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FOREWORD

The information presented in this report was generated during the per-
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work was carried out at the University of Missouri-Rolla, Department of Me-
chanical and Aerospace Engincering and Engineering Mechanics.

Dr. John W. Sheffield served as the Principal Investigator of the program.
Chudong Wen was the graduate student supported by the contract. This is the
final report which presents the results generated during the period of 1 Septem-
ber 1988 to 31 March 1989. The program was sponsorcd by the Acronautical
Systems Division of the Air Force with Dr. Won Chang of the Aero Propulsion
and Powcr Laboratory, WRDC/POOS, Wright-Patterson AFB, Ohio

45433-6563, scrving as the Technical Monitor.
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NOMENCLATURE

constants

combined convection-diffusion coefficient
source term in the discretization equation
specific heat

coefficient

mass fraction

acceleration due to gravity

volume fraction of the solid phase and liquid phase, respectivcly
cnthalpy

solidus enthalpy

liquidus cnthalpy

heat of fusion

permeability

constant for permeability

thermal conductivity

pressure

temperature

liquidus temperature

solidus temperature

time

velocity components

guessed velocity components

velocity corrections
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thermal expansion coefficient .
dynamic viscosity
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partial density

cast, west, north, south ncighbors of the control volume center

east, west, north, and south faces of a control volume
liquid phase

pertaining to the grid point, P

pressure

solid phase
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I. INTRODUCTION

Processes related to phase change encompass a wide range of enginecring
and scicntific disciplines and occur in many applications such as welding, cast-
ing and cnergy storage. Owing to thc absorption or relcase of latent thermal
cnergy, phasc change problems are nonlinear, and exact solutions arc limited to
a small class of problems involving pure substances in one-dimensional infinite
or semi-infinite domains [1,2]. Unfortunately, most pr-.ctical phase change
problems are multi-dimensional; the thermophysical properties such as thermal
conductivity, density, and specific heat for the phase change matcrial (PCM) are
changing with the changing of phase, and free convection occurs in melting lig-
uid PCM. These have focused attention on development of suitable numerical
procedures.

Generally, the numerical techniques can be divided into two groups. The
first group uses the front tracking method, which utilizes two independent con-
scrvation equations for each phase and couples them with appropriate boundary
conditions at the phase interface. Front tracking methods require the existence
of discrete-interfaces between phases in the domain and are generally limited to
pure substances. The primary difficulty associated with this method centers on
tracking the phase interface, which is generally an unknown function of space
and time. The need for moving numerical grids and/or coordinate mapping
procedures also complicates the application of this technique.

The second group uses the enthalpy method which is sometimes called the
fixed grid method. The enthalpy method does not track the phase interface,

instead, simply calculates the enthalpy of the PCM at each numerical grid.




Only onc sct of conservation equations are needed for both solid and liquid
PCM domains. This eliminates the complications of tracking phase interfacc
and moving numerical grids. Morcover, the enthalpy method allows a mushy
region (solid-liquid phascs cocxist region). This cnables the enthalpy mcethod to
be implemented for multiconstituent systems, which do not cxhibit a sharp in-
terface between the solid and liquid phases. The enthalpy method is gencrally
casicr to be implemented for solidification of alloys, melting of impurc sub-
stances.

Based on enthalpy formulation, several models were developed to solve
phase change problems. The first one is the conduction model [3,4]. This is the
casicst modcl, where free convection effects of the liquid PCM are not consid-
crcd. With the exception of microgravity applications, it is frequently this free-
convective motion which is the dominant mode of hecat transfer. To include free
convection influences, Schneider [5] proposed a numerical model to solve phase
change problems for pure substances. By assuming the bchavior of fluid flows
in the mushy region to be similar to that of fluid flows in porous media, Voller
ct al. [6,7] proposed the Enthalpy-Porosity model. This model was devcloped
by utilizing Darcy’s law to modify the pressure gradients in the momentum
cquations. A continuum moudel for analyzing the solid-liquid phase change be-
havior in a binary svstem was developed by Bennon and Incropera {8 — 10].
Semi-cmpirical laws, as well as microscopic descriptions of the transport be-
havior, have been integrated with the principles of classical mixture theory in

obtaining this model.




In the present rescarch, a continuum model is utilized and a finite-differ-

cnce numerical mcthod is vsed to solve the conservation equations.

A. CHANGING OF PHYSICAL PROPERTIES

Physical propertics of the PCM such as density, specific heat, thermal
conductivity, etc. change while undergoing solid-liquid phase change. In this
rescarch, a numerical method will be developed to accommodate the changing

of these physical properties.

B. SLUMPING FLOATING PHENOMENON

The variation of solid and liquid densities can cause slumping/floating
phenomenon during the melting processes. Floating of ice in the water is an
cxample. Slumping or floating of solid PCMs in enclosures can significantly en-
hancc the melting rate [11,12]. Simple analyses werc developed by presuming
the shapes of solid PCM [13,14], or by considering that conduction is the only
cnergy transport mechanism [15]. However, no numerical studies for melting
processes including both free convection and slumping have been reported. The
difficultics are duc to the fact that moving of the solid domain is unknown and
time dependent. The utilizing of a continuum model cnables the prediction of
the velocity for each phase, and provides the possibility of solving the melting

heat transfer problem having a slumping/floating phenomena.




C. DENSITY VARIATION INDUCED FLOW

During a melting process, the variation of phase densities can cause motion
of the liquid PCM. If the density of the liquid PCM is smaller than that of the
solid PCM, an cxpansion-induced flow would occur. Variation of phase densi-
tics is common, and for many materials, the variations arc large. For example,
the liquid density of P116 wax is 760 kg/m3, and the solid density is 818 kg/m3.
However, the impertance of density variation induced flow during melting has
not yet been reported. In this research, the cffect of density variation induced

flow will be studied.

Experimental results will be used to verify the reliability of the numerical
solutions. PI16 wax with a melting temperature of 46.7 C (116 F) and a mushy
temperature range of 10 C [16] has been selected for the experiments. Physical

propertics of this wax will bc used in the numerical calculations.




II. MATHEMATICAL FORMULATION

A. CONSERVATION OF MASS

The principle of conservation of mass is that the time-rate of change of
mass inside a control volume equals the net integral of the mass flux over the
control volume. The two-dimensional, solid-liquid system, according to the

principle of conscrvation of mass, yields

g, ps + gp/] g psus + 8 P Y] o8, psvs + &PV
+ +
ot Jx dy

=0 (1)

This can be seen from Fig. 1. Let the mixture density, p, be defined by

p = 8pPs +80P

=ﬁs+ﬁl (2)

and the mass averaged velocity, V, be defined by

=LVt V) (3)

then substituting Eqs.(2) and (3) into Eq.(1), it follows that

dp d(pu) d(pv)
ot * Ox * dy =90 (4)




This is the cquation describing the conservation of mass for the two-dimen-

sional, solid-liquid system.

Vs V]

Figure 1. A control volume in mushy region.

B. CONSERVATION OF MOMENTUM

The cquations describing the conservation of momentum for the two-di-

mensional system are

U é
+V-(qu)=V-(u,jp[-Vu)—T([——g[—(u—us ——8% (5)

A(pu)
Jt

pv)
dt

P u %,
+Ve () = Vel V) = e =) = BT =T (6)




where K is the permeability. Details of dcrivation of these cquations arc shown
in thc Appendix. In the present analysis, the permeability is assumed to vary

with liquid volume fraction according to the Kozeny-Carman cquation [17]

3
8

K=K[—"—
(1-g)

[/

] (7)

where K, is a constant which depends on the specific multiphase region mor-

phology.

C. CONSERVATION OF ENERGY

The cquation describing the conservation of energy is

k) +V-(pV.h)=V-( K Ghy+ V[ LV - k)]
ot Cs G 77 (8)
= Ve lplhy =)V - V)]
where the mixture enthalpy and thermal conductivity are
h=fh + fh )
k =gk + gk (10)
Phasc cnthalpies arc
hy=¢,T (1)
hy= T + [(¢; — )T + h]] (12)




where it is presumed that Ag|y—g =0 and that (A — k) |7=1, = by Details of

derivation of the energy equation arc shown in the Appendix.

D. THERMODYNAMIC RELATIONS

By assuming that the phase fractions are linear functions of temperature in

the mushy range and in the saturated condition, we can obtain

T-T,
Si= T-T (13)
fi=1—f (14)
From Eq.(2), we can find the phase volume fractions,
8= (15)
g=1-g (16)

Let Ay and hy represent the cnthalpics of the PCM at the temperatures,

T, and Ty, respectively. By definitions,
hl = CJTS (l7)
and

hy =T+ cfT; — T) + hy (18)




For h < h, we can determine the temperature of the PCM by using the follow-

ing:
h
T= —é;- (19)

For by < h < hy, from Eqs.(9), (11-14), we can dcterminc the temperature of the

PCM by using the following:

AT* + BT+ C=0 (20)
where

Cs_c[
A_ T[—Ts
B=—[A(T;+T, i
=—[A(T; + s)+ﬁ+cl]

A
C=FfmTith

For h > hy, from Eq.(12), we can determine the temperature of the PCM by

using the following:

T= Q1)




111. NUMERICAL METHOD

A. STAGGERED GRID

Figurc 2 shows staggered locations for u, v, and p. A staggered control
volume for the x-momentum cquation is shown in Fig 3. Figurc 4 shows the

control volume for the y-momentum equation.

Figure 2. Staggered locations for computational variables.
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Figure 3. Control volume for x-momentum cquation

ol

ot

Figure 4. Control volume for y-momentum cquation
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B. NUMERICAL FORMULATION

The discretized equations for the continuity, x-momentum, and y-momen-

tum cquations are

(pp— /)’},)A\‘Ay
At

+ Aylpp — puy) + Ax(p,yp — pyvg) =0 (22)

aupllp = au[;uE + auu/llu! + au.\-llN + auSuS + bx + Ay(pP —_ pﬁ)

(23)
= Zaunbunb + b, + Ay(pi’ - pE)
dopVp = Quvp + vy + anvy + agvs + b, + Ax(pp — py) 24)
= Zambvnb + b}" + A,\‘(pp - p‘\)
Let the pscudo-velocities # and ¢ be defined by the following
A Zaunbunb + bx 75
llP = auP (" )
A Zavnbvnb + by 26
o= S (26)
and substituting into Egs.(23) and (24), it follows that
Up = lgp + duP(pP - pl;‘) (27)
vp =¥, + d,p(pp — py) (28)

12




where
dul’ == Ay/aul)
dvl’ = Ax/avl"

Substituting Eqs.(27) and (28) into Eq.(22), it follows that

A
a,pPp = Zapnbpnb +bp
where

A (pp — PP)AxAY
At

+ Ay(peaP - pwﬁW) + Ax(pn{'\l’ - ps{;S)]

Let u*, v* and p* be the gucssed values and

a,pu*p = Zaunbu*nb + bx + Ay(p*}’ - p*E)

avPv*P = Zavnbv*nb + by + Ax(p*l’ - p*N)
It is proposed that
“'p =d,p(p'p— P’

Vip=dplp’p = P'y)

13

(29)

(30)

31

(32)

(33)

(34)




where «’, v, and p’ are corrections for velocity and pressure, respectively, and

the correct velocities are obtained from
u=u*+u (39)
v=v¥ 4 (36)

Substituting Eqs.(33) and (34) into Eqgs.(35) and (36), respectively, it follows

that
up=u*p+d,p(p'p—p'r) (37)
vp=vp+dp(p’'p—p'y) (38)

Substituting Eqs.(37) and (38) into Eq.(22), it follows that

a,pp’p = Zapnbp'nb +bp (39)
where

(0p — PP)AXAY . . . .
bP: - [ At +Ay(peu P PuH W)+Ax(pnv P PsV S)] (40)

C. NUMERICAL PROCEDURES

The SIMPLER (Scmi-Implicit Method for Pressure-Linked Equations -
Revised) [18] scheme is proposed to solve the conservation equations. The nu-

merical procedures are

14




o

o

Given initial and boundary conditions.

Advance a time step.

Given initial calculation values for velocitics.

Calculate pscudo-velocities # and v.

Calculate pressure ficld.

Usc the newest pressure as guessed pressure to find «* and v*.
Calculate pressure corrections p’.

Obtain velocities u and v.

Find solutions for cnergy cquation.

Rcturn to step 4 and repeat until convergence.

Return to step 2 for next time step solutions or stop.

15




IV. RESULTS

Figurc 5 is an cxample of the numerical results showing the velocity ficlds
and the liquidus lines. P116 wax is the PCM constrained in a 2.5-cm x 2.5-cm
squarc enclosure. The initial temperature is 35 C, and faces arc subjected to

constant temperature (50 C) heating.

400 seconds

PLIzIzIIvn I atau S
1 yoIIIIIIIN TIIIIIIIN
! | R PN (N}
! | V2 A
! 7 - \
1 [] o\
ot ' R
! j' .u,\
! el !
3 N 4
o Vo7 -1
P ! A -t
¢ - \\_I \_, _t
ot Lol iyt N i
1200 seconds 1570 seconds

Figure 5. Velocity vectors and liquidus lines during melting.
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V. SUMMARY

‘The rescarch is summarized below:

This rescarch is aimed at numerical examinations of melting heat transfer
in cnclosures.

A continuum model is used to describe the conservation cquations for
thc PCM during melting.

SIMPLER, a control-volume-based numerical scheme, is utilized to solve
the coupled conservation ecquations.

Influence of the density variation between solid and liquid phases on the
mclting process will be studied.

Influence of the slumping/floating phenomena on the melting process

will be investigated.

Solid-liquid interfacial motion experiments will be performed.

17
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APPENDIX

DERIVATION OF CONSERVATION EQUATIONS

A. CGNSERVATION OF MASS

The principle of conscrvation of mass states that the time rate of change
of mass for a control volume equals the nct mass flux in the control volume.
For a two-dimensional, solid-liquid system, the conservation of mass equation

1S

n[}‘{.\ P, + L’/ /,/] + (‘)[g.\‘ oyl + 810 “I] + ("[},'\ Py v, + gl Py V/]

at Ox dy =0 (1)
The mass density of the mixture, p, is defined by
P = gpPs 8P
= pg +p; (2)
and thc mass averaged velocity, V, is defined by
V = —;_;i Ve + -ﬁpi V,
=LV, +4V (3)

Substituting Egs.(2) and (3) into Eq.(1), we obtain

21




op d(pu) d(pv
P, (pv)

=0 4
ot dx dy (1)

Thus, this cquation describes the conservation of mass for the two-dimensional,
solid-liquid system. In the liquid region, the form of this equation is the samc
as the traditional continuity equation. If phase densities are constants, the term,
dp/ct. would be nonzero only in the mushy zone. However, in the mushy zone,
if the solid density and the liquid density are different and if the solid and liquid
fractions arc time dependent, then the mass density of the mixture is time dé-
pendent. The flow from the density variation in the solid-liquid phase change
1s duc mainly to the variation of solid and liquid densitics. For example, during

the solidification of many metals, shrinkage induced flow can result.

B. CONSERVATION OF MOMENTUM

The momentum equations are derived from Newton’s Second Law, which
states that the product of mass and acceleration is equal to the sum of the ex-
ternal forces acting on the body. Thus, the Xx-momentum cquation of the two-

dimensional, solid-liquid system is

D - — _ _
E(/)I u + psug) = V'(g/ Oix + & Osx) + (Pl Bix + ps Bsx)

+ (g, G, + 8,G.p) (5)

22




The flux vector, a,, represents the component of the general material stress
tensor which influences the x-dircction momentum, while B, represents the x-
component body force and G, is the momentum production owing to phase in-
teractions.

Thce left-hand side of Eq.(S) represents the product of mass and acccler-
ation. It can bc decomposed as follows:

D oy ey o=y - ‘
D_I(PN‘/'*‘PSU;)“ 3 + Ve(p, Vu + p, Viuy) (6)

Substituting Eq.(6) into Eq.(5), it follows that

0(‘;'{“) + Ve, Vi + B, V.u) = Velgo, + go,) + pB, + F, (7)
where
B,= 2, + 2, - fB, 418, (8)
and
Fo = G, + &G, (9)

The advective momentum flux can be decomposed as follows:

e Vi + psVsug) = pVu+ ps (Vs — V) (us — u)

+ (V= )y — ) (10)

Substituting Eq.(10) into Eq.(7). it follows that
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Ot

t Va(pVu) = Ve(gron + g0x)
~Velp(Vi— WM (us~u) + p(V,~ Ve, —uw)] + pB, + F,  (11)

The x-component of the material stress tensor can be scparated into isotropic

and deviatoric components,
A
6, = —pl + 1, (12)

[t is important to recognize that 7, includes only stresses resulting from inter-
action of a single phase with itself. The cffect of interactions between phascs is
accommodated by the quality, Fy. Specification of 1, requires a priori asscss-
ment of the continuity of cach mixture phase. A phasc is considered to be con-
tinuous if any two points within the phasc can be joined by a continuous curve
which lics solely within the phase. If ecach phasc mixture is considered to be
continuous, the constitutive rclationships are available to describe 7,. In the
present formulation, each phase is assumed to be continuous and Newtonian.

In compact tensorial form, the average stress vector for cach phase is

I A(giuk)s N Agrun); 1= 2 45 Agrttk)n
Bk Tk = Mk axj aX[ 3 Kk Oy axn
G jon=1,02) (13)

In x-direction, the average stress vector can be expressed as
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gk ux) 2 Agruix Agkvi - A
2k the = [pk - T m(—— + )]
0x 3 ox dy
Ngaig)  n
+ b —— 17 + V(g )
ay
= ko + Vg g 1) (14)
If 14 1s assumed to be constant, it can be shown that
Ve tiro = ~ l— [V = (g V)] (15)
kxo 3 Ox k Tk

Since the solid phase is assumed nondeformable, it is frec of internal shear stress
(s = 0, V(gsus) = 0) and translates at a prescribed velocity, V. With this as-

sumption and substituting Eqs. (12), (14), and (15) into Eq. (11), it follows that

O(p w)
Tt V(o V) = Ve [ Vigw)
_ o ap
= Vel (Vs = Ny — ) + p1 (Vi — V) — u)] “a T p By + F,
(16)
where
|
p=8p + §p — T#/V'(&V/) (17)
From Eq. (3), it can be shown that
p p
glulz-p_lu_p_;gsus (18)
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If it 1s assumcd that the phasc densities are constants and the viscous stresses
resulting from local density gradients are ncgligible (V(p/p;) = 0), then from

Ey. (18), Eq. (16) beccomces

Op 1)

> + Ve(pltu = V-(u/LVu)
At

Pt

_ . _ op
= Velps (Vs = Vg — u)y + oy (Vi — V) (s — u)] — = T AB T K

(19)
Invoking the following identitics
V-V, =£V,
and
Vi—V =fV,
it can be shown that
PV = Mg —w) +p, (Vi — Ny —uw =pffiV,u (20)

where

r s

represents the relative phase velocity.  Substituting Eq. (20) into Eq. (19), it

follows that
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A(p u)
ot

p 0
+VelpVu) = Velu 5Vu) = pfifi Vot —% + p By + Fy

(21)

To definc the phasc intcraction force, F,, it is nccessary to consider the
multiphasc region morphology. For a wide region of multi-constitute solid-li-
quid phasc change system, the multiphase region is characterized by a finc per-
mcable solid matrix. The solid matrix is stationary or undergocs free body
translation. Thus the liquid phase flow through the mushy region is analogy to
flow through a porous media. Therefore, implementation of Darcy’s law to

prescribe the phase interaction force, Fy, is appropriate. Thus

My
F,.=- X

X

(glur) (22)

where K, represents the component of anisotropic permeability which influences

x-direction momentum transport. Since

g[ - pl -/}
1t can be shown that
“ P
_ — —_— — 2
Fes—x pr-w (23)

Thc second term on the right-hand side of Eq. (21) represents inertial forces in-
duced as a result of variations in phase velocitics. This incrtial force only ap-

pears in the multiphase region, where permeabilitics are extremcly small and the
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incrtial contribution is ncgligible compared to the Darcian damping force.

Hence the x-momentum reduces to

¢(p u) R p 1
% + Va(pl u)—V-(,u/p—/Vu)— K. -p—l(u u,)
dp
—5 TP (24)

This final form of the equation represents conservation of momentum in the
x-direction for the solid-liquid phasc change system. In the solid region, the
permeability is zero, thus the velocity is the solid phase velocity. In the liquid
region, the permcability s infinite, thus the Darcian damping force will disap-
pcar. The form ot -1c cquation is the same as the normal momentum cquation

for a single phasc fluid.

C. CONSERVATION OF ENERGY

Conservation of energy for a two-dimensional, solid-liquid phasc change

systcm can be cxpressed by the following equation:

) _ _ ., —
= B+ D)+ V(B by + B Vieh) = Ve (kVT) (25)

where local thermodynamic cquilibrium has been assumced (Tx = 7) and the

mixture conductivity is defined by

k=g1k1+gsks (26)
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The advective term may be decomposed into contributions owing to the mean

mixturc motion and the relative phase motion. Thus

Vi + pyVihs = pVh + pr(Vi— V) — h) + p, (Vs — P)hs — h)

Where the mixture enthalpy is

. _
h= 5o %—h, (28)

It is noted that the flux owing to the relative phase motion only has a contrib-
ution in the mushy region. Substituting Egs.(27) and (28) into Eq.(23), it follows

that

Aph)
Jt

+ Vea(pVh) = Va{kVT)

— Ve[V = V)~ h) + BV, — V), — h)] (29)

Simplifying the term

PV = Wh —h) + p(Vi— V)h;—h) = pfi (V= V)(h — k) (30)
3

it follows that
3

d(ph) ,

— t Ve(pVh) = Va(kVT) — Ve [pf (V= VIl — hy] (31)

In the present formulation, the enthalpy of phase k is defined as
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T
hy = J ¢ dT + hy (32)
0

where ¢, represents an effective specific heat of phase k. Substituting the iden-

ity

l 1
VT = o= Vh + o=V~ h) (33)

into Eg.(31), it can be shown that

Cph)
ot

F Ve (plh) = Ve (A v+ Ve[ L v - i)
g 5 (34)
Ve [l = )V = V)

This is the final form of the cquation which represents the conservation of cn-

crgy in the x-momentum for the solid-liquid phasc change system.
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