the macroscopic variables such as the rate of
plastic strain E, as a series sum over active slip systems (s, #'*') in the form
(compare with Eq. (3.10) in Asaro 1983a):

. [the constitutive
Rate of plastic strain = Y < ingredients based on ;s @a'®.  (8.10)
*=' | multislip systems

(8.7

% The abbreviation s.r.b.m. refers to superposed ng@d body mouons introduced in the opening
paragraph of section 4. Also, as stated previously in sectuon 2. for all quanuues associated with the
configuration x * (as a consequence of s.r.b.m. from x) we use the same symbol but with an attached
plus "+ sign.

% [n this connecion see the remarks in the last paragraph of subsection 4C.
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In (8.10) the series is summed over the active slip systems and the quantity
in the bracket { } on the right-hand side is intended to represent an
appropriate measure of deformation on the microscopic level relative to the
undeformed lattice such as the rate of plastic shearing 7'*’, where the scalar
+'* represents plastic shearing of the ath constitutive ingredient measured
relative to the undeformed lattice in ;.

A complete theory in the context of crystal plasticity must include a
detailed consideration of various aspects of constitutive equations and their
ingredients along the lines discussed in subsections 4A to 4H of section 4
but suitably generalized to include microstructural effects. However, at the
present time, the development of such constitutive equations are in their
primitive stages and have not been fully understood even on the basis of a
simple model of the type discussed in this subsection.

A further comment seems to be desirable regarding the possibility of
introducing additional structure into the (macroscopic) theory in order to
represent the microstructural effects. For this purpose, we may admit
directors as additional independent vector fields, as has been intimated
sometimes in the literature. With reference to the single slip system dis-
cussed in this subsection and shown in Fig. 6, this would require two
directors to replace the vector fields (s, #) in the configuration®” x. The
directors. which must satisfy appropriate invariance requirements under
s.r.b.m.. could be so constrained that their behavior would be compatible
with those of the vector fields (s, #) of the single slip system throughout the
deformation process between the configuration x, and x. But the use of the
director fields could also capture other features at the microscopic level;
and. in any case, the directors must satisfy appropriate dynamical equations
supplementary to the equations of motion (3.3) or (3.2)*. Moreover, the
constitutive equations must now include the director fields and possibly
their gradients as additional constitutive ingredients. Such a development
and its interpretation is not available at present.

8B. Nature of progress in crystal plasticity

We discuss in this subsection the current state of theories of finitely
deforming elastic-plastic materials which incorporate microstructural effects.
The direction and scope of research in this area has been markedly different
from that pursued during the two decades between 1945-65. The develop-
ment of the subject has advanced considerably during the period 1966-84,
particularly from the point of view of utilizing and incorporating important

¥ Of course. additonal directors are needed in the case of muluslip systems.
" Background informstion for theones that utilize directors appropnate for directed media (also called
Cosserat continua) can be found in Truesdell and Toupin (1960) and Naghdi (1972).
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observations from fundamental experiments using metal crystals. Indeed,
beginning with Hill's (1966) paper, gradually the development of the subject
has progressed to its current level as reflected by the contents of some of the
papers cited in the second paragraph of this section, especially the informa-
tive review article of Asaro (1983a). Nevertheless, for the convenience of
future researchers in this area, it may serve a useful purpose to call attention
to some shortcomings in the existing formulations of crystal plasticity. With
this in mind. we first note that the constitutive equations in all of the recent
papers cited earlier in this section (second paragraph) utlilize a stress-based
formulation, rather than a strain-based formulation in the sense discussed in
sections 4-6; and this aspect of all of these papers has the same anomalous
difficulties as do the stress-based theones that do not explicitly include
microstructural effects. Apart from this, we now proceed to discuss the
nature of a few representative papers beginning with Mandel's (1973) paper
which appears to be one of the early attempts for introducing an additional
structure into the basic framework of the theory of elastic-plastic materials.

As stated in subsection 6A (third paragraph), for the purpose of
incorporating the effect of onentation of a microelement into the macro-
scopic theory, Mandel (1973) introduces an *‘onentation variable’” which he
calls a director triad. But his choice for the representation of an “‘orienta-
tion variable” in terms of an orthonormal set of directors is much too
restrictive, as was already noted at the end of the third paragraph of
subsection 6A. Similar mention of a director triad or directors is made in
other papers (Mandel 1981 and 1982; Havner 1982, Sec. 4.1, p. 281),
without any clear explication of the properties of such vector fields (e.g.,
invariance under s.r.b.m.) or the dynamical equations that they must satisfy.
Moreover, in all of the papers already cited in this paragraph, use is made
of a multiplicative decomposition of the type (4.1) and subsequent use of
additive decomposition of the form (4.21) and a constitutive equation of the
type (4.22).

Asaro’s (1983a, p. 36) interpretation of his own hypothesis (also re-
ferred to in the fourth paragraph of this section) for describing the deforma-
tion process of a single slip system in terms of the multiplicative
decomposition of the type (4.1) differs from that described in subsection §A
and shown in Fig. 6 (compare with Fig. 29, p. 38 of Asaro 1983a). In terms
of the notation used here and as was noted earlier (first paragraph of
subsection 8A), his deformation process from x, to x does not include the
part represented by the local rotation 4, in Fig. 6. However, the nght-hand
side of his F, is the same as the right-hand side of the expression for £,
defined by (8.3),. One consequence of this flaw in Asaro’s analysis is the
fact that his ingredients ( Asaro 1983a, pp. 37-139) are not properly invanant
under s.r.b.m. and this, in turn, influences his development pertaining to his
identification of his macroscopic variable for the rate of plastic deformation
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in terms of rate of shearing in the slip directions of his multislip systems. As
in many other papers discussed earlier, he also employs a vanant of additive
decompositions of the forms (4.21) and a consututive equation of the type
(4.22) (see Asaro 1983a, pp. 38-45). Again, it should be noted that a
constitutive equation of this kind for the rate of plastic deformation falls in
the same category as that criticized in subsection 4G. A further discussion
of his (Asaro 1983a,b) constitutive developments includes the adaptation of
the Schmid rule to characterize the yield condition, a set of constitutive
equations for the flow rule and strain-hardening which incorporate mi-
crostructural effects. For details of these developments we refer the reader
to Asaro (1983a. pp. 38-53). Asaro (1983a,b) also considers some constitu-
tive restrictions by an appeal to the type of normality condition proposed by
Hill and Rice (1973), but this aspect of his analysis is subject to the same
criticism already noted in section 5 (last paragraph) and need not be
repeated here.

In light of the above remarks, it is apparent that significant progress has
been made in the area of micromechanics of crystal plasticity during the
past decade. It should be evident, however, that in order to incorporate
microstructural effects into theories of the type discussed in sections 4-6, a
great deal of work is needed in both theoretical and experimental aspects of
crystal plasticity. Given this state of the subject, one may anticipate that
fundamental advances in this area will be forthcoming in the years that lie
ahead.
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Abstract

The object of this paper 1s to provide a cntical review of the current state of plasticity n the
presence of finite deformation. In view of the controversy regarding a number of fundamental issues
between several existing schools of plasticity, the areas of agreement are descnbed separately from those
of disagreement. Attention 1s mainly focussed on the purely mechanical. rate-independent. theory of
clastic-plastic matenals, aithough closely related topics such as rate-dependent behavior, thermal effects.
expenmental and computational aspects. microstructural effects and crystal plasticity are also discussed
and potentially fruitful directions are idenuified.
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A substantial portion of this review 13 devoted 10 the area of disagreement that covers a detailed
presentation of argumeni(s), both pro and con, for all of the basic comstituive ingredients of the
rate-independent theory such as the pnmuuve nouon or defimtion of plasuc strain, the structure of the
consuitutive equation for the stress response. the yield function, the loading cnitena and the flow and the
hardening rules. The majonty of current research in finite plasucity theory. as with its infinitesimal
counterpart. sull utlizes a (classical) stress-based approach wiuch inherently possesses some shortcom-
ings for the charactenzauon of elasuc-plasuc maienals. These and other anomalous behavior of a
stress-based formulation are contrasted with the more recent strain-based formulation of fimte piasvoity.
A number of important features and theoretical advantages of the latter formulauon, along with its
computational potential and expenmental interpretation, are discussed separately.
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