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Figure

1. The EMPTAC body of revolution model.

2. Sweep angles of EMPTAC wings.

3. Body of revolution of radius (r) located a distance (h)
above a ground plane.

4, The EMPTAC HF antenna feed point locatioms.

5. The EMPTAC test point locations (see Tables 2 and 3 for
specific locations).

6. The EMPTAC normalized current density on the top of the
front fuselage (10.29 m from the nose) for topside plane
wave incidence with E || to the fuselage.

7. The EMPTAC normalized current density on the bottom of
the front fuselage (10.29 m from the nose) for topside
plane wave incidence with E || to the fuselage.

8. The EMPTAC normalized current density on the top of the
mid fuselage (18.6%9 m from the wing-fuselage junction)
for topside plane wave incidence with E || to the
fuselage.

9. The EMPTAC normalized current density on the bottom of
the id fuselage (1..69 m from the wing-fuselage
junction) for topside plane wave incidence with E || to
the fuselage.

10. The EMPTAC normalized current density on the top of the
port wing (3.9 m from the wing-fuselage junction) for
topside plane wave incidence with E |T to the fuselage.

11. The EMPTAC normalized current density on the top of the
port wing (11.7 m from the wing-fuselage junctioén) for
topside plane wave incidence with E || to the fuselage.

12. The EMPTAC normalized charge density on the tip of the
nose for topside plane wave incidence with E || to the
fuselage.

13. The EMPTAC normalized charge density on the tip of the
vertical stabilizer for topside plane wave incidence with
E || to the fuselage.

14, The EMPTAC normalized charge density on the tip of the

T

port wing for topside plane wave incidence with E || to
the fuselage.
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1.0 INTRODUCTION

The Electromagnetic Pulse (EMP) hardness of an aircraft system may be
monitored using one of several global systems currently available such as the
Hardness Surveillance Illuminator (HSI) or the Horizontally Polarized Dipole
(HPD). The primary drawback associated with these monitoring systems is that
the aircraft must be taken out of service for approximately 2 weeks. Thus,
the hardness monitoring systems currently available are of practical use only
for spot checking or requalifying an aircraft after a major modification. A
method of performing periodic quick checks of EMP hardness for every aircraft
in a fleet is needed. This technique would be especially useful following a

major maintenance action.

One technique which has been developed for quick checks of system hardness is
Single Point Excitation for Hardness Surveillance (SPEHS) (Refs. 1 and 2).
However, the SPEHS technique works effectively only when the aircraft is
excited at its resonant frequency. Therefore, the frequency range of opera-
tion for the SPEHS technique lies within the 1 to 3 MHz range. Excitation of
an aircraft in this frequency range makes the SPEHS technique inadequate with
regard to diagnosing faults in radio frequency (RF) gaskets, RF filters and
cable shields. Failures of these elements may be identified by examining
changes in their transfer reactance which requires a range of data including
frequencies much higher than the resonant frequency of the aircraft under

test.

Preliminary tests have shown that the onboard high frequency (HF) antennas of
the EMP Test-bed Aircraft (EMPTAC) (Boeing 720B) may be capable of providing
the HF excitation required to effectively monitor the EMP hardness of aircraft
systems. The EMPTAC HF antennas are located at the end of the starboard wing
and at the top of the vertical stabilizer. The EMPTAC HF antennas are
designed for operation over the 3 to 30 MHz range. Yet, tests have shown that
the HF antennas of the EMPTAC are capable of operations up to 100 MHz. The
problem is determining the surface charge and current distributions which
result when the EMPTAC aircraft is illuminated by various HF antenna

configurations over the frequency range of interest.
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The surface current and charge distributions on the EMPTAC which result for
swept frequency excitation of the HF radio antennas are computed over a range
of 0.5 to 100 MHz. The external responses of the EMPTAC are computed for both
the inflight and ground alert modes. In the ground alert mode, the ground
plane beneath the aircraft is assumed to be perfectly conducting. The compu-
tational analysis is performed using two separate techniques which are
dependent on the frequency of operation. A method-of-moments technique

(Ref. 3) is applied for frequencies of approximately 20 MHz and less for which
the aircraft is modelled by intersecting conductive bodies of revolution. For
frequencies above 20 MHz, the physical optics approximation is used to
determine the limitations of exciting the aircraft via the HF antenna. The
natural modes of the aircraft are obtained numerically as shown by Taylor and
Crow (Ref. 4). The excitation of these natural modes using various configura-

tions of the HF antennas are investigated.

The surface current and charge distributions induced at various points on the

EMPTAC are computed for four different HF antenna excitation configurations:

fin-cap antenna only
fin-cap and nose antenna

one wing-tip probe

two wing-tip probes

The symmetric and antisymmetric modes of the aircraft are determined from the
resulting data. The current and charge distributions which result from the
aforementioned excitation configurations are compared with the distributions
which result from excitation of the aircraft on the ground by an overhead
plane wave. These results are also compared with measured data from EMPTAC

tests.
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2.0 A METHOD-OF-MOMENTS SOLUTION FOR THE EMPTAC
SURFACE CURRENT AND CHARGE

The current and charge densities which are excited on the surface of an
aircraft by an incident of electromagnetic field may be computed numerically
using the method of moments (Ref. 3). The method of moments is an integral
equation solution technique which may be applied to complex geometries. An
accurate method-of-moments solution for the EMPTAC surface current and charge
requires an accurate geometric model for the outer conducting surface of the
aircraft. An accurate yet relatively simple description of the outer skin
of the EMPTAC is obtained using intersecting bodies of revolution (right-

circular cylinders and ellipsoids) Ref. 5).
2.1 THE BODY OF REVOLUTION MODEL

The body of revolution model for the EMPTAC (Boeing 720B) is shown in

Figure 1. The skin of the aircraft is modelled using nine distinct bodies of
revolution which are designated as (S,, S,,..., Sg). Each body of revolution
is subdivided into current zones of equal length with Nn denoting the total
number of current zones on the nth body of revolution (Sn). The following
portions of the EMPTAC are modelled by simple ellipsoids: wings, horizontal
stabilizers, front fuselage, aft fuselage, and upper portion of the vertical
stabilizer. The lower portion of the vertical stabilizer is modelled by a
cylinder of constant radius while the mid fuselage consists of a constant
radius portion and a tapered radius portion. A complete description of each
body of revolution is given in Table 1. The sweep angle of the wings,

horizontal stabilizers and vertical stabilizer are shown in Figure 2.
The variation in radius along each of the ellipsoids listed in Table 1 is

defined according to the maximum radius (Rn) and total length (Ln)' The

radius of the nth body of revolution as a function of length is given by

r (s) = R [1 - (s/Ln]2]1/2 n=12,3,4,609 (1)




L —
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Figure 1. The EMPTAC Body of Revolution Model.
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Se

0n=29" L7TNE ou=29°
S, S,

(a) Vertical stabilizer.

¢n=25"
S

SS)S4

S, s, Ss

(b) Wings and horizontal stabilizers.

Figure 2. Sweep angles of EMPTAC wings.
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Table 1. Description of the individual elements for
the EMPTAC body of revolution model.
Body of Number of Total Maximum
Physical Revolution Current Length Radius
Element Description Type Zones (m) (m)
S1 Port Wing Ellipsoid N1-12 L1-23.& Rl-l.8
32 Starboard Wing Ellipsoid N2-12 L2-23.& R2=1.8
S Port Horizontal Ellipsoid N,=6 L,=7.0 R,=1.1
3 cq s 3 3 3
Stabilizer
S Starboard Ellipsoid N, =6 L,=7.0 R,-1.1
4 . 4 4 4
Horizontal
Stabilizer
SS Lower Portion Right N5-2 L5=2.21 RS-I.A
of the Vertical Circular
Stabilizer Cylinder
S Forward Ellipsoid N_ =10 L. =14.7 R ,=2.0
6 6 6 6
Fuselage
S7 Mid Fuselage (?) Right N7a-4 R7a-2.0
Circular
Cylinder L7-21.7
(b) Truncated N_, =3 R, =2.0
Ellipsoid 7o 7b
58 Aft Fuselage Ellipsoid N8-4 L8-3.a R8=1.36
39 Upper Portion Ellipsoid N9-3 L9-7.09 R9=l.a

of the Vertical
Stabilizer
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where s defines the length along the axis of the ellipsoid (s = 0 defines the
point of maximum radius). The lower portion of the vertical stabilizer (Sg)
is a constant radius cylinder with rg(s) = Rg;. The radius along the tapered

portion of the mid fuselage (S,;) is given by

s - 4Ly/7 1 1/?
r,(s) = R, {1 - [ —EE:—I—E: ] } 4L,/7 £ s £ 1, (2)

The aft fuselage (Sz) is defined according to Equation 1 given the radius of

the mid fuselage at the tapered end [r;(L;)].

For ground alert mode computations, the EMPTAC body of revolution model is
located above a perfectly conducting ground plane of infinite extent. The
vertical distance from the center line of the EMPTAC fuselage to the ground

plane is assumed to be 3.2 m.
2.2 THE METHOD-OF-MOMENTS SOLUTION TECHNIQUE

The external responses of the EMPTAC to both plane wave excitation and HF
antenna excitation are determined using the method of moments. The particular
method-of-moments solution technique utilized is an extension of Hallen’'s
integral equation for thin wires to bodies of revolution (Ref. 5). The
extended boundary condition defined by Taylor and Wilton (Ref. 6) is imple-
mented using the intersecting bodies of revolution model for the EMPTAC. The
extended boundary condition requires that the total electric field vanish at

all points within each conducting body of revolution.

The individual bodies of revolution are subdivided into electrically short
current zones. The circumferential component of current over each zone is
assumed to be negligible in comparison to the axial current component.
Therefore, the method-of-moments solution technique is inherently limited to
low frequencies (<20 MHz). The total axial current along the nth zone of the

jth body of revolution is defined by
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. LBy m)sto(ss - sy )] T(s5 )i R (S ne - Sy )] )
1) sinfk(sy ne1 - 55,0)]

where Ij(sj,n) and 1j(sj,n+l) define the end currents and sj defines the
distance along the jth body of revolution. The King and Wu (Ref. 7) boundary
conditions are enforced at all junctions along with Kirchoff’'s Current Law.

A system of complex linear algebraic equations is generated such that the
unknown current coefficients may be determined through a simple matrix

inversion.

2.3 EXCITATION OF THE EMPTAC BY AN INCIDENT PLANE WAVE

The unit step response of the EMPTAC to a uniform plane wave incident from
above is computed for both the inflight and ground alert modes assuming two
distinct polarizations of the incident field: (a) the incident electric
field parallel to the fuselage and (b) the incident electric field perpen-
dicular to the fuselage. The incident wave is assumed to arrive at the cencter
line of the fuselage at time t = 0. The magnitude of the incident electric

field is assumed to be 1 V/m.

The total axial current density induced on an isolated, electrically thin body
of revolution may be used to approximate the surface current density. At low
frequency where the circumference of the structure cross section is more than
a wavelength, the contribution of the circumferential current to the surface
current density can be neglected. The contribution to the surface current

density from the total axial current is

o _1(s)
Js(s) ~ 2nr(s) (4)

where I(s) is the total axial current and r(s) is the body of revolution

radius as a function of length. A more accurate representation of the surface
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current includes the magnetostatic contribution (Ref. 8 and 9).

Accordingly, the surface current density may be written as

I (s.4) = sE8 4 95 . Fine (5)

s T 2mr(s)

A

where ¢ represents a unit vector defined in the right-hand sense with respect
to the direction of positive axial current. Equation 5 represents the formu-
lation used in this research to obtain the current density at specified points
on the aircraft in the inflight mode. The corresponding surface charge
density (ps) on the body of revolution is defined in terms of the surface

current density using the equation of continuity given by

Py = —i— div J_ (6)

where w represents the radian frequency of the incident field.

In the ground alert mode, the effect of both the incident and ground reflected
fields must be included in the computation of the body of revolution surface
current density. Also, a body of revolution located near a conducting ground
plane experiences the so-called proximity effect which describes the crowding
of current on the body of revolution region closest to the ground plane

(Ref. 5). Thus, the surface current density on a body of revolution of radius
r(s) located a distance h above a conducting ground plane as shown in

Figure 3 may be written as

I (s.8) = gectls g(s.9) + 26 . @S 4 W) (7

where the function f(s,¢) is defined by

{1 - [r(s)/h]2}1/2
£(s:4) = 1173 [c(s)/h]sing) (8)
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/< / /7 / /7 /L /L /L /L L L L L LA

Figure 3. Body of revolution of radius (r) located a distance (h)
above a ground plane.
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Again, the surface charge density is found through the equation of continuity

given in Equation 6.

2.4 EXCITATION OF THE EMPTAC VIA ONBOARD HF ANTENNAS

To evaluate the effectiveness of exciting the EMPTAC HF antennas for hardness

surveillance, the EMPTAC is assumed to have four antennas which are located at
the tip of the nose, at the end of the port wing, at the end of the starboard

wing and at the tip of the vertical stabilizer (fin-cap). The antennas are

heretofore referred to as

e antenna #1, nose antenna
® antenna #2, port wing antenna
e antenna #3, starboard wing antenna

e antenna #4, fin-cap antenna

Each antenna is assumed to be 2 m in length and tunable over the frequency

range of interest to match the driving amplifier (Ref. 9).

Several factors must be considered when selecting the antenna models to be
used in conjunction with the body of revolution (method of moments) solution
technique. Foremost, the antenna models should accurately describe the
physical interaction of the antennas with the aircraft. One possible
technique of modelling the HF antennas is to include the antennas as addi-
tional bodies of revolution. However, the resulting wing and fin-cap antennas
would not accurately represent the physical behavior of the axial current on
the wings and the vertical stabilizer. The actual EMPTAC wing and fin-cap
antennas would be driven at a point near the edge of a conductor (i.e., the
wing tips and the tip of the vertical stabilizer). The resulting current
driven onto the skin of the aircraft would be confined predominately to the
conducting edge, thus producing a small axial component of current. An
antenna connected to the end point of a body of revolution (wing, vertical
stabilizer) would drive the entire aircraft skin current in an axial direction

producing an inaccurate physical model.

Assuming the skin currents produced by the wing and fin-cap antennas are
confined to the respective conductor edges, the contributions to the axial

currents produced by driving these antennas are considered negligible. Using

11




WL-TR-90-27

the previous assumption, the axial currents on the aircraft may be assumed to
be dependent on the incident and scattered fields only. Thus, the four EMPTAC
HF antennas are assumed to be electrically isolated from the aircraft. Even
though the EMPTAC nose antenna drives current onto the aircraft fuselage in an
axial direction, the electrically isolated nose antenna model is assumed to
yield accurate results with the exception of points on the fuselage close to

the nose antenna.

The body of revolution computational model used for the plane wave excitation
(see paragraph 2.3) is modified by replacing the incident plane wave electric
field components by the corresponding field components produced by the
specific antenna drive configuration. Each antenna is modelled as an
infinitely thin center-fed dipole of length 2h with a current distribution

give by

sin{k¢h - lz])1 (9)
sin(kh)

1(2) = 1,(0)

where z defines the distance along the length of the antenna with the feed

point located at z = 0. Assuming the current distribution in Equation 9, the
complete electromagnetic field of the antenna may be expressed in closed form
(Ref. 10). The resulting electromagnetic field of an infinitely thin center-
fed dipole of length 2h lying along the z-axis with its feed point located at

the cylindrical coordinate origin is

jquz(O) z - h . z +h

-jkR -jkR
ankp R 1h + e 2h (10)

Ep(?) -

1h 2h

; 3—2 cos(kh)e JKY

12
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‘ -ikR -ikR .
jupI (0) | e 7 1h &7 n cos(kh)e-Jk7
E,(E) = - Tumx R TR ) oY
ih 2h v
and
JI_(0) i s Zi

H¢(?) - _Z,r__ [ e IR + e I¥Ron . 2cos(khye iKY ] (12)

where
- . 2 211 /2

Ry = [(ho-z)2 + p2]Y/ )

Ry = [(h + 2)2 + p2)1/2 oo
and

vy = (22 + p?) )

The feed point of the nose antenna is located at the end point of Sg as shown
in Figure 4. The location of the wing and fin-cap antenna feed points are
offset from the axes of the respective bodies of revolution in order to
account for the width of the wing-tips and fin-cap. Thus, the feed points of
the wing and fin-cap antennas are located 1.5 m forward of the corresponding

body of revolution end point (Fig. 4).

2.5 EMPTAC TEST POINT LOCATIONS

The points on the aircraft where the surface current an? charge are computed
are shown in Figure 5. The exact locations of the respective test points are
shown in Table 2 (current test points) and Table 3 (charge test points). The
current test points are defined as test points #l1 through #8 while the charge
test points are test points #9 through #12. The current and charge densities
at the test points located on the starboard wing (#7, #8 and #12) are

considered only for antisymmetric excitation of the HF antennas.

13
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Port Wing X
Antenna (#2)
Feed Point
(1.5m directly forward
from the endpoint of S,]

{ Nose Antenna (#1) Feed Point
(Endpoint of S,]

Se
S,
S, X Starboard Wing
Antenna (#3)
Feed Point

[1.5m directly forward
from the endpoint of S,]

V

S

Fin-cap Antenna (#4) Feed Point

[1.5m directly forward

from endpoint od S,] X
Ss
Ss_
S S, S

Figure 4.

The EMPTAC HF antenna feed point locations.
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v

#9 (endpoint) 4 (3 - Current Test Point

A - Charge Test Point

#1 (top), #2 (bottom) (]

#11 (endpoint) #12 (endpoint)

J

#3 (top), #4 (bottom)

PN

#10 (endpoint)

#1 (top) #3 (top)
#9 (endpoint) O O
B
) O
#2 (bottom) #4 (bottom)

Figure 5. The EMPTAC test point locations (see Tables
2 and 3 for specific locations).
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Table 2. Description of the EMPTAC current test points.

Test
Point #

Element Radius (m)

Element at Test Point

Location Description

Top side of front fuselage,
10.29 m from the nose as

measured along the axis of S¢

Bottom side of front fuselage,
10.29 m from the nose as
measured along the axis of S¢

Top side of mid fuselage,
18.69 m from the wing-fuselage
junction as measured along the
axis of S7

Bottom side of mid fuselage,
18.69 m from the wing-fuselage
juction as measured along the
axis of S7

Top side of port wing, 3.9 m
from the wing-fuselage junction

as measured along the axis of Sl

Top side of port wing, 11.7 m
from the wing-fuselage junction
as measured along the axis of S1

Top side of starboard wing,
3.9 m from the wing-fuselage
junction as measured along the
axis of 52

Top side of starboard wing,
11.7 m from the wing-fuselage
junction as measured along the
axis of 82

16
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Table 3. Description of the EMPTAC charge test points.

Test
Point # Element Location Description
9 S6 Tip of the nose
10 S1 Tip of the port wing
11 52 Tip of the starboard wing
12 59 Tip of the vertical stabilizer

17
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3.0 EMPTAC RESPONSE USING THE METHOD-OF-MOMENTS
SOLUTION TECHNIQUE

The external responses of the EMPTAC due to plane wave excitation and the
excitation via onboard HF antennas are considered in this section for
frequencies between 500 kHz and 20 MHz. The surface responses presented are
obtained using the body of revolution model and the method-of-moments solution
technique discussed in Section 2.0. The EMPTAC responses for frequencies

between 20 and 100 MHz are presented in Section 4.0.
3.1 RESPONSE OF THE EMPTAC TO PLANE WAVE EXCITATION

The external response of the EMPTAC to a plane wave incident from above is
presented in this section for both the inflight and ground alert modes. Two
distinct polarizations of the incident plane wave are considered for each mode

of operation:

e the electric field parallel to the aircraft fuselage

e the electric field perpendicular to the aircraft fuselage

The EMPTAC surface current and charge densities produced by any plane wave
incident may ue obtained through a linear superposition of the two given

polarizations.

The magnitude of the incident electric field is assumed to be 1 V/m for both
polarizations (EO =1 V/m). The surface current density obtained for each
polarization is normalized using the magnitude of the total incident magnetic
field (HO - l/no A/m) where 19 is the intrinsic impedance of free space

(nO = 120n Q). The resulting normalized value of JS/HO versus frequency is
plotted. The surface charge density is normalized in a similar manner
according to the magnitude of the total incident electric flux density

(DO - l/eo C/m?) where €0 is the free space permittivity (eo = 8.854 pF/m).
The resulting normalized value is plotted for pS/DO versus frequency. The

normalized surface current and charge densities are plotted over the range of
500 kHz to 20 MHz.

18
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3.1.1 1Incident Electric Field Parallel to the EMPTAC Fuselage

The normalized responses of the EMPTAC to excitation by a topside-incident
plane wave with the electric field parallel to the aircraft fuselage are shown
in Figures 6 through 1l4. Figures 6 and 7 represent the normalized current
density »n the top and bottom of the front fuselage (test points #1 and #2,
respectively). Figures 8 and 9 represent the normalized current density on
the top and bottom of the mid fuselage (test points #3 and #4, respectively).
Figures 10 and 11 represent the normalized current density at points on the
top of the port wing (test points #5 and #6), respectively. Figures 12
through 14 represent the normalized charge densities on the tip of the nose
(test point #9), on the tip of the vertical stabilizer (test peint #10), and
on the tip of the port wing (test point #ll), respectively. The starboard
wing responses (test points, #7, #8 and #12) predicted by the method-of-

moments solution are identical to those of the port wing.

3.1.2 Incident Electric Field Perpendicular to the EMPTAC Fuselage

The normalized responses of the EMPTAC to excitation by a topside-incident
plane wave with the electric field perpendicular to the aircraft fuselage are
shown in Figures 15 through 17. Negligible responses are obtained for all
test points which are located on the fuselage and vertical stabilizer (test
points #1, #2, #3, #4, #9 and #10) since the electric field is perpendicular
to these segments. Figures 15 and 16 represent the normalized current density
at points on the top of the port wing (test points #5 and #6, respectively).
Figure 17 represents the normalized charge density on the tip of the port wing
(test point #11). Again, the responses on the starboard wing (test points #7,

#8 and #12) equal those on the port wing.

3.2 RESPONSE OF THE EMPTAC TO VARIOUS DRIVE CONFIGURATIONS OF THE ONBOARD HF
ANTENNAS

The external responses of the EMPTAC to various drive configurations of the
onboard HF antennas are presented for both the inflight and ground alert
modes. Four distinct drive configurations are considered for each mode of

operation:

19
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o the fin-cap antenna only
o the fin-cap and nose antennas
o the port wing antenna only

o the port and starboard wing antennas

To generate incident fields which are comparable in magnitude to the plane
wave excitations considered in paragraph 3.1, the average power radiated by
each active antenna (Prad) is assumed to be 10 W over the frequency range of
interest (500 kHz to 100 MHz).

Given a constant radiated power of 10 W over the entire frequency range, the

resulting peak antenna drive current (Io) varies according to

reas - F Il
where Rr is the radiation resistance of the antenna. The radiation resistance
of the infinitely thin center-fed dipole of length 2 m versus frequency is
shown in Figure 18. At low frequencies, extremely large drive currents are
required to radiate 10 W due to the small values of radiation resistance.
Therefore, the incident fields produced by the HF antenna model are
significantly larger at low frequencies. Figure 19 illustrates the total
incident electric and magnetic fields at certain points on the EMPTAC when the
fin-cap antenna is driven with Prad = 10 W. As the frequency increases, the
incident field magnitudes become relatively constant at values similar to
those of the incident plane wave considered previously. The variation in
magnitude of the incident field components with frequency skews the EMPTAC
surface responses. The surface responses are excited by HF antennas toward
the lower frequencies when compared to the surface responses excited by an

incident plane wave.

The EMPTAC surface responses to HF antenna excitation are computed for the
inflight and ground alert modes. The surface current approximation used for
plane wave excitation of the EMPTAC are also used for HF antenna excitation.
Specifically, Equation 5 is used for the inflight mode while Equation 7 is
used for the ground alert mode. The surface responses are normalized using

the same constants as was used for the plane wave responses (JS/H0 and PS/DO).
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(a) Electric field at the nose (test point £9) and
the tip of the port wing (test point #1l).

2 499799107
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(Test Point #1)
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(b) Magnetic field on the top of the port wing
(test point #6) and on top of the front
fuselage (test point =#1).

Figure 19. Magnitude of the total incident fields
at points on the EMPTAC for fin-cap
antenna drive (Prad = 10 W).
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3.2.1 Response of the EMPTAC to Excitation of the Fin-Cap Antenna (0.5 to
20 MHz

The normalized responses of the EMPTAC to excitation of the fin-cap antenna
are shown in Figures 20 through 27. Figures 20 and 21 represent the
normalized current density on the top and bottom of the front fuselage (test
points #1 and #2, respectively). Figures 22 and 23 represent the normalized
current density on the top and bottom of the mid fuselage (test points #3 and
#4, respectively). Figures 24 and 25 represent the normalized current density
at points on the top of the port wing (test points #5 and #6, respectively).
Figures 26 and 27 represent the normalized charge densities on the tip of the
nose (test point #9) and on the tip of the port wing (test point #l1,
respectively). The starboard wing responses (test points #7, #8 and #12)
predicted by the method-of-moments solution are identical to those of the port

wing.

3.2.2 Response of the EMPTAC to Excitation of the Nose and Fin-Cap Antenna
(0.5 to 20 MHz)

The normalized responses of the EMPTAC to simultaneous excitation of the nose
and fin-cap antennas are shown in Figures 28 through 34, Figures 28 and 29
represent the normalized current density on the top and bottom of the front
fuselage (test points #1 and #2, respectively). Figures 30 and 31 represent
the normalized current density on the top and bottom of the mid fuselage (test
points #3 and #4, respectively). Figures 32 and 33 represent the normalized
current density at points on the top of the port wing (test points #5 and #6,
respectively). Figure 34 represents the normalized charge density on the tip
of the port wing (test point #11). The starboard wing responses (test points
#7, #8 and #12) predicted by the method-of-moments solution are identical to

those of the port wing.

3.2.3 Response of the EMPTAC to Excitation of the Port Wing Antenna (0.5 to
20 MHz)

The normalized responses of the EMPTAC to excitation of the port wing antenna
are shown in Figures 35 through 45. Figures 35 and 36 represent the
normalized current density on the top and bottom of the front fuselage (test

points #1 and #2, respectively). Figures 37 and 38 represent the normalized

35
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current density on the top and bottom of the mid fuselage (test points #3 and
#4, respectively). Figures 39 and 40 represent the normalized current density
at points on the top of the port wing (test points #5 and #6, respectively).
Figures 41 and 42 represent the normalized current density at points on the
top of the starboard wing (test points #7 and #8, respectively). Figures 43
and 44 represent the normalized charge dencity on the nose and the tip of the
vertical stabilizer (test points #9 and #10, respectively). Figure 45
represents the normalized charge density on the tip of the starboard wing

(test point #12).

3.2.4 Response of the EMPTAC to Excitation of the Port and Starboard Wing
Antennas (0.5 to 20 MHz

The normalized responses of the EMPTAC to simultaneous excitation of the port
and starboard wing antennas are shown in Figures 46 through 53. Figures 46
and 47 represent the normalized current density on the top and bottom of the
front fuselage (test points #l and #2, respectively). Figures 48 and 49
represent the normalized current density on the top and bottom of the mid
fuselage (test points #3 and #4, respectively). Figures 50 and 51 represent
the normalized current density at points on the top of the port wing (test
points #5 and #6, respectively). Figures 52 and 53 represent the normalized
charge density on the nose and the tip of the vertical stabilizer (test points
#9 and #10, respectively). The starboard wing responses (test points #7, #8
and #12) predicted by the method-of-moments solution are identical to the

corresponding points on the port wing.
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4.0 EMPTAC RESPONSE USING THE PHYSICAL
OPTICS APPROXIMATION

The external responses of the EMPTAC due to plane wave excitation and the
excitation via onboard HF antennas are considered in this section for
frequencies between 20 and 100 MHz. The surface responses presented are
obtained using the physical optics approximation (Ref. 4). Using the physical
optics approximation, the surface current density in the inflight mode is

given by
I (s.9) ~ 24 i (17)

where ¢ represents a unit vector defined in the right hand sense with respect
to the direction of positive axial current. In the ground alert mode, the

physical optics approximation for the surface current density is given by

) [(—in —ref]

Js(s,¢) = 2¢ H + H (18)

A comparison of Equation 17 with Equation 5 and Equation 18 with Equation 7
shows that the physical optics approximation is equivalent to neglecting the
axial current contribution in the original approximations for the current

density.

4.1 RESPONSE OF THE EMPTAC TO PLANE WAVE EXCITATION

The external response of the EMPTAC to the two overhead plane wave polariza-
tions defined in paragraph 3.1 is presented for both the inflight and ground
alert modes. Using the physical optics approximations given in Equations 17
and 18, the normalized surface responses between 20 and 100 MHz are simple

constants. The normalized EMPTAC surface currents for the two polarizations

of the incident plane wave are given in Tables 4 and 5.
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Table 4. Normalized EMPTAC surface current densities
(20-100 MHz) for plane wave excitation
(E || to the fuselage) as predicted by the
physical optics approximation.

Test JS/Ho Js/Ho
Point # Inflight Ground Alert
1 2.000 4.000
2 2.000 4.000
3 2.000 4.000
4 2.000 4,000
5 1.089 2.178
6 1.089 2.178
7 1.089 2.178
8- 1.089 2.178
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Table 5. Normalized EMPTAC surface current densities
(20 to 100 MHz) for plane wave excitation
(E L to the fuselage) as predicted by the
physical optics approximation.

Test Js/Ho Js/Ho
?oinc # Inflight Ground Alert
1 0.000 0.000
2 0.000 0.000
3 0.000 0.000
4 0.000 0.000
5 1.677 3.355
6 1.677 3.355
7 1.677 3.355
8 1.677 3.355
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4.2 RESPONSE OF THE EMPTAC TQ VARIOUS DRIVE CONFIGURATIONS OF THE ONBOARD HF
ANTENNAS

The responses of the EMFTAC to the four HF antenna drive configurations
discussed in paragraph 3.2 are presented. The physical optics approximation

is used to determine results for both the inflight and ground alerct modes from

20 to 100 MHz. The average power radiated by each active antenna (Prad) is

again assumed to be a constant 10 W over the frequency range of interest.

4.2.1 Response of the EMPTAC to Excitation of The Fin-Cap Antenna (20 to
100 MHz)

The normalized responses of the EMPTAC to excitation of the fin-cap antenna
are shown in Figures 54 through 59. Figures 54 and 55 represent the
normalized current density on the top and bottom of the front fuselage (test
points #1 and #2, respectively). Figures 56 and 57 represent the normalized
current density on the top and bottom of the mid fuselage (test points #3 and
#4, respectively). Figures 58 and 59 represent the normalized current density
at points on the top of the port wing (test points #5 and #6, respectively).
The starboard wing responses (test points #7 and #8) predicted by the method-

of -moments solution are identical to those of the port wing.

4.2.2 Response of the EMPTAC to Excitation of the Nouse and Fin-Cap Antennas
(20 _to 100 MHz)

The normalized responses of the EMPTAC to simultaneous excitation of the nose
and fin-cap antennas are shown in Figures 60 and 61. Figures 60 and 61
represent the normalized current density on the top and bottom of the front
fuselage (test points #1 and #2, respectively). Figures 62 and 63 represent
the normalized current density on the top and bottom of the mid fuselage (test
points #3 and #4, respectively). Figures 64 and 65 represent the normalized
current density at points on the top of the port wing (test points #5 and #6,
respectively). The starboard wing responses (test points #7 and #8) predicted

by the method-of-moments solution are identical to those of the port wing.
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4.2.3 Response of the EMPTAC to Excitation of the Port Wing Antenna (20 to
100 MHz)

The‘normalized responses of the EMPTAC to excitation of the port wing antenna
are shown in Figures 66 through 73. Figures 66 and 67 represent the
normalized current density on the top and bottom of the front fuselage (test
points #1 and #2, respectively). Figures 68 and 69 represent the normalized
current density on the top and bottom of the mid fuselage (test points #3 and
#4, respectively). Figures 70 and 71 represent the normalized current density
at points on the top of the port wing (test points #5 and #6, respectively).
Figures 72 and 73 represent the normalized current density at points on the

top of the starboard wing (test points #7 amd #8, respectively).

4.2.4 '- .oonse of the EMPTAC to Excitation of the Port and Starboard Wing
Ancennas (20 to 100 MHz)

The normalized responses of the EMPTAC to simultaneous excitation of the port
and starboard wing antennas are shown in Figures 74 through 79. Figures 74
and 75 represent the normalized current density on the top and bottom of the
front fuselage (test points #l and #2, respectively). Figures 76 and 77
represent the normalized current density on the top and bottom of the mid
fuselage (test points #3 and #4, respectively). Figures 78 and 79 represent
the normalized current density at points on the top of the port wing (test
points #5 and #6, respectively). The starboard wing responses (test points
#7, #8 and #12) predicted by the method-of-moments solution are identical to

the corresponding points on the port wing.
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5.0 EMPTAC RESPONSE DATA FROM THE HPD PULSER

The plane wave and HF antenna responses of the EMPTAC obtained numerically in
Sections 3.0 and 4.0 are now compared with test data. The external response
data presented in this section were generated using the HPD EMP simulator.
The EMPTAC test points (matchpoints) defined for the numerical responses of
Sections 3.0 and 4.0 were chosen as close to the HPD experimental test point
locations as physically possible. Thus, the experimental test points are
defined in the same manner as given in Section 2.0 (test points #l through
#12).

The particular external response data presented here were obtained at the HPD
simulator during the EMPTAC 4 test in February 1989. Some of the data may be
in error as much as 6 dB. The probable cause of this error is the attenuation

of the analytic power dividers which were utilized in the measurements.

Figures 80 through 83 represent the EMPTAC surface current density measured on
the top and bottom of the forward and mid fuselage (test points #1 through #4)
when the fuselage is oriented parallel to the axis of the pulser which yields
an electric field polarized parallel to the fuselage. Figures 84 through 86
represent the current density on the top of the port and starboard wings

(test points #5, #7 and #8) with the fuselage oriented perpendicular to the
pulser axis. The experimental data for test point #6 were unavailable.
Figures 87 and 88 represent the surface charge densities on the nose and on
the tip of the vertical stabilizer (test points #9 and #10, respectively)
given the parallel orientation. Figures 89 and 90 represent the surface
charge densities on the tips of the port and starboard wings (test points #l1

and #12, respectively).
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6.0 COMPARISON OF THE EMPTAC NATURAL MODES EXCITED
VIA PLANE WAVE AND HF ANTENNA EXCITATION

Given the frequency response data generated using the method-of-moments
solution (0.5 to 2C MHz) of Section 3.0, the natural modes of the EMPTAC mayv
be obtained numerically as shown by Taylor and Crow (Ref. 4). The two plane
wave polarizations Fonsidered produce symmetric modes (electric field parallel
to the fuselage) and antisymmetric modes (electric field perpendicular to the

fuselage).

The general characteristics of the current distributions associated with the
resonant frequencies of an aircraft are discussed in Reference 11. The
fundamental resonance (lowest symmetric mode) of the EMPTAC is computed and
found to be 2.54 MHz. This fundamental resonance is characterized by current
flow over the entire length of the aircraft. The second symmetric mode is
characterized by current flow over the wings and the front fuselage. The
total length of one wing and the front fuselage is approximately one-half
wavelength. The frequency of the second symmetric EMPTAC mode is determined
to be 4.64 MHz. The frequencies of the third and fourth symmetric modes are
7.30 and 9.23 MHz, respectively. The fundamental antisymmetric frequency is
lower than that of the second symmetric mode since the total length of both
wings 1s larger than total length of one wing and the front fuselage. The
frequency of the fundamental antisymmetric mode is 3.62 MHz while that of the

second antisymmetric mode is 9.85 MHz.

The dominant symmetric EMPTAC resonances excited by a plane wave incident from
above with the electric field parallel to the fuselage are determined
numerically and shown in Table 6. Both the resonant frequency (MHz) and the
associated damping constant (us) are given for each mode. Table 7 represent:c
the corresponding antisymmetric resonances excited by a plane wave incident

with the electric field perpendicular to the fuselage.

Certain symmetric and antisymmetric modes of the EMPTAC are excited using a
given HF antenna configuration. The four dominant symmetric modes defined in

Table 6 are excited when driving
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Table 6. Dominant symmetric Modes of the
EMPTAC obtained for plane wave

excitation (E || to the fuselage).
Frequency Damping Constant
(MHz) (us)
2.54 143
4.64 14.7
7.30 6.25
9.23 5.88

Table 7. Dominant antisymmetric modes of the
EMPTAC obtained for plane wave
excitation (E to the fuselage).

Frequency Damping Constant
(MHz) (us)
3.62 32.9
9.85 3.46
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e the fin-cap antenna only
e the nose and fin-cap antennas

e the port and starboard wing antennas

The antisymmetric EMPTAC modes defined in Table 7 are excited only when the
por- wing antenna is driven. Using the port wing antenna excitation, the
symmetric EMPTAC modes are also excited but to a lesser degree than the
antisymmetric modes. Figures 91 and 92 show the normalized current density

along the top of the forward fuselage for symmetric plane wave and HF antenna

excitations at the first and second symmetric resonances, respectively.
Figures 93 and 94 represent the corresponding normalized current densities
along the top of the mid fuselage while Figures 95 and 96 represent those
along the top of the port wing. Figures 97 and 98 represent the normalized
current densities along the top of both wings for antisymmetric plane wave and

HF antenna excitations.
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7.0 RESULTS AND CONCLUSIONS

The surface responses of the EMPTAC to excitation by a plane wave from
overhead and various configurations of the onboard HF antennas have been
determined. The outer surface of the EMPTAC was modelled as intersecting
bodies of revolution. The method-of-moments formulation was used over a
frequency range of 500 kHz to 20 MHz while the physical optics approxima-
tion was employed between 20 and 100 MHz. Using the frequency responses
obtained from the method-of-moments formulation, the dominant symmetric and
antisymmetric modes of the EMPTAC produced by plane wave excitation are

identified in the surface responses caused by various HF antenna excitations.

The surtface responses obtained in Section 3.0 for plane wave and HF antenna
excitation exhibit dissimilar magnitudes at low frequencies. This difference

in magnitude is caused by the constant radiated power constraint (Pr =10 W)

ad
used to model the active HF antennas as discussed in paragraph 3.2. To
radiate an average power of 10 W at low frequencies requires a very large
antenna drive current which in turn produces large incident field magnitudes
in comparison to the assumed plane wave fields (EO =1 V/m). As the frequency
is increased, the radiation resistance of the antenna (dipole, h = 2 m)
increases such that the drive current required to radiate 10 W decreases to a
level which produces incident field magnitudes comparable to that of the plane
wave case. Thus, the magnitudes of the HF antenna responses at higher

frequencies approach those of the plane wave responses.

The symmetric HF antenna drive configurations considered (fin-cap antenna
only, nose and fin-cap antennas, and port and starboard wing antennas) give
rise to the symmetric modes (those modes generated by symmetric plane wave
excitation). The antisymmetric HF antenna drive configuration (port wing
antenna only) gives rise to both symmetric and antisymmetric modes with the
antisymmetric modes being dominant. Certain HF antenna drive configurations
enhance specific modes. For example, the nose and fin-cap antenna excitation
generates the second symmetric resonance (4.64 MHz) more efficiently than the
fin-cap antenna alone. The port wing antenna excitation does not produce the
fundamental resonance as efficiently as the other HF antenna drive configura-

tions. In many cases, certain higher order resonances are enhanced by driving
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the HF antennas. Each HF antenna drive configuration considered enhanced the
third symmetric resonance (7.30 MHz) when compared to the corresponding plane

wave response.

The physical optics approximation (20 to 100 MHz) predicts constant-valued
responses to plane wave excitation due to the spatially invariant field
magnitudes with frequency. However, the physical optics approximation
predicts variation in the surface responses to HF antenna excita%ion caused by

the spatial variation of the incident field with frequency.

The general shape of the measured responses given in Section 5.0 resembles the
inflight mode responses to a greater extent than the ground alert responses.
Due to the effects of a lossy ground plane beneath the aircraft, the actual
response curve should follow the inflight mode results with slightly higher
resonant peaks and small shifts in the resonant frequencies. The effect of
the antenna lengths on the actual EMPTAC resonant frequencies are not included
in this research since the antenna models were assumed to be electrically
isolated from the aircraft. However, because the antenna lengths are small in
comparison to the individual elements of the aircraft, the shifts in the
dominant resonant frequencies should be small. The shifts in the locations of
the resonant frequencies due to antenna lengths should become more pronounced

at the higher order modes.
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