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SUBJECT: Statistical Decisions Utilizing Neural Nets.

1. Summary:

Neural networks were developed that accurately determine the statiltical
characteristics: modality and number of stochastic components of undev.ying
probability distribution(s) for sample data. Sample data examples, used to
teach the neural nets were generated utilizing either a single beta distri-
bution or a mixture of beta distributions. Once the neural net learned to
distinguish between unimodal and multimodal examples and also between unimodal
and mixture densities, they were challenged with unknown test cases. The test
cases were also generated from either a single beta distribution or a mixture
of beta distributions. Therefore the initial test results apply to a
restricted class of distributions having bounded domains.However these
trained networks were furnished to Mr. Schlenker who challenged the networks
with sample data from distributions other than beta, thus widening the appli-
cation domain of the networks. An explanation of this additional work is
detailed in appendix A.

The initial testing of the neural networks consisted of 40 unknown sample
data examples generated utilizing beta distributions. The results of these
tests are: (1) correctly identified 39 out of the 40 as being either
unimodal or multimodal, an accuracy of 97.5 percent. This exceeds the
accuracy of Qurrently available statistical methods; (2) correctly
identified 36 out of 40 as having either one component or more than one
component, an accuracy of 90 percent. There are no statistical methods
available for determination of componehts. For the larger class of
distributions, the corresponding accuracy rates are 93 percent and 81 percent. /

Mr. Manata's work in developing the neural networks was originally
vublished in memorandum report SA-MR-9002. Mr. Schlenker's work on the
extensions was originally published in memorandum report SA-MR-9003. But,
since these two reports are interrelated, they are being consolidated in this
report.

2. Neural Network Discussion:

a. Knowledge:

There are at least three ways of representing knowledge in a computer
environment: stantard computer programs, expert systems, and neural networks.

A standard programn has two types of knowledge: instructions, and the
value of the variables used by the program If a user wants to know what
knowledge the computer contains, the list of instructions and the current
value of the variables provides this information.

An expert system has three types of knowledge: (1) if - then rules,
i.') initial facts and beliefs, (3) conclusions generated by the if - then

ru ,. in f.he qf.di nr~g-a a ucfr canr~ the zyztemis kiweg
by listin8 the current rule, factv, b, iefs, and the value of any variables
that the system uses.
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Neural networks contain two types of knowledge: the network, nodes
and the connections between nodes, and the weights associated with each
connection. If the user has a question concerning the computer's knowledge,
the network and the weights are available. But, the user would not find it
easy to ascertain what this knowledge has to do with solving the problem. As
an example of neural network knowledge, figure 1.0 shows the type of network
that was used to solve the statistical decision problem, and table 1.0 is a
partial listing of the weight values.

FIGURE 1.0
NETWORK ARCHITECTURE

TABLE 1.0
CONNECTION WEIGHTS

MIDDLE LAYER NODES
1 2 3

INPUT LAYER NODES

1 -.175 -.890 -.283

2 -.479 +.415 -2.177

3 -1.117 -1.003 +6.535

4 -1.123 +.282 -7.678

OUTPUT LAYER NODE
1

MIDDLE LAYER NODES

I + .BBC

2 -.849

3 +19.521

2
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b. Neural Networks:

Neural networks, of the type shown in figure 1.0, have three or more
layers of nodes with the nodes of one layer connected to all the nodes of the
next layer. Neural network problem solving is initiated by providing the
first layer, the input layer, with a vector of values, the input vector,
containing information which describes the problem to be solved. Each input
node receives one component of this vector and feeds it into the connections
between itself and every middle layer node. The connections multiply these
components, by the connection weights, and deliver the modified component
values to the middle layer nodes. Each middle layer node sums ilus incoming
values and operates on the sum with an activation function, usually a sigmoid
function. This generates a nodal output value which is furnished to the
connections between the middle layer nodes and every output node. The multi-
plication process that occurred between the input layer and middle layer is
repeated between the middle and output layers. The output nodes sum the
incoming values, operate on the sum with the activation function, and generate
output values. These output values are the answer to the the problem.

Before a network can solve a specific problem it has to be taught how
to solve the set of problems of which the specific problem is a member. This
requires that the network be furnished representative examples of the problem
set, and the answer for each example. During training, the network compares
its answer with the correct answer. If its answer is within a specified range
of the correct answer, the network is considered to have 'learned* to solve
the set of problems. This, delta value, set prior to training, is the maximum
error, between the correct and network answers, that the developer will
accept. Delta is usually set at 0.1 but it can be any value greater than zero
and less than one. Until this criterion is met, the network back propagates
the actual error through the network to modify the connection weights. This
feed-forward-back-propagation process continues until the network has achieved
*learning* as defined by convergence to a given limit. Once the network has
'learned,' it is tested to determine its accuracy.

c. Neural Net Simulation:

Neural networks are a parallel processing technique. But, they can be
emulated on sequential computers. This is accomplished by utilizing simula-
tion software. AMSMC-SAO has simulation software (NETS) developed by NASA for
IBM-compatible PCs.

d. Statistical Decision Making:

Statistical aids utilizing neural networks were suggested to Mr. J.
Manata of AMSMC-SAO by Mr. G. Schlenker of AMSMC-SAS. The statistical
questions concerned the modality, and the number of stochastic components (the
number of unimodal components in a probability mixture model) of probability
distributions producing sample data. Statistical methods exist for deter-
mining modality but not for number of components.

3



3. Methodology:

a. Net Architecture:

The sample data was distributed over 20 histogram cells anticipating
that the neural networks would be used with samples of 200 or more data
points; therefore, 20 cells seemed a reasonable number to assure an adequate

population for each cell. The number of output nodes was set at either one or
two depending on the type of problem the network was required to solve. If
the network was required to solve a modality or component problem, the number
of outputs was one. If the network was required to solve two problems,
modality and components, the number of outputs was two. The number of middle
layer nodes and the connections between the input layer, the middle-layer,
and the output layer was determined by trial and error. Nineteen net archi-

tectures were tested. Table 2.0 lsts the different architectures, and figure
2.0 shows examples of the architeL.tures.

/

The architecture that worked the best had twenty input nodes, seven
middle nodes, and one or two output nodes. An example of this architecture is
shown in figure 2b.

NUMBER OF :NUMBER OF :TOTAL NUMBER:NUMBER OF :NUMBER OF :FIGURE
INPUT NODES;MIDDLE LAYERS:OF MIDDLE :MIDDLE LAYER:OUTPUT NODES:

:LAYER NODES !NODES PER
_ _ __ :MIDDLE LAYER: _

20 : 0 : 0 0 : 2 8a
20 1 : 3 3 : 2 : 8b
20 1 ___ 4 4 i 2 8b
20 : 1 : 5 5 : 2 8b
20 : 1 : 7 : 7 : 2 : 8b
20 : 1 : 9 : 9 : 2 : 8b
20 : 1 : 10 : 10 : 2 : 8b
20 : 1 : 11 : 11 : 2 : 8b
20 _ _ 1 , 12 : 12 2 : 8b
20 : 2 : 7 : 4,3 : 2 : 8c
20 : 2 : 7 : 3,4 2 : 8c
20 : 2 : 7 : 4,3 : 2 : 8d
20 : 2 : 7 : 3,4 : 2 : 8d
20 : 2 : 7 : 4,3 : 2 : 8e
20 : 2 : 7 : 5,2 : 2 : 8c
20 2 : 7 2,5 : 2 : 8c
20 : 2 : 7 5,2 i 2 : 8e

TABLE 2.0

LISTING OF NETWORK ARCHITECTURES ATTEMPTED

4
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b. Generation of Training and Test Data Sets:

The training sample data distributions, generated by Mr. Schlenker,
were developed by a Monte-Carlo selection of random variables from beta
distributions or mixtures of beta distributions (a). Beta distributions were
used because they provide the capability for the generation of a variety of
density function shapes, and they have a well-defined finite domain.

Each sample consisted of 400 data points which were distributed over
20 histogram cells. Two separate training sets were generated; one set had
examples containing sampling error, noise, and the other, an idealized set,
did not. The lcealized case represents an essentially infinite sample. The
use of two training sets was to determine if the network was more accurate
when trained with noisy or idealized data.

Mr. Schlenker also generated test examples utilizing one or more beta
distributions, plus one example from a truncated weibull distribution. The
number of data points in the test examples varied between 150 and 3200. Table
3.0 lists the training sets and table 4.0 lists the test sets. Table 5.0
Shows the location of the modes and provides a relative measure of their
separation in terms of the standard deviation. Additionally, the coefficient
of skewness (beta) of the distribution is shown to suggest the range of this
parameter that the network had to recognize. With the exception of seven
sets, all the sets were generated using a Simscript random number seed index
1.

Table 6.0 lists the parameter values of the beta mixture which produce
each set. For the unimodal, one-component sets, the threshold parameter is
always 0, and the upper limit is 1; i.e., the distribution form is standard-
ized beta. In the case of two stochastic components, either one or two modes
are produced, depending on the parameters of each stochastic component and on
the mixture parameter (r). In all cases, save two, the threshold and limit
parameters are 0 and 0.7, for component 1, and 0.3 and 1.0 for component 2.
The two exceptions are sets HM36 and HM41. For HM36 these parameters are (0,
0.5), for component 1, and (0.3, 1.0) for component 2. For HM41 these para-
meters are (0, 0.6), for component I, and (0.4, 1.0) for component 2. As is
seen, the lower and upper limits on the domain of all mixtures are 0 and 1.
These are also the respective histogram limits.

[a) The density function for a mixture of beta densities is given for the
random variable x as

Al-i BI-I A2-1 B2-1
f(x) = rw (l-w) /CB(AI,Bl) + (1-r)z (1-z) /CB(A2,B2)

where r is proportion of first component and where CB(a,b) is the
complete beta function with parameters a and b, and where Al, Bl are
parameters of the first component and A2, B2 are parameters of the
second. Auxiliary variables w, z are given in terms of x as
w = (x - Thl)/(Ull - Thl) and z = (x - Th2)/(UI2 - Th2), for w and z
limited to the unit interval. Threshold and upper lirmuit parameters flor
component c are Thc and Ulc.
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c Scalilg of Nodal Input Values:

A requirement of the NETS is that the nodal input values lie in the
range of (.l,.9). Because of this requirement, the histogram of the training
and test examples had to be modified to lie within this range. This scaling
was accomplished by:

e=n/N + 0.1

where
e = scaled value

N = sample size
n = interval frequency

TABLE 3.0
TRAINING SETS

DISTRIBUTION USED: NUMBER OF DATA: SAMPLE :STOCHASTIC:NUMBER OF
TO GENERATE : POINTS IN EACH: DISTRIBUTION:COMPONENTS:TRAINING SETS
TRAINING SAMPLE : SAMPLE

ONE BETA : 400 UNIMODAL 1 : 30

TWO BETAS 400 * UNIMODAL 2 : 9

TWO BETAS 400 1MULTIMODAL : 2 : 23

TABLE 4.0
TEST SETS

DISTRIBUTION USED: NUMBER OF DATA: SAMPLE :STOCHASTIC:NUMBER OF
TO GENERATE POINTb IS EACH: DISTRIBUTION:COMPONENTS:TEST SETS
TEST SAMPLE : SAMPLE

ONE BETA : 150 g UNIMODAL 1 : 4

ONE BETA 200 UNIMODAL 1 : 2

ONE BETA : 400 : UNIMODAL 1 : 13

ONE WEIBULL : 3200 : UNIMODAL 1 : 1

TWO BETAS 400 :UNIMODAL 2 : 9

TWO BETAS : 3200 : UNIMODAL 2 : 2

TWO BETAS 400 : MULTIMODAL 2 9

7



TABLE 5.0 Training Sets for Networks to Classify Samples of Density
Functions with Respect to Modality and Number of Components

Set Name Modes Components Loc Modes Std Dev Skewness Seed

HUOl unimodal 1 0.00, ... 0.200 1.200 1
03 0.34, 0.200 0.286
05 0.66, 0.200 -0.286
09 0.00, 0.194 0.861
13 0.34, ... 0.200 0.286 3
15 0.66, ... 0.200 -0.286
19 0.00, 0.194 0.861
22 0.25, 0.140 0.488
24 0.50, ---- 0.140 0.000

35 0,50, 0.121 0.000
37 0.70, 0.131 -0.364

HY06 bimodal 2 0.35, 0.65 0.179 0.000
11 0.35, 0.65 0.176 0.237
16 0.35, 0.65 0.176 -0.237
26 0.35, 0.65 0.168 -0.476
32 0.30, 0.65 0.197 0.486
34 0.30, 0.65 0.198 0.247
36 0.25, 0.65 0.222 0.242 S
38 0.37. 0.65 0.184 0.150
41 0.30, 0.70 0.214 0.000
44 0.35, 0.65 0.172 0.252

HMIO unimodal 2 0.50, ---- 0.217 0.000
14 0.45, 0.198 0.168
15 0.48, 0.215 0.131
18 0.62, 0.188 -0.196
20 0.53, ... 0.215 -0.131
22 0.35, ... 0.173 0.436
25 0.44, 0.208 0.251
27 0.65, 0.173 -0.436

30 0.56, 0.208 -0.251

8



TABLE 6.0 Parameters Which Characterize tha Probability
Distributions Used in Producing Training Sets

Set Mix Component I Component 2
Name Param A B A B

HUOI 0.6 2.4
03 --- 2.0 3.0
05 --- 3.0 2.0

09 --- 1.0 3.0
13 --- 2.0 3.0

15 3.0 2.0
19 1.0 3.0
22 --- 2.914 6.8
24 5.878 5.878
35 8.0 8.0
37 --- 8.0 4.0

HM06 0.5 6.0 6.0 6.0 6.0
11 0.6 6.0 6.0 6.0 6.0

16 0.4 6.0 6.0 6.0 6.0
26 0.3 6.0 6.0 6.0 6.0

32 0.6 6.0 6.0 4.0 4.0
34 0.6 4.0 4.0 6.0 6.0
36 0.5 6.0 6.0 4.0 4.0
38 0.5 6.0 6.0 4.0 4.0
4 0.5 7.0 7.0 7.0 7.0

44 0.6 7.0 7.0 7.0 7.0
HM1O 0.5 2.0 2.0 2.0 2.0

14 0.6 3.0 3.0 3.0 3.0

15 0.6 2.0 2.0 2.0 2.0
18 0.4 4.0 4.0 4.0 4.0
20 0.4 2.0 2.0 2.0 2.0
22 0.7 5.0 5.0 5.0 5.0
25 0.7 2.0 2.0 2,0 2.0

27 0.3 5.0 5.0 5.0 5.0

30 0.3 2.0 2.0 2.0 2.0

d. Training Sets:

The next step in the process of developing an accurate neural net, is

the determination of the best set of training examples. The best set of
training examples is that combination of examples, which results in a trained

net, that provides the highest accuracy when the net is challenged with

unknown test cases.

Examples of the training sets are shown in figures 3.0 - 8.0, figure

3.0 is the histogram for a unimodal distribution with one stochastic com-
ponent; figure 4.0 is the theoretical density for the sample; figure 5.0 is

the histogram for a unimodal distribution with two stochastic components;

figure 6.0 is ti,. theoretical density for the sample; figure 7.0 is the
histogram for a multimodal distribution; and figure 8.0 is the theoretical
density for the sample.

9
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4. Availability of Neural Networks:

There are three ways of obtaining working versions of the statistical aids
neural networks:

a. NETS version 2 is capable of generating delivery versions that can
be installed on PCs.

b. The networks can be implemented in standard computer programs
written in high-level languages.

c. The neural networks have been incorporated into a *statistical
expert system' (DESCR.STATS) that is available on the PRIME computer.

The incorporation of the neural networks into the *statistical expert
system,' is explained in appendix A and a listing of the computer program is
shown in appendix B.

5. Results:

a. Modality:

The training set for modality, that furnished the most accurate test
results, consisted of: twelve unimodal examples with one stochastic compo-
nent, nine unimodal examples with two stochastic components, and ten multimodal
examples. This network, when challenged with unknown beta distribution test
cases, correctly identified 39 out of 40 cases, an accuracy of 97.5 percent.
This same network, when challenged with test cases generated using other
distributions, had an accuracy of 91 percent. These accuracies exceed the
accuracy of the current statistical method for determining modality of sample
data distributions, The accuracy of the network, trained with idealized
sample data which was tested using noisy beta distribution data, was identical
to that trained on the noisy data.

b. Number of Stochastic Components:

The training set of stochastic components, that furnished the most
accurate test results consisted of: thirteen unimodal examples with one
stochastic component and nine unimodal examples with two components. This
network, when challenged with unknown beta distribution test cases, correctly
identified 36 out of 40 cases, an accuracy of 90 percent. Two of the errors
were the designation of one stochastic component as two, and the other two
errors were the designation of two stochastic components as one. The same
network, when challenged with test cases generated using other distributions,
had an accuracy of 81 percent. The network trained on idealized data, when
tested with noisy beta distribution data, was less accurate than the one
trained on noisy data.
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c. Combined Modality and Components;

A network was trained to furnish the combined answers, modality and
number of components when presented with a set of unknown data. The best
network, trained on noisy data, furnished correct answers for modality in 37
out of 40 tests; for number of components it furnished correct answers in 35
out of 40 tests. The network did not furnish any combined errors, a wrong
answer for modality combined with a wrong answer for number of components.
The network trained with idealized data gave the same number of incorrect
answers for modality, 3 out of 40, but it also furnished 14 incorrect answers
out of 40 tests for number of components. This network did not furnish any
combined errors.

d. Number of Data Points.

The number of data points in the test sample distributions was varied
between 150 and 3200. Within this range the accuracy of the neural networks
did not appear to depend on sample size.

e. Availability of Neural Networks;

The neural networks developed for modality and components are
available on the PRIME computer. It is also possible to develop delivery
copies of the networks for use on PCs.

6. Conclusions:

a. The neural networks developed using NETS are capable of accurately
estimating modality and stochastic components from sample data.

b. The number of data points in a sample can be as small as 150.

c. Neural networks that furnish just one statistical attribute were more
accurate than the one that furnished more than one.

d. Currently the modality network and the component network are available
on the PRIME computer.
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1. Implementation of Neural Networks into an ES

A major effort was required to implement neural networks for identifying
univariate data features into the statistical expert system DESCR.STATS. A
stand-alone program (RUN. lD.NET) was written to verify and validate the net-
works for identifying modality and number of stochastic components. Mr.
Schlenker discovered that the error rates of both networks are quite sensitive
to the histogram limits for the data. Of course, this is not a problem for
distributions, such as beta, whose domain is well defined. However, for
distributions with infinite or semi-infinite (bounded on one side) domains,
assigning proper limits for the neural network is a nontrivial problem. After
a bit of computational experience, he found some heuristics for calculating
upper and lower limits which work well with both unimodal, one-component data
and bimodal data. Of interest is the fact that the error rates for types of
distributions such as normal, logistic, Weibull, and lognormal are not much
greater than for the beta (and mixtures of betas), which was used exclusively
in training the networks. The algorithm for assigning histogram limits makes
use of the following sample statistics: average, standard deviation, minimum,
maximum, and the first and third quartiles.

2. Algorithm for Histogram Limits for Neural Networks

The method for calculating the lower (XHMIN) and upper (XHMAX) limits of
the histogram is sketched as follows:

If the random variable (X) represents a proportion or probability,

XHMIN = 0 and XHMAX = 1.

Otherwise, if X is strictly positive (but not a proportion), the lower limit
is obtained by

XHMIN=max(0, AVGX - 3 STDV), if AVGX - 4.5 SDV < 0,

where AVGX and STDV are the sample average and standard deviation. When this
condition does not hold, XHMIN is calculated as shown below. The upper histo-
gram limit for this case is calculated in the same manner as that shown below
for the case in which X may not be positive. If X is effectively unbounded
or, possibly, capable of taking negative values, the lower and upper limits
are calculated as follows.

XHMIN = max(XHMINO, XHMINl, XHMIN2)

and

XHMAX min(XHMAXO, XHMAX1, XHMAX2),

where the alternatives XHMINO. XHMIN1, etc. are given in terms of the minimum
(XMIN) and maximum (XMAX) of the sample as well as the sample average (AVGX),
standard deviation (STDV), lower quartile (X.25), and upper quartile (X.75).
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XHMINO = AVGX - 4.5 STDV, if this value ( XMIN.

Otherwise,

XHMINO = XHMINO - l.l(XHMINO - XMIN).

Always

XHMINI = XMIN - 0.5 STDV

XHMIN2 = XMIN - 0.2(X.25 - XMIN).

The alternative upper limits are

XHMAXO = AVGX + 4.5 STDV, if this value ) XMAX.

Otherwise,

XHMAXO = XHMAXO + 1.1(XMAX - XHMAXO).

Always

XHMAXI = XMAX + 0.5 STDV

XHMAX2 = XMAX + 0.2(XMAX - X.75).

This algorithm produces histogram limits which conservatively bound the values
XMIN and XMAX.

3. Testing of the Neural Networks

Two networks with the same architecture, but different weights, are used
to obtain (a) an indication of multimodality and (b) an indication that the
random variable comes from a mixture model. These two attributes of each
random variable tested are displayed in tables A-1 and A-2. If the output
node for attribute (a) is < or equal to (le) 0.5, the data are declared
unimodal; otherwise, they are multimodal. If the output node for attribute
(b) is less than 0.5, only one stochastic component is identified. In these
tables, respective identification of attributes is designated c, for correct,
and *, for incorrect. Histograms do not always display the same attributes as
the population density. For example, a random variable with two modes in the
density may have a clearly unimodal histogram. In all cases, errors in
modality and stochastic components are declared if the population density is
not correctly identified. Three sample sizes--800, 400, 200--are used for
each random number seed and for each set of population parameters. In most
cases, if the results for a sample of 800 are correct, the results for the
smaller samples are as well. Mixtures of normal and logistic random variables
are found to be classified nearly as well as beta mixtures on which the
networks were trained.
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TABLE A-1, Regultg of Numerical Experiments 'n Teptng Neural

Networks With Unimodal, One-Component Distributions

Random Number Seed Indices I and 5

Run Result Dist'n Mean Std Dev Sample Seed

1 c c lognorm 0.47 0.187 800 5
2 c c 400
3 c c 200
4 c * weibull 800
5 c c 400
6 c c 200
7 c * gamma 800
8 c c 400
9 c * 200
10 c c normal 800
11 c c 400
12 c c 200
13 c c logistic 800
14 c c 400
15 c c 200
16 c c lognorm 0.47 0.170 800
17 c c 400
18 c c 200
19 c c lognorm 0.20 0.170 800
20 c c 400
21 c c 200
22 c c lognorm 0.47 0.270 800
23 c c 400

24 c c 200
25 c c weibull 800
26 c c 400
27 c c 200
28 c c beta 0.20 0.170 800
29 c c 400
30 c c 200
31 c c beta 0.47 0.270 800
32 c c 400
33 c c 200
34 c* beta 0.47 0.170 800
35 c b 400
36 * K 200
37 c c beta 0.67 0.270 800
38 c c 400
39 c c 200
40 c * weibull 800
41 c * 400
42 c c 200
43 c c 1ogistlc 800
44 c c 400
45 c c 200
Continued on next page.
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TABLE A-I. Results of Numerical Experiments in Testing Neural
Networks With Unimodal, One-Component Distributions
(Continuation)

Run Result Dist'n Mean Std Dev Sample Seed

46 c * beta 0.47 0.170 800 1

47 c * 400
48 c * 200
49 c * weibull 800
50 c * 400

51 c * 200
52 c c beta 0.47 0.270 800
53 c c 400
54 c c 200
55 c c beta 0.75 0.170 800
56 c c 400
57 c c 200

The error rates for the two attributes are: 1/57 (( 2 percent), for modes,
and 13/57 (23 percent) for stochastic components. The error rate for the
latter attribute is seen to be larger than that estimated in the preliminary
tests in which beta mixtures were used exclusively.
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TABLE A-2. Results of Numerical Experiments in Testing Neural
Networks With Unimodal and Bimodal, Two-Component l
Distributions

Component 1 Component 2
Run Modes Result Dist'n Mix Mean S D Mean S D Sample Seed

1 2 c c normal 0.5 0.35 0.10 0.65 0.10 800 5
2 c c 400
3 c c 200
4 2 c c 0.7 0.35 0.10 0.65 0.10 800
5 c c 400
6 c c 200
7 2 c c logistic 0.7 0.35 0.10 0.65 0.10 800
8 c c 400
9 c c 200

10 2 [a) * c 0.5 0.35 0.15 0.65 0.15 800
11 * c 400
12 * c 200
13 1 c * 0.6 0.35 0.20 0.65 0.20 800
14 c * 400
15 c * 200
16 2 c c betalb] 0.5 0.35 0.09 0.65 0.09 800
17 c c 400
18 c c 200
19 1 c c logistic 0.6 0.35 0.20 0.65 0.20 400
20 cc 200
21 2 c c beta 0.5 0.35 0.097 0.65 0.097 800
22 c c 400
23 c c 200
24 2 c c 0.5 0.35 0.106 0.65 0.106 800
25 c c 400
26 c c 200
27 2 [a) c c 0.6 0.35 0.106 0.65 0.106 800
28 * c 400
29 c c 200
30 2 [a] c c 0.4 0.35 0.106 0.65 0.106 800
31 c c 400
32 c c 200
33 1 c c 0.5 0.35 0.117 0.65 0.117 800
34 c c 400
35 c c 200
36 1 c c 0.5 0.35 0.132 n.65 0.132 800
37 c c 400
38 c c 200
Continued on next page.

[a] HistodrAm ig di-Ef.,nct.ly unimodaI a-I=the de--miy .v bmod^a.
[b) Threshold parameter of first beta component is 0 with upper

limit of 0.7. Threshold of second beta component is 0.3 with
upper limit of 1.0.
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TABLE A-2. Results of Numerical Experiments in Testing Neural
Networks With Unimodal and Bimodal, Two-Component
Distributions (Continuation)

Component 1 Component 2
Run Modes Result Dist'n Mix Mean S D Mean S D Sample Seed

39 1 c c 0.5 0.35 0.156 0.65 0.156 800
40 c c 400
41 1 c c 0.6 0.35 0.117 0.65 0.117 800
42 c c 4%,
43 c c 200
44 1 c c 0.7 0.35 0.117 0.65 0.117 800
45 c c 400
46 c c 200
47 2 c c logistic 0.7 0.35 0.117 0.65 0.117 800
48 c c 400
49 c c 200
50 2 [a) * * 0.5 0.35 0.156 0.65 0.156 800
51 * c 400
52 * * 200
53 1 c * 0.5 0.35 0.200 0.65 0.200 800
54 c * 400
55 c * 200

[a] Two modes are barely evident in the density, but are not clearly evident
in a typical histogram.

Neural-net error rates for the two-component distributions tested are 7/55
(13 percent), for identifying modes, and 8/55 (14 percent) for identifying
stochastic components.

4. Performance Summary and Conclusions

In total 112 data sets were used to challenge the identification accuracy
of these two neural networks. The net which identifies modality of the popu-
lation density was correct in 93 percent (104/112) of the sets. The net for
identifying stochastic components did not perform quite as well, yielding 81
percent (91/112) correct responses. Of course, these results depend strongly
upon the choice of distributions tested and to a lesser extent upon the sample
of data drawn from each. The performance of the net fcr identifying modality
was shown to be better than that for an alternative, statistically based
method. There is no known alternative for the network which identifies
stochastic components.
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Neural Networks for a Statistical Advisor System

Simscript Computer Source Program

1 PREAMBLE ''RUN.ID.NET
2 NORMALLY MODE IS REAL
3 DEFINE SIGMOID AS A REAL FUNCTION GIVEN 2 ARGUMENTS
4 END ''PREAMBLE

MAIN ''RUN. lD.NET

3 DRIVER FOR THE ROUTINE N1D.NET FOR ANALYSIS OF UNIVARIATE DATA.
4 Program has been augmented to read a data file of random variables,
5 create a histogram and normalize it for the neural net, and call the
6 program NID.NET with appropriate input vector.
7

8 ''Required Programs/Functions: DYQUANT, UPDT.HIST, SIGMOID.
9 f

10 DEFINE ANSWER,FILINAM,TITLE AS TEXT VARIABLES
11 DEFINE FLAGN,FLAGP,I,ITRUNC,J,N,NCELLS,NCOUNT,NDATA AS INTEGER

VARIABLES
12 DEFINE HISTV,NXV AS INTEGER, I-DIMENSIONAL ARRAYS
13 RESERVE NXV(*) AS 5
14 DEFINE NODEV,QV,XINV AS REAL, I-DIMENSIONAL ARRAYS
15 RESERVE QV(*) AS 5 ''MARKERS FOR QUANTILES OF XINV
,6 LET NCELLS=20
17 LET LSDL=3.0
18 LET USDL=4.5
19 iET WLIM=I.1

20 RESERVE HISTV(*),NODEV(*) AS NCELLS

21 LET LINES.V=9999
2. LET FILINAM = "RV.DATA"
23 'LO'PRINT I LINE WITH FILINAM
24 THUS
INPUT THE NUMBER OF DATA POINTS TO BE READ FROM *******

26 READ NDATA
27 RESERVE XINV(*) AS NDATA

29 ''OPEN UNIT 4 FOR INPUT OF THE RANDOM-VARIABLE DATA.
30
31 OPEN UNIT 4 FOR INPUT,
32 OLD,
33 FILE NAME IS FILINAM
34 RECORD SIZE IS 80
,5 USE UNIT 4 FOR INPUT
36 READ TITLE USING UNIT 4
37 PE 1i-1 TO NDATA, READ XINV(I) USING UNIT 4
38 CLOSE UNIT 4 ''FOR THIS INPUT
39
40 ''GET AVGX, STDV, XMIN, AND XMAX.
4!"
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42 LET XMIN=RINF.C
43 LET XMAX= -RINF.C
44 LET AVGX=0.O
45 LET STDV=0.O
46 FOR I=l TO NDATA DO
47 LET X=XINV(I)
48 CALL DYQUANT(O.5,QV(*),I,X,NXV(*))
49 LET XMIN=MIN.F(XMIN,X)
50 LET XMAX=MAX.F(XMAX,X)
51 ADD X TO AVGX
52 ADD X**2 TO STDV
53 LOOP ''OVER (I) POINTS
54 LET AVGX=AVGX/NDATA
55 LET STDV=(STDV - NDATA*AVGX**2)/(NDATA - 1)
56 LET STDV=SQRT.F(STDV)
57 IF QV(1) NE XMIN OR QV(5) NE XMAX
58 PRINT 2 LINES WITH QV(1),XMINQV(5),XMAX
59 THUS
ERROR. INCONSISTENCY IN CALCULATING MIN AND MAX. First of pair obtained
in routine DYQUANT: ( ***.*, * **.**) and ( **.****, *.*, )

62 STOP
63 OTHERWISE
64 SKIP 1 LINE
65 PRINT 4 LINES WITH XMIN,XMAX,AVGX,STDV,QV(2),QV(3),QV(4)
66 THUS
Min X =****** Max X =
Avg X =***.* ** S D X =
X.25 =****.**** X.50 =****.**** X.75

71 IF XMIN LE 0.0
72 LET FLAGN= ''INDICATING THAT RV CAN BE NEGATIVE
73 LET FLAGP=O ''INDICATING THAT RV IS NOT A PROPORTION
74 GO TO JO
75 OTHERWISE
76 PRINT 2 LINES THUS
CAN THE RANDOM VARIABLE TAKE ON NEGATIVE VALUES OR BE TREATED AS
EFFECTIVELY UNBOUNDED FROM BELOW? (YES OR NO).

79 READ ANSWER
80 IF SUBSTR.F(ANSWER,1,1) = "Y" OR SUBSTR.F(ANSWER,1,1) "y"
81 LET FLAGN=l
82 LET FLAGP=O
83 GO TO JO
84 OTHERWISE
85 LET FLAGN=O
86 IF XMAX < 1.0
87 PRINT 2 LINES THUS
DOES THE RANDOM VARIABLE REPRESENT A PROPORTION (PROBABILITY)? (Y OR N).
That is, must the random variable lie within the range (0, )9

90 READ ANSWER
91 IF SUBSTR.F(ANSWER,1,1) = Y" OR SUBSTR.F(ANSWER,1,1) -y"
92 LET FLAGP=1
93 GO TO JO
94 OTHERWISE
95 ALWAYS
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96 LET FLAGP=O
97 -
98 ''DETERMINE HISTOGRAM LIMITS.
99 1,

100 'JO'IF FLAGP:1
101 LET XHMIN:O.O
102 LET XHMkX=1.O
103 GO TO Jl
104 OTHERWISE
105 IF FLAGN=O ''X IS STRICTLY POSITIVE
106 IF AVGX - USDL*STDV > 0.0
107
108 ''TREAT X AS EFFECTIVELY UNBOUNDED IN CALCULATING HISTO LIMITS.
109
110 GO TO J3
111 OTHERWISE
112 LET XHMINO=AVGX - LSDL*STDV
113 LET XHMINI=XMIN - 0.5iSTDV
114 LET XHMIN2=XMIN - 0.2*(QV(2) - XMIN)
115 LET XHM!N=MAX.F(O.O,XHMINO,XHMIN1,XHMIN2)
116 LET XHMAX=AVGX + USDL*STDV
117 IF XHMAX ( XMAX
118 LET XHMAX=XHMAX + WLIM*(XMAX-XHMAX)
119 ALWAYS
120
121 ''CONSTRAINTS ON THE LIMITS.
122 ''
123 LET XHMAX1=XMAX + 0.5*STDV
124 LET XHMAX2=XMAX + 0.2*(XMAX - QV(4))
125 LET XHMAX=MIN.F(XHMAX,XHMAX1,XHMAX2)
126 GO TO J1
127 OTHERWISE ''RANGE OF X INCLUDES NEGATIVES OR IS EFFECTIVELY UNBOUNDED
128 'J3'LET XHMIN=AVGX - USDL*STDV
129 IF XMIN < XHMIN
130 LET XHMIN=XHMIN - WLIM*(XHMIN-XMIN)
131 ALWAYS
132 LET XHMAXzAVGX + USDL*STDV
133 IF XMAX > XHMAX
134 LET XHMAX=XHMAX + WLIM*(XMAX-XHMAX)
135 ALWAYS
136 "
137 ''CONSTRAINTS ON THE LIMITS.
138
139 LET XHMIN1XMIN - 0.5*STDV
140 LET XHMIN2=XMIN - 0.2*(QV(2) - XMIN)
141 LET XHMIN=MAX.F(XHMIN,XHMIN1,XHMIN2)
142 LET XHMAXI=XMAX + 0.5*STDV
143 LET XHMAX2=XMAX + 0.2*(XMAX - QV(4))
144 LET XHMAX=MIN.F(XHMAX,XHMAX1,XHMAX2)
145 'Ji'LET DELX=(XHMAX - XHMIN)/NCELLS
146 IF DELX LE 0.0
147 PRINT 1 LINE THUS
TROUBLE WITH INPUT DATA. Calculated DELX in histogram is 0.

149 STOP
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150 OTHERWISE
151 LET ITRUNC=O
152 LET NCOUNT=O
153 FOR I~l TO NDATA DO
154 LET X=XINV(I)
155 '

156 ''LOCATE VALUES OF X WITH RESP TO HISTO CELLS AND INCREMENT CELL FREQS.
157 ''
158 CALL UPDT.HIST(X,NCELLS,ITRUNC,XHMIN,DELX,HISTV(*)) YIELDING N
159 ADD N TO NCOUNT
160 LOOP ''OVER (I) POINTS
161 IF FLAGP=1
162 GO TO J4
163 OTHERWISE
164 ''
165 ''CHECK FOR EXCEPTIONAL COUNTS IN LAST CELL.
166 1'
167 IF 2*HISTV(NCELLS) > HISTV(NCELLS-l) + HISTV(NCELLS-2) AND FLAGP NE 1
168 "
169 ''UPPER-TAIL OUTLIERS MAY BE PRESENT. TRUNCATE VALUES ABOVE XHMAX.
170 ''
171 LET ITRUNC=l
172 LET NCOUNT=O
173 FOR I=I TO NCELLS, LET HISTV(I)=O
174 FOR I=l TO NDATA DO
175 LET X=XINV(I)
176 CALL UPDT.HIST(X,NCELI,S,ITRUNC,XHMIN,DELXHISTV(*)) YIELDING N
177 ADD N TO NCOUNT
178 LOOP ''OVER (I) DATA POINTS
179
180 ''TRANSFORM HISTO FREQUENCIES TO GET NODAL VALUES FOR A NEURAL NET,
181 1'

182 ALWAYS
183 'J4'IF NCOUNT LE 0
184 PRINT I LINE THUS
TROUBLE IN GETTING HISTOGRAM COUNT. TOTAL COUNT 0.

186 STOP
187 OTHERWISE
188 FOR I=l TO NCELLS DO
189 LET NODEV(I)=HISTV(I)/NCOUNT + 0.1
190 IF NODvV(I) > 0.9
191 PRINT 2 LINES WITH INODEV(I)
192 THUS
TROUBLE. Error in normalizing for neural-net input nodes.
NODEV(**) = *.***

195 STOP
196 OTHERWISE
197 LOOP ''OVER (I) HISTOGRAM CELLS
198
199 ''DETERMINE WHETHER DENSITY OF X IS UNIMODAL OR MULTIMODAL.
200
201 PRINT 3 LINES WITH TITLE,XHMIN,XHMAXNCOUNT,NDATA
202 THUS
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SUBJECT: ****N*N****

Min X in Histogram: **.* * Max X in Histograi: . 0
Total Frequency in Histogram: **** Total RVs Generated: ***

206 CALL NID.NET GIVEN 1,NODEV(*) YIELDING UMOUT
207 PRINT I LINE WITH UMOUT
208 THUS

Output node for modality of density is *N*

210 "
211 ''DETERMINE WHETHER DENSITY REPRESENTS A MIXTURE MODEL.
212 ''
213 SKIP 1 LINE
214 CALL NID.NET GIVEN 2,NODEV(*) YIELDING UMOUT
215 PRINT 1 LINE WITH UMOUT
216 THUS
Output node for stochastic components is .**

218 SKIP 1 LINE
219 PRINT I LINE THUS
220 OTHER INPUTS WANTED9 (Y OR N).
221 READ ANSWER
222 IF SUBSTR.F(ANSWER,1,1) = "Y" OR SUBSTR.F(ANSWER,1,1) ="y

223 RELEASE XINV(*)

224 GO TO LO
225 OTHERWISE
226 STOP
227 END ''RUN.ID.NET

I ROUTINE NID.NET GIVEN IA, XINV YIELDING UMOUT
2 t
3 ''Program calculates attributes of a one-dimensional density function from
4 'tNl-cell histogram (scaled), using a neural network. Input layer of the

5 ''network contains Ni nodes; the middle layer contains N2 nodes; and the
6 ''output layer contains one node. Nodal architecture permits each input
7 ''node to be connected to each node of the middle layer. The output node
8 ''is, in turn, connected to each node of the middle layer. The attribute
9 ''represented by the output nodal value UMOUT depends upon the value of
10 ''the integer flag IA. If IA = 1, the output encodes modality of the
11 ''probability density--O.1, for unimodal and 0.9 otherwise. If IA = 2,
12 ''the output node encodes number of stochastic components in density
13 ''mixture model--O.l for one component and 0.9 otherwise. Input nodal
14 ''values are contained in vector XINV, representing scaled frequencies
15 ''in a histogram of the data. Use of program for data samples less than
16 ''about 150 is not recommended. The two-argument SIGMOID function is
17 ''required. Also, two files of weights are necessary--NETS.WT2.DATA
18 ''and NETS.WT4.DATA.
19
20 DEFINE ANSWER,FILWNAM AS TEXT VARIABLES
21 DEFINE I,IA,IPRINT,J,K,LLAYERS,M,N,NWTS AS INTEGER VARIABLES
22 DEFINE NV AS AN INTEGER, I-DIMENSIONAL ARRAY
23 DEFINE PARMV,XINV AS REAL, 1-DIMENSIONAL ARRAYS
24 E IINE K AS A REAL, 2-DI'MENSIONAL ARRAY
25 DEFINE WTA AS A REAL, 3-DIMENSIONAL ARRAY
26 o
27 ''DEFINITIONS OF ARRAYS:
28 t
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29 ''XINV(I) VALUE OF THE Ith NODE IN THE INPUT LAYER (NUMBER 1).
30 ''XA(K,I) VALUE OF THE Ith NODE IN LAYER K, K=I (input) TO LAYERS.
31 ''WTA(K,I,J) - WEIGHT ON ARC BETW Ith NODE OF LAYER K+I AND Jth NODE OF
32 LAYER K, FOR K=I TO LAYERS-i, I=I TO NV(X+1),J=l TO NV(K).
33
34
35 ''DEFAULT VALUES.
36
37
38 ''THE FOLLOWING FILES CONTAIN WEIGHTS FOR 1-D NETWORKS OF 3 LAYERS EACH
39 ''WITH LAYER 1 HAVING 20 INPUT NODES, LAYER 2 (MIDDLE LAYER)
40 ''CONTAINING 7 NODES, AND LAYER 3 CONTAINING A SINGLE OUTPUT NODE.
41 ''NETS.WT2.DATA - to determine number of stochastic components. This
42 ' weight set has proven successful in all instances of
43 unimodal data with one component. In those instances of
44 challenge Sets of bimodal data with two components, the
45 weights yield good predictability. In the case of uni-
46 modal densities with two components, the weights have
47 been less successful than in the other cases.
48 ''NETS.WT4.DATA - to determine modality of the population density. If
49 ' value of the output node exceeds 0.5, a multimodal
50 ' density is implied; otherwise, density is predicted as

unimodal.
51

52 LET IPRINT=O ''FOR NO PRINT
53 LET LAYERS=3
54 RESERVE NV(*) AS LAYERS
55 RESERVE PARMV(*) AS 4 ''PARAMETERS OF THE SIGMOID FUNCTION
56 LET PARMV(I)=O.O ''LOCATION
57 LET PARMV(2)=1.O ''SCALE
58 LET PARMV(3)=O.O ''MIN VALUE
59 LET PARMV(4)=I.O ''MAX VALUE
60 RESERVE XA(*,*) AS LAYERS BY *
61 RESERVE WTA(*,*,*) AS LAYERS-I BY
62 LET NV(I)=20 ''DEFAULT
63 LET NV(2)=7 ''DEFAULT
b4 LET NV(3)= ''DEFAULT
65
66 ''CHECK FOR VALID INPUTS.
67 "
68 IF IA LE 0 OR IA > 2
69 PRINT 1 LINE WITH IA
70 THUS
INVALID INPUT TO ROUTINE NlD.NET. IA

72 STOP
73 OTHERWISE
74 IF DIM.F(XINV(*)) NE 20
75 PRINT 1 LINE THUS
INVALID DIMENSION OF THE INPUT VECTOR IN ROUTINE N1D.NET.

77 STOP
78 OTHERWISE
79 IF IA:I
80 LET FILWNAM "NETS.WT4.DATA"
81 OTHERWISE
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82 LET FILWNAM = "NETS.WT2.DATA"
83 ALWAYS
84 to
85 ''RESERVE ARRAYS.
86 t

87 FOR K=l TO LAYERS, RESERVE XA(K,*) AS NV(K)
88 FOR K=l TO LAYERS-i, RESERVE WTA(K,*,*) AS NV(K+1) BY NV(K)
89 "
90 ''MOVE INPUT NODAL VALUES TO XA.
9 1 "

92 FOR I=I TO NV(1), LET XA(I,I)=XINV(I)
93 "
94 ''OPEN UNIT 4 FOR NETWORK WEIGHTS.
95 t'

96 OPEN UNIT 4 FOR INPUT,
97 OLD,
98 FILE NAME IS FILWNAM
99 RECORD SIZE IS 80
100 USE UNIT 4 FOR INPUT
101 LET NWTS=O
102 FOR K=I TO LAYERS-i DO
103 LET M:NV(K+1)
104 LET N=NV(K)
105 ADD M*N TO NWTS
106 FOR I=l TO M, FOR J=l TO N, READ WTA(K,I,J) USING UNIT 4
107 LOOP ''OVER (K) LAYERS
108 CLOSE UNIT 4
109 IF IPRINT=I
110 SKIP 2 LINES
111 PRINT 5 LINES WITH FILWNAM,LAYERS,NWTS
112 THUS
File name for network weights: H

NETWORK ARCHITECTURE:
Total Layers in Network: **

Total Number of Weights: *K *W*

118 ALWAYS
119 FOR K=l TO LAYERS-i DO
120 LET M=NV(K+1)
121 LET N=NV(K)
122 FOR I=l TO M DO
123 LET SUM=O.O
124 FOR J=l TO N DO
125 ADD WTA(K,I,J)*XA(K,J) TO SUM
126 LOOP ''OVER (J) BCTTOM NODES
127 LET XA(K+I,I)=SIGMOID(SUM,PARMV(*)) ''K+IST LAYER NODES
128 LOOP ''OVER TOP NODES
129 LOOP ''OVER (K) LAYERS
130 LET UMOUT=XA(LAYERS,I)
131 to
132 ''PRINT OUTPUT.
133
134 IF IPRINT=I
135 IF IA=I
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136 LET ANSWER = *modality of density'
137 OTHERWISE
138 LET ANSWER = 'stochastic components*
139 ALWAYS
140 SKIP 1 LINE
141 PRINT I LINE WITH ANSWERUMOUT
142 THUS
Output node for ***NN** = *.N*M

144 ALWAYS
145 RELEASE PARMV(*)
146 RELEASE NV()

. 147 RELEASE XA(*,*)
148 RELEASE WTA(*,*,*)
149 RETURN
150 END ''N1D.NET

1 FUNCTION SIGMOID (X, PARMV)
2
3 ''Function calculates the sigmoidal value with argument X and parameter
4 ''vector PARMV. There are four elements in PARMV(*): (1) the location
5 ''or bias parameter for X, (2) scale parameter for X, (3) min value of
6 ''the function, and (4) max value of the function. The function, f(x),
7 ''is given by:
8
9 ' (PARMV(4)-PARMV(3))/(I + exp -[(X-PARMV(l))/PARMV(2)]) + PARMV(3)
i0
11 ''The function may be used as a smooth limiter for variable X, taking on
12 ''value PARMV(3) + (PARMV(4)-PARMV(3))/2 when z = (X-PARMV(1))/PARMV(2)
13 ''is zero, and approaching PARMV(3) as z approaches -inf and PARMV(4)
14 ''as X approaches +inf.
15 ''Note that f(z) is quite linear over the region -0.5 < z < 0.5. A
16 ''noticeable nonlinearity develops for abg(z) ) 0.7, approximatel;.
17
18 DEFINF FLAGU AS AN INTEGER VARIABLE
19 DEFINE PARMV AS A REAL, 1-DIMENSIONAL ARRAY
20 LET FLAGU:l
21 IF FLAGU=l
22 RETURNW r""ITH, 1.0/(1.0 + EXP.F(-X))
23 OTHERWISE
24 IF PARMV(2) LE 0.0
25 PRINT 1 LINE THUS
INPUT ERROR TO FUNCTION SIGMOID. SCALE PARAMETER IS L.E. 0.

27 STOP
28 OTHERWISE
29 LET Z=(X - PARMV(1))/PARMV(2)
30 RETURN WITH PARMV(3) + (PARMV(4) - PARMV(3))/(1.0 + EXP.F(-Z))
31 END ''FUNCTION SIGMOID

1 ROUTINE UPDT.HIST(X,NCELLS.ITRUNC,XMIN,DELXHISTV) YIELDING NCOUNT
2 l
3 ''Routine updates frequency count in the histogram HISTV to include the
4 ''random variable X. Number of cells in the histogram is NCELLS, The
5 ''min (lower-limit) of the independent variable is XMIN and cell width
6 ''or independent-variable increment is DELX. Independent variable is con-
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7 ''sidered continuous and HISTV is discrete. The vector HISTV() is
8 ''dimensioned NCELLS. A cumulative counter NCOUNT is increased by 1 if
9 ''either of these conditions holds: (a) flag ITRUNC is set to 0, or (b)
10 ''X le maximum cell upper bound, XMIN + NCELLS*DELX.
11 it

12 DEFINE ITRUNC,K,NCELLS,NCOUNT AS INTEGER VARIABLES
13 DEFINE HISTV AS AN INTEGER, 1-DIMENSIONAL ARRAY
14 FOR K:I TO NCELLS DO
15 LET XUP=XMIN + DELX*K
16 IF X LE XUP
17 ADD 1 TO HISTV(K)
18 ADD 1 TO NCOUNT
19 RETURN
20 OTHERWISE
21 LOOP ''OVER (K) HISTOGRAM CELLS
22 IF ITRUNC:O
23 ADD 1 TO HISTV(NCELLS)
24 ADD 1 TO NCOUNT
25 ALWAYS
26 RETURN
27 END ''OF ROUTINE UPDT.HIST

1 ROUTINE DYQUANT (P, QV. N, XN, NXV)
2
3 ''Program calculates the P-quantile from a set of observations presented
4 ''dynamically (as generated). Quantile is updated after each observation
5 ''is made. The number (N) of newest observation and its value (XN) are
6 ''specified by the calling program. Ref to method is made to an article
7 ''in Communications of the ACM, Vol 28, No 10, Oct 1985: Raj Jain and
8 ''Imrich Chlamatac, 'The P-Squared Algorithm for Dynamic Calculation of
9 ''Quantiles and Histograms Without Storing Observations', p. 1076 ff. A
10 ''set of five 'markers* of RV quantiles are stored in QV(W) and a set of
11 ''five 'horizontal positions' for markers are stored in NXV(*). Markers
12 ''are used to locate the real-valued quantiles. These are defined as:
13 ''QV(1) --- minimum value over all RV observations currently made.
14 ''QV(2) ___ lowest middle marker, corresponding to the P/2 quantile.
15 ''QV(3) --- desired P quantile.
16 ''QV(4) ___ highest middle marker, corresponding to (1 + P)/2 quantile.
17 ''QV(5) --- maximum value over all RV observations currently made.
18 o

19 ''Routine is called after each observation is made with the number and
20 ''value of the observation. First five observations are sorted in ascend-
21 'ing order and placed in QV(). Next (Nth) observation is given in XN.
22 ''A vector of 'horizontal' marker positions, NXV(*), is maintained by the
23 ''routine. After the Nth observation, NXV(i) = number of observations
24 ''(approx) whose value is l.e. QV(i), i = 1, ..., 5.
25 I
26 DEFINE I,J,K,N AS INTEGER VARIABLES

27 DEFINE QV AS A REAL, 1-DIMENSIONAL ARRAY
28 DEFINE DNV AS A REAL, SAVED, 1-DIYMENSIONAL ARRAY
29 RESERVE DNV(*) AS 5
30 DEFINE NXV AS AN INTEGER, I-DIMENSIONAL ARRAY
31 IF N > 5
32 GO TO LO
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33 OTHERWISE
34 IF N=l
35 LET QV(1)=XN
36 FOR I=l TO 5, LET NXV(I)=I
37 LET DNV(1)=1.O
38 RETURN
39 OTHERWISE
40 IF N=2
41 IF XN ) QV(1)
42 LET QV(2)=XN
43 OTHERWISE
44 LET QV(2):QV(1)
45 LET QV(I)=XN
46 ALWAYS
47 RETURN
48 OTHERWISE
49 IF N=3
50 IF XN ( QV(1)
51 LET QV(3)=QV(2)
52 LET QV(2)=QV(1)
953 LET QV(1)=XN
54 RETURN
55 OTHERWISE
56 IF XN > QV(2)
57 LET QV(3)=XN
58 RETURN
59 OTHERWISE
60 LET QV(3)=QV(2)
61 LET QV(2)=XN
62 RETURN
63 OTHERWISE
64 IF N=4
65 IF XN ( QV(1)
66 LET QV(4)=QV(3)
67 LET QV(3)=QV(2)
68 LET QV(2)=QV(1)
69 LET QV(1)=XN
70 RETURN
71 OTHERWISE
72 IF XN > QV(3)
73 LET QV(4)=XN
74 RETURN
75 OTHERWISE
76 IF XN < QV(2)
77 LET QV(4)=QV(3)
78 LET QV(3)=QV(2)
79 LET QV(2)=XN
80 RETURN
81 OTHERWISE
82 LET QV%4)=QV(3)
83 LET QV(3)=XN
84 RETURN
85 OTHERWISE ''N=5
86 IF XN ( QV(1)* B-li



87 FOR I=I TO 4, LET QV(5-I+1)=QV(5-I)
88 LET QV(1)=XN
89 RETURN

90 OTHERWISE
91 IF XN > QV(4)
92 LET QV(5)=XN
93 RETURN
94 OTHERWISE
95 IF XN < QV(2)
96 FOR 1=1 TO 3, LET QV(5-I+1)=QV(5-I)
97 LET QV(2)=XN
98 RETURN
99 OTHERWISE
100 IF XN < QV(3)
101 FOR I=1 TO 2, LET QV(5-I+I)=QV(5.-I)
102 LET QV(3)=XN
103 RETURN
104 OTHERWISE
105 LET QV(5)=QV(4)
106 LET QV(4)=XN
107 RETURN
108 ''
109 ''CALCULATE THE DESIRED MARKER POSITIONS: DN2, DN3, DN4.
110 11
Ill 'LO'LET NM1=N-1
112 LET DNV(1)=I.O
113 LET DNV(2)=O.5*P*NMI+1.O
114 LET DNV(3)=NM1*P+1.O
115 LET DNV(4)=0.5*(I.O+P)*NM1+1.O
116 LET DNV(5)=N
117 IF XN ( QV(1)
118 LET QV(1)=XN
119 LET K=I
120 GO TO LI
121 OTHERWISE
122 IF XN > QV(5)
123 LET QV(5)=XN
124 LET K=4
125 GO TO Li
126 OrHERWISE
127 -
128 ''FIND CELL K SUCH THAT QV(K) LE XN ( QV(K+1)
129
130 FOR K=I TO 4 DO
131 IF QV(K) LE XN AND XN < QV(]:+I)
132 GO TO Li
133 OTHERWISE
134 LOOP ''OVER K
135 IF XN=QV(5)
136 LET K=4
137 ALWAYS
138 ''
139 ''INCREMENT POSITIONS OF MARKERS K+1 THRU 5.
140
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141 'L1'FOR I=K+ TO 5, ADD 1 TO NXV(I)
142 ''
143 ''ADJUST HEIGHTS OF MARKERS 2 THRU 4.
144 ''
145 FOR I=2 TO 4 DO
146 LET J=O ''TO INDICATE SIGN OF ADJUSTMENT
147 LET D=DNV(I)-NXV(I)
148 IF D GE 1.0 AND NXV(I+1) > NXV(I)+1
149 LET J=l
150 GO TO L2
151 OTHERWISE
152 IF D LE -1.0 AND NXV(I-1) < NXV(I)-l
153 LET J= -1
154 'L2' LET QI=QV(I)+J/(NXV(I+1)-NXV(I-1))*((NXV(I)-NXV(I-1)+J)*
155 (QV(I+1)-QV(I))/(NXV(I+1)-NXV(I))+(NXV(I+1)-NXV(I)-J)*
156 (QV(I)-QV(I-1))/(NXV(I)-NXV(I-1)))
157 ''
158 ''TRIAL VALUE OF QV(I) IS QI.
159
160 IF QV(I-1) < QI AND QI ( QV(I+1)
161 LET QV(I)=QI
162 OTHERWISE ''USE LINEAR FORM TO ADJUST QV(I)
163 LET QV(I)=QV(I)+J*(QV(I+J)-QV(I))/(NXV(I+J)-NXV(I))
164 ALWAYS
165 ADD J TO NXV(I)
166 ALWAYS
167 LOOP ''OVER I
168 RETURN
169 END ''ROUTINE DYQUANT
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