MEi® FILE COPY
SA-MR-9004

AD-A224 752

STATISTICAL DECISIONS
UTILIZING NEURAL NETS

MR. JACK MANATA
MR. GEORGE SCHLENKER

30 MAY 1990

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED.

U.S. AkKMY ARMAMENT,
MUNITIONS AND CHEMICAL COMMAND
' SYSTEMS ANALYSIS OFFICE
ROCK ISLAND, ILLINOIS 61299-6000

90 08 61 018

AD




DISPOSITION

DESTROY THIS REPGRT WHEN NO LONGER NEEDED. DO NOT RETURN
TO THE CRIGINATOR.

DISCLAIMER

THE RESULTS AND CONCLUSIONS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS OFFICIAL DEPARTMENT OF THE ARMY OF
SUBORDINATE COMMAND POSITION.

P ——




SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
- Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
) SA-MR-9004
o 4
6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 73. NAME OF MONITORING ORGANIZATION
(If applicable)
L Systems Analysis Office AMSMC-SA
6c. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and ZIP Code)
) U.S. Army Armament, Munitions and Chemical Coémand
3 Rock Island Arsenal
2 Rock Island, IL 61299-6000
. 8a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
3 ORGANIZATION (If applicable)
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
5 PROGRAM PROJECT TASK WORK UNIT
3 ELEMENT NO. NO. NO. ACCESSION NO.
‘ 11 TITLE (Include Security Classification)
3 Statistical Decisions Utilizing Neural Nets
i 12 PERSONAL AUTHOR(S)
5 Messrs. Jack Manata and George Schlenker
’i 3a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Memorandum FrRom Jan 90 10 Mar 90 1990, May 45
3 16, SUPPLEMEMTARY NOTATION
17. COSAT! CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUs-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

; This report documents the development of neural nets that determine if the probability
distribution for sample data is unimodal or multimodal and if there is one stochastic
component or more than one stochastic component.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
: BI UNCLASSIFIED/UNLIMITED ] SAME AS RPT.  [CJ DTIC USERS
E 2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYNMBOL
3 Mr, George Schlenker - (309) 1825668 LAMSMC=SAS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE




‘ kx%%%  CONTENTS k¥

Paragraph Page
3 Ligt of Tables . + « « v v v v v v v« ¢ ¢« v e e i
1

List of Figures . . . « « +« « v v v v v 0 v 0w e 0 iii

! 1 SUMMATY  + v v v v v v e w e e e e e e e e e e e 1
2 Neural Network Digcuggion . . . . . . . . .« . « .+ .+ . . 1
3 Methodology . . + + « « v v v v 0 e e e e e e e 4
4 Availability of Neural Networks . . . . . . . . . .. 16
5 Results . . . . . v . v oLy e e e e e 16
6 Conclusions . . . . v . v . 00 o0 e e s e e e e e e 17

Appendix A, Implementation of Neural Networks Into an
Expert System e e e e e e e e e e e A-1

3 Appendix B. Neural Networks for a Statistical Advisor
‘ System: Simscript Computer Source Program B-1

Distribution

DTIC r1AB
Unannounced O
Justification

7\“(2‘(-2-&‘350" FO'
— - *
NTIS  CRA&I é
O

By

e x n

Distribution |

Availability Codes

Avail and | or
Oist Special
)
fq




L ek by

T T T T ey

T —

(8)]
(=]

A-2

LIST OF TABLES

Connection Weights .

Listing of Network Architectures
Attempted

Training Sets
Test Sets

Training Sete for Networks to Classify Samnles of Density
Functiong With Respect to Modaliiy and Numter of Components

Parameters Which Characterize the Probability Distributions
Used 1n Producing Training Sets

Results of Numerical Experiments in Testing Neural Networks
With dUnimodal, One-Component Distributions .

Results of Numerical Experiments in Testing Neural Networks
With Unimodal and Bimodal, Two-Component Distributions

11

A-4

A-6




LIST OF FIGURES

Network Architecture .

Examples of Network Architecture .

Unimodal Histogram One Stochastic Commponent .
Theoretical Probability Density

Unimodal Histogram Two Stochastic Components .

Theoretical Distribution Unimodal Density With Two Stochastic
Components .

Multimodal Histogram .

Theoretical Density Multimodal . . . .

111




SUBJECT: Statistical Decisions Utilizing Neural Nets.

1. Summary:

Neural networks were developed that accurately determine the stati-tical
characteristics: modality and number of stochastic components of under.ying
probability distribution(s) for sample data. Sample data examples, used %o
Leach the neural nets were generated utilizing either a single beta distri-
bution or a mixture of beta distributiong. Once the neural net learned to
distinguich between unimodal and multimodal examples and also between unimodal
and mixture densities, they were challenged with unknown test cases. The test
cases were also generated from either a single beta distrabution or a mixture
of beta distributions. Therefore the initial test results apply to a
restricted class of Aistributions having bounded domains.._However these
trained networks were furnished to Mr. Schlenker who challenged the networks
with sample data from distributiong other than beta, thus widening the appli-
cation domain of the networks. An explanation of this additional work 1is
detailed in appendix A,

- -

The initial testing of the neural networks consisted of 40 unknown sample
data examples generated utilizing beta distributions. The results of these
tests are: (1) correctly identified 39 out of the 40 ag being either
upimodal!l or multimodal, an accuracy of 97.5 percent. This exceeds the
accuracy of vurrently available statigtical methods; (2) correctly
1dentified 36 out of 40 as having either one component or more than one
component, an accuracy of 90 percent..There are no statistical methods
available for determination of componehts. For the larger class of
distributions, the corresponding accuracy rates are 93 percent and 8l percent,

Mr. Manata's work in developing the neural networks was originally
published 1n memorandum report SA-MR-9002. Mr. Schlenker's work on the
extensions was originally publigshed in memorandum report SA-MR-9003. But,
since thege two reports are interrelated, they are being consolidated in this
report.

2. Nevural Network Discussion:
a. Knowledge:

There are at least three ways of representing knowledge in a computer
environment: staniard computer programs, expert systems, and neural networka.

A standard program hag two types of knowledge: 1ngtructiong, and the
value of the variables used by the program If a user wants to know what
knewledge the computer conbains, the ligt of instructionz and the current
value of the variables provides this information.

An expert system has three types of knowledge: (1) if - then rules,
vv) imytial facts and beliefg, (3) conclusions generated by the 1f - then
riles Lz in the standard pregram 2 uger con doterming the sysbems knowlsdgs

by li1sting the current rule, facte, b~ iefs, and the value of any variables
that the system uses.




i

Neural networks contain two types of knowledge: the network, nodes
and the connections between nodes, and the welghts associated with cach
connection, 1If the user hag a question concerning the computer’s knowledge,
the network and the weights are available. But, the user would not find 1%
easy to ascertain what this knowledge has to do with solving the problem. As
an example of neural network knowledge, figure 1,0 shows the type of network
that was used to solve the statistical decigsion problem, and table 1.0 1s a
partial listing of the weight values.

FIGURE 1.0
NETWORK ARCHITECTURE

TABLE 1.0
CONNECTION WEIGHTS

MIDDLE LAYER NODES

1 2 3
INPUT LAYER NODES
1 -. 175 -.890 -.263
2 -.479 +.415 -2.1717
3 -1.117 -1.003 +6.535
4 -1.,123 +.282 -7.678

OUTPUT LAYER NODE
1 ¢
MIDDLE LAYER NODES i

1 +.88¢€ '
2 -.849
3 +19.521 |
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b. Neural Networks:

Neural networks, of the type shown in figure 1.0, have three or more
layers of nodes with the nodes of one layer connected to all the nodes of the
next layer. Neural network problem solving is initiated by providing the
first layer, the input layer, with a vector of values, the input vector,
containing information which describes the problem to be solved. Each input
node receives one component of this vector and feeds it into the connections
between itself and every middle layer node. The connections multiply these
components, by the connection weightd, and deliver the modified component
values to the middle layer nodes. Each middle layer node gums itvs incoming
valued and operates on the sum with an activation function, usually a sigmoid
function. This generates a nodal output value which isg furnished to the
connections between the middle layer nodes and every output node. The multi-
plication process that occurred between the input layer and middle layer is
repeated between the middle and output layers. The output nodes sum the
incoming values, operate on the sum with the activation function, and generate
output values. These output values are the answer to the the problem.

Before a network can solve a specific problem it has to be taught how
to solve the set of problems of which the specific problem is a member. This
requires that the network be furnished representative examples of the problem
get, and the answer for each example. During training, the network compares
its answer with the correct answer. If its answer is within a specified range
of the correct answer, the network is congidered to have "learned” to solve
the set of problems., This, delta value, get prior to training, is the maximum
error, between the correct and network answers, that the developer will
accept. Delta is usually set at 0.1 but it can be any value greater than zero
and less than one. Until thig criterion ig met, the network back propagates
the actual error through the network to modify the connection weights. This
feed-forward-back-propagation process continues until the network has achieved
"learning’ as defined by convergence to a given limit. Once the network has
“learned,” it is tested to determine its accuracy.

c¢. Neural Net Simulation:

Neural networks are a parallel processing technique. But, they can be
emulated on sequential computers. Thisg is accomplished by utilizing sgimula-
tion software. AMSMC-SA0 hasg gimulation software (NETS) developed by NASA for
IBM-compatible PCs,

d. Statistical Decision Making:

Statistical aids utilizing neural networks were suggested to Mr. J.
Manata of AMSMC-SAO by Mr. G. Schlenker of AMSMC-SAS. The statistical
questions concerned the modality, and the number of stochastic components (the
number of unimodal components in a probability mixture model) of probability
digtributiong producing sample data, Statigtical methods exigt for deter-
mining modality but not for number of components.




3. Methodology:

a. Net Architecture:

The sample data was distributed over 20 histogram cells anticipating
that the neural networks would be used with samples of 200 or more data
pointg; therefore, 20 cells seemed a readonable number %o assure an adequate
population for each cell. The number of output nodes was set at either one or
two depending on the type of problem the network was required to solve. If
the network was required to solve a modality or component problem, the number
of outputs was one. If the network wadg required to solve two problems,
modality and components, the number of outputs was two. The number of middle
layer nodes and the connections between the input layer, the middle-layer,
and the output layer was determined by trial and error. Nineteen net archi-
tectures were tested. Table 2.0 lists the different architectures, and figure
2.0 showg examples of the architsétures.

The architecture that worked the best had twenty input nodes, seven
middle nodes, and one or two output nodes. An example of this architecture is
shown in figure 2b.

NUMBER OF NUMBER OF {TOTAL NUMBER:NUMBER OF ! NUMBER OF 1 FIGURE
INPUT NODES:MIDDLE LAYERS:OF MIDDLE ‘MIDDLE LAYER:OUTPUT NODES:
! 'LAYER NODES INODES PER : :
i : iMIDDLE LAYER! :
20 : 0 i 0 ! 0 : 2 i _8a
20 i 1 i 3 i 3 : 2 i 8b
20 i 1 i 4 : 4 : 2 i _8b ]
20 : 1 i 5 ' 5 : 2 i 8b ;
20 : 1 i 1 : 7 ] 2 1 8b
20 : 1 : 9 ! 9 : 2 i _Bb
20 i 1 i 10 : 10 : 2 i 8b
20 i 1 i 11 i 11 i 2 i 8b
20 : 1 i 12 : 12 : 2 i 8db
20 : 2 i 7 : 4,3 : 2 i8¢
20 i 2 : 7 i 3,4 i 2 i 8¢
20 ; 2 i 7 i 4,3 i 2 i 8d
20 i 2 : 7 i 3,4 : 2 i_8d :
20 : 2 : 7 : 4,3 : 2 i __8e
20 i 2 : 7 i 5,2 : 2 8¢
20 : 2 : 7 g 2,5 i 2 i8¢
20 : 2 i 7 : 5,2 i 2 i _8e
TABLE 2.0

LISTING OF NETWORK ARCHITECTURES ATTEMPTED
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FIGURE 2.0
EXAMPLES OF NETWORK ARCHITECTURE




b. Generation of Training and Test Data Sets:

The training sample data distributions, generated by Mr. Schlenker,
were developed by a Monte-Carlo selection of random variables from beta
distributions or mixtures of beta distributions [al. Beta distributions were
used because they provide the capability for the generation of a variety of
dengity function shapes, and they have a well-defined finite domain.

Each sample congisted of 400 data points which were distributed over
20 histogram cells. Two separate training sets were generated; one set had
examples containing sampling error, noige, and the other, an i1dealized set,
did not. The 1aealized case represents an essentially infinite sample. The
use of two training sets was to determine if the network was more accurate
when trained with noisy or idealized data.

Mr. Schlenker also generated test examples utilizing one or more beta
digtributions, plug one example from a truncated weibull distribution. The
number of data points in the test examples varied between 150 and 3200. Tatle
3.0 lists the training setz and table 4.0 lists the test sets. Table 5.0
ghows the location of the modes and provides a relative measure of their
separation in terms of the standard deviation. Additionally, the coefficient
of skewness (beta) of the distrabution ic shown to suggest the range of this
parameter that the network had to recognize. With the exception of seven
sets, all the sets were generated using a Simseript random number seed index
1.

Table 6.0 lists the parameter values of the beta mixture which produce
each set. For the unimodal, one-component sets, the threshold parameter s
always 0, and the upper limit 1s 1; i.e., the distribution form is standard-
1zed beta. In the case of two stochastic componentsg, either one or two modes
are produced, depending on the parameters of each stochastic component and on
the mixture parameter (r). In all cages, save two, the threshold and limit
parameters are 0 and 0.7, for component 1, and 0.3 and 1.0 for component 2.
The two exceptions are sets HM36 and HM4l. For HM36 these parameters are (0,
0.5), for component 1, and (0.3, 1.0) for component 2. For HM41 these para-
meters are (0, 0.6), for component 1, and (0.4, 1.0) for component 2. As 1s
seen, the lower and upper limits on the domain of all mixtures are 0 and 1.
These are also the respective histogram limts,

fal] The density function for a mixture of beta densities is given for the
random variable x as

Al-1 Bl-1 A2-1 B2-1
f(x) = rw (1-w) /CB(Al1,B1) + (1-r)z (1-2) /CB(A2,B2) ,

whers r 1s proportion of first component and where CB(a,b) 18 the
compiete beta function with parameters a and b, and where Al, Bl are
parameters of the first component and A2, B2 are parameters of the
second. Auxiliary variables w, z are given in terms of x as

w = (x - Th1)/(Ull - Thl) and z = (x - Th2)/(Ul2 - Th2), for w and z
limited vo vhe unit intervai. Threshold and upper limit parametlers {o
component ¢ are Thc and Ule.

-
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Scaling of Nodal Input Valued:

A requirement of the NETS is that the nodal input values lie in the
range of (.1,.9). Because of this requirement, the histogram of the training
and test examples had to be modified to lie within this range. This scaling
was accomplished by:

e = n/N + 0.1

where
e = gcaled value
N = sample size
n = i1nterval frequency
TABLE 3.0
TRAINING SETS
DISTRIBUTION USED: NUMBER OF DATA. SAMPLE i STOCHASTIC ! NUMBER OF
TO GENERATE + POINTS IN EACH: DISTRIBUTION:COMPONENTS:TRAINING SETS
TRAINING SAMPLE | SAMPLE ' ' '
ONE BETA : 400 + UNIMODAL : 1 ' 30
TWO BETAS : 400 i UNIMODAL : 2 ' 9
TWO BETAS : 400 {  MULTIMODAL . 2 ' 23
TABLE 4.0
TEST SETS
DISTRIBUTION USED: NUMBER OF DATA: SAMPLE 1 STOCHASTIC | NUMBER OF
TO GENERATE 1 POINTS, IS EACH! DISTRIBUTION:COMPONENTS:TEST SETS
TEST SAMPLE ! SAMPLE : ' :
ONE BETA : 150 i UNIMODAL : 1 : 4
ONE BETA : 200 i UNIMODAL ' 1 ' 2
ONE BETA g 400 : UNIMODAL : 1 ' 13
ONE WEIBULL : 3200 1 UNIMODAL : 1 : 1
TWO BETAS : 400 i UNIMODAL ' 2 ' 9
TWO BETAS ' 3200 i UNIMODAL ' 2 ' 2
TWO BETAS ' 400 i+ MULTIMODAL ! 2 : 9




TABLE 5.0 Training Sets for Networks to Classify Samples of Density
Functions with Respect to Modality and Number of Components

Set Name Modes Components Loc Modes  Std Dev Skewness Seed

HUO1 unimodal 1 0.00, ~~-- 0.200 1.200 1
03 0.34, ---- 0.200 0.286
05 0.66, ---- 0,200 ~0.286
09 0.00, ---- 0.194 0.86!
13 0.34, -~-- 0.200 0.286 3
15 0.66, =---- 0.200 ~0.28¢
19 0.00, ---- 0.104 0.861
22 0.25, -=--- 0.140 0.488
24 0.50, ---- 0.14¢ 0.000
35 0.50, ---- 0.121 0.000
37 0.70, ---- 0.131 -0,364
HNOE bimodal 2 0.35, 0.65 0.179 0.000 1
11 0.3%5, 0.65 0.176 0.237
16 0.35, 0.65 0.176 -0.237
26 0.35, 0.65 0.168 -0.476
32 0.30, 0.65 0.197 0.486
34 0.30, 0.65 0.19¢ 0.247
36 0.25, 0.65 0.222 0.242
38 0.37, 0.65 0.184 0.150
41 0.30, 0.70 0.214 0.000
44 0.35, 0.65 0.172 0.252
HM10 unimodal 2 0.50, -~-- 0.217 0.000
14 0.45, ~--- 0.198 0.168
15 0.48, ---- 0.215 0.131
18 0.62, ---- 0.188 -0.196
20 0.53, -~~~ 0.215 -0.131
22 0.35, --~- 0.173 0.436
25 0.44, ---- 0.208 0.251
27 0.65, ---- 0.173  -0.436
30 0.56, ---- 0.208 -0.251

e e M i v e e il



TABLE 6.0 Farameters Which Characterize the Frobability
Distributions Used 1n Producing Training Sets

Set Mix Component 1 Component 2
Name Param A B A B
HUO1 --- 0.6 2.4
03 --- 2.0 3.0
05 --- 3.0 2.0
00 --- 1.0 3.0
13 --- 2.0 3.0
15 --- 3.0 2.0
19 --- 1.0 3.0
22 --- 2.914 6.8
2 --- 5.878 5.878 1
35 --- 8.0 8.0
37 --- 8.0 4.0
HM06 0.5 6.0 6.0 6.0 6.C
11 0.6 6.0 6.0 6.0 6.0
16 0.4 6.0 6.0 6.0 6.0
26 0.3 6.0 6.0 6.0 6.0
32 0.6 6.0 6.0 4.0 4.0
34 0.6 4.0 4.0 6.0 6.0
36 0.5 6.0 6.0 4.0 4.0
38 0.5 6.0 6.0 4.0 4.0
H 0.5 7.0 7.0 7.0 7.0
44 0.6 7.0 7.0 7.0 7.0
HM10 0.5 2.0 2.0 2.0 2.0
i 0.6 3.0 3.0 3.0 3.0
15 0.6 2.0 2.0 2.6 2.0
18 0.4 4.0 4.0 4,0 4.0
20 0.4 2.0 2.0 2.0 2.0
22 0.7 5.0 5.0 5.0 5.0
25 0.7 2.0 2.0 2.0 2.0
27 0.3 5.0 5.0 5.0 5.0
30 0.3 2.0 2.0 2.0 2.0

d. Training Sets:

The next step in the process of developing an accurate neural net, is
the determination of the best set of training examples. The best get of
training examples 1s that combination of examples, which results in a trained
net, that provides the highest accuracy when the net is challenged with
unknown test cases.

Examples of the training sets are shown in figures 3.0 - 8.0, figure
3.0 is the histogram for a unimodal distribution with one stochastic com-
ponent; figure 4.0 1s the theoretical density for the sample; figure 5.0 1s
the histogram for a unimodal distribution with two stochastic components;
figure 6.0 1s tu. theoretical density for the sample; figure 7.0 is the
histogram for a multimodal distribution; and figure 8.0 is the theoretical
density for the sample.
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FIGURE 5.0
UNIMODAL HISTOGRAM
TWO STOCHASTIC COMPONENTS
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Independent ! Normalized Depeudent Varizble
Variable 0.1 0.2..0.3...04....5....6....7....8....9....

0.020001«

0.040001 %
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0.08000  xxxxxxx
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FIGURE 6.0
THEORETICAL DISTRIBUTION
UNIMODAL DENSITY WITH
TWO STOCHASTIC COMPONENTS
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Iindependent ! Normalized Dependent Variable

Variable 10....1,...2....3....4....5....6,...7....8....9....
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FIGURE 7.0
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MULTIMODAL HISTOGRAM
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Independent ! Normalized Dependent Variable
Variable 0....1....2....3....4....6....6....7....8....9....0
1

0.02000!

0.04000!

0.06000!

0.08000!%

0.10000! %%

0.12000) xxxxx

0.14000 ! %k xn%xxx

0.16000! %%%%%%%%%%%%
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Q.38000 1 XHHEXXEERH KK HRE R E KR I K365 KR NR NN
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0.42000! ¥ HEXEXERERRBERK AKX R KRR KRR ERRXREXRRERER XX R ¥
Q. 44000 %X XA XRERERX MR RERKREERRXERRAARRRXRRERRXRHRR
Q0,600 C I XXM EXXERXXRERFHRARERKRRKRRRHRR KX RXE RN R AR
0.48000 ! %% RXEXEERXXRXREXRRERERRRRERRXERXRR KRR R KR

O.50000 ! HERXFXEXRRMEREXNEXRREERERRRRE RN RX NN K

O.52000 1 XXX EXXRRAXXREARAXERRLHRRARRRNAK R XX

O.58000 kR XXk RRRURRRRRARERRXRERRERRRFRRR XK
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0.58000 ! EXRXRERXERRRRERAFXRRXXRRN B KKK KRR

O.60000 I kXX XXX REAKRERRERKRRRARKXERRRRE AR

0.02000 %% XEXXERKEREXRFARXERRRRKEXRERRRXK R
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4. Availability of Neural Networks:

There are three ways of obtaining working versions of the statistical aids
neural networks:

a. NETS version 2 is capable of generating delivery versions that can
be installed on PCs.

b. The networks can be implemented in standard computer programs
written in high-level languages.

c¢. The neural networks have been incorporated into a “statistical
expert system’ (DESCR.STATS) that is available on the PRIME computer.

The incorporation of the neural networks into the “statistical expert
gystem,’ is explained in appendix A and a listing of the computer program is
shown in appendix B.

5. Resultsg:
a. Modality:

The training set for modality, that furnished the most accurate test
results, consisted of: twelve unimodal examples with one stochastic compo-
nent, nine unimodal examples with two stochastic components, and ten multimodal
examples. This network, when challenged with unknown beta distribution test
cases, correctly identified 39 out of 40 cases, an accuracy of 97.5 percent.
This same network, when challenged with test cases generated using other
digtributiong, had an accuracy of 91 percent. These accuracies exceed the
accuracy of the current statistical method for determining modality of sample
data distributions. The accuracy of the network, trained with i1dealized
sample data which was tested using noisy beta distribution data, was 1dentical
to that trained on the noigy data.

b. Number of Stochastic Components:

The training set of stochastic components, that furnished the most
accurate test results consisted of: thirteen unimodal examples with one
stochastic component and nine unimodal examples with two components. This
network, when challenged with unknown beta distribution test cases, correctly
identified 36 out of 40 cases, an accuracy of 90 percent. Two of the errors
were the designation of one stochastic component as two, and the other two
errors were the designation of two stochastic components as one. The same
network, when challenged with test cases generated using other distributions,
had an accuracy of 81 percent. The network trained on idealized data, when
tested with noigy beta distribution data, was less accurate than the one
trained on noisy data.
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c. Combined Modality and Components:

A network was trained to furnish the combined answers, modality and
number of components when presented with a set of unknown data. The best
network, trained on noisy data, furnished correct answers for modality in 37
out of 40 tests; for number of components it furnished correct answers in 35
out of 40 tests. The network did not furnish any combined errors, a wrong
answer for modality combined with a wrong answer lor number of components.
The network trained with idealized data gave the same number of incorrect
answers for modality, 3 out of 40, but it also furnished 14 incorrect answers
out of 40 tests for number of components. This network did not furnigh any
combined errors.

d. Number of Data Pcints.

The number of data points in the test sample distributions was varied
between 150 and 3200. Within this range the accuracy of the neural networks
di1d not appear to depend on sample size.

e. Availability of Neural Networks:

The neural networks developed for modality and components are
available on the PRIME computer. It is also pogsible to develop delivery
copres of the networks for use on PCs.

6. Conclusions:

a. The neural networks developed uging NETS are capable of accurately
estimating modality and stochastic components from sample data.

b. The number of data points in a sample can be as small as 150.

¢. Neural networks that furnish just one statistical attribute were more
accurate than the one that furnished more than one.

d. Currently the modality network and the component network are available
on the PRIME computer.
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1. Implementation of Neural Networksg into an ES

A major effort was required to implement neural networks for identifying
univariate data features into the gtatistical expert gystem DESCR.STATS. A
stand-alone program (RUN.1D.NET) was written to verify and validate the net-
works for identifying modality and number of gtochastic components. Mr.
Schlenker digcovered that the error rates of both networks are quite sensitive
to the histogram limits for the data. Of course, this is no% a problem for
digtributiong, such as beta, whose domain is well defined. However, for
distributions with infinite or semi-infinite (bounded on one side) domains,
asgigning proper limits for the neural network is a nonirivial problem. After
a bit of computational experience, he found some heuristics for calculating
upper and lower limits which work well with both unimodal, one-component data
and bimodal data. Of interest is the fact that the error rates for types of
distributions such asg normal, logistic, Weibull, and lognormal are not much
greater than for the beta (and mixtures of betas), which was used exclusively
in training the networks., The algorithm for asgsigning histogram limits makes
use of the following sample statistics: average, standard deviation, minimum,
maximum, and the first and third quartiles.

2. Algorithm for Higtogram Limits for Neural Networks

The method for calculating the lower (XHEMIN) and upper (XHMAX) limits of
the histogram is sketched as follows:

If the random variable (X) represents a proportion or probability,
XHMIN = 0 and XHMAX = 1.

Otherwise, 1f X is strictly positive (but not a proportion), the lower limit
is obtained by

XHMIN=max (0, AVGX - 3 STDV), if AVGX - 4.5 SDV ¢ 0,

where AVGX and STDV are the sample average and standard deviation. When this
condition does not hold, XHMIN is calculated as shown below. The upper hisgto-
gram limit for this case isg calculated in the same manner as that shown below
for the case in which X may not be positive. If X is effectively unbounded
or, possibly, capable of taking negative values, the lower and upper limits
are calculated as follows.

XHMIN = max (XHMINO, XHMIN1, XHMINZ)

u

and

XHMAX

min (XHMAXO, XHMAX1, XHMAX2),
where the alternatives XHMINO, XHMIN1, etc. are given in terms of the minimum

(XMIN) and maximum (XMAX) of the sample as well as the sample average (AVGX),
standard deviation (STDV), lower quartile (X.25), and upper quartile (X.75).
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XHMINO = AVGK - 4.5 STDV, if thig value ¢ XMIN.

Otherwise,

XHMINO = XHMINO - 1.1 (XHMINO - XMIN).
Always

XHMIN1 = XMIN - 0.5 STDV

XHMINZ = XMIN - 0.2(X.25 - XMIN).

The alternative upper limits are

XHMAXO = AVGX + 4.5 STDV, if this value > XMAX.
Otherwige,

XHMAXO = XHMAXO + 1.1(XMAX - XHMAXO).
Always

XHMAX]1 = XMAX + 0.5 STDV

XHMAX2 = XMAX + 0.2(XMAX - X.75).

This algorithm produces higtogram limite which conservatively bound the values
XMIN and XMAX.

3. Testing of the Neural Networks

Two networks with the same architecture, but different weights, are usged
to obtain (a) an indication of multimodality and (b) an indication that the
random variable comes from a mixture model. These two attributes of each
random variable tested are displayed in tablesg A-1 and A-2. If the output
node for attribute (a) is ¢ or equal to (le) 0.5, the data are declared
unimodal; otherwise, they are multimodal. If the output node for attribute
(b) ig legs than 0.5, only one stochastic component is identified. 1In these
tables, regpective identification of attributes is designated c, for correct,
and %, for incorrect. Histograms do not always display the same attributes as
the population density. For example, a random variable with two modes in the
density may have a clearly unimodal histogram. In all cases, errorg in
modality and stochastic components are declared if the population density is
not correctly identified. Three gample sizes--800, 400, 200--are uged for
each random number seed and for each set of population parameters. In most
cages, if the results for a gample of 800 are correct, the results for the
smaller damples are as well. Mixtures of normal and logistic random variables
are found to be clasgified nearly as well ag beta mixtures on which the
networks were trained.
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TABLE A-1. Resgultg of Numerical Experimenta »n Terting Neural
Networks With Unimodal, One-Component Distributions ‘
Random Number Seed Indices | and 5
Run Result Digt'n Mean Std Dev Sample Seed
1 cec lognorm 0.47 0.187 800 5
2 cec 400
3 c¢ce¢ 200
4 c % weibull 800
5 cc 400
i 6 cc 200
7 c * gamma 800
8 cc 400
9 ¢ 200
10 cc normal 860
11 cc 400
12 cc 200
13 cc logistic 800
14 cc 400
15 c ¢ 200
16 cc lognorm 0.47 0.170 800
17 cc 400
18 c¢c¢ 200
19 cc lognorm 0.20 0.170 800
20 cc 400
21 cc 200
22 cc lognorm 0.47 0.270 800
23 cc 400
24 cc 200
25 ¢ c weibull 800
26 cc 400
27 cc 200
28 ¢ c Dbeta 0.20 0.170 800
29 cc 400
30 cc 200
31 c ¢ Dbeta 0.47 0.270 800
32 cc 400
33 cc 200
34 c » beta 0.47 0.170 800
35 ¢ « 400
36 % x 200
37 cc beta 0.67 0.270 800
38 cc 400
39 cc 200
40 c # wa1bull 800
41 c * 400
42 cc 200
43 c ¢ logigtic 200
44 cc 400
45 cc 200
Continued on next page.
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TABLE A-1.

Results of Numerical Experiments in Tegting Neural
Networks With Unimodal, One-Component Distributions

(Continuation)

Run

Result Dist'n Mean Std Dev Sample

Seed

46
47
48
49
50
51
52
53
54
55
56
57

ano0n0naQ0ononooaqaqaona
O 00000 % % Xk X x X

beta 0.47 0.170

weibull

beta 0.47 0.270

beta 0.7% 0.170

800
400
200
800
400
200
800
400
200
800
400
200

The error rates for the two attributes are:
and 13/57 (23 percent) for stochastic components.

testg in which beta mixtures were used exclusively.
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1757 (¢ 2 percent), for modes,

The error rate for the
latter attribute is seen to be larger than that estimated in the preliminary




Networks With Unimodal and Bimodal, Two-Component

TABLE A-2. Results of Numerical Experimentg in Testing Neural ‘
Distributions

Component 1  Component 2
Run Modes Result Dist’'n Mix Mean S D Mean S D Sample Seed

1 2 cc normal 0.5 0.35 0.10 0.85 0.10 800 5

2 cc 400

3 cc 200

4 2 cc 0.7 0.35 0.10 0.65 0.10 800 .
5 cc 400

5 cc 200

7 2 c ¢ logistic 0.7 0.35 0.10 0.65 0.10 800

8 cc 400

9 cc 200

10 2 [a) x ¢ 0.5 0.35 0.15 0.65 0.15 800

11 ¥ C 400

12 * C 200

13 1 c * 0.6 0.35 0.20 0.65 0.20 800

14 c ¥ 400

15 c * 200 3
16 2 cc betalb] 0.5 0.35 0.09 0.65 0.09 800

17 cc 400

18 cc 200

19 1 ¢ ¢ logistic 0.6 0.35 0.20 0.65 0.20 400 1
20 cc 200
21 2 c ¢ beta 0.5 0.35 0.097 0.65 0.097 800
22 cec 400
23 cc 200
24 2 cc 0.5 0.35 0.106 0.65 0.106 800
25 cc 400
26 cc 200
27 2 [al c ¢ 0.6 0.35 0.106 0.65 0.106 800
28 ¥ C 400
29 cc 200
30 2 {al c ¢ 0.4 0.35 0.106 0.65 0.106 800
31 cc 400
32 cc 200
33 1 cc 0.5 0.35 0.117 0.65 0.117 800
34 cc 400
35 cc 200 ]
36 1 cc 0.5 0.35 0.132 0,65 0.132 800
37 cc 400
38 cc 200 ]

Continued on next page.

[:_\] ngfnér:m ig d‘-ul’\nnf!u nnimodal altho denaity

ig di edal, rgity

{b] Threshold parameter of first beta component is 0 with upper
Iimit of 0.7. Threshold of second beta component is 0.3 with
upper limit of 1.0.
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TABLE A-2. Resulte of Numerical Experiments in Testing Neural
Networks With Unimodal and Bimodal, Two-Component
Digtributions (Continuation)

Component 1  Component 2
Run Modes Result Dist'n Mix Mean S D Mean § D Sample Seed

39 1 cce 0.5 0.35 0.156 0.65 0.156 800
40 cc 400
4] 1 cec 0.6 0.35 0.117 0.65 0.117 800
42 cc 4y -
43 cc 200
44 1 cc 0.7 0.35 0.117 0.65 0.117 800
45 cc 400
46 cc 200
47 2 c ¢ logistic 0.7 0.35 0.117 0.65 ¢.117 800
48 cc 400
49 cc 200
50 2 [a) » & 0.5 0.35 0.156 0.65 0.156 800
51 k C 400
52 % * 200
53 1 c ¥ 0.5 0.35 0.200 0.65 0.200 800
54 c * 400
55 c * 200

fal] Two modes are barely evident in the density, but are not clearly evident
1n a typical histogram.

Neural-net error rateg for the two-component distributions tested are 7/55
(13 percent), for identifying modes, and 8/55 {14 percent) for identifying
gtochastic couponents,

4. Performance Summary and Conclusions

In total 112 data sets were used to challenge the identification accuracy
of thege two neural networks. The net which identifieg modality of the popu-
lation density was correct in 93 percent (104/112) of the sets. The net for
identifying gstochastic components did not perform quite as well, yielding 8!
percent (91/112) correct respondges. Of course, these results depend strongly
upon the choice of distributions tested and %o a lesser extent upon the sample
of data drawn from each. The performance of the net fcr i1dentifying modality
was shown to be better than that for an alternative, statistically based
method., There is no known alternative for the network which identifies
gtochastic components.
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APPENDIX B
Neural Networks for a
Statistical Advisor System

Simscript Computer Source Program
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Neural Networke for a Statiagtical Advisor System

Simscrapt Computer Source Program

1 PREAMBLE ''RUN.IL.NET

% NORMALLY MODE IS REAL

3 DEFINE SIGMOID AS A REAL FUNCTION GIVEN 2 ARGUMENTS

4 END ''PREAMBLE

1 MAIN ''RUN.1D.NET

PO

3 '’ DRIVER FOR THE ROUTINE N1D.NET FOR ANALYSIS OF UNIVARIATE DATA.
4 '’ Program has been augmented to read a data file of random variables,
5 '' «create a histogram and normalize it for the neural net, and cali the
6 '' program NID.NET with appropriate input vector.

7 LR

8 '’Required Programs/Functions: DYQUANT, UPDT.HIST, SIGMOID.

g LR
10 DEFINE ANSWER,FILINAM,TITLE AS TEXT VARIABLES

11 DEFINE FLAGN,FLAGP,I,ITRUNC,J,N,NCELLS,NCOUNT,NDATA AS INTEGER

VARIABLES

12 DEFINE HISTV,NXV AS INTEGER, 1-DIMENSIONAL ARRAYS
13 RESERVE NXV(*) AS 5
14 DPEFINE NODEV,QV,XINV AS REAL, 1-DIMENSIONAL ARRAYS
15 RESERVE QV(*) AS 5 ''MARKERS FOR QUANTILES OF XINV

5 LET NCELLS=20
17 LET LSDL=3.0

18 LET USDL=4.5

19 LET WLIM=1.,1
20 RESERVE HISTV({(*) ,NODEV(#) AS NCELLS

LET LINES.V=9999

]
—

>
)

22 LET FILINAM = "RV.DATA"
23 'LO’PRINT 1 LINE WITH FILINAM

24 THUS
INPUT THE NUMBER OF DATA POINTS TO BE READ FROM *#xx»xxx
26 READ NDATA
27 RESERVE XINV(%) AS NDATA
8 "
29 ''OFEN UNIT 4 FOR INPUT OF THE RANDOM-VARIABLE DATA.
30 v
31 OPEN UNIT 4 FOR INPUT,
32 OLD,
33 FILE NAME IS FILINAM
34 RECORD 5IZE IS 80
35 USE UNIT 4 FOR INPUT
36 READ TITLE USING UNIT 4
37 FOR I-i TO NDATA, READ XINV(I) USING UNIT 4
38 CLOSE UNIT 4 ''FOR THIS INPUT
e !

40 '’ GET AVGX, STDV, XMIN, AND XMAX.
4! rr
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42 LET XMIN=RINF.C
43 LET XMAX= -RINF.C
44 LET AVGX=0.0
45 LET STDV=0.0
46 FOR I=1 TO NDATA DO
47 LET X=XINV(I)
48 CALL DYQUANT(0.5,QV(»},I X ,NXV(x))
49 LET XMIN=MIN.F (XMIN,X)
50 LET XMAX=MAX.F (XMAX,X)
81 ADD X TO AVGX
52 ADD X%%2 TO STDV
53 LOOP ''OVER (I) POINTS
54 LET AVGX=AVGX/NDATA
55 LET STDV=(STDV - NDATA*AVGX*x2)/(NDATA - 1)
56 LET STDV=SQRT.F(STDV)
57 IF QV(1) NE XMIN OR QV(5) NE XMAX
58 PRINT 2 LINES WITH QV(1),XMIN,QV(5),XMAX
59 THUS
ERROR. INCONSISTENCY IN CALCULATING MIN AND MAX. First of pair obtained
in voutine DYQUANT: ( #x%, s%xx®, %% %%%%) and ( %%%, kx¥k, ¥X%, ¥¥xx),
62 STOP
63 OTHERWISE
64 SKIP 1 LINE
65 PRINT 4 LINES WITH XMIN,XMAX,AVGX,STDV,QV(2),QV(3),QV(4)
66 THUS
Min X =  ssx%, %%x# Max X = HEK% NA¥E
Avg X = RERK KR*K S DX = k¥, %EEM
X.25 S KRR REER X.50 = %x%%, nt¥ux X.75 = nx¥e #%%%
71 IF XMIN LE 0.0
72 LET FLAGN=1 ''INDICATING THAT RV CAN BE NEGATIVE
73 LET FLAGP=0 ''INDICATING THAT RV IS NOT A PROPORTION
74 GO TO Jo
75 OTHERWISE
76 PRINT 2 LINES THUS

CAN THE RANDOM VARIABLE TAKE ON NEGATIVE VALUES OR BE TREATED AS
EFFECTIVELY UNBOUNDED FROM BELOW? (YES OR NO).

79
80
81
82
83
84
85
86
87

READ ANSWER
IF SUBSTR.F(ANSWER,1,1) = "Y" OR SUBSTR.F(ANSWER,1,1) = "y~
LET FLAGN=1
LET FLAGP=0
GO TO J0O
OTHERWISE
LET FLAGN=0
IF XMAX ¢ 1.0
PRINT 2 LINES THUS

DOES THE RANDOM VARIABLE REPRESENT A PROPORTION (PROBABILITY)? (Y OR N).
That is, must the random variable lie within the range (0, 1)?

g0
g1
92
93
04
95

READ ANSWER
IF SUBSTR.F(ANSWER,1,1) = “Y" OR SUBSTR.F(ANSWER,1,1) = "y’
LET FLAGP=1
GO TO J0
OTHERWISE
ALWAYS
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96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

LET FLAGP=0

' 'DETERMINE HISTOGRAM LIMITS.
'JO'IF FLAGP=1
LET XHMIN=0.0
LET XHMAX=1.0
G0 TO Ji
OTHERWISE
IF FLAGN=0 ''X IS STRICTLY POSITIVE
IF AVGX - USDL#*STDV > 0.0

t

''TREAT X AS EFFECTIVELY UNBOUNDED IN CALCULATING HISTO LIMITS.

GO TO J3

OTHERWISE

LET XHMINO=AVGX - LSDL*STDV

LET XHMIN1=XMIN - 0.5+3TDV

LET XHMIN2=XMIN - 0.2#{QV(2) - XMIN)

LET XHMIN=MAX.F(0.0,XEMINO,6XHMIN],6 XHMIN2)

LET XHMAX=AVGX + USDL#*STDV

IF XHMAX < XMAX
LET XHMAX=XHMAX + WLIMx (XMAX-XHMAX)

ALWAYS

' "CONSTRAINTS ON THE LIMITS.
LET XHMAX1=XMAX + 0.5%STDV
LET XHMAX2=XMAX + 0.2*(XMAX - QV(4))
LET XHMAX=MIN.F (XHMAX,XHMAX1,h XHMAX2)
GO TO J1
OTHERWISE ''RANGE OF X INCLUDES NEGATIVES OR IS EFFECTIVELY UNBOUNDED
'J3'LET XHMIN=AVGX - USDL#*STDV
IF XMIN ¢ XHMIN
LET XHMIN=XHMIN - WLIMx (XHMIN-XMIN)
ALWAYS
LET XHMAX=AVGX + USDLSTDV
IF XMAX > XHMAX
LET XHMAX=XHMAX + WLIMx (XMAX-XHMAX)
ALWAYS

' *CONSTRAINTS ON THE LIMITS.
LET XHMIN1=XMIN - 0,5*STDV
LET XHMIN2=XMIN - 0.2#(QV(2) - XMIN)
LET XHMIN=MAX.F (XHMIN,K XHMIN1,XHMIN2)
LET XHMAX1=XMAX + 0.5%STDV
LET XHMAX2=XMAX + 0.2%(XMAX - QV(4))
LET XHMAX=MIN.F (XHMAX,XHMAX1,XHMAX2)
"J1'LET DELX=(XHMAX - XHMIN) /NCELLS
IF DELX LE 0.0
PRINT 1 LINE THUS

TROUBLE WITH INPUT DATA. Calculated DELX in histogram is 0.

149

STOP
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150 OTHERWISE

151 LET ITRUNC=0

152 LET NCOUNT=0

153 FOR I=1 TO NDATA DO

154 LET X=XINV(I)

155 '

156 ''LOCATE VALUES OF X WITH RESP TO HISTO CELLS AND INCREMENT CELL FREQS.
15.7 e

158 CALL UPDT.HYIST(X,NCELLS,ITRUNC,XHMIN,DELX,HISTV(*)) YIELDING N
159 ADD N TO NCOUNT

160 LOOP ''OVER (I) POINTS

161 IF FLAGP:=1

162 GO TO J4

163 OTHERWISE

164

165 ''CHECK FOR EXCEPTIONAL COUNTS IN LAST CELL.

166 '

167 IF 2*HISTV(NCELLS) > HISTV(NCELLS-1) + HISTV(NCELLS-2) AND FLAGP NE 1
168 '

169 ''UPPER-TAIL OUTLIERS MAY BE PRESENT. TRUNCATE VALUES ABOVE XHMAX.
7o "’

171 LET ITRUNC=1
172 LET NCOUNT=0
173 FOR I=1 TO NCELLS, LET HISTV(I)=0
174 FOR I=1 TO NDATA DO
175 LET X=XINV(I)
176 CALL UPDT.HIST(X,NCELLS,ITRUNC,XHMIN,DELX,HISTV(%)) YIELDING N
177 ADD N TO NCOUNT
178 LOOP ''OVER (I) DATA POINTS
179 "
180 ' 'TRANSFORM HISTO FREQUENCIES TO GET NODAL VALUES FOR A NEURAL NET.
181 "'
182 ALWAYS
183 'J4'IF NCOUNT LE 0
184 PRINT 1 LINE THUS
TROUBLE IN GETTING HISTOGRAM COUNT. TOTAL COUNT = 0.
186 STOP
187 OTHERWISE
188 FOR I=1 TO NCELLS DO
189 LET NODEV(I)}=HISTV(I)/NCOUNT + 0.1
190 IF NODTV(I) > 0.9
191 PRINT 2 LINES WITH I,NODEV(I)
192 THUS
TROUBLE. Error in normalizing for neural-net input nodes.
NODEV(x%) = % sx#x
195 STOP
196 OTHERWISE
197 LOOP ''OVER (1) HISTOGRAM CELLS
198

15§ ''DETERMINE WHETHER DENSITY OF X IS UNIMODAL OR MULTIMODAL.
200 '

201 PRINT 3 LINES WITH TITLE,XHMIN,XHMAX,NCOUNT,NDATA

202 THUS
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SUBJECT: HRUKRERXREEENEERRNERRERKERRRERRRRRREERFERERERLERERXPRE RN
Min X in Histogram: *x %x¥x Max X in Histogranm: #x.%x#x
Total Frequency in Histogram: #xx% Total RVs Generated: #¥xx

206
207
208

CALL N1D.NET GIVEN 1,NODEV(%) YIELDING UMOUT
PRINT } LINE WITH UMOUT
THUS

Output node for modality of density is #x %x%xx

210
211
212
213
214
215
216

"'DETERMINE WHETHZR DENSITY REPRESENTS A MIXTURE MODEL.
SKIP 1 LINE
CALL N1D.NET GIVEN 2,NODEV(*) YIELDING UMOUT
PRINT 1 LINE WITH UMOUT
THUS

Output node for stochastic components is . *%xx

218
219
220
221
222
223
224
225
226
227

—
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26
27
28

SKIP 1 LINE
"' PRINT 1 LINE THUS
"' OTHER INPUTS WANTED? (Y OR N).
"' READ ANSWER
'* IF SUBSTR.F(ANSWER,1,1) = "Y' OR SUBSTR.F(ANSWER,1,1) = "y’
" RELEASE XINV(*)
" GO TO LO
*'  OTHERWISE
STOP
END ''RUN.1D.NET

ROUTINE NiID.NET GIVEN IA, XINV YIELDING UMOUT
''Program calculates attributes of a one-dimengional density function from
"'Nl-cell histogram (gcaled), using a neural network. Input layer of the
‘'network containg N1 nodeg; the middle layer contains N2 nodes; and the
''output layer containg one node. Nodal arciiitecture permits each input
''node to be connected to each node of tie middle layer. The output node
''ig, in turn, connected to each node of the middle layer. The attribute
''represented by the output nodal value UMOUT depends upon the value of
"'the integer flag IA. If IA = 1, the output encodes modality of the
''probability dengity--0.1, for unimodal and 0.9 otherwise. If IA = 2,
''the output node encodesg number of gtochastic components in density
''"mixture model--0.1 for one component and 0.9 otherwige. Input nodal
''values are contained in vector XINV, representing scaled frequencies
*'in a histogram of the data. Use of program for data samples less than
''about 150 is not recommended. The two-argument SIGMOID function is
''required. Also, two files of weights are necessary--NETS.WTIZ2,DATA
"'and NETS.WT4.DATA.

DEFINE ANSWER,FILWNAM AS TEXT VARIABLES

DEFINE I,IA,IPRINT,J,K,L,LAYERS,M,N,NWTS AS INTEGER VARIABLES

DEFINE NV AS AN INTEGER, 1-DIMENSIONAL ARRAY

DEFINE PARMV,XINV AS REAL, 1-DIMENSIONAL ARRAYS

DEFINE X4 AS A REAL, 2-DIMENSIONAL ARRAY

DEFINE WTA AS A REAL, 3-DIMENSIONAL ARRAY

‘'DEFINITIONS OF ARRAYS:
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29 ''XINV(I} ___  VALUE OF THE Ith NODE IN THE INFUT LAYER (NUMBER 1).

30 '’XA(K,I) ___ VALUE OF THE Ith NODE IN LAYER K, K=1 (input) TO LAYERS.
31 '°WTA(K,I,J) _ WEIGHT ON ARC BETW Ith NODE OF LAYER K+1 AND Jth NODE OF
32 LAYER K, FOR K=1 TO LAYERS-1, I=1 TO NV(X+1),J=1 TO NV(K).
33 L)

34 't

35 ''DEFAULT VALUES.

36 '’

37 ot

38 ''THE FOLLOWING FILES CONTAIN WEIGHTS FOR 1-D NETWORKS OF 3 LAYERS EACH
3¢ ''WITH LAYER 1 HAVING 20 INPUT NODES, LAYER 2 (MIDDLE LAYER)

40 ''CONTAINING 7 NODES, AND LAYER 3 CONTAINING A SINGLE OUTPUT NODE.

41 ''NETS.WT2.DATA _ to determine number of stochastic components. This

42 ! weight set has proven successful in all instances of
43 " unimodal data with one component. In those instances of
44 ! challenge sets of bimodal data with two components, the
45 ' weights yield good predictability. In the case of uni-
46 '’ modal dengities with two components, the weights have
47 been less guccessful than in the other cases.
48 ''NETS.WT4.DATA _ to determine modality of the population density. If
49 ' value of the output node exceeds 0.5, a multimedal
50 ' dengity is implied; otherwise, density is predicted as
unimodal.
51 L ]
52 LET IPRINT=0 ''FOR NO PRINT
53 LET LAYERS=3
54 RESERVE NV(x) AS LAYERS
55 RESERVE PARMV(x) AS 4 ''PARAMETERS OF THE SIGMOID FUNCTION
56 LET PARMV(1)=0.0 ''LOCATION
57 LET PARMV(2)=1.0 ''SCALE
58 LET PARMV(3)=0.0 ''MIN VALUE
59 LET PARMV(4)=1.0 ''MAX VALUE
60 RESERVE XA(#,%) AS LAYERS BY *
61 RESERVE WTA(#*,*,%) AS LAYERS-1 BY #
62 LET NV(1)=20 °''DEFAULT
63 LET NV(2)=7 ''DEFAULT
b4 LET NV(3)=1 ' 'DEFAULT
65 L
66 ''CHECK FOR VALID INPUTS.
67 "
68 IF TALE O OR IA > 2
69 PRINT 1 LINE WITH IA
70 THUS
INVALID INPUT TO ROUTINE N1D.NET. 1IA = #*x
72 STOP
73 OTHERWISE
74 IF DIM.F(XINV(%)) NE 20
75 PRINT 1 LINE THUS
INVALID DIMENSION OF THE INPUT VECTOR IN ROUTINE N1D.NET.
17 STOP
78 OTHERWISE
79 IF 1A=1]
80 LET FILWNAM = °"NETS.WT4.DATA®
81 OTHERWISE
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82 LET FILWNAM = "NETS.WT2.DATA®

83 ALWAYS
84 '’
85 ''RESERVE ARRAYS.
86 '
87 FOR K=1 TO LAYERS, RESERVE XA(K,*) AS NV(K)
88 FOR K=1 TO LAYERS-1, RESERVE WTA(K,*,%) AS NV(K+1) BY NV(K)
89 LN )
90 °''MOVE INPUT NODAL VALUES TO XA.
91 1
92 FOR I=1 TO NV(1), LET XA(1l,I)=XINV(I)
93 L ]
94 ''OPEN UNIT 4 FOR NETWORK WEIGHTS.
95 (]
96 OPEN UNIT 4 FOR INPUT,
97 OLD,
98 FILE NAME IS FILWNAM
99 RECORD SIZE IS 80
100 USE UNIT 4 FOR INPUT
101 LET NWTS=0
102 FOR K=1 TO LAYERS-1 DO
103 LET M=NV(K+1)
104 LET N=NV(K)
105 ADD MxN TO NWTS
106 FOR I=1 TO M, FOR J=1 TO N, READ WTA(K,I,J) USING UNIT 4
107 LOOP ''OVER (K) LAYERS
108 CLOSE UNIT 4
109 IF IPRINT=1
110 SKIP 2 LINES
in PRINT 5 LINES WITH FILWNAM,LAYERS,K NWTS
112 THUS
File name for network weights: 36963636 3630 3 36 36 36 36 36 30 36 3 3 36 36 26 36 36 6 3 9 3 3 2 36 3 2 9 36 3 % 3 % X% X ¥ %

NETWORK ARCHITECTURE:
Total Layers in Network: #*x
Total Number of Weights: #xxxx

118 ALWAYS

119 FOR X=1 TO LAYERS-1 DO

120 LET M=NV{K+l)

121 LET N=NV(K)

122 FOR I=1 TO M DO

123 LET SUM=0.0

124 FOR J=1 TO N DO

125 ADD WTA(K,I,J)*XA(K,J) TO SUM
126 LOOP ''OVER (J) BCTTOM NODES

127 LET XA(K+1,I)=SIGMOID(SUM,PARMV(x)) ''K+1ST LAYER NODES
128 LOOP ''OVER TOP NODES

129 LOOP '’'OVER (K) LAYERS

130 LET UMOUT=XA(LAYERS,1)

131 "

132 ''PRINT OUTPUT.

133 "'

134 IF IPRINT=1

135 IF IA=1




136 LET ANSWER = 'modality of density’
137 OTHERWISE
138 LET ANSWER = °"stochastic components® -
139 ALWAYS
140 SKIP 1 LINE
141 PRINT 1 LINE WITH ANSWER,UMOUT
142 THUS
Out,put, NOAE O 3655533 X 233 3 33K %% %K% = R, RRXR
144 ALWAYS
145 RELEASE PARMV (%)
146 RELEASE NV(x)
147 RELEASE XA(%,%)
148 RELEASE WTA(%,%,%)
149 RETURN
150 END ''N1D.NET
1 FUNCTION SIGMOID (X, PARMV)
2 L]
3 ''Function calculateg the sigmoidal value with argument X and parameter
4 ''vector PARMV. There are four alements in PARMV(¥): (1) tks location
5 ''or biag parameter for X, (2) scale parameter for X, (3) min value of
6 '’'the function, and (4) max value of the function. The function, f(x),
7 ''ig given by:
8 LN ]
9 '' (PARMV(4)-PARMV(3))}/(1 + exp -[(X-PARMV(1))/PARMV(2)]) + PARMV(3)
io r
11 '’The function may be used as a smooth limiter for variable X, taking on
12 '’'value PARMV(3) + (PARMV(4)-PARMV(3))/2 when z = (X-PARMV(1))/PARMV(2)
13 ''is zero, and approaching PARMV(3) as z approacheg -inf and PARMV(4)
14 ’'’'as X approaches +inf.
15 ''Note that f(z) 1s quite linear over the region -0.5 ¢ z < 0.5. A
16 '’'noticeable nonlinearity develops for abs(z) ) 0.7, approximatel,.
1o
18 DEFINF FLAGU AS AN INTEGER VARIABLE
19 DEFINE PARMV AS A REAL, 1-DIMENSIONAL ARRAY
20 LET FLAGU=1
21 IF FLAGU=1
22 RETURN WITH 1.0/{1.0 + EXP.F(-X))
23 OTHERWISE
24 IF PARMV(2) LE 0.0
25 PRINT ! LINE THUS
INPUT ERROR TO FUNCTION SIGMOID. SCALE PARAMETER IS L.E. 0.
27 STOP
28 OTHERWISE
29 LET Z=(X - PARMV(1))/PARMV(2)
30 RETURN WITH PARMV(3) + (PARMV(4) - PARMV(3))/(1.0 + EXP.F(-2))
31 END ''FUNCTION SIGMOID
1 ROUTINE UPDT.HIST(X,NCELLS,ITRUNC,XMIN,DELX,HISTV) YIELDING NCOUNT
2 L
3 ''Routine updates frequency count in the higtogram HISTV to include the
4 ''random variable X. Number of cells in the higstogram is NCELLS. The
5 ''min (lower-limt) of the independent variable ig XMIN and cell width
6 ''or i1ndependent-variable increment 18 DELX. Independent variable is con-
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10
11
12
13
14
15
16
17
18
19
20

22
23
24
25
26

O O ~1O AN 3N —

28

''sidered continuoug and HISTV ig discrete. The vector HISTV(¥) 1¢
''dimensioned NCELLS. A cumulative counter NCOUNT 18 increased by 1l if
''either of these conditions holds: (a) flag ITRUNC is set to 0, or (b)
"’Y le maximum cell upper bound, XMIN + NCELLS*DELX.
DEFINE ITRUNC,K,NCELLS,NCOUNT AS INTEGER VARIABLES
DEFINE HISTV AS AN INTEGER, 1-DIMENSIONAL ARRAY
FOR K=1 TO NCELLS DO
LET XUP=XMIN + DELX*X
IF X LE XUP
ADD 1 TO HISTV(K)
ADD 1 TO NCOUNT
RETURN
OTHERWISE
LOOP ''OVER (K) HISTOGRAM CELLS
IF ITRUNC=0
ADD 1 TO HISTV(NCELLS)
ADD 1 TO NCOUNT
ALWAYS
RETURN
END ''OF ROUTINE UPDT.HIST

ROUTINE DYQUANT (P, QV, N, XN, NXV)

''Program calculates the P-quantile from a set of observations presented
''dynamically (as generated). Quantile ig updated after each observation
''is made. The number (N) of newest obgervation and its value (XN) are
''specified by the calling program. Ref to method 1s made to an article
'"in Communications of the ACM, Vol 28, No 10, Oct 1985: Raj Jain and
"'Imrich Chlamatac, "The P-Squared Algorithm for Dynamic Calculation of
''Quantiles and Histograms Without Storing Observations”, p. 1076 ff. A
‘'set of five "markers’ of RV quantiles are stored in QV(¥) and a set of
''five “horizontal pogitions’ for markers are stored in NXV(x). Markers
‘*are ugsed to locate the real-valued quantiles. Thege are defined as:
*'QV{1) ___ minimum value over all RV observations currently made.

‘'QV(2) ___ lowest middle marker, corresponding to the P/2 quantile.
''QV(3) ___ desired P quantile,.

''QV(4) ___ highest middle marker, corresponding to (1 + P)/2 quantile.
''QV(5) ___ maximum value over all RV observations currently made.

''Routine is called after each observation is made with the number and
‘'value of the observation., First five observations are gorted in ascend-
"'ing order and placed in QV(#)., Next (Nth) observation is given in XN.
‘'A vector of "horizontal®' marker pogitions, NXV(*), is maintained by the
‘'routine. After the Nth obgervation, NXV(i) = number of observations
"' (approx) whose value is l.e, QV(i), i =1, ..., 5,
DEFINE I,J,K,N AS INTEGER VARIABLES
DEFINE QV AS A REAL, 1-DIMENSIONAL ARRAY
DEFINE DNV AS A REAL, SAVED, 1-DIMEMSIONM
RESERVE DNV(%) AS §
DEFINE NXV AS AN INTEGER, 1-DIMENSIONAL ARRAY
IFND>S
GO TO LO

AL ARRAY

Asavavia
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

0
£

83
84
85
86

OTHERWISE
IF N=1
LET QV(1)=XN
FOR I=1 TO 5, LET NXV(I)=I
LET DNV(1)=1.0
RETURN
OTHERWISE
IF N=2
IF XN > QV(1)
LET QV(2)=XN
OTHERWISE
LET QV(2)=QV(1)
LET QV(1)=XN
ALWAYS
RETURN
OTHERWISE
IF N=3
IF XN ¢ QV(1)
LET QV(3)=QV(2)
LET QV(2)=QVv(1)
LET QV(1)=XN
RETURN
OTHERWISE
IF XN > QV(2)
LET QV(3)=XN
RETURN
OTHERWISE
LET QV(3)=QV(2)
LET QV(2)=XN
RETURN
OTHERWISE
IF N=4
IF XN ¢ QV(1)
LET QV(4)=QV(3)
LET QV(3)=Qv(2)
LET QV(2)=QV(D)
LET QV(1)=XN
RETURN
OTHERWISE
IF XN ) QV(3)
LET QV(4)=XN
RETURN
OTHERWISE
IF XN ¢ QV(2)
LET QV(4)=QV(3)
LET QV(3)=QV(2)
LET QV(2)=XN
RETURN
OTHERWISE
LET QVi4§)=QV(3)
LET QV(3)=XN
RETURN
OTHERWISE ''N=5
IF XN ¢ QV(D)




87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

FOR I=1 TO 4, LET QV(5-1+1)=QV(5-1)
LET QV(1)=XM
RETURN
OTHERWISE
IF XN > QV(4)
LET QV(5)=XN
RETURN
OTHERWISE
IF XN ¢ QV(2)
FOR I=1 TO 3, LET QV(5-1I+1)=QV(5-1)
LET QV(2)=XN
RETURN
OTHERWISE
IF XN ¢ QV(3)
FOR I=1 TO 2, LET QV(5-I+1)=QV(5-I)
LET QV(3)=XN
RETURN
OTHERWISE
LET QV(5)=QV(4)
LET QV(4)=XN
RETURN

''CALCULATE THE DESIRED MARKER POSITIONS: DN2, DN3, DN4.

tt

'LO'LET NM1=R-1

tr

LET DNV(1)=1.0
LET DNV(2)=0.5%P*NM1+1.0
LET DNV(3)=NM1#P+1.0
LET DNV(4)=0.5%(1,0+P)*NM1+1.0
LET DNV(5)=N
IF XN ¢ QVv(D)
LET QV(1)=XN
LET X=1
GO TO Ll
OTHERWISE
IF XN > QV(5)
LET QV(5)=XN
LET K=4
GO TO L1
OTHERWISE

"'FIND CELL K SUCH THAT QV(K) LE XN < QV(K+l)

t?

FOR K=1 TO 4 DO
IF QV(K) LE XN AND XN < QV(Ii+1)
GO TO L1
OTHERWISE
LOOP ''OVER K
IF XN=QV(5)
LET K=4
ALWAYS

' *INCREMENT POSITIONS OF MARKERS K+1 THRU 5.
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141
¢ 142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168
169

'LI'FOR I=K+1 TO 5, ADD 1 TO NXV(I)

"'ADJUST HEIGHTS OF MARKERS 2 THRU 4.
FOR I=2 TO 4 DO
LET J=0 ''TO INDICATE SIGN OF ADJUSTMENT
LET D=DNV(I)-NXV(I)
IF D GE 1.0 AND NXV(I+1) > NXV(I)+1
LET J=1
GO TO L2
OTHERWISE
IF D LE -1.0 AND NXV(I-1) < NXV(I)-1
LET J= -1
‘L2’ LET QI=QV(I)+J/ (NXV(I+1)-NXV(I-1))*((NXV(I)-NXV(I-1)+J)*
(QV(I+1)-QV(I))/(NXV(I+1)-NXV(I))+(NXV(I+1)-NXV(I)-J)#*
(QV(I)-QV(I-1))/(NXV(I)-NXV(I-1)))

e

''"TRIAL VALUE OF QV(I) IS QI.
IF QV(I-1) < QI AND QI ¢ QV(I+1)
LET QV(I)=QI
OTHERWISE ''USE LINEAR FORM TO ADJUST QV(I)
LET QV(I)=QV(I) +J* (QV(I+J)-QV(I))/ (NXV(I+J)-NXV(I))
ALWAYS
ADD J TO NXV(I)
ALWAYS
LOOP '’'OVER I
RETURN
END ' 'ROUTINE DYQUANT
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