
= -ITP. FILE CO Y P,

REPORT DC ________

AD-A225 187
9 Final

4!LUE*KM31 -r Ada Compiler Validation Summary Report:TeleSoft IP.miSW E
leleGen2 Ada F. r SCO Unix V.3, ALR 38b (Host & Target l,

0013111. 10267 .

L ABG-AVF .

Ottobrunn, FEDERAL REPUBLIC OF C- . :NY

mop MN OOI5?NIFh(1MDM() .YM ATCW
IABG-AVF, Industrieanlagen-Betriebsgeselschaft "Not
Dept. SZT AVF-IABG-066

Elnsteinstrasse 20
D-8012 Ottobrunn
FEDERAL R-;- 3Lc oF CE.MANY __________.9.&WTPG GEC MME(S-)'
Ada Joint Program Office
United States D-partment of Defense

20301-3081

;.ft MlTO' V>VAALjNIT STUMW Wf tL1 or %:1M ~CD

Approved for public release; distribution unlimited. J

-- j__ Il_ __ !__I-
TeleSofr, TeleGen2 Ada for SCO Unix V.3, Ottobrunn West Germany, ALR 386/216 under SCO

nix System V.3.2 (Host & Target), ACVC 1.10. - D T IC

S
ELECTEJUN 2 7 1990

ME*ECT1UMA Ads programming language, Ada Compiler Validation S11 OF5R0MU5
Sumary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Val'iation Facility, ANSI/MIL- IL
STD-18IA. Ada Joint rogrm Office.I

AdaO JoWO Prora Office
UNCLASSIFIED UNCLASSIFIED JNCLAS

m -- i n , .

Ul F-iv-0 ' =PHF .024

AVF Control Number: AVF-IABG-066

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #90013111.10267
TeleSoft

TeleGen2 Ada for SCO Unix V.3
ALR 386/216 host and target

Completion of On-Site Testing:
31 January 1990

Prepared By:
IABG mbH, Abt. SZT
Einsteinstrasse 20
D-8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Lrn3 |1

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada for SCO Unix V.3
Version 1.4A

Certificate Number: #90013111.10267

Host: ALR 386/216
under SCO Unix System V.3.2

Target: same as host

Testing Completed 31 January 1990 Using ACVC 1.10

This report has been reviewed and is approved.

IABG mbH, Abt. SZT
Dr. S. Heilbrunner Access!on For
Einsteinstr. 20
D-8012 Ottobrunn .
West Germany U:

Ada Valid"a,,ti-on Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER I INTRODUCTION 2

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 3
1.3 REFERENCES 4
1.4 DEFINITION OF TERMS 4
1.5 ACVC TEST CLASSES 5

CHAPTER 2 CONFIGURATION INFORMATION 8

2.1 CONFIGURATION TESTED 8
2.2 IMPLEMENTATION CHARACTERISTICS 9

CHAPTER 3 TEST INFORMATION15

3.1 TEST RESULTS15
3.2 SUMMARY OF TEST RESULTS BY CLASS 15
3.3 SUMMARY OF TEST RESULTS BY CHAPTER16
3.4 WITHDRAWN TESTS16
3.5 INAPPLICABLE TESTS 16
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 20
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation 20
3.7.2 Test Method21
3.7.3 Test Site21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

1

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entiretWyand nothing can be implemerted that is
not in the Standard.., U-'

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits sjme implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform chEoIks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

2

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 11
September 1989 at TeleSoft, San Diego, USA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

4

' INTRODUCTION

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if

INTRODUCTION

every illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK-FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK-FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain

INTRODUCTION

lines with a maximum length of 72 characters, use small numeri- values, and
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

7

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler Name: TeleGen2 Ada for SCO Unix V.3
Version 1.4A

ACVC Version: 1.10

Certificate Number: #90013111.10267

Host Computer:

Machine: ALR 386/216

Operating System: SCO Unix System V.3.2

Memory Size: 10 MB

Target Computer: same as host

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation
containing 723 variables in the same declarative part. (See
test D29002K.)

2) The compiler correctly processes tests containing
loop statements nested to 65 levels. (See tests D55A03A. .H
(8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
LONGINTEGER and LONGFLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) Some of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35903A.)

9

CONFIGURATION INFORMATION

4) CONSTRAINT-ERROR is raised for pre-defined integer comparison
tests, NUMERICERROR is raised for largest integer comparison
and membership tests and no exception is raised for pre-
defined integer membership tests when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

5) NUMERIC-ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4A014A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises NUMERIC-ERROR for a
two dimensional array subtype where the large dimension is the
second one. (See test C36003A)

2) CONSTRAINTERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

3) NUMERICERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

CONFIGURATION INFORMATION

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINTERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC-ERROR or
CONSTRAINT ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, lengths must match in array
slice assignments. This implementation raises
no exception. (See test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT-ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that indey subtype checks are
made as choices are evaluated. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

11

CONFIGURATION INFORMATION

3) CONSTRAINTERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is not supported for procedures or func-
tions. (See tests LA3004A..B (2 tests), EA3004C..D (2 tests),
and CA3004E..F (2 tests).)

i. Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by AI-408/1l, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CA1012A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

12

CONFIGURATION INFORMATION

9) Generic unit bodies . their subunits can be
compiled in separate compilations. (See test CA3011A.)

j. Input and output.

1) The package SEQUENTIAL_10 cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101C, EE2201D, and EE2201E.)

2) The package DIRECT_10 cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101H, EE2401D, and EE2401G.)

3) Modes INFILE and OUT-FILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Modes IN-FILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

5) Modes INFILE and OUT-FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIAL.IO. (See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE212Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE3110A,*and
CE3114A.)

9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

10) Temporary sequential files are given names and not
deleted when closed. (See test CE2108A.)

11) Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

12) Temporary text files are not given names and not deleted
when closed. (See test CE3112A.)

13) More than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

'3

CONFIGURATION INFORMATION

14) More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

15) More than one internal file can be associated with
each external file for text files when reading only (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 316 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 15 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2018 17 22 44 3357

Inapplicable 2 9 297 0 6 2 316

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

15

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 544 245 172 99 160 332 129 36 250 341 278 3357

N/A 14 76 136 3 0 0 6 0 8 0 2 28 43 316

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 316 tests were inapplicable for
the reasons indicated.

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

16

TEST INFORMATION

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C355081, C35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT-INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAXMANTISSA greater than
32.

f. C86001F is not applicable because, for this implementation, the
package TEXT_10 is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_10, and
hence package REPORT, obsolete.

g. B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORT-INTEGER.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORT-FLOAT.

j. CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.i and
Appendix F of the Ada Standard).

k. LA3004A, EA3004C, and CA3004E are not applicable because this
implementation does not support pragma INLINE for procedures.

17

TEST INFORMATION

1. LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for functions.

m. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests)
are not applicable because of restrictions on 'SIZE length clauses
for floating point types.

n. CD2A61I..J (2 tests) are not applicable because of restrictions on
'SIZE length clauses for array types.

o. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because of restrictions on 'SIZE length clauses for access types.

p. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

q. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

r. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIALIO.

s. CE2102E is inapplicable because this implementation supports
CREATE with OUT-FILE mode for SEQUENTIAL_10.

t. CE2102F is inapplicable because this implementation supports
CREATE with INOUT FTLE mode for DIRECT_10.

u. CE2102I is inapplicable because this implementation supports
CREATE with IN-FILE mode for DIRECT_10.

v. CE2102J is inapplicable because this implementation supports
CREATE with OUT-FILE mode for DIRECTIO.

w. CE2102N is inapplicable because this implementation supports OPEN
with IN-FILE mode for SEQUENTIALIO.

x. CE21020 is inapplicable because this implementation supports RESET
with IN-FILE mode for SEQUENTIALIO.

y. CE2102P is inapplicable because this implementation supports OPEN
with OUT-FILE mode for SEQUENTIALIO.

z. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIAL_10.

''3

TEST INFORMATION

aa. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECT_10.

ab. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECTIO.

ac. CE212T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECT IO.

ad. CE2102U is inapplicable because this implementation supports RESET
with IN-FILE mode for DIRECTIO.

ae. CE2102V is inapplicable because this implementation supports OPEN
with OUT FILE mode for DIRECTIO.

af. CE2102W is inapplicable because this implementation supports RESET
with OUT FILE mode for DIRECT_10.

ag. CE2107B..E (4 tests), CE2107L, CE211B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for sequential files. The proper exception is raised when
multiple access is attempted.

ah. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ai. CE3102E is inapplicable because text file CREATE with IN-FILE mode
is supported by this implementation.

aj. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ak. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

al. CE3102I is inapplicable because text file CREATE with OUTFILE
mode is supported by this implementation.

am. CE3102J is inapplicable because text file OPEN with IN-FILE mode
is supported by this implementation.

an. CE3102K is inapplicable because text file OPEN with OUTFILE mode
is not supported by this implementation.

ao. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for

TEST INFORMATION

text files. The proper exception is raised when multiple access
is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 15 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B71001E B71001K B71001Q B71001W BA3006A BA3006B
BA3007B BA3O08A BA3008B BA3013A (6 and 7M)

Tests C34005G, C34005J and C34006D returned the result FAILED because of
false assumptions that an element in an array or a record type may not be
represented more compactly than a single object of that type. The AVO has
ruled these tests PASSED if the only message of failure occurs from the
requirements of T'SIZE due to the above assumptions (T is the aray type).

Tests CD2CllA and CD2C1lB contain 'SIZE length clauses for task types which
were insufficient for this machine. These tests were modified to include a
'SIZE clause of 2K.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, no results produced by the TeleGen2 Ada system were
submitted to the AVF by the applicant for review. Instead, the applicant
assured the AVF that results would be identical with results obtained for
validation #040 of the TeleGen2 Ada Development System for AIX PS/2
(certificate #89091111.10177).

20

TEST INFORMATION

3.7.2 Test Method

Testing of the TeleGen2 Ada System using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host and target computer: ALR 386/216
Operating system: SCO Unix System V.3.2

A streamer cassette containing the customized test suite was loaded to the
host machine. Results were written to tape and transferred to a SUN machine
where they were evaluated and archived.

The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The tests were compiled using the
command

ada -v -O D (test files>

and linked with the command

ald <main unit>

The -L qualifier was added to the compiler call for class B and E tests.
See Appendix E for explanation of compiler and linker switches.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, USA, and was completed on 31
January 1990.

21

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of Conformance concerning
TeleGen2 Ada for SCO Unix V.3.

DECLARATION OF CONFORMLAkNCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada for SCO Unix V.3

Version: 1.4A

Host Computer System: ALR 386/216 (under SCO Unix System V.3.2)

Target Computer System: Same as Host

Customer's Declaration

1, the undersigned, representing TELESOFT, declare that TELESOFT has no knowledge
of deliberate devi ions from the Ada Language Standard ANSI/MIL-STD-1815A in the
im e entation s) li ted in this declaration.

Date:_________

f4<Raymond A. Parra. V e esident and General Counsel

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent con*entions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of TeleGen2 Ada, as described in this Appendix, are
provided by TeleSoft. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not i
part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+387
type LONG-FLOAT is digits 15

range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

TeleGen2 User Gaide for U'.NL-X

9.8. LRMYf Annotations

TeieGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LR.M) (ANSI/MWfL-STD-1815A). This section describes the
portions of the language that are designated by the LRM as impiementation dependent for the
compiler and run-time environment.

The information is presented in the order in which it appears in the LLA. In general,
however, only those language features that are not fully implemented by the current relea-e of
TeieGen2 or that require ciarification are included. The features that are optional or that are
impiementation dependent. on the other hand, are described in detail. Paricuiariy relevant are
.he sec.ions annotating LR-M Chapter 13 (Representation Clauses and Implementation-
Dependent Features) and Appendix F (Implementation-Dependent Characteristics).

9.5.. LR.M Chapter 2.

ML .--11 The host and target character set is the ASCII character set.

LMR 2.2! The maximum number of characters on an Ada source line is 200.

:LR.M 2.81 TeleGen2 implements all language-defined pragmas ezeept pragma Optimize. If
pragma Optimize is included in Ada source, the pragma will have no effect.

Limited support is available for pragmas Memory-Size. Storage-Unit. and System.Narme
that is. these pragmas are allowed if the argument is the same as the value specified in the
System package. C

Pragmas Page and List are supported in the context of source/error listings: refer to the
end of Chapter 3 for more information.

9.8.2. LR.M Chapter 3.

LR..M 3.2.1] This release of TeleGen2 does not produce warning messages about the use of
uninitiaiized variables. The compiler will not reject a program merely because it contains such
variables.

'L4.I 3.5.11 The maximum number of elements in an enumeration type is 32767. This
maximum can be realized only if generation of the image table for te type has been deferred, and
there are no references in the program that would cause the image table to be generated.
Deferral of image tabie generation for an enumeration type. P. is requested by the statement:

pragma Images (P. Deferred):

Refer to "Impiementation-Defined Pragmas." later in ,his chapter. for more information on
pragma Images.

LR.M 3.5.4 There are two predefined integer types: Integer and LongInteger. The attributes
of these .vpes are shown in Table 9-7. Note that using explicit integer type definitions instead of
orecenned :nteger "ypes should result in more portable code.

9-,44 U G- I.31 N-V I.' 386 /t'NL'() .} 1989 TeJeSoft 2?3UL89

PRO G R.M.M ING Gt7ID E

Table 9-7. Attributes of Predefned Types Integer and Long.Integer

Attribute
I Integer I Long.InTeger

First -327 68 -2147483648
'Last 32767 21-47483.647
'Size 16 t 32
'Width 6 11

?LM 3.5.8' There are two predefined floating point types: Float and Long_21loat. The
attr.ibutes of types FoaL and Long.Floac are shown in Tabie 9-8. This ioating point faciliny is
based on the IEEE standard for 32-bit and 64-bit numbers. Note that using explicit real type
deinitions should :ead .o more portable code.

The type Short.F]oac is not implemented.

Table 9-8. Attributes of Predefined Types Float and Long..Yloat

Attribute __Type

I Float LongFloat

'MachineOverflows TRUE TRUE
'MachineRounds TRUE TRUE
'Machine.Radix 2 2
'MachineMantissa 24 53
'MachineFmax 127 1023
'MachineErnin -125 -1021

'Miantissa 21 31
'Digits 6 15
'Size 32 164

"Emax 34 204

'Safe...Emax 125 1021

'Epsilon 9.53674E-07 I 8.38178E-16
'Safe.Large 4.25253E-37 2.24711641857789E-307
'Saie..nal 1.1349E-38]2.22507385850721E- 308

'Large 1.93428E-25 2.37110087081438E-61
'Small 2.58494E-26 1.994692274.12161E-62

9.8.3. LRLMI Chapter 4.

[LR-. 4.101 There is no limit on the range of literai values 'or -he compiler.

rLRLM 4.101 There is no limit an the acuracy of real iiteral exoressions. Real literal
expressions are computed using an arbit'-ar.-precision arithrnetic package.

:7JUL89 19G-819N-V1..:6,'UNDL . 1989 TeleSoft 9-45

TeleGen2 User Guide for U5t{

9.8.4. L-AM Chapter 9.

[L M L 9.81 This implementation uses 32-bit fixed point numbers to represent the type
Duration. Tbe attributes of the type Duration are shown in Table 9-9.

Table 9-9. Attributes of Type Duration

Attribute Value

'Delta 0.000061035156250
'First -86400.0
'Last 86400.0

[L ML 9.8] Sixty-four levels of priority are availabie to associate with tasks through pragma,
Priority. The predefined subtype Priority is specified in the package System as

subtype Priority is Integer range 0. .53;

Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Pri7ty'First + Systezu.Priorit'Last) / 2

[LE-M 9.11] The restrictions on shared variables are only those specified in the LRML

9... LAM Chapter 10. C
(L .M 101 All main programs are assumed to be parameterless procedures or functions that

return an integer result type.

9.8.8. LRM Chapter 11.

[LI-M 11.1] Numeric-Error is raised for integer or 8oating point overflow and for divide-by-
zero situations. Floating point underflow yields a result of zero without raising an exception.

Program-Error and Storage..Error are raised by those situations specified in LRM Secion
11.1. Exception handling is also discussed in the "Exception Handling" section earlier in this
chapter.

9.8.7. LALM Chapter 13. As shown in Table 9-10. the current release of TeleGen2 supports
most LR.M Chapter 13 facilities. The sections below the .able document those LR.M Chapter 13
facilities that are either not implemented or that require explanation. Facilities implemented
exactly as described in the LILR are not mentioned.

9-48 U°G-131:'N-V.(388,/'". ZC] . 1989 Tele-Soft 2'JTL89

PRO .I.A 1-f .1? :7_-'

Table 9-10. Sum=ary of LRM Chapter 13 Features for TeleGen2

13.1 Representation Clauses Supported. except as indicated below (LRM 13.2 -

13.3. Pagma Pack is supported. ezcept for dynam-

icaily sized coMponents. For details on the
TeieGen2 irnoiernenr.acion of pragma Pack. see Sec-
cion 9.6.7.1.

13.2 Length Clauses Supporte:
"ze
S orage-Size for collections
"Storage..-ize for task activation
"Smail for fixed-point types

Note: length c.auses can be used co reduce the 'Size
of data types.

13.3 Enumeration Rep. Clauses Supported. e-eept for type Boolean or types derived
from Boolean. (Noe: users can easily define a non-
Boolean enumeration type and assign a representa-
tion clause to it.)

13.4 Record Rep. Clauses Supported ezcept for records with dynamaicaLly sized
components. See Section 9.6.7.4 for a full discussion
of the TeieGen2 implementation.

13.5 Address Clauses Supported for: objects (including cask objects).
Not -suvported for: packages. subprograms, or cask
units. Task entries are not applicable to TeleGen2
host compilation systems.
See Section 9.6.7.5 for more information.

13.5.1 Interrupts Not appiicable to TeieGen2 host compilation sys-
tems.

13.6 Change of Representation Supported. ezcept for types with record representa-
tion clauses.

Contmued on the nezt page

'?JVL°S.39 tUG-11=N-V.3t:867UZ~ ~Z~ 1080 TeieSoft 9-4?

TeieGen2 User Guide for U.L'

Table 9-10. Summary of LR.M Chapter 13 Feacures for TeleGen2 (Concd)

Continued from tAe preinous page

13.7 Package System Conforms closejy to LRIM model. Refer Lo Section
9.6.7.7 for details on the TeieGen2 implementation.

13.7.1 System-Dependent Named Refer to the specification of package System (Sec-
Numbers tion 9.6.7.7).

13.7.2 Reoresentation Attributes Imoiemented as described in LRM exeept that:
"Address for packages is unsuoported."Address of a constant yieids a null address.

13.7. Representation Attributes of See Table 9-8.
Real Types

13.8 Machine Code Insertions Fully supported. The TeieGen2 implementation
defines an attribute. 'Offset. that, along with the
language-defined attribute 'Offset. allows addresses
of objects and offsets of data items to be specified in
s ack frames. Refer to Section 9.5 for a full descrip-
tion on the implementation and use of machine code

insertions.

13.9 Interface to Other Pragma Interface is supported for A.sembly, C, and
Languages UNIX. Refer to Section 9.4 for a description of the

implementation and use of pragmia Interface.

13.10 Unchecked Programming Supported except as noted below (LR.M 13.10.1 and
1 13.10.2).

13.10.1 Unchecked Storage Deallo- Supported except for types with length clauses for
cation sorage size.

13.10.2 Unchecked Type Conver- Supported except for unconstrained record or array
sions types.

9.6.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2
impiementuion.

a. With Boolean Arays. You may pack Boolean arrays by the use of pragrna Pack.
The compiler allocates 16 bits for a single Boolean. 3 bits for a component of an unpacked
Booiean array, and I bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array: the one beiow that illustrates a packed Boolean array:

9..-4,8 LG- ZN-V.t86t. , Z 1989 TeteSoft 2TULas

PROGRIMMLIG GU1:11:

-'Unpacked Boolean array:-

Un.ackedBool .z-, Type is array (Nat:u--: range 0. 1) of Boolean
UB3_A.. : Unpac.ked-BoolArrType (.".e,Fase);

MSB LSB
0

0 1 zElement 0

0 0 Element I

Packed Boolean array: -

Packed Bool Arr Type is array (Natural range O..S) of Boolean;
pragma Pac.k (Packed Bool Ar Type) ;
P BArr-. Parked BooT ArT-Type :- C B Ar.(0) => True,
-_uArz(S) =>-True otEers > False);

MSB/ROB LSB/LOB
15 T 01°011 0 10 10 1010 0 101 010 01'i

b. With Records. You may pack records by use of pragtna Pack. Packed records follow
these conventions:

1. The total size of the record is a multiple of S.

2. Packed records may cross word boundaries.

3. Records are packed to the bit level if the elements are themselves packed.
Below is an example of packing in a procedure. RepProc. that defines three records of different
lengths. Objects of these three packed record types are components of the packed record Rec.
The storage allocated for Re, is 16 bits: that is. it is maximally packed.

:T YL39 t-:13N-VL.:(:8/T rcl 1989 TeleSoft 9-49

TeleGen - User Guide for U.NZ'L

procedure Rep_.-roc is

type Al is array (Natual a rge 0 8) of Boolean;
praga Pa k (AI) ;

type A2 is arr-ay (Natural range 0 3) of Boolean;
pr-aa Pack (A2) ;

type A3 is array (Naral range 0 2) of Boolean;
pragma Pack (A3);

type Aiec is
record

One : Al;
Two : A2;
Three : A3;

end record;
praga Pack (AJRec);

lee A-Rec;

begin
Rec.One (0 => True, I => False, 2 => False,

3 => False, 4 => True, 5 => False,
6 => False, 7 => False, 8 => True);

Rec.Two (3) True;
Rec.Three (1) True;

end Rep.2Proc;

9.6.7.2. Length Clauses [LIM 13.21. Length clauses of the form "for T'StorageSize wje
<expression>;" (where T is a task type) specify the size to be allocated for that task's stack at
run time. The use of this clause is encouraged in all tasking applications to control the size of the
applications. Otherwise. the compiler may default this value to a large size. TeIeGen2 allows
you to specify storage for a task activation using the 'Storage-Size attribute in a length clause.

9.6.7.3. Enumeration Representation Clauses [LVA 13.31. Enumeration representation
clau.s are supported, except for Boolean types.

Performance note: Be aware that use of such clauses will introduce considerable overhead
into many operations that involve the associated type. Such operations include indexing an array
by an element of the type. or computing the 'Pos. 'P-ed. or 'Succ attributes for values of the
type.

9.3.7.4. Record Representation Clauses [LRLM 13.41. Since record components are
subject to rearrangement by the compiler, you must use representation ciauses to gnuarantee a
particular layout. Such clauses are subject to the foilowing constraints:

a Each component of the record must be specified with a component clause.

. The alignment of the record is restricted to mods I and 2. byte and word aligned.

. Bits are ordered right to left within a byte.

. Components may cross word boundaries.

4ere is a simpie exampie showing how the layout of a record can be soecified by using

reoresentation clauses:

9-540 t: G- 131Z.-V.(86.' . ' 1989 TeleSoft 273t"L89

?-2G4G;-tA-,fMLNG G'IU E

package RepspecExample -s
Bits constant 1;
Word constant 4;

type Five is range 0 .. 1641F#;
type Seventeen is range 0 .. 1641FF#;
type Nine is range 0 .. 511;

type Record.Layout-Type is record
Elementl Seventeen;
Elemen2 Five;
Element3 Boolean;
Eement4 Nine;

end record;

'or Recori-.Lyou...Type use record at mod 2;
E1ementl at 0-Word range 0 15;
Blement2 at 0-Word range 17 .. 21;
Element3 at 0-Word range 22 .. 22;
Element4 at O-Word range 23 .. 31;

end record;

Record-.Layout : Recor.Layout-Type;
end Reps.ec__Example;

9.6.7.5. Address Clauses [LI.M 13.51. The Ada compiler supports address clauses for
objects, subprograms, and entries. Address clauses for packages and task units are not
supported.

Address clauses for objects may be used to access hardware memory registers or other

known memory locations. The use of address -'iuses is affected by the fact that the
System.Address type is private. For the 80386 taret, literal addresses are represented as
integers, so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Address. For example, in the exampies in this chapter the
following declaration is often assumed:

function Addr is new Unchecked..Conversion (Long-_Ineger, System. Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a different convention. Below is a sample program that
uses address clauses and this convention. Package System must be expiicitly upthaed when using
address clauses.

with System;
with: Unch ecked..Conversion;
procedure Hardware..Access is

function Addr is new Unchecked&Conversion (Long Integer, System.Address);
Hardware.Register : integer;
for Hardwar..egister use at Addr (16iFF00004);begin

end Hardware-_.ccess;

2?LS9 Ut-1I-V.86!'.~-XC) , 1989 Teleoft 9-41

TeieG.ea. ,er Guide for UNLX

When using an address cause for an objec: with an initial value, the address clause should

immediately foilow the object declaration:

Obj: Some-Type :<init...expr);
for Obj use at <addr_.expr>;

This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addr._exor> as part of the elaboration of the declaration of the object. The

expression <init..expr> will then be evaluated and assigned directly to the object, which is stored

at <addr.expr>. If another declaration had intervened between the object declaration and the

address ciause. the compiler wouid have had to create a temporary object to hold the

initialization value before copying it into the object when the address clause is elaborated. Uf the
object were a large composite type. the need to use a temporary could result in considerable

overhead in botn time and space. To optimize your applications, therefore. you are encouraged

to place address ciauses immediateiy after the relevant object declaration.

As mentioned above, arrays containing components that can be allocated in a signed or

unsigned byte (8 bits) are packed. one component per byte. Furthermore, such components are

referenced in generated code by 80386 byte instructions. The following example indicates how

these facts allow access to hardware byte registers:

with System;
with Unchecke&iConversion;
procedure Main is

function Addr is new UncheckedConve.rsion (Long-Integer, System.Address);
type Byte is range -128..127;
HWReg3 : array (0..1) of Byte;
for VW.Regs use a t Add:r (16#FFF310#);

Status-Byte : constant integer := 0;
Next..Bock..equest: constant integer 1;
1equest.-Byte : Byte := 119;
Status Byte;

begin
Status := HWL.egs(Statu.x.Byte);
HLReg3 (Next-Block..Request) := Request-..Byte;

end Main;

Two byte hardware registers are referenced in the example above. The status byte is at location

16#FFF310, and the next block request byte is at location 16#4FFF311=#.

Function Addr takes a long integer as its argument. Long..nteger'Last is 16#7FFFFFFF#,

but there are certainly addresses greater than Long-_nteger'Last. Those addresses with the high

bit set. such as FFFAO000. cannot be represented as a positive long integer. Thus, for addresses

with the high bit set. the address should be computed as the negation of the 2's complement of

the desired address. According to this method. the correct representation of the sample address

above would be Addri - 16-000600004).

9.6.7.6. Change of Representation 'LR.M 13.6[. TeieGen2 supports changes of

representaLon, except 'or types with recor6 representation clauses.

9-52 UG-I~iZN-V1.ZiZ36, L'.'N'1C;", 1989 TeleSoft 2?JtLa9

PROGR.A.MMLNG GU E

9.6.7.7. Tlie Package Syscemi LLILM 13.7'. The specifcation of TeieGen2's impiementation
of pacxage System is presented in the LRM[Appendix F section at thle end of his chapter.

9.6.7.3. Representation Attributes [LI.M 13.7.2. The compiler does not support
"Address for packages.

9.6.7.9. Representation Attributes of Real Types LR . 13.7.3. The representation
attributes for the predefined floating point types were presented in T aole 9-l.

9.6.7.10. MAachine Code Insertions [LR.M 13.81. Machine :ode insertions. an optional
feature of the Ada language. are fully supported in TeieGen2. Refer to the "'Using .Machine Code
Insertions" section earijer in this chapter for information regarding their implementation and
examnies on their use.

9.6.7.11. Interface to Other Languages [LRM 13.91. In oral-ma interf*ace is supported for
.- ssemoiy. C. and UNLX. Refer to Section 9.4 for information on the use of pragma Interface.
TeieGen2 does not currently allow pragma Interface for library units.

9.6.7.12. 'Unchecked Programming (LRLM 13.101. Restrictions on unchecked
programming as it applies to TeleGen2 are listed in the following paragraphs.

[LR.M 13.10.201 Unchecked conversions are allowed between types (or subtypes) T1 and T2 as
long as they are not unconstrained record or array types.

9.6.8. LIM Appendix F for TeleGen2. The Ada language definition allows for certain
target dependencies. These dependencies must be described in the reference manual for each
implemenion, in an "Appendix F" that, addresses each point listed in LRM Appendix F.

Table 9-11 constitutes Appendix F for this implementation. Points that require further
clarification are addressed in the paragraphs that follow the table.

V' 9G-1:1zN-V1. lZ86/t2',(g 1989 Telesoft 9-531

TeleGen-' User Guide for UN'

Table 9-11. LRIM Appendix F for TeleGen-

(1) Impiementation-Dependent Pragmas (a) Impiemencation-6efined Oragmas: Comment,
Linkname. Images. and NoSuppress (Section

(b) Predefined pragmas with implementarion-
dependent characteristics:

Interface (assembly. UNE-. and C).
(Section 9.4). Not supported for
librar' units.
List and Page (in context of source/error
compiler listings) (Section 3.7.1.3).

(2) 1mplementation-Dependent Attri- TeleGen2 uses one impiementation-defined attri-

butes bute. 'Offset, which, along with the attribute 'Ad-

dress. -acilitates machine code insertions by allowing
user programs to access Ada objects with little date
movement or setup. These two attributes and their
usage were described in "Using Machine Code Inser-
tions." earlier in this chapter.

'Address is not supported for packages.

(3) Packave System See Section 9.6.7.7.

(4) Restrictions on Representation Summarized in Table 9-10.
Clauses

(5) Implementation-Generated Names None

(6) Address Clause Expression Interpre- An expression that appears in an object address
tcaion clause is interpreted as he address of the first

storage unit of the object.

(7) Restrictions on Unchecked Conver- Summarized in Table 9-10.
sions

Continued on tAe ne--t page

9-54 G-ZN-V1. 3(ZS8,'UN ZC D 1989 TeieSaoft .TJUL89

PrQaMANCMIILNG GUID E

Table 9-11. LRLM Appendix F for TeieGen_ (Contd)

.......- Conunued from MAe previous page

(8) Impiementation-Dependent Charac- I. In TextJO. the type Count is defined as follows:
teristics of the 1. 0 Packages. type Count i range O..3ysLem.Ma.x Text-IOCount;

- or O..Max.nt-I OR O..2_/47_A80646

2. In Text-20. the type Field is defined as follows:

subtype Fieid is integer range
System.Ma.x_.ZextIO _.Feid;

3. In Text-1O. the Form parameter of procedures
Create and Open is not supported. (If you sup-
piy a Form parameter with either procedure, it
is ignored.)

4. SequentialiO and Direct.O cannot be instan-
tiated for unconstrained array types or discrin-
inated types without defaults.

5. The standard library contains preinstantiated
versions of TextJlO.nteger-IO for types Integer
and LongInteger and of Text..O.Floa"_IO for
types Float and LongFloat. We suggest that
you use the following to eliminate multiple in-C scanciations of these packages:

IntegerText-IO

Long .n teger.Text-1O
Float._TextJ0
LongYloa_Text_1O

9..8.1. Implementation-Defined Pragmas. There are four implementation-defined
pragmas in TeleGen2: pragmaa Comment, Linkname. Images. and No..Suppress.
.6.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the

object code. Its syntax is:

pragma Comnesat (<string-iteral>);

where "<string_.litera1>" represents the characters to be embedded in -he object code. Pragma
Comment is allowed only within a declarative part or immediateiy within a package specification.
Any number of comments may be entered into the object code by use of pragma Comment.

9,6.a.,.:. Pragma Linkname. Pragma Linkname is used to provide interface to any routine
whose name can be specified by an Ada string literai. This ailows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linicname talces two arguments. The first is a suborogram name that has been
previousiy specified in a pragma Interface statement. The second is a string literal specifying the

:1 TL89 UG-131"N-Vi.0(88,6 NLM 1989 TeleSoft 9-5

TdieGen2 User Gaujie ior UNL-

exact link name to be employed by the code generator in emitting calls to the associated
subprogram. The syntax is:

pragna Interface (assembly. <subprogramn_.ane>);

pragma Linkname (<subprogram-name>. <string-literal>);

If pragma Linkname does not immediaceiy foilow the pragma Interface for the associated
program, a warning will be issued saying that tre pragrna has no effect.

A simple example of the use of pragma Linknarne ;s:

procedure Dummykcaess: Dum-y .-.g : System.Address);

pragma Inte:-ace (assembly, Dummy...ccess);
pragma Linkname (Dummy_.czess, '.__cess 5);

9.6.8.tI. Pragma Images. Pragma Images controis the creation and allocation of the image
and index tables for a specified enumeration type. The image table is a literal string consisting of
enumeration Lierals catenated together. The index table is an array oi integers specifying the
location of each literal within the image tabie. The length of the index table is therefore the sum
of the lengths of the literals of the enumeration type: the length of the index table is one greater
than the number of literals.

The syntax of this pragma is:

pragzma Images(< enueration.type>, Deferred);
- or -

pragma Images(<enumeration.type>, Imedia;te);

The default, Deferred. saves space in the literal pool by not creating image and index tables for
an enumeration type unless the 'Image. 'Value, or 'Width attribute for the type is used. If one of
these attributes is used, the tables are generated in the literal pool of the compilation unit in

which the attribute appears. If the attributes are used in more than one compilation unit. more
than one set of tables is generated. eliminating the benefits of deferring the table. In this case,
using

pragm Images(< enimeration type>. Immediate);

Will cause a single image table to be generated in the literal pool of the unit declaring the
enumeration type.

For a very large enumeration type. the length of the image table will exceed Integer'Last
(the maximunm length of a string). In this case. using either

pragma Images(< enumeration type>, Immediate);

or the 'Image. 'Value. or 'Width at-tribute for the type will result .n an error message from the
compiler.

9.8.S.1. 4 . Pragma No..$uppress. NoSuppress is a TeieGen2-defined Pragma that prevents
the suppression of cnec.,s within a particuiar scope. It can be used to override pragma Suppress
in an enc:osing scope. No.Suppress is partic-aiariy useiui wnen you nave a section ot" code that
reiies upon predefined checks to execute correctly, but you need to suppress checks in the rest of

9.58 c G- 1 zN-V I.=386K.Nr 1989 Tele.oft 27JUL89

PROG R.AMMVNC (.I ~in E

the compilation unit for performance reasons.

Pragma No-Suppress has the saxme syntax as . ragma Suppress and may occur in the same
places in the source. The syntax is:

pragmma No-.Suppress (<identifier> [, ON ->I <name>;);

where <identifier> is the type of check you want to suppress (e.g., access..:heck; refer to
LRM 11.7)

<name> is the name of the object, type,,subcype. task unit, generic unit, or subprogram
within which the check is to be suppressed: <name> is optional.

If neither Suppress nor No..-Suppress are present in a program. no checks will be suppressed.
You may override this default at the command levei. by compiiing the -ile with the -i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information on -i(nhibit, refer to Chapter 3.

If either Suppress or No..Suppress are present. toe compiler uses the pragma that applies to
the specific check in order to determine whether that check is to be made. If both Suppress and
No. Suppress are present in the same scope. the pragma declared last takes precedence. The
presence of pragma Suppress or No-Suppress in the source takes precedence over an -i(nhibit
option provided during compilation.

g.6.8.2. Package Systexm. The current specification of package System is provided below.

C

117.,7 'Lag . / - 1989 TeleSoft 9-57

TeleGen2' User Guide for UN -

package System is

type Address is access integer;

type Subprogram.Value is private;

type Name is (TeleGen2);

System.Name : constant name TeleGen2;

StorageUnit : constant 8;
Memory.Size : constant (2 31) -1;

-- System-Dependent Named Numbers:

Ste Table 9-8 for the valus for atrbutt of
types Float and Long-Float

Min.Znt : const fn t -(2 *- 31);
MaxJnt : constant (2 -- 31) -1;
Max-Digits : constant 13;
Max..Mantissa : constant 31;
Fine..Delta : constant 1.0 / (2 -- Max..aantissa);
Tick : constant 10.OE-3;

.- Other System-Dependent Declarations

subtype Priority is integer range 0 .. 63;

4ax..bject.-Size : constant Max...t;
MaxRecord..Count : constant = Max..Int;
Max ext-1IO..Count : constant =Max..Int -1;
Maxex-IOField : constant := 1000;

private

end System;

9.6.8.3. Representation Clause Restrictions. Resrictions on representation clauses within
TeieGen2 were discused in "LR.M Chapter 13." earijer in this section.

9.6.8.4. Izuplementation- Generated Names. There are no impiemenarion-generazed
names to denote impiemenLarion-dependent components.

9.6.8.3. Address Clause Expression Interpretation. An expression that appears in an
object address clause .s interpreted as the address of the Erst storage unit of the object.

9.6.8.5. Unchecked Conversion Restrictions. Restricz.ions on unchecked conversions were
discussed in "Ucnecked Programming," eariier in this sec:ion.

9-58 UG-1z13N-V.(:86/T c~'VLC) . 1989 TeleSoft 27L89

PROGRAMMING GUIDE

9.6.8.7. Implemenzarion-Dependent Characteristics of the I/O Packages.

1. In TextJO. the type Count is defned as follows:

ty-pe Count is range 0..Long..Integer'Last . 1

2. In TextJO. the type Field is defined as follows:

subtype Field is integer range 0..Text-..anager.Field'Last;

3. SequentialO and Direct-_O cannot be instantiated for unconstrained array types or
discriminated types without defaults.

4. The standard library contains preinstantiated versions of Text-JO.Integer.TO for type
Integer and LongJnteger and of TextJO.Float.IO for type Float and LongFloat. It
is suggested that the following be used to eliminate multiple instantiations of these

packages:

IntegerText1 0
Long.ntegerText.IO
Float Text-_O
Long Floa_Text_10

273JT2 La9 TJG-1:1:N-V1.:(:86/U/Nr-C) C 1989 TeleSoft 9-59

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI 199 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIG_ID2 199 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to SBIG_IDI except
for the last character.

$BIGID3 100 * 'A' & '3' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BI _ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value

SBIG_ID4 100 * 'A' & '4' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

SBIG_INTLIT 197 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG_REALLIT 195 * '0' & "690.0"

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI ... & 100 * 'A' &
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDl.

$BIG_STRING2 t" & 99 * 'A' & '1' & .
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDI.

$BLANKS 180 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_646
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 2147483647
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

TEST PARAMETERS

Name and Meaning Value

SDEFAULTSYSNAME TELEGEN2
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINE DELTA.

SFIELD..LAST 1000
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATERTHANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNAL FILENAMEl BADCHAR*^/%
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILE NAME2 /NONAME/DIRECTORY
An external file name which
is too long.

TEST PARAMETERS

Name and Meaning Value

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESSTHANDURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHANDURATIONBASEFIRST -131_073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAX_INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINT.PLUS_1 2147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT+1.

TEST PARAMETERS

Name and Meaning Value

SMAX_LENINTBASEDLITERAL "2:" & 195 * '' & "11:"

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX INLEN
long.

SMAX_LENREALBASEDLITERAL "16:" & 193 * ' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

SMAXSTRING LITERAL '.. & 198 * 'A' &
A string literal of size
MAX IN LEN, including the quote
characters.

SMININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

SMINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME NOSUCHTYPEAVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONG-INTEGER.

$NAMELIST TELEGEN2
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG_BASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

TEST PARAMETERS

Name and leaning
Value

$NEW_MEM SIZE 2147483647
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
$DEFAULTMEMSIZE. If there is
no other value, then use
$DEFAULT_.EM_SIZE.

$NEWSTORUNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGEUNIT, other than
$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

SNEWSYS NAME TELEGEN2
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OF THEGUARD results in a call to REPORT.FAILED at one of

lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

WITHDRAWN TESTS

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2BI5C & CD7205C These tests expect that a 'STORAGESIZE
length clause provides precise control over the number of
designated cbjects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

p. CE2107I This test requires that objects of two similar scalar
types be distinguished when read from a file--DATAERROR is

WITHDRAWN TESTS

expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls to ENDOF LINE &
END OF PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARDINPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

References and page numbers in this appendix are
consistent with compiler documentation and not with this
report.

ADA(l) USER COMMANDS ADA (I)

NAME
ada - TeieGen2 Compiler

SYNOPSIS
ada -I libname -L templib' -V vsm _sizel i-C n: :-E ni 1-i aclni

i-m unit 1-b, -T n. -P options, -p objects. -o filel
!O key 1-G -1 filefl [-LI FSdekvxl J-u Is ii input spec

DESCRIPTION
The ada command calls the TeleGen2 compiler, which comprises the front end, middle pass. code
generation, and list generation phases. By default the front end, middle pass. and code generation
phases are executed. This process results in the generation of object modules, which are put into
the working sublibrary. The Ada binder and native linker may be be invoked to create an
executable file.

The command terminator, inputspec, indicates the file or files to be compiled. Any number and
combination of files may be specified, up to the maximum line length. Files listed on the
command line that have no extension are given the extension ".ada" by the compiler. Source files
that have the ".ada" extension are assumed to contain Ada text to be compiled, whereas source
files that have the "ill" extension are assumed to contain a list of files to be compiled.

The temporary errors file is created in /tmp as errorXXXXXX, with the "XXXXXX" being
replaced with the compilation process number to prevent file name collision.

Compilation errors as well as compiler driver errors (e.g. "file not found") are output to stderr
Informational output will also be directed to stderr. Banner messages as provided by the -v option
are examples of informational output.

OPTIONS
Library Specification Options:

-1 libname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the -t option is not used, the default liblit.alb is assumed to be the library. -1 cannot
be used with -t.

-t templib
Use templib as a temporary sublibrary list for this process. The default sublibrary list file
is not read. The first sublibrary in the list is the working sublibrary. Templib may be
specified as "sublibl.sublib2..." or as "sublibi sublib2 ... ". -t cannot be used with -1.

-V vim size
Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 2000 Kbytes.

The optimal value for vsm size depends on the amount of system memory available and
the number of concurrent users. For a full description see Chapter 3 in the TeleGen2 User
Guide.

Compiler Ezecutin Control Options:

-E n Abort compilation after n errors. Only errors detected by the front end phase are counted.
The default is 999. Each error message type is counted independently of the others. For
example, in the default situation, the user may have 998 warning messages and 998 syntax
errors and the compilation will not abort.

-i <key>
(Inhibit) Suppress run-time checks, source line references, and subprogram name

TeleGen2(386/UNIX) Last change: 23 February 1989 1

ADA(l) USER COMMAND! ADA (I)

information in generated object code.

<key> is one or more of the single-letter suboptions listed below. Several combinations of
suboptions are possible. When more than one suboption is used, the suboptions appear
together with no separators. For example, "-i Inc".

a Suppress all: source line information, subprogram name information, and run-
time checks. In other words. "a" (- suppress all) is equivalent to "Inc".

c Suppress run-time checks -- elaboration, overflow, storage access, discriminant,
division, index, length, and range checks.

l Suppress source line information in object code.

n Suppress subprogram name information object code.

As an example of use, the command "ada -v -i Ic myfile.ada", inhibits the generation of
source line information and run-time chiecks in the object code of myfiie.ada.

-m unit
Treat "unit" as a main program. .After all files named in the input specification have been
compiled, the Ada binder and native linker are invoked. An executable file named unit is
left in the current directory. If the main unit has already been compiled, it does not have
to be in the input file(s). However, it must be present in the current working sublibrary.
If the -m option is used, appropriate binder/linker options (-m, -b, -T, -P, -p, -o) are

passed to the binder/linker (see ald(1)).

-v Be verbose. Announce each phase as it is entered.

Output Control Options:

oe Only report errors: do not produce any objects. This option causes only the front end to
be executed. The front end detects all syntax errors and- most semantic errors in the Ada
source code. Some errors, however, can be detected only by the middle pass and code
generator- such errors will not be detected when the -e option is specified. Examples of
such errors are those involving the legality of specific representation specifications and
violation of code generator capacity limitations. This option is meaningless when used
with -k. -d. -0, and -x, since each of the latter options requires the production of code
generated after front end processing.

-k Keep the intermediate code (High Form and Low Form) for unit bodies in the library. By
default, the intermediate cod for bodies is deleted from the library after code generation
to minimize library size. The intermediate code is used by the Ada Cross-Referencer (see
azr(1)) and the Debugger (see adbg(1) and the -d option of the ada command) and
operated on by the Global Optimizer (see aopt(l) and the -O option of the ada command).
The -k option must therefore be used if any of these three programs are to be used for any
unit in the current source file. (An exception is that -k need not be used when the -d
option is used, since use of -d automatically sets -k.)

-d Provide for debugging. This option causes the code generator to save information needed
by the TeleGen2 debugger, adbi, in the Ada program library. This information is used for
mapping between source and object code locations, and for locating data objects. The -d
option also causes some additional information to be output in object modules. However,
there is no impact on generated code per se. Use of -d automatically sets the -k option.

-u Update the library, either after each source file compiles successfully (-u s) or after the
entire invocation (-u i). This option is most useful for multi-file compilations. In a single-
file compilation, an error within the file prevents the library from being updated. In a
multi-file compilation, an error within one file will prevent that file from compiling

TeleGen2(386/UNIX) Last change: 23 February 1989 2

ADA(1) USER COMMANDS ADA (I)

successfully (the library will not be updated with respect to the units in that file). The
library may or may not be updated for the other (error-free) files in the compilation,
depending on whether -u is used. If "-u i" is used, he library is jpdated only at the end
of compilation. This means that an error found anywhere in any file will prevent the
library from being updated. If "-u s" is used, the library is updated after each source is
compiled. This means that the library will be updated for all error-free files. NOTE. "-u
s" is the default; it is equivalent to not using -u at all.

-0 key Optimize code for each unit being compiled. The optimizer optimizes each unit separately
as it is being compiled and does not make cross-unit optimizations. The argument to the
-O option, key, must be present and must immediately follow the option. This argument
provides details about how the units are to be compiled. For example, one of the key
arguments indicates whether subprograms being optimized may be called from parallel
tasks. See aopt(1) for information about acceptable key values.

Two other options may be used in conjunction with -0:

-G Generate a call graph for the unit(s) being optimized. Refer to aopt(l) for more
information. Note: in the TcleGen2 User Guide, a discussion on the use of the -G
option with ada is deferred to the Global Optimizer chapter.

-I file Inline the subprograms listed in "file". Refer to aopt(l) for more information.
Note: in the TeleGen2 User Guide, a discussion on the use of the -1 option with
ada is deferred to the Global Optimizer chapter.

-x Generate profiler information and put it in the object module. Profiler information
i,-d-ludes execution timing and subprogram call information. If code is compiled with the
-x option, that option must also be used with the add command when the program is
bound and linked (see ald(1)).

Listing Control Optiowru:

-L Output a source listing interspersed with error information to sourcefile.l, where
"sourcefile" is the name of the user-supplied source file without the Ada extension. If an
input-list file is to be processed, a listing file is generated for each source file in the input

list. Each resulting listing file has the the same name as the source file, except it has an
".1" extension appended to it. For example, when this option is used with an input list
that contains 10 source file names, 10 listing files are generated as a result of the
compilation. If the -F option is used, the listing will not be interspersed. Instead, errors
will follow all the source lines.

-F Do not intersperse errors in source listing; put them after all source lines. This option is

used only with the -L option.

-C n Provide n source lines as context with error messages. The default is 1, which is the
erroneous line itself. Context lines are placed before and after the error line in the error

message.

-S Senc a source/assembly listing to unit.s, where "unit" is the name of the unit in the user-
supplied source file. If an input-list file is specified, a listing file is generated for each

source file in the input-list file. For example, when this option is used with an input-list
file that contains 10 source file names, 10 listing files are generated as a result of the
compilation.

SEE ALSO
acrap(i), acp(l), acr(i), ald(l), als(i), amv(i), arec(1), arel(I), arm(l), asd(i), axr(i)

TeleGen2(386/UNIX) Last change: 23 February 1989 3

ALD(1) USER COMMANDS ALL)(I)

NAME
aid - TeleGen2 binder/linker

SYNOPSIS
ald I-I libname, -t templib' i-V vsmsize :-T n: '-P options! -p objectsi

i-o name! -'bsvXxj -Y size ;'-y size! -D! -w max time mainunit

DESCRIPTION
The aid command calls the Ada binder and linker. This command outputs the executable program
to file mainunit. The binder and linker are executed by default. The user may exclude the linker
from the run.

A library may be specified by usi.,g the default library file, liblst.alb, specifying a library file with
the -1 option, or specifying a temporary library list on the command line, by using the -t option.

Option pass-through to the native linker is provided.

The binder puts an elaboration code file, mainunit.obm, in the working sublibrary directory.

If the native linker is not invoked, a link script file, mainunit.lnk, is put in the current directory.
This script file may may also be modified by the user so that other object code or special linker
options are used.

OPTIONS
-b Run binder phase only. Elaboration code and a link script are produced. The link script

is put in the file mainunit.lnk.

-1 libnarne
Use libnaine as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the -t option is not used, the default liblt.alb is assumed to be the library. -1 may not
be used with -t.

-o name
Use "name" instead of "mainunit" as the name of the executable file.

-P options
Pass options to the native linker. options must be a quoted string. This option is provided
as an escape to allow use of all native linker options without producing and editing a link
script. An example is: aid -P -t -r' . Refer to the Linker portion of the TeleGen2 User
Guide for more information.

-p objects
Pass objects to the native linker, objects must be a quoted string; it may include archive
files. This option is typically used with pragma Interface and the -1 native linker option.
objects may be specified as "objecti object2 ...". An example is: aid -p 'cosine.o
/ur/lib/Ilibm.a' . Refer to the the Linker portion of the TeleGen2 User Guide for more
information.

-T n Trace back depth of exception report. When a run-time exception occurs, the name of the
unit and the line number of where the exception occurred are displayed with a call chain
history. The number n, which is 15 by default, defines the levels of call chain history.

-t ternplib
Use templib as a temporary sublibrary list for this process. The default sublibrary list file
is not read. The first sublibrary in the list is the working sublibrary. Templib may be
specified as "sublibl.sublib2..." or as "sublibl sublib2 ...". -t may not be used with -I.

-V usm size

TeleGen2(386/UNIX) Last change: 15 May 1989 1

AL) (1) USER COMMANDS ALD(1)

Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 2000 Kbytes.

The optimal value for vsm size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Programming Guide
chapter.

Note: the -p and -P options are used to provide compatibility with the System V Interface
Definition while dealing with the non-System V compatible Id command (-Ix).

-v Be verbose. Announce each phase as it is entered.

-x Link in the execution profiler's run-time support routines. During program execution.
these run-time support routines record the profiling data in memory, then write the data
to files as the program terminates. Units to be profiled must be compiled with the -x
option of the ada command.

The options below are binding options used for task execution.

-D Select non-preemptive delay. This option works only with an interrupt run-time. -D is
incompatible with -w.

-W mice
Limit task execution time to msec; the default is 0 msec. -w is incompatible with .D.

-X Report unhandled exceptions that occur in tasks.

-Y stack
Allocate "stack" bytes (32-bit bytes) of space for task execution. The default is 8192
bytes (long-integer). A representation specification for T'storage size overrides this
option.

-y guard
Allocate "guard" bytes (16-bit bytes) of extra task space for exception and interrupt han-
dling. The default is 1024 bytes (natural). A representation specification for
T'storage size overrides this option.

BUGS AN14D KNOWN LINU1TATIONS
The body of the main program must reside in the current working sublibrmary.

SEE ALSO
ada(l)

TeleGen2(386/UNIX) Last change: 15 May 1989 2

AOPT(!) USER COMMANDS AOPT(1)

NAME
aopt -TeleGen2 Global Optimizer, standalone mode

SYNOPSIS
aopt 1-I libname, -t templib] '-V vsm_size '-N collectionl 1-0 keyl j-I filej !-GkSvxl file

DESCRIPTION
The aopt command invokes the TeleGen2 Global Optimizer in a standalone mode. Use of the
optimizer results in programs that are smaller and faster than those compiled without
optimization. The optimizer works by rewriting the Low Form representations of compilation
units and then passing the new forms to the code generator.

As a standalone tool. the optimizer works on a specified set of previously compiled units taken as a
collection. Optimization of a collection enables cross-unit optimizations within and between units
of a collection, allowing for a higher level of optimization than can be achieved with optimization
during compilation. The units in the collection may include the Ada run-time library as well as
user code, and may constitute an entire program or a stable set of functionally related packages.
In essence, the standalone optimizer takes the Low Form of a set of units that are to be optimized
together as a collection, optimizes them, and runs them through the code generator. "Code
generation" options are therefore provided with aopt.

The optimization process is guided by the command options and suboptions listed below. The
command terminator, file, is a text file that lists the units to be optimized. The file consists of two
lists, separated by a semicolon. The units in each list are separated by commas. The first list

contains visible units, which are those units that may be referenced by units outside of the
collection. The second list consists of hidden units, or those units which may only be referenced by
units within the collection. In the compilation of an entire program, the main program unit is the
only visible unit, while all other units are hidden. If only one list exists, the units are compiled as
visible.

All units to be optimized must first be compiled with the -k option, and must not have been
optimized during compilation. The -k option keeps the Low Form intermediate code, which is
needed for the optimization process, in the library. For guidance in efficient use of the optimizer,
see the Optimizer chapter of the TeieGen2 User Guide.

OPTIONS
The "Optimizer" Option and Its Suboptions:

-O Optimize the code for each unit of a collection with the Optimizer in standalone mode.
The argument to the -O option, <key>, must be present and must immediately follow the
option. This argument provides details about how the units are to be compiled. The
suboptions for the argument <key> are described below. If the -O option is not specified
on the command line, the aopt command assumes the default, -O D, where D represents
all the default <key> suboptions.

P/p These two suboptions of the -0 option indicate whether or not one or more subprograms
being optimized might be called from p',rallel tasks. The default, P, indicates that
subprograms might be called from paraIl .asks. The p suboption indicates that none of
the subprograms can be called from para.,ei tasks. The p suboption allows data mapping
optimizations to be made that cannot be made if multiple instances of a subprogram are
active at the same time.

R/r These two suboptions of the -O option indicate whether or not one or more subprograms
interior to the unit being optimized can be called recursively by an exterior subprogram.
The default, R, indicates that an interior subprogram can be called recursively by an
exterior subprogram. The r suboption indicates that none of the subprograms in the unit

TeleGen2(386/UNIX) Last change: 18 February 1988 1

AOPT(1) USER COMMANDS AOPT(I}

being optimized can be called recursively by subprograms exterior to the unit or collection
being optimized.

I/i These two suboptions of the -O option control the inline expansion of suitable
subprograms. The default, I, causes the subprograms that are marked with an Inline
pragma or generated by the compiler to be expanded in line. The i suboption prevents all
inlining. If suboption i is specified, the A/a suboptions have no effect and no inlining will
occur.

A/a These two suboptions of the -O option enable or disable automatic inline expansion. The
default, A, causes the automatic inline expansion of any subprograi called from only one
place, as well as those marked by an Inline pragma or generated by the compiler. The a
suboption disables automatic inline expansion. If a is used. inlining is controlled by the
I/i suboptions and the -I option. If the i suboption is used, the A/a options are disabled.
The aopt command option -[is described below

D/d These suboptions represent all (D) or none (d) of the default suboptions of the -O option.
If -O is not listed on the command line, then -0 with its default suboption D is assumed.
An alternative way to enter -0 D is to use -o PRIA. An alternative way to enter -O d
is to use -O pria.

Additional Optimizer Options:

-G Generate a call graph for tLe unit or collection being optimized. A call graph is a normal
text file that displays the static calling relationships among subprograms in an optimized
unit or collection. The -G option generates a list for each subprogram which displays
every subprogram called by that subprogram. By default, this list (graph) is not
generated. When -G is used, the call graph is output to a file that has the same name as
the unit or collection being optimized, with the file extension ".grf". See the Optimizer
chapter of the TeleGen2 Uaer Guide for-information on the structure and interpretation of
call graphs.

-I file (Inline list) Inline the subprograms listed in "file". This option allows you to select
subprograms for inlining instead of automatically inlining al subprograms. This option
should be used with the -O option's "key" suboption -a, which disables automatic inling.

This option takes one argument. The argument specifies a file that contains the
subprogram names in the same format as the collection file, i.e., two lists separated by a
semicolon. The first file specifies the subprograms to be inlined. These subprograms will
be processed as if there had been a pragma Inline in the source. The second file specifies
the subprograms not to be inlined, and any Inline pragmas within them will be negated.
It no items are specified in the first list, use a semicolon to mark the beginning of the
second list. Subprogram names in these files should list the compilation unit indicating
the location of the subprogram declaration, not the location of its body. If the
compilation unit name is not supplied, any matching subprogram name will be affected.
The processing of the names is case insensitive.

-N collection
Optimize the units named in "collection". The name is used by the library units for
storing and retrieving information about the optimized collection. The collection name is
any name for the collection that has not been used for another collection in the same
subhibrary. Since the name has a type associated with it. the name of a collection may
duplicate the name of another library unit. If you do not use the -N option, the optimizer
creates a unique name for it based on the system time associated with the creation of the
collection.

TeleGen2(386 /UNIX) Last change: 18 February 1988 2

AOPT(I) USER COMMANDS AOPT(I)

Library Management Options:

-I libname

Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted.
and the -t option is not used, the default liblit.alb is assumed to be the library. -1 may not
be used with -t.

-t templib
Use templib as a temporary sublibrasy list. for this process. The -1 option must not be
used when the -t option is given. The default sublibrary list file is not read. The first
sublibrary in the list is the working sublibrary. Templib may be specified as
"sublibl,sublib2..." or as "sublibl sublib2 -t may not be used with -1.

-V vim size

Set the size of the Virtual Space Manager's buffer space to vsm size Kbytes. The default
vsm size for the command is 1500 Kbytes.

The optimal value for vsm size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Programming Guide chapter
of the TeeGen2 User Guide.

Code Generation Options:

-k Keep High Form and Low Form for bodies in the library. By default, the High Form and
Low Form for bodies are deleted from the library after code generation ,o minimize library
size.

-S Generate a source-assembly listing of the units in the input file.

-v Be verbose. Announce each phase as it is entered.

-x Generate profiler information in the object module. Profiler information includes
execution timing and subprogram call information.

SEE ALSO
ada(l), ald(l)

TeieGen2(386/UNX) Last change: 18 February 1988 3

