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1. RESEARCH OBJECTIVES

The original application was aimed at understanding electrical mechanisms of neuronal
communication with particular emphasis on their-possible synchronizing actions. Although this work
has relevancc to epileptogenesis, our overall goal has been to understand the electrical mechanisms
responsible for synchronizing neuronal activity in the hippocampus. In the final year of this grant
we finished a series of experiments concerning the effects of osmolality on synchroncus activity in
the hippocampus under conditions where chemical synaptic transmission was blocked.

Throughout much of this grant period, after extensive discussions with Air Force
administration, we have undertaken a series of electrophysiological experiments aimed at
understanding fundamental mechanisms of synaptic transmission in the mammalian hypothalamus.
The initial studies have been performed on the magnocellular neuroendocrine system (i.e., the
paraventricular and supraoptic nuclei), but our recent work has also been aimed at the
suprachiasmatic nucleus. We should emphasize that the paraventricular nucleus, in addition to
containing oxytocin and vasopressin neuroendocrine cells, also contains neuroendocrine cells that
regulate secretion of corticotropin-releasing hormone, which mediates the stress response. The
suprachiasmatic nucleus regulates circadian rhythms. Our goal has been to understand the
electrophysiology of these critical hypothalamic nuclei, and in particular, to delinate the role that
excitatory amino acids play as neurotransmitters in these systems.

2 STATUS OF THE RESEARCH

A Effects of osmolality on synchronous activity of hippocampal neurons: evidence for
an important role of non-synaptic mechanisms.

In the previous progress report we outlined in some detail the experiments we had been
{ertaking with low-[Ca2] solutions that were aimed at examining non-synaptic mechanisms of
ronal communication. Although we had performed many experiments on this project by the

ue ad wrote the previous progress report, additional experiments were necessary in order for
us to . e a manuscript. A short paper on this wotk is enclosed along with an abstract, and a

full-length paper is ¢nrrently in preparation.

B. Evidence that excitatory amino acids (EAAs) are the primary fast synaptic transmitter
in the hypothalamus.

For several years we have been studying the role of glutamate, or some other excitatory
amino acid, as a neurotransmitter in the hypothalamus. Our initial experiments involved intracellular
electrophysiological studies of the supraoptic nucleus, which have since been followed by extensive
experimentation in the paraventricular nucleus. More recently we have_undertaken a similar series

of studies on the suprachiasmatic nucleus. Acoession For Z
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1. Supraoptic nucleus

A detailed description of our experimental findings was provided in the las. progress report.
Although a preliminary study has been published (Gribkoff and Dudek 1988), a longer manuscript
has since been completed and is now published. A reprint of this paper is enclosed.

2. Paraventricular nucleus

Research in this area has followed two primary lines of investigation. The first was to define
rigorously the electrophysiological properties of paraventricular neurons. Secondly, we analyzed the
effects of excitatory amino acid antagonists on EPSPs from these different types of hypothalamic
neurons. A summary of the electrophysiological properties of paraventricular neurons is provided
in Hoffman et al. (1989), which was presented to the Society of Neuroscience. Two manuscripts
are now in preparation concerning this work. A summary of the data on excitatory amino acid
antagonists is available in Wuarin and Dudek (1989). The data in this abstract are also currently

eing prepared for publication.

3. Suprachiasmatic nucleus

-
-
-
....
.

An caierisive analysis of the possible role of excitatory amino acids in synaptic transmission
has been undertaken in the suprachizsmatic nucleus, Intracellular recordings have been obtained
from many neurons in this area and the available data indicate that non-NMDA receptors (as in
the paraventricular nucleus) mediate fast synaptic transmission both from retinal and non-retinal
input. A manuscript on this work has been submitted for publication.

4, Conclusion

The research supported by this grant has provided important new information concerning
the role of non-synaptic mechanisms in synchronization of electrical activity of the hippocampus.
Other studies have evaluated the role of excitatory amino acids in synaptic transmission in the
hypothalamus. Our data provides strong evidence that excitatory amino acids are the primary fast
excitatory transmitter throughout the hypothalamus.
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3. PUBLICATIONS

A. Refeered Publications

Dudek, F.E., Tasker, J.G. and Wuarin, J.P. (1989) Intrinsic and synaptic mechanisms of
hypothalamic neurons studied with slice and explant preparations. J. Neurosci. Meth. 28:59-69
(reviewed symposium chapter).

Gribkoff, V.K. and Dudek, F.E. (1990) The effects of excitatory amino acid antagonists on
synaptic responses of supraoptic neurons in slices of rat hypothalamus. J. Neurophysiol. 63:60-71.

B. Symposia and Book Chapters

Dudek, F.E,, and Traub, R.D. (1989) Local synaptic and electrical interactions in hippocampus:
experimental data and computer simulations. Neural Models of Plasticity: Theoretical and Empirical
Approaches, Ed. by W.O. Berry and J. Byrne, Academic Press, 378-402.

Dudek, F.E., Wuarin, J.P. and Kim, Y.I. (1990) Evidence that excitatory amino acids mediate fast
synaptic transmission in the hypothalamus. Invited review article for a supplemental issue of
Biomedical Research in honor of Prof. Y. Sano (in press).

C. Abstracts

Tasker, J.G. and Dudek, F.E. (1989) The effects of osmolality on synchrouous bursting in the
absence of chemical synaptic transmission in hippocampal slices. Soc. Neurosci. Abstr. 15:701,
#284.7.

Kim, Y.I. and Dudek, F.E. (1989) Antagonism of fast excitatory postsynaptic potentials in
suprachiasmatic nucleus neurons by excitatory amino acid antagonists. Soc. Neurosci. Abstr.
15:1088, #431.15.

Hoffman, N.W. Tasker, J.G. and Dudek, F.E. (1989) Comparative electrophysiology of
magnocellular and parvocellular neurons of the hypothalamic paraventricular nucleus. Soc.
Neurosci. Abstr. 15:1088, #431.16.

Wuarin, J.P. and Dudek, F.E. (1989) Contrasting effects uf NMDA and non-NMDA antagonists
on fast TPSPs in neurons of the paraventricular nucleus. Soc. Neurosci. Abstr. 15:1088, #431.17.
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4. PROFESSIONAL PERSONNEL

Dr. Neil Hoffman

Dr. Yang 1. Kim

Dr. Andre Guicnaus
Dr. Jeffrey Tasker

Dr. Jean-Pierre Wuarin

5. INTERACTIONS

Drs. Dudek, Gillette, van den Pol and Rea participated in a workshop at the Winter
Conference on Brain Research during January, 1990. The purpose of this workshop was to present
our preliminary work to the Neuroscience community in a workshop format and to exchange ideas
among our group. The scientific goal of the workshop was to provide a cellular analyses of the
suprachiasmatic nuclev-.

6. NEW DISCOVERIES, INVENTIONS OR PATENT DISCLOSURES--none
7. OTHER STATEMENTS

These projects will be continued under the auspices of a new grant on the suprachiasmatic
nucleus. We intend to continue some of the electrophysiological studies of hippocampal neurons,
and to focus our efforts on the suprachiasmatic nucleus. We will, however, complete our
experiments on the paraventricular nucleus, and we have initiated studies in the medial preoptic
area.
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Local Synaptic and _
Electrical Interactions in
Hippocampus:
Experimental Data and
Computer Simulations

F. Edward Dudek and Roger D. Traub

1. Introduction

An understanding of neuronal plasticity requires three types of infor-
mation. First is a picture of how brain function proceeds at a given time
and in the absence of external disturbances that modify the underlying
physical substrate of the brain itself. Such a picture must integrate results
on membrane biophysics and single-neuron electrophysiology with data
on synaptic circuitry and other relevant interactions between neurons.
Thus a single model must include experimental results ranging from the
properties of membrane channels to the behavior of neuronal circuits.
Second. we must have a picture of haw experiences (i.e., inputs to the
brain) are transformed into changes in specific physical parameters within
the brain. How does experience excite particular cellular activities, and
then how do these lead to long-lasting modifications in channels, syn-
apses, and neuronal populations? Finally, given that certain parameters
of the brain have indeed been altered, by whatever mechanisms, how
is brain function now different than it was before? Thus, in what mean-
ingful ways does the system as a whole alter its activities once particular
neurons and their synapses have in fact been modified? In this chapter,
we shall deal mainly with an example of the first type of problem. We
present experiments and computer simulations aimed at elucidating the
collective behavior of populations of hippocampal neurons, in the absence
of so-called plastic changes.

Two dominant features of the evolutionary progression from in-
ver:zbrates to lower mammals to humans have been the increase in the
nu-nber of neurons in the brain and the enhancement of both the number
an.’ complexity of local neuronal interactions. Numerous model systems
fo  the study of synaptic plasticity and learning in lower animals, such

. 378 Copyripht © 1999 by Academic Tress, Inc.
NL. - AL MODELS OF PLASTICITY Al ﬂnmr'ot ermdum«:\) in any form reserved,
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' studied with slice and explant preparations *
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The-use of slice and explant preparations has-allowed major advances in our understanding of the membrane physiology of
mammalian hypothalamic neurons. This article will review intracellular electrophysiological studies of neurons in or immediately
surrounding the supraoptic and paraventricular nuclei. Considerable information is now available on the intrinsic membrane
mechanisms that control action potential generation and burst firing in magnocellular neuroendocrine cells (MNCs) within these
nuclei. Nearons surrounding the paraventricular nucleus have different electrical properties than the MNCs, including low-threshold
Ca?* spikes and pronounced anomalous rectification. Bicuculline and kynurenic acid strongly depress fast' IPSPs and EPSPs in
MNCs, thus suggesting -that inhibitory and excitatory-amino acids mediate fast synaptic ransmission in"the hypothalamus. The
L g effects of neuremodulators, such as noradrenaline and opioid peptides, have also been examined. Noradrenaline excites supraoptic
neurons and leads to phasic firing through an alpha-1 mechanism and decreased K *-conductance.. Opioid peptides act directly on
pereceptors to hyperpolarize about half of the neurons through an increased K *-conductance. In conclusion, using the magrocellular
nenroendocrine system as a model, in vitro slice and explant preparations have allowed the characterization of electrophysiological
properties, the identification of ncurotransmitters for synaptic events, and studies on the mechanism of action of neuromodulators.

Introduction brates. Although these preparations have provided

the experimental basis for numerous hypothetical

A e

e rn > =

In spite of considerable interest in the electro-
physiology of neuroendocrine cells, intracellular
recordings from the mammalian hypothalamus had
been rare until recently. Intraceltular studies on
the mammalian hypothalamus of intact animals
have not been feasible, .because of its location at
the base of the brain and the pulsations caused by
the high degree of vascularization in this region.
One alternative strategy. has involved intracellular
recording from neurosecretory cells of inverte-

* .Presented at the ‘Second International Conference on Brain
and Spinal Cord Slice Preparations’.

Correspondence: F.E. Du&ck, Mental Retardation Rescarch

Center, UCLA School of Medicine, 760 Westwood Plaza, NPI

58-258, Los Angeles, CA 90024,'U.S.A.

mechanisms, phylogenetic differences require that
many questions be examined in mammalian pre-
parations. Cultured mammalian neurons have been
used to address this issue; however, they are de-
rived from prenatal or early postnatal animals,
and their electrophysiological properties may re-
flect an early stage of development or may be
altered by culturing. The use of acute in vitro
preparations of slices or explants (Fig. 1) has
partially resolved these problems. This article de-
scribes recent developments concerning the elec-
trophysiology of hypothalamic neurosecretory cells
using thesé preparations.

Although- several neurosecretory systems are
present in the hypothalamus, the magnocellular
neuroendocrine cells (MNCs) of the paraventricu-
lar and ‘supraoptic -nuclei (PVN and SON) have

0165-0270,/89/803.50 © 1989 Elsevier Science Publishers B.V. (Biomedical Division)
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Fig. 1. Schematic diagrams of in vitro hypothalamic prepara-
tions. A: -coronal hypothalamic slice. Intracellular recordings
are obtained from the supraoptic (SON, as shown), para-
ventricular (PVN) or other hypothalamic nuclei with the slice
preparation, Local extracellular stimulation can be applied at
several sites around the intracellular recording electrode (stim.
1-4). The optic tracts, third ventricle and fornix (FX) serve as
Jandmarks for positioning the recording and stimulating elec-
trodes (modified from MacVicar et al,, 1982). 'B: basal dien-
cephalic explant. An intracellular recording pipette is posi-
tioned in the SON. The pituitary stalk can be stimulated
extracellularly to trigger antidromic action potentials, and the
medial preoptic area can be stimulated to evoke synaptic
responses. A perfusion pipette is shown in the-internal carotid
artery (from Bourque and Renaud, 1983).

served as a model system for a wide range of
neurobiological studies. The PVN and SON con-
tain neurosecretory cells that synthesize vasopres-
sin and oxytocin, which are transported to the
neurohypophysis where they are secreted into the
generdl circulation. These hormones are important
in numerous physiological functions. Vasopressin
is -released during hemorrhage and dehydration,

and serves the homeostatic function of maintain-
ing proper blood volume and osmolality. Oxytocin
is released during lactation and parturition.

Extracellular recordings have yielded a large
body of information on the firing patterns of
MNCs under physiological conditions (see Poulain
and Wakerley, 1982). For example, dehydration
and” hemorrhage are correlated with enhanced
vasopressin secretion and cause phasic firing in
about half of the MNCs; this bursting pattern is
classically attributed to vasopressinergic MNCs.
During lactation, an intense and synchronous burst
of action potentials from the other half of the
MNC:s (i.e., non-phasic MNCs) occurs before milk
ejection; these cells are considered to be oxytocin-
ergic. Thus, MNCs of the PVN and SON repre-
sent a model neurosecretory system for electro-
physiological studies both in the intact animal and
also at the level of neuronal membranes and con-
ductances,

Intracellular electrophysiological studies in
slices and explants have addressed several im-
portant questions concerning the mechanisms un-
derlying the different firing patterns of MNCs:
the intrinsic electrophysiological properties, the
transmitters responsible for fast PSPs, and the
action of neuromodulators. This paper will pro-
vide examples of information obtained in each of
these areas. Reviews of the electrophysiology of
hypothalamic SON and PVN neurosecretory cells
are available (Dudek and Andrew, 1585; Renaud
et al., 1985; Renaud, 1987).

Methods

Slice and explant preparation

The detzils for preparing and maintaining slices
and explants have been discussed in several of the
papers listed in the references. Most studies have
been performed on young adult rats, but guinea
pigs have also been used. For both preparations,
the brain is quickly but gently removed, with
special care directed at the cranial nerves (particu-
larly the optic nerves). For the perfused explant
preparation, the arteries and neurohypophysis
must also be dissected carefully. The hypothala-
mus is then blocked with:a razor -blade. To record
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from ‘the explant preparation, the block of hypo-
thalamus is pinned to Sylgard, and a perfusion
pipette (150=-200 pm tip diameter) is inserted into
the -internal* carotid artery. To prepare slices, the
block of hypothalamus is cut with a tissue chopper,
vibroslicer or vibratome. Slice thickness varies
from 400 to 600 pm. The preparations are either
kept at a liquid-gas interface or slightly sub-
merged. Most of the récent work in our laboratory
has beén done using the ramp-type chamber (Haas
et al,, 1979).

Neuropharmacological and electrophysiological tech-
niques

One important advantage of acute in vitro pre-
parations is the ability to apply drugs and /or alter
the ionic concentration -of the media -relatively
rapidly. It is possible to make these experimental
manipulations with known concentrations or at
specific.locations. -For rigorous pharmacology and
biophysics, it is critical that the precise-concentra-
tion of drugs and ions be known. This is-best done
by changing the solution perfused onto the pre-
paration, but one can also inject a small volume of
a concentrated solution into the perfusion tubing
and then calculate or measure the concentration
of substances reaching the preparation. A faster
method: for testing the effects of pharmacological
agents on electrophysiological responses is with
microapplication near the recorded cell using
iontophoresis- or pressure ejection through-micro-
pipettes. Although microapplication methods have
the important advantage of being more rapid and
readily reversible, the drug concentration is gener-
ally unknown.-(i.e.-one only knows-that the actual
concentration at the recorded cell is less than or
equal to the concentration in the micropipette).
Both of the microapplication methods are subject
to other artifacts and appropriate controls are
usually necessary.

The methods of electrical- stimulation in vitro
are similar to those used. for in vivo experiments,
except one can wvisually position microelectrodes
in precise -locations. However, the problems in
vitro are also similar to*those encountered in vivo.
Extracellular electrical pulses stimulate local neu-
rons as well as fibers-of-passage from distant CNS
sites. Low-intensity electrical stimuli do-not pro-

61

vide preferential activation of local neurons versus
fibers-of-passage. In.fact, brief electrical pulses are
more likely to stimulate fibers-of-passage than
local cell bodies and dendrites (Ranck, 1975). This
problem is more acute in the slice preparation
because stimulating electrodes are usually posi-
tioned relatively close to the recording site, thereby
increasing the likelihood of activiting fibers-of-
passage.

This article will focus completely on intracellu-
lar recording methods. Nearly all intracellular re-
cordings performed in hypothalamic slices have
been undertaken with ultrafine micropipettes made
on a Brown-Flaming puller. Resistances generally
range from 50 to over 200 M£. As in other
microelectrode- applications, lower resistances en-
hance signal-to-noise ratio and intracellular cur-
rent passage, and are particularly important for
single-electrode voltage-clamping. In our labora-
tory and in most others, intracellular microelec-
trodes are-advanced with a microdrive, usually the
piezo-electric type, but hydraulic ones can also be
used. Impalements are usually obtained by oscil-
lating' the negative capacitance feedback of the
amplifier. High-quality impalements are indicated
by resting potentials greater than - 60 mV, action
potentials greater than 70 mV, input resistances
over 100 MQ and often by repetitive firing to a
depolarizing current pulse. Intracellular staining
experiments using these methods have indicated
that all impaled neurons in the SON and most in
the PVN are magnocellular.

Results

Intrinsic electrophysiology

Although neurons in many areas -of the brain
fire burst discharges, this pattern of activity has
attracted considerable- attention in the magnocell-
ular neuroendocrine system -because it is known
that bursting enhances hormone secretion. A
variety of ir.tracellular studies from neurosecretory
systems of invertebrate animals and from neurons
in other areas of -the wvertebrate brain, combined
with results obtained from extracellular-recordings
in-the magnocellular -neuroendocrine system, sug-
gested that phasic firing by vasopressinergic neu-
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Fig. 2. Intrinsic bursting in supraoptic neurons. A: sponta-
neous bursts. Four distinct bursts, each lasting sevéral seconds,
are shown for an SON neuron. B: evoked' afterdischarge. At
the arrow, a 100 ms suprathreshold current pulse-evoked a
spike train, which was followed by a long afterdischarge lasting
tens of seconds. Calibrations for A apply to B also. C: summa-
tion of depolarizing afterpotentiajs. High-gain, low-pass-filtered
recordings illustrate the depolarizing afterpotentials that fol-
lowed individual action potentials (closed circles); these
afterpotentials could show summation during brief (left):or
long (right) bursts (from Andrew and Dudek, 1984a).

rons depends on intrinsic conductance mecha-
nisms. For example, Dreifuss and co-workers
(1976) clearly showed with extracellular recordings
in vivo that.antidromic stimulation from the neu-
rohypophysis could trigger long afterdischarges in
putative vasopressinergic neurons. Phasic bursting
was recorded in hypothalamic slice and explant
preparations (Fig. 2A), indicating that the intrin-
sic and local synaptic properties of hypothalamic
neurons could generate the burst discharges previ-
ously seen in intact animals. Consistent with in
vivo experiments (Dreifuss et al., 1976), intracellu-
lar recordings in the slice preparation showed that
a brief depolarizing current pulse in a single MNC
could evoke a long afterdischarge of-action poten-
tials (Fig. 2B). Thus, a brief period of spike dis-
charge- could activate a regenerative mechanism
that led to-further firing. High-gain intracellular
recordings during spontaneous bursts showed that
each action potential was followed by-a depolariz-
ing afterpotential, which lasted about a second
(Fig. 2C); summation of depolarizing afterpoten-
tials during repetitive spikes promoted burst.dis-
charges (Andrew and Dudek, 1983, 1984a; An-
drew, 1987a). Voltage-clamp studies revealed a

postspike aftercurrent (Fig. 3B); this slow inward
current was Ca?*-dependent and tetrodotoxin-re-
sistant (Bourque, 1986). Current-voltage relations
indicated -that this aftercurrent imparts a negative
slope .resistance near spike threshold (Fig. 3C).
Although MNCs have intrinsic mechanisms capa-
ble of generating burst discharges, some of the
bursts .recorded in hypothalamic slices may be
driven by synaptic input, presumably from loca.
neurons near the -magnocellular nuclei (Andrew
and Dudek, 1984a; Andrew, 1987b). Intracellular
recording and staining followed by immunocy-
tochemical identification of cells stained with
Lucifer yellow revealed that spontaneously phasic
MNCs were vasopressinergic (Cobbett et al., 1986).
Thus, intracellular electrophysiological studies
using slice and explant preparations have provided
fundamental information about the mechanism of
bursting of MNCs,

Although further studies on the possible elec-
trophysiological differences of vasopressinergic
and oxytocinergic- MNCs are necessary, a general
picture has emerged concerning the electrical
properties of MNCs, particularly in the SON. It is
known, for example, that both voltage-dependent
Na* and Ca®* currents contribute to the action
potential of MNCs (Andrew and Dudek, 1984a;
Bourque and Renaud, 1985a). Repetitive firing of
action potentials in all MNCs-is associated with
spike broadening (Andrew and Dudek, 1985;
Bourque and Renaud, 1985b) and followed by an
afterhyperpolarization, which is due primarily to a
Ca?*-activated K*-conductance (Andrew and
Dudek, 1984b; Bourque, Randle and Renaud,
1985). Bourque (1988) has described. a transient
outward current, which probably plays an im-
portant role in controlling the firing pattern of
MNGCs. Recently, intracellular recordings from
neurons surrounding the PVN have revealed elec-
trophysiological properties that differ consider-
ably from MNCs (Poulain and Carette, 1987;
Tasker and Dudek, 1987). In particular, hyper-
polarization of these neurons with.steady injected
currents.revealed low-threshold Ca?* spikes, which
were not seen in MNCs.(Fig, 4A, B). These events
were resistant -to. tetrodotoxin, and could be
blocked by Cd?*; they were.also much larger and
faster than the depolarizing afterpotentials ob-
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Fig. 3. Single<tlectrode voltage-clamp recordings of spike aftercurrents in MNCs. A: transient, outward aftercurrent. While
membrane potential-was held near —70 mV with steady injected current, a depolarizing current pulse (upper trace) was injected into
.the MNC to evoke action potentials (lower trace). At termination of the current pulse (arrow), the MNC was voltage-clamped to —~80
mV. This revealed an early outward current (*), which is normally responsible for the afterhyperpolarization. B: slow inward
aftercurrent. The same procedure as in A was used 1o study the aftercutrent responsible for the depolarizing afterpotentials (note the
slower time scale). Aftercurrents were analyzed at.several different potentials, as indicated in the figure. The eaily outward current
(*) preceded the slower inward current, which was largest at ~60 mV and undetectable at potentials negative of —90 mV. C:
current--voltage relations. The amplitude of the current flowing 10 s after the t<ginning of the clamp indicated the steady-state
current-voltage relation (). The current flowing 500 ms after onset of the clamp was used as a measure of the inward aftercurrent
(®). Spike. threshold for this MNC was —60 mV (arrow), which is near the region of negative resistance in the current-voltage
relation (from Bourque, 1986).
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served in MNCs. In addition, the cells with low-
threshold Ca®* spikes also showed’ pronounced
anomalous rectification, whereas MNCs had rela-
tively linear current-voltage curves to approxi-
mately —90 mV (Fig. 4C, D). Immunocytochemi-
cal stuidies on cells injected with Lucifer yellow
suggest that the neurons with low-threshold Ca?*
spikes were not MNCs, since they were unstained
with antisera to neurophysin (Poulain and Carette,
1987; Hoffman et -al., 1988). Therefore, nc ‘ons
around the PVN (and possibly the SOM} @ pear
to have distinctly different electrophysio ogical
properties than MNCs.

Transmitters

~ Practically every neuroactive substance has been
found in the hypothalamus, and there have been
numerous hypotheses about how.-different sub-

stances regulate the electrical activity of MNCs
and secretion of oxytocin and vasopressin. Ana-
tomical and pharmacological studies have pro-
vided indirect evidence concerning the possible
function of different substances, although very
little direct evidence had existed until recently
concerning the transmitters that mediate fast syn-
aptic potentials in the hypothalamus. In both slice
and. explant preparations, synaptic potentials last-
ing tens of milliseconds are readily observed
spontaneously and after extracellular stimulation.
A particularly effective approach to the identifica-
tion of transmitter substances is bath-application
.of known concentrations. of specific transmitter
antagonists to- evaluate -their effects .on synaptic
potentials. This line of investigation has provided
new information about the transmitters that regu-
late the electrical activity of MNCs.
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Fig. 4. Low-threshold calcium spikes (LTS). A: putative MNC. A PVN cell with the electrical properties of an MNC did not generate
an LTS potential when depolarized (upper trace) from a hyperpolarized membrane potential. B: LTS neuron. A cell located just
outside the PVN showed a burst of action potentials superimposed on an LTS potential-when the cell was depolarized (upper trace)
from a hyperpolarized membrane potential. Dotted lines in A and *B represent -resting membrane potential. C: current-voltage
relations characteristic of MNCs. Hyperpolarizing current pulses (100 pA) were injected’ at resting membrane potential and
increasingly negative potentials in a putative MNC. There was no decrease in input resistance (but sometimes 2 slight increase) at
hyperpolarized membrane potentials. D: anomalous rectification in LTS neurons. Hyperpolarizing current pulses (150 pA) injected at
restine potential and at hyperpolarized membrane potentials revealed a profound change in input resistance in an LTS neuron,
Decreased input resistance at hyperpolarized levels was indicative of anomalous rectification. Calibration bars in B apply to A and B,
and those in D apply to C and D (from Tasker and Dudek, 1987).
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Fig. 5. Effect of antagonists for inhibitory and excitatory amino acid receptors on PSPs of SON and PVN neurons. A: effect of
bicuculline on-revérsed IPSPs. Intracellular -recordings were obtained with a KCl-filled electrode. Increasing concentrations of
bicuculline methiodide (BMI,.1~100 uM) progressively reduced the amplitude of the reversed IPSPs that were evoked with electrical
stimulation of the diagonal .band of Broca (from Randle et al., 1986b). B: effect-of kynurenic-acid on EPSPs in PVN evoked with
focal electrical stimulation. Intracellular recordings were obtamed from PVN neurons in the presence:of 50 uM picrotoxin,-which
blocked all IPSPs. The EPSPs were evoked by extracellular stimuli delivered near the fornix and were superimposed on a
hyperpolarizing current pulse (not shown) Increasing concentrations of kynurenic acid (100 p¢M~1 mM) progressively reduced.the
amplitude of the EPSPs (from Wuarin and Dudek, 1988).
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Both immunocytochemical and pharmacologi-
cal studies have suggested that y-aminobutyric
acid (GABA) is a major inhibitory transmitter in
the “hypothalamus, including the magnocellular
neuroendocrine system. Recently, Randle et al.
(1986b) showed that bath-application of bicucul-
line blocked spontaneous and. evoked IPSPs in
supraoptic neurons. These IPSPs were reversed
when the cell was hyperpolarized to —72 mV with
potassium acetate electrodes, and they had rever-
sal potentials positive of resting potential when
recorded with KCl electrodes. Bath application of.
10 pM bicuculline attenuated the reversed IPSPs,
and 100 pM bicuculline abolished them (Fig. 5A).
Comparable -effects were also observed with
spontaneous IPSPs. Using picrotoxin, we have
obtained similar data in slices of SON and PVN
(Wuarin and Dudek, unpublished observations).
These results argue that GABA is an important
mediator of fast IPSPs.in-the magnocellular neu-
roendocrine system.

A wide variety of studies in mammalian central.

neurons, particularly in hippocampus and neocor-
tex, have argued that excitatory amino .acids are
the primary class of substance mediating; fast exci-
tatory transmission in the mammalian brain. Both
spontaneous EPSPs and EPSPs evoked by local
stimulation’ dorsolateral to the SON are greatly
attenuated by bath-application of kynurenic acid,
a broad-spectrum amino acid antagonist (Gribkoff
and Dudek, 1988). Recent studies with lower con-
centrations of kynurenic acid-(Fig. 5B) have .cor-
roborated and extended this finding in the PVN
(Wuarin and Dudek, 1988). These data support
the hypothesis that the major excitaiory trans-
mitter mediating fast synaptic events in-both the
SON and PVN is glutamate or a closely related
excitatory amino acid.

Neuromodulators

Many other substances are thought to provide
chemical regulatory input to the SON and PVN
and are known to modify the electrical activity of
MNCs, None of the available data on these other.
substances, however, provide good evidence that
they mediate the fast synaptic potentials recorded
in-all of the types of hypothalamic neurons so far
studied.-It therefore seems likely thzt the action of
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these other substances is relatively slow (on the
order of hundreds-of milliseconds or longer), and
they are likely to have more subtle effects on
neuronal membrane properties than the previously
described amino- acid transmitters. Until further
studies are performed using specific antagonists of
these substances, they should be considered sep-
arately as putative neuromodulators or slow
transmitters. Slow depolarizations from single and
repetitive stimuli have been observed in SON neu-
rons (Dudek and Gribkoff, 1987), but nearly all of
the data are also consistent with activity-evoked
changes in extracellular [K*]. Again, rigorous evi-
dence for a slow synaptic potential will require
blockade by a specific antagonist at reasonable
concentrations, which has not yet been accom-
plished in the hypothalamus (but see MacVicar
and Pittman, 1986). Two examples of possible
substances that appear to have quite different
properties than those expected of a fast trans-
mitter are noradrenaline and opioid peptides; their
actions on MNCs will be briefly discussed below.

Noradrenaline is a particularly important regu-
lator of the magnocellular neuroendocrine system.
Bath application of noradrenaline or the o-
agonist, phenylephrine, depolarized MNCs in SON
(Fig. 6A, B) and led to phasic firing (Randle 2t al,
1986a). Prazosin blocked this depolarization, thus
suggesting mediation by an «-receptor mecha-
nism (Fig. 6C). The depolarizations caused by
noradrenaline were not associated with a change
in membrane resistance, and both hyperpolarizing
current injection and increases in extracellular
[K*] reduced them. Noradr naline decreased the
duration of spike hyperpolarizing afterpotentials
and enhanced the amplitude of the slow depolariz-
ing afterpotentials. These effects suggest that
noradrenaline decreases a K*-conductance. Ran-
dle and coworkers (1986a) have suggested that
noradrenaline inactivates a transient K*-current
(i.e. ‘A-current’).

Another type of slow modulatory action on
MNCs involves the effects of opioid peptides,
which are-known to be extensive throughout the
hypothalamus. Pharmacological studies in intact
animals suggest that opioid peptides depress cer-
tain physiological functions thought to be media-
ted by the magnocellular neuroendocrine system,
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Fig. 6. Effects of noradrenaline on SCI¥ neurons. A: action of
noradrenaline (NA). The two upper-traces are intracellular
recordings during two separate applications of NA (100 pM,
horizontal bar). At resting potential (—62 mV, upper trace),
NA caused a depolarization with superimposed action poten-
tials. When the cell was hypérpolarized with steady injected
current (~65 mV, second trace); -a clear depolarization was

revealed, Input resistance was evaluated with constant current:

pulses (bottom trace), but NA caused no changes. B: effect.of
phenylephrine (PHE, 50 uM, horizontal .bar) on a different
SON neuron, C: effect of prazosin (50 pM) on the NA-induced
depolarization and spikes. Upper trace illustrates the effect of
NA (100 pM) under control conditions, and the middle trace
shows that the actions of NA were blocked by prazosin. After
90 min of recovery, a response to NA could be obtained again
(from Randle et al., 1986a).

such as lactation. One likely site of action of
opioid peptides is the neurohypophysial terminals
(e.g. see Bicknell, 1985, for review). However,
extracellular studies in PVN and SON using hypo-
thalamic slices suggested that opioid peptides de-
press electrical activity at the soma in approxi-
mately half of these neurons (Muehlethaler et al.,
1980; Pittman et al., 1980; Wakerley et al., 1983).
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Fig. 7. The effect of [p-Ala?,MePhe*,Gly-ol*Jenkephalin, a
p-receptor agonist, on a rat SON neuron. Intraceflular record-
ings were obtained in the presence of tetrodotoxin, which
blocked all action potentials. The electrodes contained KClI,
and thus the Ci™ gradient and the IPSPs-were reversed. This
was confirmed with bath-application of picrotoxin, which .at-
tenuated the reversed IPSPs, Bath-application of the p-receptor
agonist (bar, 10~ M) hypérpolatized the neuron (from Wuarin
and Dudek, 1987).

Wuarin and co-workers (1988) have: shown that
the p-receptor agonist, [D-Ala%,MePhe® Gly-
ol’Jenkephalin, causes a dose-dependent (1072 to
1075 M) hyperpolarization- of about one-half of
the intracellularly recorded PVN neurons. Nalo-
xone (107 M) reversibly blocked this effect.
Bath-application of a selective &-receptor agonist
([D-Pen?,Pen’Jenkephalin at 10~¢ M) or a selective
x-receptor agonist (U-50,488 at 10~¢ M) did not
hyperpolarize those PVN neurons that were re-
sponsive to the same dose of the p-receptor agonist.
On-going studies in our laboratory with SON and
PVN neurons from both rat and guinea pig have
indicated that this p-receptor agonist hyper-
polarizes- some neurons even in the presence of
tetrodotoxin, which blocks axonal conduction and
spike-mediated synaptic transmission; therefore,
p-receptor agonists may act directly on SON and
PVN neurons. This hyperpolarizing effect was also
obtained -with KCl- electrodes, which reversed the
IPSPs. Since some drug-induced hyperpolariza-
tions were associated with a decrease in input
resistance, p-receptor agonists probably increase
K*.conductance of these neurons (Wuarin and
Dudek, 1987). However, p-receptor agonists may
also inhibit neurons in PVN and SON through
presynaptic mechanisms, possibly by depressing
the activity of local neurons around the mag-
nocellular nuclei (Wuarin and Dudek, unpub-
lished observations). These studies have -begun to
provide detailed information about the mecha-
nism of action of opioid peptides in this model
hypothalamic system.

Discussion

Similar to acute in vitro preparations fromother
areas of the mammalian brain, hypothalamic slices
and explants allow experiments that are generally
not feasible.in the intact animal: In both slice and
explant preparations, the approximate location of
electrophysiological. recording, electrical stimula-
tion and drug microapplication can be ascertained
during the experiment (and subsequently -con-
firmed more rigorously with various marking tech-
niques): It has been. possible to-obtain stable in-
tracellular recordings for many hours, while alter-
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ations have been made in the ionic constituents of
the media and pharmacological agonists and
antagonists have been applied tn neurons at known
concentrations. All of the stucies described here
required high-quality intracellular recordings so
that stable electrophysiological responses could be
examined under several conditions. For those ex-
periments--<ing antagonists that block ionic chan-
nels or transmitter receptors, the specificity of the
effects is concentration dependent. Similarly, ap-
plication of agonists in the perfusate at known
drug concentrations allows one to obtain accurate
dose-response curves. Another advantage of bath
application is increased confidence that all cells
are affected equally, thus reducing false-negative
data. Where desensitization may be a problem,
visually guided microapplication techniques -can
be used with both of these in vitro preparations,
although the actual drug concentration at the re-
corded cells is unknown with these techniques.
During bath application, all of the presynaptic
cells that impinge on the recorded neuron are
exposed to the drug. Microapplication can reduce
this problem. Blockade of action potentials or
chemical synaptic transmission with tetrodotoxin
or calcium-channel blockers, respectively, can
eliminate presynaptic effects.

The explant and slice preparations each have
their advantages. Perfusion of the explant pre-
paration through the internal carotid artery
(Bourque and Renaud, 1983) allows the use of a
larger block of tissue with more hypothalamic
structures; for those nuclei that are present in the
explant (e.g. SON), more dendritic processes pre-
sumably remain intact. The neurohypophysis can
be retained with the hypothalamic explant, thus
allowing correlative studies on electrophysiology
and hormone secretion to be performed in vitro
(e.g- Renaud, 1987). Slices, on the other hand, can
be cut in a variety of orientations, thus allowing
several dorsally located hypothalamic nuclei (e.g.,
PVN) to be studied electrophysiologically. Visuali-
zation of nuclei and fiber tracts is also facilitated
with the slice preparation (see below).

One -important problem with both the hypo-
thalamic slice and explant preparations, and with
all similar in vitro preparations from other areas
of the brain, is that interpretation of experiments

67

using electrical stimulation is difficult. Most in-
puts have been-cut during the preparation, so the
cells and /or fibers that are activated by electrical
stimulation cannot be identified. Although similar
complications are present in vivo (activation of
fibers-of-passage is often not given appropriate
consideration), the problem is much greater in
vitro because'of the closer proximity of the stimu-
lating electrode to the recorded neuron. It is essen-
tially impossible to. activate local neurons inde-
pendent of fibers-of-passage with- electrical pulses.
This technical problem has led to several misinter-
pretations in the literature,

We have reviewed several examples of recent
advances that vere made using hypothalamic slices
or explants. Unfortunately, it was not possible to
cover some of the other important issues that have
beeti studied recently (e.g. osmosensitivity). In the
future, several new strategies are likely to-be cou-
pled with slice and explant preparations to pro-
vide further understanding of hypothalamic elec-
trophysiology. One can expect that additional
studies will be undertaken using the single-elec-
trode voltage-clamp to analyze ionic conductances
(e.g. Bourque, 1986, 1988) or glutamate micro-
stimulation to activate local neurons independent
of axons-of-passage (Tasker and Dudek, 1988).
Recorded neurons will be systematically injected
with intracellular markers and immunocytochemi-
cally processed to correlate electrophysiological
properties with transmitter or hormone content.
Thinner slices (i.e. less than 300 pm), combined
with on-line video- and computer-enhanced image
processing techniques, may allow better position-
ing of electrodes during experiments, In addition,
with the use of much thinner slices or isolated
neurons dissociated from hypothalamic slices, it
may be possible to undertake more rigorous bio-
physical studies with patch-clamp techniques.

Finally, we should address the question of how
intracellular -electrophysiological studies con-
ducted in slice and explant preparations have con-
tributed to our understanding of the neuronal
control of vasopressin and oxytocin secretion. In
vitro experiments alone cannot answer questions
about systems physiology at an organismic level;
however, when they are designed*in concert with
in vivo observations they can provide fundamental
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information.on cellular mechanisms. For example,
intracellular electrophysiological studies on LTS
neurons thought to occur around: and possibly in
the magnocellular nuclei now suggest a way to
differentiate the electrical activity of neurons dur-
ing single-unit studies in vivo. It should be possi-
ble to devise ways to identify LTS discharges with
purely extracellular techniques, and thereby de-
termine their possible * ‘e in the -regulation of
neurohypophyseal hormune secretion.

Several lines of evidence argu. that the phasic
bursts of vasopressinergic neurons need not be
driven by periodic synaptic input. Instead, a tonic
increase in the frequency of fast EPSPs or other
steady excitatory influences can conceivably de-
polarize vasopressinergic neurons into a potential
range where sequential alterations in voltage-de-
pendent conductances lead to phasic firing through
intrinsic mechanisms. Previous confusion about
the noradrenergic innervation -of the SON and
PVN may be reconciled by recent in vitro studies
on the mechanisms of action of noradrenaline at
the membrane level; its excitatory effect not only
involves membrane depolarization, but possibly
also a voltage-dependent conductance that would
regulate phasic firing. These ideas, in turn, can
account for the observation in vivo that the phasic
bursts of different vasopressinergic neurons are
asynchronous (Poulain and Wakerley, 1982), since
one would expect slight differences between neu-
rons to cause oscillations that are out of phase
with each other. The oxytocinergic system, on the
other hand, is known to fire synchronous bursts of
action potentials and the bursts are roughly time-
locked across all four nuclei (i.e. both pairs of
PVNs and SONs). Thus, synchronous chemical
synaptic input is likely to be critical for evoking
these bursts. In vitro studies suggest the untested
hypothesis. that excitatory amino acids are the
transmitter responsible for triggering the synchro-
nous bursts characteristic of oxytocinergic neu-
rons before each milk ejection in vivo. These
bursts are much more intense than those of the
vasopressinergic neurons, and are thought to often
be associated with depolarization-induced spike
inactivation. Although- several substances have
been shown to excite MNCs, none of them are as
consistent and potent as the excitatory amino

acids. Both of these hypothetical descriptions of
the neuronal mechanisms responsible for activa-
tion of the vasopressinergic and oxytocinergic sys-
tems depended first on in vivo experiments and
then, more recently, on in vitro studies. Future
research with both types of methods will be neces-
sary to test these and other hypotheses about the
neuronal mechanisms that control secretion of
hypothalamic hor:mones.
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SUMMARY AND CONCLUSIONS

1. Intracellular recordings from magnocellular neurons in the
supraoptic nucleus (SON) were obtained from rat hypothalamic
slices to determine the effects of specific transmitter antagonusts
on evoked postsynaptic potenti.ls (PSPs), action potential after-
discharge, and spontaneously occnrring PSPs.

2. Broad-spectrum excitatory amino acid (EAA) antagonists,
kynurenic acid (KYN) and +y-d-glutamylglycine (DGG), signifi-
cantly diminished or eliminated electrically evoked depolarizing
PSPs and spike discharges. These compounds also greatly reduced
the amplitude and frequency of spontaneous PSPs.

3. The specific N-methyl-D-aspartate (NMDA) receptor antag-
onist, DL-2-amino-5-phosphonopentanoic acid (AP5), did not
significantly reduce these measures of synaptic activation under
these experimental conditions.

4 The y-aminobutyric acid (GABA) antagonist, bicuculline
methiodide (BIC), partially antagonized some PSPs when the cells
were hyperpolarized (—75 to —80 mV) with steady injected cur-
rents; KYN antagonized BIC-resistant PSPs,

5 The involvement of a hypothetical cholinergic input to the
SON in the responses to stimulation of the region dorsolateral to
the SON was tested by bath application of nicotinic cholinergic
antagonists, particularly d-tubocuranne (dTC). Nicotinic chotin-
ergic antagonists, even after prolonged exposure to high concen-
trations, did not block the responses of SON cells to dorsolaterai
stimulation.

6 These findings strongly suggest that EAAs mediate fast ex-
citatory synaptir responses of SON neurons to stimulation of cells
and axons in the region dorsolateral to the SON. The blockade of
almost all spontaneous EPSPs by broad-spectrum EAA antago-
nists likewise argues that EAAs are responsible for the majority of

- ongoing fast excitatory input. These responses appear to involve

an interaction with kainate- and/or quisqualate-type EAA recep-
tors.

INTRODUCTION

The magnocellular neuroendocrine system of the mam-
malian hypothalamus, which includes the neurons of the
supraoptic nuclei (SON), is responsible for the release of
the peptide hormones oxytocin and vasopressin from the
neurohypophysis (Ivell et al. 1983; Silverman and Zim-
merman 1983; Swanson and Sawchenko 1983). Several
factors have contributed to its status as a model neuroen-
docrine system in mammals. These include the well-char-
acterized cause-effect relationship among extrinsic stimuli,
hormone release, and physiological responses. Examples
are the relationship between increased blood osmolality
and vasopressin release (Poulain and Wakerley 1982, Sla-
dek and Armstrong 1985) and the involvement of oxytocin

in the milk-ejection reflex (Lincoln and Wakerley 1974;
Robinson 1986). Also, the accessibility of magnocellular
neuroendocrine cells for electrophysiological studies has
led to considerable progress in determining the responses of
these cells to physiological stimuli and in identifying the
intrinsic cell properties that contribute to these responses
(for reviews, see Poulain and Wakerley 1982; Renaud et al.
1985, 1987). Until recently, however, very little was known
in this system about the synaptic mechanisms that are re-
sponsible for translation of extrinsic physiological stimuli
into appropriate responses of the magnocellular neurons.

Recent anatomic and physiological studies have focused
on y-aminobutyric acid (GABA) as the mediator of ir:hibi-
tory synaptic responses, and this work has established
GABA as an important transmitter in the SON (Jha-
mandas and Renaud 1986, Randle et al. 1986, 1987,
Theodosis et al. 1986; Van den Pol 1985). Although ana-
tomic, hormone-release, and preliminary physiological evi-
dence have suggested roles for several excitatory transmit-
ter candidates in the SON (Arnauld et al. 1983; Bioulac et
al. 1978; Hatton et al. 1983), there has been a lack of direct
electrophysiological evidence linking a particular transmit-
ter substance to individual synaptic events. In a previous
brief report (Gribkoff and Dudek 1988), we presented pre-
liminary evidence that kynurenic acid (KYN), a specific
broad-spectrum antagonist of excitatory amino acid (EAA)
receptors, reduced or abolished components of the synap-
tically evoked response to extracellular electrical stimula-
tion dorsolateral to SON. It is now widely oelieved that
EAAs are the most important and widespread class of ex-
citatory transmitters in the mammalian central nervous
system. Our observations here with EAA antagonists pro-
vide strong evidence that EAAs are extremely important in
the generation of fast synaptic potentials of the magnocel-
lular neuroendocrine system in rat hypothalamus.

In the present study, we have further tested the hypoth-
esis that an EAA is the primary mediator of excitatory
synaptic responses evoked by electrical stimulation dorso-
lateral to the SON. This included a more guantitative eval-
uation of the effects of KYN, assessment of the effects of

v-d-glutamylglycine (DGG, another broad-spectrum EAA
antagomst), and the determination of actions of the specific
N- methyl p-aspartate receptor (NMDA) antagonist 2-
amino 5-phosphonoupentanoic acid (AP5) on SON neuro-
nal responses to st.nulation of the region dorsolateral to
the SON. In addition, the effects of a GABA antagonist and
antagonists of nicotinic cholinergic receptors on these syn-
aptic responses were also assessed.

60 0022-3077/90 $1,50 Copyright © 1990 The American Physiological Socicty
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METHODS

Coronal hypothalamic slices at the level of the optic chiasm
(400=600 pm) were obtained from young rats (120-190 g) of
either sex by the use of techniques described in detail elsewhere
(Dudek and Gribkoff 1987). The slices were transferred to a re-
cording chamber (Haas et al. 1979) and maintained at 32-34°C
in the presence of warmed, oxygenated medium, The composi-
tion of the control incubation medium was (in mM) 124 NaCl, 26
NaHCO;, 3 KCl, 1.3 MgSO,, 2.5 NaH,PO,, 2.4 CaCl,, and 10
glucose. The pH of all solutions was ~7.4. The solutions were
delivered by a peristaltic pump at a constant rate of 1.5 ml/min,
All drugs were freshly dissolved in normal medium and applied
by bath perfusion.

Neurons were impaled in the SON with glass microelectrodes
filled with 3 M K*-acetate (100-200 MQ). Hypothalamic slices
were transilluminated, and recording electrodes were visually
guided into the SON. Estimates of input resistance were made by
measuring the voltage deflection resulting from the injection of
hyperpolarizing current pulses (80-100 ms, —100 pA) through a
balanced bridge circuit; cells were often current clamped at a
hyperpolarized or depolarized membrane potential by intracellu-
lar current injection. Bridge balance was constantly monitored
and adjusted when necessary. Resting membrane potential was
estimated at the time of cell penetration and verified, when possi-
ble, at the termination of the recording. Intracellular recordings
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FIG. 1. Time course of the antagonism of the evoked PSP by KYN (2.0
mM). A: evoked PSPs before, during, and after exposure to KYN. Re-
sponses were obtained at the points marked by corresponding numbers
and arrows in the graph (bottom). B: graph of PSP amplitude as a function
of time during the experiment. After a brief control period, KYN was bath
applicd during the period ndicated by the lower bar (7.5 min). Amplitude
of the evoked PSP was decreased within 3 min in KYN and was com-
pletely suppressed within 5-6 min. Recovery was detectable at 4-6 min
into the wash period and nearly complete when the final PSP was obtzined
(trace 5; in control medium for 25 min). Membrane potential was held
near —=75 mV under current-clamp to prevent evoked discharge.
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were obtained with the use of a standard intracellular microelec-
trode amplifier (Neurodata); signals were stored on magnetic tape
for later analysis. Cells included in the tabulation of results had a
resting membrane potential greater than or equal to =55 mV and
input resistance =100 MQ; recordings from neurons included in
this study typically exceeded 1 h and lasted as longas 4.

Constant-voltage electrical stimuli were applied extracellularly
through bipolar electrodes consisting of 90% platinum-10% irid-
ium, Teflon-coated wires (76-um diam). The stimulating clec-
trode was placed in the region dorsolateral to the SON (for details
of placement, see Fig. 14 and text of Dudek and Gribkoff 1987).
The stimulation and recording sites were chosen to optimize the
probability of activating a hypothetical cholinergic input to SON
(Hatton ct al. 1983). In most experiments, several stimulus inten-
sities were employed to produce responses ranging from just su-
prathreshold to supramaximal. Three to five stimuli were pre-
sented at each intensity. Interstimulus intervals averaged ~2 s;
synaptic plasticity, expressed as a use-dependent facilitation or
depression of responses, was not observed for these stimuli. In
experiments with stimulus trains, frequencies of 5-20 Hz for
3-10 s were used.

Analyses of the effects of antagonists on spike afterdischarges
produced by single dorsolateral stimuli consisted of counts of the
number of action potentials during the response under each ex-
perimental condition. If the membrane poteniial was variable at
resting values, the cell was current clamped at or near the initial
level. Spike threshold and input resistance were monitored
throughout each experiment. Responses to stimulus trains in-
cluded a depolarization [resulting from excitatory postsynaptic
potential (EPSP) summation] and spike discharge during the pe-
riod of stimulation; changes in these response components were
noted for each antagonist.

In most experiments, the effects of antagonists were assessed on
evoked PSPs, If stimulation produced action potentials at or near
resting potential, the cell was current clamped at =75 to —80 mV
to reveal the underlying postsynaptic potential (PSP). In some
cases, an input-output plot was produced by applying multiple
stimuli at five to eight voltage values, and this relationship was
examined in control and drug media. For direct comparison be-
tween cells, responses at a single voltage level, corresponding to
50-80% of the voltage producing the maximal ¢vokeu amplitude,
were zollected under each experimental condition; the PSP am-
pitiudes were then measured and compared. The eftects of drugs
on spontancous PSPs were examined in most cells; in a select
group of cells in which the frequency of spontaneous PSP occur-
rence was high and fairly constant, and in which these events were
well resolved, the effects of KYN or DGG were quantified and an
amplitude-frequency analysis was produced for the control and
drug conditions. The effects of drug solutions on resting mem-
brane potential and input resistance were examined in all cells.

Drugs used in this study were KYN (0.25~3.0 mM), DGG
(0.5-2.0 mM), pL-AP5 (0.1-1.0 mM), bicuculline methiodide
(BIC, 0.05-0.1 mM), d-tubocurarine (dTC, 0.1-1.0 mM), GABA
(1.0-3.0 mM), NMDA (0.1 mM), hexamethonium bromide
(HEX, 0.5 mM); all were obtained from Sigma Chemical (St.
Louis, MO). Dihydro-g-erythroidine (DBE, 0.1-1.0 mM) was a
gift from Merck, Sharpe & Dohme Research Laboratorics.

After a control period of stable recording, at least one of the
transmitter antagonists was applied to each cell, and many cells
had several drug solutions applied during prolonged recordings.
When possible, postdrug periods of superfusion (wash) with con-
trol solution were used to assess recovery.

RESULTS

Data for this study were obtained from 35 celis. The
mean resting membrane potential in control medium was
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—64.4 # 1.1 (SE) mV (range —56 to —80 mV); the mean
input resistance was 219 * 11 (SE) MQ (range 138-344
MQ). At resting potential, the response to electrical stimu-
lation dorsolateral to the SON was predominately excit-
atory (except 3.cells had a hyperpolarizing response); sev-
eral action potentials superimposed on an EPSP often fol-
lowed the stimulus. When current clamped at a membrane
potential more negative than or equal to —75 mV, cells
responded with a depolarizing PSP that rarely resulted in
action potentials. These evoked PSPs had rise times < 5 ms
and were of variable duration to ~ 100 ms. During stimu-
lus trains, a maintained depolarization with superimposed
small-amplitude PSPs, which resembled spontaneous syn-
aptic events, invariably occurred; after the train, the depo-
larization and enhanced PSP frequency persisted for sev-
eral seconds to several minutes, as described previously
(Dudek and Gribkoff 1987). The effects of drug solutions
were assessed on these measures of synaptic excitation and
on spontaneous PSP amplitude and frequency.

Effects of KYN on synaptic potentials and afierdischarges

In all of the 19 neurons to which it was applied, KYN
(0.25-3.0 mM) produced a reversible reduction of all excit-
atory response components. In every cell tested (n = 18),

Control

5 0060 0400000000000 0000000000000080080008000000000000000000ss0te

KYN

Wash

0 3600008000000 06008000000006000600600000000000000000000

~ v

TABLE 1. Effects of KYN on evoked PSP amplitude
and input resistance

Concentration, mM

0.25 0.50 1.0 20 3.0

PSP amplitude 77(1) 66 £4(4) 45£9(11) 35x15() 0O(1)
Input
resistance Iis 91 %9 102435 1005 87

Values are percent of control = SE. Numbers in parentheses are the
number of cells contnbuting to the average response. KYN, kynurenic
acid; PSP, postsynaptic potential.

the evoked PSP was reduced in KYN. The available data
suggest a concentration-dependence of this antagonism
(Table 1). Complete antagonism of evoked PSPs was ob-
served in three experiments and only at concentrations of
=1.0 mM. A residual component of the PSP almost always
persisted at high stimulus intensities. When PSPs were
greatly reduced, KYN produced little or no consistent
change in either membrane potential or input resistance; in
some cells, a small hyperpolarization (<6 mV) was ob-
served with KYN = 1.0 mM. When the cells were returned

60600000060 0000000000880000008000000 0000

15
mV

Www15

mV

50 ms

FIG. 2. Antagonism of the response to repetitive stimulation by KYN, Stimulation electrode was located in the perinu-
clear region dorsolateral to the SON. In control medium, a brief stimulus train (20 Hz, 3.3 5, 50 V) produced a large envelope
of membrane depolarization during the penod of stimulation, followed by persistent depolarization and a burst of PSP-like
events. To resolve these fast events, an area (lower short solid lines) was expanded (lower traces indicated by arrows);
summation prevented clear resolutton of individual PSPs 1 this cell, In KYN (1.0 mM), the depolarization during and after
the stimulus train was virtually eliminated, and the PSP burst and slow depolarization aftcr the cessation of stimulation was
likewise nearly eliminated. After return to control medium, all response components recovered to near pre-KYN levels.
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to control medium for 10-60 min (n = 14), PSP amplitude
partially or completely recovered. An example of KYN
depression of single evoked PSPs is shown in Fig. 1, which
also indicates the time course of action of KYN (2.0 mM).
The time course of KYN action was examined in three
cells, and a similar relationship was observed. Recovery
was slower than PSP blockade.

If the resting membrane potential of a cell was less nega-
tive than or equal to —60 mV, or if a cell with a more
negative resting potential was current clamped with depo-
larizing current to approximately —60 mV, single stimuli
produced afterdischarges of action potentials, which could
last 0.5 s. In every cell tested, KYN (0.5-2.0 mM) pro-
duced a rapid (# = 7) and reversible (n = 4) decrease or
elimination of the afterdischarge. When the underlying
evoked PSP was also monitored by current clamping the
cell below spike threshold (75 to ~80 mV, n = 6), the
decrease in the afterdischarge corresponded to a KYN-in-
duced depression of the underlying PSP. The envelope of
depolarization and resulting discharge produced by stimu-
lus trains was also greatly reduced by KYN (Fig. 2). These
depolarizations were probably the result of PSP summa-
tion during the 20-Hz stimulus train and were a measure of
synaptic efficacy in this system. KYN (0.5~2.0 mM) con-
currently reduced or abolished the in-train depolarizing
response and single evoked PSPs in all eight cells tested.

Another prominent feature of the effects of KYN on the
response of SON cells was seen immediately after repetitive
dorsolateral stimulation (Fig. 2). In control medium, a pro-
nounced and enduring burst of events followed the cessa-
tion of repetitive stimulation. On the basis of waveform
and amplitude, they appeared to be spontaneous PSPs (see
Dudek and Gribkoft 1987 for further discussion). Applica-
tion of medium containing KYN produced a pronounced
reduction or blockade of these events in all cells tested (n =
8). The effect of KYN on this burst of events appeared at
least as great as the effect on in-train depolarization, al-
though quantification was difficuit. Because it was difficult
to separate antagonism of fast PSPs after repetitive stimula-
tion from the concurrent slow depolarization, no system-
atic attempt was made to determine the effects of antago-
nists on posttrain slow depolarizations. However, these de-
polarizations were reduced.in several instances by KYN.

All cells recorded in this study had spontaneous depolar-
izing PSPs, and KYN produced a depression of spontane-
ous synaptic events. The effect of KYN on spontaneous
depolarizing PSPs was examined closely in six cells where
their amplitude (i.e., resolution) and frequency were suffi-
cient for quantification. Figure 3 shows the typical result of
KYN application (1.0 mM) on spontancous PSPs; all
events clearly identifiable as having the waveform of a PSP
were grouped according to amplitude and their frequency
recorded for each group over a 5-s interval before, during,
and after KYN. Synaptic events in all of the amplitude
groups were significantly and reversibly reduced or elimi-
nated in KYN. The largest depolarizing events were more
affected than were the smaller ones; because of the limits of
resolution of this analysis technique, it was not possible to
determine if the reduced number of spontaneous PSPs rep-
resents a decrease in presynaptic firing, a reduction.in am-
plitude of PSPs such that many of these became too small

to distinguish from noise, or a combination of both. The
total elimination of PSPs of the largest amplitude in KYN
(Fig. 34) suggests that the amplitude distribution was
shifted to the left (i.e., KYN produced a reduction in am-
plitude).

These six <ells were analyzed in a similar manner to
determine the average amplitude and frequency of all
spontaneous PSPs during the analysis periods (5 s) in con-
trol medium and in the presence of KYN. For four
neurons, to which 1.0 mM KYN was applied for 10-25
min, the average amplitude of all spontancous PSPs in the
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FIG. 3. Effects of KYN on spontaneous EPSPs. 4: amplitude-fre-
quency histogram for a single SON cell, displaying the effect of KYN (1.0
mM; 10 min) on the mean frequency (+SE) of spontaneous EPSPs in 3
amplitude ranges (amplitude rounded up to the nearest millivolt) during a
5-s bin. Cell had been previously bathed in BIC (100 gM; 20 min) to
eliminate the possible contribution of reversed IPSPs (cell was current
clamped at a membrane potential necar —80 mV). KYN (also in the pres-
ence of BIC) clearly and reversibly decreased the frequency of spontaneous
EPSPs at cach of the amplitude ranges. Control solution partially restored
the pre-KYN amplitude-frequency profile. B: examples of spontancous
EPSPs obtained from the cell contributing to the data in A. The 3 traces
under cach condition are continuous. Note that large-amplitude events
were entirely eliminated in the presence of KYN and that they were again
present after the removal of the EAA antagonist,
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FIG. 4. Effect of DGG on evoked PSPs. Application of DGG reduced the amplitude of evoked PSPs; 2.0 mM (applied
first) had a greater effect than 1.0 mM. In this cell, current clamped at a membrane potential near -75 mV, DGG at 2.0 mM
moderately antagonized evoked PSPs and had no cffect on input resistance (R;). KYN (2.0 mM) completely and reversibly

suppressed these potentials (not shown).
presence of the antagonist was 52 % 7% (SE) of control
levels. This compares closely with the reduction of evoked

PSPs to 45 * 9% of control under the same conditions
(Tabie 1}. The average frequency of spontaneous depolar-

CONTROL

WASH *

10
____] mV

100 ms

izing PSPs was reduced to 15 % 4% of control for these four
cells. For two additional cells to which 0.5 mM KYN was
applied, their amplitude was reduced to 79 % 6% of control
values. Again, this value compares reasonably well with the
reduction of evoked PSPs to 66 =+ 4% of control in this
KYN concentration (Table ). The average reduction in
frequency of these events was less than that seen for KYN
at 1.0 mM, but the SE with only two values was very high
(reduced to 62 + 41% of control). Although these data are
limited, they suggest a concentration-dependent reduction
of spontaneous PSP amplitude and, perhaps, frequency.

Effects of DGG on evoked synaptic responses and
spontaneous PSPs

To further determine whether the actions of KYN on the
synaptic activation of SON neurons were due to a specific
antagonism of EAA-mediated neurotransmission, another
broad-spectrum EAA antagonist, DGG, was applied to six
SON neurons under similar experimental conditions. The
application of DGG (1.0 mM) resulted in a rapid and re-
versible reduction of synaptically evoked spike afterdis-
charges (n = 3); equimolar KYN entirely eliminated the
afterdischarges or reduced them to a single action poten-
tial. The effect of DGG on evoked PSPs was examined in
five cells (1.0 mM, »n = 5; 2.0 mM, n = 1). DGG (1.0 mM

FIG. 5. Effect of DGG (1.0 mM) on spontaneous PSPs, The 3 traces
under each experimental condition are continuous; positive deflections
marked by asterisks are 10-mV, 5-ms calibration pulses. In control me-
dium, PSPs of several amplitudes were observed at moderate frequency; in
DGG (20 min) the PSPs were much less frequent. DGG reduced the
average amplitude of remaining spontancous PSPs to 65% of control. In
this neuron, KYN (1.0 mM, 13 min) reduced spontaneous PSP amplitude
to 36% of control. After a return to contro! edium (Wash; 15 min), the
PSPs were again present at a frequency approaching that observed in
control medium. Both dTC (100 M) and BIC (100 xM) were present
throughout the experiment.
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FIG. 6. Comparison of the effects of the specific NMDA-receptor antagonist AP5 and the broad-spectrum antagonist
KYN on evoked PSPs. Even at high concentrations, APS (0.5 and 1.0 mM) did not appear to reduce PSP amplitude; KYN
(0.5 mM) depressed evoked PSPs at all stimulus voltages. Neither AP5 nor KYN had an effect on input resistance, as
indicated by the voltage response to a —=100-pA hyperpolarizing current pulse, Note that small-amplitude, fast events
(observed particularly after near-maximal stimuli) were also unaffected by AP5 and were antagonized by KYN.

for 10-25 min) produced a reversible reduction of the
evoked PSP observed, as previously, at stimulus intensities
that produced responses between 50 and 80% of the maxi-
mal amplitude. Figure 4 shows examples of the effect, in a
single neuron, of 1.0 and 2.0 mM DGG on evoked PSPs at

Control  emmunw.

di-APs [ % R A B B Y

near-threshold to supramaximal stimulus intensities. As
with KYN, this antagonist reduced PSPs at all levels of the
input-output relationship. The antagonist reduced PSP
amplitudes in the five experiments with 1.0 mM DGG to
64 £ 7% of the control values. DGG did not consistently

FIG. 7. Effects of AP5 (200 xM, 15 min) and KYN (1.0 mM, 15 min) on the responses to repetitive stimulation. Brief
stimulus trains (10 Hz, 10 s, 60 V; indicated by line beneath botfom trace, entire train not shown) delivered to the
dorsolateral region evoked PSPs, a summated envelope of depolarization during the train, and a burst of fast events after the
frain. KYN (but not AP5) greatly attenuated these response components. Residual slow depolarization was reduced but not
eliminated by KYN. Retura to control medium (Wash, 15 min) restored the response.
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FIG. 8. Effects of BIC and KYN on PSPs and ‘nput resistance. Appli-
cation of BIC (100 uM, 20 min) alone did not reduce evoked (top leff
traces) or spontaneous (bottom traces) PSPs, but BIC (100 uM) combined
with KYN (1.0 mM, 20 min) greatly depressed the evoked PSP and elimi-
nated spontaneous synaptic events. A higher concentration of KYN (2.0
mM, 20 min, together with BIC, 100 uM) further antagonized the evoked
PSP. Responses in top right corner under each condition indicate that
reither BIC nor KYN produced a consistent change in input resistance, as
indicated by the absence of changes in the amplitude of the voltage re-
sponse to brief intracellular current pulses (=100 pA, 100 ms). Cell was
current clamped at ~80 mV,

affect input resistance. The application of DGG also con-
sistently reduced the amplitude of spontaneous depolariz-
ing synaptic events, and this was analyzed quantitatively in
one neuron (Fig. 5). Therefore DGG was an effective an-
tagonist of evoked and spontaneous synaptic events, but
KYN appeared to have greater efficacy.

Effects of the specific NMDA receptor antagonist APS

To test for involvement of NMDA receptors in the
EAA-mediated response to dorsolateral stimulation, we
applied the specific NMDA-receptor antagonist DL-AP5
to six neurons at concentrations between 0.2 and 1.0 mM
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FIG. 9. Effects of BIC and KYN on responses to dorsolateral stimula-
tion at several stimulus intensities. Values plotted are averages of 3-5
responses. This input-output relationship, generated in the cell shown in
Fig. 8, demonstrates that BIC was ineffective in this neuron across the
entire range of stimulus intensities used, and shows that KYN (simulta-
ncously applied with BIC) produced a proportionately greater block at
lower intensities, A substantial evoked response remained at the higher
stimulus intensities, even in 2.0 mM KYN,

(because this was a racemic mixture, the effective concen-
tration was approximately one-half that actually delivered).
This antagonist produced no consistent effects on either
membrane potential or input resistance in this range of
concentrations.
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FIG. 10. Application of the nicotinic cholinergic antagonist dTC (200
¢M, 25 mmn) did not reduce PSPs clicited by dorsolateral stimulation.
Stumuli were applied at several voltages, and dTC was ineffective at every
stimulus level. Neuron was current clamped to about - 80 mV.
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When APS was applied, even at high concentrations, no
consistent antagonism of synaptic potentials or afterdis-
charges was observed (Fig. 6). In two cells, NMDA (100
uM) was applied before and during APS perfusion. In both
cases, AP5 (0.25 and 1.0 mM) completely antagonized the
excitatory actions of NMDA, although evoked and sponta-
neous PSPs were unaffected by the antagonist. In four cells
to which APS5 was applied at a concentration of 0.2 mM,
the evoked depolarizing PSP was 108 % 3% of control
values. At higher concentrations, only small reductions in
amplitude were observed (83% of control, 0.25 mM, n = 1;
91% of control, 0.5 mM, n = 1; 88%, 1.0 mM, »n = 2 both
values equal). In three cells, APS5 (0.2-1.0 mM) also had no
consistent effect on the depolarization during high-fre-
quency dorsolateral stimulus trains (1-10 s, 3-20 Hz). In
one case, shown in Fig. 8, APS5 slightly reduced the depolar-
ization during the train, but this effect was smull compared
with KYN, This was also true for the fast depolarizing PSPs

A -58 mV

after the train (Fig. 7), and no effect was observed on com-
parable spontaneous events (n = 2).

Effects of BIC

The inhibitory transmitter GABA was probably not re-
sponsible for excitatory components of the response to dor-
solateral stimulation at resting membrane potential when
recordings were made with K*-acetate-filled microelec-
trodes. Most cells, however, were current clamped at a
membrane potential greater than or equal to =75 mV,
values below the reversal potential fc. GABA-mediated
inhibitory postsynaptic potentials (IPSPs) (see Randle et al.
1986). Therefore the degree to which reversed IPSPs con-
tributed to evoked PSPs was tested directly. In four experi-
ments in which 100 uM BIC was applied to the prepara-
tion, evoked PSPs remained practically unchanged (84.8 +
13.9% of control). In 50 uM JIC, the values for two cells
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100 ms FiG. 11. Nicotinic cholinergic antagonists did not

reduce evoked neuronal afterdischarges. A: prolonged
application (>30 min) of dTC (1.0-mM) produced no
detectable decrement of stimulus-evoked afterdischarge
at resting membrane potential (~58 mV) or on evoked
PSPs when the cell was current clamped at a more nega-
tive membrane potential (=75 mV). B: similar applica-
tion of DBE (1.0 mM) produced no depression of re-
sponses evoked at several stimulus intensities. First
downward deflection in each trace was the stimulus arti-
fact. This cell was current clamped at a membrane po-
tential of =72 mV throughout the experiment. Action
potentials are truncated.
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were 76% and 101% of control PSP amplitudes. Therefore,
at these concentrations, BIC either had no effect or only
slightly reduced the amplitude of the evoked PSP. In three
cases in which KYN (1.0 mM) was applied in the presence
of 50 or 100 uM BIC, KYN reduced the PSP significantly
more than BIC alone (Xpic = 91 * 7%; Xpicsryn = 40 £
11%; P < 0.05, t = 3.94) (see Figs. 8 and 9). Synaptically
evoked afterdischarges were observed in two celie. before
and during the addition of BIC; in both cases no reduction
in the afterdischarge was noted, and the responses appeared
to have increased in intensity in BIC.

The inhibitory neurotransmitter candidate GABA was
applied to two neurons to determine whether 100 uM BIC
was sufficient to antagonize the effects of GABA on SON
cells. In both cells, BIC antagonized the conductance in-
crease produced by GABA. We also determined whether
KYN blocked the response to GABA. Although BIC (100
uM) greatly reduced the action of GABA on input resis-
tance, KYN (in the absence of BIC) had no effect on the
GABA-induced conductance increase.

Other evidence also suggests that KYN had no effect on
GABAergic transmission in the SON. In at least five
neurons, addition of KYN revealed IPSPs after stimula-
tion, where only depolarizing PSPs had been previously
observed. The EPSPs antagonized by KYN appeared to
have been masking the concurrently evoked small-ampli-
tude repetitive IPSPs, and these became apparent in KYN.

Effects of nicotinic cholinergic antagonists

An earlier report indicated that stimulation of the region
dorsolateral to the SON should result in activation of a
population of cholinergic neurons projecting into the SON
(Hatton et al. 1983). The actions of acetylcholine, secreted
by this pathway, on SON cells appeared to involve an in-
teraction with nicotinic cholinergic receptors. To test for
the presence of a significant nicotinic cholinergic compo-
nent in the response to dorsolateral stimulation, we applied
the neuromuscular blocking agent dTC (100 pM-2.0 mM)
to 10 neurons. In addition, dBE was applied to two
neurons, and the ganglionic blocker HEX was applied to
one cell.

A significant effect of these drugs was never observed on
PSP amplitude, stimulus-evoked afterdischarge, or depo-
larizations and discharges during a stimulus train. The lack
of effect of dTC on evoked PSPs was found across a range
of stimulus intensities and dTC concentrations (e.g., 200
eM, Fig. 10). Even after prolonged exposure to high con-
centrations of dTC, no reduction of any response compo-
nent was observed-(e.g., 1.0 mM, Fig. 114). Likewise, dBE
(1.0 mM) did not reduce synaptic excitation (Fig. 1 1.B). For
the five neurons to which dTC was applica at concentra-
tions between 200 pM and 1.0 mM and hat met other
inclusion criteria (see above for KYN). evnked PSPs after
10-30 min were 102 + 8% of control amphtudes (+SE). In
one experiment, HEX (250 uM) was applied to a cell for 30
min with no effect on synaptic responses. In every case in
which a burst of small amplitude PSPs was observed after a
stimulus train, the application of nicotinic cholinergic an-
tagonists had no effect on this response component. There-

¥

fore nicotinic cholinergic antagonists were ineffective in
antagonizing these responses.

DISCUSSION

Comparison between the effects of EAA antagonists
in the SON and other systems

The EAA antagonists KYN and DGG have been shown
to be specific blockers of EAA-induced excitations and
synaptic potentials at several central loci. These areas in-
clude neocortex (Tsumoto et al, 1986), various hippocam-
pal subdivisions (Collingridge et al. 1983a,b; Cotman et al.
1986; Crunelli et al. 1983; Ganong et al. 1983), spinal ccrd
(Davies and Watkins 1981; Elmslie and Yoshikami 1985),
and olfactory bulb (Jacobson et al. 1986). The tryptophan
metabolite and quinoline derivative KYN and the dipep-
tide DGG are both broad-spectrum EAA antagonists
(Francis et al. 1980; Jones et al. 1984; Watkins et al, 1987).
In hippocampus, where these compounds have been in-
tensely studied, they were shown to suppress EAA excita-
tions mediated by agonists acting at NMDA, quisqualate,
and kainate receptor subtypes, particularly at higher con-
centrations (Collingridge et al. 1983a,b; Crunelli et al.
1983; Ganong and Cotman 1986). In the SON, we have
found KYN and DGG to be effective antagonists of evoked
PSPs, afterdischarges, and spontaneous PSPs; XYN ap-
peared to be more effective than DGG when tested on the
same neuron.

As in hippocampus and spinal cord (Collingridge et al.
1983a; Elmslie and Yoshikami 1985), the antagonists
began to block neurotransmission in the SON within 2-3
min and were maximally effective within ~5-8 min; the
effects were reversible, although reversal was slower than
the initial suppression. Comparisons of effective concen-
trations between SON and other areas are difficult, because
in many previous studies the antagonists were applied by
microiontophoresis and were often tested against the exci-
tations produced by exogenous EAA application (e.g.
Bioulac et al. 1978; Collingridge et al. 1983a). Nevertheless,
in studies where these compounds were applied in the bath,
millimolar concentrations produced significant antago-
nism (Elmslie and Yoshikami 1985; Ganong et al. 1983,
1986) and were similar to concentrations we found to be
effective in the SON. The effectiveness of KYN may have
been underestimated because of the presence of reversed
IPSPs in the SON (see below).

An important reason for our choice of KYN and DGG
over other broad-spectrum EAA antagonists was evidence
from previous studies demonstrating that these com-
pounds did not significantly interact with other central
neurotransmitters and did not have nonspecific actions on
cellular excitability. In particular, the antagonists were in-
effective blockers of cholinergic PSPs (Elmslie and Yoshi-
kami 1985) or excitations produced by acetylcholine (Col-
lingridge et al. 1983b). A previous study had suggested that
the PSPs produced in SON neurons by dorsolateral stimu-
lation were cholinergic (Hatton et al. 1983), making the
issue of cholinergic interactions by EAA antagonists an
important selection criterion, because antagonist effects on
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cholinergic excitations were not directly tested in this
study. In addition, these compounds have not previously
produced significant nonspecific effects on cell membrane
properties. This was also true in SON; KYN and DGG did
not alter significantly -input resistance. The small-ampli-
tude hyperpolarizations in KYN probably resulted from
the profound blockade of spontaneous depolarizing synap-
tic events. This has been directly demonstrated in the spi-
nal cord (Elmslie and Yoshikami 1985). DGG did not ap-
pear to produce changes in membrane potential.

While the antagonism of evoked responses by KYN and
DGG implicated EAAs in the mediation of these events,
their ability to intetact with all EAA receptor subtypes did
not allow us to determine the identity of the particular
receptor(s) responsible. In particular, both compounds ap-
peared, at least in hippocampus, to antagonize excitations
mediated by NMDA-receptor activation (Collingridge et
al. 1983b; Ganong and Cotman 1986). Because specific
antagonists of quisqualate- and kainate-type EAA recep-
tors were not available at the time the experiments were
conducted, we utilized the specific NMDA antagonist APS
to determine whether this receptor subclass was involved in
the fast excitatory responses to dorsolateral stimulation.
Little or no effect of AP5 was observed for PSPs in the
SON, even at high concentrations, which strongly suggests
that NMDA-receptor activation was not a mechanism of
PSP generation in these neurons under these experimental
conditions. It is worth noting, however, that the excitatory
response of SON neurons to bath-applied NMDA, and its
blockade by high concentrations of APS, suggests the pres-
ence of NMDA receptors in SON.

Effects of KYN and DGG on spontaneous PSPs and
responses to stimulus trains

Spontaneous PSPs were seen in all cells recorded in
SON, although their frequency and amplitude varied con-
siderably between cells. KYN and DGG greatly reduced
the average amplitude and frequency of these events.
Whereas the frequency of all such events was reduced,
larger amplitude spontaneous PSPs were absent in the pres-
ence of these compounds. A similar shift in the amplitude
distribution of spontaneous PSPs in KYN has been ob-
served in hippocampal neurons (Cotman et al. 1986). This
action of KYN was suggested to represent a primary post-
synaptic action on EAA receptors, rather than an effect on
presynaptic discharge, which would affect the frequency
but not amplitude distribution. Our data, which show a
disproportionate reduction of larger amplitude events, can
be interpreted in a similar manner. We suggest that KYN
and DGG reduced the amplitude of spontaneous PSPs via
an interaction with non-NMDA-type EAA receptors on
magnocellular neurons, because AP5 did not affect spon-
taneous PSPs. Apparent reductions in overall spontaneous
PSP frequency may have reflected a reduction of the more
frequent low-amplitude events, which became impossible
to resolve from base-line noise.

Events similar in amplitude and frequency to spontane-
ous PSPs occurred at high frequency after stimulus wrains
delivered to the region dorsolateral to the SON and were

greatly reduced by KYN. These events possibly resulted
from stimulation of local circuit neurons, which secrete
EAAs. Alternatively, these events may have resulted from
stimulation of afferents that originated outside the slice,
and were the reflection of the repetitive firing of axons or
the release of large trausinitter “quanta.” These arguments
apply equally well to spontaneous PSPs. Qur experiments
could not differentiate between these hypotheses.

The sustained depolarizations observed during repetitive
stimulation were reduced or eliminated by KYN and
DGG. These depolarizations probably resulted from PSP
summation during the train, and their reduction by KYN
and DGG resulted from antagonism of the fast PSPs. The
residual slow depolarizations after the trains (Dudek and
Gribkoff 1987) were also reduced by KYN and DGG, al-
though this effect was not quantified. The origin of these
long-lasting depolarizations is unknown, but their reduc-
tion by broad-spectrum EAA antagonists suggests that the
depolarization was produced directly or indirectly by
EAAs, possibly involving an additional mechanism, such
as an increase in the extracellular concentration of K* re-
sulting from cellular discharge.

GABAergic component of evoked PSPs

In a previous study, dorsolateral stimulation produced a
mixture of excitation and inhibition (Hatton et al. 1983),
and, during this study, data became available that demon-
strated GABA involvement in inhibitory neurotransmis-
sion in the SON (Randle et al. 1986). Although in our
hands dorsolateral stimulation almost always produced ex-
citation, the application of K’YN at depolarized membrane
potentials revealed previously undetected IPSPs in some
cells. We therefore applied the GABA antagonist BIC to
determine whether there was an unlikely interaction be-
tween KYN and GABAergic neurotransmission and to as-
sess-the percentage of evoked PSPs (recorded at hyperpo-
larized membrane potentials) that represented a depolariz-
ing GABAergic component. Such depolarizing responses
could have resulted from current clamping the cells below
the reversal potential for GABA (Randle et al. 1986). The
~15% reduction of PSPs in 100 uM BIC suggested a small
GABAergic component in the response under these experi-
mental conditions; the presence of IPSPs 1n KYN and the
inability of KYN to reduce GABA-induced conductance
increases strongly argues that KYN did not antagonize a
GABAergic component. These data suggest that the effi-
cacy of KYN at antagonizing EAAs in SON may have been
underestimated. Preliminary data irom comparable exper-
iments in the paraventricular nucleus support this idea
(Wuarin and Dudek 1988).

Cholinergic neurotransmission in the SON

A previous study (Hatton et al. 1983) has strongly impli-
cated acetylcholine, through an interaction with nicotinic
receptors, in the response of SON neurons to electrical
stimulation dorsolateral to the SON. Cholinergic neurons
are located in the dorsolateral region \Mason et al. 1983;
Mecker et al. 1988; Theodosis and Mason 1988), and Hat-
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ton and colleagues (1983) found that nicotinic antagonists,
generally applied by drop into a “microwell,” depressed the
extracellularly recorded afterdischarge that resulted from
dorsolateral stimulation. Although we positioned our stim-
ulating electrodes in the same approximate area and used a
slice similar to that described and diagrammed by these
investigators, we did not find any effect of nicotinic cho-
linergic antagonists on intracellularly recorded responses.
However, we have found that nicotine can excite SON
cells, and this effect can be blocked by dTC (Gribkoff et al.
1988). Although it remains a possibility that other nicotinic
cholinergic antagonists may prove more effective in block-
ing the PSPs, at least two lines of evidence suggest that.this
is unlikely. First, recent studies argue that the cholinergic
cells previously thought to innervate the SON may not
project into this nucleus and that cholinergic neurotrans-
mission in the region dorsolateral to the SON may be me-
diated via a muscarinic receptor (Meeker et al. 1988;
Theodosis and Mason 1988). Second, our data with-EAA
antagonists would leave little room for a significant role for
cholinergic involvement in SON neuronal responses
evoked by dorsolateral stimulation, The broad-spectrum
EAA antagonists blocked most of the evoked responses; if
nicotinic cholinergic interaction does occur, it would be
limited to a minor KYN-resistant, BIC-resistant compo-
nent. The results of the previous study (Hatton et al. 1983)
may have been complicated by possible nonspecific effects
of cholinergic antagonists, comparable with the antago-
nism of GABAergic responses by dTC (Lebeda et al. 1982).
This could have been further complicated by the unknown
final concentration of antagonists when applied by the mi-
crodrop method.

In conclusion, the data obtained in these experiments
point to an EAA as the primary excitatory neurotransmit-
ter in the SON. As opposed to previous indications that
acetylcholine was responsible for excitatory events evoked
by local stimulation (Hatton et al. 1983), both evoked and
spontaneous excitatory synaptic responses were blocked
only by specific EAA antagonists. Although the same stim-
uli may also have activated the dorsolateral cholinergic
neurons, we found no evidence for a significant cholinergic
projection to SON from this area.
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:EXCITATOﬁY AMINO ACIDS MEDIATE FAST SYNAPTIC
TRANSMISSION IN. THE HYPOTHALAMUS
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ABSTRACT

—_——
This review deals with the mechanisms responsible for fast excitatory sy}aptic
transmission in the hypothalamus. We present data supporting the hypothesis
that glutamate, or a closely related amino acid, is the primary transmitier
responsible for fast excitatory input to hypothalamic neurons, including
neuroendocrine cells. The key result to support this hypothesis is that
excitatory amino acid (EA A) antagonists consistently block both evoked and
spontaneous excitatory postsynaptic potentials (EPSPs) in the supraoptic,
pdrdvemricular and suprachiasmatic nuclei. Recent data obtained with selec-
tive EAA antagonists suggest that non-NMDA receptors mediate fast =
synaptic transmission in these hypothalamic_suclei. X{rt_}er research is

required to test this hypothesis for otherC

hypothalamus.

Excitatory Amino Acids as Transmitters in
the Hypothalamus

I)
Two fundamental queftions in mammalian

neuroendocrinoffogy are ; 1) which sub-
stances mediate synaptic \ransmission i

——
Il types in the mammalian +

s ';N--meYY.vi-- p~a sr..ar’{-; Te (UMPA )

h
synaptic fransmission. Althoug[ acetyl-
choline, fhorepinephrine, and a variety of

peplides are probably important en-
dogenous regulators of hypothalamic hot-
mone secretion, we propose that their con-
tribution to fast synaptic transmission is

the hypmlnl.unus and 2)how_ similar are t limited or non-existent. The h) pothems to

synaptic mechanisms in the \lﬂpolh'\l'\mus
to those in other areas of the mammalian
brain ? Until recently, there were no experl-
mental tests of the hypothesis that EAAYs
comprise a major neurotransmitter systein
in the bypothalamus. For example, in sev-
eral reviews dealing with the neurotransmit-
ters and ncuropeptides that regulate secre-
tion of neurohypophyseal hormones (24,
21, 28, 30)/‘giule or no discussion was given
to EAAx 4.Most

be developed in this review is that
glutamate, or a similar EAA, is the pri-
mary (ransmitter mediating fast exciialory
‘synaptic transmission in the mpmmalian
hypothalamus.

One experimental strategy in (cﬁ'enlifying

hypothalamic neurotransmitters has been

to test the responses of postsynaptic neuf-
ons to locally applied necuroactive sub-
stances and to match them to the post-

hypothalamic neurc- synaptic response following stimulation of
physiologists have apparently assumed that  the neural pathway. However, more con- nvl,ev
N .|celylcholinc@.lClino on nicotinic choliner-  vincing evidence cal obtained when antago-
7

"IC receplors, is the most lmporl'\nt trans-
mitter

nists for the putative neurotransmitter are

responsible  for fast

excitatory
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used to block synaptic events (e.g. post-
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synaptic potentials) evoked by stimulation , .
of the neural pathway, High-quality Suprachiasmatic Nucleus
intracellular recordings of synaplic efents © Another region of the hypothalamus that
and application of antagonists to synaptic has received considerable attention in terms
sites are extremely difficult in vivo, but slice  of the mechanisms of synaptic transmission
or explant preparations allow these eaperi- is the suprachiasmatic nucleus. The main
s ments by virtue of their inherent stability reason that so much research has been
i and accessibility. In this chapter, we will performed in this area is that a large body 8
| consider the eflects of specific EAA antago- of evidence suggekis that the suprachias-
L nists on synaptic potentials. We believe this  matic nucleus plays a key role in th.e reguia-
j is an esséntial approach for transmitier tion of circadian rhythms. Neurobiological
. research. Recent studies on synaptic poten-  studies have focused on the retinal input to
| u tials_have been directed at the roles of the suprachiasmatic nucleus, which is the
[ | ~excitatory and ingibitory amino acids, such  anatomical substrate for photic_entrain-__ of rhe cireadian
as_glutamate’ (9, 10) and gamma- ment and phase shifting (thythm. Several
HL T mimobyufric acid (GABA) (26). reports using extracellular recording with
, 1 d liroad-spectrum EdAA agtagonisxs (e.g.
onii N , (ynurenic aci an gamma-D-
Supraoptic and Paraventricular Nuclei olutamylglycine) have provided evidence
Probably the most iniensely studied neur- suggesting that glutamate is the transmitter
_oendocrine system of the mammalian for the retinal projection to the suprachias-
hypothalamus, at least in terms of electro-  matic nucleus, Although this research has
physiologic properties, is the magnocellular  been an impSrtanl first step, extracelfular
: neuroendocrine system (7, 27, 28). The su- recordings have severe interpretational lim-
. praoptic and paraventricular nuclei, which itations. The two published reports. of
i comprise this system, are responsible for intraceilular recordings provided prelimi-
f + secretion of vasopressin and.oxytocin. The nary data on the elcctrqphysiological prop- +
) ¢ —-Supraoptic nucleus primarily contains erties of suprachiasmatic neurons G, 343,
oxytofiinergic and vasopressinergic neur- but they did not deal with mec_hgmsms of
i Iy e _okndocrine cells that project to the neuro- - synaptic transmission. We have initiated an
i LF‘*“"’"—)hysis. The paraventricular nucleus has a intracellular analysis of the retinal input to
’ ) more diverse population of neuropeptider- the suprachiasmatic nucleus with a focus
gic cells, which project not only to the on evaluating the effect of EAA antagonists
neurohypophysis but also to the median on EPSKs from optic nerve stimulation
eminence\;m'd other central nervous system  (18). P
|slruclures'.\S‘{:ces and explanl preparations
vave contributed to major advances in our
understanding of the membrane properties METHODS 0"'7
and the mechanism-of action of transmitters  We willﬁa’ide a brief outline of the tech-
and neuromodulators on hypothalamic niques used in this research. The reader is
neuroendocrine cells. In both supraoptic referred to the primary literature cited at ¢
3 and’ paraventricular neurons, spontaneous the end of this article (e.g. 1), In our lqbora-
and evoked excitatory and inhibitory post- tory, the -supraoptic and paravenlrlcul_z_l -l
synaptic potentials (EPSPs and 1PSPs) can  nuclei have been studied with coronal-slices-, ~
‘ be recorded intracellularly. These physio- of approximatel; 500 ym thichfiess. The
: , __logical events presumably arise from work on the suprachiasmatic nucleus has
g 3 T cithed!) axons whose distant cell bodies also included horizontal and parasagiual
{ were disconnected during preparation of slices, which have allowed selective stimu-
| the tissue, and/or 2) local neurons, which lation of the optic nerve, We have used
{ have intact short-axon projections (o these relatively standard techniques for intracel-
: iias neurons, The primary strategy outlined here  lular recording from hypothalamig neuﬁ:;__'a
; \been to analyze the efiects of EAA antago- ons- Our approach in these studies his
‘ nists on intracellularly recorded EPSPs, involved bath application of EAA antago-
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nists-and an-examination of their effects on
EPSPs.

RESULTS
?

Supraoptic Nucleus

Electrical stimulation of a site dorsolateral
to the supraoptic nucleus evokes EPSPs
and afierdischarges in most supraoptic
neurons (6, 13). Several lines of indirect
evidence suggested that acetylcholine, act-
ing on nicotinic cholinergic receptors,
mediates transmission from neurons in the
dorsolateral region to vasopressinergic
neurosecretory cells in the supraoptic
nucleus (13). We undertook research aimed
at testing hypothesis by studying the effects
of nicotinic cholinergic antagonists on
intracellularly recorded EPSPs (10). In
preliminary studies, however, we found that
acetylcholine, nicotine and carbamyl-
choline increased the firing rate of about
half of the supraoptic neurons ; this could
be blocked with the nicotinic antagonists,
p-tubocurarine and hexamethonium (8),
thus confirming that nicotinic cholinzrgic
receplors are prescnt on some supraoptic
neurons. However, bath-applied -
tubocurarine did not aflect the’EPSPs evo-
ked by electrical stimulation dorsolateral to
the supraoptic nucleus (10). No clear decre-
ment in synaplic responses was delectable,
even with very high doses of bD-
tubocurarine and even though we were_
previously able to show that this antagonist

blocked the direct responses to acetyl-

choline and nicotine. Deadwyler and col-

Teagues were agso unable to find any effects
of bath-applied hexamethonium on the
EPSPs of supraoptic neurons in response 1o
dorsolateral stimulation, even at high con-
centrations {personal communication).
These -data arc inconsistent with the
hypothesis that cholinergic neurons in the
area dorsolateral to the supraoptic-nucleus
are responsible for the EPSPs in magnocel-
lular neuroendocrine cells. The lack of
eliect of nicotinic cholinergic antagonists
on the EPSPs of supraoptic neurons strong-
Iy suggested that another class of transmit-
ter mediates the fast EPSPs in this system.

13

A B

Control ,-J N ‘J\\'\M\...
A

KYN 1M S erim w{‘\.w

KYN 2mM e __.r\f\..M

Recovery ,.'{\\-—-r-

10
mV

25msec

Fig.1 Eflect of kynurenic acid on evoked
EPSPs of a supraoptic neuron. The control
EPSPs 1o single stimuli (arrow) at moderate
(A ;20V) and near-maximal  intensity (B.:
30V) in the area dorsolateral to the supraoptic
nucleus are shown before bath-application of
kynurenic acid (KYN). The muagonfsl wis
applied at I mM and 2mM for 15 min. The
EPSPs to both intensities of stimulation were
depressed, and the eflect of 2mM kynurenic
acid was greater than | mM. When kynurenic
acid was washed out of the recording chambe;,/P

- the EPSPs recovered lo their original am
__I_i&udc. Steady hyperpolarizing current was in-

jected into this neuron in order 1o current
clamp -the membrane pc aL
Reproduced from {93, with permission of El-
sevier Science_Publishers.

In the last several years it has become\
increasingly clear that EAA& are an

oential_at =80mY.__ ref,?

impor-!_—®s

tant neurotransmitter system throughout
the entire mammalian central nervous sys-
tem (19, 32)." The development off_gpecnﬁc
EAA antagonists has been a crufjial com-
ponent of this research. For example, when
kynurenic acid or gamma-D-
glutamylglycine (1-2 mM) were bath-
applied while recording imraccH.ulm'ly
from supraoptic neurons, both aﬂerdxsc_har-
ges and EPSPs (Fig. 1) evoked from stimu-
lation dorsolateral to the nucleus were
strongly attenuated (9, 10). Similar effects
were also seen on spontaneous EPSPs.
Although it has been difficult to balh-app\y
several concentrations of these anlagonisis
to each cell and-obtain reversible eflects for
cach’ concentration, analyses across cells
strongly suggested that the eflects were
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Fig.2 Depression of EPSPs of a par-

_aventrigular  neuron by kynurenic acid.
Extracellular electivical stimuli near the fornix

3
ref. ps

?

&

ok
@zOL’

(arrow) caused EPSPs in a paraventricular
neuron. The EPSPs were evoked during a
hyperpolarizing current pulse, which is not
shown. Each trace is the average of 20
responses. The preparation was bathed in 50
uM picrotoxin, which eliminated IPSPs.
Kynurenic acid reduced the EPSP amplitude in

a concentration-dependent manner. Data [rom

(55}, and reproduced from {3, with permission

y - e,; ?’U\r%i?@iilsevicr Science Publishers. .
T1

ref.7

| dose-dependent. These antagonists did no'.l_‘_
T affect resting membrane potential, spike
_threshold or input resistance. The selective
N-methyl-p-aspartate (NMDA) antagonist,.
pL-2-amino-3-phosphonopentanoic acid
(AP3), had little or no eflfect on synaptic
responses, at least under these recording
conditions. These data- provide strong evi-
dence that EAAs represent a widespread
and important transmitter system in the
supraoptic nucleus. Recent preliminary

. _studies b_\';[{_ribk‘oﬂ‘ and VandedMhelen (11)

using the recently developed quinox-
alinediones, which are potent competitive
non-NMDA receptor antagonists (17), have
confirmed the inportance of EAA receptors
in the generation of these synaptic events
and have demonstrated that non-NMDA
receptors mediate these potentials.

Paraventricular Nucleus

The added complexity of the par-

L R e s R o T L A

F.E. DUDEK, J. P, WUARIN and Y.I. KIM

A
1 Control
I
{
3| Recovery
|
B
/1 ond 3

RN i e

Fig.3 Effect of kynurenic acid on EPSPsla Y ¢V
suprachiasmatic neuron. The EPSPs were evo-
ked by electrical stimulation of the conlra!alcr-
al optic nerve. Each of the three traces Is an
average of 10 responses. Steady hyperpolariz-
ing. ctirrent was injected into this neuron to
current clamp membrane potential below
threshold. Kynurenic acid (1 mM) reduced the
EPSP amplitude by > 30%. A cu!ibration puise
(10 mV, 10 ms) preceded the optic nerve stimul-
fus (arrow). Both individual (A) and super-
imposed traces (B) are shown. Data from faten

aventridular nucleus, both in terms of the
cell types and their projections, require'd
that these issues be addressed separately in
this nucleus. Several recent studies have
begun to definc the elec(rophysiologm
properties of paraventricular neurons and
to relate these properties to- the anatomy
and immunohistochemistry of this region
(15, 16, 23, 33). After studying the electro-
physiologic propertics of the neurons, we .
bath-applied kynurenic acid to neurons in
and’ around the paraventricular mucleus
(33). Experiments were performed in pi-

ref, 18
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; crdtoxin to eliminate contamination of _aventricular and suprachiasmatic nuclei.

E Recent experiments with ‘6-cyano-7- onists do not aflect other transmitter rece-
~ nitroquinoxaline-§)C3-dione (CNQX) _prors. Furthermore, the effects of the
f sirongly support the hypothesis that non- quinoxalinediones have been obtained with
! NMDA receptors mediat§” these EPSPs - concentrations in the microm§lar range.
¢ (36). Taken together, these data indicate Although more work is needed, these col-
‘ that E{\As are an im_porlanl fast cxclg_m” lective data strongly suggest that EAAs __ »
¢ ' . transmitter system in the paravgftncular may mediatyd all Tast EPSPs throughout the
; " nucley), as well as the supraoptic nucleus.  hypothalamus. Additional recordings in
” other hypothalamic nuclei, combined with
; Y clectrical stimulation of other synaptic
Suprachiasmatic Nucleus inputs, are required to test this hypothesis
Although several studies had suggested that  more rigorously.
. EAAsmediate transimission from the retina
to the suprachiasmatic nucleus (1-3, 29), we . -
i have undertaken experiments with imr)accl~ Potential Criticisms
lular recording aimed at addressing this Several possible criticisms can be proposed
' issue in more detail. We found that kynur- against this hypothesis, but none of them
enic acid depressed EPSPs to optic nerve seems very well-supported. For example, +
stimulation (Fig. 3)-with little or no effect. audioradiographic binding studies have
on passive or active membrane properties. reported relatively few EAA binding sites p)_/__
In addition, 6.'\:7-dini(roquinoxalinc-?.,CS- "in certain hypothalamic areas cofpared to / »
dione (DNQX) potently and reversibly telencephalic structures (5, 20,21, 25). ole ©
- depressed EPSPs to optic nerve stimulation  However, this technique is a relafiye -mea- ,\.,»f,. o
and to_stimulation of local sites around the  sure of binding, and the™ elegtro=——""Six”
} suprachiasmatic¢ fiucleus ('lS)XFhesc studies physiological data suggest that although
were also performed in bicuculling and relatively few EAA receptors are present in
have used a variety of slice oricniations to  the hypothalamus compared to other brain
ensure specific electrical stimulation of the areas like hippocampus and neocortex, they
. optic nerve with no contamination from are still important for synaptic transmis-
other afferents. Ongoing studies are aimed sion. Similarly, several neurotoxicity
at defining which types of neurons in the studies with various EAAs have shown
) suprachiasmatic nucleus, both in terms of relative sparing of certain hypothalamic
K their clectrophysiology and anatomy, neuronsand/or areas (12, 14, 22). However,
j receive retinal and non¥einal synaptic the resistant neurons may be less vulnerable
- input mediated by EAAs. LL,V to excitotoxic damage because of lower
| ' re numbers of EAA: receptors .(p.arueuiar‘ly
| DISCUSSION NMDA receplors) and/or dlﬂﬂ;_:lrenceii in
; Zecondt-messcnger‘sytslm?sit(i);ldmxc:glc z;(l)': m
! vl . ; : ; 0 not argue against an ifporte
: Lxcitatory Amino Acid Antagonists M-————\‘EAAS T synaptic (ransmission win the

PO

EPSP§ from simultancous activation of

1PSPs mediated by GABA, receptors and

chloride channels. The EPSPs wer¢ signal-
averaged to optimize signal-to-noise ratio
and to thereby obtain more accurate dose-
response data. We found that kynurenic
acid consistently blocked EPSPs from stim-
ulation of the perifornical area (Fig. 2).

We have reviewed Riecent duta from several
investigations demonstrating that EAA
antagonisis  strongly and consistently
depress EPSPs in ihe supraopuc, par-

This effect of EAA antagonists on EPSPs
has been seen with virtually, every cell that
has been recorded from each of these nu-
clei. Although one could argue that the
broad-spectrum antagonists (i.e. kynurenic
acid and gamma-D-glutamylglycine)
require millimolar doses, a large body of
previous research suggests that-these antag-

hypothalamus.
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fal assistance. Our current research in this area
Prospecis for Future Research e is supportéd by a grant from the Air Force
The data reviewed here suggest seviral new Office of Scientific Research (AFOSR-87-0361)
avenues of future research, First, the © F:E.D. A postdoctoral fellowship from the
potency and selectivity of the quinox- Swiss NSF has provided support for J.P.W,

alinddiones as non-NMDA receplor antag-
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THE EFFECTS OF OSMOLALITY ON SYNCHRONOUS BURSTING IN THE
ABSENCE OF CHEMICAL SYNAPTIC TRANSMISSION IN HIPPOCAMPAL
SLICES. J.G. Tasker and F.E. Dudek, Mental Retardation Research Center,
UCLA School of Medicine, Los Angeles, CA 90024.

Numerous studies using low-[Ca%*] solutions have indicated that non-
synaptic mechanisms can synchronize electrical activity in tl.\e
hippocampus. We examined the effects of altered extracel{ular osm.ola‘lny
on CA1 population responses alter blocking chemical synaptic transmission
in slices of rat hippocampus. Synaptic responses to single'and re +etn|ve
electrical stimuli were completely blocked in solutions in which Ga=™ was
replaced with EGTA (1-2 mM) and kynurenate (3 mM). Bursts+o! popula}non
spikes and/or negalive shifts were induced-in CA1 when [K ].was rqnsed
to 5 mM. When negative shilts occurred without population splk_es.
reduction of the extracellular osmolality by adding water (5-20%) or lowering
NaCl (10-20 mM) caused bursts of population spikes. When bursts occurred
in solutions of normal or lowered osmolality, additioi of mannitol or sucrose
(4-5-40 mOsm/kg), which are membrane impermeant, dramatically reduced
the bursts. Addition of glycerol (+5-40 mOsm/kg), which is membrane
permeant, had little or no effect. The-effects of mannitol and sucrose could
be reversed by diluting the medium {i.e., decreasing osmolality), Al elfects
of changing osmolality were at least partially reversible. Thus cellular
swelling In dilute media, and the resultant reduction of the extracellglar
space, enhance neuronal synchrony, even in the absence of chemical
synaptic transmission. Similarly, cell shrinkage from increased extrace!lulgr
osmolality reduces synchrony. These data strongiy support the hypothesis
that electrical field elfects andfor changes in extraceliular [K*] play an

important role In the synchronization of hippocampal neurons. Supported
by AFOSR 87-0361.
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COMPARATIVE ELECTROPHYSIOLOGY OF MAGNOCELLULAR AND
PARVOCELLULAR NEURONS OF THE HYPOTHALAMIC PARAVENTRI-
CULAR NUCLEUS, N.W. Hoffman*, J.G. Tasker and F.E. Dudek (SPON:R.S.
Fisher), Mental Retardation Research Center, UCLA School of Medicine, Los
Angeles, CA 90024,

The hypothalamic -paraventricular nucleus (PVN) contains both
magnocellular and parvocellular neuronal populations, which makes
selective intracellutar study of either one difficult, Virtually nothing is known
about the electrophysiology of PVN parvocellular neurons. We recorded
intracellularly from PVN neurons (n=32) in coronal hypothalamic slices:
About 60% of recorded neurons displayed Ca 2+.dependent low-threshold
spikes (l.e., LTS cells) capable of generating 1-2 action potentials. Most
LTS cells had non-linear current-voltage (I-V) relations and a long
membrane time constant (22.5 + 2.0 ms, SEM). The remaining 40% of PVN
neurons showed no low-threshold spike (non-LTS cells), linear |-V relations
and a shorter time constant (155 + 2.0 ms). The LTS and non-LTS
neurcns-had simifar input resistances (230 + 18 Ma and 200 + 25 M),
resting potentials (60 + 2.5 mV and 63 + 3.0 mV) and action | potential
amplitudes (62 + 1.0 mV and 66 + 1.5 MV from threshold). Following

. electrophysiological characterization, some cells were injected with biocytfn
" (Horikawa and Armstrong, J. Neurosci. Meth., 25:1, 1988) and neurophysin

immunohistochemistry was performed (n=7). Two of 3 injected non-LTS

: neurons were neurophysin-positive, suggesting they were magnocellular;
4 of 4 LTS neurons were neurophysin-negative, suggesting they were

parvocellular, We suggest, therefore, that magnocellular and parv‘ogellular
neurons can be distinguished based on their intracellular electrophysiology.
Supported by AFOSR 87-0361.
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CONTRASTING EFFECTS OF NMDA AND NON-NMDA ANTAGONISTS ON
FAST EPSPs IN NEURONS OF THE PARAVENTRICULAR NUCLEUS. J.-P.
Wuarin* and F.E. Dudek Mental Retardation Res. Ctr., UCLA Sch. of Med.,
Los Angeles, CA 90024

Excitatory amino acids may mediate most of the fast excitatory synaptic
transmission in the supraoptic nucleus (Gribkoff, V.K. and Dudek, F.E., Brain
Res. 442:152, 1988). Using the paraventricular nucleus (PVN), we applied
antagonists for spacific amino acid receptors to determine the respective
contribution of N-methyl-d-aspartate (NMDA) and: non-NMDA receptor
subtypes to the excitatory postsynaptic potential (EPSP) and current
(EPSC). Intracellular recordings were obtained from slices of guinea-pig
hypothalamus in 50 xM picrotexin, Synaptic activation was obtained by
electrical stimulation of the region dorsolateral to the fornix. The non-NMDA
antagonist, 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX), induced a
dose-dependent decrease of the EPSP and EPSC: 1 xM had no detectable
effect, 3 xM and 10 M produced 30% and 70% decrease respectively, and
30 xM almost completely blocked the synaptic response. The NMDA-
selective antagonist, D,L-2-amino-5-phosphonopentanoic acid (AP5), applied
at 30 yM did not affect EPSP or EPSC amplitude or duration even when the
cell was depolarized. These results suggest: 1) non-NMDA receptors
mediate fast excitatory synaptic responses within the PVN and 2) aithough
NMDA receptors may be present on PVN neurons, they seem to be less
important than non-NMDA receptors in normal synaptic transmission. These
data support the hypothesis that excitatory amino acids, acting primarily
or exclusively on non-NMDA receptors, are the major excitatory
neurotransmitter system in the hypothalamus. Supported by DAOS5711,
AFOSR87-0361, and the Swiss NSF,
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ANTAGONISM OF FAST EXCITATORY POSTSYNAPTIC POTENTIALS IN
SUPRACHIASMATIC NUCLEUS NEUJRONS BY EXCITATORY AMINO ACID
ANTAGONISTS, Y. Kim and F.E Dudek. Mental Retardation Research
Center, UCLA School of Medicine, Los Angeles, CA 90024.

The possible role of excitatory amino acids (EAAs) In fast synaptic
transmission in the suprachiasmatic nucleus (SCN) was investigated with
intracellular recording. Seven SCN neurons were recorded in horizontal
and coronal brain slices prepared from five male rats and two male guinea
pigs, respectively. Fast excitatory postsynaptic potentials (EPSPs) were
evokea by stimulating optic nerve, optic chiasm ventrolateral to the SCN or
a site dorsolateral to the SCN. At resting potential, spontaneous action
potentials often obscured the EPSPs. When cells were hyperpolarized
20-40 mV below threshold, depolarizing PSPs from optic nerve had mean
amplitude and onset latency of 5.6 mV and 12.3 ms (n=4), while PSPs from
other sites were 7.0 mV and 3.0 ms (n=6). Bath-applied kynurenic acid
(1 mM), a wide-spectrum EAA antagonist, attenuated these PSPs from opt'c
nerve (n=2) and optic chiasm (n=1) by 21-34%. In slices treated with
bicuculiine (a GABA antagonist, 50 M), 6,7-dinitroquinoxaline-2,3-dione
(0.33.0 xM), a non-NMDA receptor antagonist, attenuated the PSPs from
optic nerve (n=2), optic chiasm (n=1) and the dorsolateral site (n=2) by
15-76%. The data suggest that EAAs, presumably through non-NMDA
receptors, mediate fast excitatory synaptic transmission in the SCN. This
includes both retinal and non-retinal input. Supported by AFOSR87-0361.
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ABSTRACT

The contribution of non-synaptic mechanisms to the high seizure susceptibility of the
hippocampus was examined in vitro by testing the effects of osmolality on synchzonous neuronal
activity, using solutions which blocked chemical synaptic transmission both pre- and postsynaptically.
Decreases in osmolality, which shrink the extracellular volume, caused or enhanced epileptiform
bursting. Increases in osmolality with membrane-impermeant solutes, which expand the extracellular
volume, blocked or greatly reduced epileptiform discharges. Our data argue that reductions in the
extracellular volume enhance the non-synaptic mechanisms of synchronization among CAl
hippocampal neurons. Since similar osmotic treatments are known to modify epileptiform discharges
in several models of epilepsy, non-synaptic mechanisms are more important in hippocampal
epileptogenesis than previously realized and may contribute to the high sensitivity of this brain

region to hypoxic and epileptic damage in animals and humans.
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Chemical synapses are clearly the dominant form of neuronal communication under normal
conditions, but non-synaptic mechanisms (i.e., electrical field effects or ephaptic interactions,
changes in extracellular [K*], and electrotonic coupling through gap junctions) may be critically
important in abnormal states, such as epilepsy (1). Several laboratories independently showed that
Jow-[Ca2] solutions, which block chemical synaptic transmission, give rise to spontaneous bursts
of synchronized activity in hippocampal slices (2); this suggests that mechanisms other than chemical
synapses can synchronize-the electrical activity of hippocampal neurons. However, whether chemical
synapses were completely blocked and thus whether non-synaptic mechanisms are sufficient for
neuronal synchronization in the hippocampus has been controversial (3). Changes in the osmolality
of the extracellular fluid alter the extracellular volume (4,5) and the effectiveness of non-synaptic
mechanisms of neuronal synchronization. Experiments on cortical brain slices (4,5) and on animal
models of epilepsy (6) have shown that changes in the osmolality of the extracellular fluid alter
epileptiform activity, but the mechanisms underlying the effects of osmolality has been unclear
because chemical synapses were operative. We now test the hypothesis that-the extracellular volume
determines the strength of non-synaptic mechanisms of neuronal interaction and is therefore a
critical factor in hippocampal epileptogenesis. This study shows directly that even when chemical
synapses have been demonstrably blocked both pre- and postsynaptically, synchronized electrical
activity of CA1 hippocampal pyramidal cells is still sensitive in a predictable manner to changes in
the osmdlality of the extracellular fluid. These data emphasize the important role that non-synaptic
mechanisms play in synchronizing the electrical activity of CA1 hippocampal. neurnns, which may

account for their high sensitivity to seizure- and hypoxia-induced damage under clinical conditions.
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The interpretation that chemical synaptic transmission is blocked in low-[Ca?*] solutions
has been questioned on two grounds (3). First, although low-[Ca?*] solutions block synaptic
responses to single stimuli (2), facilitation may occur during repetitive 'stimulation (7). Second,
previous studies (e.g., see 2) could not rule out a possible contribution of depolarization-induced,
calcium-independent transmitter release; although such a hypothetical mechanism might not cause
synaptic potentials, it could lead to increased transmitter levels in the extracellular space. In the
present study, we used both a low-[Ca2] solution (i.e., Ca?t omitted) with 1 mM EGTA and high
concentrations (30 uM) of the excitatory amino acid antagonists, 6,7-dinitroquinoxaline-2,3-dione
(DNQX) and D,L-2-amino-5-phosphonopentanoate (APS5), which block the postsynaptic effects of
glutamate (8). Intracellular and extracellular synaptic responses to repetitive stimulation (12 and 24
Hz) were completely blocked (Fig 1A & B). Therefore, chemical synaptic transmission was blocked
presynaptically with a low-[Ca2+], EGTA-containing solution and postsynaptically with excitatory
amino acid antagonists.

Within 30 to 120 min after application of low-[Ca2t] solution, spontaneous bursts of
synchronized compound action potentials ("population spikes") usually occurred at regular intervals
(Fig. 1C). Dilution of the extracellular medium (5-20% H,0), which causes cell swelling and a
reduction of the extracellular volume (9), induced (Fig. 2A) or greatly enhanced epileptiform bursts
in 5-10 min (N=9). Conversely, addition of a membrane-impermeant solute (i.e., 5-40 mM sucrose
or mannitol), which causes cell shrinkage and a resultant increase of the extracellular volume,
reversibly blocked or depressed the spontz;neous epileptiform bursts in 15-30- min (N=9, Fig. 2B).
Glycerol (5-40 mM), a membrane-permeant solute, had little or no effect on the bursts during a
30-min application (N=6, Fig. 2C). These experiments demonstrate that increases or-decreases in

the osmolality of the extracellular medium and their asssociated effects on extracellular volume, can
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depress or enhance, respectively, epileptiform bursts (10). These effects occur even when chemical

‘synaptic transmission has been unequivocally blocked. Therefore, mechanisms that depend on the

size of the extracellular space and are independent of chemical synapses are responsible for the
generation and/or synchronization of these epileptiform bursts.

If non-synaptic mechanisms play a major role in the synchronization of hippocampal neurons,
and thus significantly augment the susceptibility of the hippocampus to epileptic seizures, then
experimental alteration of the extracellular volume should affect epileptiform bursting. Previous
studies have shown that changes in osmolality can alter epileptiform activity both in vitro and in
vivo (4-6). Although there is evidence that the observed osmotic effects were not due to chemical
synapses (4,5), it is impossible to rule out a contribution from chemical transmission in these studies.
Indeed, some of the available data have suggested that these orotic effects potentially involve or
depend upon chemical synapses (5,6). In-the present study, however, non-synaptic mechanisms must
account for the effects of osmolality on epileptiform. activity, since chemical synapses were
completely-blocked.

Intense activity of cortical neurons is known to cause cell swelling and- concomitant
shrinkage of the extracellular volume (11), similar to what would be expected in hypoosmotic
solutions. Our data strongly suggest that activity-dependent reductions in extracellular volume and
subsequent enhancement of non-synaptic mechanisms of neuronal excitation are part of an
important positive-feedback loop that contributes to the induction and maintenance of
epileptogenesis. Non-synaptic mechanisms of neuronal interaction may account for the high seizure
susceptibility of CA1 pyramidal-cells, and for the sensitivity of this area to seizure- and hypoxia-
induced damage (12). Decreases in plasma osmolality are known to cause seizures in a variety of

abnormal clinical conditions, and increases in plasma osmolality reliably block seizures -in humans
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(13); the basis for this effect likely depends on non-synaptic mechanisms, such as electrical field

effects (i.e., ephaptic interactions) and changes in extracellular [K7].
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FIGURE LEGENDS

Fig. 1. Pre- and postsynaptic blockade of chemical synapses and subsequent development of

.epileptiform activity in the CA1 area of rat hippocampal slices (14). A Synaptic responses to

electrical stimulation of stratum radiatum in normal medium. Intracellular recordings (INTRA; single
response) showed a typical excitatory postsynaptic potential (EPSP) with a superimposed action
potential. Extracellular field potentials (EXTRA; average of five responses) displayed a positive-
going population EPSP and a faster, negative-going population spike. B Pre- and postsynaptic
block of chemical synaptic transmission. Ca?*-dependent release of synaptic transmitter from
presynaptic terminals was blocked with low-[Ca2+] solutions (i.e., Ca2* omitted) containing 1 mM
EGTA. Postsynaptic excitatory amino acid receptors were blocked with the non-NMDA antagonist,
6,7-dinitroquinoxaline-2,3-dione (DNQX, 30 xM) and the NMDA antagonist, D,L-2-amino-5-
phosphonopentanoate (APS, 30 M) (8). Synaptic responses were consistently and completely
blocked to single and repetitive stimuli (12 -and 24 Hz, 0.5 ms for 10 s). The intracellular and
extracellular responses are averages of the last 20 responses to 24 Hz stimulation. Calibrations are
the same as in A. C Spontaneous bursts of population spikes after blockade of chemical synaptic
transmission. Within 40 min, most slices had spontaneous bursts of population spikes in the CA1
area. During each burst, a negative shift in extracellular potential was followed by repetitive

population spikes which are shown at slow (above) and fast (below) time scales.
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Fig. 2. Effects of osmolality on epileptiform bursts after blockade of chemical synapses. A
Induction of epileptiform butsts by hypoosmotic medium (20% H0; -35 mOsm, 15). In those slices
where spontaneous bursts-did-not occur, dilution of the fluid reversibly induced synchronous bursts
of population spikes (9). B Block of spontaneous epileptiform bursts with hyperosmotic medium.
Addition of 20 mM sucrose (+30 mOsm), an impermeant solute, to the perfusion medium blocked
epileptiform bursts. C Lack of effect of the permeant solute, glycerol, on spontaneous epileptiform

bursts..




