— S IT tAB 1TSS 1T FSILARNM INHET nT,n F,LE C
.F

REPORT D(
Pagt sy 3o 1 0 wister ¥ e AD—A225 187 ﬂgd*fd&%

nmuuﬁn. -+
17, AGENCY USE OMLY (Lamve) . LWTPORTT.T B l%ﬂmwmm
a
l". Jan to 31 Jan 91

4 TINLE AND RETTILE Ada Compiler Validation Summary Report: TeleSoft . |& FUNDING MABERS
eleGen2 Ada F - SCO Unix V.3, ALR 386 (Host & Target)l,

0013111.10267

€ AUTHOR(S)

TABG-AVF ,

Ottobrunn, FEDERAL REPUBLIC OF G% . :NY

7 PERFORMING ORGANZATION NAMES) AND ACDRESS(ES) - B FERFORMING ORGAN AT
IABG-AVF, Industr ieanlagen-Betr iebsgeselschaft REPCHT MARER

Dept. S2T AVF-IABG-066

Einsteinstrasse 20
D-8012 Ottobrunn
FEDERAL Ri- 3LIC OF GERMANY

e S ————————— St et ——— : [REPRPR S ——
8. SPONSORNGAONITORING AGENCY MAME (S) AND ADDRESS(ES) ul:Eﬁgg?RNﬂAﬂNﬂl . EY
Ada Jointr Program Office MAEER
United States Department of Defense
. oo 20301-3081
3 i2n. DESTREM - WAVARLABILITY STATEMENT 120, DEETREA TN COOE
H .
’ Approved for public release; distribution unlimited.
pu——————

13. ABSTRACT /s rmasm 200 worels)

TelaSofr, TeleGen2 Ada for SCO Unix V.3, Ottobrunn West Germany, ALR 386/216 under SCO

Unix System V.3.2 (Host & Targer), ACVC 1.10. - Tlc

| ELECTE
JUNZ2 71990
W SUBECTTEAMS Ada programming language, Ada Compiler Validation 15. UNVBER OF MGES
Summary Report, Ada Compiler Valldation Capability, Validation
‘resttng. Ada Validation Office, Ada Val Jlation Faciiity, ANSI/MIL- V6. PRICE COOE
1 da Joint Pro ram Office
: “‘—"m‘!urm—-
! S 08 T8 i " S ARsTR” 2. LMITATION
UNCLASSIFIED UNCLAS
R

AVF Control Number: AVF-IABG-066

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #900131I1.10267
TeleSoft
TeleGen2 Ada for SCO Unix V.3
ALR 386/216 host and target

Completion of On-Site Testing:
31 January 1990

Prepared By:
IABG mbH, Abt. SZT
Einsteinstrasse 20

D-8012 Ottobrunn

West Germany

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada for SCO Unix V.3

Version 1.4A

Certificate Number: $#90013111.10267

Host: ALR 386/216

under SCO Unix System V.3.2

Target: same as host

Testing Completed 31 January 199¢ Using ACVC 1.10

This report has been reviewed and is approved.

o Ll

IABG mbH, Abt. SZT
Dr. S. Heilbrunner
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

AT ITLY DRt .

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

AP AL

Ada Joint Program Office
Dr John Solomond
Director

Department of Defense
Washington DC 20301

‘z Accesston Fer i
i NIT3 T a

CHAPTER 1

R e el
1% 3 SRR SRS

CHAPTER

(3%

[% 2 <V]
.« .
(S0

CHAPTER

(V]

.

. o« .
~ U W
s e

W W W Wl W wWwww
.« . . .
W N

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

TABLE OF CONTENTS

INTRODUCTION + ¢ ¢ ¢« v v o« .

PURPOSE OF THIS VALIDATION SUMMARY REPORT .
USE OF THIS VALIDATION SUMMARY REPORT .
REFERENCES . . e v e e e e .
DEFINITION OF TERMS - e e e e e s

ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED . . . e e e .
IMPLEMENTATION CHARACTERISTICS e e e .

TEST INFORMATION

TEST RESULTS
SUMMARY OF TEST RESULTS BY CLASS
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS . . ¢« v ¢ v ¢ ¢ « o o .
INAPPLICABLE TESTS
TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION
Prevalidation « . « « . . .
Test Method ¢ .
Test Site

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

COMPILER AND LINKER OPTIONS

UV b b W

. 15

. 15
. . 15
. 16

16

. 16
. 20

. 20
.21
. 21

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entjirety)s and nothing can be implemented that is
not in the Standard. <e¢ /7 ™ 1U{35?f?1f” B I % AN A A
L, S ¢ ,)L.r (WY it B .

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits sume implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

. & T o
[f+ .

1

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures astablished by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 11
September 1989 at TeleSoft, San Diego, USA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act”
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. <Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from: _
IABG mbH, Abt. SZT
Einsteinstr. 20
D~8012 Ottobrunn
West Germany

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
18901 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc.,

December 1986.

4. Ada Compiler Validation Capability User’s Guide, December 19386.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard

Applicant

AVF

AvVO

Compiler

Failed test

The Ada Compiler Validation <Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD~1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF 1is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AV0 has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

INTRODUCTION

Host The computer on which the compiler resides.

Inapplicable An ACVC test that wuses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. 1In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects 1illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if

INTRODUCTION

every illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating . the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library-—a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test 1is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it 1is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. 1In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain

INTRODUCTION

lines with a maximum length of 72 characters, use small numeri- values, and
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the wvalues used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1is validated. A test that 1is
inapplicable for one validation 1is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACYC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION *]

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler Name: TeleGen2 Ada for SCO Unix V.3
Version 1.4A

ACVC Version: 1.10
Certificate Number: #900131I1.10267
Host Computer:
Machine: ALR 386/216
Operating System: SCO Unix System V.3.2

Memory Size: 10 MB

Target Computer: same as host

10

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler 1in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation
containing 723 variables in the same declarative part. (See
test D29002K.)

2} The compiler correctly processes tests containing
loop statements nested to 65 levels. (See tests DS55A03A..H
{8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) Some of the defaulit initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. {See test
€32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation.uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35903A.)

CONFIGURATION INFORMATION

4) CONSTRAINT_ERROR is raised for pre-defined integer
tests, NUMERIC_ERROR is raised for largest integer
and menmbership tests and no exception is raised
defined integer membership tests when an integer
operand 1in a comparison or membership test is outside
range of the base type. (See test C45232A.)

comparison
comparison
for pre-

literal
the

5) NUMERIC_ERROR 1is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is tests C45524A..Z (26 tests).)

gradual. (See

Rounding.

conversions is not
do not specifically
the test results

The method by which values are rounded in type
defined by the language. While the ACVC tests
attempt to determine the method of rounding,
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to 1longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3} The method used for rounding to integer in static universal

real expressions is round away from =zero. {See test C4AQ14A.)
Array types.
An implementation 1is allowed to raise NUMERIC_ERROR or

that exceeds
For this

CONSTRAINT_ERROR for an
STANDARD.INTEGER'LAST
implementation:

array having a 'LENGTH
and/or SYSTEM.MAX_INT.

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises NUMERIC_ERROR for a
two dimensional array subtype where the large dimension is the
second one. (See test C36003A)

'"LENGTH is applied to an

2) CONSTRAINT_ERROR 1is raised when

array type with INTEGER'LAST + 2 components. (See test
C36202A.)

3) NUMERIC_ERROR is raised when an array type with
SYSTEM.MAX_INT + 2 components 1s declared. (See test

C36202B.)

4)

5)

6)

7

8)

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no excepticn. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test €52104Y.)

In assigning one~dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype 1is
compatible with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRAINT_ERROR 1is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC_ERROR or
CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, lengths must match in array
slice assignments. This implementation raises

no exception. (See test E52103Y.)

Discriminated types.

1) In assigning record types with discriminanﬁs, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Aggregates.

1} In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C432078B.)

2) In the evaluation of an acgregate containing subaggregates,

not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

11

CONFIGURATION INFORMATION

3) CONSTRAINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null

aggregate does not belong to an index subtype. (See test
E43211B.)

Pragmas.

1) The pragma INLINE is not supported for procedures or func-
tions. (See tests LA3004A..B (2 tests), EA3004C..D (2 tests),
and CA3004E..F (2 tests).)

Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by AI-408/11, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilationms. (See tests CAl1012A, <CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CA1012A.)

4) Generic non-library ©package Dbodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit Dbodies and their subunits can be

compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic 1library ©package specifications and = bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

12

9)

CONFIGURATION INFORMATION

Generic unit bodies s} their subunits can be
compiled in separate compilations. (See test CA3011A.)

Input and output.

1)

2)

3)

4)

5)

6)

T)

8)

9)

19)

11)

12)

13)

The package SEQUENTIAL_IO cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Modes 1IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are given names and not
deleted when closed. (See test CE2108A.)

Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

Temporary text files are not given names and not deleted
when closed. (See test CE3112i.)

More than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

13

14)

19)

CONFIGURATION INFORMATION

More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

More than one internal file can Dbe associated with
each external file for text files when reading only (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A4.)

14

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 316 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 15 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
;assed 127 1129 2018 17 22 44_-;;;;
Inapplicable 2 9 297 0 6 2 316
Withdrawn 1 2 35] 6 0 44
TOTAL 130 1140 2350 17 34 46 3717

15

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14
Passed 198 573 544 245 172 99 160 332 129 36 250 341 278 3357
N/R 14 76 136 3 0 0 6 o 8 0 2 28 43 316
Wdrn 1 1 0 0 9 0 0 2 0 0 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VWITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A390056 B97102E C97116A BC30098B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2AT76C CD2A76D CD2A816G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7086D
CD7105A CD72038 CD7204B CD7205D CE2107I CE3111C

CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an inmplementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1s not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 316 tests were inapplicable for
the reasons indicated.

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

TEST INFORMATION

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
€45524L..Z (15 tests) C€45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35508I, €35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such representation clauses.

C35702A and B860Q1T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_INTEGER:

C45231B C453048B C45502B C45503B C45504B
C45504E C45611B C45613B C456148B C45631B
C45632B B52004E C55B07B B55B0O9D B860O1V
CD7101E

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAX_MANTISSA greater than
32.

C86001F is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_IO, and
hence package REPORT, obsolete.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this irplementation supports no
predefined fixed-point type other than DURATION.

B860012 is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those wunits which instantiate it (See Section 2.2.1 and
Appendix F of the Ada Standard).

LA3004A, EA3004C, and CA3004E are not applicable because this
implementation does not support pragma INLINE for procedures.

17

TEST INFORMATION

LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for functions.

CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests)
are not applicable because of restrictions on 'SIZE length clauses
for floating point types.

CD2A61I..J (2 tests) are not applicable because of restrictions on
'SIZE length clauses for array types.

CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because of restrictions on 'SIZE length clauses for access types.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2102D 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F 1is 1inapplicable because this implementation supports
CREATE with INOUT_FTLE mode for DIRECT_IO.

CE2102I 1is 1inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is 1inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

18

aa.

ab.

ac.

ad.

ae.

af.

ag.

ah.

ai.

aj.

ak.

al.

am.

an.

a0.

TEST INFORMATION

CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESET
with INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET
with OUT_FILE mode for DIRECT_IO.

CE2107B..E (4 tests), CE2107L, <CE2110B, and CE2111D are not
applicable because multiple internal files cannot be associatad
with the same external file when one or more files is writing
for sequential files. The proper exception 1is raised when
multiple access is attempted.

CE2107G6..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation.

CE3102F is inapplicable because text file RESET 1is supported by
this implementation.

CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

CE3102I is inapplicable because text file CREATE with OUT_FILE
mode is supported by this implementation.

CE3102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is not supported by this implementation.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not

applicable because multiple 1internal files cannot be associated
with the same external file when one or more files is writing for

19

TEST INFORMATION

text files. The proper exception is raised when multiple access
is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
{(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 15 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B71001E B71001K B71001Q B71001W BA30O6A BA3006B
BA3007B BA3008A BA3003B BA3013A (6 and M)

Tests C34005G, C34805J7 and C349006D returned the result FAILED because of
false assumptions that an element in an array or a record type may not be
represented more compactly than a single object of that type. The AVO has
ruled these tests PASSED if the only message of failure occurs from the
requirements of T'SIZE due to the above assumptions (T is the aray type).

Tests CD2C11A and CD2C11B contain 'SIZE length clauses for task types which
were insufficient for this machine. These tests were modified to include a
'SIZE clause of 2K.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, no results produced by the TeleGen2 Ada system were
submitted to the AVF by the applicant for review. Instead, the applicant
assured the AVF that results would be identical with results obtained for
validation #040 of the TeleGen2 Ada Development System for AIX PS/2
{certificate #89091111.10177).

20

TEST INFORMATION

3.7.2 Test Method

Testing of the TeleGen2 Ada System using ACYC Version 1.18 was
conducted on-site Dby a validation team from the AVF. The
configuration in which the testing was performed is described by the
foilowing designations of hardware and software components:

Host and target computer: ALR 386/216
Operating system: SCO Unix System V.3.2

A streamer cassette containing the customized test suite was loaded to the
host machine. Results were written to tape and transferred to a SUN machine
where they were evaluated and archived.
The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The tests were compiled using the
command

ada -v -0 D (test files>
and linked with the command

ald <main unit>

The -L qualifier was added to the compiler call for class B and E tests.
See Appendix E for explanation of compiler and linker switches.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, USA, and was completed on 31
January 1990.

21

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of Conformance concerning
TeleGenZ Ada for SCO Unix V.3.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada for SCO Unix V.3

Version: 1.4A

Host Compufer System: ALR 386/216 (under SCO Unix System V.3.2)
Target Computer System: Same as Host

Customer’s Declaration

I, the undersigned, representing TELESOFT, declare that TELESOFT has no knowledge
of deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the

Date: C;’ /,60

g

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corraspond o)
implementation-dependent pragmas, to certaln machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to <certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of TeleGen2 Ada, as described in this Appendix, are
provided by TeleSoft. Unless specifically noted otherwise, references 1in
this appendix are to compiler documentation and not to this report.
Implamentation-specific portions of the package STANDARD, which ar: not a
vart of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG_INTEGER is range -2117483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONG_FLOAT is digits 15
range ~8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.9;

end STANDARD;

TeleGenZ User Guide for UNTX

9.8. LRM Annotations

TeieGen2 compiies che full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LRM) (ANSI/MIL-STD-1815A). This section describes the
portions of the language that are designated by the LRM as impiementation dependent for the
compiler and run-time environment.

The information is presented in the order in which it appears in the LRM. In general,
however. only those language features that are not fully impiemented bv the current reiease of
TeieGen2 or that require clarification are included. The features that are optional or that are
impiementation dependent. on the other hand, are described in deraii. Particuiarly reievant are
the sections annotating LRM Chapter 13 (Representation Clauses and Implementation-
Dependent Features) and Appendix F (Implementation-Dependent Characteristics).

9.6.1. LRM Chapter 2.
'LRM 2.1] The host and target character set is the ASCII character set.
{LRM 2.2! The maximum number of characters on an Ada source line is 200.

{LRM 2.8! TeleGen2 implements all language-defined pragmas ezcept pragma Optimize. If
pragma Optimize is included in Ada source, the pragma will have no effec:.

Limited support is available for pragmas Memory_Size. Storage_Unit. and System_Name;
that is. these pragmas are allowed if the argument is the same as the value specified in the
System package.

Pragmas Page and List are supported in the context of source/error listings: refer to the
end of Chapter 3 for more information.

9.8.2. LRM Chapter 3.

‘LRM 3.2.1] This reiease of TeieGen2 does not produce warning messages about the use of
uninitiaiized variables. The compiler will not reject a program mereiy because it contains such
variables.

LRM 3.5.1] The maximum number of elements in an enumeration type is 32767. This

maximurmn can be realized only if generation of the image tabie for the type has been deferred, and

there are no references in the program that wouid cause the image table to0 be generated.

Deferral of image tabie generation {or an enumeration type. P. is requested by the statement:
pragma Images (P, Deferred):

Refer to ‘‘Impiementation-Defined Pragmas.”

pragma [mages.

later in this chapter. Jor more information on

'LRM 3.5.4] There are two predefined integer types: Integer and Long_Integer. The attributes
of these tvpes are shown in Tabie 3-7. Note thac using expiicit integer tvpe definitions instead of
orecefined integer tvpes should result in more portable code.

Gmtbd UG-1213N-V1.2(286 /'UNIX| © 1989 Teje3Soft 27IJULAa9

A

PROGRAMMING GUIDEZ

Table 9-7. Attributes of Predefined Types Integer and Long_Integer

[!

| Attribute . Type :

L | Integer | Long_lnteger |

[First | -32768 | -2147482648

| 'Last P 32767 1 2147483647 |
'Size { 16 | 32 i

| "Width 6 11 !

.LRM 3.5.8. There are two predefined floating point types: Float and Long_Float. The
attributes of types Float and Long_Float are shown in Tabie 3-3. This Joating point faciiizy is

based on the [EZZ standard for 32-bit and 64-bit aumbers. Note that using expiicit real type
definitions snouid .ead 10 more portadie code.

The type Shori_Float is not implemented.

Table 3-8. Attributes oi' Predefined Types Float and Long_Float

. i Type
Attntute | Float | Long_Float
"Machine_Overflows | TRUE TRUE
"Machine_Rounds TRUE TRUE
"Machine. _Radix 2 2
"Machine_Mantissa 24 53
"Machine _Emax 127 1023
"Machine_Emin -125 -1021
i "Mantissa D21 - 1 31
"Digits 6 15
‘Size _ 32 64
‘Emax 84 204
'Safe_Emax 1125 1021
'Epsiion ; 9.53674E-07 | 8.83817T8E-16
'Saje_Large ' 4.25253E-37 2.24711641857789E~307
'Saie _Smail 1 1.17349E-28 2.22507385850721E~308
"Large | 1.93428E-25 | 2.37110087081438E~61
"Smail | 2.58494E-26 | 1.99469227432161E-62

9.8.3. LRM Chapter 4.
[LRM 4.10! There is no limit on the range of literai vaiues {or the compiier.

'LRM 4.10/ There is no limit on the accuracy of reai iiteral expressions. Real literal
expressions are computed using an arbitrarv-precision arithmetic package.

27ICLa9 TUG-1213N-V1.2(286/UNIX| T 1989 TeleSoft 945

TeleGens User Guide for UNIX

9.8.4. LRM Chapter 9.

[LRM 96l This implementation uses 32-bit fixed point numbers to represent the type
Duration. The atuributes of the type Duration are shown in Table 9-9.

Table 9-9. Attributes of Type Duration

Attribute | Value

SDelta 0.000061035156250
"First -86400.0
"Last 86400.0 |

[LRM 9.8] Sixty-four levels of priority are availabie to associate with tasks through pragma
Priority. The predefined subtype Priority is specified in the package System as
subtype Priority is Integer range 0..63;

Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Priority ’First 4 System.Priority’Last) / 2

[LRM 9.11] The restrictions on shared variables are only those specified in the LRM.

9.8.3. LRM Chapter 10.

(LRM 10] All main programs are assumed to be parameteriess procedures or functions that
return an integer resuit type.

9.6.8. LRM Chapter 11.

[LRM 11.1] Numeric_Error is raised for integer or foating point overflow and for divide-by-
zero situations. Floating point underflow yieids a resuit of zero without raising an exception.

Program_Error and Storage_Error are raised by those situations specified in LRM Section
11.1. Exception handling is a.lso discussed in the ‘“Exception Handling™ section earlier in this
chapter.

9.8.7. LRM Chapter 13. As shown in Table 9-10. the current release of TeleGen2 supports
most LRM Chaprer 13 facilities. The sections beiow the table document those LRM Chapter 13
facilities that are either not impiemenied or that require explanation. Facilities implexnented
exactly as described in the LRM are not mentioned.

9-46 UG-1213N-V1.2(286,/UNITX) T 1989 TeieSoft 27JULs9

PROGR AN STTIDE

Table 9-10. Summary of LRM Chapter 13 Features for TeleGen2

13.1 Representacion Clauses | Supported. except as indicated beiow (LRM 13.2 - ’
% 12.51. Pragma Pack is supported. ezcept for dynam- |
, icaily sized components. For details on the)
i TeieGen2 impiementation of pragma Pack, see Sec- '
! tion 9.6.7.1. |
13.2 Length Clauses | Supported: i
! ‘Size |
i ~ |
‘Storage_Size {or coileczions !
{ 'Suorage_Size for task activation g
. "Smalil for fixed-point tvpes ‘
Note: length clauses can be used to reduce the "Size
of data types. |

13.3 Enumeration Rep. Clauses Supported. ezcept for type Boolean or types derived :
from Boolean. (Note: users can easily define a non-
Boolean enumeration type and assign a representa-
tion ciause to it.)

13.4 Record Rep. Clauses Supported ezcept for records with dynamically sized
components. See Section 9.6.7.4 for a full discussion
of the TeleGen2 implementation.

13.5 Address Clauses Supported for: objects (inciuding task objects).

Not supported for: packages. subprograms, or task
units. Task entries are not appiicable to TeleGen2
host compilation systems.

See Section 9.6.7.3 for more information.

13.3.1 Interrupts Nou applicable to TeleGen2 host compilation sys—i
tems. B

13.6 Cbhange of Representation Supported. ezcept for types with record representa- ’
tion clauses. |

! —-=~= Continued on the nezt page --=-- {

27ITL39

UG-1213N-V1.2(286, UNTI T 1989 TeieSort b o irg

TeleGen2 User Guide for UNTX

Table 9-10. Summary of LRM Chapter 13 Features for TeleGen2 (Contd)

-—-—-- Continued from the previous page --—-

13.7 Package System
9.6.7.7 for details on the TeieGen2 impiementation.

Conforms closeiv to LRM model. Refer 1o Section |

|
[

Numbers tion 9.6.7.7).

|
.‘

13.7.1 System-Dependent Named l Refer to the specification of package System (Sec- '
|

13.7.2 Representation Attributes i Impiemented as described in LRM ezcept that:
i "Address for packages is unsupporied.
|

‘Address of a constant vieids a nuil address.

13.7.2 Representation Attributes of | See Table 9. §
Real Types r
13.83 Machine Code Insertions | F ully supported. The TeieGen2 impiementation |
| defines an attribute. 'Offset. that, along with the |
' language-defined attribute 'Offset. allows addraseé
of objects and oifsets of data items to be specified in |
stack frames. Refer to Section 9.3 for a full descrip- !

tion on the implementation and use of machine code

insertions.

13.9 Interface to Other | Pragma Interface is supported for Assembly, C, and E
' Languages UNIX. Refer to Section 9.4 for a description of the |
implementation and use of pragma Interface. !
13.10 Unchecked Programming Supported except as noted below (LRM 12.10.1 and |
12.10.2). :
13.10.1 Unchecked Storage Deallo- | Supported ezcept for tvpes with length clauses for |
cation storage size. ‘
13.10.2 Unchecked Type Conver- | Supported ezcept for unconstrained record or array ;
sions types. !

9.6.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeieGen2
impiementazion.

a. With Boolean Arrays. You may pack Booiean arrays bv the use of pragma Pack.
The compiier allocates 16 bits for a singie Booiean. 3 bits for a component of an unpacked
Booiean array, and | bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array: the sne beiow that iilustrates a packed Boolean array:

9-438 TG-1312N-V1.2(286, UNTX| © 1989 TeieSoft 27ITLas

PROGRAMMING GUIZZ

Unpacked Boolean array:

Unpacked Bool Arr Type is array (Natural Tange C..1) of Boolean
U B Are: Unpacked Bool Arr_Type := (True,False);

MSB LB

]

0
1 | Element 0
0

Element I

Packed Boolean array:

Packed_Bool Arr Type is array (Natural range 0..8) of Boolean;
pragma Pack (Packed Bool Arr_Type);
P B Arr: Packed BooI Arr Type := (P_B_Ar=(0) => True,
P B _Arr(5) => True, others =) False);

MSB/HOB ' ' LSB/LOB
15

0
cjo(o0(ojo0jojojaojojofi1faiolojol1

b. With Records. You may pack records by use of pragma Pack. Packed records follow
these conventioas:

1. The total size of the record is a multiple of 8.
2. Packed records may cross word boundaries.
3. Records are packed to the bit level if the elements are themseives packed.

Below is an example of packing in a procedure. Rep_Proc, that defines three records of different
lengths. Objects of these three packed record types are components of the packed record Rec.
The storage ailocated for Rec is 16 bits: that is. it is maximaily packed.

27ITL39 TUG-1213N-V1.2(288/UNIX) © 1989 TeleSoft

TeleGen2 User Guide for UNTX

procedure Rep_Proc is

type Al is array (Natural raage O .. 8) of Boolean;
pragma Pack (Al);
type A2 is array (Natural rang= O .. 3) of Boolean;
pragma Pack (A2);
type A3 is array (Natural range O .. 2} of Boolean;

pragma Pack (A3);
type A_Rec is

record
One : Al
Two : A2;
Three : A3;

end record;
pragma Pack (A_Rec);

Reec : A_Rec;
begin
Rec.One = (0 => True, 1 => False, 2 => False,
3 => False, 4 = True, 5 =) False,
6 => False, 7 => False, 8 => True);
Bec.Two (3) := True;
Rec.Threse (1) := True;

end Rep. Proc;

9.68.7.2. Length Clauses [LRM 13.2|. Length clauses of the form *‘for T'Storage Size use
<expression>;” (where T is a task type) specify the size to be allocated for that task’s stack at
run time. The use of this clause is encouraged in all tasking applications to control the size of the
applications. Otherwise. the compiier may default this value to a large size. TeleGen2 allows
you to specify storage for a task activation using the 'Storage_Size attribute in a length clause.

9.6.7.3. Enumeration Representation Clauses [LRM 13.3|. Enumeration representation
clauses are supported, except for Boolean types.

Performance note: Be aware that use of such clauses wiil introduce considerable overhead
into many operations that involve the associated type. Such operations include indexing an array
bv an eiement of the type. or computing the 'Pos. 'Pred. or 'Succ atiributes for values of the
type.

9.8.7.4. Record Representation Clauses [LRM 13.4!. Since record components are
subject to rearrangement by the compiler, you must use representation ciauses to guarantee a
particular layout. Such clauses are subject to the foilowing constraints:

= Each component of the record must be specified with a component ciause.

= The alignment of the record is restricted to mods | and 2. bvte and word aligned.
« Bits are ordered right to left within a bvte.

= Components may cross word boundaries.

Here s a simpie exampie showing how the lavout of a record can be specified by using
representation clauses:

930 TUG-1312N-V1.2(288 'UNTX; © 1989 TeieSoft 27ITUL89

‘. ’
7Y%

PRACGRAMMING GUIDE

package Repspec_Example is
Bizs : comstant := 1;
Word : constant := 4;

type Five is range O .. 16%1F%;
type Seventeen is range O .. 16#1FFFF%;
type Nine is range Q .. 311;

type Recsrd_layout_Type is record
Elementl : Seventeen;
Element2 : Five;
Element3 : Boolean;
Element4 : Nine;
end record;

for Recsrilayout_Type use record at med 2;
Elementl at OxWord raage O .. 15;
Element2 at OaWord range 17 .. 21;
Elemnent3 at O=Word range 22 .. 22;
Element4 at OsWord range 23 .. 31;

end record;

Record_layout : Record Layout_Type;
end Repspec_Example; :

9.6.7.5. Address Clauses [LRM 13.3]. The Ada compiler supports address clauses for
objects, subprograms, and entries. Address clauses for packages and task units are pot
supported.

Address clauses for objects may be used to access hardware memory registers or other
known memory locations. The use of address -'iuses is affected by the fact that the
System.Address type is private. For the 80386 target, literal addresses are represented as
integers, so an unchecked conversion must be appiied to these literais before they can be passed
as parameters of type System.Address. For example, in the exampies in this chapter the
following deciaration is often assumed:

function Addr is new Unchecked_Conversion (Long.Integer,System.Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a differenc convention. Beiow is a sample program that
uses address clauses and this convention. Package System must be expiicitly withed when using
address clauses.
with Systea;
ith Unchecked_Conversion;
procedure Hardware Access is
function Addr is new Unchecked Conversion (Long.lateger, System.Address);
Hardware Register : integer;
for Hardware _Register use at Addr (164#FFO0004) ;
begia

ead Hardware Access;

27ITL89 UG-1212N-V1.2{286/ UNIX) © 1989 TeleSoft 9-51

TeieGenl “ser Guide for UNIX

When using an address ciause for an objec: with an initial value, the address clause snouid
immediately foilow the object declaration:
0bj: Some_Type := <init_expr>;
for 0Obj use at <addr_expr);

This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addr_exor> as par: of the eiaboration of the declaration of the object. The
expression <init_expr> wiil then be evaiuated and assigned directly to the object, which is stored
at <addr_expr>. lf another declaration had intervened between the object declaratica and the
address ciause. the compiier wouid have had to create a temporary object to hoid the
initialization vaiue before copving it into the object when the address clause is elaborated. [f the
object were a large composite type. the need to use a temporary couid resuit in considerabie
overhead in both time and space. To ootimize your appiications, therefore. you are encouraged
to place address ciauses immediately aiter the reievant object declaration.

As mentioned above. arrays containing components that can be allocated in a signed or
unsigned byte (8 bits) are packed. one component per byte. Furthermore, such components are
referenced in generated code by 30386 byte instructions. The following exampie mdxcates how
these facts allow access to hardware byte registers:

w#ith System;
with Unchecked _Conversicn;
prccedure Main is
function Addr is new Unchecked Conversion (Long_Integer, System.Address);
type Byte is range -128..127;
AW_Regs : array (0..1) of By‘ce;
for OW_Regs use at Addr (18#FFF310%4); ‘ c

Status_Byte : constant integer := 0;
Next_Blocik Request: constant integer := 1;
Request_Byte : Byte := 119;

Status : Byte;

begin

Status := HW_Regs(Status_3Byte);

HW_Regs (Next_Block Request) := Request. Byte;
end Main;

Two byte bardware registers are rejerenced in the example above. The status byte is at location
16#FFF210= and the next block request byte is at location 16#FFF311%.

Function Addr :akes a long integer as its argument. Long_Integer’Last is 16#7FFFFFFF#,
but there are certainiv addresses greater than Long_Integer’Last. Those addresses with the high
bit set. such as FFF.AO000. cannot be represented as a positive jong integer. Thus, for addresses
with the high bit set. the address shouid be computed as the negation of the 2’s compiement of
the desired address. According to this mechod. the correct representation of the sample address
above would be Addr! - 16=00060000=).

9.6.7.6. Change of Representation 'LRM 13.8]. TeieGen2 supports changes of
representation. exceot {or t¥pes with record representation clauses.

9-52 UG-1212N-V1.2:286. UNIX! 2 1989 TeleSoft 271UL39

O

PROGRAMMING GUIZE

9.6.7.7. The Package System LRM 13.7.. The specification of TeieGen2's impiementation
oi package System is presented in the LRM Appendix F section at the end of this chapter.

9.6.7.8. Representation Attributes [LRM 12.7.2!. The compiier does not support
"Adaress {or packages. :

9.6.7.9. Representation Attributes of Real Types 'LRM 12.7.3.. The representation
acttributes {or the predefined floating point types were presented in Taoie 9-3.

9.6.7.10. Machine Code Insertions {LRM 13.8]. Machine :ode insertions, an optional
{eature of the Ada language. are fuily supported in TeieGen2. Refer .0 the *Using Machine Code
Insertions™ section eariier in this chapter for information regarcing their implementation and
exampies on their use.

9.6.7.11. Interface to Other Languages [LRM 13.9l. In pragma Interiace is supported for
Assempiy, C, and UNIX. Refer to Section 9.4 for information on the use of pragma Interface.
TeieGen2 does not currently allow pragma Interface for library unitcs.

9.6.7.12. TUnchecked Programming {LRM 13.10l. Restrictions on unchecked
programming as it applies to TeleGen2 are listed in the following paragrapns.

(LRM 13.10.2] Unchecked conversions are allowed between types (or subtypes) T1 and T2 as
long as they are not unconstrained record or array types.

9.8.8. LRM Appendix F for TeleGen2. The Ada language definition allows for certain
target dependencies. These dependencies must be described in the reference manual for each
impiementation, in an “Appendix F” that addresses each point listed in LRM Appendix F.
Table 9-11 constitutes Appendix F for this implementation. Points that require further
clarification are addressed in the paragraphs that follow the table.

27ITL8S UG-1212N-V1.212868 /UNIX) © 1989 TeleSoft 9-53

TeleGenZ User Guide or UNTL

Table 9-11. LRM Appendix F for TeleGen?2

; (1} Impiementation-Dependent Pragmas (a) Impiementation-dedined pragmas: Comment,
i Linkname. Images. and No_Suppress (Section
| 9.6.3.1).
; (b) Predefined pragmas with implementation-
i dependent characteristics:
i
: = [nterface [assembly. UNIX, and C). ‘
1: (Section 9.4). Not supported for
: library units.
E = List and Page (in context of source/error
| compiler listings) (Seczion 3.7.1.3).
! (2) Impilementation-Dependent Attri- | TeleGen2 uses one implementation-defined attri- |
butes bute. 'Offset, which. along with the attribute 'Ad-
dress. facilitazes machine code insertions by allowing :
user programs to access Ada objects with little date |
movement or setup. lhese two attributes and their |
usage were described in *“Using Machine Code Inser-
tions.”” earlier in this chapter.
’Address is not supported for packages.
(3) Packaye System See Section 3.6.7.7. ,
(4) Res=trictions on Representation | Summarized in Tabie 9-10. ;
Clauses ,
(5) Implementation-Generated Names None
(6) Address Clause Expression Interpre- | An expression that appears in an object address |
tacion clause is interpreted as the address of the first.
storage unit of the obdject. |
() Restrictions on Unchecked Conver- | Summarized in Table 3-10. i
sions :
weeeaee Continued on the nest page -~e---v '
=34 UG-1212N-V1.2(286 /UNLX| T 1989 TeieSort 27JTLs9

PRUGRAMMING GUIDE

Table 9-11. LRM Appendix F for TeieGen2 (Contd)

e===--- Conuinued jrom the previous page -------

(8) Impiementation-Dependent Charac- | 1. In Text_lO. the type Count is defined as follows:

teristics of the [. O Packages. . cype Count is range 0..System.Max_Text IO _Count;
~ or 0.Max_Int~1 OR 0..2_147_482_646

2. In Text_]O. the type Fiald is defined as follows:

subtype Fieid is integer range
System. Max_Text _JO _Fieid:

3. In Text_1O. the Form parameter of procedures
Create and Open is not supported. (If you sup-
piy a Form parameter with either procedure, it
is ignored.)

4. Sequential JO and Direct_IO cannot be instan-
tiated for unconstrained array types or discrim-
inated types without defaults.

5. The standard library contains preinstantiated
versions of Text_IO.Integer 1O for types Integer
and Long._Integer and of Text JO.Float IO for
types Float and Long_Float. We suggest that
you use the following to eliminate multiple in-
stantiations of these packages:

Inceger _Tex: 1O
Long.lnteger Tex: IO
Float_Text IO
Long_Float _Tex: _JO

9.6.8.1. Implementation-Defined Pragmas. There are four impiementation-defined
pragmas in TeleGen2: pragmas Comment, Linkname. Images. and No_Suppress.

9.6.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the
objecs code. [ts syntax is:

pragma Comment (<string_literal>);

where **<string_literal>"" represents the characters 10 be embedded in :he object code. Pragma
Comment is allowed oniy within a declarative part or immediateiy within a package specification.
Any number of comments may be entered into the oobject code by use of pragma Comment.

9.8.8.1.2. Pragma Linkname. Pragma Linkname is used to provide interface to any routine
whose name can be specified by an Ada string literai. This ailows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a suborogram name that has been
previousiy speciiied in a pragma [nterface statement. The second is a string .iteral specifying the

27JTLa9 UG-1212N-V1.2{286, UNTX) © 1989 TeleSoft 933

TeieGenl Tser Guide Jor UNIX

exact link name to be empioved by the code generator in emitting calls to the associated
subprogram. The syntax is:

pragma Interface { assembly. <subprogram_name>);
pragma Linkname (<subprogram_name>. <string.literal>);

If pragma Linkname does not immediateiy foilow the pragma Interface for the associated
program. a warning will be issued saving that the pragma nas no edect.

A simple exampie of the use of pragma Linkname is:

procedure Dummy_Access! Dummy_Arg : System.Address);
pragma Interiace (assemdly, Dummy_lczess);
pragma Linkname (Dummy_Aczess, '_aczass?);

9.6.8.1.3. Pragma Images. Pragma Images controis the creation and allocation of the image
and index tables for a specified enumeration type. The image tabie is a literal string consisting of
enumeration literais catenated together. The index tabie is an array of integers specifying the
location of each literai within the image tabie. The length of the index tabie is therefore the sum
of the lengths of the literais of the enumeration type: ihe length of the index table is one greater
than the number of literals.

The syntax of this pragma is:

pragma Images(<enumeration_type>, Deferred);
e OF o=

pragma Images(<enumeration_type>, Immediate};

The default, Deferred. saves space in the literal pool by not creating image and index tables for
an enumeration type unless the 'Image. 'Value, or 'Width attribute for the type is used. If one of
these atiributes is used, the tabies are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more
than one set of tabies is generated. eliminating the benefits of deferring the table. In this case,
using

pragma Images(<emumeration_type>. Immediate);

wiil cause a single image table to be generated in :the literal pool of the unit deciaring the
enumeration type.

For a very large enumeration type. the length of the image tabie will exceed Integer’Last
(the maximum length oi a string). In this case. using either

pragma lmages(<enumeration_type>, lmmediate);

or ihe 'lmage. 'Vaiue. or '"Width attribute for the type wiil resuit in an error message from the
compiler.

9.6.8.1.4. Pragma No_Suppress. No_Suppress is a TeieGen2-defined pragma that prevents
the suporession of checiks within a particuiar scope. [t can be used to override pragma Suppress
in an enciosing scope. No_Suporess is particuiariv usefui wnen vou nave a seciion of code that
reiles upon predefined checks 1o execute correctiy. but you need to suppress checks in the rest of

%38 TG-1212N-V1.2(286 / UNIX) © 1989 TeleSoft 27JUL89

()

PROGRAMMING GUIDE

the compilation unit for performance reasons.

Pragma No_Suppress has the same syntax as pragma Suppress and may occur in the same
places in the source. The syntax is:

pragma No_Suppress (<identifier> [, (ON =>] <name>});

where <identiffer> is the type of check vou want to suppress (e.g., access_check; refer to

LRM 11.7)

<name> is the name of the objeci. type;subtype. task unit, generic unit, or subprogram
within which the check is to be suppressed: <name> is optional.

If neither Suppress nor No_Suppress are present in a program. no checks will be suppressed.
You may override this default at the command ievei. by compiling the die with the —i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information an —i(nhibit, refer to Chaoter 2.

If either Suppress or No_Suppress are present, ige compiier uses the pragma that applies to
the specific check in order to determine whether that check is to be made. If both Suppress and
No_Suppress are present in the same scope. the pragma declared last takes precedence. The
presence of pragma Suppress or No_Suppress in the source takes precedence over an -i(nhibit
option provided during compilation.

9.8.8.2. Package System. The current specification of package System is provided beiow.

[P

(]
La
*
-
Ou
(']

UG-1212N-V1.2(288/UNTIX} © 1989 TeleSoft 937

TeleGenl User Guide for UNIX

package System is
type Address is access integer;
type Subprogram _Value is private;

type Nanme is (TeleGen2);

System Name : constant name := TeleGen2;
Storage_Unit : constant := 8§; :
Memory_Size : comstant := (2 «= 31) -1;

-- System-Dependent Named Numbers:

«= See Table 9-8 for the values for attributes of
«- types Float and Long_Float L

Min: Tnt : comnstant := —(2 == 31);

Max_TInt : comnstant := (2 == 31) -1;

Max Digits : constant := 13;

Max _Mantissa : comstant := 31;

Fine Delta : comstant := 1.0 / (2 == Max Mantissa);
Tick : constant := 10.0E-3;

-- Other System-Dependent Declarations

subtype Priority is integer range 0 .. 63;

Yax _Object_Size : constant := Max Int;
Max_Record._Count : coastant := Max Int;
Max_Text_I0_Count : constant := Yax_Int -1;
Yax Text I0 Field : constant := 1000;

private

end Sys.;:c;m;

9.6.8.3. Representation Clause Restrictions. Restrictions on representation clauses within
TeieGen2 were discuzsed in “LRM Chaopter 13. eariier in this section.

9.6.8.4. Impliementation-Generated Names. There are no impiementation-generated
names to denote implementation-dependent components.

9.6.8.3. Address Clause Expression Interpretation. An expression that appears in an
object address clause is interpreted as the address of the first storage unit of the object.

9.6.8.8. Unchecked Conversion Restrictions. Restriczions on uncaecked conversions were
discussed in "*Unchecked Programming,’” eariier in this seczion.

9-33 UG-1213N-V1.2(286/UNIX) @ 1989 TeleSoft 37ITL89

PROGRAMMING GUIDE

9.8.8.7. Implementation-Dependent Characteristics of the I/O Packages.
1. In Text_ IO, the type Count is defined as foilows:
type Count is range O..Long Integer’'last - 1

In Text_IO. the type Field is defined as follows:
subtype Field is integer range O..Text_Manager.Field’'lLas:;

[3]
H

3. Sequential_IO and Direct_1O cannot be instantiated for unconstrained array types or
discriminated types without defaults.

4. The standard library contains preinstantiated versions of Text_IO.Integer_JO for type
Integer and Long_Integer and of Text_]O.Float_lO for type Float and Long_Float. It
is suggested that the following be used to eliminate multiple instantiations of these

packages:
[nteger _Text JO
Long_lnteger_Text 1O

Float_Text 1O
Long_Float_Tex: IO

27JTLa9 UG-1212N-V1.2({386/UNIX) © 1989 TeleSoft 9-59

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file

name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC_SIZE 32

An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIG_ID1 199 = 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

SBIG_ID2 199 = 'pA' & '2°'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

S$BIG_ID3 100 = 'A' & '3' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIS_ID4 except
for a character near the middle.

Name and Meaning

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT_LIT
An integer literal of value 298
with enough 1leading zeroes so
that it 1is the size of the
maximum line length.

$BIG_REAL_LIT
A universal resal 1literal of
value 690.0 with enough leading
zeroes to ‘be the size of the
maximum line length.

SBIG_STRING1

A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_IDI.

$SBIG_STRING2

A string 1literal which when

catenated to the end of
BIG_STRINGl1 yields the image of
BIG_ID1.
$SBLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.
$COUNT_LAST
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.
SDEFAULT_MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY_SIZE.
SDEFAULT_STOR_UNIT
An integer literal whose value

is SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

Yalue

100 » "A' & "4’ & 99 * 'A’

197 = '9' & "298"

195 * 'Q' & "69@.9"

ME 100 * 'A' & '

LRLN] &99 * lA' & 'll & LN L]

189 = ' !

2_147_483_646

2147483647

Name and Meaning

SDEFAULT_SYS_NAME

The value of the constant
SYSTEM.SYSTEM_NAME. '

$DELTA_DOC
A real literal whose value 1is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

SFIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real literal that
lies hetween DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAMEL
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAME2
An external file name
is too long.

which

TEST PARAMETERS

Value

TELEGEN2

2#1.08E-31

1000

NO_SUCH_FIXED_TYPE

NO_SUCH_FLOAT_TYPE

100_000.0

131_073.0

63

BADCHAR*" /%

/NONAME/DIRECTORY

Name and Meaning

SINTEGER_FIRST
A universal
whose value 1is

integer literal
INTEGER'FIRST.

SINTEGER_LAST
A universal
whose value 1is

integer literal
INTEGER 'LAST.

SINTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal whose
is SYSTEM.MAX_MANTISSA.

value

SMAX_DIGITS
Maximum digits supported for

floating-point types.
SMAX_IN_LEN
Maximum input line length

permitted by the implementation.

SMAX_INT
A universal
whose value 1is

integer literal
SYSTEM.MAX_INT.

$MAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+l.

TEST PARAMETERS

Value

~-32768

32767

32768

-100_000.0

-131_073.0

i1

15

200

2147483647

2_147_483_648

Mame and Meaning

SMAX_LEN_INT_BASED_LITERAL
A universal integer
literal whose value is
with enough 1leading
the mantissa to be
long.

based
28114
zeroes 1in
MAX_IN_LEN

SMAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value 1is 16:F.E: with
enough leading zeroces 1in the
mantissa to be MAX_IN_LEn long.

SMAX_STRING_LITERAL
A string literal of
MAX_IN_LEN, including the
characters.

size
quote

SMIN_INT
A universal
whose value is

integer literal
SYSTEM.MIN_INT.

SMIN_TASK_SIZE
An integer literal whose wvalue
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in

its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORT_FLOAT,
LONG_FLOAT, or

SHORT_INTEGER,
LONG_INTEGER.

SNAME_LIST
A list of enumeration literals
in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A based 1integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

TEST PARAMETERS

Value

"2:" & 195 * 101 & Hll:"
"16:" & 193 * 'Q' & "F.E:"
Pt & 198 %* IA! & et
-21474836438

32

NO_SUCH_TYPE_AVAILABLE

TELEGEN2

164§FFFFFFFE#

Name and Yeaning

SNEW_MEM_SIZE
An integer literal whose wvalue
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT_MEM_SIZE. If there |is
no other value, then use
SDEFAULT _MEM_SIZE.

SNEW_STOR_UNIT
An integer literal whose value
1s a permitted argument for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. If there is
no other permitted value, then

use value of SYSTEM.STORAGE_UNIT.

SNEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than SDEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK
A real literal whose value 1is
SYSTEM.TICK.

TEST PARAMETERS

Value

2147483647

TELEGEN2

32

0.01

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expécts a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective

wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e, BC30098B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the wunits is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

WITHDRAWN TESTS

CD2A63A..D, CD2A66A..D, CD2AT3A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE 1length <clause and attribute, whose 1interpretation 1is
considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this

is not the case, and the main program may loop 1indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

CD2B1S5C & (CD7205C These tests expect that a 'STORAGE_SIZE
length «clause provides precise control over the number of
designated <c¢bjects in a collection; the Ada standard 13.2:15

allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type {at line 30) that defines a set of
model numbers that are not necessarily represented 1in the
parent type; by Commentary AI-00099, all model numbers of a

derived fixed-point type must be representable values of the
parent type. :

CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for wvalidation.

CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA_ERROR 1is

WITHDRAWN TESTS

expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 1is to be interpretad; thus, this test objective
is not considered valid. (line 90)

CE3111¢C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

CE3301A This test contains several calls to END_OF_LINE &
END_OF_PAGE that have no parameter: these calls were 1intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ERROR 1s raised
by a subsequent PUT operaticn. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

References and page numbers 1in this appendix are
consistent with compiler documentation and not with this
report.

ADA(1) USER COMMANDS ADA (1)

NAME
ada - TeleGen2 Compiler

SYNOPSIS
ada -l libname -t templib: \-V vsm _size| {-C n: -E nj l-i acln]

fem unit {-b, -T n, -P options, -p objects. -o filej|
1-O key |-G -1 file|] [-L | FSdekvx] [-u [s| i input_spec

DESCRIPTION
The ada command calls the TeleGen2 compiler. which comprises the front end. middie pass. code
generation, and list generation phases. By default the front end, middle pass, and code generation
phases are executed. This process resuits in the generation of object modules, which are put into
the working sublibrary. The Ada binder and native linker may be be invoked to create an
exacutable file.
The command terminator, input_spec, indicates the file or files to be compiled. Any number and
combination of files may be specified, up to the maximum line length. Files listed on the
command line that have no extension are given the extension ".ada" by the compiler. Source files
that have the ".ada" extension are assumed to contain Ada text to be compiled, whereas source
files that have the ".ilf" extension are assumed to contain a list of files to be compiled.
The temporary errors file is created in /tmp as errorXXXXXX, with the "XXXXXX" being
replaced with the compilation process number to prevent file name collision.
Compilation errors as well as compiler driver errors (e.g. "file not found"”) are output to stderr
Informational output will also be directed to stderr. Banner messages as provided by the -v option
are examples of informational output.

OPTIONS

Library Specification Optiona:

-] libname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the -t option is not used, the default /idlst.alb is assumed to be the library. -1 cannot
be used with -t.

-t templsb
Use templib as a temporary sublibrary list for this process. The defauit sublibrary list file
is not read. The first sublibrary in the list is the working sublibrary. Templib may be
specified as "sublibl,sublib2..." or as "sublibl sublib2 ...". -t cannot be used with -l

-V vern_size
Set the size of the Virtual Space Manager’s buffer space to vsm_size Kbytes. The defauit
vsm_size for the command is 2000 Kbytes.

The optimal value for vsm _size depends on the amount of system memory available and
the number of concurrent users. For a full description see Chapter 3 in the TeleGen2 User
Guide.

Compiler Ezecution Control Options:

-E n Abort compilation after n errors. Only errors detected by the front end phase are counted.
The default is 999. Each error message type is counted independently of the others. For
example, in the default situation, the user may have 998 warning messages and 998 syntax
errors and the compilation will not abort.

-i <key>
(Inhibit) Suppress run-time checks, source line references, and subprogram name

TeleGen2(386/UNIX) Last change: 23 February 1989 1

ADA(!) USER COMMANDS ADA (1)

information in generated object code.

<key> is one or more of the singie-letter suboptions listed below. Several combinations of
suboptions are possible. When more than one suboption is used, the suboptions appear
together with no separators. For example, "-i Inc".

a Suppress all: source line information, subprogram name information. and run-
time checks. In other words. "a" (= suppress all) is equivalent to "Inc".

c Suppress run-time checks .- elaboration. overflow, storage access, discriminant,
division, index, length, and range checks.

1 Suppress source line information in object code.
n Suppress subprogram name information object code.

As an example of use, the command "ada -v -i Ic myfile.ada", inhibits the generation of
source line information and run-time checks in the object code of myfile.ada.

-m unit
Treat "unit" as & main program. After all files named in the input specification have been
compiled, the Ada binder and native linker are invoked. An executable file named unit is
left in the current directory. If the main unit has aiready been compiled, it does not have
to be in the input file(s). However, it must be present in the current working sublibrary.
If the -m option is used. appropriate binder/linker options (-m, -b, -T, -P, -p, -0} are
passed to the binder/linker (see ald(1}).

-v Be verbose. Announce each phase as it is entered.

Output Control Options:

-e Only report errors: do not produce any objects. This option causes only the front end to
be executed. The front end detects all syntax errors and most semantic errors in the Ada
source code. Some errors, however, can be detected only by the middle pass and code
generator; such errors will not be detected when the -e option is specified. Examples of
such errors are those involving the legality of specific representation specifications and
violation of code generator capacity limitations. This option is meaningless when used
with -k. -d, -O, and -x, since each of the latter options requires the production of code
generated after front end processing.

-k Keep the intermediate code {High Form and Low Form) for unit bodies in the library. By
default, the intermediate cods for bodies is deleted from the library after code generation
to minimize library size. The intermediate code is used by the Ada Cross-Referencer (see
azr{l)) and the Debugger (sec adbg(l) and the .d option of the ads command) and
operated on by the Global Optimizer (see aopt(1} and the -O option of the ada command).
The -k option must therefore be used if any of these three programs are to be used for any
unit in the current source file. (An exception is that -k need not be used when the -d
option is used, since use of -d automatically sets -k.)

-d Provide for debugging. This option causes the code generator to save information needed
by the TeleGen2 debugger, adby, in the Ada program library. This information is used for
mapping between source and object code locations, and for locating data objects. The -d
option also causes some additional information to be output in object modules. However,
there is no impact on generated code per se. Use of -d automatically sets the -k option.

-u Update the library, either after each source file compiles successfully (-u s) or after the
entire invocation {-u i). This option is most useful for multi-file compilations. In a single-
file compilation, an error within the file prevents the library from being updated. In a
muiti-file compilation, an error within one file will prevent that file from compiling

TeleGen2{388/UNIX;] Last change: 23 February 1989 2

ADAN)

-0 key

-X

USER COMMANDS ADA(1)

successfully (the library will not be updated with respect to the units in that file). The
library may or may not be updated for the other (error-{ree) files in the compilation,
depending on whether -u is used. If “-u i" is used, the library is updated only at the end
of compilation. This means that an error found anywhere in any file will prevent the
library from being updated. If ‘‘-u s’ is used, the library is updated after each source is
compiled. This means that the library will be updaied for all error-free files. NOTE: *-u
s'" is the default; it is equivalent to not using -u at all.

Optimize code for each unit being compiled. The optimizer cptimizes each unit separately
as it is being compiled and does not make cross-unit optimizations. The argument to the
-0 option, key, must be present and must immediately follow the option. This argument
provides details about how the units are to be compiled. For example, one of the key
arguments indicates whether subprograms being optimized may be called from parallel
tasks. See aopt(1) for information about acceptable key values.

Two other optioas may be used in conjunction with —O:

-G Generate a call graph for the unit{s) being optimized. Refer to aopt(1) for more
information. Note: in the TeleGen2 User Guide, a discussion on the use of the -G
option with ada is deferred to the Global Optimizer chapter.

-I file Inline the subprograms listed in "file". Refer to aopt(l) for more information.
Note: in the TeleGen2 User Guide, a discussion on the use of the -1 option with
ada is deferred to the Global Optimizer chapter.

Generate profiler information and put it in the object module. Profiler information
in:ludes execution timing and subprogram call information. U code is compiled with the
-x option, that option must also be used with the ald command when the program is
bound and linked (see ald(1)).

Listing Cantrol Options:

-L

-F

-8

SEE ALSO

Output a source listing interspersed with error information to sourcefile.l, where
"sourcefile”” is the name of the user-supplied source file without the Ada extension. If an
input-list file is to be processed, a listing file is generated for each source file in the input
lis.. Each resuiting listing file has the the same name as the source file, except it has an
" |" extension appended to it. For example, when this option is used with an input list
that contains 10 source file names, 10 listing files are generated as a result of the
compilation. If the -F option is used, the listing will not be interspersed. Insiead, errors
will follow all the source lines.

Do not intersperse errors in source listing; put them after al) source lines. This option is
used only with the -L option.

Provide n source lines as context with error messages. The default is 1, which is the
erroneous line itself. Context lines are placed before and afier the error line in the error
message.

Senc a source;assembly listing to unit.s, where "unit" is the name of the unit in the user-
supplied source file. I an input-list file is specified, a listing file is generated for each
source file in the input-list file. For example, when this option is used with an input-list
file that contains 10 source file names, 10 listing files are generated as a result of the
compijation.

acmp(l), acp(1), acr(1), ald(1), ala(1), amv(1), arec(1}), arel(1}, arm(1), asd(1}, axr(1)

TeleGen2(386/UNIX) Last change: 23 February 1989 3

ﬁ

v

* ALD(1) USER COMMANDS ALD(1)

NAME
ald - TeleGen2 binder/linker

SYNOPSIS
ald -l libname -t templib: -V vsm _size} -T n: \-P optionsi :-p objects]
(-0 name| -;bsvXx| -Y size| ;-y size| {-D | -w max_time; mainunit
DESCRIPTION ‘
The ald command calls the Ada binder and linker. This command outputs the executable program
to file matnunit. The binder and linker are executed by default. The user may exciude the linker
from the run.

A library may be specified by usi..g the default library file, liblst.alb, specifying a library file with
the -1 option, or specifying a temporary library list on the command line, by using the -t option.

Option pass-through to the native linker is provided.
The binder puts an elaboration code file, mainunit.obm, in the working sublibrary directory.

I the native linker is not invoked, a link script file, mainunit.lnk, is put in the current directory.
This seript file may may also be modified by the user so that other object code or special linker
options are used.

OPTIONS

-b Run binder phase only. Elaboration code and a link script are produced. The link script
1s put in the file mainunit.ink.

-1 ltdbname
Use libname as the file containing the sublibrary list. The sublibrary list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted,
and the -t option is not used, the default /tblst.alb is assumed to be the library. -l may not
be used with -t.

-0 name
Use "name" instead of "mainunit" as the name of the executable file.

-P options
Pass options to the native linker. options must be a quoted string. This option is provided
as an escape to allow use of all native linker options without producing and editing a link
script. An example is: ald -P -t-r’. Refer to the Linker portion of the TeleGen2 User
Guide for more information.

-p objects

Pass objects Lo the native linker. objects must be a quoted string; it may include archive
files. This option is typically used with pragma Interface and the -| native linker option.

objects may be specified as "objectl object2 ..". An example is: ald -p ’costne.o
Jusr/lib/libm.a’. Refer to the the Linker portion of the TeleGen2 User Guide for more
information.

-T n Trace back depth of exception report. When a run-time exception occurs, the name of the
unit and the line number of where the exception occurred are displayed with a call chain
history. The number n, which is 15 by default, defines the levels of call chain history.

-t templib
Use templib as a temporary sublibrary list for this process. The default sublibrary list file
is not read. The first sublibrary in the list is the working sublibrary. Templib may be
specified as "sublibl.sublib2..." or as "sublibl sublib2 ...". -t may not be used with -1.

-V vsm size

TeleGen2({386/UNIX) Last change: 15 May 1989 ' 1

¢ ALD(1) USER COMMANDS ALD(1)

Set the size of the Virtual Space Manager’s buffer space to vsm_size Kbytes. The default
vsm_size for the command is 2000 Kbytes.

The optimal value for vsm_size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Programming Guide
chapter.

Note: the -p and -P options are used to provide compatibility with the System V Interface
Definition while dealing with the non-System V compatible {d command (-Ix).

-v Be verbose. Announce each phase as it is entered.
-X Link in the execution profiler’s run-time support routines. During program execution.
these run-time support routines record the profiling data in memory. then write the data

to files as the program terminates. Units to be profiled must be compiled with the -x
option of the ada command.

The options below are binding options used for task execution.
-D Select non-preemptive delay. This option works only with an interrupt run-time. -D is
incompatible with -w.

-w msec
Limic task execution time to msec; the default is 0 msec. -w is incompatible with -D.

-X Report unhandied exceptions that occur in tasks.

<Y stack
Allocate "stack" bytes (32-bit bytes) of space for task execution. The default is 8192
bytes {long-integer). A representation specification for T'storage size overrides this
option.

-y guard
Allocate "guard" bytes (16-bit bytes) of extra task space for exception and interrupt han-
dling. The default is 1024 bytes (natural). A representation specification for
T’storage size overrides this option.

BUGS AND KNOWN LIMITATIONS
The body of the main program must reside in the current working sublibrary.

SEE ALSO
ada(l)

TeleGen2(286/UNIX) Last change: 15 May 1989 2

-

AOPT|

NAME

1} USER COMMANDS AOPT(1)

aopt - TeleGen2 Global Optimizer, standalone mode

SYNOPSIS

aopt -l libname ' -t templib] i-V vsm_size| i-N collection]| [-O key] |-I file| [-GkSvx] file

DESCRIPTION

The aopt command invokes the TeleGen2 Gliobal Optimizer in a standalone mode. Use of the
optimizer results in programs that are smaller and faster than those compiled without
optimization. The optimizer works by rewriting the Low Form representations of compilation
units and then passing the new forms to the code generator.

As a standalone tool. the optimizer works on a specified set of previously compiled units taken as a
collection. Optimization of a collection enables cross-unit optimizations within and between units
of a collection, allowing for a higher level of optimization than can be achieved with optimization
during compilation. The units in the collection may include the Ada run-time library as well as
user code, and may constitute an entire program or a stable set of functionally related packages.
In essence, Lhe standalone optimizer takes the Low Form of a set of units that are to be optimized
together as a collection, optimizes them, and runs them through the code generator. "Code
generation" options are therefore provided with aopt.

The optimization process is guided by the command options and suboptions listed below. The
command terminator, file, is a text file that lists the units to be optimized. The file consists of two
lists, separated by a semicolon. The units in each list are separated by commas. The first list
contains visible units, which are those units that may be referenced by units outside of the
collection. The second list consists of hidden units, or those units which may only be referenced by
units within the collection. In the compilation of an entire program, the main program unit is the
only visible unit, while all other units are hidden. If only one list exists, the units are compiled as
visible.

All units to be optimized must first be compiled with the -k option, and must not have been
optimized during compilation. The -k option keeps the Low Form intermediate code, which is
needed for the optimization process, in the library. For guidance in efficient use of the optimizer,
see the Optimizer chapter of the TeleGen2 User Guide.

OPTIONS

The " Optimizer" Option and Its Suboptions:

-0 Optimize the code for each unit of a collection with the Optimiser in standalone mode.
The argument to the -O option, <key>, must be present and must immediately follow the
option. This argument provides details about how the units are to be compiled. The
suboptions for the argument <key> are described below. If the -O option is not specified
on the command line, the aopt command assumes the default, -O D, where D represents
all the default <key> suboptions.

P/p These two suboptions of the -O option indicate whether or not one or more subprograms
being optimized might be called from parallel tasks. The default, P, indicates that
subprograms might be called from paraj! .asks. The p suboption indicates that none of
the subprograms can be called from paraue! tasks. The p suboption allows data mapping
optimizations to be made that cannot be made if multipie instances of a subprogram are
active at the same time.

R/r These two suboptions of the -O option indicate whether or not one or more subprograms
interior to the unit being optimized can be called recursively by an exterior subprogram.
The default, R, indicates that an interior subprogram can be called recursively by an
exterior subprogram. The r suboption indicates that none of the subprograms in the unit

TeleGen2(386/UNIX) Last change: 18 February 1988 1

AOPT(1)

I/i

A/a

D/d

USER COMMANDS AOPT (1)

being optimized can be called recursively by subprograms exterior to the unit or collection
being optimized.

These two suboptions of the -O option control the inline expansion of suitable
subprograms. The default, I, causes the subprograms that are marked with an Inline
pragma or generated by the compiler to be expanded in line. The i suboption prevents all
inlining. If suboption i is specified, the A/a suboptions have no effect and no inlining will
occur.

These two suboptions of the -O option enable or disable automatic inline expansion. The
default, A, causes the automatic inline expansion of any subprogra.n called from only one
place, as well as those marked by an Inline pragma or generated by the compiler. The a
suboption disables automatic inline expansion. If a is used. inlining is controlied by the
1/i suboptions and the -I option. If the i suboption is used, the A/a options are disabied.
The aopt command option - is described bejow.

These suboptions represent all (D) or none (d) of the default suboptions of the -O option.
If -O is not listed on the command line, then -O with its default suboption D is assumed.
An alternative way to enter -O D is to use -O PRIA. An alternative way to enter -O d
is to use -O pria.

Additional Optimizer Options:

-G

-1 file

Generate a call graph for tlLe unit or collection being optimized. A call graph is a normal
text file that dispiays the static calling relationships among subprograms in an optimized
unit or collection. The -G option generates a list for each subprogram which displays
every subprogram called by that subprogram. By default, this list (graph) is not
generated. When -G is used, the call graph is output to a file that has the same name as
the unit or collection being optimiged, with the file extension ".grf". See the Optimizer
chapter of the TeleGen2 User Guide for information on the structure and interpretation of
caill graphs.

(Inline list) Inline the subprograms listed in "file". This option allows you to select
subprograms for inlining instead of automatically inlining all subprograms. This option
should be used with the -O option’s "key" suboption -a, which disables automatic inlining.

This option takes one argument. The argument specifies a file that contains the
subprogram names in the same format as the collection file, i.e., two lists separated by a
semicolon. The first file specifies the subprograms to be inlined. These subprograms will
be processed as if there had been a pragma Inline in the source. The second file specifies
the subprograms not to be inlined, and any Inline pragmas within them will be negated.
If no items are specified in the first list. use a semicolon to mark the beginning of the
second list. Subprogram names in these files should list the compilation unit indicating
the location of the subprogram declaration, not the location of its body. If the
compilation unit name is not supplied, any matching subprogram name will be affected.
The processing of the names is case insensitive.

-N collection

Optimize the units named in "collection". The name is used by the library units for
storing and retreving information about the optimized collection. The collection name is
any name for the collection that has not been used for another collection in the same
sybiibrary. Since the name has a type associated with it, the name of a coilection may
duplicate the name of another library unit. If you do not use the -N option, the optimizer
¢reates a unique name for it based on the system time associated with the creation of the
collection.

TeleGen2(386/UNIX) Last change: 18 February 1988 2

r

« AOPT(1)

-k

-8
-v

-X

SEE ALSO

USER COMMANDS AOPT(1)

Library Management Options:

-l ltbname

Use libname as the file containing the sublibrary list. The sublibrarv list is the ordered set
of sublibraries that collectively define the Ada Program Library. If this option is omitted.
and the -L option is not used. the default /idlst.alb is assumed to be the library. -l may not
be used with -t.

-t templib

Use temphb as a temporary sublibrary list for this process. The -l option must not be
used when the -t option is given. The default sublibrary list file s not read. The first
sublibrary in the list 1s the working sublibrary. Templib may be specified as
"sublibl,sublib2..." or as "sublibl sublib2 ...". -t may not be used with -l.

-V vam sze

Set the size of the Virtual Space Manager's buffer space to vsm_size Kbytes. The default
vsm_size for che command is 1500 Kbytes.

The optimal value for vsm _size depends on the amount of system memory available and
the number of concurrent users. For a full description see the Programming Guide chapter
of the TeleGen2 User Guide.

Code Generation Options:

Keep High Form and Low Form for bodies in the library. By default, the High Form and
Low Form for bodies are deleted from the library after code generation 'o minimize library
size.

Generate a source-assembly listing of the units in the input file.
Be verbose. Announce each phase as it is entered.

Generate profiler information in the object module. Profiler information includes
execution timing and subprogram call information.

ada(1), ald(1)

TeleGen2(386,/UNIX) Last change: 18 February 1988 3

