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1. INTRODUCTION

The objective of this effort is to investigate methods for

distributing a knowledge base over multiple processors using the

logic programming paradigm. A threefold approach has been

employed. First, the Parallel Knowledge-based System (PKS) has

been tested more thoroughly. Secondly, memory allocation schemes

have been investigated and evaluated using the PKS. The third

phase has studied the employment of data typing in the logic

programming schema.

In Section 2 we present an AND-parallel execution scheme for

logic programs which are distributed in a large computer network.

The clauses in each processing unit (called a node) are assumed to

be statically allocated and will not be passed from one node to

another. A three-layer architecture is proposed to separate the

problems of program interpretation, parallel execution and

communication. The simple concept of variable holding provides

the semaphore me:hanism to exiloit AND-parallel literals con-

currently without causing binding conflicts; no data dependency

analysis is needed. The forward execution and backtracking

algorithms are described as transitions of variable states and

literal states. A set of communication protocols describes how

the distributed computation is achieved with parallel processing.

Section 3 examines a class of static allocation schemes,

iach of which decomposes a logic program into knowledge sources



or nodes. Each scheme assigns a weight to a procedural bundle

(predicate) and then uses a scale-balancing technique to

assign bundles to different nodes. Two of the allocation schemes

are applied to A* search.

Section 4 presents two applications of the PKS. The first

application is an example of network management and-system

control for communications systems, as described in [CONRY 88].

The problem deals with restoring end-to-end user connectivity

in a network following disruption of a link. The second applica-

tion is a blocks world example with multi-agent planning. This

planning example is devised to illustrate these points:

hierarchical planning for multiple agents, knowledge organization

and allocation, and cooperative parallel execution.

Section 5 is an initial investigation into efficiency con-

siderations within the PKS and provides a general background for

data typing. In this section four knowledge base management

techniques are presented. Also advanced machine learning methods

are addressed vis-a-vis data typing.

The last section is a summary of this report and describes

future extensions of the theory and applications of the PKS.
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2. AN AND-PARALLEL EXECUTION MODEL FOR DISTRIBUTED LOGIC PROGARMS

In this section we present an AND-parallel exeution scheme

for logic programs which are distributed in a large computer net-

work. This model extends the initial description of the parallel

knowledge-based system, as given in [CHUNG 871. Section 2.1 is

an introduction to parallel problem solving on a distributed

knowledge- based system. Section 2.2 discusses the overall system

organization and strategies for parallel and distributed operation.

Sections 2.3 and 2.4 describe the mechanisms of forward execution

and backtracking, respectively. Several simple examples are also

included in these two sections to elucidate the details. Finally,

Section 2.5 describes the required communications between

processors of the distributed system.

2.1 INTRODUCTION

Logic programming has been widely applied to the construc-

tion of deductive databases, expert systems and many other

knowledge-based systems. A sophisticated application requires

a large amount of knowledge, which is frequently distributed

among the nodes uf a computer network. In this paper we address

the problem of parallel problem solving on a distributed

knowledge-base system, assuming that logic programming is adopted

for the common framework of knowledge representation and the

common semantics of system operation. Three major issues are

involved in our problem domain: (1) problem solving under
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the semantics of logic programming, (2) parallelism detection

and deployment, and (3) communication and coordination. The

body of this section presents details of the Parallel Knowledge-

based System (PKS), which is an integrated approach to these

problems.

The potential application of this cooperative distributed

problem solving scheme is unlimited. A typical example is the

knowledge-based network switching problem. Based on the prior

experience of the network operation, each region of the network

has some knowledge of the typical patterns of local switching

requests at a given time, and the performance of different

switching strategies in different situations. All that knowledge,

together with the dynamic information regarding the local state in

which the region is currently operating, may be coded as a logic

program for local decision making. Thus, a global switching plan

is partitioned as a region switching plan and a set of detailed

switching plans within each involved region, with the latter

plans derived independently from the local knowledge bases of

the regions. This example can be easily generalized as a large

class of problems in which an overall nroblem may be decomposed as

a set of sub-problems. Each sub-problem is then solved distri-

butedly by a local agent with its local knowledge.

The ample parallelism in logic programs provides the oppor-

tunity for concurrent problem solving. There are two major types
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of parallelism in logic programs. AND-parallelism refers to a

simultaneous execution of ANDed literals in a clause body, while

OR-parallelism refers to a simultaneous exploration of ORed clauses

for a given goal. Parallel problem solving in a distributed

environment mimics coordinating many experts to solve a complicated

problem concurrently. This report is primarily concerned with

AND-parallelism, and the readers are assumed to know the basis of

logic programming.

2.1.1 AND-PARALLELISM

The fundamental problem If AND-parallel execution is binding

conflicts of literals which share variables. Given a clause such as

p(X) :- q(X), r(X), s(X).

if procedure p is called with an unbound variable, then a parallel

execution of literals q(X), r(X) and s(X) could produce different

values for the same variable X. Two major approaches have been

taken to avoid this binding conflict problem. The first approach

requires a programmer to specify literal synchronization con-

straints by different parallel language constructs (see (CLARK 86),

[SHAPIRO 861, and [UEDA 861). The programmer assumes full

responsibility of controlling the parallel execution. The second

approach requires the system to generate partial orders of ANDed

literals based on a data dependency analysis of shared variables.

As long as these partial orders are observed, literals may be

executed in parallel.
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Unfortunately, in logic programs the data dependency is not

static. As the program execution proceeds, variables may be bound

and the data dependency changes. In the previous example,

depending on which literal binds (grounds) the variable X, the

execution sequence may be described by one of the three graphs

in Figure 1. When variables are instantiated to dependent terms,

the data dependency gets even more complicated. Consider the

following clause

t(X,Y) :- u(X), v(Y).

If the procedure call contains dependent arguments such as t(A,A)

or t(A,f(A)), then parallel execution of u(X) and v(Y) may also

cause binding conflicts. This type of data dependency may be

nested inside structures several levels deep.

p X q(X), r(X), s(X).

P

q r s

p binds X

P. PI

q I
r

r s s

q binds X r binds X

Figure 1. Different execution graphs for a clause.
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Therefore, in order to avoid binding conflicts, the system needs

to make sure that a group of literals does not share non-ground,

dependent variables before it starts the parallel execution for

them. Two major questions are (1) detecting the literals which

share non-ground, dependent variables and (2) preventing their

parallel execution.

2.1.2 PREVIOUS APPROACHES

Several models have been proposed to handle AND-parallel

execution of logic programs in a multiprocessing environment.

They employ different strategies regarding when and how the

detection and the prevention could be done. They share one common

theme in addressing the second question: some literals are (at

least implicitly) ordered to prevent the parallel execution.

[CONERY 811 proposed a set of elaborate algorithms which

order literals dynamically, based on a run-time data dependency

analysis. Since the algorithms have to be applied to re-order

the literals each time a non-ground binding is generated, the

run-time overhead is generally considered very high.

[CHANG 851 devised a static data dependency analysis to

reduce the run-time overhead. Their scheme requires a programmer

to provide the possible activation modes for each entry procedure.

The analyzer considers the worst-case (in terms of the possi-

bilities of variables being unbound and dependent) to determine

if literals may be executed in parallel. This worst-case
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consideration results in a reduction of AND-parallelism that

could be exploited.

DeGroot's Restricted AND-Parallelism (RAP)(see [DEGROOT 84])

performs a compile-time data dependency analysis and then encodes

execution graph expressions associated with the results of run-time

groundness and dependency tests. Two approximation algorithms are

designed to make the groundness test and the dependency test very

simple. Because of the limitation of execution graph expressions,

some types of AND-parallelism are restricted.

[LIN 86] proposed a token-passing model to avoid the binding

conflict problem. Each unbound variable in that model has a

token. The token contains a iist of left-to-right ordered

literals which share the variable. The leftmost literal in the

list initially has the token. When this literal is solved, it

passes the token to the next literal according to the literal

order in the token. When a literal receives all the tokens for

its unbound variables, it is granted execution. While this

scheme easily avoids the problem of binding conflicts, the

predetermined literal order limits the opportunity of AND-

parallel execution.

2.1.3 A DISTRIBUTED APPROACH

The approaches in the last section constitute several

process-oriented execution models, in which the execution of a

literal is typically considered an independent process. The
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execution algorithms in those models give the scheduling

strategies for these processes. While process-oriented models

may be efficiently implemented on shared-memory multiprocessors,

they are not compatible with the distributed processing require-

ments in our problem domain (unless each node is assumed to have

a redundant copy of the global knowledge base). In a distributed

environment the execution of a literal may or may not be an

independent process, depending on whether the local knowledge

base has the clauses to solve the literal or not. Consequently,

a scheduling algorithm has to take this consideration into account.

Another difference in our approach to the scheduling problem

is that we abandon the concept of data dependency analysis and

replace it with semaphores for mutually exclusive literals.

Instead of determining a set of literals which may run in

parallel, the system simply holds shared variables to prevent

any possible conflicts. This change makes distributed decision-

making very simple and efficient. We showed that this variable

holding approach may produce a high degree of parallelism with

minimal overhead (CHUNG 89]. Since data dependency of ANDed

literals changes dynamically, a total ordering strategy will

waste the system's computation resource, or restrict the

opportunity of parallel execution, or both. In Conery and

Kibler's approach, for example, the system makes an overall plan,

consults a small portion of the plan (regarding which literals may

9



be executed now), and then re-plans the whole execution sequence

based on the binding situation of these executed literals. A large

portion of the sequence i.s repeatedly constructed but rarely used.

Based on these observations of scheduling strategies, we

designed a different execution algorithm for distributed environ-

ment. The rest of this section presents this PKS model for

parallel and distributed execution of logic programs. Section 2.2

outlines the overall system architecture and basic execution

strategies. Section 2.3 presents the forward execution

algorithms, followed by examples to illustrate forward execution.

Section 2.4 contains a companion backtracking algorithm and

examples to continue the problem solving process in the previous

examples. Section 2.5 discusses communication problems

and how the system is implemented in each node.

2.2 ABSTRACT INTERPRETATION

This section discusses the overall system organization and

the basic strategies for parallel and distributed operation.

The architecture of the system will be introduced first, followed

by a description on the communication primitives for cooperative

problem solving. The argument modes, variable states and literal

states are then presented to show how the semaphore mechanism is

devised to regulate parallel execution.
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2.2.1 SYSTEM ARCHITECTURE

Similar to many sophisticated systems (TANENBAUM 881, this

distributed system is constructed in several layers, with each

layer supporting a specific function of the system. Figure 2

depicts the three-layer structure of the current system

architecture.

Layer 3 Abstract Problem Solving

Layer 2 Parallel Execution Control

Layer I Communication Service

Figure 2. System architecture.

The highest layer, layer 3, is responsible for abstract problem

solving. Assuming that the lower level system furnishes a goal

and a local clause, this level unifies the goal with the head of

the clause and records the binding states of the problem solving.

Depending on the success or failure of the unification, this layer

decides either forward execution or backtracking should take place.

As all the problems involving parallel and distributed processing

are abstracted away from this layer, the problems it faces are

identical to those in sequential logic programming.

The forward execution and the backtracking strateqies are

implemented in the layer 2 system. When a goal successfully

unifies with the head of a clause, the forward execution strategy
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is charged with selecting literals for AND-parallel execution.

If the literal is locally solvable, the forward execution

algorithm will present the goal to the layer 3 system for local

execution; otherwise, the forward execution algorithm will use

the communication protocols (supported in layer 1) to coordinate

distributed problem solving. Backtracking activities are

achieved in a similar way.

The layer I system is concerned with communication service

for distributed problem solving. When the layer 2 system decides

to send out a message, the layer 1 system takes care of the real

message sending. This may include packeting, buffering, routing,

error handling, and bookkeeping services, depending on the network

architecture. Similarly, when the layer 1 system receives a

message, it has to process the message before it invokes a forward

execution or backtracking in the layer 1 system.

2.2.2 COMMUNICATION PRIMITIVES FOR DISTRIBUTED EXECUTION

Five execution commands are used as the communication prim-

itives to coordinate the distributed processing. They are request,

redo, cancel, success and failure. A request message designates

the sending node and the receiving node as the requestor and the

servant with respect to the service. A non-redundant message ID

is assigned by the requestor to identify the service it requests.

This service is considered an order of the requestor and a job of

the servant. Subsequently, the requestor of an order may send out

12



redo or cancel messages to the servant, and the servant may report

the problem solving state with success or failure messages.

As far as a user is concerned, he may work on any node of

the network, use this node as an interface to the network, and

request this interface node to solve a goal using the distributed

knowledge base in the network. This request becomes an order of

the node and starts up a forward execution on this node. As the

forward execution proceeds, this node may send out messages to

other nodes to request that some subproblems be solved using their

local knowledge bases. These request messages in turn start up

new jobs in the servant nodes. Therefore, a global problem

solving is accomplished by a tree of orders and jobs in the nodes

of the network. Each node may be a requestor and a servant at

the same time with respect to different orders and jobs. The

message ID and the communication primitive of a message allow a

node to identify the corresponding job and its problem solving

state.

While users on the network may issue queries and spawn

many trees of jobs and orders, the tree structure is not visible

to any single node. As far as a node is concerned, an incoming

message starts a task for the corresponding job of the node.

Each task represents a local problem solving step of the job.

In other words, a node handles each job by dispatching one or

more tasks; each task accomplishes some progress in local forward

13



execution or backtracking. The forward execution and the back-

tracking algorithms are defined as literal state transitions,

which are in turn defined by argument modes and variable states.

2.2.3 MODE DECLARATION

Similar to DEC-10 Prolog, our execution scheme allows its

programmers to declare the activation mode of an argument.

There are three modes: in, out and in out. Semantically, they

designate the corresponding argument as an input argument, an

output argument and any argument, respectively. Operationally, a

literal may not be executed unless all its input arguments.are

available and ground, all its output arguments are available and

non-ground, and none of its inout argument depends on a held

variable. An output mode violation is a program error; an input

mode violation simply means that the literal is not ready for

execution yet. An undeclared predicate is understood to have the

default in-out mode for all its arguments. The default mode

definition makes Prolog a subset language; a Prolog program may

be executed without modification.

There'are two motivations to incorporate this mode decla-

ration: semantically it documents the intended use of a declared

argument, and operationally it specifies the binding conditions

for execution. Many evaluable system predicates in standard

Prolog are predefined to have input or output modes. When AND-

parallelism takes the left-to-right sequence away, this mode

14



declaration helps a programmer to make sure that a goal will not

be attempted prematurely.

2.2.4 VARIABLE STATES

The interpreter associates each term with one of the three

states: ground, non-ground or pending. A variable initially has

the non-ground state, a constant term has the ground state, and

a structure term with at least one inner variable has the pending

state. The "typing algorithm" in [DEGROOT 84] shows that the

state of a variable may be updated easily at the run-time: when.

a non-ground variable is instantiated to a ground or a pending

term, its state is changed accordingly. Coupled variables share

the same state. In addition, a pending variable may be examined

to see if it is already ground. On the other hand, when a binding

is retracted during backtracking, the variable state will be reset

(from ground or pending) to pending or non-ground.

In addition to these states, the availability of a variable is

defined. A non-ground or pending variable may be held by a certain

literal for possible binding. A held variable is committed to the

holding literal, which may instantiate the variable and consequently

changes the variable's state to pending or ground. When a literal

finishes its computation (or during backtracking), held variables

may be released and becomes available again. A variable is either

available or held; all variables are initially available. The

possible transitions of variable state and availability are

summarized in Figure 3.

15



initially initially

non-ground available

instantiate reset reset instantiate held releose

pcndingheld

Figure 3. Variable states and availability transitions.

2.2.5 LITERAL STATES

A literal has five possible states: waiting, ready, ordered,

solving and solved. When a goal successfully unifies with the

head of a clausp, each literal in'the body of the clause has the

waiting state. A waiting literal becomes ready when all its

arguments satisfy the mode constraints. As soon as a literal is

ready, it is granted execution. If the literal is locally

solvable, it has the solving state, and the node is engaged in

solving this literal. Otherwise, a request message is sent to

the node which has the clauses to solve the literal, and the

literal has the ordered state. When an ordered or a solving

literal successfully solves the goal, it has the solved state.

Notice that the ready state is transient and is defined simply as

a conceptual aid. During backtracking, an ordered, solving

16



or solved literal may be reset to the waiting state. These

possible state transitions are summarized in Figure 4.

initially

Figure 4. Literal state transitions.

2.3 FORWARD EXECUTION

In our abstract interpretation model (see Figure 2), when

the current goal successfully unifies with the head of the

current clause, the layer 3 system makes a service call to the

layer 2 system and starts up an AND-parallel forward execution.

There are four major algorithms for the AND-parallel forward

execution. The readiness check algorithm determines which body

literals may be scheduled for execution, the literal execution

algorithm determines when and which node should execute a ready

literal, the inter-clause forward execution algorithm controls

17



the execution when there is no ready literal in the current

clause, and the task termination algorithm determines when the

task should terminate. This section discusses these forward

execution algorithms and explains how they work together. Two

examples are given to illustrate the execution strategy.

2.3.1 READINESS CHECK

When a goal successfully unifies with the head of a clause,

all the literals in the clause body are in the waiting state

and are candidates for AND-parallel execution. The system

starts to check the readiness of these literals. Of course, the

system has to do this sequentially, one literal after another.

A programmer-suggested sequence, a heuristic sequence or any

other systematic sequence may be adopted to perform this

readiness checking. To follow the Prolog convention and without

losing any generality, we assume that the left-to-right sequence

is adopted. We will see how this sequence affects the parallel

execution.

A literal is determined to be ready when all its input

arguments are available and ground, all its output arguments

are available and non-ground, and none of its in out arguments

depends on a held variable. As soon as a literal -is determined

ready, it is executed immediately (see the description in the

next subsection), and all the non-ground variables in the literal

are held. On the other hand, if a literal is not ready yet, the

18



node continues checking the readiness of the other literals until

the rightmost literal is reached. While the node scans the body

literals to check their readiness, it also updates whether all the

body literals it has scanned so far are in the solved state. This

state information will be used to guide the subsequent forward

execution (see the subsection entitled "Inter-Clause Forward

Execution").

2.3.2 LITERAL EXECUTION

A ready literal may be executed locally or at a remote node,

depending on whether the local knowledge base has the clauses

to solve the literal o.r not. If the local knowledge base does

.not have the clauses to solve the literal, the node formulates a

request and sends the request to the node which has the clauses

to solve the literal. The request formulation is a binding

reference process: each variable is replaced by the concrete

term to which it is bound. This formulation process makes it

possible to have a distributed execution without passing variable

bindings from one node to another. It also makes the readiness

check simply a local operation.

When a ready literal is locally solvable, the node proceeds

with a local execution of the ready literal, which results in a

depth-first execution. The semaphore scheduling policy is a

greedy algorithm in the sense that when a literal is determined

ready, it is granted execution. This scheduling algorithm
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ignores the possibility that some literals to the right of this

ready literal may also be ready, and checking their readiness

could mean more parallelism. Nevertheless, this greedy algorithm

offers simplicity and great flexibility for the distributed

execution.

For example, the body literals in a clause could be pre-

ordered such that locally solvable literals always preceed

remotely solvable literals. In that case, the locally solvable

literals have a higher priority to bind the variables, and inter-

node backtracking will be greatly reduced. This is analogous to

the cooperative scheme in which an expert always deliberates about

a plan and makes sure that the plan agrees with all his knowledge

before he proposes the plan to other experts. Conversely, we can

also pre-order the body literals such that remotely solvable

literals always proceed the locally solvable literals. This

arrangement will produce higher degree of parallelism with the

cost of higher frequency of inter-node backtracking. This.is

analogous to the cooperative scheme in which a manager asks his

subordinates to work on different plans, and he approves or

disapproves them. A trade-off between more parallelism or less

inter-node backtracking has to consider communication cost and

delay, granularity of parallelism, possibility of backtracking

and several other factors. This greedy algorithm provides the

flexibility and opportunity for fine-tuning the performance without

having to change-the execution strategy.
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2.3.3 INTER-CLAUSE FORWARD EXECUTION

As the body literals are checked from left to right for

their readiness, eventually the rightmost body literal is reached

and the forward execution has to proceed from one clause to

another. The execution strategy at this point depends on the

problem solving state of the current clause. There are three

possible situations:

1. The current clause is a unit clause.

2. All the body literals of the current clause have been

solved; that- is, all of them are in the solved state.

3. Some body literals are not solved yet.

In the first or the second situation, the calling literal (which

successfully unified with the head of the current clause) has been

successfully solved. Its state is changed from solving to solved,

and all the variables which are held by this literal should be

released at this point. The forward execution continues with

checking the readiness of the brothers of the calling literal,

starting from the leftmost brother. This is because this calling

literal may have grounded some varables and made its left brother

ready. In order to facilitate backtracking, when a literal is

solved, the node also determines the order in which the literal

is solved. Thus, a literal may be the third one, among its

brothers being executed, but the first one being solved. The

execution order is unimportant and is not even determined; the

solved order is remembered and will be used in backtracking.
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In the third situation, the calling literal still has the

solving state. The forward execution continues with checking the

readiness of the brother literal next to (to the right of) this

calling literal. Note that readiness checking is performed on

waiting literals only; a literal in any other state will be

skipped in the checking process.

2.3.4 TASK TERMINATION

If the inter-clause forward execution keeps causing the node

to resume the problem solving activity in the parent clause,

eventually the execution will reach the original goal of the job.

In this case, the task terminates. If the goal literal is solved,

this node formulates an answer and sends it back to the requestor

with a success message. If the goal ip t solved yet, the task

terminates without any messace communication. The node will check

its message buffer and start another task. We can expect that an

incoming message will get the node back to work on this job again.

This will be described in Section 2.5.

The answer formulation is, in fact, the same as the request

formulation. The variables in the original goal will be replaced

by the concrete terms to which they are bound in this node. This

answer is not only sent back to the requestor, but also cached

(see (ROWE 871) into the knowledge base of this servant node as a

unit clause. It turns out that this type of learning (also known

as lemma generation; see (HOGGER 841) much simplifies the
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backtracking process of the system. This will be illustrated in

Section 2.5.

we summarize that the forward execution may cause a success

message, or one or more request messages to be sent out. When a

task terminates during forward execution, the node may have 
solved

the original goal, or may be waiting for a message to continue the

execution-. It is easy to see that once the node requests another

node to solve a literal for this job, the task will terminate the

forward execution and wait for the responding message.

2.3.5 EXAMPLES

In all the following examples, we will assume that the clauses

for predicates pl, p2, p3, and p4 are allocated to nodes Ni, N2,

N3, and N4, respectively. The clauses for predicate p5 are

allocated to node N3; the clauses for predicate p6 are allocated

to node Ni. The following mode information is declared for the

predicates.

mode(pl, out, in-out).

mode(p2, in, in).

mode(p3, out, out-).

mode(p4, in, inout).

mode(p5, out, in).

mode(p6, in out, in-out).

Example 1.

Suppose node N3 has the following clauses for predicates p3 and 
p5:

(3.1) p5(A,B) :- pl(A,B), p2(B,C), p3(C,D), p4(A,D).
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(3.2) p3(c,d).

(3.3) p3(cl,dl).

A request message with the goal

?- p5(A,b).

starts a request task in node N3. The node finds clause (3.1) and

unifies the goal with the clause head. Thus, the body of the

clause becomes

pl(A,b), p2(b,C), p3(C,D), p4(A,D).

Now the node starts to check whether these literals are ready for

execution. Literal pl(A,b) is ready, because the output argument

is a non-ground variable A and the inout argument is ground to "b".

Therefore, pl(A,b) holds variable A for binding, its state is

changed to ordered, and a request message is sent to node Ni. Next

the node finds that literal p2(b,C) is not ready, because variable

C is a non-ground input argument. So the node continues to check

the state of literal p3(C,D). With both arguments of the output

mode and non-ground, p3(C,D) is ready and locally solvable. The

node changes its state to solving and uses clause (3.2) to solve

it. Of course, the unification succeeds and the forward execu-

tion returns to clause (3.1). So the node marks literal p3 as

the first solved literal and restarts the readiness checking from

the leftmost literal. Because literal pl(A,b) is ordered, it is

skipped. Literal p2(b,C) is found ready this time because variable

C is ground to "c" after p3(C,D) is solved. The node sends a

request to node N2 and marks p2(b,C) as ordered. The readiness

checking skips the solved literal p3(C,D) and finds p4(A,D) not
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ready yet, because variable A is held by literal pl(A,b). At.

this point the forward execution returns to the original goal,

p5(A,b), which currently has the solving status. Therefore,

the request task terminates and leaves the following literal states:

pl(A,b) : -ordered (node Nl);

p2(b,c) : ordered (node N2);

p3(c,d) : first solved;

p4(A,d) : waiting.

Example 2

We continue the discussion in Example 1 and consider the

forward execution in node Nl. Suppose node N1 has the following

relevant clauses:

(1.1) pl(X,Y) :- p6(Y,X).

(1.2) p6(b,a).

Now the request message from node N3 is received. The goal

?- pl(A,b).

starts a request task in this node. Clause (1.1) is chosen to

solve the goal, and the unification succeeds.. Literal p6

is ready immediately because both the ground and the non-ground

arguments satisfy inout modes. Clause (1.2) is thus used to

solve the literal and successfully binds the literal to p6(b,a).

The forward execution thus returns to clause(l.1) with literal p6

in the solved state, and then returns again to the original goal

pl(A,b), which is successfully solved. Therefore, the answer

25



pl(a,b) is formulated and sent back to node N3 with aosuccess

message. In the meantime, node N1 caches this answer as a unit

clause

(1.3) pl(a,b).

into its knowledge base and terminates the task.

2.4 BACKTRACKING

According to the abstract interpretation model in Figure 2,

when the unification between the current goal and the head of the

current clause fails, backtracking takes place. This backtracking

is considered a service request from the layer 3 system to the layer

2 system, just like the case of forward execution.

There are two types of backtracking: shallow backtracking

tries to find another clause to solve the current goal, while deep

backtracking discards the current goal and tries to establish a

new current goal. When a unification fails, shallow backtracking

is called, and the system tries to use the next clause to solve

the current goal. Therefore, a shallow backtracking algorithm is

simply a definition of what the next clause is. This is defined

in the PKS system as the standard top-to-bottom sequence, with the

exception that all facts will be used before rules. This is

justified by the observation that facts generally represent

boundary conditions or exceptions which should be examined before

rules. This strategy also makes sure that the cached results

(facts) may be used to enhance the performance.
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When there are no more clauses to solve the current goal, the

system has to establish a new current goal and to backtrack

deeply. The deep backtracking algorithm has to identify a

backtrack literal; i.e., which literal shall be the new current

goal and be re-solved. Depending on where the backtrack literal

is, deep backtracking is further classified into intra-clause

backtracking, inter-clause backtracking and inter-node back-

tracking. This section first describes the procedures for these

three types of deep backtracking. A couple of examples are then

given to illustrate them.

2.4.1 INTRA-CLAUSE BACKTRACKING

When the shallow backtracking algorithm finds no more

clauses to solve the current goal, the system first tries to have

an intra-clause backtracking; i.e., to backtrack to a brother of

the failed literal. It is easy to see that only solved brother

literals are likely to have caused the failure and therefore are

candidates for re-solvng. Because the semaphore mechanism

requires that a solving or -rdered literal holds all its non-

ground variables, the failed literal could not have referenced

these variables and failed as a result of that. The latest solved

brother literal is identified by the intra-clause backtracking

algorithm as the backtrack literal to be re-solved.

Since re-solving the backtrack literal will produce a

different variable binding environment and make the solving or
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ordered literals obsolete, these executing literals have to be

retracted. Retracting a literal covers two pos'ibilities:

1. If the literal is in the ordered state, the corresponding

request is canceled and the literal is reset to waiting;

2. If the literal is in the solving state, all the bindings

which were made while solving this literal are undone, and

all the requests are canceled.

After all the executing literals are retracted, the node re-solves

the backtrack literal. Re-solving a literal covers three

possibilities:

1. If the literal was not locally solved, a redo message is

sent to the node which solved it;

2. If the literal was locally solved and was solved in one

unification (a unit clause was used to solve *the literal),

the node tries to use another clause to solve the literal.

3. If the literal was locally solved with more than one

unification, then the node re-solves the last solved

literal in the whole subtree corresponding to the solving

of this literal.

Notice that re-solve is recursively defined.

Re-solving a literal technically causes a shallow backtracking

of either the backtrack literal or a dependent of the backtrack

literal. When the shallow backtracking algorithm finds the next

clause, it presents the new current goal and the new current
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clause to the layer 3 system for unification. Depending on

whether the unification is successful or not, the layer 3 system

will continue the problem solving activity with forward execution

or backtracking. However, if the node is not currently running a

request task and the backtracking causes a redo message to be sent

out, then the current task terminates after sending out this

redo message, because nothing is left to the layer 3 system of

this node.

Although this backtracking scheme is essentially a naive

backtracking upon the solved literals, it instantly weeds out

all waiting, ordered and solving literals as candidates for the

backtrack literal. A more intelligent backtracking algorithm may

be devised with the observation that a literal must have held an

input or in-out variable of the failed literal to be responsible

for the failure. A recording of the variable holding history

will help the system to weed out irrelevant solved literals and

make the backtracking'scheme smarter. Currently we think that the

overhead of remembering and analyzing the variable holding history

can not be justified, and the simple backtracking scheme is adopted.

2.4.2 INTER-CLAUSE BACKTRACKING

When a literal fails and there is no solved brother literal

to be re-solved, inter-clause backtracking takes place. The

calling literal, which unified with the head of the current

clause, becomes the backtrack literal. The ordered and solving
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literals in the body of the clause, if any, are first retracted.

Then the node tries to use another clause to re-solve the calling

literal. Note that the calling literal had a local unification

with the head of the current clause. Therefore, an inter-clause

backtracking will cause a local shallow backtracking of the

calling literal.

2.4.3 INTER-NODE BACKTRACKING

When the backtrack literal happens to be the original goal

of this job, and the shallow backtracking algorithm fails to find

any more clauses to solve the goal, the whole job fails. A fail

message is sent to the requesting node and the task terminates.

In summary, backtracking may cause a fail message, or several

redo and cancel messages to be sent out. When a task terminates

during backtracking, the node may have failed to solve the

original goal, or may be waiting for a response to a redo message.

2.4.4 EXAMPLES

Example 3.

In this example we consider the execution of node N2 after it

receives the request message, which was sent out by node N3 during

the forward execution described in Example 1. Suppose node N2 -as

the following relevant clauses:

(2.1) p2(bl,cl).

(2.2) p2(b2,c2).
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The request from node N3 has the goal

?- p2(b,c).

Node N2 first chooses clause (2.1) to solve the goal. The uni-

fication fails. Shallow backtracking takes place and node N2

chooses clause (2.2) to solve the goal again. This also fails

and there is no other clause to solve the goal. The calling

literal therefore fails. Since this calling literal is the

original goal, node N2 gets into inter-node backtracking. A fail

message is sent to node N3 and the (request) task terminates.

Example 4.

In this example we consider that node N3 receives the fail

message from node N2 and starts its backtracking. We assume that

node N3 receives this fail message before the success message

from node N1 (see Example 2).arrives. This assumption should not

surprise a reader, although node N3 did order node N1 to solve

literal pl before it ordered node N2 to solve literal p2. One

can think that node N1 was busy working on other tasks and there-

fore could not process the request before node N2 finished solving

literal p2.

When the fail message is received, the literals in clause

(3.1) have the states which are listed in the end of Example 1.

Literal p2 is the failed literal; its state is reset to waiting.

Literal p3 is the only solved literal and is chosen as the back-

track literal. Literal pl has to be retracted because it has the
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ordered state. So node N3 sends a cancel message to node Ni and

resets pl to waiting. Literal p3 also has to be retracted before

being re-solved. The bindings of variables C and D are undone,

which makes these two variables non-ground again. Now node N3

uses clause (3.3) to re-solve literal p3. At this point, the

literals have the following states:

pl(A,b) : waiting;

p2(b,C) : waiting;

p3(C,D) : solving;

p4(A,D) : waiting.

The backtracking process terminates by reporting to the layer 3

system the new current goal p3, and the new current clause (3.3).

The successful unizi ation in the layer 3 system causes variables

C and D to be bcund to constants cl and dl, respectively. The

following r adiness checking finds literals pl and p2 ready. Two

request ressages are sent to node N1 and node N2 and these two

literals are again set to ordered. The forward execution stops

when it finds literal p4 not ready. Therefore, the task terminates

with the following literal statuses:

Pl( A, b) : ordered (node Ni);

p2( b,cl) : ordered (node N2);

p3(cl,dl) : first solved;

p4( A,dl) : waiting.

A reader may criticize that node N3 is sort of stupid in its

backtracking, because it sends a request message to node N1,
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cancels it later, and then sends out an identical request again.

This criticism is valid; but it is also valid that node N3 did

not spend any time trying to analyze the reason for failure and to

identify a better backtrack literal. We will see the impact of

this "stupid" message on node N1 and node N3 in the examples

coming up in the next section.

2.5 DISTRIBUTED IMPLEMENTATION

The last two sections described the layer 2 system execution

from the viewpoint of the layer 3 system: they explain how the

system controls the forward execution and backtracking to regulate

the parallel problem solving. Sometimes the execution extends

outside the nodal boundary, and messages are sent to other nodes

to continue the execution. In this section, we describe the layer

1 system and show how it is integrated with the other layers for

distributed processing. The internal structure of a node will be

presented first, followed by the communication protocols which

explain how the incoming messages drive a node to start or

continue the forward execution and backtracking.

2.5.1 INTERNAL STRUCTURE OF A NODE

There are four major data structures of a node: a knowledge

base, a proof tree, a job table and an order table. The

knowledge base contains the internal representation of all the

program clauses of a node. The proof tree of a node has many
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frames to record the state information of the program execution.

The job table and the order table are used to store pointers to

the proper frames which started the job or requested the order,

and to do the conversion between internal names and external names.

The format of the messages which are passed from one node

to another is shown in Figure 5. The sender field specifies the

identification of the sender node. This information, together

with the message ID, uniquely identifies an order of the

requestor node and a job of the servant node. The command field

holds one of the five communication primitives previously

described, and the data field contains the goal to be solved or

the solution to be reported. The communication protocols

associated with the five commands are described in the

following subsections.

Sender [Message ID I Command I.Data

Figure 5. Message format.

2.5.2 REQUEST

A request message signifies the beginning of a new job.

The node logs the requestor and the message ID, associated with

the starting frame for this job, on the job table. Then it

starts a task to process the job. If forward execution continues

and eventually the task successfully terminates, the node sends
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a success message to the requestor; but this job entry on the

job table and all the relevant frames in the proof tree are

retained. This information will be needed if later the requestor

wants the goal to be re-solved and sends a redo message to this

node. On the contrary, if the task encounters inter-node back-

tracking, the node sends a failure message to the requestor,

purges the proof tree and deletes this job entry.

During forward execution, when the node needs to request

another node to solve a literal, it first generates an order ID,

which is different from all the order ID's in the current order

table. This order ID, the servant node and the frame (which

spawns this request) are logged on the order table. The node

then sends the request message to the servant node with this

order ID as the message ID.

During backtracking, the node looks up the order table and

finds the order ID and the servant node to which it should send

a redo or cancel message. When the node sends out a redo

message, it only looks up the order table; when the node sends

out a cancel message, it also deletes the order entry on the

order table.

2.5.3 REDO

When a node receives a redo message, it first looks up the

job table for the starting frame of the job. Recall that a redo

message is an inter-node version of re-solving a literal. The
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node handles a redo message exactly the same way it re-solves a

locally solved literal: if the goal was solved in one unification,

it tries to use another clause to solve the goal; otherwise, it

traces down the proof tree (from the starting frame) and re-

solves the last solved literal. Note that i6 the last solved

literal is not locally solved, another redo message will be sent

out consequently.

2.5.4 SUCCESS

When a success message is received, the node first checks

the order table to see if this order is still active. Because

of the nature of asynchronized problem solving and communication

delay, it is possible that the node may have canceled the order

and deleted the corresponding entry on the order table before a

responding success (or fail) message is received. In this case

the node can not find the order ID, and this task simply

terminates because this order has been canceled. Otherwise,

the order is still active, and the node identifies the order

requesting frame from the order table.

A success message responds to a previous-request or redo

message, which asks the servant node to solve or re-solve a

literal. Since solving or re-solving a literal begins with

searching for a clause to unify with the literal, a success

message continues the forward execution (from the spawning

frame) as if a unit clause were found in the local knowledge
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base. The answer, which is reported with the success message,

is disguised as a unit clause in the requesting node. Then the

node unifies the literal with the disguised unit clause and

solves the literal locally.

At this point the spawning frame still remembers that the

literal was actually solved by another node, and the order table

also remembers the servant node and the order ID. If the literal

has to be re-solved, a redo message can be sent to the servant node.

2.5.5 FAILURE

The handling of a failure message is similar to the handling

of a success message. The node checks if the order is still

active. For an active order the node starts backtracking as if

it could not find a clause in its knowledge base to solve the

literal. As soon as a failure message is received, the

corresponding entry on the order table is deleted.

2.5.6 CANCEL

When a cancel message is received, the node also has to

check if the job is still active. This is because this servant

node may have failed to solve the request and deleted the job

entry before receiving the cancel message. Since a cancel

message is sent out while the requesting node retracts a

literal, one may expect that a cancel task will do the same

thing as retracting a literal. This is largely true, except that
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this servant node does not have to undo variable bindings because

these bindings are inaccessible outside this node.

The node finds the starting frame of this job from the job

table. It then traverses down the proof tree from the starting

frame to identify all the orders spawned by this job. All

these orders are canceled. Finally, the node purges the frames

from the proof tree and deletes this job from the job table.

Notice that a cancel task is handled by the layer 1 system alone,

while all other tasks will need the layer 2 system to handle the

forward execution or backtracking. As contrast, a cancel task

may only send out cancel messages, while other types of tasks may

send out all five types of messages.

2.5.7 EXAMPLES

Example 5

To continue our previous examples, we consider the success

message (generated in Example 2) from node NI now arrives at node

N3. Node N3 can not find this order because it is already

canceled during the backtracking described in Example 4.

Therefore, this task terminates immediately.

Example 6

Node Ni now receives the cancel message from node N3, which

sent out this message during the backtracking described in

Example 4. Node NI purges the proof tree, deletes the job entry

on the job table, and terminates this cancel task.
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Example 7

Inevitably, node Ni receives the second request message from

node N3. This request message starts a new job (not just a new

task) on node Ni. However, clause (1.3), instead of clause (1.1),

is used to solve the goal this time. This is because the system

only uses a rule after all the unit clauses are exhausted.

Therefore, the goal is quickly solved again, and a success

message is sent to node N3. We see that those "stupid" messages

actually do not cause much overhead in node Ni.

2.5.8 IMPLEMENTATION STATUS

This PKS model was first implemented as ADA task structures

running under VAX/VMS to simulate the parallel and distributed

computation. In order to simplify the implementation, a reliable

communication mechanism was assumed, and each node task had a

dedicated channel task and an associated buffer task to provide

the service of non-blocking message sending (via mail boxes) and

unlimited message buffering. The proof tree of each node was

implemented as fragmented environment stacks using a heap al-loca-

tion strategy. Each frame in the environment stack kept variable

binding information, literal state information, and pointers to

its job table entry or the spawning order entries for the

processing of the three layers, respectively. The implementation

details are documented in [CHUNG 87J.

39



This simulation model has been used to verify and to refine

the system computation model in our subsequent investigations.

Currently we are re-implementing the system in C language and

trying to port it to a 4-node Transputer and a network of UNIX-

based work stations. We plan to take some performance measure-

ments of the system running under different processing.environ-

ments and report our findings in a follow-up paper.

One major direction of our continuing research effort is to

incorporate the capability of OR-parallel execution and knowledge

base maintenance into the PKS model. The layer 2 system of-the

present PKS model has to be divided into three sublayers to

handle AND-parallel execution control, OR-parallel execution

control, and knowledge base maintenance, respectively. The basic

idea of this extension is that each node should fully utilize its

knowledge base to contribute to the problem solving activity of the

system. When the layer 1 system finds that there is no incoming

message to start a task of AND-parallel execution, it reports this

finding to the layer 2 system. The OR-parallel execution control

sublayer schedules a new task, which utilizes the next clause to

solve a previously attempted goal and achieves a sort of pipeline

OR-parallelism. Furthermore, when there is no OR-parallel solu-

tion to investigate, the knowledge base maintenance sublayer

starts a task to refine the knowledge base, to enforce consistency

and to resolve the conflicts within the knowledge base.
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3. STATIC ALLOCATION

Decomposition and allocation are common problems to multi-

processor and distributed systems. This section presents a

unified decomposition/allocation scheme for the PKS. The Contract

Net and its successors (see (SMITH 801, [SMITH 811, and [DAVIS 831)

and the Distributed Vehicle Monitoring Testbed (see [DURFEE 87])

proposed making allocation decisions after the problem decomposi-

tions have been made by programmers and system designers. The

schemes in this section support this view and also allow for cases

where no decomposition has been made.

(BOND 88]cites eleven bases for decomposition. The SAS

class directly supports five of these decomposition bases:

(1.) the abstraction level, (2.) the availability of co-ordination,

(3.) the control dependencies, (4.) the data/logical dependencies,

and (5.) the resource minimization. Two other bases, interaction

levels and uniqueness avoidance, may be considered after enhancing

the PKS. Section 3.4 returns to these bases for a concluding

discussion vis-a-vis the allocation schemes of Section 3.1.

3.1. A STATIC ALLOCATION SCHEME (SAS)

Methods that have been used for decomposing distributed

problems in artificial intelligence include (1.) picking tasks that

are inherently decomposable, (2.) decomposing by a programmer, (3.)

planning hierarchically, (3.) load balancing, (4.) using minimally

connected subgraphs, and (5.) aggregating by subtask (see
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[BOND 881). While most of these methods depend on either the

programmer or on a problem's conceptual representation, the SAS

of the PKS can be applied without such prior knowledge.

One must emphasize that there is no substitue for initially

representing a problem clearly and that the obvious decompositions

from representation and programmers should be used first. It is

at the point where further decomposition is needed that the SAS

should be invoked. The SAS presented in this section is a form of

load balancing, where the weights balance knowledge bases rather

than computations.

One can envision that over the life-cycle of a program it will

be advantageous to re-configure the PKS-graph many times. Such

re-allocation schemes will be elaborations of the initial alloca-

tion, augmented with heuristics and statistics developed since the

previous allocation.

The partitioning of the knowledge base and the corresponding

allocation process observe these two principles: (1) clauses of a

procedural bundle, which have the same predicate-head, are allo-

cated to the same processor, and (2) for each clause allocated to

a node, all procedural bundles which occur in the clause body are

either allocated to the same node or to a connected node.

When a predicate in the body of a clause is ready for execu-

tion, it is either in the SOLVING state if the local processor can

solve it or it is ORDERed if an external node can solve it. In

determining whether to allocate a procedural bundle to a partially
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filled node or to an unused node, a metric for measuring these

communication and solution mechanism costs is needed. The metric

will be-hardware-dependent.

Consider now an algorithm for splitting a knowledge base into

two knowledge bazes, KB1 and KB2. The first step is to weigh all

bundles Bi according to these rules:

1. For each unit clause in Bi, add +u to weight Wi

2. For each non-unit clause in Bi,

add +h to Wi for the clause head

add +b to Wi for each literal in the body if it is in Bi

add +i to Wi for each built-in literal in the body

add +b-c to Wi for each literal in the body if it is not
in Bi.

The constants u, h, b and i are related to solution mechanism costs.

The constant c accounts for the inter-nodal communication costs.

The fundamental premise of this algorithm is to add the heaviest

unassigned bundle to the Lighter Knowledge Base (LKB). The weight

corresponds to processing time from the LKB's point of view.

Consequently, a bundle which must communicate with the other KB is

using less of the LKB's time. Communication has a negative effect

on the LKB's time. Therefore, the weight added to Wi for each

external literal in the body of a clause is b-c.
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Consider this example:

a(l). b(6). c(7). d(6).
a(2). b(7). c(8). d(7).
a(3). c(9).
a(4).
a(5).

a(X) b(X), X<7.
b(X) :- Y is X+l, Y<10, b(Y).
c(X) :- a(X).
d(X) :- b(X).

Then with u - h - b - i, i - 0, and c -2, one has

Wa - 5 + (1 + 1-2 + 0) - 5

Wb - 2 + (1 + 0 + 0 + 1) - 4

Wc - 3 + (1 + 1-2) - 3

Wd - 2 + (1 + -2) - 2.

Now bundle Ba is assigned to KBl, bundle Bb is assigned to KB2.

Since KB2 is still the LKB, bundle Bc is also assigned to KB2.

Finally, bundle Bd is assigned to KBl.

This scheme can be modified to re-weigh and re-sort the

unassigned bundles after each addition. This affects the weight

Wi only when a literal in the body of a clause in Bi has already

been assigned to the-lighter knowledge base.

In this~example, Ba is assigned to KBI. Bundle Bb is then

put into KB2. The current LKB is KB2. Now Wc - 3 but Wd -

2 + (1+1) - 4, after reweighing; hence, bundle Bd is added to KB2.

The balance is tipped, and one inserts bundle Bc into KBI. This

new distribution (bundles Ba and Bc in KBl and bundles Bb and Bd in

KB2) looks natural since predicate c invokes predicate a and pre-

dicate d invokes predicate b.
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In general, one has the following algorithm for deciding the

appropriate bundle Bi to add to the LKB:

1. weigh and sort the bundles. Add the heaviest bundle to KB1.

Add the second heaviest bundle to KB2. Set LKB to KB2.

2. Until all bundles are assigned to KBl or KB2, repeat

a. Re-weigh and re-sort the unassigned bundles.

b. Assign the heaviest unassigned bundle, Bh, to the LKB.

c. Re-weigh the bundles of the LKB, other than Bh.

d. Set LBK equal to the lighter of KB1 and KB2.

This splitting of a knowledge base into two component knowledge

bases is the first step in this allocation scheme. The two result-

ing knowledge bases are then split into four (maybe fewer) KBs. This

iterative splitting continues until (1.) there is no unused processor

available, (2.) the currently examined knowledge base contains only

one bundle, or (3.) the overhead of splitting the currently examined

knowledge base exceeds an acceptable threshold (user defined).

3.2 STATIC ALLOCATIOIN OF A* SEARCH

The algorithm for A* Search, as presented in [ROWE 881, is

an interesting example to which to apply the SAS. The Prolog

implementation of A* Search uses 23 predicates and the built-in

predicates ABOLISH, ASSERTA, CALL, FAIL, NOT, RETRACT, WRITE, !,

-, 4, and <. If we assume that each node is provided with all

necessary built-in predicates and if the SAS weight of each

built-in predicate is zero (i-O), it is unnecessary to acknowledge

them during weighing.
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Exceptions to this rule for built-in predicates are those

which use another predicate as an argument; e.g.,

asserta( successor( STATE) ).

For the purpose of weighing, we shall treat such literals as if

the built-in predicate were absent; thus, asserta( successor( STATE)

is weighed the same as successor( STATE ). For the A* search, these

exceptions involve only NOT, ASSERTA, and RETRACT.

We use the following key to express the required predicates

of the A* Search:

P1 - add state P12 - countup

P2 - add-successors P13 - eval

P3 - agenda P14 - fix agenda

P4 - agendacheck P15 - goalreached

PS - append P16 - measurework

P6 - astarsearch P17 - pickbeststate

P7 - beststate P18 - repeatifagenda

P8 - checkabolish P19 - replace_front

P9 - cleandatabase P20 - special_less than

P1O - cost P21 - successor

P11 - counter P22 - usedstate

P23 - usedstate check

It is then possible to express the bundles with the following

notation:

46



Bi : 3(P1) + 2(P1O) + (P4) + (P23) + 2(P13) + (P3)

B2 :3(P2) + (P15) +- (P21) + (P1) + (P3) + (P22)

B3 : Facts only; a variable number, which is >- 0.

B4 : 3(P4) + 3(P3)

85 :3(P5)

B6 : (P6) + (P9) + (21) + (P18) + (P17) + (P2) + 2(P3) + (P16)

B7 :(P7), one fact

13A:2(PS)

B9 : (P9) + 4(P8)

B10: Group of predicates, none of whi-h depends on these bundles

B11: (P11), one fact

B12: 2(P12) + 6(Pll)

B13: Group of predicates, none of which depends on these bundles

B14: (P14) + 3(P3) + (P19) + (P10)

B15: (P15), one fact

B16: (P16) +i 2(P12)

B17: 2(P17) + 6(P7) + (P3) + (P20)

B18: 3(218) +- (P3)

Bi9: (P19) + 2(P5)

B20: 2(P20)

B21: 24(P21), twrnty-four facts

B22: Facts only; a variable number, which is >- 0.

B23: 3(P23) + 4(P22) + (P14)

As an explanation, consider Bi. Our notation implies. that bundle B1

contains thrbe occurences of predicate P1, two occurences each of
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predicates P10 and B13, and single occurences of predicates

P3, P4, and P23.

Bundles B3, B10, B13, B21, and B24 are dependent on the

particular problem to which one wishes to apply the A* Search. We

have in mind the Eight Tiles Puzzle; hence, bundle B21 will use

24 facts to account for the successors of the nine possible tile

positions.

Bundles B10 and and B13 deal with the cost and evaluation

functions which are special to a particular application.

These two bundles will not invoke any of the other twenty-one

bundles, but may need some special predicates of their own. We

shall assigned a weight of ten to each of the two.

Bundles B3 and B22 represent facts that are asserted and

retracted as the program runs. Initially, there are no such

facts. There is obviously a problem with how much weight to

assign statically to a bundle of facts which chanWs dynamically.

We choose to assign zero as the initial value. Another approach is

to weight facts and rules differently. This appears in Section 3.3.

3.2.1 ALLOCATION BY THE PROGRAMMER

Before the SAS is applied the programmer has the option of

doing a partial allocation. In this subsection we illustrate

one such partitioning.

Bundles B3 and B22, each consisting of a variable number of

facts, are invoked by these other bundles:
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B3 by 81, B2, B4, B6, B14, B17, B18 and

B22 by B23.

Consequently, a natural structure is to group B3 and its invokers

into a super-bundle, SBl, and to group B22 and its invoker into

another super-bundle, SB2. Other natural groupings, are B8 and B9

as super-bundle SB3; B11, B12, and B16 as super-bundle SB4; B5 and

B19 as super-bundle S85. In summary, we have these bundles to

allocate by the SAS:

B7 B10 B13 BI5 B20 B21

SBl SB2 SB3 SB4 SB5.

The revised bundle constructions are these:

87 : (P7), one fact

Bl0 : Group of predicates, none of which depend on these bundles

813 : Group of predicates, none of which depend on these bundles

B15 : (P15), one fact

B20 : 2(P20)

821 : 24(P21), twenty-four facts

SB1 : 6(P7) + 3(PIO) + 2(P13) + (P15) + (P20) + (P21) +

36(SB1) + 2(SB2) + (SB3) + (SB4) + (585)

SB2 : (SBl) + 7(SB2)

SB3 : 7(SB3)

SB4 : 12(SB4)

SB5 : 6(SBS)

The initial weights (using u-h-b-i, i-0, c-2) for the bundles

are these:
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wB7 - 1 wB10 - i0 w13 - 10 wB15 - 1 wB20 - 2 wB21 - 24

wSB1 - 17 wSB2 - 6 wSB3 - 7 WSB4 - 12 wSB5 - 6

3.2.2 ALLOCATION BY THE SAS

The iterations and actions of the SAS while cleaving the

original knowledge base into KB-1 and KB-2 are shown in Table 1.

As a result of the first separation, KB-i consists of predicates 7-10,

15, 20-23 and KB-2 consists of predicates 1-6, 11-14, and 16-19.

Further subdivision of KB-1 into KB-li and KB-12 yields the

following: KB-i1 contains predicates 7, 15, and 21 while KB-12

contains predicates 8-10, 20, and 22-23. There is no need to

divide KB-11 further since most of its weight is contained in the

single bundle B21. One could divided KB-12 into KB-121, which

contains predicates 10 and 20, and KB-122, which contains predi-

cates 8-9 and 22-23. In all three subdivisions of KB-1, the

weight of each KB is greater than 10.

In a similar manner, one finds that KB-2 splits into KB-21,

which contains only SB1 predicates (1-4, 6, 14, 17-18), and KB-22,

which contains predicates 5, 11-13, 16, and 19. Any further

division of K--21 or KB-22 will produce a KB which is too light

(defined as weighing less than 10 for this example).

The PKS graph for this SAS application is shown in Figure 6.

The required communications Ln the PKS-graph of Figure 6 are these:

KB-11, KB-121, KB-22 invoke no other node

KB-122 invokes KB-21 only

KB-21 invokes the other four nodes
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ITERATION KB 1 KB 2 REWEIGHINGS
BUNDLE WEIGHT BUNDLE WEIGHT

1 *B21 24 EMPTY 0 NONE

2 B21 24 *SB1 17 wSB2 - 8

3 B21 24 SB1 19# NONE
*SB4 12

4 821 24 SB1 19 NONE
*B10 10 SB4 12

5 B21 24 SBI 23# wSB2- 6
B10 10 SB4 12

*B13 10

6 B21 24 SB1 23 NONE

B10 10 SB4 12
*SB3 7 B13 10

7 B21 24 SB1 23 NONE
B10 10 SB4 12
SB3 7 B13 10

*SB2 6
8 B21 24 SB1 25# NONE

B10 10 SB4 12

SB3 7 B13 10
SB2 6 *SB5 6

9 B21 24 S1 25 NONE
B10 10 SB4 12
SB3 7 B13 10
SB2 6 SB5 6
*B20 2

10 B21 24 SBI 25 NONE
B10 10 SB4 12
Sf3 7 B13 10
SB2 6 SB5 6
B20 2
B7 1

11 B21 24 SB1 25

B10 10 SB4 12

S83 7 B13 10
SB2 6 S85 6
B20 2
B7 1
*815 1

* denotes the bundle added on this iteration

* denotes an adjustment to this weight because of the
particular bundle added on this iteration

TABLE 1
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Hence, we have a hierarchy, where KB-21 can be combined with

the Interface since the only anticipated query from the user is

predicate 6 (astarsearch).

USER

INTERFACE

B15 B B6 B1 1 B8B391 1

B20 B22 B23

Figure 6. The Initial PKS-Graph for A* Search.

3.3 VARIATIONS OF THE SAS

Refinement of the SAS begins with reassessing the assignment

of equal weights to facts and rule heads. In the proving mechanism

of each node of the PKS, facts are much easier to deal with than

are rules. Consequently, a fairer weight distribution is to

use each fact with u-l and each rule head with h-10. Rule heads

should also be more expensive than the literals in the body.
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Therefore, we weight each local literal in the body the same as

a fact (b-i) and each external literal in the body as b-c - 1-6

- -5. Thus, we have the following new notation for weighing

bundle Bl:

Bl : i[01 + 10[31 -5( 2(P10) + (P4) + (P23) + 2(P13) + (P3) I + 1(01

to indicate that there are zero facts for P1, there are 3

clause heads for P1, there are seven external literals in the bodies

two each for P10 and P13, and one each for P4, P23 and P3) and

there are no P1 literals in the bodies.

After completing the programmer's allocation into the five

super-bundles, as in Section 3.2, the weights become these:

wB7- 1 wBl0-10 wBl3-10 wBl5- 1 wB20-20 wB21-24

wSBI-50 wSB2-29 wSB3-34 wSB4-49 wSB5-33.

Repeated application of the SAS (until.a KB weighs < 11

or contain only one bundle) yields Figure 7. Again the PKS-graph

is a hierarchy, with KB-11 controlling the other nodes.

3.4 DISCUSSION

The SAS unites decomposition and allocation for distributed

problem-solving into a automated procedure, which can be advised

by a system designer or programmer.

The SAS can be viewed as decomposition/allocation based on

abstraction levels. The SAS support may be nominal for a problem

which is well-structured as in distributed path search of [COMRY 881,

Or the SAS support may produce a natural hierarchy, as seen in

the examples of this section.
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US ER

NTRFACE

KB-121 KS-122 21 KB-212 KB-221 KB-222
SB5 B40 B21 • SB3 SB2

B3B15 B7 B10

Figure 7. A Second PKS-Graph for A* Search.

Since the PKS provides the global and local control structures

needed in distributed problem-solving, the decomposition/allocation

basis of availability of coordination is not as restrictive for the

SAS (or other allocation schemes of the PKS) as it may be for other

distribution systems.

The SAS can be viewed as decomposition/allocation based on

control dependencies. Since it is only through clausal bodies

that communications with other nodes occur, the SAS weighs the

importance of local versus foreign JOB requests. The SAS

provides a programmer/designer a choice for the weights of these

requests.
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The SAS can be viewed as decomposition/allocation based on

data/logical dependencies. Indeed, all allocation schemes of the

PKS which conform to the two general rules (construction of bundles

and nodal connections based on bundles in clausal bodies) exhibit

this basis.

The SAS can be viewed as decomposition/allocation based on

resource minimization since the decision of whether to place a

bundle in the local node or in a foreign node is made in order to

minimize communication costs.

The SAS is not presently viewed as decomposition/allocation

based on interaction levels because of the inherent control of the

PKS. As more work is done on the second queue (the OR queue) of

each node in the PKS, this criterion can be incorporated into an

allocation scheme. In particular, a controlled priority system for

selecting elements from the first and second queues may be prefer-

able to tending to the second queue only when the first queue is

empty.

Finally, the SAS is not presently viewed as decomposition/

allocation based on uniqueness avoidance. In fact, each node is

generally assumed to hold unique knowledge. But this is only a

high-level abstraction. As we move to a lower level, an

individual node may itself be a PKS-graph where knowledge can be

duplicated or redundant. Hence, the broadcasting of a message from

a linked, high-level node to the redundant sub-nodes of another node

(and the reciprocal problem of avoiding discrepancies in the
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replies of the duplicates to the requesting high-level node) will

be handled by the channel/buffer configurations of the pertinent

nodes. These problems are only now being addressed, but the

prospects look bright.
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4. APPLICATIONS

This section examines two applications of the PKS. The first

example is a network management system and the second example

models a blocks world with multi-agent planning.

4.1 A NETWORK EXAMPLE FROM COMMUNICATIONS

The following is an example of network management and

system control for communications systems, as described in

[CONRY 88). The problem deals with restoring end-to-end user

connectivity in a network following disruption of a link.

Consider the network shown in Figure 8. There are five

regions, A, B, C, D, and E, each describing a subnetwork.

Typically the network of Figure 8 has specified circuits, such

as A-l to A-3 to C-I to C-4 to D-i to D-2, and each link is limited

by a capacity or maximum number of circuits that use it. When a

link fails, a new route for all the old circuits, which traverse

that link, must be found. Ultimately the circuit restoration

problem becomes that of finding a path from the initial node to

the terminal node of each original circuit after the network is

adjusted for a missing link.

Herein is discussed a straight-forward example of the PKS;

therefore, such realistic features as heuristics for cost and

evaluation functions, priority categories of a circuit, and equip-

ment constraints are not included. Furthermore, this problem is

restricted to one of determining a yes/no answer to a query of

whether there exists a path from subnode X to subnode Y.
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Region B

B-1B- B-

- D-3 Region D

Region A Region C
A2C 3 D-2

A -14 D-

-lE-2

Region E

Figure 8. A Network Example

.The PKS-graph for this example consists of the five Regional

Nodes A . E, and a manager Node M, which is linked to the other

five nodes. The Interface and Node M could be combined as a single

node. Node M represents a top-level manager and contains knowledge

pertaining only to the connectivity of the regions. Node M does

not have knowledge of any subnetwork of Nodes A..E.

Node M contains the following clauses:

super path( a, 2, b, 2).
super path( b, 2, a, 2).
super path( a, 3, c, 1).
super path( c, 1, a, 3).
super path( b, 3, c, 2).
super-path( c, 2, b, 3).
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super path( b, 3, d,. 4).
superpath( d, 4, b, 3).
super path( c, 4, d, 1).
superpath( d, 1, c, 4).
superpath( c, 1, e, 1).
super_path( e, 1, c, 1).

connect( Ri, Ni, R2, N2) superpath( Ri, N3, R2, N4),
path( Ri, Ni, N3), path( R2, N4, N2).

connect (Rl, Nl, R2, N2) superpath( RI, N3, R3, N5),
path( R1, Ni, N3),
connect( R3, N5, R2, N2).

The modes for the predicates of Node M are these:

mode( super_path, IN, IN-OUT, IN-OUT, IN-OUT).

mode( connect, IN, IN, IN, IN).

mode( path, IN, IN, IN).

Since the particular node that Node M would invoke through

"path" depends on the first argument, which must be instantiated

when it is invoked, we use the following modified map in Node M:

super_path ---> M

connect ---> M

path(a,_,_) --- > A

path(b,_,_) ---> B

path(c,_,_) --- > C

path(d,_,_.) --- > D

path(e,_,_) --- > E

where the underscore in the second and third arguments of "path"

means "don't care"
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Each of Nodes A..E holds its links plus these four predicates:

link( local, X, X).
link( local, X, Y) :- link( local, Y, X).

path( local, X, Y) :- link( local, X, Y).
path( local, X, Y) :- link( local, X, Z),

path( local, Z, Y).

where "local" is a, b, c, d, or e for Nodes A, B, C, D, or E, re-

spectively. Again this is a slight modification from the original

desciption of the PKS. It is reasonable that certain predicates may

be duplicated in several nodes. For very large knowledge bases, one

would certainly want all the "built-in" predicates of Proloo to be

duplicated. From another viewpoint, the predicates "link" and "path"

are not duplicates, but are specialized by the first argument.

The data special to Nodes A..E are these:

Node A: link( a, 1, 2).
link( a, 1, 3).

Node B: link( b, 1, 2).
link( b, 2, 3).

Node C: link( c, 1, 3).
link( c, 1, 4).
link( c, 2, 3).
link( c, 3, 4).

Node D: link( d, 1, 2).
link( d, 1, 3).
link( d, 2, 3).
link( d, 3, 4).

Node E: link( 3, 1, 2).

The mode for the new predicate "link" is

mode( link, IN, IN-OUT, IN-OUT).

The map for each of the Nodes A..E contains only these two

predicates:
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link( local, , ) --- > local.

path( local, , ) --- > local.

Consider the sample query, connect( a, 1, d, 4), from the

user. The following steps occur after the query is passed to Node M.

1. The first clause for "connect" fails since there is no "super

-path" between regions A and D.

2. The second clause for "connect" binds N3 - 2 and N5 - 2 in the

first literal of the body, "superpath".

3. In parallel, Node A is invoked to verify "path( a, 1, 2)" and

Node M is invoked again with "connect( b, 2, d, 4)".

4. This time the first clause of "connect" succeeds because of the

fact "superpath( b, 3, d, 4)".

5. In parallel, Nodes B and D are invoked to verify "path( b, 2, 3)"

and "path( d, 4, 4)", respectively.

6. Node M returns "yes" to the user through the Interface.

If the user now replies with a semi-colon, indicating a wish for

additional answers, the system again replies."yes", to signify that

there is another solution. This continues until there are no more

solutions to the initial query. Then the user receives a "no".

With some additional predicates, one could modify this program to

print the path traversals.

Deletions and insertions of "links" in the knowledge )ases of

the nodes easily allow one to query other configurations. For

more complex networks, it is possible that many nodes may be working

simultaneously.
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4.2 MULTI-AGENT PLANNING

This blocks world consists of three robots and seven blocks,

distributed throughout a four-room house where rooms 1 and 3 are

each connected to rooms 2 and 4. The house is represented as

follows:

1 2

4 3

All three robots are capable of moving from one room to a

connected room. Robot-i can also stack blocks and can transport a

block between rooms, but it will not enter a dark room. Robot-2

ca2 unstack blocks and can transpott a block between rooms, but it

will not enter a dark room. Robot-3 will enter a dark room and

switch on the light, but it can neither stack, unstack, nor move

blocks. When the last robot exits a room, the light automatically

goes off. Robot-l and robot-2 must always have robot-3 precede

them into a room.

In order to simplify this discussion, it is assumed that the

robots will not physically interfer with each other during their

movements.

After initial and final configurations of the blocks and

locations of the robots are given, the problem is to devise and
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execute a plan to move from the initial to the final state. This

approach can be generalized to a house with more than four rooms,

to more than three robots each of which may perform numerous

actions, and to more complicated interactions among subsets of

robots.

This problem is devised to illustrate the following points:

hierarchical planning for multiple agents, knowledge organization

and allocation, and cooperative parallel execution. These

difficulties are common to distributed artificial intelligence

problems involving multiple agents..

The multi-agent planning for this blocks world is done as a

dual-level hierarchy. A master-planner constructs the system plan,

and each robot constructs its own execution plan. The capabilites

of robot-I and robot-2 are abstracted as goals which are assigned

to them by the master-planner. Each robot executes a goal by con-

structing its own plan, which may required communication and

coordination with other robots. The hierarchical structure of the

agents is depicted in the following graph:

MASTER-PLANNER

ROBOT-i ROBOT-2I I
I I

ROBOT-3

No link between the master-planner and robot-3 is required since

the capability of robot-3 (light switching) is not in the

abstraction level of the master-planner.
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The link between the master-planner and robot-1 represents

not only subgoals (either stacking or transporting), which are

presented to robot-i, but also robot-i's request to the master-

planner to update a block's characteristics. The link between the

master-planner and robot-2 is similar. The link between robot-i

and robot-3 represents robot-l's solicitation of robot-3 to switch

on the lights in a particular room. An analogous link exists

between robot-2 and robot-3.

For example, if the master-planner has determined a stack-

plan for robot-i, then robot-i receives the message

go_stack( rl, r., r3, new, old, code),

which orders robot-i to move from its current location in room "rl"

to room "r3" (passing through room "r2" if "code" - diagonal)

where it will find the "new" block ready to be stacked onto the "old"

block. The planner has already determined that the "old" block is

currently on top of a partially built, goal stack in room "r3" and

that the "new" block also sits uncovered on the floor of the same

room. However, no instructions are given to robot-i for how to

enlist robot-3 since the planner does not have this knowledge.

Rather, the knowledge base of robot-i holds the instructions for

soliciting robot-3 and coordinating its movement with robot-l's

objective. Similar comments apply to the transport-plan for robot-i

and to the unstack-plan and the transport-plan for robot-2.

Robot-3, which occupies the lowest level of the hierarchy, meekly

does as it is told.
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4.2.1 THE KNOWLEDGE BASES

The master-planner constructs short-range plans for robot-i

and robot-2. These robots must then coordinate their actions with

robot-3. When both robot-i and robot-2 have succeeded in achieving

their intermediate goals, the master-planner begins again to plan.

There is no link between robot-1 and robot-2 since any contention

over the services of robot-3 is decided by robot-3 itself. This

problem's solution allows robot-l and robot-2 to be engaged

simultaneously.

The master-planner's knowledge base can be partitioned

into two pieces. The primary piece, the planner, consists of

unchangeable facts about the house's architecture and the goal

for each block. The planner also contains all the rules for

planning, as described below.

The second piece, the blackboard, maintains the database

of facts for each block. Each fact contains a block's room number,

what lies above and below each block, and a status (unstacked, used,

or stacked). The blackboard also contains rules for manipulating

the database. All of these rules ultimately reduce to retracting

an old block-fact and asserting a new block-fact. No planning

control is associated with the blackboard.

The planner's strategy is simple: while the goal state has

not been reached, find work for robot-i and robot-2. This is

done with the following rules:

plan( available, available)
goal state,
return automata home.
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plan( available, available) :-
assign duty to robot i( Sl),
assign-duty to-robot-2( S2),plan( S91, S7).

The variables Sl and S2 in the second clause are used

to delay the recursive call to "plan" until robot-i and

robot-2 have executed their assignments.

However, it is the PKS which allows constructing a plan

for robot-2 before robot-i signals completion of its task. Thus,

both the master-planner and robot-i can operate in parallel. In

a problem with more than two robots which must receive planning

instructions, this pipelining of plans is even more advantageous.

The choices of planning work for robot-1 are stacking and

transporting, with stacking given first priority. If the planner

cannot locate a room containing a partially built stack and the

next required block, then it attempts to find a block that needs

transporting to its goal room. Should both of these choices fail,

robot-i is directed to its goal room.

In an analogous manner, the master-planner tries to locate a

non-goal stack which robot-2 is directed to disassemble. Otherwise,

the master-planner seeks a block that needs transporting or if this

fails, orders robot-2 to its goal room.

Two facts, the room location and the goal location of robot-i,

reside in the knowledge base of robot-i. A companion rule, which

retracts an old room number and asserts a new room number, is also

provided to update robot-l's location. A group of rules in this

66



node consists of "soliciting" robot-3's services for moving about

the house and of informing the blackboard about a changed block-

fact. The sequence of "soliciting" and "moving" is planned by

this node and depends on whether robot-l is transporting or stack-

ing a block. Finally, another small piece of planning code is

attached to this node to allow robot-1 to find its goal room after

all blocks are properly stacked. This requires asking the planner

about the house's architecture or storing duplicate code.

The knowledge base of robot-2 is similar to that of robot-1

except that its planned interactions with robot-3 depend on whether-

it is transporting or unstacking a block.

The knowledge base of robot-3 contains its room location and

its goal location as well as a "retract/assert" rule for moving

about the house. This node also holds the "solicit" synchroniza-

tion rule. A route planning algorithm was deemed redundant for

this fearless automaton.

4.2.2 CONFLICT RESOLUTION

One potential conflict, which must be avoided, is the follow-

ing situation. Robot-i and robot-2 are both assigned the duty of

transporting a block. Because the master-planner may be planning

a goal for robot-2 while robot-i is executing its goal, the state

of the block, which robot-i is transporting, is not yet updated and

could be redundantly assigned to robot-2 for transporting. This is

prevented by using the "used" status for this block in the blackboard.
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Thus, between the time that the planner has decided to order robot-i

to "transport" block X and the time that robot-1 confirms the order,

block X is unavailable for transport. While robot-i is accomplishing

its task, the planner will simply pick the next available block for

robot-2 to transport.

Another potential conflict can involve robot-i and robot-2

contending for robot-3. A request by robot-i or robot-2 for the

services of robot-3 is made in the form of JOB requests. Depending

on which request arrives first, robot-3 will respond to that

request, complete it, and then answer the next request in

its JOB queue.

Since the interleaving of soliciting robot-3 and informing the

blackboard of an altered block-fact are both ORDERs to two different

nodes (and can be done simultaneously), we enforce sequencing by a

synchronizing variable, as described for the variables in the plan-

ner's strategy. Thus, only after robot-3 has actually moved

into a requested room may the requesting robot move there.

As stated in Section 4.2.1, the planner begins to determine a

plan for robot-2 as soon as the plan for robot-i has been sent to

the latter. In a problem which requires the planner to construct M

plans for M robots, it is possible that there will be no solution to

the ith plan or that the ith plan will conflict with earlier plans.

In either case the planner must backtrack and redo some earlier

plans. The backtracking mechanism is inherent to each node in the

PKS and offers no difficulties since the PROOF TREE for each JOB

of each node maintains a precise history of all its deductions.
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In this problem no backtracking is needed unless one is

interested in finding additional solutions. In this case, one must

backtrack over the built-in predicates of "assert" and "retract".

Standard Prolog will effectively skip such predicates during back-

tracking. The blocks world problew uses these predicates so

transparently that it is possible to modify the backtracking of

the PKS and thereby allow true backtracking over assert and retract.

Since assert and retract are used only to update the characteris-

tics of a block or a robot and since they always occur in pairs each

of which (1.) retracts a property of an object (block or robot) and

then (2.) asserts another property of the same object, one would

retract an asserted fact and then assert the related, retracted fact

during backtracking.

4.2.3 SAMPLE EXECUTION

Figure 9 displays the first two planning cycles of the planner

and the resulting configurations of the blocks and the locations of

the robots. The initial state is shown as Cycle 0 of Figure 9.

The goal state is to have all three robots in room-l, and to have

block-a on'block-b on block-c in room-4, block-d alone in room-3,

and block-e on block-f on block-g in room-2.

Although the actions of robot-l and robot-2 occur sequential-

ly within a single cycle (read vertically in Figure 9), the given

sequence of moves of robot-3 within a single cycle represents one

69



T: x n/m means the robot transport box x from room n to room m
S: x means robot 1 stacks box x
U: x means robot-2 unstacks box x
M: n/m means the robot moves from room n to room m

means no action is taken by the robot

CYCLE ROBOT ACTIONS HOUSE CONFIGURATION
R1 R2 R3

0 rl r2 r3 I
I b

a 112 c

413
d I f
e I g

1 T: a 1/4 N: 1/2 M: 1/2 r2
U: b M: 2/3

M: 3/4 112 b c

rl r3 413
d I f

a e g

2 M: 4/1 M: 2/3 M: 4/3
M: 1/2 U: f M: 3/4
T: b 2/3 M: 4/1 112 c

M: 1/2
M: 2/3 413 rl r2 r3

d I
a e I b f g

Figure 9. A Sample Execution.

of several possible sequences. The exact sequence depends on the

order n which requests from robot-l and robot-2 are received.

For example, during cycle 1 robot-3 first moves from room 1 to

room 2 at the request of robot-2. Then it receives robot-l's

request to move to room 4, which it does by moving to room 3 and

then to room 4. For the given initial arrangement, the only
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other possible sequence for robot-3 in cycle 1 would be this:

M: 1/4, M: 4/1, M: 1/2.

The goal state for the example is reached on the twelfth

planning cycle; see Appendix. Since no work was found for robot-2

after the sixth cycle, the top-level of planning is not as efficient

as one would wish. More intelligent planning can be achieved by

pursuing longer ranged planning. For example, instead of giving

priority to robot-2's unstacking, it may be wiser to determine if

robot-2 can help robot-l move some blocks so that stacking can

begin earlier.

An equally significant improvement can be realized if the

planner node has access to a multi-processor or several other

available (possibly remote) single processors. (Note that the PKS

views these different resouces as equivalent.) In such cases, we

could restructure the planner node as a subnet of seven nodes: the

blackboard, the top-level planner, a robot-l-planner, a robot-2-planner,

a stack-planner, a transport-planner. and an unstack-planner. The top-

level planner is now able to request plan generation by robot-l-planner

and robot-2-planner simultaneously, rather than in pipeline fashion.

The robot-l-planner may then seek help from the stack-planner or the

transport-planner, and the robot-2-planner may utilize the unstack-

planner and the transport- planner. Acceptable plans would then be

conveyed to robot-l and robot-2. While the robots are complying with

their orders, the planning network could begin working on the next

cycle of action.
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5. DATA TYPING AND KNOWLEDGE BASE MANAGEMENT AND LEARNING

This section is an initial investigation into efficiency con-

siderations within the PKS and provides a general background for

data typing, which is the third task of this report.

In section 5.1 four knowledge base management techniques are

presented. These include dependency backtracking, query optimiza-

tion, caching, and compiled optimization. The first two techniques

deal with improvements to the execution mechanisms (forward

execution and backtracking) of individual nodes and are associated

with the first and second queues of the PKS. The last two tech-

niques deal with reorganizing a logic program to take advantage of

special features of the PKS. These two techniques are associated

with the third queue of the PKS and can be interpreted as either

management or learning in the knowledge base of each node.

In section 5.2 advanced machine learning methods are addressed

vis-a-vis data typing. The most promising method of data typing

is that used in the language LOGIN, as described in

[AIT-KACI 88]. Data typing is then used as the basis for

learning by discovery (see [LENAT 831) and learning by conjunc-

tive conceptual clustering (see (Michalski 80]).

5.1 KNOWLEDGE BASE MAINTENACE

5.1.1 DEPENDENCY-BASED BACKTRACKING

Standard Prolog performs backtracking chronologically; i.e.,

Prolog recovers from a failure by returning to the most recently

solved literal. Within the body of a clause, this is always the

72



literal, which lies to the left of the failed literal. Non-

chronological or dependency-based backtracking (DB) recovers

from failure by moving left from the failed literal to the

literal that most recently bound a variable of the failed literal.

DB is more intelligent than chronological backtracking, but it

pays for it superiority by maintaining two lists for each literal

in the body of each clause. The first list for a particular

predicate p in the body of a clause contains all the predicates

which are to the left of p in the body of the clause and share a

variable with p. The second list, a sublist of the first, is

used to indicate those literals which actually bind a variable of p.

For example, if the body of a clause is

a(X), b(X,Y), c(Z), d(X,Z), e(X).

then the list for d(X,Z) is [a(X), b(X,Y), c(Z)J and the siblist

is [a(X), c(Z)J. If d(X,Z) fails during execution, DB will return

to c(Z) (as will chronological backtracking), but with a failure

in c(Z), the dependency-based backtracking will return to a(x) by

skipping over b(X,Y) since b(X,Y) is not in the sublist of d(X,Z)

and therefore did not bind any variables of d. When forward execu-

tion begins (by successfully re-binding X in a), b(XY) and c(Z)

must also be re-solved; hence, d must maintain both its list and

its sublist.

In the PKS the backtracking mechanism of each node is a

variation of chronological backtracking which is based on the

chronology of the solved literals. A more intelligent form of

backtracking, such as dependency-based backtracking, was deemed
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unnecessary for the following reasons. First, intellegent

backtracking requires much more bookkeeping and is therefore more

costly during consult-time and during run-time. Second, the

current backtracking scheme of the PKS does display a modest

level of sophistication in that it ignores all the fired and

waiting literals as possible backtracking points. It is only

those literals which have actually been solved that qualify as

possible backtracking po.ints. Third, if a form of caching is

implemented, then it may not be necessary to re-solve a request

other than matching a cached fact. In such cases the use of more

intelligent backtracking becomes counter-productive. After

weighing both pluses and minuses, dependency-based backtracking

does not appear to be capable of significantly improving the

present version of the PKS.

5.1.2 QUERY OPTIMIZATIONS

5.1.2.1 INTER-NODAL AND-OPTIMIZATION

The PKS Version 1.0 handles inter-nodal REQUESTs by using a

single goal; thus, if node i ascertains during problem-solving a

need to solwe predicate p, which lies in node j, then a REQUEST by

node i presents the single predicate p to node j as a goal. From

this view of requesting a single goal, inter-nodal query optimiza-

tion is inane.

However, consider that node i holds the following clause with

three OUT-variables (non-ground):

a(X,Y,Z) :- b(X), c(X,Y), d(Z), e(X,Z).
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Assume that node j holds predicates b and d, and that node k holds

predicates c and e. The PKS Version 1.0 ORDERs b from node j, sets

predicates c to WAIT (since X is held by b), ORDERs d from node j,

and sets predicate e to WAIT (since X is held by b and Z is held

by d). Assuming that the orders are successfully solved, node i

ORDERs predicate c from node k and then ORDERs predicate e from

node k.

A reduction in the number of inter-nodal communications can

be obtained by letting node i ORDER ( b(X), d(Z) ) as a single

goal from node j. When a success is return by node j, node i can

then ORDER the goal ( c(X,Y), e(X,Z) ) from node k. In this

simple example, the minimum number of communications has been cut

in half. Once the goal ( b(X), d(Z) ) is received, the intra-

nodal query optimizer (described below) of node j would decide how

the query/goal may be optimized.

Adjustments to the PKS Version 1.0 would involve (1.)

replacing the depth-first readiness checking of the predicates in

the body of a clause by a breadth-first examination, and (2.)

generalizing the communicated REQUEST goal from a single predicate

to a conjunction of predicates.

5.1.2.2 INTRA-NODAL AND-OPTIMIZATION

The generalization of REQUESTs to conjunctive goals can also

be used for intra-nodal optimizing. For the above example, one

would obtain the following reordering:

a(X,Y,Z) :- b(X), d(Z), c(X,Y), e(X,Z).
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Investigating how to reorder the literals in the body of a clause

defines another function for the Third Queue. This refinement is

applicable to standard Prolog and is addressed in more detail in

(ROWE 88).

5.1.3 CACHING

Herein is used the defi'nition of (ROWE 881 for caching:

caching means asserting unnecessary or redundant facts to improve

efficiency. A spectrum of control-structure concepts for rule-

based system ranges from increased flexibility to increased

efficiency. Caching is an example of the extreme of increased

efficiency. By contrast, meta-rules are the extreme of increased

flexibility. The efficiency of backward chaining is often

improved by caching some or all of the conclusions derived. As a

side-effect, there will be more facts to search after caching.

Consequently, one must be selective in which conclusions to cache.

Within the PKS caching must be very selective. Surely a node

does not need to remember solutions returned from other nodes if

those solutions are not part of a final solution to a user's query.

Therefore, a command for caching must be directed from the

Interface Node. At the same time that the Interface reports the

solution to the User, the Interface must command its original

servant node to cache the result. This caching command is then

relayed throughout those nodes of the network that contributed

to the final solution. Caching causes run-time problems for

asserting solutions within each ncd- and for adjusting the
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allocation maps. Furthermore, the static allocation schemes'

principle of non-distribution of bundles will be violated unless

the following steps are taken.

Assume the Node N has been directed to cache a solution of

predicate p and that this solution was obtained from Node M.

Node N will now assert this solution (in some form) as a fact in

its private knowledge base.

To avoid adjusting references by other nodes to predicate p

and to maintain the principle of non-distribution of predicate

bundles, Node N must determine from its proof-tree which clause

invoked Node M and accepted the solution for predicate p. Within

that clause the predicate p must be replaced by a new predicate,

p_l, which has exactly the same arguments as p.

Node N adds this new rule: pl(arguments) :- p(arguments),

where the arguments of p_l and p are identical. Node N must

also add the solution from Node M in the form of p_l(argument-

bindings) rather than p(argument-bindings), and this fact must

appear before the new rule in Node N's knowledge base. Alloca-

tion adjustments must be made to Node N and the Interface to

account for the new predicate p_l. Node N must be able to copy

the mode-declaration of predicate p from Node M (or from the

Interface, if it holds a duplicate of the mode-declaration) in

order to reproduce it.

It also appears that there would be no cause for caching

unless the inter-nodal solution provides enough information so
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that the newly asserted fact for p_1 contains only ground

arguments.

5.1.4 COMPILED OPTIMIZATIONS

The final technique for improving efficiency in the PKS is

the use of compiled optimizations for OR-parallelism. This can be

applied to any procedural bundle which is initially unordered.

Procedures (or clauses) of such a bundle can be ordered by a metric

m( ). This metric can be a function of several different character-

istics and can be either static or dynamic. Described below is a

static metric. This static metric determines the minimum number of

resolutions that are required to instantiate the head of the clause.

This value is only a lower bound for the actual number of resolu-

tions that may be required during run-time.

For example, consider that the following two clauses are the

only "a" clauses in the program and that the goal is a:

Cl--- > a :- b, c, d.

C2---> a e, f, g, h, i.

If one has already determined m(b)-4, m(c)-l, m(d)-5, m(e)-l,

m(f)-2, m(g)-l, m(h)-2, and m(i)-l, then one can assign m(Cl)

to be 10, m(C2) to be 7, and m(a) tu be the minimum of the clausal

metrics or 7. Clause C2 is therefore preferred to clause Cl. The

calculation of m(a) may be needed in another clause in which

predicate a is a body literal. The notation m( ) is slightly abused

here since the argument may be either a clause or a predicate-. In

general, one first determines the metric of each individual member
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of a predicate bundle (by summing the metrics of the predicates in

the body) and then calculates the metric of the predicate (bundle)

p by choosing the minimum of the metrics of the members of the

bundle p.

In algorithmic form, one initially assigns m(predicate) to

be one for each predicate that contains at least one fact.

Then iteratively assign clausal metrics, followed by predicate

metrics. At any step a metric can be assigned to a clause if all

predicates in the body of the clause have already been assigned.

A predicate metric can be assigned if all members of its bundle

have been assigned.

Notice that recursive clauses are finessed since there must

always be an accompanying fact which terminates the recursion,

and therefore the associated predicate has metric equal to one.

If an infinite loop is encountered, it is a sign of erroneous

code. Consequently, the algorithm must terminate.

This metric assignment scheme is sequential and takes no

account of possible AND-parallelism within an individual clause.

For a parallel version of this scheme, a metric will be obtained

from the optimal execution graph of the clause. This can also

be determined statically.

If the optimal execution graph is deterministic the set of

metrics for the clause is a singleton. For example, if all the

predicates in the body of a clause are either ground or "indepedent"

(i.e., all arguments of all predicates are independent), then all
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predicates can be evaluated in one step in parallel and the metric

for the clause is the maximum of the individual metrics.

In the example of this section, if predicates b through i are

ground then

m(Cl) - max(4,1,5) - 5,

m(C2) - max(l,2,1,2,1) - 2,

m(a) - min(5, 2) - 2.

For dependent predicates, the metric of the clause will be

the sum of the metrics that one finds on each level of the

optimal, static execution graph of the clause.

For example, the clause

C --- > p5(A,B) :- pl(A,B), p2(B,C), p31C,D), p4(A,D).

has the execution-graph (in the PKS) shown below:

p5

/\

p1 p3
\ /1

I\ /1
VI

I/N\
/ \I

p2  p4

According to the literal ordering of the PKS, predicates pl and p3

.can be executed in parallel since their variables are independent.

The same is true for predicates p2 and p4, which are executed on

the second level of the execution graph. Thus,

m(C-level-l) - max[ m(pl), m(p3) I,

m(C-level-2) - max( m(p2), m(p4) },
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and

m(C) - max( m(pl), m(p3) } + max[ m(p2 ), m(p4) }.

For purposes of static assignment of metrics, it is assumed that

no variable in the head of a clause is ground.

This same scheme can be adapted to a dynamic form, but the

anticipated high run-time overhead discourages implementing it.

Other compiled optimizationc for standard Prolog are also

possible within individual nodes. For example, rule collapsing

can reduce constructing two frames to constructing one frame

during forward execution if the two rules a :- b,c,d. and

c :- e,f. are collapsed to the single rule a :- b,e,f,d.

5.2 KNOWLEDGE BASE LEARNING AND DATA TYPING

In this section, classical machine learning techniques are

explored in a logic programming language which has a native

mechanism for data typing, such as LOGIN (see [AIT-KACI 881).

Section 5.2.1 summarizes the pertinent characteristics of LOGIN.

Section 5.2.2 exazmines a mechanism for automatically generating

new data types, which are related to a semantic network of old

data types. Sectio 5.2.3 discusses how conjunctive conceptual

clustering of [MICHALSKI 80] may be used to convert a standard

Prolog program into a LOGIN program.

The primary reason for adding data typing to a language is

to allow programs in that language to model more closely real-

world objects. Those objects are represented as abstract objects
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in the program. A specification of a data type includes attri-

butes, values, and operations for that type. [PRATT 84] and

[MARCOTTY 86] have lengthy discussions on data typing for pro-

cedural high-level languages.

From the persepective of database programming languages,

there is a need to support software and data evolution-in large,

long-lived systems. This in turn demands support for new data

types. A complete examination of data typing and persistence is

found in (ATKINSON 88].

5.2.1 DATA TYPING USING INHERITANCE IN LOGIC PROGRAMMING

LOGIN (see AITKACI 88] is a logic programming language

which incorporates inheritance-based reasoning as a part of the

unification process. The motivation for LOGIN was to separate

inheritance from logical inference. The unification process of

LOGIN includes inheritance-based information and is a generali-

zation of the unification algorithm of [HUET 76], which is based

on maintenance of equivalence classes of subterms. The algorithm

of [HUET 76] is a variation of the classic algorithm for testing

the equivalence of two finite automata.

Standard PROLOG and its variants are all able to deal with

inheritance with additional clauses (facts and rules). For

example,

dog(fido).

mammal(X) :- dog(X).

animal(X) mammal(X).
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clearly expresses that fido is a dog, a mammal and an animal.

These and other inheritance clauses can be eliminated if the

interpreter has some way to know it can instantaiate X to fido

anywhere it encounters the predicate dog, mammal, or animal.

Since logic programming entails only resolutions and unifications,

the obvious alternative is to expand the power of unification in

order to include inheritance.

The innovation of LOGIN is to use (data) type-checking during

unification. If each argument in a literal is typed and if types

collectively define semantic networks for the world of discourse,

then inheritance reduces to testing either subset containment or

set membership.

From the canine example, fido is a member of the set (data

type) of dogs, which is a subset of the set of mammals, which is

a subset of the set of animals.

In terms of run-time, LOGIN replaces a series of inheritance

resolutions(and the associated frame constructions) by a single

inheritance unification, which is more economical. To accomodate

an inheritance, unification is generalized to be the computation

of a greatest lower bound of two symbols relative to the < order-

ing. Thus, one must explicitly declare the semantic network.; for

example, (fido, fifi) < dog, dog < mammal, mammal < animal,

(esmerelda) < snake, snake < reptile, reptile < animal.

One limitation of Prolog that must be eliminated to general-

ize unification is the syntax of a predicate's argument. For
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example, with fixed arity, a predicate a(X,Y) must always appear

with exactly two arguments and in that prescribed order (posi-

tional interpretation). This can be corrected by viewing each

argument as a record-structure and by explicitly labeling (or

data typing) the record fields. Both of these restrictions are

eliminated through explicit labeling of record fields (see next

example).

Unification in LOGIN permits unification of predicate names

(the signature of the predicate) not only for lexically identical

names but also for any predicate with a name that is a subset of

the orginal name. Thus, unification is a greatest lower bound

operation. When the greatest lower bound is empty, unification

fails.

LOGIN retains the Prolog property of coreferencing vari-

ables; i.e., in p(X,Y,X) the two X-arguments are bound to the

same constant.

A nice example from rAIT-KACI 881 is this:

person(id -> name(first -> string;
last -> X : string);

born -> date(day -> integer;
month -> monthname;
year => integer);

father => person(id => name(last -> X string))).

The ROOT SYMBOL of this well-formed psi-term (wft is "person".

The ATTRIBUTE LABELs of "person" are "id", "born", and "father".

The ATTRIBUTE LABELs map the ROOT SYMBOL into the corresponding

types (listed after the ->), which in turn are sub-psi-terms. The
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TAG (a variable in Prolog) x is used here only for coreferencing.

If the second "X:" were not followed by "string", the psi-term

would not be well-formed.

As in Pascal record and sub-record structures, one can refer

to a subfield through concatenation of LABELs; e.g. father.id.last

is the TAG X.

The type signature Sigma is a partially-ordered set of

symbols. It is the semantic net used fn inheritance. The greatest

element of the net is U (the universe of discourse), and the least

element of the net is E (the empty set). The partial-ordering is

set inclusion of the type symbols. A missing type symbol in a wft

is understood to be U.

The final defintion from (AIT-KACI 881 is subtype. A wft tl

is a subtype of wft t2 if (1.) the ROOT SYMBOL of tl is a subtype

in Sigma of the ROOT SYMBOL of t2, (2.) all ATTRIBUTE LABELs

of t2 are ATTRIBUTE LABELs of tl, and (3.) all coreference

constraints binding in t2 must also be binding in tl.

In an implementation of LOGIN, backtracking will affect both

resolution (through frames) and unification. Inheritance type-

checking can be done statically before run-time. LOGIN also

provides an efficient way for handling database queries which

require a "set at a time" mode. Finally, through inheritance,

LOGIN provides an object-oriented flavor to logic programming.

Although an extension of the PKS to include data typing and

inheritance is desirable, it is not clear what restrictions on
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the signatures will be required. For example, is it necessary

that all nodes contain duplicates of the signature(s)?

5.2.2 LEARNING SIGNATURE ELABORATIONS

The type signature Sigma provides a perfect setting for a

learning mechanism for the Third Queue of the PKS. Such an

expansion of Sigma can be accomplished automatically or in concert

with a user.

Consider the following section of a signature Sigma:

i typeZ i
att: C I

/ \
/\

/\

i type I I typeY I
I att: C I I att: C I
I Al I I Bi I
I A2 I I B2 I

Here, type Z has the single attribute C, type X has the

attributes C, Al, and A2, and type Y has the attributes Y, Bi

and B2. If the attributes Al and Bl can be shown to be the

same, then the new type W can be inserted into Sigma. Type W

will have the attributes C and C2 (where C2 - Al - Bi). The

given section of Sigma now assumes the following structure:
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I type Z I
att: C I

I typeW I
att: C I

I C2 I
/\
/\
/\

I typeX I I typeY I
I att: C att: C I
I C2 1 I C2 1

A2 1 I B2 1

The above example is a form of insertion into Sigma through

generalization. In general, if two vertices in Sigma are siblings,

then Sigma can be expanded between the parent and the siblings if

there exists an attribute which is common to the siblings and is

not held by the parent. When the siblings hold more than one

common, non-parental attribute, then there are many alternative

expansions of Sigma that are possible. Let AttP denote the set

of attributes which type P possesses, and let I AttP I denote the

size of set AttP. Then if type Z is the parent of sibling types

X and Y, set S will denote the intersection of (AttX and AttY)

minus AttZ, where minus is set complement, and I S I - N, where N

is a non-negative integer, which is bounded above by UB

UB - minimum IAttX IIAttY I-IAttZI.
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Consider an example in which the parent Z holds only attribute

C, one child X holds attributes C, Al, A2, and A3, and the second

child Y holds attributes C, Bi, B2, B3. Then, I S I - N and

0 <- N <- 3. If N is 0, then no new vertex can be added to Sigma.

If N - 1, then Sigma's expansion will be like that of the previous

example. If N-2, then Sigma's expansion will be the sub-graph

shown below. In the N-2 expansion, it is assumed that some

attribute Ai of type X is the same as the Bj attribute of type Y

and that attribute has been relabeled as C2. Similarly, some other

attribute Am of type X is the same as some other Bn attribute of

type Y and that common attribute has been relabeled as C3.

I typeZ I
I att: C I

I type wl I I type W2 I
att: C I j att: C I

I c2 1 I C3
I I

I

I type W12 I
I att: C,C2,C3 i

I I

I type X I typeY I
I att: C I I att: C I

Al I Bl
I A2 I I B2 I

A3 I I B3
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The extreme case that N is UB (UB-3 in the last example)

is special. Either one has discovered that the siblings are twins

or the type with more attributes is a subtype of its sibling. In

the first case, the prudent choice is to collapse the subgraph to

two nodes, the parent and a single child. The latter case should

place the supertype between the parent and the subtype.

In general, if I <- N <- UB-1, then the complete lattice of

N elements can be inserted between the parent and the twn -hildren.

The Minimal Element (the empty set) of the lattice will coincide

with the parent. The Maximal Element (all N elements) is the

common parent of the two original children. All elements other

than the Minimal Element are new vertices for Sigma. In practice

there must be some small number used as a limit on the number

of attributes that distinguish a parent from its children-because

of the exponential number of vertices that are added. If a

has two children and the children have k attributes that are not

attributes of the parent, then one may potentially add 2**k - 2

vertices between this parent and its children.

For example, suppose N - 3, six type-vertices can be inserted

between the parent and the two children. The following graph

illustrates this case with the assumption that C2, C3, and C4

are the attributes common to both type X and type Y.

Further generalizations of inserting lattices into a type

signature include (1.) parents with more than two children and

(2.) a child with multiple parents. The theory is easily extended
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to larger families (more than two children). The complexity

of the problem is, however, increased severly since one must

consider all partitions of all combinations of all attributes

which are common to the children.

Itype Z
I att: Cl

type W2 Itype W3 I Itype W4
I att: C I I att: C I I att: C

C2 I IC3 I IC4 I
- -- -- - - -- - -- - - --- --- ---

Itype W24 I Itype W23 I type W34
I att: C I I att: C I j att: C
I C2 I C2 I IC3
I C41 C31 C41

type W234 C3I
I att: C, C2, C ,C4 I

Itypex I type Y I
I att: C II att: C
I C2 IIC2
I C3 IIC3
I C4 IIC4

more more
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Extension to multiple parents is also completely analogous to

the existing theory. Consider a child-type with four attributes

and two parents, each of which has only one of the child's

attributes. Then intermediate type-vertices can be defined as

shown in the following graph:

I typezl I i type Z2 i
1 att: Al att: A2 I

i I

I type W13 I type W12 I I type W23 i
att: Al I att: Al I i att: A2

A3 I I A2 f I A3 I

typeX I
I att: Al
i A21
I A31

These insertions algorithms are the first level of learning

by discovery, as originially introduced by [LENAT 831. In order to

implement a practical insertion algorithm, it will be necessary to

supply heuristics for pruning the combinatorial explosion of new

data types. As a type signature matures, meta-heuristics become

necessary. (LENAT 83] suggests that meta-heuristics can also be

discovered by applying the learning procedures to the heuristics

themselves.
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5.2.3 LEARNING BY CONJUNCTIVE CONCEPTUAL CLUSTERING

It is possible that standard Prolog programs can be automatic-

ally converted to LOGIN programs through the learning schemes of

conjunctive conceptual clustering, as introduced by (MICHALSKI 80).

The necessary prerequisites are a set of objects (the data types),

a set of attributes, which characterize the objects, and a body

of background knowledge. The result is a hierarchy of object

classes. It would be necessary to extend this work from hierarchies

to lattices, but the automatic construction of a type signature

would provide a meaningful restructuring of a program in order to

facilitate human comprehension. This divison of labor may also be

another basis for static allocation of logic programs.

One final comment on the advantages of data typing in logic

programming is this: data typing can provide a route for logic

programs to become "open systems". As defined by [AGHA 851,

"open systems" must possess (1.) continuous availability (there is

no closed-world hypothesis), (2.) modularity, and (3.) extensi-

bility. The second and third characteristics are enhanced with

data typing, although the closed-world assumption remains a

problem.
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6. CONCLUSIONS

This report has extended the theoretical basis of the

Parallel Knowledge-based System and has illustrated typical AI

applications which are appropriate for it.

Theoretical issues, which have been examined, include

restructuring the functions of individual nodes, methods for

dealing with duplicated data, metrics for static allocation

schemes, and management of the knowledge bases. There remain

problems for the PKS, which have not been examined. No truth

maintenance system has been attached to the system. The PKS

presently handles uncertainty only in its elementary form; i.e.,

an extra argument in each predicate can be used for certainty

factors, as in standard Pr-olog. The PKS does not support grace-

ful degradation of the system. This is dependent on having

duplicated data and is an area that will be examined in furture

research. These theL!-tical questions can be unified as an effort

is made to transform the PKS into an "open system", as defined

in Section 5.2.2.

Future'work will also move the ADA/VAX simulation to a

C-coded distributed system. The anticipated network will be an

ethernet with nodes of work stations, PC's, a VAX 11/780, and a

micro- VAX. With this network, it will be possible to gather data

on the static allocation schemes. These needed data are required for

parameter adjustments and benchma:ks for communication costs.
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Ultimately, the multi-agent planning system will be ex-

panded to run on the distributed system. Issues to be addressed

include hierarchical planning, conflict resolution, granularity

of parallelism, and fault-tolerance. It is anticipated that

solutions to new problems will aid in expanding the capabilities

of the Second and Third Queues of each node.

Finally, the distributed system can also be enlarged to

encompass the efficient implementation issues described in

Section 5.
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APPENDIX

CODE AND SAMPLE EXECUTION

of

A BLOCKS WORLD WITH MULTI-AGENT PLANNING
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HYPOTHESES -

Three automata, seven boxes, and a four-room house.

The map of the house is as follows:

I I
Roomi I Room 2

I I
I ~II

Room 4 I Room 3

I ~II
I ~I

It is assumed that each door between rooms is actually a triple door,
each of which is maked 1, 2, or 3 and is reserved for Automaton 1, 2,
or 3, respectively. Hence, it is possible for two or all three
automata to move between the same two rooms simultaneously.

RULES -

Automaton I can either stack boxes or move a single box from one
room to another. It will not enter a dark room.

Automaton 2 can either unstack boxes or move a single box from one

room to another. It will not enter a dark room.

Automaton 3 will enter a dark room and switch on the light. It can

neither stack, unstack, nor move boxes.

When an automaton exits an empty (no other automaton remaining) room,
the light automatically goes off. Exception: if a second automaton is
entering the same room which the first automaton is exiting, the
light will stay on (this exception is never coded, nor does the
code account for the fact that Automaton 1 does not have need of
Automaton 3 if Automaton is entering a room where Automaton 2 is
located).
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INITIAL STATE -

All three automata are located in Room 1.

Box A is alone in Room 1.

Box B is on top of Box C in Room 2.

Box D is on top of Box E in Room 4.

Box F is on top of Box G in Room 3.

GOAL STATE -

All three automata are located in Room 1.

Box A is on top of Box B, which is on top of Box C in Room 4.

Box E is on top of Box F, which is on top of Box G in Room 2.

Box D is alone in Room 3.
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A (HUMAN) SOLUTION: (OPTIMAL?)

ACTIONS AUTOMATON BOX LOCATION LIGHT
LOCATION

Al A2 A3 Al A2 A3 A B C D E F G Ri R2 R3 R4

0. * * * Ri R R1 R2 R2 R4 R4 R3 R3 + - - -

1. * M:1/2 RI RI R2 Rl R2 R2 4R4 R3 R3 + + - -

2. * M:1/2 M:2/3 Ri R2 R3 RI R2 R2 R4 R4 R3 R3 + + + -

3. * U:B M:3/4 Rl R2 R4 R1 R2 R2 R4 R4 R3 R3 + + - +

4. T:Ai/4 * M:4/i R4 R2 R R4 R2 R2 4R4 R3 R3 + + - +

5. K:4/1 * N:1/2 Ri R2 R2 R4 R2 R2 R4 R4 R3 R3 + + - -

6. M:1/2 * M:2/3 R2 R2 R3 R4 R2 R2 R4 R4 R3 R3 - + + -

7. T:B2/3 M:2/3 M:3/4 R3 *R3 R4 R4 R3 R2 R4 R4 R3 R3 - - + +

8. T:B3/4 U:F M:4/i R4 R3 R R4 R4 R2 R4 R4 R3 R3 + - + .

9. M:4/1 M:3/4 M:1/2 Ri R4 R2 H1 R4 R2 R4 R4 R3 R3 + + - +

0. M:1/2 U:D M:2/3 R2 R4 R3 R4 R4 R2 R4 R4 R3 R3 - + + +

11. T:C2/3 T:D4/3 M:3/4 R3 R3 R4 R4 R4 R3 R3 R4 R3 R3 - - + +

12. T:C3/4 * M:4/3 R4 R3 R3 R4 R4 R4 R3 R4 R3 R3 - - + +

13. S:B * M:3/2 R4 R3 R2 R4 R4 R4 R3 R4 R3 R3 - + + +

14. S:A T:G3/2 M:2/3 R4 R2 R3 R4 R4 R4 R3 R4 R3 R2 - + + +

15. T:E4/3 M:2/3 M:3/2 R3 R3 R2 R4 R4 R4 R3 R3 R3 R2 - + -

16. T:E3/2 T:P3/2 M:2/1 R2 R2 R R4 R4 R4 R3 R2 R2 R2 + + - -

17. S:F M:2/i * R Hi R R4 R4 R4 R3 R2 R2 R2 + + - -

18. S:E * * HZ R R4 R4 R4 R3 R2 R2 R2 + + - -

19. M:2/1 * HR RI R4 R4 R4 R3 R2 R2 R2 + - - -

KEY:
M:i/j means that this automaton moves from room i to room j
S:X means that this automaton stacks box X on the correct stack
T:Xi/j means that this automaton transport box X from room i to room j
U:X means that this automaton unstacks box X from the correct stack
• means this automaton is idle
+ means the light is ON in this room
- means the light is OFF ip this room
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PKS GRAPH

USER

INTERFACE

MASTER- -------------------------- BLACKBOARD
I II

S II
I I

I I- -

AUTOMATON 1 ----- AUTOMATON 3 ----- AUTOMATON 2 I I
I I
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ALLOCATION MAP

MASTER
invokes these foreign predicates

%AUTOMAT0N 1 AUTOMATON 2 BLACKBOARD
place 1 place_2 location
returF 1 return 2 reserve
carry T carry 7
amblel1 amble-2
tran Sport_1 transport 2
go_stack go_unstacc?

AUTOMATON I AUTOMATON 2
invq~kes these foreign predicates invokes these foreign predicates

- --- - -- - - - --- - - - - - -- - -- - - -- - -- - - -- - -

M4&STER AUT. 2 AUT. 3 BLACKBOARD MASTER AUT. 1 AUT. 3 BLACKBOARD
adjacent solicit move box adjacent solicit move box

addBox relocate

AUTOMATON 3 BLACKBOARD
invokes no foreign predicates invokes only

MASTER
box-goal
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HIERARCHICAL STRUCTURE OF THE KNOWLEDGE BASES

MASTER KNOWLEDGE BASE

I I II
(facts) (utilites) (built in) PLAN

SUCCESSOR PLACE - UNEQUALI
PREDECESSOR ADJACENT
BOX-GOAL
NEXTI

CURRENT INTERMEDIATESTATE I RETURN-AUTOM4ATAHOME
INTERMEDIATE-STATE
COMPARE
DIFFERENTI

ASSIGNDUTYTOAUTOMATON_1 ASSIGN_ DUTYTOAUTOMATON_2

I I
PARTIAL---------- STAE-RM-IS-T--SOR-REUIRD-SACKREMIN

FID~RIA STC FIN RE IO IISTC
PATAL TA TEMIN TRANSP BOX RETIRDCTAK EIST

PARTIRLLY-BUILD CARRY

-BLACKBOARD KNOWLEDGE BASE AUTOMATON 3

I I I I
(facts) (actions) Cr/a) (facts) (actions) (r/a)
LOCATION RELOCATE RETRACT PLACE 3 SOLICIT RETRACT

ADD BOX LOCATION PLACEGOAL_3 MOVE 3 PLACEI
RESERVE ASSERTA ASSERTA.
MOVE-BOX LOCATION PLACEI

ADJUST-STATUS
ADJUST LOCATION

AUTOMATON 1 AUTOMATION 2

(facts) Cr/a) (actions) (facts) Cr/a) (actions)
PLACE 1 RETRACT MOVE 1 PLACE_2 RETRACT MOVE 2
PLACEGOAL_1 PLACE I CARRY 1 PLACE- PLACE_7 CARRY1 2

ASSERTA AMBLE 1 GOAL_2 ASSERTA AMBLE-2
PLACEI TRANSPORT_1 PLACE_7 TRANSPORT 2

RETURN 1 RETURN 2
ROUTE I ROUTE_7
GO-STACK 16GO UNSTACK



INTERFACE NODE

Master Node Predicates -

mode( unequal, in, in).

mode( successor, in, in out).
mode( predecessor, in, Tn out).
mode( box goal, in out, in out, in out, in out, in-out).
mode( next, in, in-out).

mode( plan, in, in).
mode( current intermediate state, out).
mode( assignauty_toautomaton 1, in, out).
mode( assignduty_to automaton_2, in, out).
mode( return automata home).

mode( intermediate state, in).
mode( compare, in).
mode( different, in, in, in, in, in, in, in, in).

mode( transport required, in).
mode( find ready box, in, out, out, out, out, out, out).
mode( iree-box, in, out, out).
mode( whic__way, in, in, out).
mode( carry, in, in, in, in, in, in, in).

mode( partial stack remains).
mode( find paitial itack, in, out, out, out, out)..
mode( have next box, in, out, in).
mode( partial stack, in, out).
mode( partially_built, in, in, in, in, out).

mode( stack remains).
mode( find stack, in, out, out, out, out, out, out).
mode( staci exists, in, out, out, out)

mode( place', in out, in).
mode( adjacent, in, in-out).

Blackboard Node Predicates -

mode( location, in out, in-out, in-out, in out, in out).
mode( relocate, in, in, in, in).
mode( move box, in, in, in).
mode( adjuit status, in, in, in).
mode( adjust-location, in, in, in).
mode( addbox, in, in, in).
mode( reserve, in, in).
mode( retract location, in, in, in, in, in).
mode( asserta-location, in, in, in, in, in).
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INTERFACE NODE -

Automaton_1 Predicates -

mode( place 1, in-out).
mode( place-goal 1, out).
mode( move _, in, in).
mode( carry 1, in, in, in, in, in, in, in).
mode( amble-1, in, in, in, in).
mode( transport 1, in, in, in).
mode( gostack( in, in, in, in, in, in).
mode( return 1, out).
mode( route _, in, in).
mode( retract place 1, in).
mode( asserta-place_1, in).

Automaton_2 Predicates -

mode( place 2, in-out).
mode( place-goal_2, out).
mode( move _, in, in).
mode( carry_2, in, in, in, in, in, in, in).
mode( amble 2, in, in, in, in).
mode( transport 2, in, in, in).
mode( gounstacR, in, in, in, in, in, in, in).
mode( return 2, out).
mode( route 7, in, in).
mode( retra~t_place 2, in).
mode( assertaplace_2, in).

Automaton_3 Predicates

mode( place_3, in-out).
mode( place goal 3, out).
mode( move 5, in, in).
mode( soliEit, in, out).
mode( retractplace 3, in).
mode( assertaplace_3, in).
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INITIAL STATE

- - - -- - - - -- - - - - - - - -- - - - - - - -

Al A2 A3

Ibi

-----------------------------------

d f

------------------------------------------

GOAL STATE

Al A2- A3 ---
Ifi

413
lal

IbI
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MASTER NODE KNOWLEDGE BASE -

************************** FACTS *****************************

successor( rl, r2).
successor( r2, r3).
successor( r3, r4).
successor( r4, rl).

predecessor( rl, r4).
predecessor( r4, r3).
predecessor( r3, r2).
predecessor( r2, rl).

box goal( r2, clear, e, f , stacked).
box-goal( r2, e f, go, stacked).
boxgoal( r2, f g, floor, stacked).
box-goal( r3, clear, d, floor, stacked).
box-goal( r4, clear, a, b , stacked).
box_goal( r4, a 0 b, c , stacked).
box_goal( r4, b P c, floor, stacked).

next(a,b).
next(bc).
next(c,d).
next(d,e).
next(e,f).
next(f,g).
next(g,none).
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MASTER NODE KNOWLEDGE BASE -

************************ MASTER PLAN ****************************

plan( available, available)
current intermediate state( Synch3),
assign duty to automiton 1( Synch3, Synchl),
assign-duty to automaton-2( Synch3, Synch2),
plan( gyncht, lynch2).

plan :-
return automata home.

********* CURRENT INTERMEDIATE STATE *****************/

current intermediate state( available)
infermediate stite(a).

intermediate state( none).
intermediate state( X) :-

compareT X), next( X, Y),
intermediatestate( Y).

compare( X) :-
location(Rl, Above, X, Below, Statusl),
box goal(R2, Over, X, Under, Status2),
diflerent(Rl,R2,Above,Over,Below,Under,Statusl,Status2).

different(Rl,R2,Above,Over,Below,Under,Statusl,Status2)
unequal( Rl, R2).

different(Rl,R2,Above,Over,Below,Under,Statusl,Status2)
unequal( Above, Over).

different(R1,R2,Above,Over,Below,Under,Statusl,Status2)
unequal( Below, Under).

different(Rl,R2,Atove,Over,Below,Under,Statusl,Status2)
unequal( Statusl, Status2).

** * * * * * ** *** TRANSPORTATION ******************
/*************** THIS CODE IS USED BY AUTOMATA I AND 2 *******************/

transport required( A)
placi( R, A),
findreadybox( R, Rmid, Ri, Rf, Box, Code),
reserve( R, Box),
carry( A, R, Rmid, Ri, Rf, Box, Code).

place( R, al)
place_l( R).

place( R, a2) :-
place 2( R).

place( R, a3) :-
place_3( R).
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Master Node Knowledge Base-

find-ready box( R, R, R, Rf, Box, here) :
free Sox( R, Z, Box),
whicWi way( R, Z, Rf).

find-readybox( R, R, Ri, Rf, Box, adjacent) :
adjacent( .R, Ri),
free box( Ri, Z, Box),
whicWi way( Ri, Z, Rf).

find-ready-box( R, Rm, Ri, Rf,.Box, diagonal) :
succesisor( R, Rm), successor( Rm, Ri),
free box( Ri, Z, Box),
whicfi-way( Ri, Z, Rf).

free-box( R, Z, B) :
location( R, clear, B, floor, unstacked),
box_goal( Z, Above, B, Under, stacked),
unequal( R, Z).

adjacent( Rl, R2) :
successor( Ri, R2).

adjacent( Ri, R2) :
predecessor( R1, R2).

which_way( R, Z, Z) :
successor( R, Z).

which way( R, Z, Z) :
predecessor( R, Z).

which_way( R, Z, F) :
successor( R, F)
successor( F, Z).

carry( at, R, Rmid, Ri, Rf, Box, Code)
carry 1( R, Rrnid, Ri., Rf, Box, Code).

carry( a2, R, Rmid, Ri, Rf, Box, Code) :
carry_2( R, Rmid, Ri, Rf, Box, Code).
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MASTER NODE KNOWLEDGE BASES -

'********************* ASSIGN AUTOMATON-i DUTY *******************

assign duty to automaton 1( S, available):-
partial sfack remains.

assign_dutyEo-aut6maton 1( S, available)
transport required(al).

assign_duty to-automaton l( S, available)
return_1.

partial stack remains
plice( R, al),
findpartial stack( R, Rm, Rs, Top, Code),
have next box( Rs, Newtop, Top),
go stack(-R, Rm, Rs, New_top, Top, Code)..

find-partial stack( R, R, R, Top, here)
partial-stack( R, Top).

find partial-stack( R, R, Rs, Top, adjacent)
adjacenE( R, Rs),
partial stack( Rs, Top).

find_partial-stack( R, Rm, Rs, Top, diagonal)
successor( R, Rm), successor( Rm, Rs),
partial-stack( Rs, Top).

.partial stackf R, Top)
boi goal( R, Above, Box, floor, stacked),
unequal( Above, clear),
location ( R, Over, Box, floor, stacked),
partially_built( R, Over, Box, floor, stacked, Top).

partially built( R, clear, Box, Under, stacked, Box).
partially-built( R, Over, Box, Under, stacked, Top)

boxgoal( R, Above, Over, Box, stacked).
unequal( Above, clear),
location( R, Up, Over, Box, stacked),
partiallybuilt( R, Up, Over, Box, stacked, Top).

have next box( R, Newtop, Top)
box goal( R, New-top, Top, Bottom, stacked),
location( R, clear, Newtop, floor, unstacked).
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MASTER NODE KNOWLEDGE BASE -

*************** * ASSIGN AUTOMATON-2 DUTY *********************

assign duty to automaton_2( S, available)
stack remans.

assign duty to automaton 2( S, available)
transport required(a2).

assign dutyto automaton2( S, available)
return_2.

stack remains:-
place( R, a2),
find stack( R, Rm, Rs, Top, Support, Under, Code),
gounstack( R, Rm, Rs,. Top, Support, Under, Code).

find-stack( R, R, R, Top, Support, Under)
stack exists( R, Top, Support, Under).

find stackT R, R, Rs, Top, Support, Under)
adjacent( R, Rs),-
stack exists( RS, Top, Support, Under).

find stackT R, Rm, Rs, Top, Support) :-
successor( R, Rm), successor( Rm, Rs),
stack-exists( Rs, Top, Support, Under).

stack exists( Room, X, Support, Under)
location( Room, clear, X, Support, unstacked),
unequal( Support, floor)-,
location( Room, X, Support, Under, Status).

/*********************** RETURN AUTOMATA HOME *

return automata home
return 1,
return-2.
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BLACKBOARD NODE KNOWLEDGE BASE (CHANGEABLE FACTS) -

location( rl, clear, a, floor, unstacked).
location( r2, clear, b, c , unstacked).
location( r2, b , c, floor, unstacked).
location( r3, clear, f, g , unstacked).
location( r3, f , g, floor, unstacked).
location( r4, clear, d, e , unstacked).
location( r4, d , e, floor, unstacked).

relocate( R, Box, Support, X)
retract location( R, clear, Box, Support, unstacked),
asserta-location( R, clear, Box, floor , unstacked),
retract-location( R, Box , Support, X , unstacked),
asserta-location( R, clear, Support, X , unstacked).

move-box( Rl, R2, Box)
box goal( R2, clear, Box, floor, stacked),
adjust status( Ri, R2, Box).

move box( RI, R2, Box) :-
adjust-location( R1, R2, Box).

adjust status( RI, R2, Box) :-
retract location( RI, clear, Box, floor, used),
asserta-location( R2, clear, Box, floor, stacked).

adjust location( RI, R2, Box) :-
retract location( Ri, clear, Box, floor, used),
asserta-location( R2, clear, Box, floor, unstacked).

add-box( R, New, Old) :-
retract location( R, clear, Old, Below, stacked),
asserta location( R, New, Old, Below, stacked),
retract-location( R, clear, New, floor, unstacked),
asserta-location( R, clear, New, Old, stacked).

reserve( R, Box)
retract location( R, clear, Box, floor, unstacked),
asserta location( R, clear, Box, floor, used).
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AUTOMATON 1 KNOWLEDGE BASE-

place-l( ri).

place_goal-l(rl).

move-l( Rl, R2) :
retract_placel- ( Rl),
asserta_place-l( R2).

car ry_l( RI, R2, R3, Rf, Box, Code)*:
amble 1( RI, R2, R3, Code),
transport_l( R3, Rf, Box).

amble l( RI, R2, R3, here).
amble I( Rl, R2, R3, adjacent)

siolicit( R3, Rr),
move I( Ri, Rr).

amble-l( Rl, R2, R3, diagonal)
solicit( R2, Rnl),
move 1( R1, Rnl),
solicit( R3, Rr2),
move_l( Rrl, Rr2).

transport 1( Ri, Rf, Box)
solicit( Rf, Rr),
move 1( Ri, Rr),
move-box( Ri, Rr, Box).

go-stack( RI, R2, R3, New, Old, here)
add box( R3, New, Old).

go-stackT Ri, R2, R3, New, old, adjacent)
solicit( R3, Rr),
move 1( Rl, Rn),
add Box( Rr, New, old).

go_stackT RI, R2, R3, New, old, diagonal)
solicit( R2, Rnl),
move 1( RI, Rnl),
solicit( R3, Rr2),
move 1( Rrl, Rr2),
addSox( Rr2, New, Old).
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return 1
place 1( R),
placegoall1( Rg),
route-l( R7 Rg).

route 1( R, R).
route 1.( R, Rg)

idjacentC R, Rg),
Solicit( Rg, Rf),
move 1( R, Rf).

route l( R, Rg) :
aidjacentC R, Ra),
solicit( Ra, Rnl),
move 1( R, Rrl),
solicEit( Rg, Rr2),
move_1( Rnl, Rr2).

AUTOMATON 2 KNOWLEDGE BASE

place_2( ni).

place_goal_2(nl).

move_2.( Ri, R2) :
retract place -2( Rl),
asserta_place-2( R2).

carry 2( R1, R2, R3, Rf, Box, Code)
imble 2( Ri, R2, R3, Code),
trans~ort( R3, Rf, Box).

amble 2( Rl, R2, R3, here).
amble 2( Rl, R2, R3, adjacent)

'iolicit( R3, Rr),
move 2( Rl, Rr).

amble 2( 11, R2, R3, diagonal)
-iolicit( R2, Rrl),
move_2( Rl, Rnl),
solicEit( R3, Rr2),
move_2( Rnl, Rr2).

transport 2( Ri, Rf, Box)
soli'Eit( Rf, Rn),
move 2( Ri, Rr),
move-box( Ri, Rr, Box).
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go-unstack( R, Ru, Rs, Top, Support, Under, here)
relocate( Rs, Top, Support, under).

go-unstack( R, Ru, Rs, Top, Support, Under, adjacent)
solicit( Rs, Rr),
move 2( R, Rr),
relo-cate( Rr, Top, Support, Under).

go-unstack( R, Rm, Rs, Top, Support, Under, diagonal)
solicit( Rm, Rnl),
move 2( R, Rnl),
soli'Eit( Rs, Rr2),
move 2( Rrl, Rr2),
relo'Eate( Rnl, Top, Support, Under).

return 2 :
place_2( R),
place goal_2( Rg).
route-2( R, Rg).

route 2( R, R).
route 2( R, Rg)

'idjacentC R, Rg),
solicit( Rg, Rn),
move 2( R, Rr).

route 2( If, Rg) :
adjacent( R, Ra),
solicit( Ra, Rrl),
move 2( R, Rnf),
soliEit( Rg, Rr2),
move_2( Rrl, Rr2).

AUTOMATON 3 KNOWLEDGE BASE-

place-3( rl).

place goal_3(rl).

move_3( Rl, R2) :
retract_place_3( Rl),
asserta_place_3( R2).

Solicit: RC, Rc)
place 3( R),
moveI( R, Rc).
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CONCEPTUAL PKS GRAPH
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SAMPLE EXECUTION

T: x n/m means the robot transport box x from room n to room m
S: x means robot 1 stacks box x
U: x means robot-2 unstacks box x
M: n/m means the robot moves from room n to room m
- means no action is taken by the robot

ITERATION ROBOT ACTIONS HOUSE CONFIGURATION
R1 R2 R3

0 _ - - rl r2 r3 I
I b

a 112 c

413
d I f
e I g

1 T: a 1/4 M: 1/2 M: 1/2 j r2
U: b M: 2/3

M: 3/4 112 b c
-------------------------------------------------------
rI r3 413

d f
a e I g

2 M: 4/1 M: 2/3 M: 4/3 I
M: 1/2 U: f M: 3/4
T: b 2/3 M: 4/1 112 c

M: 1/2
1: 2/3 413 rl r2 r3

d I
ae I b f g

3 T: b 3/4 M: 3/4 M: 3/4
U: d I

112 c
-------------------------------------------
rl r2 r3 4131

a b e d I f g
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4 T: d4/3 T: e4/1 M: 4/3 r2 r3
M: 3/4
M: 4/1 e 112 C

-----------------------------------------------------

413 ri

a b d f g

5 T: f3/2 T:el1/2 M: 1/2 Irl r2r3

112 c e f
-------------------------------------------

413

a b d dg

6T: c 2/3 M: 2/3 M: 2/3 Ir2 r3
T: g 3/2 M: 3/2

112 e f g

413 ri

a b c cd

7 T: c 3/4 H:2/1 M: 2/3 r2
M: 3/4

112 e f g
-------------------------------------------
ri r3 41 3

a bc I d

8 S: b -- r2

112 e-f g
-------------------------------------------
ri r3 413

b
a c I d
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9 S: a r2 r

b

112 e f g

----------- -- -----------------

rl 0 a 413
b I

c d

10 m: 4/1 M: 4/1 r2 rrrl 03
M: 1/2 M: 1/2 f

S: f 112 g e

-----------------------------------------------------------------

a 413
b i
c I d

S: e r2 I e rl r3Sf
112 g

a 413
b I
c d

12 M:2/1 M:2/1 rl r2 r3 te

112 g

a 413
b I
c id
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MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C0) actiities. Technical and
engneering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.


