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Dear Workshop Attendee: (

Thank you for your interest in the ONR/Honeywell Multivariable Control
Workshop. We have received your registration and are happy that you are able
to attend.

Limousine service is available from the Minneapolis=-St. Paul Airport to
downtown. The Minneapolis/Downtown Limousine will drop at either the Holiday
Inn or the Hyatt Regency. (We are sorry that the Concord Hotel, listed in your
brochure, is no longer available.)

We expect the workshop to run from §:30 a.m. to 5:00 p.m. each day. Lunch each
day is provided as part of -your registration fee,

A hospitality suite, hosted by Honeywell, will be held at the Hyatt Regency on
Monday, October 8 from 5:30 = 7:30 p.m. to which you are all invited.

There will be a workshop banquet (also included in your registration fee) held
&t the Nicollet Island Inn on Tuesday evening, October 9. Featured speaker at
the banquet will be Professor George Zames of McGill Univeraity. A sign-up
shest at the conference gegistration table will have menu selections. Bus
service will be provided from the Hyatt Regency to the Nicollet Island Inn,

If you have any questions please feel free to contact Kelly Deedrick (612)
378-5T16.

Sincerely,

John Doyle/Joe Wall

Workshop Coordinators
Honeywell Inc. :

2600 Ridgway Parkway, Box 312
N17-2370

#Minneapolis, MN 55440

(I
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SYSTEMS AND RESEARCH CENTER AERQSPACE AND DEFENSE GROUP .
2600 RIDGWAY PARKWAY P 0. BOX 312. MINNEAPOLIS, MINNESOTA 55440, TELEPHMONE 612/378-4141
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W PART  ONE
DOYLE'S NOTES




PREFACE

These notes ars intended to supplement the tutoriel lecturss for the
workshop by filling in a few dstails left out in the lectures. They are not com-
plete, but are simply what was available at the tims. We expsct to have a
draft of a complete st of notes for the material presentsd in the tutorial by
the end of the year. ' ‘

Many poople contributed to these notss, although most are probably
reluctant to admit it. They begsn as a very sketehy set of resemrch notes
that | developed, and have been somewhat rewritten by g:yself and the other
authors. In particular, Cheng-Chih Chu wrote most of Section 2.3.3 on the
Soluticn of the Algebraic Riccati Equation and heiped throughout. Bruce
Francis wrote most of Chapters 2.2 and 2.4 on Stabiliza.tio'n and Approximas-
tion. Pramod Khargonskar also helped throughout, but particulzrly with the
method ‘of proof used in Section 2.3.4 on Inner-Quter Factorization. Gunter
Stein, of course, was the prime motivator of the whole tutorial. Whatever
seems enlightening and clever about the prasentation is prebably due to the
other authors. Any obfuscation is probably mine alone.

There are obviously lots of deficiencies in these notes. There are assen-
tizily no references, because we're trying to take credit for most of the con-
trol theory research of the last twenty years, Actusily, we just didn't get to
them. Ditto on most of the introductions to the chapters. The introductions
were supposed {0 motivate ths techrical detauls 1 the subsequent sections,
but hopefully the tutorial lectures will do that. There are probably lots of

typos, and whole sections that are in the table of contents haven't been writ-

ten. : : ‘}wL ,90.7[,,

dk. 2/ 1984
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0.0 Notation

SYMBOL

2(¢) = gt-t(t)

1 (=»y)(2) := J:z(t -rly(r)dr

2. A® = complex-conjugate transpose of complex matrix 4

r__J

3. I = adjoint of operator [’

1..6

1,(¢) = unit step function;
8(t) = unit impuise

G(s) = two-sided Laplace transform of g(¢)

Xi= orthogonal complement of X

3(A) = largest singular value of matrix 4

p(A) = spectral radius of matrix 4




0.1.1 Function Spacss
Continuous time domain

Lg(R.C™™):  Hilbert space of matrix-valuad functions oa R, with inner
product

</ ;g >:= Z‘tmc&{f {t ).“g {t)}&.
Hy{R.C™™): subspace of furictions z‘ero for ¢ <0.
HyR.C™™) :  subspece of functions zero for £>0.
Py, and PH{-: . the orthogonal projections from Lz(R,.C*™**) onto

Hy(R.C™™), Ho(R.C™™) respectively.

Continuous frequency domain ‘

JR  imaginary axis.

LR.C™™): Hilbert space of matrix-valued functions on jIR. with inner
product

. —1-. ¥ eg)® y
<F,G>:= o .fotrace[F(J w)*G( 0)]da.
H(jRC™™): subspace of functions /(s ) analytic in Re §>0 and satisfying

s;.)tg}trace[i’(a*jv)‘ﬁ'(a-&-j o)]do <o



a3

LAFMC™e Y Ranesh spece of (essentially) bourded muatris-valusd

funietions, with norm

lelfe s ess up 2P

H i RC™™):  subspecs of functions F(2) analytic ssd bounded in Re 550

Py Ppi the orthegonal projections from Lei RE™™Y) onte

H(fR.C™=), HyfRL™* 3 respestively,

Prefiz R denctes resl-rations] and the prefix 2 denotes the unit bell,
Tae symbol R{™**) denotas proper resl-rations! matrices. Sumetimas the
gpaces are abbraviated e3 Lz(R), vte. or a8 Lg, stc. whan context detarmines
the argumaents.

The Fourier transform yislds the foliewing [irometric] isormorphisms:
La(IR, ©39) & L4 R, €™)
Ha(IR, €7) 8 Ha(fIRK, ©™)

Hy(R, ™ W8 Ha(j R, o™ )

it
Ths norms on these spaces urs all denstad by glz

A usshul fact is that the norm of & matrix @ in L(J IR, ™) equals the

norm of the corresponding multiplication opesator
I =0 Gf 1 La{fIR €%} = Ly(jIR, C™);
taat iy,
l6ll. = supl 1M
lell = suolllesfle: £ @ Latm €03, s

It also equals the norm of the operator restricted to H(f R, €™ ):



”G”,, % sup{”@f L:‘f £ HoUR, €, ”,f“pﬁi}



0.2.1 Controilability and Oeervability

Consider the system

z=Az+Bu, z(0)=0. 1)

The system or the pair (4,5) is controllable if, for each time £;>0 and final
stats z,, there exists a (continuous) input u(s) such that the solution of (1)

satisfles z(¢,) = z,.
Theorem 1
The following are equivalent:

(t) (A.B)is controllable.

(ii) The matrix LE. AB, A*B ] has independer.: rows,

(iii) The matrix [A-)J \ E] has independent rows for all Ain €

(iv) The eigenvalues of A+BF can be freely assigned by suitable choice of F.

The matrix A is said to be stable if all its eigenvalues satisfy ReA<0. The
system, or the pair (4,5), is stabilizable if there exists an F such that 4+5F
is stable.

Theorem 2
The following are equivalenc:
(i) (A.B) is stabilizable.
(ii) The matrix {A-M .B] has independent rows for all ReAx=0,

¥We will now consider the dual notions of observabiity and detectabiiity

with the system

zz4z ., z(0)=z



y=0C
The system, or the pair (C.4), is observable if, for every ¢,>0, the function
y(t), ¢t € [O.t;]. uniquely determines the initial state z,.
Theorem 1':
The following are equivalent:

(i) (C,A) is observable,
c
CA

2
(i) The matrix|‘ | hasindependent columns.

A
(iii) The matrix CV] has independent columns for all A in C.

(iv) The eigenvalues of A+HC can bhe freely assigned by suitable choice of H.

(v) (A.C) iscontroliable.

The system, or the pair (C,A), is detectadle if A+HC is stable for some
H.

Theorem 2':
The following are equivalent:

(i) (C.A)is detectable

{33\ Tha smabeie [A - hae indanandant anlitmmne far all RDa AN
AMY MMV sasmave am l c J pod—r1 ~ ~ awe wan avw (—wws

(ii) (4',C) is stabilizable.



0.2.2 Transfer Functions

Consider the linear, time-invariant, ordinary differantial equation
described by

Zz4z + Bu (1
y=2C + Du

where z(t) € IR ™is the state, u(f) € R ™is the input, and y(¢) € R ? is the
output. The 4,5,C, and D ars appropriatsly dimensioned real matrices.

Associated with (1) is the convolution equation

y(t) = (gwu)(t)
g(t) = Ca®B1.(t) + Dé(¢) (2)

and, upon taking Laplace transforms, the resulting transfer function is

y(s) = G(s)u(s)
G{s) = C(s/=A)"'B + D (3)

To sxpedite calculations involving transfer functions the notation

H—g} C(s/=4)'8 « D (4)

B
will be adopted. Note that {2 D is a real block matrix, not a transfer fune-

tion. The product of two transfer functions is, of course, the cascade of the
two gystems or just the multiplication of two rational matrices. The conven-
tion will be adopted that the product of a matrix and a transfer function is a
transfer function defined as



u Xi2ld |5 , [XuA + X12C| X118 + X2 D) (5)
2 Xz|[C|D] * Xa1d + XaClXa)B + X D)’
A similsr convention helds for right multiplication by a matrix.

Suppose G(s) is a real-rational transfer matrix which is proper, ie., ana-
lytic at s ==, Then there exists a state-space model (4,5,C,D) such that

B
M

The quadruple (4,8,C,D) is colied a realizaiion of G. A realization is
minimal if 4 bas miniing] dimension. It is & fact that a realization is minimal
if and only it (4,.5) is controllable and (C,4) is observable.

A basic object of study will be the transfer function and it will be
assurned to have a realization. The next section describes standard opers-
tions on linear systems in terms of transfer functions and their realizations.



0.2.3 Operstions on Linear Systems

BD

DD,

Note: This realization may not be minimal.

2. Change of Variables
z +» 827z

y > §=Ry
u - U2=pFu

4l [alg] _ [r ollalgllr o]
clo] * [clg) T oze[cn[o PJ
_ |rart 18P
= [reT-t|RDP

3. Stats Feedback

u

-» 47 + Fz



B B\ o] _ l4+BF\B
ciol * [C Il = [c+DF|D

4. Output Injection
z3Az +5u - 2z4% +Bu+Hy

Bl |r Hllalsl _ la+HC|B+HD
clol ™ o rllcipl [ ¢ D

S. Transpose (Dual)
G -+ G’
B rler )
cio| * BT |07
8. Conjugate
G- G
Bl |=AT|-cT
ciol ™ [87] o7
7. Inversion

l4-BDrc|-507]
Suppose D' is a right (left) inverse of 2. Then &' = [A—’m—c-‘{—bﬁ is

aright (laft) inverse of G.



Proof: The right inverse case will be proven and the left inverse case
follows by duality. Suppose DD' = /. Then

A BD'C | BDT
GG = |0 a-BorC|-BD
C DD°C | OD7
4 BD'C | BD']
= |0 A=-BD'C|=-BD"
- C 7

[r ot -
Conjugating the state by IO d on the left and = ]| on the right
'

yields

b s-sorcl-oon
GG = [0 A=BDIC|~BD"
€ o | 7]

=z J

. .
Corvllary 7 Suppose D' is & right inverse for D and let

. _ la=Bpcl-pZ]
¢={TDc (2|

Then

Corallary 7  Sunnoses D7 ic a laft inverse for D and let

[ -BptC |-ED']

Then



&G = 2D.

The following lemma characterizas the relationship betwsen zeros of a
transfer function and poles of its inverse.

with D nonsingular. Then there exists

L

A
8 lemma Suppose G =7

(s,. Z,) such that
(A = BD™'C)zy, = $y2, , Czem0
if? there exists u, #0 such that

G(syJuy =0

Proof
(i7)

G(sy )uy = 0 implies that G"}(s) has a pole at s,. Thus 3(s,, z,) such
that Cr,»0 and

(A=BD"'C)z, = s,2,

(onlyif )
Set U, = =D"10z, #0. Then
G(So )ty = C(sy/=A)"'Buy + Du, = Cz,=C2y =0

QED



0.2.4 Linear Matrix Equations :

Property 1: (Solution of Sylvester Equaticns) -
Consider the Sylvestar equation
AX +XB=C (1)
where A € RV, B € R™™, C € R*™™ are given matrices.

Then, there exists a unique solution X € R™™ it and only it
Re[M(4) + M(B)]# 0, Wizl...n and §=l....mn.

Remark :

In particular, if B = AT, (1) is called the “Lyapunov Equation” and the
nocessary and sufficient condition for the existence of unique solution will be

that Relm(4) + M(4)] w0, wig = 1.1,

Property 2: (Solution of Linear Equations)

Consider the linear aquation p

AX=F
where A € R™™, B € R™™ are given matrices,.

The following statements are equivalent :
(i) there exists 2 solution X € 11%."""‘.
(ii) the columnsof 5 € Range(4).
() ronk [4 5| = rani (4.

(iv) Ker (A7) < Ker (87).

*



0.3.1 Gramisns and Balanced Realizations

Supposs G={2~ g] where A iz stable. Define  the
controlability gramion Y as
Y 4 [fe#55 04t dt
0
and the observabilily graomian as

X% [erCCasar,
°
By considering the corresponding matrix differsntial equations it is
easily shown that ¥ and X satisfy the Lyapunov equations

AY + YA' + BB' =0
AX XA+ CC=0

Note that Y20 and X=0. Furthermore, the pair (4,5) is controllable iff ¥>0
and (C,A4) is cbservable iff X>0.

Suppose the state is transformed by nonsingular T to 2=Tz to yield the

i sl [rar
G:aﬁ with .‘»CT.,I Dl

Then the gramians transform as ? = TYT' and X = (T!)'XT~!. Note that

realization

¥X = TYXT™ 20 the eigenvalues of the product of the gramians are invariant

under state transformation.

Consider the similarity transformation T which gives the eigenvector

decomposition



m = TAT"‘ (] !): diaa(llnnLn)

Then columns of T are (possibly nonunique) eigenvectors of YX correspond-
ing to the sigenvalues {A(]. It is shown in Lemma { at the end of this section
that YX Las real diagonal Jordan form and that A=0Q. This is a consequence of
Y20 and X20.

Although the eigenvectors are not unigue, in the cese of & minirnal reali-

zation they can always be choaen such that

=19 =2,
= (rYyXTt=sg,

where I =diag(oy.0z ....04) and L2z A This new rsalization will be
referred to as a balanced realization (also called internally balanced).
B .
Suppose G = Clp| is & balanced realization for G and can be parti-

tionad as

, 0]
with corresponding pertitioning of the balanced grumian & = [Eo 2cl . Sup-
pose L1=ding(01,0%...05 ). Z2=diag(CusyiCrea - - - . On) end
1RO ©  * 0pD0poeflpypiz * + + 20y, Thea it is irunediate that the truncated

systern
r‘ 1

- ;ﬂui&?sl
- lcl D

is balanced sitics



Aply + LAy + 5By = 0
An'dy + 14y + C'Cy = 0.
It can also be shown (Silverman and Pernebo) that & mintmal realization for

G is stable, aithough in certain (non-gsneric) cases 4;; may have uncontroll-
able or unobservable jo-axis eigenvalues.

Lemma 1l Product of Positive Ssmi-Definite Matrices is Similar to a Positive
Semi-Definite Matrix

Proof: Let X and Y be positive semi-dsfinite. First perform an orthogonal
transformation so that

[Ax 0] . Yy Yhe
X -» 00 A‘)O diagonﬂl. Y ymp yzz =

. . MYy MY
By this transtormation XY is similar to | 0

. [1;# ][AI*Y,,A# AttY g

Now

{A; Yu A; Y;z rAl ]
o I

0

and it is easy to find a matrix 2 such that

[M’YuMi Ol [1 Z][f\ityu-’\?‘ Apyxz”I -Z]
o ofFlosjl o o Jlo 7
(Z exists because the columns of AftY;; span the columns of AtY;; owing to
the fact that Y is positive semi-definite). The left hand side of this last equa-
tion is positive ssmi-definits and sirnilar to XY. t X¥#0 it is possible to find
a matrix T, such that



TOVABT, = A = diag|(An .« -« o AxuOunns)

where A=Ag * -« 2Ap>0.

QE.D.

Now consider two gramians X" and 7. Let us suppose XT#0Q, so that T,

can be chosen as above:
T{“ml = A = diag{(x,'. - .AK'Ovuuo)]

where A\&=Agx -+ - eAx>0. Under this transformation the gramians become
Q = TIX(T{')., R = IV'IT,,

and QR =A Because @ and R are symmetric, RQ=A'=A={F and 10 §.F snd A
commute. Both @ and R rnust leave the eigenspaces of A invariant and so

are of the form

diag[Ql.....Q.El
diag{)\,‘Q;",...,)\h(&'l.l’}

where Q is a squars matrix whose size equals the dimeasion of the Ay eigen-

@

Q

R

0l

space of A and £F =0 where £ and F are square matrices the gize of the kar-
nel of A Of course, all the @'s are summetric 30 it is possible to ind an

orthogonal matrix

¥ = diag IW‘ ..... Wg.qu}

such that W-iQ(W=!) and #,,,'FW,,, are diagonal. Note that this same ¥

gives a diagonal W'RW sud leaves A alone.



D

Thea transformation =T, ¥ disgonealizes both gramisns. It is now obvi-
ous how to construct Ty so thst T3 X(Ts!) and T's YTs are diagonal and the
controllable and sbasrvable portiong are squal



0.3.2 Inner Transfer Functions

Let G=[F g Then G is inner if G*°G=/ and co-inner if GG =/, Note
that G need not be square. Inner and co-inner are dual notions and are often
called all-pass,

It G € RE™, p>m is inner then any G; € R(P-™P™ is called a comple-
mentary inner {aoctor (CIF) if [G G‘l] is square and inner. The dual notion of
compiementary co-inner factor is defined in the obvi.o‘u: way,

The following lemma is useful in characterizing inner transfer functions

in terms of a realization.
Lemma 1. Suppose 2 X=X € [R*™ such that
i) X« X4+ CC=0
i) X~ DC=0
Then G*G = D'D.
Proof: Suppose thati) and ii) hold. Then conjugating the state of
4 o 5B

G*G = |-c'C -4 |-CD
[5C & DD

on the right yields

I o rof? ro
by |y slontheleftand |_+ ;| =y,

[ A 0 B__ll
G°G = |=(AX+XA+C'C) -A'|—(XE+C‘D . 1)
| 5'X+DC 81 DD |}

Now, applying i) and ii) yields



G*G =

!
ojo
ki
Sl

"
9
©

By duality, we have the following

Lemma 1° Suppose 2Y=Y € R™™ such that

i) AY + YAT + BB'=0
B) CY + DB'=0
Then GG*=DD".

These two lemmas immediately lead to one characterization of inner
matrices in terms of their state space representation. Simply add the condi-
tion that D'D=/ (DD'=I) to lemma 1 (1') to get G*G=/ (GG"=I). Further-
more, by adding a few additional assumptions, the conditions in the lemmas
become necessary as well as sufficient, This leads to the following compiete .
characterization of stable inner transfer functions in terms of a minimal

realization.
Bl ‘
Suppose G=|-~ D] is stable and minimal. Then the gramians X and Y
satisfying
AX+ XA~ CC v )
AY + YA' + BB' = (3)

exiet and are unique.

Corollary 1 G is inner iff



i) X+ DC=0
g) D=1
Corcllary ' G is co-inner ift

i) CY+DB'=0
i) bor=1

Proof Sufficiency of i)_and ii) follows imunediately trom the lemmas. For
necessity, suppose G*G=/. From 1) and 2) this implies that

48
X+DClo] = O . )
DD =1 (5)

Since (4,F) is controllable, (4) implies that 5'X+D'C=0. The co-inner
case follows by duality.

This characterization of inner transfer functions plays a central role in
the synthesis theory. It allows the consztiaction of inner transter functions
by solving algebraic equations.



0.4.1 Linear Fractional Transformations

Suppose P = L’;:i i::] € R,"‘" Pmrmd) e Ry, K € R3P7% We
" will adopt the notation
F(P.K) & Py + PuK(I=PuK)'Py - (1)
and
Fu(P.4) & Pz + Pud(J-Pu4)™'Pya (2)
The linear fractional transformations (LFT) ars illustrated in Figure 1.

The | denotes that the second argument is fed back in the lower block, and

‘the u denotes feedback in the upper block.

An important property of LFT's is that any interconnection of LFT's is

. u Ji2
again an LFT. SupposeJ = . Then

a V2
R(P.R(/.Q)) = R(T.Q) (3)
F (VI (P.L) = R (T.0) 4
where
_Tu Tyl
T Ta

P+ Pl (I =Pl )™ Py Pi(l=0nP2) Ve
Jall=Pz/ ) Py Jaa+ V1 Paa(l =\ Pa) "WV 12

(5)

Equations (3) and (4) are illustrated in Figure 2. Note that if F;(/,Q)is a
paremetrization of a controller, F;(7T.Q) is affine if and only if T2=0. This
type of controller parametrization will play an important role in the syn-

thesis theory.



Ar\q(ysis
I, Tatroduction ' o

This part of the notes describes recent results on the problem of analyz-
ing the performance and robustness properties of systems. We believe that
“ae approach described is providing the foundation for e new paradigm for

vatrol theory broader in scope and content than that of Classical or Mcdern
Jontrol Theory. An important aspect of this new paradigm is the treatment
;4 gives to model uncertainty.

Modern Control Theory, the dominant paradigm for the past 20 years,
J2 its besis in Stochastic Optimal Control and Zstimation Theory. This
thaory essentially restricts model uncertainty to additive noise. The theory
provides a methodology for am'.lyzing the impact of noise on system perfor-
mance and synthesizing to reduce that impact.

ihe inadequacies of this view of uncertainty became widely accepted in
the late 1970's, as robustness to plant uncertainty became a major theme in
the Modern Control Theory community. Ironically, this involved a renewed
interest in the Classical Control paradigm which Modern Control displaced
within the theorstical community (if not among practicing engineers). This
new direction provided useful design tools, including Singular Value Analysis
and Multivariable Loop Shaping.

While providing an important perspective, as well as practical tech-
niques, the methods based on singular values still require rather restrictive
assumptions about uncertainty. In particular, plant uncertainty must essen-

tially be modelled as a single “unstructured perturbation.”

The Structured Singular Value (SSV), x4, was deveioped several years ago
to correct this deflciency in singular values. In the context of the general
framework discussed in this memo, the S5V provides a very powerful

mathematical tool for the analysis of complex systems. Indeed, we believe



that this framework together with the SSV and the synthesis techniques dis-
cussed later, has the potential to form the basis {or & new paradigm for con-

trol theory.

The remainder of this part of the notes describes the general framework
for control system analysis and synthesis which includes all the viewpoints
discussed as special cases. In particular, the assumptions about uncertainty
required by each methodology are compared In this context, the words
analysis and synthesis have specific meanings.

Annlysis is usad to describe the process of determining whether a given
system has the desired characteristics. In general, this may range from the
use of mathematical tools to simulation to experimentation. although
analysis is typically applied primarily to describe the former. Synthesis, on
the other hand, is the process of finding a perticular system component to
achieve desired characteristics, which are typically expressed in terms of
some analysis tools. Analysis and synthesis are just two aspects of the more
general problem of engineering design.

The discussion which follows first considers analysis, then briefly
touches on synthesis and ends with some illustrative examples. The next

part on Synthesis Theory will take up that question in more detail



1.2.1 General Framework

Various modelling assumptions will be considered and the impact of
these assumptions on analysis and synthesis methods will be explored. Con-
sider the diagram in Figure 1. This is the general framework to be con-
sidered. Models of this form are typically constructed from components
which also have this form. The nominal model provides the basic intercon-
nection structurs between the signals, perturbations and controller, as
shown. It bas three inputs and cutputs, each consisting of a vector of signals.

As typicel examples, consider the following flltering and control prob-
lems, Fi.r:t. a simple flitering problem is given in the diagram in Figure 2.
This may be rearranged as shown in Figurs 3 to fit the general framework In
erder to simplify the diagram, no perturbation was included.

A typiceal control problem might look like the diagram in Figure 4 where
again, for simplicity, no perturbations are included. This too can be rear-

ranged to fit the general framework, although the diagram is complicated.

Any system may be rearranged to fit the formn of this general frarme-
work. Although the interconnection structure can become quite complicated
for complex systems, many software packages are available which could be

used to generate the interconnection structure from system components,

Note that uncertairity may be modelled in two ways, either as external
inputs or as perturbations Lo the nominal nodel. The perfcrmance of 2 sys-

tem is measured iQ terms of the behavior of the outputs or errors. The

model determine the analysis techniques which must be used.

The most fundamental assumption that is made throughout is that the
norrunal model is a finite dimensional ordinary differential equation and is



linear and time invariant (LTIODE). The uncertain inputs are assumed to be
gither flltered white noise or weightad L, signals, Performance is measured
as weighted output variance or weighted output L, norm. The perturbations
are assumed to be themselves LTIODE's which are norm-bound;:d as input-
output operators. Various combinations of these assumnptions form the basis

for ail'the standard linear systems analysis tools.

Given thet the nominal model is an LTIODE, the interconnection system

has the form
Py, Pia Pis
P = [Py Py Pos
Pay Ps, Pas

(1)

and the total system is a linear fractional transformeation on the perturbation

and the controller given by.

g = Fu(ﬁ(P.I{).A)u
= Fi(F.(P.A)K)u (2)
Since the fccus of the curreant discussion is on analysis methods, the
controlier may be viewed as just another system component and absorbed
intoc the interconnection structure. Thus the anslysis framework reduces to

the diagram in Figure & where

g = F,(PA)u

(Poz + Pa(I=Py8) 1P (3)



Note that the P's in (2) and (3) are not necessarily the same. Table 1
and the discussion which follows summarize the various assumptions and
resulting analysis and synthesis tocls. In each case, stability of the nominal
must be evaluated Since P is assumed to have the state-space reapresenta-

tion

0

this may be done by checking that all eigenvalues of 4 lie in the open lhp,
There ar= alternatives to this approach but, for simplicity, it will be assurned
that the nominel plant, with controller is closed icop stable in the sense that
all eigenvalues of A are in the open lhp.

Given nominal stability, the entries in the table may be interpreted as

fllling in the following general performance /robustness theorem:

General Analysis Theorem (GAT)

Given
Input Azsumptiona
and
Perturbation Assumptions
Than
Performance Specification
if and only if

Anglysis Teat



The details of sach caze will be considered in the {ollowing sections.
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1.2.2. Stocheastie

Case 1u involves unit covariance white noise input with output variance

as the e;raluation criteria. Since no perturbation iy allowed, the problem

2
reduces to the diagram in Figure 1 and E(eTs) = ”Pm”z. Note that colored

noise or weightad variance could be used as shown in Figure 2. This reduces
to the general case by absorbing the weights ¥, snd Wy into Py as
Py = FaGW,. In practice, it is essential to use weights to reflect spatial and
frequency variations in inputs, perturbations and output cpecifications, ’but.

in every case, these weights may be ebsorbed into nominal model

In Case 1b the input is an uncertzin delta function, which is equivalent
to uncertain initial conditions. The performance specification is the

expected value of the Ly-norm of the output.

Case 1 forms the foundation of Stochastic Optimal Control Theory. Case
1a includes the standard linear stochastic flitering problem and Case ib
includes the standard linear quadratic optimal control problern. These are
combined to obtain the full LQG problem. which is again Case ia. These
assumptions and resulting analysis methods have been the dominant para-

digm in the control community for over 2C years.

The development of this paradigm has stimulated extensive research
efforts and been responsible for important technological innovation. particu-
larly in the area of estimation. The theoretical contributions include a
deeper understanding of linear systems and improved computational
methods for complex systems through state-spsce techniques. The major
lirmitation of this t-_ory is the lack of formal treatment of uncertainty in the

plant itself. By allowing only additive noise for uncertainty, the stochastic



theory ignored this important practical issue. Plant uncertainty is particu-
larly critical in feedback systems.
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1.2.3 L, Frequency D main Methods

Case 2 involves an attempt to correct some of the deficiencies of Case 1
by moving to an unknown but bounded (in an L; sense) framework. This
allows both types of plant uncertainty to be h?.ndled in a common framework,
albeit in a limited manner.

Case 2a is an Ly version of Case 1a. The input is constrained to lie in
BL; as a time signal (unit ball in L) and the performance is specified in
terms of the output's Lz norm. With no perturbation, the analysis test
involves simply the L; induced operator norm, Le. L. on the transfer func-
tion Py
‘The GAT in t.hxs case is

Theorem 1 ”eHgSI for all Hu”zsl
yr ||l

!
-

=1

Although this theorem iz & trivial restatement of the definition of induced
norm, it means that the.analysis test is an exact cheracterization of the per-

formance requirement.

Case 2b is significant departure from the previous three. It involves
maintenance of sctability in the presence of perturbations. The block
diagram for F,'(7.4) is shown in Figure 1. There are many ways to state the
GAT for this case, depending on the desired notion of stability and assump-
tions on 4. The distinctions are somewhat subtle, but are important from a
theoretical point of view. Nevertheless, they do not significantly iy xct the
application of the theory.



The A's are assumed to be LTIODE's, so that A € RH.. The assumptions
A€ Cor A € CHa, give the same result. The distributed case, A € H., causes
some additional technical difficulties and is nct the focus of these notes.

The following theorem treats internal stability

Theorem 2 F,'(P.A) isinternally stable for all A € BRA.
e st

Note that input-output stability of F,(P.A) is not necessarily the same as
internal stability. In particular, the following statement is not true:

Not—-A-Thecrem He“za- tor all “u”;ﬁl and A € FRAS
i “P“”..‘l

Counterexample Suppose ”PH!LM but P,,=0.

From now on stability will mean iniernal stability, but be denoted by
He“z < » in the table, even though this is definitely an abuse of notation.
Note that generically this distinction between internal and i-o stability does

not exist.

As in Case 1, it is essential to allow weights on inputs, outputs and per-
turbations. As before, these weights may be absorbed into the nominal
model. This allows, without the loss of generality, the use of signals and per-
turbations which are in unweighted uni_t balls. Thus implementation of the
analysis tools ruquires onl, a method for constructing interconnected sys-
tems and a mathod for evaluating the appropriate norm. The former applies

to all cases, whereas the latter requires a different norm in each case.



3

Note that in Case 2 both uncertain inputs and uncertain plants can be
handied with the same analysis tool. This approach is particularly useful for
feedback problems where both types of uncertainty have significant impacts
on system performance. Case 2 has attracted a great deal of research
interest recently, and is currently the popular new paradigm in the mul-
tivariable control community. Although implicit in the methods of classical
control and some more modern work (e.g. Zames' conic sacter theory circa
early 80's and Horowitz's 80's work), the approach did not gain wide atten-
tion until the late '70's.

The current interpretation is a consequence of research done in the late
'70's. (Doyle and Stein, Safonov etc). This interpretation involves singular
values as an analysis method and singular value loop shaping as a sy~thesis
approach. The so-called LQG Loop Transier Recovery (LQG/LTL.} (Stein and
Doyle) combines the synthesis methods of Case 1 with the analysis methods
of Case 2 to produce 2 hybrid synthesis method. This gives sn ad hoc

approach to Case; 2 that can be effective for many multivariable problems.

® Another approach to synthesis for Case 2 is the 30 called Fa or Lo/ Aa
methods introduced to the control 'cornmunity by Zames and Helton (with
additional contributions by Francis, Pearson, Glover etc.). The L./ A
methods for Case 2 are analogous to the Lo/ H; methods of Case 1 with the
exception that for Case 2 the L, rather than L; norm is optimized. The solu-
tion to the general L./ Ha problem will be presented in the Synthesis part of
these notas
The main objection to Case 2 is the resuictive assumptions about uncer-
tainty (recall this was also the objection to Case 1). Although case 2 allows

both uncertain inputs and perturbations, anal}"sxs can be performed for



gither individually but not both together. Thus a system can be shown to
remain stable when perturbed and have accesptable response to uncertain
inputs when A = 0 but response when Ax0 is not known. Only crude bounds
can be obtained with the methods of Case 2,

An additional limitation of Case 2b is that all plant uncertainty must be
modelled as a single norm-bounded perturbation. Typically, uncertainty is

- present throughout a system. Suppose that a system is built from com-

ponents which are themselves uncertain and that component uncertainty is
modelied as norm-bounded perturbations. This situaton can be rearranged
to At the general framework but the perturbation for the total system has
structure. The problem of structured uncertzinty is taken up in the next

chapter.
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1.3.1 Introduction

This chapter considers the problem of stability with structured uncer-
tainty and of performance in the presence of structured uncertainty. Typi-
cally, uncertainty is present throughout 2 system. Suppose that a system is
built from components which are themselves uncertain and that component
uncertainty is modelled as norm-bounded perturbations. This situaton can
be rearranged to fit the general framework but the perturbation for the total
system has structure. This can be seen schematically in Figure 1.

Note that the intsrconnection model P can always be chosen so that A is
|..<1. The results of Case

bleck diagonel, and by absorbing any weights, HA
2b can be applied in two ways:

1) iiFn!LSI implies stability, but not conversely. This can be arbitrarily
conservative, in that stable systems can have arbitrarily large IIP 1 l I_.

2) Test for each A, individually. This can be arbitrarily optimistic because

it ignores interaction between the 4.

The difference between the bounds obtained in 1) and 2) can be arbi-
trarily far apart. Only when they are close can conclusions be made about

the general case with structured uncertainty.

These two limitations of Case 2 (and 1) have motivated much of the
research described in these notes. The result is 2 new paradigm described in
Case 3. The problem in Case 3 involves exactly that of structured uncer-
tainty. )

Consider the system in Figure 2, Stability and performance analysis of

this system requires a new matrix function, the structured singular vaiue

(SSV), denoted by u. Before proceeding with Case 3, a digression to discuss u



will be taken. For details, see the reprints which accompany this writeup.
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1.3.2 SSV for Constant Matrices

The problem is to test for det(/—iMA)m0 for sats of A Two standard

results are

1) det(/-Ha)M0 W Ae{A I’U(A)<1]

if 2(M)s1

2) dat(I=MA)"0 vzse{ulxec. |x|<1}

it  p(d)s1 where p(ﬂ)=mgxlh(ﬂ)|

As & generalization, consider a function 4 with the propertiss that
p.(a!l)='¢x ‘/L(M) and

3) dat(/-HA)»0 v g {diag(A,.Aa. . ,A,.)g-a'(m}ﬂ]

1r  u(M)<1

Obviously, u is a tunction of M which depends on the structure of { & }

To be preacise, a multi-index could be constructed which would specify we

)
structure of [ A } and u would depend oa that index For this informal dis-

cussion, just keep in mind this fact and assume that a structure is specified.

Clearly 2 and p are special cases of u for particular structures as indicated
above., Furthermore, for any structure

p(M) s u(M) < B(M). (4)

Given these bounds, how important is 4? The answer can be clearly seen

from the following examples:



6, O

Suppose 4 = [0 be and consider

1) y=[8 é] PH)=0 B(H)=1

det(J=MA)=1 so wu(M)=0

2) u=[:§i§ pUH)=0 B(i)=1

det(J=Ma) =1 + ﬁl-g-‘-’-’-- so  wu{HM)=1

Thus neither o nor 2 provide useful bounds even in simple cases. The
only time they do provide reliable bounds is when pa2. Thus better bounds

on u are needed to pursue the problem in Case 3.

For the rest of the discussion fix a structure for the A's as

X={diag (Al . . . -An)}' (5)

Then
-1

;J.(M)={ gn‘:.ﬁ [a(A) !dst(I-MA)=0]} (8)

This expression is little more than a definition of 4 since the optimization
problem implied by it is nonconvex, but it shows that 4 exists as desired. To
obtain useful properties of 4, somea additional definitions are needed. Let

{dta.g(Ux.Uz, U | U(U¢=] (7)

A 7

U

2

{dz'.a.g(d,!.dgl.....dnf) 'a, e lR-} (8)

where the sets [/ and 0 match the structure of . Note that the [/ and [

leave X invariant in the sense that



1) deX Uel imply HAU) = 2(UA) = ¥(4)
2) AcX D€l imply DAD"' = A

From these two preperties and the definition above expreasion for i, one

immediately obtains

» ' 1
max p(MU) = u(H) = Dx%fa AHDMD™Y)
The first important theorem about u is

Theorem 1 ax p(HU) = u(M)

This theorem expresses u in terms of familiar linear algebraic objects.
Unfortunately, the implied optimization problem is nonconvex so it does not
immediately yield a computationel apprcach. The second important
theorem is

Theorem 2 If n<3 “(M)=Di%fn #(DMD™Y)

This theorem states that if there are 3 or fewer blocks ( no restriction

on size), then u(A) is just 2 of a block diagonai similarity of 4. Furthermore

}(DHD'” is cop7ex in U so that the infimum can be found by search over

n -1 real parameters,

The theorem is not true for n=4, but it is conjectured that

D'u}fn ¥(DMD™!) still provides a reasonably tight bound for u Also, many

prublems of interest have 3 or fewer blocks so this provides a reasonable

computational scheme.

Aala Al, -3

Anotaer important aspect of Lois Wneorem is that & misy be viewed as 2
plus scaling. Thus the general synthesis methods recently developed to
optimize the L. norm (i.e. 3) may be applied, via scalings, to optimize u

Thig will be discussed more in the syhthesis section. Now back to Case 3.



1.3.3 SSV Analysis of Systems

Abuse notation and define

]l = w5 wson. &
Although IHL, is not a norm. this will be convenient. Recall tate ”HH.,
i3 a functicn of & which also depends on the assumed structure of the per-

{urbations.

Case 3a involves stability in the presence of structured perturbations
¢nd the result is analogous with Case 2b. In fact, 3a reduces to 2b in the case
taat there 1s a single block in the perturbation. Suppose that 4 € BRH. and
tne A’s have the structure A=diag (8,,82.8, . . . . &n). The GAT for Case 3ais

Theorem 1  F,(P.4) isinternally stable for all structured A € BRH.

if !EPu! =1

’
. N
Case 3b puts everything together and is really the payoff for 4 analysis. The
) rnblem is to check that !le!z <1 is satisfled for ail “u”g <1 and all struc-
ured perturbations, Recall that from 2a and 2b that both stability with a
tringle perturhation and performance with Lz inputs involve the same test
Lsicg -". although on different parts of the system. This meeans that the
cvstem in Figure 1 has internal stability and H'sti for all H'u“z 51 and
Lt=diag (8102, . . . . Op) € BRAw if and only if the system in Figure 2 has
internal stability for all structured A and all 4,,; € BRF... This is exactly
vaze 3a wilk the structure Z=d‘ing (Apda . .. An.Bn4+y). Using this structure

for u yields the following:



Theoram 2
F,(P.4) i intemnally stable end |lefl<1 far all |ju/les2 and
A'—"-M(A;.A\q, e .An) & BRH.

o |lPst

This is & ramerkably useful theorem. It says that “P“,,s 1 implies not
Jaly stebility for all structured parturbations but also that “ﬂ”g =1 for all
},,:s 1 and all structured perturbations. Furthermore, HP“.. > 1 implies

1.

K
]

that there exists s u with “uhzs 1 and a structured A such that either

tH

He;%e >1 or F,(P.4) is internally unstable. This is the first general ressult

which guarantees performance for a whole s2¢ of plants and gives an exact

(nonconservative) analysis test.
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1.4.1 AGlimpse at Synthesis

This will be a sketchy outline of the new synthesis results. The details
are somewhat complicated and are treated in Part 2 which is devotad to the
synthesis theory. At this point, we simply want to point out how the analysis
theory discussed in this part leeds naturally to certain synthesis questions.

From the analysis results, we see that each case boils down to evaluating
“P“ |L a=2,% or L (1)

for some transfer function Py. Thus when the controller is put back into the
problem, it involves just a simple linear fraction transtormation as shown in
the diagram in Figure 1. (Note: the Py's here are not the same as the Fy's

in the previous sections)

Each case then leads to the synthesis problem
in! l =
m}nigr‘ (P.X) ! a for a=2,, 0ru (2)

subject to internal stability of the nominal. Here

F(P.K)=P; ~ PyaK(I =P3K)™' Py,.

The solution of this problem for a=2 and = is the focus of Part 2 on Syne
thesis Theory. The solution presented there urufies the two approaches in a
coramon synthesis framework. The a = 2 case was already known and the
results are simply a new interpretation. The a== case had been solved only
for special cases where Fj; and Pj, are square. Also, the existing solutions
did not hava computational schemes allowing their use on even moderately
sized problems. These twe limitations, especially the former, restricted the
applic .ion of the pioneering . methods to fairly suimple problems, such as

ser.sitivity munurmization. The new solution eliminates these two limutations.



Unfortunately, this new solution for the H, and H. suffers from the
same limit.ations imposed by restrictive sssumptions about uncertainty as do
t_.he underlying analysis methods. While. the SSV is a great improvement for
analysis (Case 3), synthesis for the a=u case is not yet fully solved. Recalling
that 4 may be obtained by scaling and applying |H l;. a reasonavle approach

is to "solve”
pip| [oRee.—m0m | @

by iteratively solving for X and D. With either X or D fixed, the global
optimum in the other variable may be found using the 4 and H. solutions
described previcusly. Example designs have been done and this scheme
seems to work well, but global convergence is not gusranteed In fact, a
counterexample has been constructed where (3) reaches a local minimum

-

which is not global,
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2.1.1 Overview of Synthesis

From the previous part of these notes on analysis, we have seen that the
synthesis problem in each case rsduces to finding a controlier X which
achieves internal stability and solves

min Fi(P, x=2,, or
i, e, oo .
where
L u P (py+rgiim +my) ' x
P-EzlPuER’x' 177 .PueRp‘"\,
and

R(P.K) = Py + PuK(I=-PnK)™'Py

We will restrict our attention for now to the a=2 and = casss of (1).
Recell that the a=u case of (1) can be converted to the a== case by scaling.
The approach of these notes is to develop the a=2 and = cases in a parallel

manner, emphesizing their common features.

_ We begin by considering the special case of (1) where. all matrices ars
constants. This is an interesting problem in its own right and manages to
capture the essential features of the genersl problem. While the a=2 case is
quite straightforward, the key step in the solution of (1) for a = = was first
published in 1982 by Davis, Kahan, and Weinberger in their important paper

on norme-preserving dilations.

The remainder of this part of the notes involves taking each step of the
solution to (1) for the constant case and generalizing to the case of real-
rational matrices. The difficulty arises from stability/causality considera-

tions which are not present in the constant matrix case.



2.1.2 Constant Matrix Case

In this section, we will consider a special synthesis problem where all
matrices are constants. The constant matrix case will allow us to study the
synthesis probiem in a simplified context, but one which paralleis the

rational case.
For constant matrices, the norms reduce to
11 P fla = 3(P)
1P = (et
Note that these definitions are not conventional, but they are convenient in

allowing paraliel development of the constant and rationai cases.

Consider the constant matrix problem

. | crw
o (el asae (1
where
olfs 2 e g oy com

and
Fi(P.K) = P+ PuK(I-PaK) Py
Assume that P3P, > 0 and P, P35y > 0.
The first step is to make the substitution of variabies
K=QU+Pel)™, Q= (PRPu) i QPuri)™ (@
1)

@ = (PP K(I =Py k)" WPy P ! (3)



Using the linear fractional representation notation,

K=FR{(/.Q) (4)
where .
) [Ju Jal [0 (PaP)H ]
T Va Jzm T l(szPz'x)'* =(PaP3) #Pn(PiP) %

With this substitution, we have
F‘(P.P‘(J. Q))
Py+ [sz(P 12P1a) '“] 7[(-”211"31 ) "“sz}

Ty + T12QTy (5)

R (P.K)

where the 7j; are defined in the obvious way. This parametrization has con-
verted the nonlinear problem in (1) to one affine in the parametsr Q. Note
that T%Ti2 =/ and Tz T8 =/. Thus we can find T} and ?_Lsuch that both

T
lT;g T_'] and ['j‘fj are square and unitary.

Since both & = 2 and = norms are unitary invariant

HTu + Te@QTa ||

Ty +

. |Taf 0
rarfrnf3] -

Ry +@ Ryl L
[ Ry Rz . (€)

where

n Ryl leTllT’:l TaTuT
R l Tf

i .
a Rz T{TuTs TiTuT ] @



Thus the problem in (1) reduces to

n+@ R
Ry Ra

and solution of (8) yields a solution of (1) by solving (2) for X.

The a = 2 case can be solved immediately from (8) since

e 22l - X

Thus

0 Ry
Ra Rz

“R“*Qi e *

Qope = =Ry = =TT Ty

-

and

u+Q Ryl
Ry Rz

[ 0 R,z]
Ra1 Ra

L

(8)

(@

(10)

The simplicity of the a=2 case is responsible for much of its appeal

Optimization in this norm reducesto projection since Lz is a Hilbert space.

This holds a; well for the rational ratrix’problem.

The a=w case is. scmawhat more complicated since L. is not a Hilbert

space and the minimization in (8) cannot be solved by projection. For-

tunately, L. arises as the space of linear operators on the Hilbert space L,

and (8) can be treated as a dilation problem. The next section focuses on

matrix dilation probiems.



2.1.3 Matrix Dilation Problems

Consider the optimization problem

Al e

where X,B,C.A are constant matrices of compatible dimensions. This is 2

min
X

is a dilation of its

. . B
restatement of (2.7) for the a== case. The matrix C 4

submatrices as indicated in the following diagram:

]

Rt in

. d ¢ d ¢ (2)

[e4]

Rftée
-

In this diagram, ¢ stands for the operation of compression and d stands
for dilgtion. Compression is always norm decrsesing: sometimes dilation
can be made to be norm preserving. Norm preserving dilations are the focus

of this section.

The simplest matrix dilation problem occurs when solving

i

Altbough (3) is a much simplified version of (1), we will see that it contains all

l )
o

min
X

the essential features of the problem. Letting ¥, dencte the minimum norm



in (3), it is immediate that y, =
sclutions to (3).

Theorem 1: For vy v,,

L~

X=Y(PRI=-A%A)%

L=

3 Y with ||]]-1 such that

Proof:

XX + A"A<sv¥/
ift

X*X % (RI-A44)
if

bl = Jerr-acarta]| wu
iff

X = Y(RI-A"A¥ for some “YH.SI

2

|A| I.. The following theorem characterizes all

(4)

(5)

This theoram implies that, in general, (3) has more than one solution. This is

in contrast to the a = 2 case. The solution X = 0 is the central solution but

others are possible unless 44 =93/, A more restricted version of the

theorem is



Corollary 1:  For 7>7,.,
L= ®

HX(?‘I ~A"A) '*| |_ <1, (7)

The corresponding duel results are

Theorem 1I' TFor vyx 9y,

e dll<7 2 57, ||l (®)

X = (PIr=AA*Y (9)

such that

Cornilary 1° For >y,

e A[f-=> (10

ii(-ﬁf-AA') -%XI ]_ s1 (11)

Now, returning to the problem in (1), let

e

The following theorem (Parrott) will play s central role in the synthesis

(12)

% =

theory. The proof is a straightforward application of Theorem 1 and 1.



Theorem 2

= mae e Al [ 2

Proof: Denots by % the right hand side of the equation (13). Clearly, y,2%
since compressions are norm decreasing, That v,<% will be shown by using

Theorer 1 and 1",

From Theorem 1 we have that B=Y(5/-A"A)# for some Y such that
H)’H.Sl. Similarly, Theorem 1' yields C=(5*/=-44°}*Z for some Z with

]

Let X = «Y4*Z. Then

ll IL ) ”[ ~Y4*Z Y("f!-A'A)“l'
le allL = lllezrmaemz " 4 Il
|- (W.A.A)”HL
* Wlor-assp 4
=%

Sinee

[ ($3I~A°A)%]
l(‘}’[—AA‘)’i A

Thus H=y;, s0 ¥=7,.

[ w4 @rr-as] b 01]
[(‘7“1-A'A)% A | T o #

This theorem gives one solution to (12) and an expression for 7,. As in
(3), there may be more than one solution to (12), although Theorem 2 only
exhibits one. Theorern 3 considers the problem of parametrizing all solu-
tions. The solution £ = =YA*Z is the "central” solution analogous to X = 0 in

(3). The next corollary is an alternative statement of Theorem 2 using the



form of (2.4) for the probiem

7 = mp ||+ ool (1#)

where U'U=/ and W* =7

Corollary 2

n = mas {[fozell. [lovz]L) (9

The following theorem (Davis, Kahan, and Weinberger) parametrizes all
solutions to (1). The proof is omitted, but is similar to Theorem 2 and

involves application of Theorem 1 and 1'.

Theorem 3 Suppose y & ¥,. The solutions X such that

[ 8
4
are exactly those of the form
X s =YA*Z + y([-YV" AW (=22}

(18)

< 7

(17)

where ¥ i3z an arbitrary contraction (“W ||.51) and Y and Z solve the linear

equations
Y(PI-AA
(P-4 2.

(18)

O
"



The following coroliary gives an alternative version of Theorem 3.

Corollary 3 - Fory > v,.

B
(g

-1 4xs razyi-z2n 4|, = 4 (20)

< v (19)

where -

Y = B(AI=A%A)"#
2 = (PI=44%%C (21)

There ars many salternative characterizations of solutions to (189),

althcugh the formulas in (20) and (21) se=m to be the simplest.

For the problem in (14), the following equivalences apply for all ¥ > 7, :

|z+vev|l.<v (22)

it
||#rsve rve||| =+ (23)

ift
|[R,+UQ A”Ls"/ (24)

waere R =RV and A=RYS

ift

| Pr-aant R~ valll s (25)

( by Corollary 1')



| {es a0 L= @
where Rg= (73 -44%)HR,
Usp = (7% = A4*)~*U.

To complete this, simply factor Uz to extract a unitary factor, and apply tae
dual of (22)«(28) to (28). Although the formulas get messy. (22) can be

solved in this manner.

In s=ch of these cases, Theorem 2, Theorem 3, their corollaries, and the
solution described above, the general case reduces aimost immediately to
application of Thearem 1 or Coroliary 1. Thus, when it is convenient, we will
consider (4) rather than (18) and (28) rather than (22). This will simplify the

discussion of the rational case without introducing any loss of generality.



2.1.4 Sumniary of Constant Problem

The rational matrix problem in equation (1.1) can be solved in a manner
which parallels the treatment of the constant case in ti:e last two sectionas.
This generalization is the focus of the next thrse chapters on synthesis. To
reinforce the similarity between the constant and rational case, we will now
review the key steps from the previous two sections and prevmw their gen-

eralizations to the rational case.

Consider the disgram in Figure 1. This summarizes the steps in the con-
stant matrix problem (2.1}, The main staps are as follows:

1) Parametrization: Make the substitution X'=F5;(/,Q) so that

F(P.K) = R(P.A(J.Q)
A(T.Q)

Ty » T3@Ty (1)

is affine. Additionally, we want T5T2=/ and T T2y =/.
~ [ 1 T
2) Unitary Invariance: Find T)and 7 so that lTu T 4 and | 7 | are square

and unitary.

s T2 ¢
Pre- and post-multiply by {Tm Tl} and [f:J to yield

1+ 312]
[Rﬁzx Rz (@)

where



3)

P = 1 sz]
2 Rz

lT"l Tulrs Tl (3)

S,

Recall that without loss of generality, we may assume the T;;?L-O S0

that (2) becomes
{511*0] (4)

Projection / Dilation: At this point the a=2 and a=w= cases differ., For

=2, the problem reduces, by projection, to
min ||Ry; + 4, )
which has the unique solution @=-=R,;.

The a== case must be treated using the matrix dilation theory of the
previous section. Recall that, in general, the solution is not unique.

From Theorem 3.1, all solutions to

I

Q = =Ry « Y(¥~RHByM (7)

'. %9 for y= “R”H- (8)

are of the form

for some ”YH., % 1. Corollary 3.1 gave the aliernative characterization
that

i . .
!! =<y for 7>Hﬁzliiu (8)

if and only if



4)

[(Bu+ @) -RaR)H|| = 1 (9
It is this latter characterization which will be used in the rational case.
Note that Q==R,; is one solution to (8) and (8).
Recovery of the optimal X: This is obtained by simply computing X
from the formula K=F(/,Q) used in step 1) to parametrize the prob-

lem.



2.1.4 Flgure 1

min ||[FP.K)||, where F(P.K) =Py + PuK(-Pak)™Py

parametrization

K=F(7.Q)
min ||Tu + 7:@Tai||, where TRTw=! TuTi =/

l unitary invariance

. {|Ru=@ Rz
mén Ry Rn a
a=2 a=es
projection ' dilation
mn ||e-2 L
Qopt
l Kopt =Fi (7, Qope)

Kopt



2.1.5 Rational Matrix Generalization

The steps in the rational case closely parallel the constant case, as
shown in Figure 1. Most of the work in the remaining chapters is devoted to
generalizing these steps from constants to rationals. The source of all the
difficulty in the rational case comes from the requirement for intsrnal stabil-
ity, or equivt;lently. causality. Without this the rational case would reduce to
the constant case at each frequency, and could be solved using the resuits of

the previous two sections.
We will now briefly cutline the steps required to solve the rational case
and preview the upcoming chapters.

1) Parametrization: Find J/ so that the substitution X'=F;(/,Q) yields

F(P.K) = R(P.F(J.Q))
z F(T.Q) .
s Ty + T12@Ta (10)

with the additional requirenient that T € H, and

Fi(P.K) internally stable (11)
i @ € Ha

This parametrizes all stabilizing X"s in terms of a stable ¢ € A, in addi-
tion to providing an affine parametrization of all stable /(P.X). This
parametrization (Youla) is developed in Chapter 2 on Stabilization.

A further requirement is that T'j; and T be inner, that is 73T =, and
Ty T3 =1, Methods for obtaning the particular parametnzations which

zchieve this are developed in Chapter 3 on Factorization.



2)

3)

~ T,
Upitary Invariance: Find T| and T; so that [T,g TJ] and [fl are

squars and inner (also Chapter 3). Then pre- and post-multiply by

[7',, 1)]' and [?ja to yield

u+Q@ Ry
tRsz Rzz] (12)

where

iy ~
::2] Ty [Tz'x Tf_'}

R =

Ageain, to simplify the presentation suppose that Tuff;o so that (12)

[Ru*‘Q
Ry |

Projection / Dilation: At this point the a=2 and a=w= cases again differ.

becomes

(13)

For a=2, the problem reduces, by projection, to

&y “R“ * QHz (14)

But since R, € L. , @==R;; would not correspond to a stable solution.

The unique solution is yet another projection
Qpt = Pu(Ru) (15)

where Py, denotes projection onto Az When viewed appropriately, these

two projections can be seen as a single projection onto a subspace of

LG R, @T™Y),

The a=w= case is again treated as a dilation problem. Since, generically



4)

>% 4

Furd a . (o

it is convenient to use the characterization in Coroliary 3.1 and (8)«(9).

QcCH,

Recall that
Ry +@
“ ;z] <y for ¥>% (17)
i
lI(Ru*+ @A ~RaR) 4| = 1 " (18)

The key to proceeding in the rational case is to find ¥ € RHa. such that
M~ € RH, and M*M=(¥]=Rj R3). If we use the symbol (¥3/ =R R )4
to denote this M, then (18) makes sense in the rational case. Finding #

involves spactral factorization and is treated in Chapter 3.

Given 4 € RH. with the desired properties, (18) reduces to
“G - 3”. <1 (19)

where G=R M~! € RH. and @=QU~!. Solving (19) for @ € RH. solves
(18) for @ € RHa. Note that @Q=3X is in RH.if @ is, since M € RH. by

construction.

The finai step in the rational case then involves solving (19) for @ € RH ..
This is a standard mathematical problem of approximating an L. matrix
by an H. matrix. This turns out to be yet another dilation problem but
in 2 somewhat different guise than those treated in the constant case.
The solution of (19) is the focus of Chapter 4 on Best Approximation.

Recovery of the optimal KX Just as in the constant case Ko =Fi(/, @ope ).
This Kope will stabilize /(P,Kop:) since the parametrization in Stap 1)
insured that @ stable lead to internal stablility of



R(P.K)=F(P.H(V.Q).



2.1.5 Figure l

internal stability

73, (lnes

parametrization

v Kzﬂ(J.Q)

oR, ”T“ * T“"QT”IL where T{RTip=l TulTa=l

l unitary invariance
iﬁ'u"Q Ry
Riz Rz

a=2 a=m

8.

projection dilation
g, o2l . eeLn

as=2 aQ=ce

projection dilation
Qopt
3%u=FNJ1@w)

|
!



2.2.2 Internal Stability

In this section P and X are fixed proper transfer matrices. The block
diagram of Figure 1 represents the two equations

ok

11 Pra
P = ﬁzx Pu]' (@)

It is convenient to introduce two fictitious external signels, w; and wg, as in
Figure la

, u= Ky (1)

Partition P accordingly:

Suppose the signals v,w,, and w; are specified and that u in Figure 1ais
well-defined. Then so are ¢ and ¥. Thus it makes sense to define the systam
vl
in Figure 1a to be well =posed provided the transfer matrix from jwy to u
2
exists and is proper.
lemma 1. The system is wsil-posed if and only if
I = K(m)Pg(w) isinvertible. (3)

Proof. Tigure 1a implies the 2quations

1]

u w, - KXY + Rw,

Y = Payv + Puu
end these in turn imply that

(I=-KPYu = w, + KPyv + Kw,.
Thus well-posedness if equivalent to the condition that (/=XP)"! exists and is .

proper.



QED
It is straightforward to show that (3) is equivalent to either of the follow-

ing two conditions:

[_ o) 'K,(")] is invertible ; (4)
I = Pxp(=)X(=) isinvertible. ()

The well-posedness condition is simple to state in terms of state-space
realizations. Introducs minimal realizations of P and X:

4 B, B,

P = C; Du Dm (8)
C: Dy D
= Bl

K= ‘2\ g (7

Note that the partition in (8) corresponds to that in (2), i.e.,

A B
G oy

Then Py(=)=Dy and K(=)=D, so for sxample, from (4) well-posedness is

Pu = (8)

equivalent to the condition that

1 =D
[“Dzz J4 is invertible. (9)

Well-posedness will be assumed for the rest of this section. Let z and £

denote the state vectors for P and K respectively, and write the system

annatinne in Fioura 1 with 17 aat tA rarn and 8 ionarad:

SquAlicnz in rigure [ Wil v aax Lo Zero and 4 ignaran:
z = Az + B (102)
Yy = Co =~ Dyu, (10b)



2

u

A% + By (10¢)
2g + Dy (10d)

The system of Figure 1 is internally stable provided the origin (2.2) = (0.0)
is asymptotically stable., To gst a concrete characterization of internal sta-
bility, solve equations (10b) and (10d) for v and ¥:

bR

C: 0
(Note that the inverse exists from (9)). Now substitute this inte (10a) and

(10c) to get
d: _~
45| 1
where
~ o] (B2 0ll 1 B0 2
A=lal*lo Bll-0a 1| c of

Thus internai stability is equivalent to the condition that 4 has all its eigen-
values in the open left half-plane.

It is routine to verify that the above deflnition of internal stability
depends only on P and K, not specific realizations of them. The following
result is standard.

Lemsena 2, Consider a minimal realization of 7 as in (8). There exists a
proper K achieving internal stability iff (4,5) is stabilizable and (Ci,A4) is
detectable.

The latter stabilizability and detectability conditions are assumed
throughout the remainder of this chapter. Since



A Bl

equations (10) constitute a state-space representation of the system in Fig-
ure 2. Although the realization in (11) is not necessarily minimal, it is stabil-
izable and detectable, and these are enough to yield the following result.

Lemma 3. The system in Figure 1 is internally stable iff the one in Figure 2
is.

The next section contains a parametrization of all X’s which achieve
internal stability for the system in Figure 2. To simplify notation, define

Gi= Py, BBy, Ci=Cy, D:i=Dyp.

Then (4,2) is stabilizable, (C,4) is detectabls, and the system under scudy is

that in Figure 3.

The above notion of internal stability .is defined in tarms of state-space
realizations of G and X. It is important and useful to characterizz internal
stability from an input/output point of view. For this, consider the {eedback
system in Figure 4. This system is described by:

i o

Now it is intuitively clear tha if the system in Figure 4 is internally stzbie
then for all bounded inputs (v,,v3), the cutputs (e;,n2) are also bounded. The

following l=mma shows that this idea lends to an input/ocutput characterize-

Pianm Af inbarmal otahilide
ere DR ANLENTR. S22

lemma 4. The system in Figure 4 is internaily stable if and only if (/=GK)

is invertibie and the transfer matriz



¢ I (I-GK)'G  (I=GK)™ (11)

between (v,,v3) and (¢,.23) belongs to RH..

{ e _ [/4.;((1-—01.')‘16 K(I=6K)""]

Prrof.  As above let (4,8,C.D) and (4.5,C.D) be stabilizable and detect-
able reslizations of G and X respectively. Then the si- te-space equations for

- bk - sl
- sz[z] a1t

H
8y T Ut Y € T U Y

tha system in Figure 4 are:

-

The last two eguations can be rewritten as

A AR R

Now suppase that this system is internally stable. Then (7) implies that

(7=DD) = (I-GK)(«) is invertible. Hence (/=GK) is invertible. Fartuer,

sinea the eigenvalues of

~ a0 '1 -p"
A”bﬁ]*’o ~D [

are ir the opan left half plane, it toilows that the transfer matrix in (10) from
(v1,v2) to (81.07) is in RAL.

Convarsely, supppose that (/—GK) is invertible and the treasfer matrix
in {0} is in XX~ Then. in particuiar, (/~G3)™ is proper which impiies thal
(I=GE)(=) = (I=DD) is invertivie. Therefore

©



[1 .1
D I

is nonsingular. Now routine transfer function calculations give,

o Pl b+ Bl 3l

-D I
Since the transfer matrix from (vy,u3) to (8,.82) belongs to RH.. it follows

0
c

that

(sr -Z)"‘[g g

o &
co
belongs to RH.. Finally, since (4,5.C) and (4.5.C) are stabilizable and
detactable, it follows that the sigenvalues of 4 are in the open left half plane.

QED
We note that to check internal stability it is necessery (.nd sufficient) to

check that each of the four transfer matrices in (11) are in RHa. 1t is not
difficult to construct examples of & and X such that any threz of the four
transfer matrices in {J1) are in KH., while the fourth one is unstable.



2.2.3 Parametrization of All Stabilizing Controllers

Two matrices N, M € RH. with the same number. of columns are

[
right =¢oprima if the combined matrix ﬂ has aleft inverse in RH.. That is,

there exists X,Y € RA, such that Xi + YN =/. This is often called a
Bezout or Diophantine equation. An alternative deflnition is that two
matrices in RH. are right-coprime if every common right divisor in RHa is
invertible in K4.. This can be shown to be equivaleni to the above definition
in terms of a left inverse, but we will not use this fact.

It is a fact that every G € &, (proper, real-rational) has a right-coprime
factorization G = NM™' where N,M € RH. are right coprime. Similarly,
there exist left coprime factorizations (icf), defined in the obvious way by
duality. The proof of the existence of such coprimne factorizations will be
given in the next section with explicit realizations for the factoiizations. In -
this section, we will 382 how these factorizations can be used to obtain a

parametrization of all stabilizing controllers,

Begin with rcf's and lcf's of G and X in Figurs 4:

G = NH™ = H™IN (1)
K=yt = 7y ()

lemma 1. Consider the system in Figure 4. The following conditions are
equivalent:
1. The feedback system is internally stable.
v
2 [N ;,1 is invertible in RFa.

(v -pl
3 |-§ i | isinvertivle in RA..



Proof: As we saw in Lemma 2.3 of the last section, internal stability is

equivalent to the condition that

]
I L)
[—G IK} € RHa
-1
1 .
[Gf] € RH.-

or, equivalently,

! _ I vt
o= b 7
[Mﬂ —l 0]
so that

I

Since tha matrices

are right-coprime, (3) holds iff

&

(3

This proves the squivalence of conditions 1 and 2. The equivalence of 1 and 3

is proved simniiariy.



We shall see in the next section how to find explicit realizations for
N M, N, &, U, ¥, T, 7, and such that (1) holds and

vo “30 Ol lo
[STTNT

The above lemma says that
K & UV =V,
then qualifies a particular controller achieving internal stability. All stabiliz-

ing controllers can be expressed in terms of X; and a parameter @, as shown

in the following:

Theorem 1. The set of all proper controliers achieving internal stability is
parametrized by the formula

K=K + WU+ %N ()
where Q ranges over RH. such that (J + V;'NQ)(s) s invertitle.

Proof: Assume K has the form indicated.

Define

Ug U «~HMQ V4§ V,+NQ
O & 0,+Qd VoV, +oN

then
(¥ Dy d [Voeef =T, +edlln U,«-Ma
|-# ilwv=|-7 i |~ v«

1<% -0l vl 4
o 1l-F @ v %o 1]

"

é -IQ] i{) ?] from (5)



10
= [o 1] ()

Thus X achieves internal stability by lemma 1.

Conversely, suppose X Is proper and it achiéves internsl stability. Intro-
duce ref and lef of X as in (2).

Then by lemma 1, Z § &V = NU is invertible in RH.. Define @ by the

equation
U + MQ =UZ, (8)
30
Q=Y VZ" - 1) (9)
Then
Vo + NQ =V, « NU-YUZ™ - 1)
z ¥, = A N(UZ" - U,) trom (1)
= GV @V, - NU, + NUuz=Y)
= @\ » Nuz-) -  trom(5)
= Yz + NU)Z
= g vz
= yZ~! (10)
Thus,
K = uvt!
= (U + MWV +NQ)!
= PP Y L S22 P WrelANNALT L 7=l AT =] 1wl f11)
*- UeTlp T \&& g Ty 4V I¥\s T 1gq ivy, 71y \&&)

from (prelim? ). Then, since

(M = U,VN) = (8 = V0,0 = VoWVl = T N) = 75



we have that

K= U + VPQU + INQT (12)
To see that @ belongs to RHa, observe first from (9) and (10) that M@
and N@ both do. Right-coprimeness of N and X then implies that @ € RH ..

Finelly, since V and Z evaluated at s== are both invertible, so is
V. + N@, trom (10), hence sois / + V;INQ.

QED
Define the rational matrix
A
A

and consider a controller X given by formula (3). Then the controller equa-
tion
v = F(/.Qy

& + tau + eyl

is equivalent to the triple of equaticns

v = Ky - Vo,
u, = Wy = My,
Y1 = Qu

The block diagram corresponding tc this triple is in Figure 5. We con-
clude that every stabilizing controller can be represented as X = F,(/,Q), as
in Figure 5, for some parameter &, which is constrained only to be stable and

proper and to meke X proper.

The next section gives an explicit state-space realization of one choice of

the interconnaction matrix /.



2.2.4 Realization of J;

Recall from Section 2 that we have

G*'clp‘.

where (4,5) is stabilizable end (C,4) is detsctable. To obtain a right-
coprime factorization of G, choose a matrix F° such that A+5F is stable,
Lemma 1. A stabilizing state feedback F yields r¢f G = N¥~! where

A+BF\ B
= F F I (1)
C+DF\D

Proof: That G = NH~! follows from:

4|84+ 57| 5]

Cioll F |7

4 BF |5

0_4+BF (cascade of two systems)
C DF |D

GM

A+BF BF|\B

=] 0 A0 (by change of basis in the state—space)
C+DF DF\D
A+BF | B .

*[C+DF1D (deletion of uncontrollable part)

=N

That NV and & are right-coprime will follow from (3) below.



[ +BF| 5
[ﬁ} = | F |} (1a)
C+DF\D
is also a realization of an rcf of G.

By duality, to get a laft-coprime factorization of G, take H such that
A+HC is stable.

Lemma 1'. A stabilizing output injection X yields lcf G=#~'N where

2 ] - el 2+, @

The next step is to specity U,, ¥;, C~I.. v. to satisty

M U, I 0
;o

The idea behind the choice of these matrices is as follows. Using

ford

v. - Ei o
=N

observer theory, find a controller X, achieving internal stability. Perform
factorizations

K, = U,V = V0,
analogous to the one2s just performed on G. Then Lernma 3.1 implies that the

left-hand side of (3) must be invertible in 7. We shall see that, in fact, (3)
is satisflec.

The e¢quations for X, are
2z42 + Bu + H(GE + Du_~y)

u = F2,
that is,



_[A + BF +Hb¢HDF'-H] (4)
-l F lOJ

Define

A=A+ BF + HC + HDF , Bz =H
Ci=F ,D:=x0
Pi=C+DF, B:==(B + HD).

Foilowing (1) and (2), define

l] A+528 +8F|~
Il = [ceDF} I (5
; L] l f |
~ o A+B218 B+8 +HC|~(B+ -
[v. U;]: —g—{—f——b—%-F—F—fj—,ﬂLﬂ (8)

Using the above deflnitions we have that

>~m

v +8F1B -H|
C+DF\D I

'V, -0, WrHC|~(B+HD) H

L = = FF T 0]. (28e)

N
l i c =D I
and the following theorem holds.
Theoram 2.

Equation (3) is satisfied.
Proof; Verification of (3) is immediate using (7)., (8). and the inversion for-
mula for systems (prelim). '

A realization of / is now immediate. Substitution of (1), (4), (5).
and (8) into (3.13) leads after simplification to



[A+BF+HC+HDF|~H B+ED)
J=l F V zl‘ ' (9)
—~(c+DF) |1 ~D

Let's recap. We began with the (stabilizable and detsctable) realization

B

We chose F and A so that 4+5F and A+HC were stable. Define J by (9).
Then the proper K's eachieving internal stability are precisely those
representable es in Figure 5, where § € RH. end

I + DQ(w») is invertible
(The last condition is equivalent to the one

(I + V;'NQ)(w) is invertible
which is required as per Theorem 1).

This representation result has an interesting interpretation : every
internal stabilization amounts to .addi.ng stable dynamics to the plant and
then stabilizing the extended plant by means of an observer. The precise
statement is as follows; for simplicity of the formules, cnly the case of

strictly proper G end X is treated.
Thecrem 2.

Assume & and K are strictly proper and the system in Figure 3 is inter-
nally stable. Then G can be embedded in a system

ozl

A:{{,‘?]. 5,:{5]. c,:[co] (10)

Sy

where



and 4; is stable, such that X has the form

[AQ*BQF0+H|C¢ "Ho

K= l Fy o | (11)

where 4, + B, Fy, and 4, + A, ( are stable.

Proof. K is representable as in Figure 5 for some @ in RHa.. For X to be
strictly proper, so must @ be (see (3.6)). Take a minimal realization of &:

By
Q=c‘o-

Since @ € RH.. A; is stable. Let z and z, denote state vectors for J and @
respectively, and write the equations for the system in Figure 5:
z2=(A+ BF + HC)z - Hy + By,
v=Fzr +y
W E2=02 +y
5, = AeZg + Bgu,
V1= G323,
These equstions yield
Ze = (A * ByFy + H,C)zy = Hey

U= FoZ,,
where




2.2.5 Closed-Loop Transfer Matrix

Theorem 1 provides a parametrization, in ts-ms of 2. of all proper X's
which achieve internal stability in Figure 1. The goal in this section is to
express the transfer matrix from v to ¢ in terms of Q.

A stabilizing X is representable 25 in Figure 3. Substitution of the bloek
diagram in Figure 5 into that i Figurs 1 leads to the oae in Jigure 8§, Flirmi-
nation of the signals 4 and y leads to Figure 7 for & suitsbls transfer matrix
T. Thus all closed-loop transfer matrices are representabie ssin Figure 7. It

remains to give a reslization of 7.
*

We must first put back the original notstion whick was simplifed at the
end of Section 2. Let
A B, B,

P = |Ci! Dy P (1)
[Cel D2y Dz

be a miniraal reslizetion of P, and choose 7 and K 3o that A+5F and

A+HCy are ctable.

Lerama 4.
A+BoF  ~BoF | By, Bl
i 0 A+HC|By+dDy 2| )
£= |C1=DiaF =DyoF | Dy Dxal
2 Dy 0
Preof. ¥With the original notation we have from (..4.9) that
44 BoF+ HCy HDooF |8 B+ HDs2)
J o= F l 0 I (3)
=(Ca+ DgoF) I ~Dp

Partition J and T accordingly:



A+l 'Bgi
'rlg = E"A‘ﬂsgf’ Dm (Sb)

- ;4'*’-352} S Hf}gi!
T F e [ Da |

T = Q.

(8c)

In Figure 7 the governing synations are therefore
e = Tyuv + Tigihy
wy = Ty
¥R Ry
20 that
€ % (Ty = Tie@Ty)v.
In sununary, we have

Theeram 3. The get of all elosed-loop transfer matrices from v o ¢ achiew

able by sn-internally stabilizing proper controller is aqual to

Tu + Tma’fm 1 QERH, [« ﬂag(“) invarﬁble}.

Taez important points to note are that the closed-loop transfer matrix is
simply an affine funetion of the controller parameter matriz & snd that the

coefiicient matrices Ty have very simple realizations, namely, as in (5).



_ A+BoF | By (5b)
Tu = C¥D:F|Du
LQ+HCz'B1+Eszl

Ta = TG | Da |
T = 0.

(5c)

In Figure 7 the governing equatiors are therefore

e = Tyv + Ty
U = Tg!‘v

Y1 = Quy

so that
e = (T + T@Tak.

In surnmary, we have

Theorem 3. The set of all closed-loop transfer matrices from v to ¢ achiew

able by an-internally stabilizing proper controller is equal to

Ty + T1oQTgy : @ERAa, [ + 'ﬂQ(.) invertible}.

The important points to note are that the closed-loop transfer matrix is
simply an affine function of the controller parameter matrix @ and that the

coeflicient matrices T, have very simple realizations, namely, as in (5).
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2.3.2 Riccati Equations and Factorizations

Consider the Algebraic Riccati Equation,

EX+ XE-XPX + @=0 (ARE)
where

EW,Q €6 R F=WF=202and @=¢
with the associated Hamiltonian matrix

E -w]

An=|lo p (Hamiltonian)

The following theorem and corollary characterizes the relatioxghip
between spectral factorization, Riccati equations, and decomposition of Ham-
iltonians.

Theorem 1 Let 4,5,P.S,R be matrices of compatible dimensions such that
P=pP', R=R'>0, with (4,5) stabilizable and (P.4) detectable. Then the fol-
lowing statements are equivalent.

a) The parahermitian rational matrix

e « t-e 2§17

satisfies
PHw)>0 forall Osw< o

b} For EcA-BR™S', W=FR™'B' and Q=P-SR~!S', there exists a unique
real X=X" such that



EX +«+XE XWX+ @ =0
and £-BR-1B'X is stable.
¢) The Hamuivonian matrix

_la-rs -pr-m
4 = |.p4SR-'S' ~(A=BRVS'Y

has no ) w-axis eigenvalues.

Corollary 1 If the condi‘ions in Thec.2n 1 are satisfied then 3¥ € &
such that ¥~! € RH.and

I'= M°RN

A perticular realization of one such Mis |

where F==R~}YS'+ B'X).

Proof: (a)-*(c) Let

=181 [4 o|5&
Ms) = [%‘l%’ £ |=P =4'|- @)
S B |R

Then 4y = 4 -B8p-C. Suppose Ay has an eigenvalue on-the jow-axis. Then

S, To=(2,',22) such that
Ayz, = jw,Z, (3)
or -

(JU,I"A)Z; = "BR-1(5'21*3'22) (4)
(jwol+4)z, = =(P=SR™'S")z,~SR™\B'z, (5)



Suppose
0= Cz = S5z, + Bz, (8)

then from (4) and (5)
(ool = A)z, = 0 - (7)
(jwed + A)z2 = =Pz, (8)

Since (7) implies 2" (jw,/+4')=0, trom (8) we have zPz,;=0. This implies,
along with (7) that (P,4) is not detectable. Hence Cz,#0. Now Lemma
0.2.3.8 implies that there exists u, #0 such that I'(jw)u, =0. This contradicts
the hypothesis that I'(j w)>0. Hence (a) = (c).

(b) - (a) Suppose SX=X' such that E-BR-'B'X = A=BR-NS'+B'X) is
stable, Let F==R~}(S'+5'X) and

RE
M= T
It is easily verified by use of the Riccati equation for X end routine aigebra
that T’ = HM*RA so -
Mis) = H~Ys)RYHM'(-s))
Now

_ la+srl8]
= PET

So H~! € RH.. Thus[™! € RL. and for all 0w

Ti(e) = HGe)R(M(=je))™ > 0

Hence I'(Gw) >0 and (b) = (a).

(c) - (b) -This is proven as part of Theorem 3.1 in the next section.




The next section focusas on the soliition of the Riccati squation and com-

pletes the proof of Theorem 1.




2.3.3 Solution of the Algebranic Riccati Equation :
Consider once again the Algebrsic Riccati Equation,

ETX « XE - XWX <+ Q=0 (ARE)
whera '

EW.Q € V™, V=W 20and Q=¢7

with the associated Hamiltonian matrix

(Hamiltonian)

& -7
AE"_Q.ET

Our main interest is to ﬁ:}d the unique real symmetric stabilizing solution
such that the matrix (£ = ¥X) is asymptotically stable. For simplicity we
will use "solution” of the ARE to mean a resl symrnetric one. The ARE con-
sidered here is more general than the ARE which arises in linear quadratic
optimnal control and Kalman-Bucy filtering theory in that there is no assump-
tion on the definiteness of the matrix Q. -

An important property of the Hamiltonien matrix Ay is that the distribu-
tion of its eigenvalues (denoted as A(4y)) is symmetric with respect to both
the real and imaginary axes, i.e, if A € A(dy) with multiplicity k£, so is
X =A and =X Thberefore, A can be partitioned as A; and Az so that
A € A, with multiplicity & implies that X € Ajand ~A,=x € Agall with
the same multiplicity.

One connection between the ARE and 4y can be seen by assuming that X

10
is a solution to ARE and conjugating Ay by l x 7| tovield



[—x f] [—0 -E’j LY J

—(E"X+JCE’ - XWX + Q) —(E-,;’X)’]
P e
*| o ~E-mx)7|
This puts 4z in block upper triangular form and clearly exhibits a particular
partitioning of the eigenvalues of Ay with respect to the imaginary axis. For
example, if E=FX has all its eigervalues in C_, then =(E£=¥X)7 has all its

poles in C,. Thus, the solution of ARE which stabilizes £« FX yiild a decom-
position of Ay into stable and unstable parts.»

This section will éxplore the coudiuons undsr which the desired solution
of ARE exists. There is a considerable literature addressing the theory of
ARE and it is not the purpose of this report to give a deteiled treatment of
this subject. We will simply present and prove the results which are relevant
to the factorization theorerns in this re_por;..

Now, we are going to state the main theorem of this section which gives
the necessary and sufficient conditions for the existence of a unique stabiliz-
ing solution of (ARE). VWithout loss of generality, we will assume that
¥ = GGT. '

Theorem 1:

The stabilizability of (£,G) and Re[A;(4g)] # 0 (v i =1.2...2n) is
necessary as well as sufficient for the existence of a unique stabilizing solu-

tion of (ARE).



Remark :

. - The unique stabilizing solution of Theorem 1 will be denoted by Ric (4y).
Note that this theorem is more general than Theorem 2.1 from the previous
section since no detectability assumptions are made. The following theorem
will play un important role iri the next section in obtaining complementary

inner factors.
Theorem 2:
1t Q@ =HTH 2 0in (ARE) and X is its solution, then Kex(X) < Ker(H).
The remainder of this section iz devoted to proofs of Theorems 1 and 2,
Lemma 1 : ( Potter, Martensson )

Let the columns of the matrix

;} € R™ (¥,Z € R™ ) be the

eigenvectors or generalized eigenvectors of Ay corresponding to the eigen-
values Ay, Az, ... v An. Then_
(i) the matrix Y7 Z is symmetric.
(i) it ¥™! exists, then X = ZY™! is the solution of (ARE) such that the
matrix (£ - FX) has the eigenvalues Ay, A, ..... + Ane

[Proot] :

The proof was first given by Potter (1966) and generalized by Martensson
(1971).

Lemma 2:



*

There exists at most one stabilizing solution to (ARE).
[Proot] :

Let X, and X; both be.the stabilizing solutions to (ARE),

ETX, + X\ E - X\ FX, + Q=0 (1)
ETXs + XoE = XaWXz + Q =0 . (2)

subtracting (2) from (1) yields

ET(X, =~ Xg) + (X) = XR)E = X\ WX, + XoWXp =0
which may be rewritten as
(B = ¥X)T(X) = X)) + (X) = X)(E = WXp) =0 (3)
Since both X and X3 are stabilizing solutions, we have

Re[A(Z = WX)]<0 W i=12...0
and

RG[M(E - sz)] < 0 A4 j = 1.2.......7!.
From Property 1, we conclude that (3) has a unique solution

(X = Xg) =0, or X;=LXa

Q.E.D.

Now, we are going to state the main theorem of this section which gives

the necessary and sufficient conditions for the existence of a unique stabiliz-

ing solution of (ARE). Without loss of generality, we will assume that
W = GGT.

Theorem 1:

The stabilizability of (£,G) and Re[A;(4x)]# 0 (¥ i=1.2....2n)is

necessary as well as sufficient for the existence of u unique stabilizing solu-



(4]

tion of (ARE).

[Proot] :
( Sufficiency ) :

Suppose (£.G) is stabilizable and Re[A(4g)] # 0 for all €. Let ihe

n
cobumns of the matrix L’g (Y1,.Y2 € R*™) be the eigenvectors or general-

ized eigenvectors corresponding to n eigenvalues with n:gative real parts
and J be the corresponding (real) Jordar block, i.a.,
Nl in
Av,| = 1) 7
or

EY, - GGTYy= ¥/ 4 .
-~ =ETY, = Y/ (5)

We will first prove that the matrix Y, is nonsingular, Suppose Y, is singular
and Ketr(Y;) denotes the null space of ¥, Then Vv € Ker{Y,), we have
Yyv =0eand

vTY T x (4) xv:

- v, TEYw - vTYIGGT Yu = vT YT Y
Since ¥,7Y; is symmetric (from Lemme. 2-1),

YT = v Y T Y = (Yv) T Yedv =0

- GTYw =0 (e)
(4) xv:

= EYw - G6TYw = v

- hiv =0

ey Jv € Ker(Y,)



*

It is clear that Kar(Y,) is invariant under J and is spanned by soine sub-
set of the (generalized) eigenvectors of /. Thereforz, 3 eigen-pair ( A7) ot /
such that /U =37 and v € Ker(Y;). Then

(5) % u:
w QY -ETYp = VR
»  =ETYU =AY
= ET(¥) = (-X(¥a) - ™
w  (=A) is an eigenvalue of E7(or £)

Furthermore, we know that Re(=2) > 0. By the assumption of stabiliza-
bility, we conclude that (=A) must be controllable. Thus, from
Theorem0.2.1.1(iii) (PBH renk tests) , the matrix{ =M\ = £ | ¢ ] must bave
full rank n.

But, from (8) and (7), we have

(Y)Y [~N =-E|G]=0
This is a contradiction, and therefore, Y; must be nonsingular and ,from

Lemma 2-1, we know X = Y,Y,"! is the stabilizing solution. Applying Lemma
2-2, the uniqueness of stabilizing solution is guaranteed.

( Necessity ) :

It X is a unique stabilizing solution, then (£ = GGTX) is asymptotically
stable. This implies that (£,G) must be stabilizable. Decause of the sym-
metry of A(4y) along the imaginary axis, we conclude that Re[\(A4y)] # O for

Q.E.D.



Corollary 1:

I @ =0, then the stabilizing solution X' & 0.

[Proot] : °

ETX + XE - XWX + Q=0
(B = WX)TX + X(E = FX) = =(XWX + Q)
(E = WX) is esympotically stable since X is the stabilizing solution. Thus,

-the solution of the above Lyapunov equation can be written as

Xx [ BTt xyx & Q) olE-TH g
0

Since the matrix (XWX + Q)® 0, X2 0 is concluded.

Q.E.D.
Remark :

The proof of Theorem 1 wes first given by Kutera in 1972 with the

assumption @ & 0. In fact, this assumption is not necessary.

Theorem 2:

It @ = HTH 2 0 in (ARE) and X is its solution, then Ker(X) ¢ Ker(H).

[Proot] :
Since X is a solution of (ARE), we have
E™X + XE - XWX + HTH=0 (8)

T ol mr = Wad VN Ve, = A -
WL & T DTI\A ] \AL = V). Tid

ul x (8) xu:

= wTATXu « uTXAu = uTXWXu « uTHTHu =0



- uTHTE. =0
a0 Hu =0

=» u € Ker(H)

Hence, we conclude that Xer{(X) ¢ Kex(H).

Q.E.D.




2.3.4 Inner-Outer and Spectral Factorization :

In this section, the special form of coprime factorizations required to
reduce the general H, optimal control problem to a best approximation
problem will be developed. In particular, explicit realizations are given for
coprime factorizations G = NX™! with inner numerator N (Theorem 1) and

inner denominator M (Theorem 3); and for the complementary inner factor

Ny which completes the inner numerator to make [J\’ N JJ squars and inner

(Theorem 2). The theorems will be stated for right coprime factorizations
(rcf) with the duals for lcf's following just as for the general case of

coprime factorization developed earlier.,

E .
For the following theorems, it is assumed that & = H‘ﬁ] € RF™ and

the realization is minimal. We will denote by R¥ (R=20) the symmetric
matrix such that R4R% = R and use " _f for any orthogonal complement of
D so that {DR -4 Dl} (with R=D'D) is square and orthogonal.
[«
Recall from Corollary 0.3.3.1 that N = [ZT5]| is inner if and only if
iy Bx+DbC =0 (1)
i) 0D =1 ()

where the observability gramian X solves
AX+ XA+ CTC =0 (3)

From Lemma 2.4.1 a stabilizing state feedback F yields ref G=NH™!

where



+BF{B _
= F |2l (4)
C+DF\DZ|

and Z can be any nonsingular matrix. To obtain a rcf with & inner, we sim-
ply need to use equations (1)~(4) to solve for 7 and Z. This yields the foliow-

ing theorem:

Theorsm 1:

Assumép & m. Then, there exists a 7¢f G = NM~! with VN inner if and
only if G*G > 0 on the juw-axis, including at %, This factorization is unique up
to a constant unitary multipie.

A particular reelizatior. for the factorization is

®

where

R=DD >0
= -R"YB'X+D'C) (8)

and
- -l e - R-l '
¥ = Rie {A BR™D'C BR™'B 7)

-cDwic -(A-BR-Dcy| =0
[Proot] : .
(only i) :
Suppose G=NK is a 7cf and NeN=], Then
G*G = (NH™Y)*(NK™Y) = (H™Y)*X™! > 0 on the juw-axis since ¥ € RH..

(if) :



The if part will be proven by showing that (1)-(4) lead directly to the
above reatization of the rcf of G with inner numerator. That G = N¥™! is an
rcf follows immediately from (4) once it is established that F is a stabilizing
state feedback. Using the notation

A5 +BF|B.
N = [%ﬁ = [C+DF|DZ ®
we will use (1)-(3) to get N inner and 4+5F stable, From (2) we have that
Z=R~#U where R=D'D>0 and U is any orthogonal matrix. Take U=/. Eque-

tion (1) implies that
R-¥B'X + R-%D(C+DF) =0
so solving for F §ie1ds
F = =p"YB'X + D'C) ) (9)
Then equation (3) yields

0= AX+ X400
= (A+BF)X + X(A+BF) + (C+DF)(C+DF)
= (A=BR\D'C=BR™'B'X)X + X(A-BR-\D'C~BR-\E'X)
+ (C=DR™'B'X=DR"\D'C)(C=DR™'B'X=DR-'D'C)
= (A=BR™\D'C)X + X(A~BR™'D'C) = XBR™'\B'X + CD;DJC  (10)

since DyD| = I=DR™'D'. Thus X=Ric [4y], where

- -, R_‘D.C -, R-IB‘ (11)
44 = | cpDyC ~(A~BR-D'CY



= [.:5«-«!—.4')'x 1]["5"2 g:f,“(d"})qaj (12)

That I'= G*G > 0 is true by assumption. To satisty Theorem 2.1 we must
have (4, F) stabilizable and (P, A) detectable, but this is immediate since
the realization for G was assumed minimal. Thus, Theorem 2.1 ensures that
X = Ric (4y) exists such that 4+5F is stable.

The uniqueness of the factorization follows from coprimeness and N
inner. Suppose that G = N\M[! = NoM3? are two right coprime factoriza-
tions and that both numerators are inner. By coprimeness, these two factor-

izations are unique up to & right multiple which is a unit in RA%*™. That is,

there exists a unit 8 € RAT™™, such that [z;] 8= {::] Clearly, O is inner

since @°@ = @°NN16 = NNz = /. The only inner units in RH. are constant
matrices, and thus the desired uniqueness property is established, Note that
the nonuniqueness is contained entirely in the choice of a particular square

root of K.

QE.D.

In a similar manner equations (1)-(3) can be used to obtain the comple-

mentary inner factor (CIF) in the following theorem.

Theorem 2:

It p >m in Theorem 1, then there exists a CIF N) € RHP*P~™) such

that the matrix {N N 1} is squere and inner. A particular realization is

+BF -XxTC'D)
Ny = ré'*-DF Dy where X and F are from Theorem 1 and X7 is the



pseudo-inverse of X .

[Proot] :
The proof consists of veritying directly that {N N1] is inner using the

above realization for Nj and the realization for N from Theorem 1. Using the

notation

] al8] [l+BriBR-* -x'CD)
[N Ml = = lc+DF|pr-% D |
and the fact that Ker(X) < Ker(D)C) (Theorem 3.2), equations (1)-(3) follow

(13)

immediately. Thus lN N J is inner.

Theorem 3:

There exists a rcf G = NX¥™! such that M € RHT™ is inner if and only
if G hes no poles on the jw-axis. A particular realization is

u +BF|B
N = F 1| € RElmpIm . (14)
C+DF|D :

where
F=<pX ‘ (15)
and
. |4 -B51
X = Ric [3 -.4'] 20 (18)
[Proot] :

The proof is essentially the same as for Theorem 1. The details are

straightforward and are omitted.



Remarks :

(1) The minimality condition in Theorem 3 can bes weakened to (4,5)
stabilizable and 4 hes no eigenvalues on the ju-axis and the
theorem still holds,

(2) ¥ ¢ € RH.™ in Theorem 1, then K is & unit in RH, and ¥-lis
"outer”. In this case, G = N(H™?) is called "inner-outer factoriza-
tion" (I0F). '

(3) Dual results for all factorizations can be obtained whenp < m. In
these factorizations, out.p'ut injection using the dual Riccati solution
replaces state feedback to obtein corresponding left factorizations.

In the following theorem, we may assume that G(s) is stable without loss
of generality. Any G € RL. may be factored using the dual of Theorem 3 to
obtain a stable numerator ¥ such that N*N = G*G.

Theorem 4 : (Spectral Factorization)

Assume G(s) € RH.P*™ and ¥ > ||G(s)|!lss Then, there exists a
M € RH.,™™ with stable inverse such that ¥*¥ = 9*] - G*G with

- —atel
= |- REK | RH
where
R=¥1-DD >0
= Re==R"YEX=0C)

- Ric | A*BRDC  -pRp |
£ =NC \o14 pR-1DYC ~(4+BR™DCY



[Proot] :
Let

I'=2l - GCG= [B'(-sI-A')" !}—D’C R
vhere R 23 ~D'D.

-cC -C"DH(:I-A)"B]
!

Since ¥> ||Glle T(f©)>0. The minimality of the realization of G(s)
guarantees that (4 , B) is controllable and (~C'C, A) is observable. Thus,
trom Coroliary 2.1, there exists H(s) € R**™ such thatI' = 4*H and a par-
ticular realization is

A B
M= 'R*IQ R* -
where

K= -R“(B'X-"D'C)

and

=R A+BR-\D'C -BR-\B' -
X =X¢ o1y pr-1DyC =(A+BR™DCY]
Since Gis stable, we conclude that ¥ € RH.™™,

Q.E.D.



2.3.5 Parametrizing the Optimal Controlier and the H; solution :

This section combines the results of Youla's parametrization and the
coprime factorization to parameterize all stabilizing controllers in a way that

is convenient for solving optimal L and L. control problems,

Let
n Pl |4 5 Bz]
pP= up=cxpupxz
Cz|Du D=z

Suppose that neither Py; nor P has transmission zeros on the juo-axis
(including o ) and, without loss of generality, D37 Dy =/ and Dy Doy T = 1.
Under these assumptions, let D= (Dy,); and EJ_= (Day)p that is, [.sz DJJ

and [Dg,f b2} f} are orthogonal matrices. Then, factor P as before with F
and H given as follows :

Fz=(Dyp7C + BX)

.A-'BzD;erx - BBy ]

X=Re|_crppre, ~(a-BDyuTc)

and

H = =(B,Dy7 ~ YC;T)

(A =B,Dy7C)" -cTe, |
-8,0 58,7 '(A’Bsﬂaxrcz)]
Then, Nj;2°Ny; =/ and ﬁz,ﬁzf =/J. Also, let Njand ﬁlbe CIF's so that

¥ = Ric

[ A+BF | B, =X'C\TD
1Ngg Nu = I2=TF5"FIR n.
l 9 LMiTod v “L |
¥, [A<HC: |Bi=HDa]
. 5|l = CQ l Dz;
by Dy




Letting
A+BgF  wByF Bgl
(NV)u Nm 0 A+ HC, 31+HD31 0
T = N o ® [0;+DuF =DwF| Dn Dia|
0 Ce Day l
reduces

) { |[rP. 0 I, fr,(P.zg stableJ

to

zp, | Inro ||}
- 7, {10+ o |

The optimal X may be recovered from Q.

Because both the |l |l and ||« {ls norms are unitary invariant, an altor

native expression is possible. For any @ € RH, (a = 2, »), we have

“ (NP1 + Ny2QNa, lL

1 . o -

! [Nxz N;j [(NV’)u + Ny2QN2

” {Nxz (NV)stzx +~@ Np® (NV),,N_L} |
N,L("]WxxNzx Ny (NV),,NJ_

- il[Gn""Q stJ
B Gm

a5

Gy Gra . ~
where G = G;: G;] [N.L 3 (¥ [N?'.° Nf}

Ti¢ a = 2 case is particularly simple. Since




Gu*Q Giz 0 Gie

Gy Gre

2])&
2

o2l = ool +

the optimal @ is seen immedistely to be
ef
+*

Unfortunately, the a = = case is more compliceted and will be invugtigated
in the next section. To obtain an explicit expression for Q. we need to

compute G.

n Vu
Note that (NV)y; = {Nu N m} sz}' It is convenient to compute

N2 Nie"Ny I
J {Nll 12 [ - 0

and

o e 2]

seperately.
Qaim 1:
~(A+BaF)T| (€, = D1pF)T Dy, + XB)|
] [Nu _EzT DIZTDII
ofoxt DDy,
[Proof] :
A+BoF 0 B I
i l I ~(Cy+D12oF)T(Cy+ D1oF) =(A+BoF)T |=(Cy+ DioF) Dy
Nuj = T D T(C, + DaF) BT | D™D, |
nfe, -pf e | DD, l

I 0
conjugating the states by [-X I]' we have



l A*BgF 0 B; ]

N;z [ ] 0 =(A+BoF)T | =(C1+ DipF)T Dy = XB
u 2T (Cy+ DnF) +BsT BT DyTDy,
- D_LT C;XT QED 11

Since DT (Cy+ D1aF) + BaTX = DigT €+ BeTX + F = 0, the claim is verified.

QED.
Qaim 2:
“] -4+ BCT| - & yB,BY
(;,i AENE @B Ba D
0 0
[Proot] :
+HCy =(By+ HD2)(By+ HD2)| (B~ HDu)0u™  B.DY
{" 0 ~(A+HC)T ‘ C,7 - m,p /
Vay {N“ ) =(B,+HDgy)T , Da’ e J
F 0 0 0
L I
conjugating by [0 }}.
+HC2 0 0 0
Fx‘/,, ] 0 “(A+HC)T | €T -xv;e,ﬁ‘f
[sz 2’ ‘L l "(51"'3921)7 Dz: of ]
0 0
which verifies the ciaim.
Q.E.D.

Putting these results together yields

1!;42.] Vu) [:,] e R



[~(4 4 BP)T| (€, + DyuF) Dy = X8| |~(4 4 HCYT| =€ 118, 57]
=] By Dy’ Dy * (Bi+HDy))T| Doy?  Df
ofcx DDy -FY 0 0

};Iote that this is the cascade of two systems with all of their poles in €, .

Thus, projection onto H;+C leaves only the constant term. Therefore, in

the [j case:

Theorer :

Qope = Dia" Ly D7




2.4.2 Hankel Operators

Let G(s) be a strictly proper transfer matrix which is analytic in Re $=<0,
i.e,, totally unstable. The Hankel operator associated with G will be denoted
by I'c and is defined as follows. Let

Pyt LUR) + HiGR} (1)
denote the orthogonal projection. Then
T : Ho(JR) = Ho(jRY

Tef i= PyGf.

There is a corresponding operator in the time domain. Let g(¢) denote
the inverss Laplace transform of G(s) and let Py + also denote the orthogénal
projection

Pyy: La(R) = Hy(R): @)
Context distinguishes the two projections (1) and (2).) The time-domain
Hanke] operator is
Ty ¢ Ha(R) » Hy(RW
F,f = PHJ'(‘V ‘f ).

Thus

}y (t=7)f(7)dT., t<0
(]

TefNE) = | o, t=o.

Since the Fourier transform establishes the isomorphisms



La(R) 2 Lo(JR)
Ha(R) 2 H(R)
Ha(RM-Z H(GRY:

we have that

feell = [

The norm of I, can be computed by state-space methods starting from

s minirnei realization of G,

NE)
Gg clol

Let Y and X be the controllability and observebility gramians,
0 ]
Y:= fe®#BBedtdt, X:= fr"‘C'Cc“dt .

Lemma 1. [T, and YX have the same nonzero eigenvalues. In particular ’

el = bl

Proof.  For this proof only, drop the subscript g on Iy, and define
a(t):= g(=t). The adjoint operator of ' is

I*: Ha(Ry = Ha(R)

o= Pgé_,{_g, ®h).

Let c®#0 be an eigenvalue of I"*T" anu iet f € H; be a corresponding eigenvec-
tor. Then

I'Tr = . (3)

Define



&
]

-
3

o

30 that

I'f = oh

(42)
"k = gf.

(4b)
(Vectors (f.,h) satistying these equations form a Schrnidt pair for I') Since

g(t) = Ce%B, t<0
a(t) = Be~4ic, t>0
we get from (4) that

} Ce4t=TIBf (r)dr = oh(t), £<0
[:]

0
S BleAtICh(n)dr = of (¢), 50,

or, equivaiently,

fe¥v = oh(t), t<0 ' (5a)
B'e~4tw = of (t), ¢>0 (5b)
where

v iz [eo4787 (n)dr
0
0

w = fed*Ch(r)dr,

Now premultiply (5a) by ¢4 C’ and integrate from —w to 0, and premultiply
(5b) by A= B and integrate from 0 to », This yieids

Xv = ow

Yaw = ow.



Finally, we get

v = oo, (8)
showing that o2 is an eigenvalue of YX. The reverse argument leads from (8)
to (3).

QD
We shall be concerned with approximating G by a stable transfer func-

tion, i.e., one analytic in Re s20, where the approximation is with respect to
the L. norm. Here we establish only that the distance in L.(fIR) from G to
the nearest matrix in F.(fR) equals ”1", ||

Theorem 1.
ot {lo=al}-+ 0 € 56m] = [ ®

and the infimum is achieved.
The remasindcz of this section is devoted to a proof of Theorem 1: only

section 5 requiras some of the material to be presented next.

The inequality

ot [o-ci: < 6m) = e

is easy to establish. Fix @ in Ha(JIR}. Then

ft

w
8

[guetimun)
©
1
o
=4
«
m
a‘
8
C\
8
<

ool
=¥

]
(7]
5
'_—_“‘_" [gueremme
.’-—
Q
\
m .o
X
G
3
=
y



- [pel

Take the infimum over @.

It is convenient at this stage to bring in Lp and /; with respect to the
unit disk:

T: unit circle.
LT, ™). Hilbert space of matrix-valued functions on T, with inner pro-
duct
1
<F,G>:= -z;{t*aceli'(c”)‘c(t”)]dd.

Ha(T, C™*): subspace of functions F(z) analytic in |z | <1 and satistying

on
Sup { trace[i’(n”)'ﬁ'(n«")]dﬁ <m,

La(T, C™™): Banach space of (essentially) bounded matrix-velued func-

tions, with norm

||Fl '. 1= ess sup U[F(c”)].
H.(T, C™"): subspace of functions analytic and bounded in |2 ; <1.

Map the right half-plane Re 20 onto the unit disk |z |<1 via

- S=1 - 142
TSR T (9
and define
G(z) := Gls)!, e (10)

l=-8
*

Since G in anaiytic in Re s&0, including the point at e, G is analytic in



8

|z]zl ie., GE La(T). Associated with G is 2 Hankel operator, 'z, defined as

follows. Again, let Py i denote the orthogonal projectior.

Pgy: La(T) - Hy(T):
Then

Tz : Ha(T) = HoTH

Taf = PgGr. (11)
Lemma2. ||Fa| = ||
Proof.  Define the function
Y(s) = VE/(s+1).

The relation between a point jw on the imaginary axis and the corresponding

point #/? on the unit circle is, from (9),

et = 181
) Jo+l
This yields
2
dy = o) do

= - |Y(o)|da.
Thais implies that the mapping
T =yt Ho(T) = H(iR),

where f(z)=7 (s) |, o120 . is an isomorphism. Similiarly.
1-s

791 Hy(TH - Hy(jRM

is an isomorphism; note that if f' € Hy(T):, then ?=0 at z=cx, so that f =0 at



7
s=~]1, and hence ¥/ is analytic in Re s <0,
The lemma now follows from the commutative diagram
r2
Hy(T) = Ho(TH
Te
Hy(GR) = Ha(jRY

Q.E.D.

There is a matrix representation of the operator I'z. Let the power series

expansion of G be
G(z) = ‘_:“:_.z‘ G

(Actually the sum only ranges from i=-=w to ¢=0.) In (11) let the power

series expansion of.f be

I(z) = éz‘f '
and let that of  := Py, Gf be

h(z) = EJ::‘IL‘.
Then (11) is equivaient to the equation

h-l G-l G.a ses f.
h-z G..g G.a ses fl

hoy| |G-z Gy .oflfe oo
= . \dbey

] . o .le

a [ ] Lt e

. [} o ...lle

The rnatix in (12) is the familiar Hankel matrix of the transfer matrix 5(: )



Proof of Theorem 1. In view of Lemma 2, it suffices to show there exists a
matrix @ in Hu(T) such that

[5-all = |Ire]| (13)
Let the power series expansion of § be
Q) = Ir'q.
The lett side of (13) equals the norm of the operator
7 =+ (G-Q)f : Ho(T) » L(T).

The matrix representation of this operator is

G=@: G~& ...

G, -Q, Gy
G., G (14)
G-p G.s

The idea in the construction of & @ to satisfy (13) is to select &,.Q,.... in turn

to minimize the norm of (14). First, choose & to mirimize

G =@ G-y ...
e e )
’| o . . H
‘ . .« ... l!
e

By Parrott's Theorem, the minimum equals the norm of the Eanke] matrix in

(12), Le., :lf‘a' .. Next, choose @, to minirmize



61=@s G=G .-\
G-Q G,
. Gy G2
[ ] [ ]
[ ] [ ]
Again, the minimum equals 1"5”. Continuing in this way gives a suitable &.

QoE-D.




2.4.4 Best Approximeaticn

The transfer matrix R(s) is real-rational, proper and anti-stable, Le.,
enalytic in Re 0. The objective is to find Q(s), real-raticpal, proper, and
stable, such that “R-Q”. is minimum, Le., aquals HI‘“ The constant term

of R can be absorbed intc @, so we can assume R is strictly proper. Further-

more, by adding rows or columns of zeros, wes can assume X is square.

Let

Then

0|8
=z {0 -
C ~C|=-D
B,
= ol

So Q is optimal if  is stable end ||G]} = c.

lemma 5. Suppose (35,) s.t.
APy + PoAy' + BBy =0
CePy + D,B,' =0
DD, = ¢*I

(minimal)

(to be found)

(5)
(8)



P20 were A= [::: p] (8)
Suppose olso that (4,8) is stoblizable. Then Q is optimal.
Proof. Lemma 4 together with (5) and (8) =

G(s)G{=s) = *I
w |l6]l = o Ao (5) =
AP+ P4+ 8B =0

Thus Lemma 3 w» A stable,

’ QE.D.

Recap: objective is to construct 4,.2,C.4.8.C.0.2, s.t.

i) R:E%{—g] (minimal)

i) APe + PoA' < ByBy'=0 : (5)

i) CPs + DoBe' =0 (8)

iv) D,D,' =0 - )

v) P20 @)

vi) (4.5) stabilizable . (9)
Construction.

Step 1. Find a balanced realization of &:

R:%‘%.

Thus controllability gramian

= observability gramian



cl, 0
0z

where ¢ > ”E”, ie., = multiplicity of . Partition 4,5,C accordingly

i oefl . esladd

Step 2. Choose D st

DBy +0C;=0 (10)
bb = (11)
Step 3, Set
B = —(a‘!—E')“‘(ZBﬁ-aCz’D) (12)
A= ("Azz"‘BzB')' (13)
C = CL+DBy (14)
P = I(c?/-L%)"! (15)
-0/ 0 O .
« =0 =T - (18)
0 =~ P

Verification of (5) ~ (9).
From Step 1 we have that
AP + PA' - BB'=
AP +=PA+(CC=0
These yield the following equations:
=04y =~ CAy' + B1By' =0 (17)
—Algz - UAp' + BBy =0 (18)
~Apl = LAz = BBy =0 . (19)




-GAII. - UAu + C,'Cl =0 (20)
~A3T = 0Apr + C)'Ca= 0 (21)
=Ag'L = Tdge + Ci'C2 = 0. . (22)

To see that Step 2 is possible, i.e., D exists, observe from (17) and (20)
that

BBy = CyCy.
Hence there exists a unitary matrix U such that
UBy + €, = 0.
'i’a.ke D=0cU
To verify (5), it suffices to show that the blocks in positions (1,3), (2,3),

and (3,3) of the 3x3 block matrix 4 P, + P4y’ + 5, B, ' are vl zero,

The (1,3)-block equals

-A12 + 313' = mA * 31(33'2 +* UDCQ)(Ea - sz)“l from (12)
T =fp + (3182'2 - cC;'Cz)(Ez -0'21)-1 from (10)
= =4y + from (18);(21)

{(A,,S.‘ +0A2)E =0(Agy'T +0A) (T2 =0%)  trom (18):(21)

= 0

The (2,3)-block equals zero immediately from (13). Finally, the (3,3)-block
equals:

(—Aze'+ BB7)P + P(-Age+BiB') + BB trom (13)
~An'S(0?]=L%)") - (0?1-E2)"184;  from (12);(13)
=(0*1-E%)~Y (LB, + 0Cy D) B'T(o? -L2)!

~(02 =L 'LBo(B2'T + 00 Co) (0% -2

AP + P + BB



+(0R =D)L By + acg'b)(az'; w ol Co) (a1 ~ER)
.5 (02 =E) Y (me¥Ayy'S + D2A0g'S - LB BT
~ 0*LAgp + RAgel® ¢ 02Cy Co) (0?1 ~T¥)™
= Q. ' from (19);(22).

Next is the verification of (5). We have
GP, + DBy ® [-DBy~oC,, DBy ~Cil+ B, =D ~Co-2P]
= {o. ) —ﬁﬁwcp—t*ﬁ] from (10) -and (14.).
And
DB v Ca+ 0P =0

by substitution from (12), (14), and (15).

Equation (7) is immediate from (11), and (8) follows from the definition
(15) ot B.

It rernains to prove (9). Suppose there exists A, Re A=0, such that
[2 -, ﬁ} '
doesn’t have independent rows, Le,,
x‘[ﬁ -A\, E] =0
tfor some z»0. From (13) we get
| 2=+ BBy) = a2t 2B =0,

so tnat

This implies that (~A4z) is unstable, which is not possible: stability of (~4)
irnplies that of (=Azz).



2.4.5 General Distance Formula

Censider the problem of minimizing
l [Ru-Q Ry
Ray Ry
u sz]
R = ﬁzx Ry

is real-rational, strictly proper, and analytic in Re <0, and @ is required to
be rzal-rational, proper, and analytic in Re s&0. This section contains 2 for-

where

mula for the roinimum i w..2s of the norm of a certain operator I Note

that the minimum is tbe distance

Ha 0
in 9]

from R to the set of all matrices of the form
Qo
0 op

The matrix R induces a multiplication operator on Ly @ Ly, i.c.,

AR Al

T: Ha@L» HE® L,

1 [Pa Ol o0l
B« Fet s 2l

Q € RHa.

Define I"via




I ol

The proof of this theorem is a straightforward application of the
theorem of Parrott / Davis - Kahan - Weinberger, as in Section 2. 1t is possi-
ble to write down a matrix representation of I, but an efficient numerical

procedure for computing its norm hes not yet been developed.
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ONR/HONEYWELL WORKSHOP

Problem Description
and Motivation




Real Controi Design Problems

Sgnsors

(o5
D

T

Software_ -

Ciilj s (compurs

Design Task:

Specify these control system
[SWN

P Yt ealatalal-2ald $ |
compenents to make th

"behave well”



Control Designers Need Many Tools

Simulation

Software
Development
Aids

@. Numerical
Optimization
Form:al =2 Methods
Synthesis

Problems —Classical Feedback
. <~ Theory



Formal Synthesis Problems

® Some Element of Design Abstracted
as a Formal Mathematics Problem

® Soiutions Known Mathematically and
Computable Practically

8 Properties of Solutions Well-Understood
and Desirable

--The closer the abstracted problem
matches the real design task, the
more powerful it isasa design tool

--No abstracted problem matches the
real thing perfectly



Cur Formal Synthesis Problem

plant, sensors and a;tuators
a_bstacted as a linear time-invariant
finite-dimensional operator

disturbances
and commands

controls measurements

computer and software
abstracted as another linear time-
invariant finite-dimensional
operator

Design Task

Specify K(y)to ® achieve stability
e optimize performance
® provide robustness




Stability

many

inputs

No bounded input should produce
unbounded outputs

many

5 other

outputs

—> we must achieve internal siability

(all poles in the left hand plane)
(stabilizable/detectable design models



Performance

selected V' e’ selected
tnputs G ""'—"""" responses
u y

Inputs in a Responses with

Specified  shouldproduce  Specified Optimal
Class . Properties




Performance Objec:t.ive's for -
A Familiar Example

Loy,

e Input Class

Samplé Functions of 8 Stationery Random
Process with Specified Autocorrelstion

notse .._rl.., W —
o W, Lows
Juva/

(
linear operstor -
stable and minimum phase

o Response Properties

mmman Mesn~-Square-Error

selected ¢’ e
responses — W >
S~ (o}

‘inesr opersgtor - stable eng
T mimmum phese

min E { e(t) e(t) }




Resulting Design Model

A 4

Overall Plant:

] e[l

Closed Loop Responses:

[P+ P II-KP BNICHE
F(P.K)n

@
!



Resulting " H,-Optimization Problem ~

Min  E{et) et )
stabilizing K

BlewTety) = E ([FP.K)nkt) [ER.K)nlw) )
Tr { J: Fe) FoTat )

impulse response of operator F

Tr {55 R Fge™ aw )

T

frequency response of operator F

2
“ F(s) “2

"[/Tr‘ —Q#J ~ F(yw) F(jw)* dw

-0

-n
)
~
N
1>

= 2-NORM on the Hardy space
of stable transfer functions



An Equivalent Deterministic
Pertormance Objective

l‘ e(t)”2

e |nput Class

m specific time functions in ﬂ.2 representsble
as impulse responses of linear systems

impulse j wi oo
into j-th 2|\ (V) j=1,.m

channel P i l
(
t

linear operstor - ]
stable snd min phase N

® Response Properties

Minimum ﬂ. «Norm of m corrasponding
weighted responses

selected (e')] W e’
responses >

P 0

linesr gperstor - stable end
minimum phase

m
min 2 || ¢ w]?
j=1 2

o>
=

o0
T Z-NORM on the space
JO e(t) e(t) at of time functions



Alternate Performance Objectives

¢ |nput Class

LN

All possible

ﬂ.z-functions withl v V'
bounded norm ? — W,
ivioll, €1

e Response Properties
Minirmnum ﬂ.2 Norm of the largest weighted
response

selected '

responses .— | W e
0

€

min %l o]



Resulting " M __-Optimization Problem ~

stebimz]igg K sgp lle(t)“?

sup _|[e(t)||2 = swp HF(P,K)v(t)||2

2 Jllerp vy
IRALSL A

L2 j

operator norm induced by the

2-norm on input/cutput time functions

1
e
€ O
al
U
g}
<
:
e

v 1oAYy 4

2 || Fes) ||m

=
oo-Norm on the space of

stable transfer functions



More General Performance Objectives 7

Al possible . ) o Minimum L_-no
L, -inputs with | Wi G W > of the largest
. - 4 G n HARHAHA {
v (1) fys i LI | v d response
EERAANRRRRARRR AR

® Trivial solutions (optF=0) whenever r > p
® | ittle engineering precedent for

3 £rsp< o
® Bounded signal problems (r=p=co)

indirectly covered by square-integrable
problems

For SISO Operators (Doyle/Gahberg) :

Il = lIFoll s 2nlF]|
4, 42

Mc Millan Degree



Robustness

Nature's
Perturbation

Qur Controller

s Stability must be maintained in
presence of L

® Some minimum performance level
must be maintained in the presence of L



Some Philosophy About Perturbations

Nature's Perturbations

® 2re unknown,

® 2re potentially catastrophic for
any control, and

‘s defy mathematical description .

Nevertheless, we must
s represent them by mathematical
models,

® specify maximum levels of
severity within those models, and

® design controls to work successfully
for this specification

The “Leap of Faith” that the selected representation
will protect against the real thing remains the burden
of engineers, not of mathematicians




A Model of
"Unstructured” Perturbations

L(z) = W AW(zJ

a stable minimum phase
LFDTI weighting operators

any LFDTI operator from a norm-bounded set

@ ={A] A stable, HA”‘:2

Transfer Functions in a Disk: @ [A(jw)] <&

log gain

oY imeg

one a(jw)

log & —

resl




Design Model

] ig!:!::;:x:::;z:!;: 3

N
Overall Plant P

Vv



Robust Stability

System S :

W

F(P.,K)

Theorem

Given : i. F(P,K) stable .
i. Ae® [stavewitn||All, ss]

Then systemS is stable if and only if H FHiz <-£-S-

Resulting Analysis Test for Robust
Stability:

k;’n_\\‘ NOTE: Thisis s

ngn-conservative
S remains stable forall A ¢ test for stebility

- with respect to the
1t perturbatien

set (P

ol F(jw)] Cé- forall w € oo

-




Other Stability Robustness Tests

Set of Perturbations

® Individual scalar perturbations

acting one at a time

6 - {a

J

6 A

s A single multivariable perturbations

¢ ={A] A stave, 1ANSE ]

® m multivariable perturbations
acting simultaneously

X={A

drag

AJ.G(P

A =diag( 0,0, A 30,0 )

A stable, HAj” <8

® A single scalar perturbation
acting simultaneously in each loop

A=diag(A, A, A)
A stable, A8

T . Y,

A= (A LA,A DY

Corresponding
Robustness Tes



Conservatism 7

® Tests are conservative (sufficient but not
necessary) whenever

set of true c set of modeled
perturbations perturbations

® Simple norm-bounded covering sets
are often conservative

Examples

- Real parameter variations

- Deliberately neglected dynamics
(time delays, high freqlags )
-etc

s Of norm-bounded sets, induced 2-norm (Hoo)
sets are least conservative

For SISO Operators: M1, <M.
L2 4p

. 1
“FHip < HZ_”LD s HF“ “AH



Robust Performance

A

A £
W z
v e e
u 4
[ K f—r

2
N
SLA Y X RS | S—_
[T} 2 ’ ]
all ﬂ.z-inputs smali
with vl £ L - responses

.00 04040y

. Robust Performance Specification:

Ev v el

r i . ,
IR SN N L b forel AcP



Robust Perfeormance Specs
Viewed as Stability Conditions

S 1 SRS A W

L

Theorem

|| £ [F(PxRA] H;L2 < -"?

iff (1) Fu[f}(P,K),A] is stable, and

(2) the following system is stable

for all AO e
A0
v
) FL[F(PK)LA ] ©

{stability robustness theorem used backwards)




Resulting Condition for
Robust Stability @ame@ Robust Performance

L

r-:u[Fz(p,K),A] stable forall A ¢ @

and
—{E—
L | stable for all AO ¢
W 2
R (PK,A] )

Y e
> Ffe(P,K)

stable forall Ay, D¢ P

Stability and performance robustness
are achieved simultaneously if and only

if our feedback system is stable for all
perturbations with a particular 2x2
block~-diagonal structure




Once More for Emphasis . . ..

® Conditions for Robust Stability and Robust
Performance are Equivalent in the induced
2-Norm (H_)) -

A(s)
stare Aco| = |9 <f

F(s)

® Simultaneous Stability and Performance
are guaranteed by a Stability Condition

Stable A Ac¢




A Conservative Aﬁalysis Test
for Robust Stability and Performance

System S

0 A

]

N

w 2
A F, (P.K)

remains stable for all £, .A € P 1r

ol Fz(jw)] <'1§ foral.l W€ oo

(standard stability robustresstheorem
with structure ignored )

Arpitrerily Conservative

Example:  F, = [o f] gl F, Gw)] =lfGw)]
00
|

Test gives stability only for suaif(jw)i<-6—
w
Actually, stability is never lost

det(1-F [23] ) = det[:j ':A] = 0




A Tight Stability Test
for Structured Perturbations

s Set of Structured Perturbations

% = {A A =GeaglA b8, A }
a,¢@

{A(s) Als) = Giock1afs) .. ()] }
E[AJ(JNJ]S 8 forallw and all j

s A New Function of a Matrix:
The "Structured Singular Yalue (SSY)"

1
_ BlFGw] £ min{sldet[I-F(jw)A(jw)]=O }
for some w and A€ X(S)

" |{Theorem [AA. A] ‘

System S —3 F

is stable for all

A e X&) iff u{Fgw)] (-%- forall w¢ oo




Mu Makes a Difference !

Example F =[0Q f ol Fjw)] =]f(w)]
10 0]
A=[a, 0]
L0 4,

] N | |
Singular Yalue Test gives stability for S |f (jw)|< 3

Structured Singular Yalue Test:

p{FGw)] & mm{sldetll Fljw) Aliw 1= 0 }
for some w and A€ X(S)

1

o C lat<8

min{s

= 0

1
oo

<« Stability is maintained for all

AeX (8) with 5=~E‘- = oo



' Mu is a Potent Too1 !

N
-n
Lt
pe
/X
)




-\1 Hu-Optimization Problem

Min = SW p [F(PK)(jw)
stebilizing K~ ¥ .[2 ]

s-Optimized Robust Stability and
Performance

Stl)p H = M, = Stability forall

AeX (L)
Hopt

Guaranteed Performance Level

1 Fu[Fz(P,K),A]Hu < o,



Other "H N Problems”

W 51, 2
Y P 51— €
.o
u Y

® Maximized Performance Subject to
Stability Robustness Constraints

i Max S sup =' ‘
| stabilizing K { o' P ulF(PKS,6=1] ¢ ]

.....................................................

® Maximized Stability Robustness Subject
to Performance Constraints

Max
P stabilfzing K




Summary of Formal Synthesis Problems

Class of Performance Set of Synthesis
- Inputs Objective Perturbations Problem
White Noise Ele'e) A=0
| . Min || F(s) ||
R e 2llelmll,  A=o 2
lz-bounded _
Signals sop [le(t) “2 A=0 Min || F(s) Hoo
- - AcP [supa[F(jw)]}
w
L -bounded

Signals 2

sup {le(t) |l Ae X l Min || F(s) Hu

r LA 4 L)
k !
S — Aex ) Uspuifou]
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A Generic Classical Control Problem

All SISO

Perturbat

controls

ions

qw] (s)] Disturbances

G(s) M i+L(s)

? lwd(s)l

outputs

-K(s)

Design Objectives Expressed in Terms

of Desired

Loop Shapes

® Small outputs in response to disturbances

[ ok I wgwr | <

|GKGw) | >

IWd(jw)I GK>> 1

® Stability in the face of perturbations

!GK[I+GK(jc_.;)]‘1W} G) | < 1

| GK(jw) | <

GK««l

*

| W (W)



Desired Loop Shapes

\\logil

Performance Robustness

| [e6KGw) 17 WyGw) | < | 6K [1+6KGw) 1™ W G | <1



Muitivarianie Generalization

cf Loop Shaping ideas

— -

D7 R AR AT T ST U Y K2 NalnAIE \ WY AL

. log

Performunce Robustness

e Bl*GK(ij]

Wi ] < Fleklnekiw) ] W (W] <




Interpretation of Loop Shapiné
In Terms of General Design Model

..........................................................

W, P
v had
—2
—
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.......... R —
-K

GK(MGK"‘W‘ GK(I+GK)°‘WO

Fy(PK) =
' <|+<3:<)"w.I (1+GK)"'w
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SSV for the Classical Loop

® Definition

i )
detlI-Fljw) Aljw 1= 0 }
for some w and A€ X(8)

"FG 4y
BIFGw)] & min{s

A, 0
with A =[ ! ]
0 A,y
® Some Calculations

- ARRNAY
RO = 1- GK(HGK)_{W] [8) &d]
(1+GK) " W,

is singular iff '
1= A,GK(+GK) ™ W, = Ag (1+6K)™" W,

s singular

ofe MR € TIGKI+GK)'W,] + GLILGK) W,

Loop Shapes which satisfy
classical objectives tend to
minimize p



Limitations of Loop Shaping

*AH design objectives n:;;’bst
i be reflected te one point in
. the Toop

Loop Shaping
works for this

‘multivariable

loop . .. -K

I+

but not ""3+|’

for this r & e i

muiltivariable
1

loop . .. L_,,.,‘ .":'1:5:5 ) -K




wWhat Goes Wrong 7

HLH 6 —'é)—

F.(PK)= -K

—-E

G(I+KG) 'W.  (1+GK)™'w I

[KG(I*—KG)"\N‘ K (1+6K)™ "W,
1 d

I- is nonsingular iff

: |
I-G(I+KG)°1W]A]K - “*GK)-‘WaAu is nonsingular

KTk

[OK| = ] - R
uig) ¢ | TI G Katwe) w1+ FLls6K W, ],

l Classical objectives do not minimize
i uniess condition of K remains small

[K}[G(lme)“w] (1+6K)”

'w

d

pussemm—e |

]



An Aside: The Scaling Implicit in

rKG(I+KG)'1w] K (146K)™ W,
G(1+|<G)"w] (I+GK)"wd

PK} (4667 [ow wd]
!

s To compute y, find the minimizing D
for O [DF, D°"]

: oF 07! = [dK} (s 16007 [16W W,

l
_[dl 07
D= 0

v Equivalent to a change of "units”
in the problem

—1 6 7d)




Decoupled Flight Path / Attitude Control

Adoren
o— =gl
L o Rt
= A TT .
\ Covany
\ NN
5& o -

Angle-of-Attack

(0.4
é/ Velocity Vector
% 8 -Pitch Attitude




Decoupled Flight Pat.h'/ Attitude Control

In Our General Framework

renY gl
wl
| HActH Airframe Wor— e

"~ responses

5]

K(s)

| R .
Py | WKBUFKGTT W K(1+6K)
W26(1+KG)'” w2(|+GK)“




Selected Weighting Functions
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An Aside . Weights are the "Knobs”
‘ of the Formal Synthesis Probiem
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Implications

® The Loop-Shaping Design is Robustiy 3table

| wke ke | <

o0

® Performance is Satisfactory for the
Nominal Plant

| w,ve0 || e

(==

s Bult there existsa &, with “AIH _§1/15
such that

|| woF [F(PK), & 1] 2 15
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Overview of Synthesis
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Summary of Formal Synthesis Problems

Class of Performance Set of Synthesis
Inputs ~ Objective Perturbations Problem
White Noise E(e 'e) A=0 Min ” F(;) ”
2

Impulse - ) -
Responses 2 le’(wll, A =0 (rreen dw]w
lz-bounded
Signals s [le(t) ”2 A=0 Min || F(s) “oo

— — Ael (sup T LRGN
L_-bounded -
T sellewl,  Aex ] M Al

—_ _— AcX J {itjpu[F(jw)l )




Status of Cynthesis Solutions

s The Mz-Problem

Solutions completely known
(Parallel Wiener-Hopf / LQG Solution )

® The H_sProblem

Solutions available arbitrarily close
to optimal

s The [H]“-Problem

Approximate Solutions available through
[teration

Min

Min -1
o oerwos ]



The [Hla;Solution Process X=2,c0

R, 5 — p

....................................... - _ 1
F‘8 Py¥ P K PZZK) P,

Parametrizezion
Min |1+ .. ’ r. _ + _
QGRH«“T11+TIZQT21““ T12T12"’ T Tg =

Unitary invariance

Min l '
QGRH“I

Projection

i




Parametrization Highlights

Y P(s) | e
’ Y .
K(s)
T(s)
‘ui EE ul oy ORC Residual

Q(s)

T..(s) = (residual)/ u 0 (separationtheorem )

22

S ) -1
y (TQ) =T,,7 7, Q001-T,,Q) Ty,
aEUTRIPRCPY ’




Parametrization Highlights

® Youla Parametrization of
all Stabilizing Controlliers

K(s) = (Ug+ MRV + NG ) !

U2 BRI B
where P22- NM, Ko=UgVYe stabilizes, Q stable:

s Observer-Based Compensator (OBC)
with added stable dynamics
Residual y-¥

9 X
s, 7[}:{ |> R O— )
. F —;(5—.._._9.




Exploiting Unitary Invariance

L ,, @__u

\ x

4o 4
Let H and F be Riccati Gains T2 Ti) [Tz ) =1

L
Then [T T,,] and Ti‘ . e
21 21

N 4

can be made unitary 21

x T x .
RSB (AN K1
z:J Hex
_ |p”+o R,,
- R R
A3 22 Vigg

/’

THE PRICE : unstable functions




'Projections

“ R,*Q R _
RZi Rzz 2
- 1/
x * b3 »
[jTr(RﬁO) (R FQ+Tr(R R _I+TH{R_R_)+THR_R )dw]
12 12 21 21 22 22
-0
It is sufficient to minimize “ R, ,+Q H
2

g g

"
turns out to

be entirely unstabie must be
stable
@
Q = 0




PART THREE:

CRANCIS'S NOTES
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. well-posedness

2. internal stability
3..parane{'ri23{':ou of K

4., s{a{e—sfaace realiza\t.‘on

5. closeol-laop trans{er ﬁta\lrc‘x

lcey references
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Closed-loo': ‘l’raa;spér ma{‘m‘x
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. well-posedness

. inferasl '_s'."a‘ili{y

: parame\lrie‘ai{c‘aa of K

. Qfafe-space realieafson

. closea’-loop {'ransfer mm‘rc'x



W, , W, fictitious exogenous inputs

def'n Syr{'en s well-posed if

4r3hsper ma\ln’x [\:,] Hlf}]
W,y U

(xisfs % is proper

€ <

SuN's‘ces lo cansiJer [
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LN P'u"* Pu“
| u=W,+K(;+w,3

w=w + K[(O vePu)+tw,]
(I- Kl )us w, ¢+ KP, v+ K,

%Lere\('are
well-posed = (I—Kﬁn\-' exisls

s s preper



Conclu?ion
well- posd ness
&> [ - K(») 9‘1(-0) invertible

= T- Fu (0) K (00) inverfib le
[T - K(»)]
|-, () I

&b invertid l 4

wcﬂ-rosdacss assunecl herea f\l er



. well-posedness

2. internal stalility

3. parane*ﬁ?a(c‘m of K

t. stale-space realizafion

5. closel-!oop Yransler mafrix
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G DJ== D+ C(sI-AY B
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T G
v
x
“u 7 ie. | Y
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existence

lemma 9 proper K 3cL.’evin,
inf‘lrno' s{zh‘li{y &~

(A,8,) stabilizable

(un:"aue mnle: c‘ P
contrallable from )

2 (C,,A) detectalle

(unstoble medes of P
observalle 21 y)

.. sssumed hereafder



' reduc‘ion

B f
[
“‘X=A'x+6“u P=-A|81 .l
Y * C:’* Dn.“ N 'C‘ O-nJ
stabilizalle ¢
Je‘ec'la”e

lemna le“ 8\/!"!0‘ in"‘erntuy c'!'a“e

~ n’,'\" " " "

suffices 1o stabilize P
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Simplificelion of nofafion
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3 detectable
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. well- posednecs

2. internal stability

3. paramelrization of K
4. stale-space realizalion

5'..6'031'0' - iOGP Yronsler motrix



{aclorizations over RH‘o

fe gHﬂ &= {(s) real - rationsl »

proper,
analytic in Reszo0

. exlend +$o veelors & maifrices

cle("n NJN é KH‘,, Jre rn‘a“»coprime w

[‘;] is lefd - invertible in RHW

'cguav'a(.en‘ly
L(TX, Y €RH,) XM+ YN=T]
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2. every cemmen right divison

of M, N is inverfible in RH,
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oK@ shL luzer

choose (via next sec{.on) i1, N

Ao al #

G=NM'=H'R
U,

K=(U0,+18)(V,+ NG)
= (V,f&ﬁ\=§(0§°+éﬁ)

s.t.



‘l’Learen\ €ormu‘a '{’w 3“ 9"’25!'386':
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(V,+N @) (o) invertible
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s = I
- Ml NV
sed
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J=|° -
_va.' -VO N.
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via



. well- posedness
2. internal sdabilily
3. paromedrizsfion of K
. 4. c\La\le-space realiz afion

S. closed-loop 4ransfer matrix




state - -space realizalion of ref

rA l 8] stabilizalle
!.C, ' OJ ) detectable

cLoose F si. A+BF stable

%= CA+8F): ¢t B(u-F=x)
¥z (C+tDF)x + D (u-F=)

2= (A+8F)x +8Bw (w=u-Fz)
-(C+DF)1+DW |
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l

Y= {(cwm[sr (A+BFY] "B +D }w
z: Nw
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COhcluS‘ion
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N =
[C+DF | D

s\’a#e-srace realiaa(:on o(' lc.\t
choose H sd. A+ HC stable

~-.

G=M N
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LA &= P




we want
[Vo "GQJ [” U.]'I
i HM/LN V,
method

1 qet 2 stabilizer K, via observer

2. do state - sPaee.- realizalions
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2=A2+eBust H(CR+Du-vy)
us F2

1]
T
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C+DF I
| F 0 |
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F I 0
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2. inleenal sdabilidy
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topics

l. @unchon spaces

2. Hankel operafors

s. {ke distance Cormula
4. Somée ‘n‘:‘lor,

5. state -space so('n

| 6. genenl Ji:‘ame ‘F"mulﬂ
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