
REPORT DOCUMENTATION PAGE f OMB A. 070-018

Public reporting burden for this collection of informat on is estimated to average I hour per response. including the time for reviewing instructions. searching existing data sources.
gathering and maintaining the data needed, and om Iting and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for information Ooerations and Reports. 1215 Jefferson
Davis Highway. Suite 1M04. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Prolect (0704-0 188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1990 Thesis x

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DATA SECURITY AND INTEGRITY IN OPEN NETWORKS: A PROTOTYPE
IMPLEMENTATION OF INTERNET STANDARD PRIVACY-ENHANCED
ELECTRONIC MAIL

6 .AUTHOR(S)

N GORDON D. WISHON

F. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION~REPORT NUMBER

AFIT Student at: Wright State Univ AFIT/CI/CIA
AFITCI/CA -90-045

I. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AFIT/CI AGENCY REPORT NUMBER

Wright-Ptatterson AFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release lAW AFR 190-1
Distribution Unlimited
ERNEST A. HAYGOOD, ist Lt, USAF
Executive Officer, Civilian Institution Programs

13. ABSTRACT (Maximum 200 words)

DTIC
S FLECTE

JUL 3 11990

14. SUBJECT TERMS 15. NUMBER OF PAGES

332
16. PRICE CODE

17. SECURITY CLASSIFICATION 1B. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

DATA SECURITY AND INTEGRITY IN OPEN NETWORKS:

A PROTOTYPE IMPLEMENTATION OF INTERNET

STANDARD PRIVACY-ENHANCED

ELECTRONIC MAIL

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

By

GORDON D. WISHON
B.S.C.S., West Virginia University, 1977

1990
Wright State University

C07 21 056

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

June 21. 1990

I HEREBY RECOMMEND THAT THE THESIS PREPARED

UNDER MY SUPERVISION BY Gordon D. Wishon ENTITLED

-Data Security and Integrity in Open Networks: A Prototype Implementation

of Internet Standard Privacy- Enhanced Electronic Mail

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF Master of Science.

-Thesis Director

Department Chaij

Committee on
Final Examination

0 -fir ACCesion Fcr

GP(NTIS C RAMI~ J
~NS~1~ D1IC TAE3

Unidnnotj' red
Just fic At*k,

Dean of the School of GraduateAvtbCde
Studies AVd11Jt (dI OrDist Spc)Cd

Abstract

Wishon, Gordon Duane. M.S., Department of Computer Science and Engineering,
Wright State University, 1990. Data Security and Integrity in Open Networks: A
Prototype Implementation of Internet Standard Privacy-Enhanced Electronic Mail.

Data security and integrity are crucial issues for virtually every private corporation

and government agency using data communications networks to transfer informa-

tion from one point to another. This is especially true for agencies which employ

distributed databases, electronic mail, and electronic funds transfers in their every-

day activities. For most agencies, information is an asset to which value can be

attributed, and the loss of assets which accompany the loss (through disclosure) of

information can indeed be great. In this paper, a prototype implementation of a pro-

posed standard for providing data security and integrity in an electronic mail system

will be presented. The paper begins by examining some of the threats to data in-

tegrity and security in computers and networks. Next, methods of protecting against

such threats are reviewed, and one method, data encryption, will be shown as having

widespread popularity over other methods. The Data Encryption Standard (DES)

is reviewed, and difficulties with its use are discussed. A recent invention, public key

cryptology, is then reviewed in detail, and reasons for its preference over DES are

presented. Next, the RSA Public Key Cryptosystem is briefly reviewed, and its use

in a proposed standard for providing privacy and data integrity in an electronic mail

system is discussed. A prototype implementation of the proposed Internet-standard

privacy enhanced electronic mail is then presented. Finally, suggestions for further

work are given.

iii

Table of Contents

1 Security in Data Networks 1

1.1 Introduction 1

1.2 Network Security and its Relationship to Computer Security 2

1.3 Additional Characteristics of Networks and Security 5

1.4 Security Services 6

2 Threats to Data Security in Networks 8

2.1 Introduction 8

2.2 Categories of Threats 8

2.3 Protection Mechanisms 10

3 Encryption as a Method of Protecting Data in Networks 13

3.1 Introduction 13

3.2 Link level and end-to-end encryption 14

3.3 Additional Uses of Encryption 16

4 Symmetric Cryptosystems 18

4.1 Introduction 18

4.2 The Data Encryption Standard (DES) 19

4.3 Limitations of Single-key Cryptosystems 20

iv

5 Asymmetric Cryptosystems 21

5.1 Introduction 21

5.2 The RSA Public Key Cryptosystem 23

5.3 Other Public Key Systems 24

5.4 Limitations of the RSA System 25

6 Hybrid Cryptosystems 26

6.1 Key Management 26

6.2 Combining Symmetric and Asymmetric Cryptosystems 28

6.3 Message Digests 28

7 A Proposed Standard for Privacy-Enhanced Electronic Mail 30

7.1 Overview 30

7.2 Description of Approach 31

7.3 Key Management 33

8 A Prototype Implementation of Privacy Enhanced Electronic Mail 35

8.1 Overview .. 35

8.2 Implementation Environment 36

8.3 Constraints on Development 36

8.4 Limitations of the Implementation 38

8.4.1 Certificate Generation 38

8.4.2 Pemail 39

8.5 General Implementation Design Features 40

v

8.6 Use of the Privacy Enhanced Electronic Mail System 41

8.6.1 The makekeys Program 41

8.6.2 The cert Program 42

8.6.3 The pemail Program 43

9 Suggestions for Continued Development 46

A RFC1113 Privacy Enhancement for Internet Electronic Mail: Part

I - Message Encipherment and Authentication Procedures 48

B RFC1114 Privacy Enhancement for Internet Electronic Mail: Part

II - Certificate-Based Key Management 129

C RFC1115 Privacy Enhancement for Internet Electronic Mail: Part

III - Algorithms, Modes, and Identifiers 187

D Source Code and Description - Makekeys.c 206

E Source Code and Description - Cert.c 219

F Source Code and Description - Pemail.c 244

G Source Code and Description - Pesupport.c 300

H Source Code and Description - Header Files 313

Bibliography 331

vi

Chapter 1

Security in Data Networks

1.1 Introduction

Abrams and Podell in [1] describe the value of infomation and the necessity for com-

puter and network security in the following extract. "Computers process and store

information. (Computer networks move information from one location to another.)

Value may be attributed to this information, which is an asset. The determination

of value is both complex and controversial and it may be based on either the cost of

developing or assembling the information or on the (potential) loss that would occur

if the information were disclosed. The value may be established by the organization

that created or gathered the information or it may be established by someone or some-

thing else who would like to gain access to the information...". "Much information

is considered 'secret' by its owner, whose objective is to maintain its 'confidential-

ity' against the risk of 'disclosure'. Another important property of information is its

'integrity'; there should be assurances that no inadvertent changes have occurred,

causing 'corruption' of the information. The value of some information depends on

its source. Its value is enhanced by 'attribution'; it is decreased by the possibility of

'repudiation'. The continuous 'availability' of information and the computer resources

to process it are important; 'unauthorized use' and 'denial of service' to authorized

users are to be prevented".

2

In this paper, I will present a prototype implementation of a method for protecting

information traveling via electronic mail across a certain class of networks (those

employing the Simple Mail Transport Protocol, or SMTP), a method which has been

proposed as a standard for the Internet community. This prototype implementation

will be presented after a discussion of network security and encryption, and a look at

the proposed Internet standard.

1.2 Network Security and its Relationship to Com-

puter Security

Summers in [2] describes the objective of computer, and of course, network security

as "... to put the hardware, software, and data out of danger of loss." It includes "...

the concepts, techniques, and measures that are used to protect computing systems

and the information they maintain against deliberate or accidental threats." Abrams

and Podell in [1] state "Network security interfaces with computer security, because

many computer systems communicate with end users via networks. The differences

between computer security and network security are becoming less apparent as the

differences disappear between computer and network systems". However, as we shall

see, there are characteristics of networks that do not exist in monolithic computer

systems, and the criteria applied to computer systems for evaluating and ensuring

security are extended to accommodate them.

The Department Of Defense's Trusted Computer System Evaluation Criteria (TC-

SEC) (aka the "Orange Book") was published by the National Computer Security

Center (NCSC) in December 1985 to "provide a means of evaluating specific security

features and assurance requirements available in 'trusted commercially available au-

tomatic data processing systems' ", subsequently referred to as AIS. Furthermore, "...

3

The rating scale of the TCSEC extends from a rating which represents a minimally

useful level of trust to one for 'state of the art' features and assurance measures."

"The philosophy of protection embodied in the TCSEC requires that the access of

subjects (i.e., human users or processes acting on their behalf) to objects (i.e., con-

tainers of sensitive information) be mediated in accordance with an explicit and well

defined security policy".

A security policy is the set of laws, rules, and practices that regulate how an

organization manages, protects, and distributes sensitive information. For a computer

or network system to enforce these policies, they are first translated to a formal

security model. Many formal models exist, but the most widely-accepted security

model, and the one upon which the TCSEC is based, is the Bell-LaPadula model

[3]. The implementation of the formal policy model for a network system is known

as the Network Trusted Computing Base, or NTCB. The NTCB is the totality of

protection mechanisms within a system - including hardware, firmware, and software

- the combination of which is responsible for enforcing the security policy [1].

The Bell-LaPadula model is a formal state transition model of security policy

which applies primarily to access control, the major component of any security pol-

icy. The model can be used to implement a 'reference monitor' which enforces access

control by mediating all accesses to objects by subjects. (The reference monitor is

an abstract concept which is implemented in a 'security kernel'). Abrams and Podell

describe the model thus: "Control of access is defined by the Bell-LaPadula model by

the simple security condition, the *-(star)- property (read as star property), and the

discretionary security property. The simple security condition is used as the method

to control granting a subject read access to a specific object. This condition allows a

subject to have read access to an object only if his security level is equal to or greater

than the object (i.e., the subject dominates the security level of the object). Write

access to an object is allowed by ... the *-property, only if the security level of the

4

subject is essentially equal to or less than (is dominated by) the security level of the

object. There are trusted subjects (i.e., not constrained by the *-property) and un-

trusted subjects (that are constrained by the *-property). In addition, the *-property

protects against compromise of information by software programs with additional

(hidden) functions (i.e., Trojan Horse attacks). Also defined into the model is the

discretionary security property, which requires that a specific subject be authorized

for a particular mode of access required for the state transition."

In summary, computer systems employing the Bell-LaPadula model in their secu-

rity kernel may implement mechanisms to provide data secrecy, data integrity, system

integrity, labeling of data items, discretionary (need-to-know) protection, mandatory

protection, accountability of subjects and the actions they initiate, auditing capa-

bility, etc. See [5] for a complete discussion of security requirements for computer

systems.

While the Bell-LaPadula model is the most widely accepted, and very successfully

applied by the NCSC in the TCSEC (for computer systems), many security models

have been formulated. In fact, Rushby[4] describes several reasons why the Bell-

LaPadula model should not be applied to network systems, particularly distributed

computing environments. To accommodate these arguments, the TCSEC continues,

"In the context of network systems, there are a number of additional security services

that do not normally arise in individual AIS, and are not appropriate to the detailed

feature and assurance evaluation prescribed by the TCSEC. The security services

include provisions for communications security, denial of service, transmission

security, and supportive primitives, such as encryption mechanisms and protocols".

5

1.3 Additional Characteristics of Networks and

Security

As mentioned previously, the NCSC conceded there are characteristics of network

systems that are not found in monolithic computer system designs, and as a result,

the Trusted Network Interpretation contains a second Part which describes the se-

curity 'services', relating to these special characteristics. The following discussion is

extracted frc. n Part II of the Trusted Network Interpretation.

Protocols - One of these characteristics are protocols, the set of rules and formats

that determine the behavior between entities in a network. Their design and im-

plementation is crucial to the correct, efficient, and effective transfer of information

among network systems and subsystems. Many network services are implemented

with the help of protocols, and failures and deficiencies in the protocol result in fail-

ures and deficiencies in the security services supported by the protocol. One class of

design deficiency in protocols are those having some form of denial of service as a re-

sult. This class includes deadlocks, livelocks, unspecified receptions, lack-of-liveness,

and non-executable interactions. Another class of design concerns are typical of pro-

tocols that must work despite various kinds of random interference or communication

difficulties, such as noise, message loss, or message reordering. A third class of de-

sign deficiency might occur in protocols that are expected to work in the presence

of malicious interference, such as active wiretapping. Such protocols should have

countermeasures against Message Stream Modification (MSM) attacks.

The Encryption Mechanism - Encryption is a pervasive mechanism for many secu-

rity services, used in both networks and monolithic computer systems. In networks,

encryption is a tool for protecting data from compromise or modification attacks.

Through its use, release of message content and traffic analysis can be prevented;

message stream modification, some denial of service, and masquerading can be de-

6

tected. Encryption is probably the most important and widely used mechanism when

there is a wiretap threat; sometimes it is even confused with being a service [5]. Much

more will be said about encryption later.

1.4 Security Services

The NCSC lists the following as security services, which may or may not be avail-

able in specific network offerings: Communications integrity, of which authentication,

communications field integrity, and non-repudiation are considered parts; denial of

service (continuity of operations); compromise protection, including data confiden-

tiality, traffic confidentiality, and selective routing. A discussion of each of these is

presented below (from [5]).

Communications integrity is a collective term for a number of security services.

These services are all concerned with the accuracy, faithfulness, non-corruptability,

and believability of information transfer between peer entities through the communi-

cations network. Authentication deals primarily with ensuring that a data exchange

is established with the addressed peer entity (and not with an entity attempting a

masquerade or a replay of a previous establishment). The network should assure

that the data source is the one claimed. Authentication generally follows identi-

fication, i.e., establishing the validity of the claimed identity, providing protection

against fraudulent transactions. Communications field integrity refers to the pro-

tection of any of the fields involved in communications, e.g., headers fields and user

data fields, from unauthorized modification. It can be considered identical to data

integrity in monolithic computer systems. The network should ensure information

is accurately transmitted from source to destination, regardless of the number of in-

termittent connecting points. Non-repudiation service provides unforgeable proof of

shipment and/or receipt of data. It prevents the sender from disavowing a legitimate

7

message or the receiver from denying receipt.

Denial of service is the traditional identifier of a service that would probably

be bettcr identified as assurance of conununications availability. A denial of service

condition exists whenever throughput falls below a pre-established threshold, or access

to a remote entity is unavailable. It also exists when resources are not available to

users on an equitable basis. Denial of service detection is highly dependent on data

integrity checking/detection mechanisms.

Compromise protection is also a collective term for a number of security services.

These services are all concerned with the secrecy, or non-disclosure of information

transfer between peer entities through the communications network. The first, data

confidentiality, is mainly compromised through passive wiretapping attacks. Passive

attacks consist of observation of information on a link. Release of message content

to unauthorized users is the fundamental compromise. Traffic flow confidentiality

service protects data against unauthorized disclosure by inference, through analysis of

message length, frequency, and protocol components (such as addresses). A selective

routing service can be used to avoid specific sub-networks, links, or relays that have

shown persistent manipulation attacks, or via only physically secure paths, thereby

further protecting data against compromise.

Chapter 2

Threats to Data Security in

Networks

2.1 Introduction

Now that we have reviewed the components of 'network security', we can examine

the threats against network security, and discuss some of the more common counter-

measures that have been taken against these threats. Nearly all threats to computer

security are found in network security, and then some, as indicated by the additional

'security services' which the NCSC says should be provided beyond normal computer

system protection.

2.2 Categories of Threats

Voydock and Kent in [6] list three distinct categories into which potential security

violations can be divided: unauthorized release of information; unauthorized modi-

fication of information; and unauthorized denial of resource use. Attacks that cause

information release are called 'passive' attacks, while those that cause modification

of information or denial of resource use are known as 'active' attacks. In a passive

attack, the intruder merely observes protocol data units (PDU's in OSI parlance, or

8

9

packets) passing on an association (another OSI term, a connection between peer en-

tities), without interrupting the flow. Such intruder observation is termed 'release of

message contents'. Even if the data are unintelligible to him, the intruder can observe

the protocol control information (header) and thus learn the location and identities of

the communicating entities. Finally, the intruder can examine the lengths of PDU's

and their frequency of transmission to learn the nature of the data being exchanged.

These latter types are usually referred to as 'traffic analysis.'

The intruder can also mount active attacks, performing a variety of processing on

PDU's passing on the association. Theses PDU's can be selectively modified, deleted,

delayed, reordered, duplicated, and inserted into the association at a later point in

time, or allowed to pass through unaffected. Bogus PDU's can be synthesized and

inserted into the association. While all active attacks involve some combination of

these methods, the countermeasures employed against them vary with the form of

the attack. For this reason, Voydock and Kent in [61 subdivide active attacks into

the the following three categories: message stream modification; denial of message

service; and spurious association initiation.

Message stream modification includes attacks on the authenticity, integrity, and

ordering of the PDU's passing on the association. Attacks on authenticity can be

made by modifying the protocol control information so that they are sent to the

wrong destination, or by inserting bogus PDU's into an association. Attacks on

integrity can be effected by modifying the data portion of PDU's, whereas attacks on

ordering can be effected by deleting PDU's or modifying sequencing information in

the protocol control portion of PDU's.

Denial of message service comprises attacks in which the intruder either discards

all PDU's passing on an association, or simply delays all PDU's going in one or both

directions.

Spurious association initiation comprises attacks in which the intruder either

10

"plays back" a recording of a previous legitimate association initiation sequence or

attempts to establish an association under a false identity. Passive attacks are coun-

tered by the 'Compromise Protection' network services characterized by the NCSC in

the Trusted Network Interpretation [5] and mentioned above. Message stream modi-

fication and spurious association initiation can be dealt with by the 'Communications

Integrity' services mentioned above. Finally, denial of service attacks are addressed

by the 'Assurance of Communications Availability' services.

2.3 Protection Mechanisms

According to the NCSC, physical protection and encryption are the fundamental

techniques for protecting data from compromise [5]. (While physical security is out-

side the scope of this paper, encryption will be discussed at length in a subsequent

section.) Inferences established by traffic analysis can be prevented by masking the

frequency, length, and origin-destination patterns of communications between proto-

col entities. According to Voydock and Kent, appropriate link encryption techniques

can mask all such patterns and prevent all traffic analysis attacks. This is not true

of end-to-end encryption. In addition, traffic padding can be used to provide var-

ious levels of protection against traffic analysis. Finally, as mentioned previously,

selective routing techniques can dynamically or by prearrangement choose routes so

as to use only physically secure sub-networks, relays, or links. The TNI continues,

"End-systems may, on detection of persistent manipulation attacks, wish to instruct

the network service provider to establish a connection via a different route." Also,

"... there are national laws and network administration policies governing individual

privacy rights, encryption, and trans-border data flow. A user in an end system may

wish to specify countries through which certain information should not flow".

Since networks are typically implemented using a set of protocols one of whose

11

primary functions is to provide data integrity, a well developed and implemented

set of protocols goes far towards assisting in providing 'Communications Integrity'

service. When good protocols are combined with encryption, a network can can ef-

fectively ensure that data has not been subject to excessive random errors, line and

node outages, hardware/software failures, and active attack. The contribution of

encryption will be shown later. The TNI continues, "Peer entity authentication is

an appropriate countermeasure against spurious association initiation (masquerading

or playback attacks). Authentication usually follows identification, establishing the

validity of the claimed identity providing protection against fraudulent transactions.

Verification of identity can be effectively accomplished using passwords, if the pass-

word mechanism itself is protected by the network. To tie data to a specific origin,

implicit or explicit identification information must be derived and associated with

data. Authentication can be provided through an alternate communications channel,

or a user-unique cryptographic authentication (e.g., employing a public-key cryp-

tosystem). When cryptographic techniques are used, they may be combined with

'handshaking' protocols and 'liveness' assurances. The liveness assurances can be

provided by using synchronized clocks, two and three way handshakes, or by non-

repudiation services provided by digital signature mechanisms" (to be discussed in

more detail).

"Denial of service detection is highly dependent on data integrity checking and de-

tection mechanisms. Other mechanisms relating to data ordering, modification, loss,

or replay (e.g., sequence numbers, frame counts) are also measures of denial of service

protection. Mechanisms for addressing denial of service are often protocol based and

may involve testing or probing. For example, in order to detect throughput denial of

service, a process may exist to measure the transmission rates between peer entities

under conditions of input queuing. The measured rate can be compared with a prede-

termined transmission rate to detect a denial of service condition. Another example

is a protocol to detect failure to respond within a certain predetermined time between

12

peer entities. Finally, a request-response mechanism such as 'are-you- there' message

exchanges may be employed when the connection is quiescent. Successful prevention

of denial of service attacks would also include network design features such as use of

active or passive replacement or other forms of redundancy throughout the network

components. Reconfiguration to provide network software maintenance and program

downloading to network nodes for software distribution, and to provide initialization

and reconfiguration after removing failed or faulty components can isolate and/or

confine network failures, accommodate the addition and deletion of network compo-

nents, and circumvent a detected fault. Distribution and flexibility of network control

functions, able to respond promptly to changes in network topology and throughput,

enhance survivability and continuity of operations".

Integrity and adequacy of control in a network are the keys in coping with denial

of service conditions [5]. Network management and maintenance deal with network

health, detecting failures, and overt acts that result in denial of or reduced service.

Simple throughput may not necessarily be a good measure of proper performance.

Loading above capacity, flooding, replays, and protocol retry due to noise in the

channel can reduce service below an acceptable level and/or cause selective outages.

For these reasons, the network management and control policy/mechanisms should

be developed using appropriate models (queuing theoretic models, hierarchical service

models, protocol models, or resource allocation models) which can be analyzed for

deadlock, liveness, and other security properties.

Chapter 3

Encryption as a Method of

Protecting Data in Networks

3.1 Introduction

As mentioned previously, encryption is a fundamental tool for security in data commu-

nications. Voydock and Kent [6] go so far as to say it is "the fundamental technique

on which all communications security measures are based." Although its primary

purpose is to prevent compromise of information, it can detect the active attacks of

message stream modification, denial of service, and spurious association initiation. It

can be effectively used to implement many of the security services we have discussed,

such as communications field integrity, peer-entity authentication, non-repudiation,

etc.

Encryption is a mapping between 'plaintext', or a representation of information

which is intelligible to everyone who can read the natural language in which the infor-

mation is written, and 'ciphertext', a representation of the same information designed

to conceal the information from unauthorized persons. The transformation between

plaintext and ciphertext is encryption. The reverse process is called decryption. The

function which accomplishes this mapping may have multiple independent variables

as input. The difficulty in deducing the cleartext from the ciphertext without know-

ing certain of these variables is measured as a 'work factor.' The work factor is often

13

14

expressed in time units on a specific computer performing cryptanalysis. Without

going into detail on the mechanics of various cryptographic systems, suffice it to say

that there are such systems for which the work factor gives very good confidence that

the deduction cannot be made in a reasonable amount of time.

3.2 Link level and end-to-end encryption

Voydock and Kent describe two basic approaches to communications security provided

through encryption: link-oriented measures and end- to-end measures [6]. The former

provides security by protecting message traffic independently on each communications

link, while the latter provides uniform protection for each message all the way from

its source to its destination. These two approaches differ not only in their internal

implementation characteristics, but also in the nature of the security they provide.

Link-oriented protection measures provide security for information passing over an

individual communication link between two nodes, regardless of the ultimate source

and destination of the information. Each link corresponds to a Data Link Layer

association in the ISO Reference Model. In many cases, the links will be physi-

cally unprotected and thus subject to attack. In a network employing link- oriented

measures, encryption is performed independently on each communications link. A

different encryption key is often used for each link, so that subversion of one link

does not necessarily result in release of information transmitted on other links. Since

information is not processed as it passes on a link, both the protocol control infor-

mation and the data in the PDUs can be enciphered. This masks origin-destination

patterns. If a continuous stream of ciphertext bits is maintained between nodes, PDU

frequency and length information can be masked as well. In this case, all forms of

traffic analysis are completely prevented. Using this technique does not degrade the

effective bandwidth of the network because it does not usually require transmission

15

of any additional data; it does, however, entail continuous keystream generation at

each node.

Since information is enciphered only on the links and not within the nodes they

connect, the nodes themselves must be secure. Although the origin and destination

nodes of the network (i. e., the hosts) are assumed to be physically secure, link

encryption requires that all intermediate nodes (packet switches, gateways, etc.) be

physically secure as well. Not only must they be physically secure, but their hardware

and software components must be certified to isolate the information on each of

the associations passing through them. Subverting one of the intermediate nodes

exposes all the message traffic passing through that node, despite any physical security

precautions still in effect at the source and destination nodes.

Link-oriented measures model a network as a collection of nodes joined by com-

munication links, each of which can be individually protected. End-to-end measures,

on the other hand, model a network as a medium for transporting PDUs in a secure

fashion from source to destination. In keeping with this perspective, end-to-end, or

E3, measures protect PDUs in transit between source and destination nodes in such

a way that subversion of any of their communication links does not violate security.

There is some flexibility in defining the points at which E3 security measures are

implemented: from host to host, from terminal to service host or process, and from

process to process. By extending the domain of E3 measures, one can protect more

of the path between communicating protocol entities. However, as their domain is

extended, the range of hardware and software that must interface with them increases.

Link-oriented security measures can be implemented so that they are almost com-

pletely invisible to network users. E3 measures usually extend beyond the communi-

cations subnet and thus require a greater degree of standardization in the protocols

employed by those users.

A major advantage of E3 measures is that an individual or host can elect to

16

employ them without affecting other users and hosts; thus, the cost of employing

such measures can be more accurately apportioned. Moreover, these measures can

be employed not only in packet-switched networks, but in packet-broadcast networks

where link-oriented measures are often not applicable. Finally, E3 measures are more

naturally suited to user's perceptions of their security requirements. This stems

from the fact that they rely on the security of equipment only at the source and

destination of an association, while link-oriented measures require that all nodes in

the open-system environment also be secure.

3.3 Additional Uses of Encryption

As we have seen, encryption is a tool which can be used as an effective tool in

providing network security services. An authentication service can be provided by

encipherment or digital signature mechanisms. In conventional single-key cryptosys-

tems, the encryption of a message with a secret key automatically implies data origin

authenticity, because only the holder of the key can produce the encrypted form of

a message. Encryption, using a public-key encryption system or other digital signa-

ture mechanism also provides non- repudiation services. It should also be obvious

that encryption, when used in conjunction with robust communication protocols, can

provide excellent data integrity services, as well.

In its most basic form, encryption protects against compromise of information

(release of message content). The granularity of key distribution is a trade-off between

convenience and protection. Fine granularity would employ a unique key for each

sensitivity level for each session; coarse granularity would employ the same key for

all session during a time period. Depending on the level of confidentiality required,

encryption protection can be extended to all user data on a specific protocol level

or datagram (in a connectionless environment), or only to specified fields within the

17

user data of a PDU.

Traffic flow confidentiality service can be effected through use of link level encryp-

tion. This is not true with end-to-end encryption, however. The precision with which

such analysis can be done depends on the level in which the encryption is performed.

For example, if encryption were performed in the presentation layer, an intruder could

determine which presentation, session, and transport entities were involved in a given

association. Performing encryption in the transport layer would limit the intruder to

observing patterns at the network-address level. That is, he could tell which trans-

port layer entities were exchanging messages, but not which (or how many) higher

level entities were doing so.

In summary, proper selection and implementation of encryption mechanisms can

be used to counter many of the threats to network security. Combining these mecha-

nisms with others which deal with denial of service, playback attacks, access control,

etc. will provide a comprehensive, effective approach to network security.

Chapter 4

Symmetric Cryptosystems

(Single-Key Cryptosystems)

4.1 Introduction

Modern encryption functions take at least two inputs. One is the plaintext; the other

is a key. The encryption key is a set of information which affects the results of the

transformation. Conventional single-key cryptosystems are designed to operate with

a single key and encryption function which does not change the length of the text. Let

P =Plaintext

C =Ciphertext

k =Key

E =Encryption function

D =Decryption function

C = E(kl,P)

P = D(k2, C)

In the single-key system,

18

19

P = D[k,E(k,P)]

P = E[k,D(k,P)]

That is, the order of encryption and decryption is interchangeab]e. Further, if E = D,

E[k, E(k, P)] = P

D[k, D(k, C)] = C

The advantages of selecting this class of functions is that only one function needs

to be implemented, only one key is needed, and the order of encryption and decryp-

tion becomes moot. The key is normally kept secret. The security of such systems

resides entirely in the key k. All other components of the system are assumed to be

public knowledge. To maintain security, legitimate users of the system must learn k,

while preventing others from learning it.

4.2 The Data Encryption Standard (DES)

The public standard for data encryption was initially developed by IBM and was first

standardized by the National Bureau of Standards (NBS) as the Data Encryption

Standard (DES) Federal Information Processing Standard Publication (FIPS PUB)

46. It has also since been adapted as an ANSI standard (ANSI Standard X9.9 - 1982,

Financial Institution Message Authentication (Wholesale)) under the name Data En-

cryption Algorithm (DEA). There is nothing secret about the DES algorithm itself.

It is a single-key cryptosystem in the public domain and has been designed so that

there is no known way, through examination of ciphertext, of determining which

transformation (of 256 possible transformations) was used in producing that cipher-

text. The security of DES depends on the choice of which possible transformation

20

(or key selection) is used to encrypt or authenticate a particular message.

4.3 Limitations of Single-key Cryptosystems

As previously mentioned, the security of single-key systems depends on the security of

the key. The difficulty of distributing keys has been one of the major limitations on use

of conventional cryptographic technology [7]. Key management, the procedures and

methods that must be in place to generate, distribute, store, and ultimately destroy

keys in such a manner that security is maintained, has become a major issue for users

of single-key cryptosystems such as DES. (See ANSI X9.17, Financial Institution Key

Management (Wholesale) and [8] for discussions of key management).

A second difficulty which has limited the application of conventional cryptography

is its inability to deal with the problem of dispute (non-repudiation) [7]. Conventional

(cryptograhic) authentication systems can prevent third party forgeries, but cannot

settle disputes between the sender and receiver as to what message, if any, was sent.

In current commercial practice, the validity of contracts and agreements is guaran-

teed by handwritten signatures. The essence of a signature is that although only one

person can produce it, anybody can recognize it. If there is to be a purely digital

replacement for this paper instrument, each user must be able to produce messages

whose authenticity can be checked by anyone, say an arbitrator, but which could not

have been produced by anyone else, especially the intended recipient. In a conven-

tional (single-key) system the receiver authenticates any message he receives from the

sender by deciphering it in a key which the two hold in common. Because this key

is held in common, however, the receiver has the ability to produce any cryptogram

that could have been produced by the sender and so cannot prove that the sender

a 'ually sent a disputed message.

Chapter 5

Asymmetric Cryptosystems

(Public Key Cryptosystems)

5.1 Introduction

Public key cryptosystems, a concept invented by Diffie and Hellman, and first de-

scribed in [9], provide a direct solution to the signature problem, as well as greatly

simplifying the problem of key distribution. (Message Authentication Codes (MACs)

and Manipulation Detection Codes (MDCs) are commonly employed in DES/DEA

implementations for authentication and signature purposes.)

Let

ke =Encryption key

kd =Decryption key

The functions are then

C = E(ke, P)

P = D(kd, C)

P = D[kd, E(ke, P)]

in addition,

21

22

P = E[ke, D(kd, P)]

Public key cryptosystems are designed to work with inverse pairs of keys which

have the following properties[10]:

Anything encrypted with one key can be decrypted with the other.

Given one member of the pair, the public key, it is infeasible to discover the

other, the private key.

By publicly revealing his public key, the user does not reveal an easy way to compute

his private key. This means that in practice only he can decrypt messages encrypted

with the public key, or compute the private key efficiently. Two key cryptosystems

are called public because of the way they are used. (Note that each user can generate

his own pair of keys.) Anyone can send a secret message to the holder of the secret

decryption key by employing his public encryption key. Only the holder of the private

key can decipher the message.

Alternatively, if a user A wishes to send a signed message to user B, he operates

on it with his private key kda to produce the signed message S = E(kda, P). kda

was used as A's deciphering key when privacy was desired, but is now used as his

enciphering or 'signing' key. When user B receives S he can recover P by operating

on S with A's public key kea. B saves S as proof that user A sent him the particular

message P. If A later disclaims having sent this message, B can take S to an arbitrator

who obtains kea and checks that D(kea, S) = P is a meaningful message with A's

name at the end, the proper date and time, etc. Only user A could have generated S

because only be knows kda, so A will be held responsible for having sent P.

23

This technique provides unforgeable, message dependent, digital signatures, but

allows any eavesdropper to determine P because only the public information kea is

needed to recover P from S. To obtain secrecy of communication as well, A can

encrypt S with B's public key and send T = E(keb, S) instead of S. Only B knows

kdb, so only he can recover S and thence P. B still saves S as proof that user A sent

him P.

5.2 The RSA Public Key Cryptosystem

Rivest, Shamir, and Adelman were the first to develop a complete cryptosystem

around Diffie and Hellman's method. Described in [11], their method proceeds as

follows:

First, represent the message as an integer between 0 and n - 1. (Break a long

message into a series of blocks, and represent each block as such an integer.) Use any

standard representation. The purpose here is not to encrypt the message but only to

get into the numeric form necessary for encryption.

Then, encrypt the message by raising it to the eth power modulo n. That is, the

result (the ciphertext C) is the remainder when PF is divided by n.

To decrypt the ciphertext, raise it to another power d, again modulo n. The

encryption and decryption algorithms E and D are thus:

C = E(P) = Me (mod n), for a message P.

D(C) = Cd (mod n), for a ciphertext C.

Note that the encryption does not increase the size of a message; both the message

and the ciphertext are integers in the range 0 to n - 1.

The encryption key is thus the pair of positive integers (c, n). Similarly, the

decryption key is the pair of positive integers (d, n). Each user makes his encryption

24

key public, and keeps the corresponding decryption key private.

To choose encryption and decryption keys using their method, one first computes

n as the product of two primes p and q:

n = p*q.

These primes are very large, "random" primes. Although n will be made public,

the factors p and q will be effectively hidden from everyone else due to the enormous

difficulty of factoring n. This also hides the way d can be derived from e.

The integer d is then chosen to be a large, random integer which is relatively prime

to (p - 1) * (q - 1). That is, check that d satisfies:

gcd(d, (p - 1) * (q - 1)) = 1 ("gcd" means "greatest common divisor").

The integer e is finally computed from p, q, and d to be the "multiplicative inverse"

of d, modulo (p - 1) * (q - 1). Thus we have

e*d-l((mod (p- 1)* (q- 1))).

See [11] for the underlying mathematics, algorithms, and correctness proofs. It

also discusses methods of finding large primes, and methods for choosing d, and how

to compute e from d and On (the Euler totient function giving the number of positive

integers less than n which are relatively prime to n).

5.3 Other Public Key Systems

According to Diffie [10], the strength of RSA has not been proven equivalent to fac-

toring. There might be some method of taking the e'h root of M' without calculating

d and thus without providing information sufficient to factor. While at MIT in 1978,

Diffie says, M. 0. Rabin produced a variant of RSA, subsequently improved by Hugh

Williams of the University of Manitoba, that is equivalent to factoring.

25

Another public key system, due to McEliece, makes use of Goppa codes, for which

a fast decoding algorithm is known, according to Diffie. His idea was to construct

a Goppa code and disguise it as a general linear code, whose decoding problem is

NP-complete. McEliece's system has never achieved widespread acceptance, perhaps

due to the size of the keys, which are on the order of a million bits, or due to the

substantial expansion of the data entailed in the transformation.

5.4 Limitations of the RSA System

The RSA system makes use of the fact that finding large (e.g. 200 digit) prime

numbers is computationally easy, but that factoring the product of two such numbers

appears computationally infeasible. At present, however, the convenient features of

public key cryptosystems are bought at the expense of speed. Diffie [10] points out

that the fastest RSA implementations run at only a few thousand bits per second,

while the fastest DES implementations run at many millions. It is generally desirable,

therefore, to make use of a hybrid in which the public key systems are used only during

key management processes to establish shared keys for employment with conventional

systems.

Chapter 6

Hybrid Cryptosystems

6.1 Key Management

As Diffie explains in [11], the solution to the problem of key management using

conventional cryptography is for the network to provide a key distribution center

(KDC): a trusted network resource that shares a key with each subscriber and uses

these in a bootstrap process to provide additional keys to the subscribers as needed.

Introducing the concept of a certificate (a cryptographically authenticated message

containing a cryptographic key), a user A wishing to communicate with a user B first

contacts the KDC and requests a key for communicating with B. The KDC responds

by sending A a pair of certificates. Each contains a copy of the required session key,

one encrypted so that only A can read it, the other encrypted so that only B can read

it. When A calls B, he presents the proper certificates as introduction. Each of them

decrypts the appropriate certificate under the key that he shares with the KDC and

thereby gets access to the session key. A and B can now communicate securely using

the session key.

In order to compromise a network that employs conventional cryptography, it

suffices to corrupt the KDC, according to Diffie. This gives the intruder access to

information sufficient to recover the session keys used to encrypt past, present, and

perhaps future messages. These keys, together with information obtained from passive

26

27

wiretaps, allow the penetrators of the KDC access to the contents of any message sent

on the system.

A great improvement in both economy and security can be made by the use of

public key cryptography. In a conventional network, every subscriber shares a secret

key with the KDC and can only authenticate messages explicitly meant for him. The

subscribers use this shared secret key to decrypt the session key sent to them by the

KDC for use in subsequent communication with other subscribers. However, if one

subscriber has the key shared between the KDC and another subscriber, he will be

able to intercept and decrypt subsequent messages, as well as forge messages in the

name of the other subscriber, or forge messages to the subscriber from the KDC.

In a public key system, each subscriber has the public key of the KDC, and thus

the capacity to authenticate any message coming from the KDC (using the digital

signature), but no power to forge one.

A and B now can create their own key pairs, and request that the KDC include

the public components in creating certificates for them. Having each obtained a

certificate, they may now communicate by send the other his certificate, authenticate

the certificates by checking the KDC's signature on the certificates, and encrypt

messages using the key contained in the certificates. When communicating, there

is no need to contact the KDC for a session key. The added security arises form

the fact that the KDC is not privy to any information that would enable it to spy

on the subscribers. The keys that the KDC dispenses are public keys and messages

encrypted with these can only be decrypted by using the corresponding private keys,

to which the KDC has no access.

Even if the KDC has been corrupted and its private key is known to opponents,

this information is insufficient to read the traffic recorded by a passive wiretap. The

KDC's private key is useful only for signing certificates containing subscriber's public

keys; it does not enable the intruder to decrypt any subscriber traffic. To be able to

28

gain access to this traffic, the intruders must use their ability tc >-ge certificates as

a way of tricking subscribers into encrypting messages with phony public keys.

6.2 Combining Symmetric and Asymmetric Cryp-

tosystems

Taking note of the fact that a disadvantage of public key cryptology is speed, the

subscribers may now use their secure communications to exchange their own session

keys, which can be implements of a fast encryption method, such as DES. The message

can then be encrypted using a secret key, which is then encrypted using the public key

contained in the recipient's authenticated certificate, and the encrypted session key

appended to the ciphertext. This message can now be transmitted to the recipient,

who first decrypts the session key using his private key, and then uses the session key

to decrypt the ciphertext.

The above hybridization of conventional and public key cryptosystems is being

used in the operation of a secure telephone currently under development at Bell-

Northern Research, intended for use on the Integrated Digital Services Network. A

similar scheme is also being proposed for use by the Internet community as a proposed

standard for privacy enhanced electronic mail, the subject of the rest of this paper.

6.3 Message Digests

Before beginning discussion of privacy enhanced electronic mail, it is worth noting

another valuable ingredient of public key cryptology: the message digest. Implement-

ing a digital signature by encrypting the entire document to be signed with a private

29

key has two disadvantages, as Diffie point out. Because public key systems are slow,

both the signature process (encrypting the message with a private key) and the ver-

ification process (decrypting the message with a public key) are slow. In addition,

if the signature process encrypts the entire message, the recipient must retain the

ciphertext for however long the signed message is needed. In order to make any use

of it during this period, he must either save a plaintext copy as well or repeatedly

decrypt the ciphertext.

Davies and Price proposed constructing a cryptographically compressed form, or

digest, of the message and signing by encrypting this value with the private key.

In addition to its economies, this has the advantage of allowing the signature to be

passed around independently of the message. This is often valuable in protocols in

which a portion of the message that is required in the authentication process is not

actually transmitted because it is already known to both parties.

Chapter 7

A Proposed Standard for

Privacy-Enhanced Electronic Mail

7.1 Overview

In August 1989, the Internet Advisory Board's Privacy Task Force issued a series of

Requests for Comments (RFCs) (see Appendices), which suggest draft standard elec-

tive protocols for the Internet community in support of privacy enhanced electronic

mail. RFC 1113, authored by John Linn, describes message encipherment and authen-

tication procedures. RFC1114, authored by Steve Kent and John Linn, describes the

certificate based key management to be used, and RFC1115, authored by John Linn,

lists the algorithms, modes, and identifiers to be used in mail header fields. In April

1990, a subsequent RFC was released which provided details of paper and electronic

formats and procedures for the key management infrastructure being established in

support of these services.

This set of proposed standard protocols provides privacy enhancement services for

electronic mail transfer within the Internet. These services are offered through the

use of end-to-end encryption between originator and recipient User Agent processes,

with no special processing requirements imposed on the Message Transfer System at

endpoints or intermediate relay sites. The procedures are intended, according to the

authors, to be compatible with a wide range of key management approaches, including

30

31

both symmetric and asymmetric approaches for encryption of data encryption keys,

that is, they support single key cryptosystems and hybrid cryptosystems in the man-

ner discussed in the previous chapter. The privacy enhancement services provided by

the protocols are confidentiality (disclosure protection), sender authenticity (authen-

tication), message integrity assurance, and in the hybrid approach, non-repudiation

of origin.

7.2 Description of Approach

The following discussion is paraphrased from the RFCs and will include only a de-

scription of the hybrid cryptosystem approach, since that is the approach used in the

prototype implementation offered in later chapters of this paper.

In this system, two types of keys are employed, as discussed in the previous chap-

ter. A Data Encrypting Key (DEK) is used for encryption of message text. DEKs

are generated individually for each transmitted message. Interchange Keys (IKs) are

used to encrypt DEKs for transmission within messages. Ordinarily, the same IK

will be used for all messages sent from a given originator to a given recipient over

a period of time. Each transmitted message contains a representation of the DEK

used for message encryption, encrypted under an individual IK per named recipient.

The representation is associated with "X- Sender-ID:" and "X-Recipient-ID:" header

fields, which allow each individual recipient to identify the IK used to encrypt DEKs

for that recipient's use. Given an appropriate IK, a recipient can decrypt the cor-

responding transmitted DEK representation, yielding the DEK required for message

text decryption.

When privacy enhancement processing is to be performed on an outgoing mes-

sage, a Data Encrypting Key (DEK) is generated for use in message encryption. IK

components (public keys) are selected for each individually named recipient; a corre-

32

sponding "X-Recipient-ID:" field, interpreted in the context of a prior "X-Sender-ID:"

field, serves to identify each IK. Each "X-Recipient-ID:" field is followed by an "X-

Key-Info:" field, which transfers a DEK, encrypted under the IK appropriate for the

specified recipient. A prior "X-MIC-Info:" field carries the message's Message In-

tegrity Check (MIC) quantity (a value obtained by encrypting a message digest with

the sender's private component, as discussed in the previous chapter).

A four phase transformation procedure is employed in order to represent encrypted

text in a universally transmissible form and to enable messages encrypted on one

type of host computer to be decrypted on a different type of host computer. A

plaintext message is accepted in local form, using the host's native character set

and line representation. The local form is converted to a canonical message text

representation, defined as equivalent to the inter-SMTP representation of message

text. (Simple Mail Transfer Protocol, or SMTP, is the Internet standard mail transfer

protocol.) The canonical representation forms the input to the MIC computation and

encryption processes.

For encryption purposes, the canonical representation is padded as required by

the encryption algorithm. The padded canonical representation is encrypted. The

encrypted text is encoded into a printable form. The printable form is composed of

a restricted character set which is chosen to be universally representable across sites,

and which will not be disrupted by processing within and between Message Transfer

Service entities.

The output of the encoding procedure is combined with a set of header fields

carrying cryptographic control information. The result is passed to the electronic

mail system to be encapsulated as the text portion of a transmitted message.

When a privacy enhanced message is received, the cryptographic control fields

within its text portion provide the information required for the authorized recipient

to perform MIC verification and decryption of Lhe received message text. First, the

33

printable encoding is converted to a bitstring. Encrypted portions of the transmit-

ted message are decrypted. The MIC is verified. The canonical representation is

converted to the recipient's local form, which need not be the sender's local form.

Detailed descriptions are given in the RFCs for key generation, algorithms, trans-

formation procedures, and header field formation.

7.3 Key Management

RFC1114 describes a key management architecture that specifically employs the RSA

cryptosystem. The authors note that it was selected because it provides all the nec-

essary algorithmic facilities, is "time tested" and is relatively easy to implement in

either hardware or software. It is also the primary algorithm identified (at this time)

for use in international standards where an asymmetric encryption algorithm is re-

quired. The architecture is based on the use of certificates, in which a "certification

authority", or CA, representing an organization applies a digital signature to a collec-

tion of data consisting of a user's public key, various information serving to identify

that individual, and the identity of the organization whose signature is affixed. This

establishes a binding between the user credentials, the user's public component, and

the organization which vouches for this binding. The resulting signed data item is

called a certificate. The organization identified as the certifying authority for the

certificate is the "issuer" of the certificate.

In signing 1he cer4 ificate, the CA vouches for the user's identification, especially as

it relates to the user's affiliation with the organization. The digital signature is affixed

on behalf of that organization and is in a form which can be recognized by all members

of the privacy enhanced electronic mail cor imunity. Once generated, certificates

can be stored in directory servcrs, transmitted via unsecure message exchanges, or

distributed via any other means that make certificates easily accessible to message

34

originators, without regard for the security of the transmission medium.

Prior to sending an encrypted message, an originator must acquire a certificate

for each recipient and must validate these certificates. Briefly, validation is performed

by checking the digital signature in the certificate, using the public component of the

issuer, whose private component was used to sign the certificate.

Once a certificate for a recipient is validated, the public component contained in

the certificate is extracted and used as described in the previous section to effect

privacy enhanced electronic mail transfer.

In order to provide message integrity and data origin authentication, the originator

generates a MIC, signs (encrypts) the MIC using his private component, and includes

the resulting value in the "X-MIC-Info:" field as described in the previous section.

The certificate of the sender is also included in the header in the "X-Certificate:" field,

in order to facilitate validation in the absence of ubiquitous directory services. Upon

receipt of a privacy enhanced message, a recipient validates the sender's certificate,

extracts the public component from the certificate, and uses that value to recover

(decrypt) the MIC. The recovered MIC is compared against the locally calculated

MIC to verify the integrity and data origin authenticity of the message.

RFC1114 describes in detail the generation of certificates, and suggests a hierar-

chy of certification organizations in which the complexity of validation is minimized

by limiting the length of certification "paths". In addition, the authors suggest meth-

ods for interoperation across certification hierarchy boundaries (see Appendices for

details).

Chapter 8

A Prototype Implementation of

Privacy Enhanced Electronic Mail

8.1 Overview

RSA Data Security, Inc., founded by Rivest, Shamir, and Ade~man, have produced

a set of embeddable routines called BSAFE which provide primitives of the RSA

public key cryptosystem. This package was made available under license to the U.S.

Government, and was provided to me through the Office of the Secretary of De-

fense, Automation Support & Technology, for research purposes. Using RFC1113

and RFC1114 as design specifications, I have developed a prototype implementation

of the proposed standard privacy enhanced electronic mail, built around the set of

BSAFE primitives. Before discussing details of the implementation, the implementa-

tion environment, constraints on development, and limitations of the implementation

will be presented. Also, please note that the BSAFE routines are protected by copy-

right, and as such, will not be reproduced in this work.

35

36

8.2 Implementation Environment

The electronic mail implementation was developed using the C programming lan-

guage on a Vax 11/785 running Mt Xinu's 4.3bsd Unix operating system. Certificate

generation is most secure when performed in a stand alone environment, and so the

certificate generation process was developed on a Zenith Z-184 running MS-DOS

3.2 under the Microsoft C programming language, version 5.0. These machines use

the same byte-ordering, and all code in this implementation is portable between these

types of machines. Furthermore, compile time options were used which allow for com-

piling on M68000 based machines (Suns, etc.), which use a different byte-ordering,

and all code should be portable to these machines as well, although this porting was

not accomplished during the project.

BSAFE Version 1.4, a software package consisting of a set of subroutines which

provide a variety of cryptographic functions, was provided by RSA Data Security,

Inc. Note: Calls to the BSAFE routines will be shown in the subsequent description

of the implementation, but due to copyright restrictions, the subroutines themselves

will not be duplicated in this paper. The BSAFE routines were compiled and built

into an object library under both the Unix and MS-DOS operating systems.

8.3 Constraints on Development

It is the intent of the authors of the proposed standards that any real world imple-

mentation of privacy enhanced electronic mail be implemented using ASN.1 syntax

and encoding mechanisms, in which all defined data fields are self-describing, self-

delimiting and inherently of variable length. In using ASN.1 encoding, lengths of

data items transmitted from one machine to another are known to the receiving ma-

chine through the encoding mechanism, and need not be of predetermined size. An

37

ASN.1 compiler was simply not available during the implementation period, and was

a major constraint, forcing the addition of certain non standard data fields to those

defined in the RFCs to accommodate lengths of variable length fields, such as message

texts.

In addition, while the proposed standards allow for the use of modulus lengths

of between 320 and 632 bits, I chose the smallest size possible, 320 bits, in order to

speed up the generation of keys, and to allow for a predictable, fixed length field to

be used for key transmission (in the generation of certificates, for example).

The implementation followed the suggestion of the developers of the proposed

standards in that the privacy enhanced mail program is a standalone program which

is invoked by a user, and lies above the existing User Agent sublayer. This form of

integration offers, as the authors point out, the advantage that the program can be

used in conjunction with a wide range of User Agent programs, rather than being

compatible with only a particular User Agent.

When a user wishes to apply privacy enhancements to an outgoing message, the

user prepares the message's text and invokes the standalone program (interacting

with the program to provide address information and other data to perform privacy

enhancement processing), which in turn generates output suitable for transmission

via the User Agent. When a user receives a privacy enhanced message, the User

Agent delivers the message in encrypted form, suitable for decryption and associated

processing by the standalone program.

The final constraint was time, and due to never having as much as one would

like, forced me to restrict the implementation to something I felt was "do-able" in

the time I had available. Therefore, the implementation of certain features, such as

certificate validation, will be left to those who follow. These, and other limitations of

the implementation, are discussed in the next section.

38

8.4 Limitations of the Implementation

Due to time constraints, a number of limitations exist in the current prototype im-

plementation. The following sections describe these limitations. A fully functioning

implementation would have to address each of these limitations in turn:

8.4.1 Certificate Generation

A method is required to deal with the problem of compromised and otherwise invalid

certificates. Some means of notifying users of the privacy enhanced electronic mail

system about invalid certificates must be provided, as well as a method of maintaining

a list of invalid certificates which can be checked upon receipt of a privacy enhanced

message. RFC 114 describes the use of a Certificate Revocation List for this purpose.

Certificate revocation has not been addressed in my implementation.

Serial numbers for certificates are required to be unique, and RFC1114 suggests

the use of monotonically increasing integers for this purpose. This implementation

requires the generator of the certificate to enter a serial number in response to a

prompted message, and no provisions are made to insure uniqueness.

The certificate generation routines require calls to a random number generator,

which gets its seed by a call to the system clock. Since certificate generation is

envisioned to be performed only on a standalone device such as a PC, only MSDOS

system calls were used. If another platform is used, appropriate changes to the code

are required.

The prototype implementation prompts the user for the name of the file in which

the appropriate certificate is stored. A more satisfying implementation would place

all certificates in a central cache on each host (or in a server).

39

8.4.2 Pemail

A major component of security of the privacy enhanced mail system lies in its ability

to ensure the authenticity of the receiver, and to ensure the non-repudiation of origin

of the message. Authenticity of the recipient is accomplished by the sender validating

the certificate of the recipient prior to sending him mail. Non-repudiation of origin is

accomplished by ensuring the digital signature of the message matches the one pro-

duced by the recipient. Part of this assurance process is the validation of the sender's

certificate. The process of validating certificates involves little more than ensuring a

digital signature produced locally matches the one on the certificate, decrypted using

the public component of the Issuing Authority (see RFC 1114 for details). Although

provisions are made in my implementation for certificate validation, at the time of

this writing it is incomplete.

This implementation provides no support for multiple recipients and mailing lists.

Multiple recipients can be accommodated by repeating the encryption of the DEK

using the public component of each recipient, and including an "X-Recipient-ID" and

"X-Key-Info" header for each recipient. Note that the message text only need be

encrypted once (assuming there is no part of the message to be kept private from a

member of the recipient list). RFC1113 suggests two methods of providing support

for mailing lists.

The sender must determine if recipient is capable of processing privacy enhanced

email. This may not be assumed even if a certificate for the recipient exists, and is

available to the sender. (The recipient may be receiving mail on host which has no pri-

vacy enhanced electronic mail processing capability.) In the existing implementation,

this is accommodated in a straightforward manner: if the recipient receives a privacy

enhanced mail message for which he has no capability to process, he simply notifies

the sender of that fact. The sender may choose another method of transmitting the

message.

40

Exclusion of portions of message text from encryption is not supported. This can

be accommodated in future implementations through modifications to the code which

parses the text message.

8.5 General Implementation Design Features

The prototype implementation of privacy enhanced electronic mail consists of several

standalone programs developed to generate sets of keys, to generate user certificates,

and to process text messages for sending/receiving by the existing mail User Agent.

As a prototype system, all programs were developed in a very simplistic manner,

using no coding "tricks" and performing minimal error checking, all with the intent

to aid in the understanding of the mechanisms involved. All programs prompt for

user input, and accept no command line arguments. BSAFE routines were called in

precisely the manner suggested by the BSAFE documentation, and no changes were

made to any BSAFE routine. (Header files were, of course, modified as required for

the appropriate host architecture and compiler.) The following standalone programs

were developed:

1. makekeys - generates public/private key pairs for users, saving them in files of

the user's choice.

2. cert - generates user certificates, saving them in files of the user's choice. The

reader should review RFC1114 (Appendix B) for details of the certification proce-

dures.

3. pemail - the privacy enhanced mail processing routine. Prepares text messages

for sending, saving the processed message in a file to be passed to the User Agent.

Also performs processing of incoming privacy enhanced mail, storing the resulting

text in a file of the user's choice. The reader should review RFC1113 (Appendix A)

41

for details of the processing required to transform messages.

In addition, the following support routines were developed to be used by one or

more of the above programs, and can be found in the filc pesupport.c:

1. pencode - encodes text to printable form in accordance with RFC1113.

2. pdecode - decodes from printable form.

3. printstatus - prints the status returned by any of the other routines.

4. initrandom - initializes a psuedo-random number generator.

8.6 Use of the Privacy Enhanced Electronic Mail

System

8.6.1 The makekeys Program

In order to make use of privacy enhanced electronic mail, the user must have the

ability to generate public/private key pairs. A user may have several pairs of keys, for

various purposes, but the public component of the pair used for privacy enhanced mail

processing will be used in the generation of the user's certificate. It is imperative that

the corresponding private component be protected by the user, as its compromise will

place at risk all subsequent privacy enhanced mail messages, as well as any messages

which the user has decided to retain in privacy enhanced form, with encrypted DEK

intact. For the purposes of this implementation, we will assume that the file protection

capabilities of the host operating system can provide that protection. The makekeys

program is simply executed from the command line, with no arguments. The user

will be prompted for file names in which to store his public and provate components.

42

Source Code and Description for the Makekeys program can be found in Appendix

D.

8.6.2 The cert Program

Once a user has generated a key pair, the public component is used in generating a

certificate for that user. A certificate essentially includes information identifying the

user, along with his public component, and a message digest, which serves to bind

the identifying information to the public component. This message digest is signed

(i.e., encrypted) with private component of the Certifying Authority. The certificate

signature can then be used by the user to determine that the integrity of its contents

have not been compromised subsequent to generation by the Certifying Authority.

The data fields used to create user certificates are addressed in detail in RFC1 114,

but procedures for ensuring the security and integrity of the certificate generation

process are not. It is important in this system that the certificate generation process

be secure and that the integrity of the data (the user's identifying information and

his public component) relayed to the issuer of the certificate and back to the user

be assured. Forged certificates give an intruder the opportunity to trick a user into

encrypting messages with phony public keys.

Note that to forge a certificate, an intruder must discover the private component

of the Certifying Authority. This knowledge cannot allow the intruder to directly

decrypt any user's traffic; however, if an intruder replaced user A's certificate with a

forged certificate whose corresponding private key is known only to the intruder, this

would allow the intruder to decrypt any message that user B sends to A.

For the purposes of the prototype, the certificate generation program is executed

by the Certifying Authority from a standalone, trusted PC, in order to help protect

the Certifying Authority's private component from compromise. Note also that the

43

Certifying Authority issues certificates on behalf of an organization, using the or-

ganization's private component, not his personal key. Also, in this implementation

the user's public component and identifying information are simply mailed (not pri-

vacy enhanced) to the Certifying Authority, and the resulting certificate is simply

mailed back. These procedures would not normally suffice, and procedures described

in RFC1114 should be used.

To use the program, the Certifying Authority simply executes the program cert

from the command line, with no arguments, and responds to the prompts, which

asking him to enter the user's identifying information, and the name of the file in

which the user's public component is stored. The identifying information is read into

a data structure of fixed size. Certificate specific information (serial number, version

number, validity period, etc.) are generated and copied into the structure. The file in

which the user's public key is stored is opened, and the key value is recovered. This

value is also read into the structure. Next, a message digest, or Message Integrity

Code (MIC), is calculated on the contents of the structure, encrypted using the private

component of the Certifying Authority, and appended to the structure. The structure

contents are then written out to a file. This file is the user's certificate.

Source Code and Descriptions of the Cert program can be found in Appendix E.

8.6.3 The pemail Program

pemail is the main component of the privacy enhanced electronic mail implementa-

tion, and like the previous programs, is invoked with no command line arguments,

prompting for needed information. The program is broken into two major sections,

consisting of modules needed to prepare a message for sending, and modules needed

to receive privacy enhanced mail.

44

The Sending Routines

Preparing a privacy enhanced mail message for sending entails performing the four

phase transformation on the message text in accordance with RFC1113. Interchange

Keys must be recovered from appropriate certificates and Data Encryption Keys must

be generated. After prompting for the file name of the text message and opening the

file, a routine is called to transform the message text into a universal canonical form.

This conversion to a standard character set and representation before encryption

allows a message and its MIC to be verified at any type of destination host computer.

The decryption and MIC verification is performed before any conversions which may

be necessary to transform a message into a destination-specific local form. (See

RFC1113 for details of this transformation.) The canonical form of the message

is passed to a routine which calculates a MIC, which will be encrypted using the

private component of the sender and transmitted in a header field. This will allow

the recipient to verify the received message's integrity. Next, the DEK is generated,

and the canonical form of the message text is encrypted using the DEK. After this,

the resulting encrypted bitstring is encoded into characters which are universally

representable at all sites, by the pencode routine. (See RFC1113 for details on the

encoding scheme used, and Appendix G for code and module descriptions of the

Pencode and Pdecode routines.) Next, after prompting for the appropriate certificate

file names, the header fields are created, recovering and inserting certificates where

required. It is in this step that the DEK is encrypted using the recipient's public

component (recovered from his certificate) and placed in the "X-Key-Info:" header

field. Finally, the header fields and encrypted message text are written to a text file

for encapsulation as an electronic mail text message.

45

The Receiving Routines

The receiving routines essentially perform an inverse transformation, in reverse or-

der, on the text message. Having saved the privacy enhanced mail message in a

file through the mail User Agent, the receiving routines first decode the encrypted

message text into the local character set. (The recipient may optionally wish to val-

idate the certificate of the sender, contained in the "X-Certificate:" header field.)

After decrypting the DEK with the recipient's private component, the message text

is decrypted (into its canonical form) and a MIC calculation is performed on the

resulting text. This MIC quantity is compared to the decrypted (using the sender's

public component recovered from the "X-Certificate:" header field) quantity in the

"X-MIC-Info:" header field to verify the integrity of the message transmission. Next,

the decrypted text is converted from canonical form to local form and saved in a file.

The specific code and module descriptions of the Pemail program can be found in

Appendix F.

Chapter 9

Suggestions for Continued

Development

This prototype has shown the feasibility of implementing privacy enhanced electronic

mail in a typical open environment. While it may be some time before the proposed

standards can be implemented across the Internet, a single organization, issuing its

own certificates, could implement such a system in a short time, resulting in signif-

icantly improved security for sensitive information. Such an organization would not

face many of the constraints one would see in a large entity such as the Internet. (For

example, the problem of ensuring unique user names across the entire domain is not

insignificant for the Internet community.) Cacheing of certificates on all the organi-

zation's hosts could substitute for certificate servers, and a single entity within the

organization, say the Security Manager, could be responsible for issuing certificates.

While this prototype could serve as the basis for such an implementation, many

areas would need further work and improvement. The primary improvement would be

to rework the implementation in ASN.1, to more closely comply with the standards

and eliminate the need for fixed length data fields, which required a great deal of extra

effort to implement. Error checking would need to be improved, as the prototype is

not very robust, and it would be very easy to break by exceeding the bounds of

buffers in the C gets function calls. A major limitation of the current prototype is

that certificate validation has not been implemented, and this would be a must in a

46

47

real-world environment. In general, all the items listed as limitations of the prototype

should be addressed.

There are other interesting applications of hybrid cryptosystems to be explored.

For example, because of the slow speed of the public key algorithms, one would not

wish to use it to protect data on a computer system. However, it would be an easy

task to build a package that would encrypt a file using a DES (fast algorithm) key,

encrypt the DES key using a public key, and append the encrypted DES key to the

file for storage. In this way, a user could protect data stored on, for example, a floppy

disk from compromise during transit.

Another application might be in virus protection, using the digital signature capa-

bility of public key cryptology. In this application, a software vendor would compute

a message digest of his code, encrypt the message digest using his private component,

and append the encrypted digest to his product. A customer, purchasing the prod-

uct, could calculate the message digest, and compare his calculated message digest

with the one sent with the product, decrypted using the vendor's published public

component. If they were not equal, the customer should suspect that the product

had been tampered with. Note, however, that this scheme requires a strong certificate

validation mechanism.

In summary, the standards proposed in RFCsl113-1115, employing a hybrid cryp-

tosystem to provide data confidentiality and integrity across unsecure communications

channels, appear to offer a highly effective means to ensure the protection and au-

thentication of electronic mail messages. If certificate management issues can be dealt

with effectively, organizations may soon be able to communicate sensitive information

without the necessity of costly trusted networks and components.

Appendix A

RFC1113 Privacy Enhancement

for Internet Electronic Mail: Part

I - Message Encipherment and

Authentication Procedures

Network Working Group J. Linn

Request for Comments: 1113 DEC

Obsoletes RFCs: 989, 1040 IAB Privacy Task Force

August 1989

Privacy Enhancement for Internet Electronic Mail:

Part I -- Message Encipherment and Authentication Procedures

STATUS OF THIS MEMO

This RFC suggests a draft standard elective protocol for the Internet

48

49

community, and requests discussion and suggestions for improvements.

Distribution of this memo is unlimited.

ACKNOWLEDGMENT

This RFC is the outgrowth of a series of IAB Privacy Task Force

meetings and of internal working papers distributed for those

meetings. I would like to thank the following Privacy Task Force

members and meeting guests for their comments and contributions at

the meetings which led to the preparation of this RFC: David

Balenson, Curt Barker, Jim Bidzos, Matt Bishop, Danny Cohen, Tom

Daniel, Charles Fox, Morrie Gasser, Russ Housley, Steve Kent

(chairman), John Laws, Steve Lipner, Dan Nessett, Mike Padlipsky, Rob

Shirey, Miles Smid, Steve Walker, and Steve Wilbur.

Table of Contents

1. Executive Summary 2

2. Terminology 3

3. Services, Constraints, and Implications 3

4. Processing of Messages 7

4.1 Message Processing Overview 7

4.1.1 Types of Keys 7

50

4.1.2 Processing Procedures 8

4.2 Encryption Algorithms and Modes 9

4.3 Privacy tnhancement Message Transformations 10

4.3.1 Constraints 10

4.3.2 Approach 11

4.3.2.1 Step 1: Local Form 12

4.3.2.2 Step 2: Canonical Form 12

4.3.2.3 Step 3: Authentication and Encipherment 12

4.3.2.4 Step 4: Printable Encoding 13

4.3.2.5 Summary of Transformations 15

4.4 Encapsulation Mechanism 15

4.5 Mail for Mailing Lists 17

4.6 Summary of Encapsulated Header Fields 18

Linn [Page 1]

RFC 1113 Mail Privacy: Procedures August 1989

4.6.1 Per-Message Encapsulated Header Fields 20

4.6.1.1 X-Proc-Type Field 20

4.6.1.2 X-DEK-Info Field 21

51

4.6.2 Encapsulated Header Fields Normally Per-Message 21

4.6.2.1 X-Sender-ID Field 22

4.6.2.2 X-Certificate Field 22

4.6.2.3 X-MIC-Info Field 23

4.6.3 Encapsulated Header Fields with Variable Occurrences 23

4.6.3.1 X-Issuer-Certificate Field 23

4.6.4 Per-Recipient Encapsulated Header Fields 24

4.6.4.1 X-Recipient-ID Field 24

4.6.4.2 X-Key-Info Field 24

4.6.4.2.1 Symmetric Key Management 24

4.6.4.2.2 Asymmetric Key Management 25

5. Key Management 26

5.1 Data Encrypting Keys (DEKs) 26

5.2 Interchange Keys (IKs) 26

5.2.1 Subfield Definitions 28

5.2.1.1 Entity Identifier Subfield 28

5.2.1.2 Issuing Authority Subfield 29

5.2.1.3 Version/Expiration Subfield 29

5.2.2 IK Cryptoperiod Issues 29

6. User Naming 29

6.1 Current Approach 29

6.2 Issues for Consideration 30

7. Example User Interface and Implementation 30

52

8. Areas For Further Study 31

9. References 32

NOTES 32

1. Executive Summary

This RFC defines message encipherment and authentication procedures,

in order to provide privacy enhancement services for electronic mail

transfer in the Internet. It is one member of a related set of four

RFCs. The procedures defined in the current RFC are intended to be

compatible with a wide range of key management approaches, including

both symmetric (secret-key) and asymmetric (public-key) approaches

for encryption of data encrypting keys. Use of symmetric

cryptography for message text encryption and/or integrity check

computation is anticipated. RFC-1114 specifies supporting key

management mechanisms based c.. the use of public-key certificates.

RFC-1115 specifies algorithm and related information relevant to the

current RFC and to RFC-1114. A subsequent RFC will provide details

of paper and electronic formats and procedures for the key management

infrastructure being established in support of these services.

Privacy enhancement services (confidentiality, authentication, and

53

Linn [Page 2]

RFC 1113 Mail Privacy: Procedures August 1989

message integrity assurance) are offered through the use of end-to-

end cryptography between originator and recipient User Agent

processes, with no special processing requirements imposed on the

Message Transfer System at endpoints or at intermediate relay sites.

This approach allows privacy enhancement facilities to be

incorporated on a site-by-site or user-by-user basis without impact

on other Internet entities. Interoperability among heterogeneous

components and mail transport facilities is supported.

2. Terminology

For descriptive purposes, this RFC uses some terms defined in the OSI

X.400 Message Handling System Model per the 1984 CCITT

Recommendations. This section replicates a portion of X.400's

Section 2.2.1, "Description of the MHS Model: Overview" in order to

make the terminology clear to readers who may not be familiar with

the OSI MHS Model.

54

In the MHS model, a user is a person or a computer application. A

user is referred to as either an originator (when sending a message)

or a recipient (when receiving one). MH Service elements define the

set of message types and the capabilities that enable an originator

to transfer messages of those types to one or more recipients.

An originator prepares messages with the assistance of his or her

User Agent (UA). A UA is an application process that interacts with

the Message Transfer System (MTS) to submit messages. The MTS

delivers to one or more recipient UAs the messages submitted to it.

Functions performed solely by the UA and not standardized as part of

the MH Service elements are called local UA functions.

The MTS is composed of a number cf Message Transfer Agents (MTAs).

Operating together, the MTAs relay messages and deliver them to the

intended recipient UAs, which then make the messages available to the

intended recipients.

The collection of UAs and MTAs is called the Message Handling System

(MHS). The MHS and all of its users are collectively referred to as

the Message Handling Environment.

55

3. Services, Constraints, and Implications

This RFC defines mechanisms to enhance privacy for electronic mail

transferred in the Internet. The facilities discussed in this RFC

provide privacy enhancement services on an end-to-end basis between

sender and recipient UAs. No privacy enhancements are offered for

message fields which are added or transformed by intermediate relay

points.

Linn [Page 3]

RFC 1113 Mail Privacy: Procedures August 1989

Authentication and integrity facilities are always applied to the

entirety of a message's text. No facility for confidentiality

without authentication is provided. Encryption facilities may be

applied selectively to portions of a message's contents; this allows

less sensitive portions of messages (e.g., descriptive fields) to be

processed by a recipient's delegate in the absence of the recipient's

personal cryptographic keys. In the limiting case, where the

entirety of message text is excluded from encryption, this feature

56

can be used to yield the effective combination of authentication and

integrity services without confidentiality.

In keeping with the Internet's heterogeneous constituencies and usage

modes, the measures defined here are applicable to a broad range of

Internet hosts and usage paradigms. In particular, it is worth

noting the following attributes:

1. The mechanisms defined in this RFC are not restricted to a

particular host or operating system, but rather allow

interoperability among a broad range of systems. All

privacy enhancements are implemented at the application

layer, and are not dependent on any privacy features at

lower protocol layers.

2. The defined mechanisms are compatible with non-enhanced

Internet components. Privacy enhancements are implemented

in an end-to-end fashion which does not impact mail

processing by intermediate relay hosts which do not

incorporate privacy enhancement facilities. It is

necessary, however, for a message's sender to be cognizant

of whether a message's intended recipient implements privacy

enhancements, in order that encoding and possible

57

encipherment will not be performed on a message whose

destination is not equipped to perform corresponding inverse

transformations.

3. The defined mechanisms are compatible with a range of mail

transport facilities (MTAs). Within the Internet,

electronic mail transport is effected by a variety of SMTP

implementations. Certain sites, accessible via SMTP,

forward mail into other mail processing environments (e.g.,

USENET, CSNET, BITNET). The privacy enhancements must be

able to operate across the SMTP realm; it is desirable that

they also be compatible with protection of electronic mail

sent between the SMTP environment and other connected

environments.

4. The defined mechanisms are compatible with a broad range of

electronic mail user agents (UAs). A large variety of

Linn [Page 4]

RFC 1113 Mail Privacy: Procedures August 1989

58

electronic mail user agent programs, with a corresponding

broad range of user interface paradigms, is used in the

Internet. In order that electronic mail privacy

enhancements be available to the broadest possible user

community, selected mechanisms should be usable with the

widest possible variety of existing UA programs. For

purposes of pilot implementation, it is desirable that

privacy enhancement processing be incorporable into a

separate program, applicable to a range of UAs, rather than

requiring internal modifications to each UA with which

privacy-enhanced services are to be provided.

5. The defined mechanisms allow electronic mail privacy

enhancement processing to be performed on personal computers

(PCs) separate from the systems on which UA functions are

implemented. Given the expanding use of PCs and the limited

degree of trust which can be placed in UA implementations on

many multi-user systems, this attribute can allow many users

to process privacy-enhanced mail with a higher assurance

level than a strictly UA-based approach would allow.

6. The defined mechanisms support privacy protection of

59

electronic mail addressed to mailing lists (distribution

lists, in ISO parlance).

7. The mechanisms defined within this RFC are compatible with a

variety of supporting key management approaches, including

(but not limited to) manual pre-distribution, centralized

key distribution based on symmetric cryptography, and the

use of public-key certificates. Different key management

mechanisms may be used for different recipients of a

multicast message. While support for a particular key

management mechanism is not a minimum essential requirement

for compatibility with this RFC, adoption of the public-key

cartificate approach defined in companion RFC-1114 is

strongly recommended.

In order to achieve applicability to the broadest possible range of

Internet hosts and mail systems, and to facilitate pilot

implementation and testing without the need for prior modifications

throughout the Internet, three basic restrictions are imposed on the

set of measures to be considered in this RFC:

1. Measures will be restricted to implementation at endpoints

and will be amenable to integration at the user agent (UA)

60

level or above, rather than necessitating integration into

the message transport system (e.g., SMTP servers).

Linn [Page 5]

RFC 1113 Mail Privacy: Procedures August 1989

2. The set of supported measures enhances rather than restricts

user capabilities. Trusted implementations, incorporating

integrity features protecting software from subversion by

local users, cannot be assumed in general. In the absence

of such features, it appears more feasible to provide

facilities which enhance user services (e.g., by protecting

and authenticating inter-user traffic) than to enforce

restrictions (e.g., inter-user access control) on user

actions.

3. The set of supported measures focuses on a set of functional

capabilities selected to provide significant and tangible

benefits to a broad user community. By concentrating on the

61

most critical set of services, we aim to maximize the added

privacy value that can be provided with a modest level of

implementation effort.

As a result of these restrictions, the following facilities can be

provided:

1. disclosure protection,

2. sender authenticity,

3. message integrity measures, and

4. (if asymmetric key management is used) non-repudiation of

origin,

but the following privacy-relevant concerns are not addressed:

1. access control,

2. traffic flow confidentiality,

3. address list accuracy,

62

4. routing control,

5. issues relating to the casual serial reuse of PCs by

multiple users,

6. assurance of message receipt and non-deniability of receipt,

7. automatic association of acknowledgments with the messages

to which they refer, and

8. message duplicate detection, replay prevention, or other

Linn [Page 6]

RFC 1113 Mail Privacy: Procedures August 1989

stream-oriented services.

A message's sender will determine whether privacy enhancements are to

be performed on a particular message. Therefore, a sender must be

63

able to determine whether particular recipients are equipped to

process privacy-enhanced mail. In a general architecture, these

mechanisms will be based on server queries; thus, the query function

could be integrated into a UA to avoid imposing burdens or

inconvenience on electronic mail users.

4. Processing of Messages

4.1 Message Processing Overview

This subsection provides a high-level overview of the components and

processing steps involved in electronic mail privacy enhancement

processing. Subsequent subsections will define the procedures in

more detail.

4.1.1 Types of Keys

A two-level keying hierarchy is used to support privacy-enhanced

message transmission:

1. Data Encrypting Keys (DEKs) are used for encryption of

message text and (with certain choices among a set of

alternative algorithms) for computation of message integrity

64

check (MIC) quantities. DEKs are generated individually for

each transmitted message; no prcdistribution of DEKs is

needed to support privacy-enhanced message transmission.

2. Interchange Keys (IKs) are used to encrypt DEKs for

transmission within messages. Ordinarily, the same IK will

be used for all messages sent from a given originator to a

given recipient over a period of time. Each transmitted

message includes a representation of the DEK(s) used for

message encryption and/or MIC computation, encrypted under

an individual IK per named recipient. The representation is

associated with "X-Sender-ID:" and "X-Recipient-ID:" fields,

which allow each individual recipient to identify the IK

used to encrypt DEKs and/or MICs for that recipient's use.

Given an appropriate IK, a recipient can decrypt the

corresponding transmitted DEK representation, yielding the

DEK required for message text decryption and/or MIC

verification. The definition of an IK differs depending on

whether symmetric or asymmetric cryptography is used for DEK

encryption:

65

Linn [Page 7]

RFC 1113 Mail Privacy: Procedures August 1989

2a. When symmetric cryptography is used for DEK

encryption, an IK is a single symmetric key shared

between an originator and a recipient. In this

case, the same IK is used to encrypt MICs as well

as DEKs for transmission. Version/expiration

information and IA identification associated with

the originator and with the recipient must be

concatenated in order to fully qualify a symmetric

IK.

2b. When asymmetric cryptography is used, the IK

component used for DEK encryption is the public

component of the recipient. The IK component used

for MIC encryption is the private component of the

originator, and therefore only one encrypted MIC

representation need be included per message, rather than

one per recipient. Each of these IK

components can be fully qualified in an

66

"X-Recipient-ID:" or "X-Sender-ID:" field,

respectively.

4.1.2 Processing Procedures

When privacy enhancement processing is to be performed on an outgoing

message, a DEK is generated [1] for use in message encryption and (if

a chosen MIC algorithm requires a key) a variant of the DEK is formed

for use in MIC computation. DEK generation can be omitted for the

case of a message in which all contents are excluded from encryption,

unless a chosen MIC computation algorithm requires a DEK.

An "X-Sender-ID:" field is included in the header to provide one

identification component for the IK(s) used for message processing.

IK components are selected for each individually named recipient; a

corresponding "X-Recipient-ID:" field, interpreted in the context of

a prior "X-Sender-ID:" field, serves to identify each IK. Each "X-

Recipient-ID:" field is followed by an "X-Key-Info:" field, which

transfers a DEK encrypted under the IK appropriate for the specified

recipient. When symmetric key management is used for a given

recipient, the "X-Key-Info:" field also transfers the message's

computed MIC, encrypted under the recipient's IK. When asymmetric

key management is used, a prior "X-MIC-Info:" field carries the

67

message's MIC encrypted under the private component of the sender.

A four-phase transformation procedure is employed in order to

represent encrypted message text in a universally transmissible form

and to enable messages encrypted on one type of host computer to be

decrypted on a different type of host computer. A plaintext message

is accepted in local form, using the host's native character set and

Linn [Page 8]

RFC 1113 Mail Privacy: Procedures August 1989

line representation. The local form is converted to a canonical

message text representation, defined as equivalent to the inter-SMTP

representation of message text. This canonical representation forms

the input to the MIC computation and encryption processes.

For encryption purposes, the canonical representation is padded as

required by the encryption algorithm. The padded canonical

representation is encrypted (except for any regions which are

explicitly excluded from encryption). The encrypted text (along with

68

the canonical representation of regions which were excluded from

encryption) is encoded into a printable form. The printable form is

composed of a restricted character set which is chosen to be

universally representable across sites, and which will not be

disrupted by processing within and between MTS entities.

The output of the encoding procedure is combined with a set of header

fields carrying cryptographic control information. The result is

passed to the electronic mail system to be encapsulated as the text

portion of a transmitted message.

When a privacy-enhanced message is received, the cryptographic

control fields within its text portion provide the information

required for the authorized recipient to perform MIC verification and

decryption of the received message text. First, the printable

encoding is converted to a bitstring. Encrypted portions of the

transmitted message are decrypted. The MIC is verified. The

canonical representation is converted to the recipient's local form,

which need not be the same as the sender's local form.

4.2 Encryption Algorithms and Modes

For purposes of this RFC, the Block Cipher Algorithm DEA-1, defined

69

in ANSI X3.92-1981 [2] shall be used for encryption of message text.

The DEA-1 is equivalent to the Data Encryption Standard (DES), as

defined in FIPS PUB 46 [3]. When used for encryption of text, the

DEA-1 shall be used in the Cipher Block Chaining (CBC) mode, as

defined in ISO IS 8372 [4]. The identifier string "DES-CBC", defined

in RFC-1115, signifies this algorithm/mode combination. The CBC mode

definition in IS 8372 is equivalent to that provided in FIPS PUB 81

[5] and in ANSI X3.106-1983 [16]. Use of other algorithms and/or

modes for message text processing will require case-by-case study to

determine applicability and constraints. Additional algorithms and

modes approved for use in this context will be specified in

successors to RFC-1115.

It is an originator's responsibility to generate a new pseudorandom

initializing vector (IV) for each privacy-enhanced electronic mail

message unless the entirety of the message is excluded from

Linn [Page 9]

RFC 1113 Mail Privacy: Procedures August 1989

70

encryption. Section 4.3.1 of [17) provides rationale tor this

requirement, even in a context where individual DEKs are generated

for individual messages. The IV will be transmitted with the

message.

Certain operations require that one key be encrypted under an

interchange key (IK) for purposes of transmission. A header facility

indicates the mode in which the IK is used for encryption. RFC-1115

specifies encryption algorithm/mode identifiers, including DES-ECB,

DES-EDE, and RSA. All implementations using symmetric key management

should support DES-ECB IK use, and all implementations using

asymmetric key management should support RSA IK use.

RFC-1114, released concurrently with this RFC, specifies asymmetric,

certificate-based key management procedures to support the message

processing procedures defined in this document. The message

processing procedures can also be used with symmetric key management,

given prior distribution of suitable symmetric IKs through out-of-

band means. Support for the asymmetric approach defined in RFC-1114

is strongly recommended.

4.3 Privacy Enhancement Message Transformations

71

4.3.1 Constraints

An electronic mail encryption mechanism must be compatible with the

transparency constraints of its underlying electronic mail

facilities. These constraints are generally established based on

expected user requirements and on the characteristics of anticipated

endpoint and transport facilities. An encryption mechanism must also

be compatible with the local conventions of the computer systems

which it interconnects. In our approach, a canonicalization step is

performed to abstract out local conventions and a subsequent encoding

step is performed to conform to the characteristics of the underlying

mail transport medium (SMTP). The encoding conforms to SMTP

constraints, established to support interpersonal messaging. SMTP's

rules are also used independently in the canonicalization process.

RFC-821's [7J Section 4.5 details SMTP's transparency constraints.

To prepare a message for SMTP transmission, the following

requirements must be met:

1. All characters must be members of the 7-bit ASCII character

set.

72

2. Text lines, delimited by the character pair <CR><LF>, must

be no more than 1000 characters long.

Linn [Page 10]

RFC 1113 Mail Privacy: Procedures August 1989

3. Since the string <CR><LF>.<CR><LF> indicates the end of a

message, it must not occur in text prior to the end of a

message.

Although SMTP specifies a standard representation for line delimiters

(ASCII <CR><LF>), numerous systems use a different native

representation to delimit lines. For example, the <CR><LF> sequences

delimiting lines in mail inbound to UNIX systems are transformed to

single <LF>s as mail is written into local mailbox files. Lines in

mail incoming to record-oriented systems (such as VAX VMS) may be

converted to appropriate records by the destination SMTP [8] server.

As a result, if the encryption process generated <CR>s or <LF>s,

those characters might not be accessible to a recipient UA program at

73

a destination which uses different line delimiting conventions. It

is also possible that conversion between tabs and spaces may be

performed in the course of mapping between inter-SMTP and local

format; this is a matter of local option. If such transformations

changed the form of transmitted ciphertext, decryption would fail to

regenerate the transmitted plaintext, and a transmitted MIC would

fail to compare with that computed at the destination.

The conversion performed by an SMTP server at a system with EBCDIC as

a native character set has even more severe impact, since the

conversion from EBCDIC into ASCII is an information-losing

transformation. In principle, the transformation function mapping

between inter-SMTP canonical ASCII message representation and local

format could be moved from the SMTP server up to the UA, given a

means to direct that the SMTP server should no longer perform that

transformation. This approach has a major disadvantage: internal

file (e.g., mailbox) formats would be incompatible with the native

forms used on the systems where they reside. Further, it would

require modification to SMTP servers, as mail would be passed to SMTP

in a different representation than it is passed at present.

4.3.2 Approach

74

Our approach to supporting privacy-enhanced mail across an

environment in which intermediate conversions may occur encodes mail

in a fashion which is uniformly representable across the set of

privacy-enhanced UAs regardless of their systems' native character

sets. This encoded form is used to represent mail text from sender

to recipient, but the encoding is not applied to enclosing mail

transport headers or to encapsulated headers inserted to carry

control information between privacy-enhanced UAs. The encoding's

characteristics are such that the transformations anticipated between

sender and recipient UAs will not prevent an encoded message from

being decoded properly at its destination.

Linn [Page 11]

RFC 1113 Mail Privacy: Procedures August 1989

A sender may exclude one or more portions of a message from

encryption processing, but authentication processing is always

applied to the entirety of message text. Explicit action is required

to exclude a portion of a message from encryption processing; by

75

default, encryption is applied to the entirety of message text. The

user-level delimiter which specifies such exclusion is a local

matter, and hence may vary between sender and recipient, but all

systems should provide a means for unambiguous identification of

areas excluded from encryption processing.

An outbound privacy-enhanced message undergoes four transformation

steps, described in the following four subsections.

4.3.2.1 Step 1: Local Form

The message text is created in the system's native character set,

with lines delimited in accordance with local convention.

4.3.2.2 Step 2: Canonical Form

The entire message text, including both those portions subject to

encipherment processing and those portions excluded from such

processing, is converted to a universal canonical form, analogous to

the inter-SMTP representation [9] as defined in RFC-821 and RFC-822

[10] (ASCII character set, <CR><LF> line delimiters). The processing

required to perform this conversion is minimal on systems whose

native character set is ASCII. (Note: Since the output of the

76

canonical encoding process will never be submitted directly to SMTP,

but only to subsequent steps of the privacy enhancement encoding

process, the dot-stuffing tra-sformation discussed in RFC-821,

section 4.5.2, is not required.) Since a message is converted to a

standard character set and representation before encryption, it can

be decrypted and its MIC can be verified at any type of destination

host computer. Thi decryption and MIC verification is performed

before any conversions which may be necessary to transform the

message into a destination-specific local form.

4.3.2.3 Step 3: Authentication and Encipherment

The canonical form is input to the selected MIC computation algorithm

in order to compute an integrity check quantity ior the message. No

padding is added to the canonical form before submission to the MIC

computation algorithm, although certain MIC algoritbms will apply

their own padding in the course of computing a MIC.

Padding is applied to the canonical form as needed to perform

encryption in the DEA-I CBC mode, as follows: The number of octets to

be encrypted is determined by subtracting the number of octets

77

Linn [Page 12]

RFC 1113 Mail Privacy: Procedures August 1989

excluded from encryption from the total length of the canonically

encoded text. Octets with the hexadecimal value FF (all ones) are

appended to the canonical form as needed so that the text octets to

be encrypted, along with the added padding octets, fill an integral

number of 8-octet encryption quanta. No padding is applied if the

number of octets to be encrypted is already an integral multipi of

8. The use of hexadecimal FF (a value outside the 7-bit ASCII set)

as a padding value allows padding octets to be distinguished from

valid data without inclusion of an explicit padding count indicator.

The regions of the message which have not been excluded from

encryption are encrypted. To support selective encipherment

processing, an implementation must retain internal indications of the

positions of excluded areas excluded from encryption with relation to

non-excluded areas, so that those areas can be properly delimited in

the encoding procedure defined in step 4. If a region excluded from

encryption intervenes between encrypted regions, cryptographic state

(e.g., IVs and accumulation of octets into encryption quanta) is

78

preserved and continued after the excluded region.

4.3.2.4 Step 4: Printable Encoding

Proceeding from left to right, the bit string resulting from step 3

is encoded into characters which are universally representable at all

sites, though not necessarily with the same bit patterns (e.g.,

although the character "E" is represented in an ASCII-based system as

hexadecimal 45 and as hexadecimal C5 in an EBCDIC-based system, the

local significance of the two representations is equivalent). This

encoding step is performed for all privacy-enhanced messages, even if

an entire message is excluded from encryption.

A 64-character subset of International Alphabet IA5 is used, enabling

6 bits to be represented per printable character. (The proposed

subset of characters is represented identically in IAS and ASCII.)

Two additional characters, "=" and 'W', are used to signify special

processing functions. The character "=" is used for padding within

the printable encoding procedure. The character "*" is used to

delimit the beginning and end of a region which has been excluded

from encipherment processing. The encoding function's output is

delimited into text lines (using local conventions), with each line

except the last containing exactly 64 printable characters and the

79

final line containing 64 or fewer printable characters. (This line

length is easily printable and is guaranteed to satisfy SMTP's 1000-

character transmitted line length limit.)

The encoding process represents 24-bit groups of input bits as output

strings of 4 encoded characters. Proceeding from left to right across

a 24-bit input group extracted from the output of step 3, each 6-bit

Linn [Page 13]

RFC 1113 Mail Privacy: Procedures August 1989

group is used as an index into an array of 64 printable characters.

The character referenced by the index is placed in the output string.

These characters, identified in Table 0, are selected so as to be

universally representable, and the set excludes characters with

particular significance to SMTP (e.g., ".", "<CR>", "<LF>").

Special processing is performed if fewer than 24 bits are available

in an input group, either at the end of a message or (when the

selective encryption facility is invoked) at the end of an encrypted

80

region or an excluded region. A full encoding quantum is always

completed at the end of a message and before the delimiter "*" is

output to initiate or terminate the representation of a block

excluded from encryption. When fewer than 24 input bits are

available in an input group, zero bits are added (on the right) to

form an integral number of 6-bit groups. Output character positions

which are not required to represent actual input data are set to the

character "=". Since all canonically encoded output is an integral

number of octets, only the following cases can arise: (1) the final

quantum of encoding input is an integral multiple of 24 bits; here,

the final unit of encoded output will be an integral multiple of 4

characters with no "=" padding, (2) the final quantum of encoding

input is exactly 8 bits; here, the final unit of encoded output will

be two characters followed by two "=" padding characters, or (3) the

final quantum of encoding input is exactly 16 bits; here, the final

unit of encoded output will be three characters followed by one "="

padding character.

81

Linn [Page 14]

RFC 1113 Mail Privacy: Procedures August 1989

82

4.3.2.5 Summary of Transformations

In summary, the outbound message is subjected to the following

composition of transformations:

Transmit-Form = Encode(Encipher(Canonicalize(LocalForm)))

The inverse transformations are performed, in reverse order, to

process inbound privacy-enhanced mail:

Local-Form = DeCanonicalize(Decipher(Decode(Transmit-Form)))

Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z

I B is S 3 S j 52 0

2 C 19 T 36 k 53 1

3 D 20 U 37 1 54 2

4 E 21 V 38 m 55 3

5 F 22 W 39 n 56 4

6 G 23 X 40 o 57 5

7 H 24 Y 41 p 58 6

8 1 25 Z 42 q 59 7

83

9 3 26 a 43 r 60 8

10 K 27 b 44 s 61 9

1i L 28 c 45 t 62 +

12 M 29 d 46 u 63/

13 N 30 e 47 v

14 0 31 f 48 w (pad)

15 P 32 g 49 x

16 Q 33 h 50 y (1) *

(1) The character "*" is used to enclose portions of an

encoded message to which encryption processing has not

been applied.

Printable Encoding Characters

Table 1

Note that the local form and the functions to transform messages to

and from canonical form may vary between the sender and recipient

systems without loss of information.

4 4 Encapsulation Mechanism

84

Encapsulation of privacy-enhanced messages within an enclosing layer

Linn [Page 15]

RFC 1113 Mail Privacy: Procedures August 1989

of headers interpreted by the electronic mail transport system offers

a number of advantages in comparison to a flat approach in which

certain fields within a single header are encrypted and/or carry

cryptographic control information. Encapsulation provides generality

and segregates fields with user-to-user significance from those

transformed in transit. All fields inserted in the course of

encryption/authentication processing are placed in the encapsulated

header. This facilitates compatibility with mail handlin& programs

which accept only text, not header fields, from input files or from

other programs. Further, privacy enhancement processing can be

applied recursively. As far as the MTS is concerned, information

incorporated into cryptographic authentication or encryption

processing will reside in a message's text portion, not its header

portion.

85

The encapsulation mechanism to be used for privacy-enhanced mail is

derived from that described in RFC-934 [11] which is, in turn, based

on precedents in the processing of message digests in the Internet

community. To prepare a user message for encrypted or authenticated

transmission, it will be transformed into the representation shown in

Figure 1.

As a general design principle, sensitive data is protected by

incorporating the data within the encapsulated text rather than by

applying measures selectively to fields in the enclosing header.

Examples of potentially sensitive header information may include

fields such as "Subject:", with contents which are significant on an

end-to-end, inter-user basis. The (possibly empty) set of headers to

which protection is to be applied is a user option. It is strongly

recommended, however, that all implementations should replicate

copies of "X-Sender-ID:" and "X-Recipient-ID:" fields within the

encapsulated text.

If a user wishes disclosure protection for header fields, they must

occur only in the encapsulated text and not in the enclosing or

encapsulated header. If disclosure protection is desired for a

message's subject indication, it is recommended that the enclosing

86

header contain a "Subject:"' field indicating that "Encrypted Mail

Follows".

If an authenticated version of header information is desired, that

data can be replicated within the encapsulated text portion in

addition to its inclusion in the enclosing header. For example, a

sender wishing to provide recipients with a protected indication of a

message's position in a series of messages could include a copy of a

timestamp or message counter field within the encapsulated text.

A specific point regarding the integration of privacy-enhanced mail

Linn rPage 16]

RFC 1113 Mail Privacy: Procedures August 1989

facilities with the message encapsulation mechanism is worthy of

note. The subset of IAS selected for transmission encoding

intentionally excludes the character "-", so encapsulated text can be

distinguished unambiguously from a message's closing encapsulation

boundary (Post-EB) without recourse to character stuffing.

87

Enclosing Header Portion

(Contains header fields per RFC-822)

Blank Line

(Separates Enclosing Header from Encapsulated Message)

Encapsulated Message

Pre-Encapsulation Boundary (Pre-EB)

----- PRIVACY-ENHANCED MESSAGE BOUNDARY ----

Encapsulated Header Portion

(Contains encryption control fields inserted in plaintext.

Examples include "X-DEK-Info:", "X-Sender-ID:", and

"X-Key-Info:".

Note that, although these control fields have line-oriented

representations similar to RFC-822 header fields, the set

of fields valid in this context is disjoint from those used

in RFC-822 processing.)

Blank Line

(Separates Encapsulated Header from subsequent encoded

88

Encapsulated Text Portion)

Encapsulated Text Portion

(Contains message data encoded as specified in Section 4.3;

may incorporate protected copies of enclosing and

encapsulated header fields such as "Subject:", etc.)

Post-Encapsulation Boundary (Post-EB)

----- PRIVACY-ENHANCED MESSAGE BOUNDARY ----

Message Encapsulation

Figure 1

4.5 Mail for Mailing Lists

When mail is addressed to mailing lists, two different methods of

processing can be applicable: the IK-per-list method and the IK-per-

recipient method. The choice depends on the information available to

89

Linn [Page 17]

RFC 1113 Mail Privacy: Procedures August 1989

the sender and on the sender's preference.

If a message's sender addresses a message to a list name or alias,

use of an IK associated with that name or alias as a entity (IK-per-

list), rather than resolution of the name or alias to its constituent

destinations, is implied. Such an IK must, therefore, be available

to all list members. For the case of asymmetric key management, the

list's private component must be available to all list members. This

alternative will be the normal case for messages sent via remote

exploder sites, as a sender to such lists may not be cognizant of the

set of individual recipients. Unfortunately, it implies an

undesirable level of exposure for the shared IK, and makes its

revocation difficult. Moreover, use of the IK-per-list method allows

any holder of the list's IK to masquerade as another sender to the

list for authentication purposes.

If, in contrast, a message's sender is equipped to expand the

destination mailing list into its individual constituents and elects

to do so (IK-per-recipient), the message's DEK (and, in the symmetric

90

key management case, MIC) will be encrypted under each per-recipient

IK and all such encrypted representations will be incorporated into

the transmitted message. Note that per-recipient encryption is

required only for the relatively small DEK and MIC quantities carried

in the "X-Key-Info:" field, not for the message text which is, in

general, much larger. Although more IKs are involved in processing

under the IK-per-recipient method, the pairwise IKs can be

individually revoked and possession of one IK does not enable a

successful masquerade of another user on the list.

4.6 Summary of Encapsulated Header Fields

This section summarizes the syntax and semantics of the encapsulated

header fields to be added to messages in the course of privacy

enhancement processing. The fields are presented in three groups.

Normally, the groups will appear in encapsulated headers in the order

in which they are shown, though not all fields in each group will

appear in all messages. In certain indicated cases, it is recommended

that the fields be replicated within the encapsulated text portion as

well as being included within the encapsulated header. Figures 2 and

3 show the appearance of small example encapsulated messages. Figure

2 assumes the use of symmetric cryptography for key management.

Figure 3 illustrates an example encapsulated message in which

91

asymmetric key management is used.

Unless otherwise specified, all field arguments are processed in a

case-sensitive fashion. In most cases, numeric quantities are

represented in header fields as contiguous strings of hexadecimal

digits, where each digit is represented by a character from the

Linn [Page 18J

RFC 13 Mail Privacy: Procedures August 1989

ranges "0"-"9" or upper case "A"-"F". Since public-key certificates

and quantities encrypted using asymmetric algorithms are large in

size, use of a more space-efficient encoding technique is appropriate

for such quantities, and the encoding mechanism defined in Section

4.3.2.4 of this RFC, representing 6 bits per printed character, is

adopted. The example shown in Figure 3 shows asymmetrically

encrypted quantities (e.g., "X-MIC-Info:", "X-Key-Info:") with 64-

character printed representations, corresponding to 384 bits. The

fields carrying asymmetrically encrypted quantities also illustrate

92

the use of folding as defined in RFC-822, section 3.1.1.

----PRIVACY-ENHANCED MESSAGE BOUNDARY --

X-Proc-Type: 3 ,ENCRYPTED

X-DEK-Info: DES-CBC,F8143EDES960CS97

X-Sender-ID: linn@ccy.bbn.com::

X-Recipient-ID: linn~ccy.bbn.com:ptf-kmc:3

X-Key-Inf o: DES-ECE ,RSA-MD2 ,9FD3AAD2F269lB9A ,B7O665BB9BF7CBCD,

A60 195DB94F727D3

X-Recipient-ID: privacy-tf~venera. isi .edu:ptf-kmc:4

X-Key-Info: DES-ECB ,RSA-MD2, 16lA3F75DC82EF26 ,E2EF532C65CBCFF7,

9F83A2658 132DB47

LLrHBOeJzyhP./fSStdW~okeEnv47j re7SJ/iN72ohNcUk2j HEUSoHlnvNSIWL9M

8tEjmF/zxB+bATMtPj CUWbz8Lr9wloXIkj HUlBLpvXROUrUzYbkNpkOagV2IzUpk

J6UiRRGcDSvzrsoK+oNvqu6z7Xs5Xfz~rDqUcMlK 1Z672OdcBWGGsDLpTpSCnpot

dXd/H5LMDWnonNvPCwQUHt==

----PRIVACY-ENHANCED MESSAGE BOUNDARY --

Example Encapsulated Message (Symmetric Case)

Figure 2

93

----PRIVACY-ENHANCED MESSAGE BOUNDARY --

X-Proc-Type: 3 ,ENCRYPTED

X-DEK-Info: DES-CBC,F8143EDE5960C597

X-Sender-ID: linn~ccy.bbn.com::

X-Certificate:

j HUlBLpvXROUrUz~hkNpkOagV2IzUpk8tEjmF/zxB+bATMtPj CUWbz8Lr9wloXIk

YbkNpkOagV2IzUpk8tEjmF/zxB+bATMtPj CUWbz8Lr9wloXIkjHUlBLpvXROUrUz

agV21zUpk8tEjmFjHUlBLpvXROUrUz/zxB~bATMtPj CUWbz8Lr9wloXIk~hkNpkO

X-Issuer-Certificate:

TMtPj CUWbz8Lr9wloXIkYbkNpkOagV2IzUpk8tEjmFj HU1BLpvXROUrUz/zxB~bA

Ikj HUlBLpvXROUrUzYbkNpkOagV2IzUpk8tEjmF/zxB+bATMtPjCUWbz8Lr9wloX

vXROUrUzYbkNpkOagV2IzUpk8tEjmF/zxB+bATMtPj CUWbz8Lr9wloXIkj HU1BLp

X-MIC-Inf a: RSA-MD2,RSA,

5rDqUcMlK 1Z672OdcBWGGsDLpTpSCnpotJ6UiRRGcDSvzrsoK+oNvqu6z7XssXfz

X-Recipient-ID: linn~ccy.bbn.com:RSADSI :3

L inn [Page 19J

RFC 1113 Mail Privacy: Procedures August 1989

94

X-Key-Info: RSA,

lBLpvXROUrUzYbkNpkOagV2IzUpk8tEjmF/zxB+bATMtPjCUWbz8Lr9wloXIkjHU

X-Recipient-ID: privacy-tf@venera.isi.edu:RSADSI:4

X-Key-Info: RSA,

NcUk2jHEUSoH1nvNSIWL9MLLrHBOeJzyhP+/fSStdW8okeEnv47jxe7SJ/iN72oh

LLrHBOeJzyhP+/fSStdW8okeEnv47jxe7SJ/iN72ohNcUk2jHEUSoHinvNSIWL9M

8tEjmF/zxB~bATMtPjCUWbz8Lr9wloXIkjHUlBLpvXROUrUzYbkNpkOagV2IzUpk

J6UiRRGcDSvzrsoK+oNvqu6z7XsSXfzSrDqUcMlKIZ6720dcBWGGsDLpTpSCnpot

dXd/HSLMDWnonNvPCwQUHt==

----- PRIVACY-ENHANCED MESSAGE BOUNDARY ----

Example Encapsulated Message (Asymmetric Case)

Figure 3

Although the encapsulated header fields resemble RFC-822 header

fields, they are a disjoint set and will not in general be processed

by the same parser which operates on enclosing header fields. The

complexity of lexical analysis needed and appropriate for

encapsulated header field processing is significantly less than that

appropriate to RFC-822 header processing. For example, many

characters with special significance to RFC-822 at the syntactic

95

level have no such significance within encapsulated header fields.

When the length of an encapsulated header field is longer than the

size conveniently printable on a line, whitespace may be used to fold

the field in the manner of RFC-822, section 3.1.1. Any such inserted

whitespace is not to be interpreted as a part of a subfield. As a

particular example, due to the length of public-key certificates and

of quantities encrypted using asymmetric algorithms, such quantities

may often need to be folded across multiple printed lines. In order

to facilitate such folding in a uniform manner, the bits representing

such a quantity are to be divided into an ordered set (with leftmost

bits first) of zero or more 384-bit groups (corresponding to 64-

character prirted representations), followed by a final group of bits

which may be any length up to 384 bits.

4.6.1 Per-Message Encapsulated Header Fields

This group of encapsulated header fields contains fields which occur

no more than once in a privacy-enhanced message, generally preceding

all other encapsulated header fields.

4.6.1.1 X-Proc-Type Field

96

The "X-Proc-Type:" encapsulated header field, required for all

privacy-enhanced messages, identifies the type of processing

Linn [Page 20]

RFC 1113 Mail Privacy: Procedures August 1989

performed on the transmitted message. Only one "X-Proc-Type:" field

occurs in a message; the "X-Proc-Type:" field must be the first

encapsulated header field in the message.

The "X-Proc-Type:" field has two subfields, separated by a comma.

The first subfield is a decimal number which is used to distinguish

among incompatible encapsulated header field interpretations which

may arise as changes are made to this standard. Messages processed

according to this RFC will carry the subfield value "3"1 to

distinguish them from messages processed in accordance with prior

RFCs 989 and 1040.

The second subfield may assume one of two string values: "ENCRYPTED"

or "MIC-ONLY". Unless all of a message's encapsulated text is

97

excluded from encryption, the "X-Proc-Type:" field's second subfield

must specify "ENCRYPTED". Specification of "MIC-ONLY", when applied

in conjunction with certain combinations of key management and MIC

algorithm options, permits certain fields which are superfluous in

the absence of encryption to be omitted from the encapsulated header.

In particular, "X-Recipient-ID:" and "X-Key-Info:" fields can be

omitted for recipients for whom asymmetric cryptography is used,

assuming concurrent use of a keyless MIC computation algorithm. The

"X-DEK-Info:" field can be omitted for all "MIC-ONLY" messages.

4.6.1.2 X-DEK-Info Field

The "X-DEK-Info:" encapsulated header field identifies the message

text encryption algorithm and mode, and also carries the Initializing

Vector used for message encryption. No more than one "X-DEK-Info:"

field occurs in a message; the field is required except for messages

specified as "MIC-ONLY" in the "X-Proc-Type:" field.

The "X-DEK-Info:" field carries two arguments, separated by a comma.

For purposes of this RFC, the first argument must be the string

"DES-CBC", signifying (as defined in RFC-1115) use of the DES

algorithm in the CBC mode. The second argument represents a 64-bit

Initializing Vector (IV) as a contiguous string of 16 hexadecimal

98

digits. Subsequent revisions of RFC-1115 will specify any additional

values which may appear as the first argument of this field.

4.6.2 Encapsulated Header Fields Normally Per-Message

This group of encapsulated header fields contains fields which

ordinarily occur no more than once per message. Depending on the key

management option(s) employed, some of these fields may be absent

from some messages. The "X-Sender-ID" field may occur more than once

in a message if different sender-oriented IK components (perhaps

corresponding to different versions) must be used for different

Linn [Page 21]

RFC 1113 Mail Privacy: Procedures August 1989

recipients. In this case later occurrences override prior

occurrences. If a mixture of symmetric and asymmetric key

distribution is used within a single message, the recipients for each

type of key distribution technology should be grouped together to

simplify parsing.

99

4.6.2.1 X-Sender-ID Field

The "X-Sender-ID:" encapsulated header field, required for all

privacy-enhanced messages, identifies a message's sender and provides

the sender's IK identification component. It should be replicated

within the encapsulated text. The IK identification component

carried in an "X-Sender-ID:" field is used in conjunction with all

subsequent "X-Recipient-ID:" fields until another "X-Sender-ID:"

field occurs; the ordinary case will be that only a single "X-

Sender-ID:" field will occur, prior to any "X-Recipient-ID:" fields.

The "X-Sender-ID:" field contains (in order) an Entity Identifier

subfield, an (optional) Issuing Authority subfield, and an (optional)

Version/Expiration subfield. The optional subfields are omitted if

their use is rendered redundant by information carried in subsequent

"X-Recipient-ID:" fields; this will ordinarily be the case where

symmetric cryptography is used for key management. The subfields are

delimited by the colon character (":"), optionally followed by

whitespace.

Section 5.2, Interchange Keys, discusses the semantics of these

subfields and specifies the alphabet from which they are chosen.

100

Note that multiple "X-Sender-ID:" fields may occur within a single

encapsulated header. All "X-Recipient-ID:" fields are interpreted in

the context of the most recent preceding "X-Sender-ID:" field; it is

illegal for an "X-Recipient-ID:" field to occur in a header before an

"X-Sender-ID:" has been provided.

4.6.2.2 X-Certificate Field

The "X-Certificate:" encapsulated header field is used only when

asymmetric key management is employed for one or more of a message's

recipients. To facilitate processing by recipients (at least in

advance of general directory server availability), inclusion of this

field in all messages is strongly recommended. The field transfers a

sender's certificate as a numeric quantity, represented with the

encoding mechanism defined in Section 4.3.2.4 of this RFC. The

semantics of a certificate are discussed in RFC-1114. The

certificate carried in an "X-Certificate:" field is used in

conjunction with "X-Sender-ID:" and "X-Recipient-ID:" fields for

which asymmetric key management is employed.

101

Linn [Page 22]

RFC 1113 Mail Privacy: Procedures August 1989

4.6.2.3 X-MIC-Info Field

The "X-MIC-Info:" encapsulated header field, used only when

asymmetric key management is etuployed for at least one recipient of a

message, carries three arguments, separated by commas. The first

argument identifies the algorithm under which the accompanying MIC is

computed; RFC-1115 specifies the acceptable set of MIC algorithm

identifiers. The second argument identifies the algorithm under

which the accompanying MIC is encrypted; for purposes of this RFC,

the string "RSA" as described in RFC-1115 must occur, identifying

use of the RSA algorithm. The third argument is a MIC,

asymmetrically encrypted using the originator's private component.

As discussed earlier in this section, the asymmetrically encrypted

MIC is represented using the technique described in Section 4.3.2.4

of this RFC.

The "X-MIC-Info:" field will occur immediately following the

message's "X-Sender-ID:" field and any "X-Certificate:" or "X-

Issuer-Certificate:" fields. Analogous to the "X-Sender-ID:" field,

102

an "X-MIC-Info:" field applies to all subsequent recipients for whom

asymmetric key management is used.

4.6.3 Encapsulated Header Fields with Variable Occurrences

This group of encapsuleted header fields contains fields which will

normally occur variable numbers of times within a message, with

numbers of occurrences ranging from zero to non-zero values which are

independent of the number of recipients.

4.6.3.1 X-Issuer-Certificate Field

The "X-Issuer-Certificate:" encapsulated header field is meaningful

only when asymmetric key management is used for at least one of a

message's recipients. A typical "X-Issuer-Certificate:" field would

contain the certificate containing the public component used to sign

the certificate carried in the message's "X-Certificate:" field, for

recipients' use in chaining through that certificate's certification

path. Other "X-Issuer-Certificate:" fields, typically representing

higher points in a certification path, also may be included by a

sender. The order in which "X-Issuer-Certificate:" fields are

included need not correspond to the order of the certification path;

the order of that path may in general differ from the viewpoint of

103

different recipients. More information on certification paths can be

found in RFC-1114.

The certificate is represented in the same manner as defined for the

"X-Certificate:" field, and any "X-Issuer-Certificate:" fields will

ordinarily follow the "X-Certificate:" field directly. Use of the

Linn [Page 23]

RFC 1113 Mail Privacy: Procedures August 1989

"X-Issuer-Certificate:" field is optional even when asymmetric key

management is employed, although its incorporation is strongly

recommended in the absence of alternate directory server facilities

from which recipients can access issuers' certificates.

4.6.4 Per-Recipient Encapsulated Header Fields

This group of encapsulated header fields normally appears once for

each of a message's named recipients. As a special case, these

fields may be omitted in the case of a "MIC-ONLY" message to

104

recipients for whom asymmetric key management is employed, given that

the chosen MIC algorithm is keyless.

4.6.4.1 X-Recipient-ID Field

The "X-Recipient-ID:" encapsulated header field identifies a

recipient and provides the recipient's IK identification component.

One "X-Recipient-ID:" field is included for each of a message's named

recipients. It should be replicated within the encapsulated text.

The field contains (in order) an Entity Identifier subfield, an

Issuing Authority subfield, and a Version/Expiration subfield. The

subfields are delimited by the colon character (":"), optionally

followed by whitespace.

Section 5.2, Interchange Keys, discusses the semantics of the

subfields and specifies the alphabet from which they are chosen. All

"X-Recipient-ID:" fields are interpreted in the context of the most

recent preceding "X-Sender-ID:" field; it is illegal for an "X-

Recipient-ID:" field to occur in a header before an "X-Sender-ID:"

has been provided.

4.6.4.2 X-Key-Info Field

105

One "X-Key-Info:" field is included for each of a message's named

recipients. Each "X-Key-Info:" field is interpreted in the context

of the most recent preceding "X-Recipient-ID:" field; normally, an

"X-Key-Info:" field will immediately follow its associated "X-

Recipient-ID:" field. The field's argument(s) differ depending on

whether symmetric or asymmetric key management is used for a

particular recipient.

4.6.4.2.1 Symmetric Key Management

When symmetric key management is employed for a given recipient, the

"X-Key-Info:" encapsulated header field transfers four items,

separated by commas: an IK Use Indicator, a MIC Algorithm Indicator,

a DEK and a MIC. The IK Use Indicator identifies the algorithm and

mode in which the identified IK was used for DEK encryption for a

Linn [Page 241

RFC 1113 Mail Privacy: Procedures August 1989

particular recipient. For recipients for whom symmetric key

106

management is used, it may assume the reserved string values "DES-

ECB" or "DES-EDE", as defined in RFC-1115.

The MIC Algorithm Indicator identifies the MIC computation algorithm

used for a particular recipient; values for this subfield are defined

in RFC-1115. The DEK and MIC are encrypted under the IK identified

by a preceding "X-Recipient-ID:" field and prior "X-Sender-ID:"

field; they are represented as two strings of contiguous hexadecimal

digits, separated by a comma.

When DEA-1 is used for message text enc.-yption, the DEK

representation will be 16 hexadecimal digits (corresponding to a 64-

bit key); this subfield can be extended to 32 hexadecimal digits

(corresponding to a 128-bit key) if required to support other

algorithms.

Symmetric encryption of MICs is always performed in the same

encryption mode used to encrypt the message's DEK. Encrypted MICs,

like encrypted DEKs, are represented as contiguous strings of

hexadecimal digits. The size of a MIC is dependent on the choice of

MIC algorithm as specified in the MIC Algorithm Indicator subfield.

4.6.4.2.2 Asymmetric Key Management

107

When asymmetric key management is employed for a given recipient, the

"X-Key-Info:" field transfers two quantities, separated by commas.

The first argument is an IK Use Indicator identifying the algorithm

(and mode, if applicable) in which the DEK is encrypted; for purposes

of this RFC, the IK Use Indicator subfield will always assume the

reserved string value "RSA" (as defined in RFC-1115) for recipients

for whom asymmetric key management is employed, signifying use of the

RSA algorithm. The second argument is a DEK, encrypted (using

asymmetric encryption) under the recipient's public component.

Throughout this RFC we have adopted the terms "private component" and

"public component" to refer to the quantities which are,

respectively, kept secret and made publically available in asymmetric

cryptosystems. This convention is adopted to avoid possible

confusion arising from use of the term "secret key" to refer to

either the former quantity or to a key in a symmetric cryptosystem.

As discussed earlier in this section, the asymmetrically encrypted

DEK is represented using the technique described in Section 4.3.2.4

of this RFC.

108

Linn [Page 25)

RFC 1113 Mail Privacy: Procedures August 1989

5. Key Management

Several cryptographic constructs are involved in supporting the

privacy-enhanced message processing procedure. A set of fundamental

elements is assumed. Data Encrypting Keys (DEKs) are used to encrypt

message text and (for some MIC computation algorithms) in the message

integrity check (MIC) computation process. Interchange Keys (IKs)

are used to encrypt DEKs and MICs for transmission with messages. In

a certificate-based asymmetric key management architecture,

certificates are used as a means to provide entities' public

components and other information in a fashion which is securely bound

by a central authority. The remainder of this section provides more

information about these constructs.

5.1 Data Encrypting Keys (DEKs)

109

Data Encrypting Keys (DEKs) are used for encryption of message text

and (with some MIC computation algorithms) for computation of message

integrity check quantities (MICs). It is strongly recommended that

DEKs be generated and used on a one-time, per-message, basis. A

transmitted message will incorporate a representation of the DEK

encrypted under an appropriate interchange key (IK) for each of the

named recipients.

DEK generation can be performed either centrally by key distribution

centers (KDCs) or by endpoint systems. Dedicated KDC systems may be

able to implement stronger algorithms for random DEK generation than

can be supported in endpoint systems. On the other hand,

decentralization allows endpoints to be relatively self-sufficient,

reducing the level of trust which must be placed in components other

than a message's originator and recipient. Moreover, decentralized

DEK generation at endpoints reduces the frequency with which senders

must make real-time queries of (potentially unique) servers in order

to send mail, Anhancing communications availability.

When symmetric cryptography is used, one advantage of centralized

KDC-based generation is that DEKs can be returned to endpoints

already encrypted under the IKs of message recipients rather than

110

providing the IKs to the senders. This reduces IK exposure and

simplifies endpoint key management requirements. This approach has

less value if asymmetric cryptography is used for key management,

since per-recipient public IK components are assumed to be generally

available and per-sender private IK components need not necessarily

be shared with a KDC.

5.2 Interchange Keys (IKs)

Interchange Key (IK) components are used to encrypt DEKs and MICs.

Linn [Page 26]

RFC 1113 Mail Privacy: Procedures August 1989

In general, IK granularity is at the pairwise per-user level except

for mail sent to address lists comprising multiple users. In order

for two principals to engage in a useful exchange of privacy-enhanced

electronic mail using conventional cryptography, they must first

possess common IK components (when symmetric key management is used)

or complementary IK components (when asymmetric key management is

111

used). When symmetric cryptography is used, the IK consists of a

single component, used to encrypt both DEKs and MICs. When

asymmetric cryptography is used, a recipient's public component is

used as an IK to encrypt DEKs (a transformation invertible only by a

recipient possessing the corresponding private component), and the

originator's private component is used to encrypt MICs (a

transformation invertible by all recipients, since the originator's

certificate provides the necessary public component of the

originator).

While this RFC does not prescribe the means by which interchange keys

are provided to appropriate parties, it is useful to note that such

means may be centralized (e.g., via key management servers) or

decentralized (e.g., via pairwise agreement and direct distribution

among users). In any case, any given IK component is associated with

a responsible Issuing Authority (IA). When certificate-based

asymmetric key management, as discussed in RFC-1114, is employed, the

IA function is performed by a Certification Authority (CA).

When an IA generates and distributes an IK component, associated

control information is provided to direct how it is to be used. In

order to select the appropriate IK(s) to use in message encryption, a

sender must retain a correspondence between IK components and the

112

recipients with which they are associated. Expiration date

information must also be retained, in order that cached entries may

be invalidated and replaced as appropriate.

Since a message may be sent with multiple IK components identified,

corresponding to multiple intended recipients, each recipient's UA

must be able to determine that recipient's intended IK component.

Moreover, if no corresponding IK component is available in the

recipient's database when a message arrives, the recipient must be

able to identify the required IK component and identify that IK

component's associated IA. Note that different IKs may be used for

different messages between a pair of communicants. Consider, for

example, one message sent from A to B and another message sent (using

the IK-per-list method) from A to a mailing list of which B is a

member. The first message would use IK components associated

individually with A and B, but the second would use an IK component

shared among list members.

When a privacy-enhanced message is transmitted, an indication of the

Linn [Page 27]

113

RFC 1113 Mail Privacy: Procedures August 1989

IK components used for DEK and MIC encryption must be included. To

this end, the "X-Sender-ID:" and "X-Recipient-ID:" encapsulated

header fields provide the following data:

1. Identification of the relevant Issuing Authority (IA subfield)

2. Identification of an entity with which a particular IK

component is associated (Entity Identifier or EI subfield)

3. Version/Expiration subfield

The colon character (":") is used to delimit the subfields within an

"X-Sender-ID:" or "X-Recipient-ID:". The IA, EI, and

version/expiration subfields are generated from a restricted

character set, as prescribed by the following BNF (using notation as

defined in RFC-822, sections 2 and 3.3):

IKsubfld : 1*ia-char

ia-char : DIGIT / ALPHA / "'" / " "C / "(" / ') /

114

"," I "/ 1II / I I/ ",,"11 I "?"I / -II.I / © 111 I

An example "X-Recipient-ID:" field is as follows:

X-Recipient-ID: linn~ccy .bbn. corn: ptf-kmc :2

This example field indicates that IA "ptf-kmc" has issued an IK

component for use on messages sent to "linn~ccy.bbn.com", and that

the IA has provided the number 2 as a version indicator for that IK

component.

5.2.1 Subfield Definitions

The following subsections define the subfields of "X-Sender-ID:" and

"X-Recipient-ID:" fields.

5.2.1.1 Entity Identifier Subfield

An entity identifier is constructed as an IKsubfld. More

restrictively, an entity identifier subfield assumes the following

form:

<user>C<domain-qualified-host>

115

In order to support universal interoperability, it is necessary to

assume a universal form for the naming information. For the case of

installations which transform local host names before transmission

into the broader Internet, it is strongly recommended that the host

Linn [Page 28]

RFC 1113 Mail Privacy: Procedures August 1989

name as presented to the Internet be employed.

5.2.1.2 Issuing Authority Subfield

An IA identifier subfield is constructed as an IKsubfld. IA

identifiers must be assigned in a manner which assures uniqueness.

This can be done on a centralized or hierarchic basis.

5.2.1.3 Version/Expiration Subfield

A version/expiration subfield is constructed as an IKsubfld. The

116

version/expiration subfield format may vary among different IAs, but

must satisfy certain functional constraints. An IA's

version/expiration subfields must be sufficient to distinguish among

the set of IK components issued by that IA for a given identified

entity. Use of a monotonically increasing number is sufficient to

distinguish among the IK components provided for an entity by an IA;

use of a timestamp additionally allows an expiration time or date to

be prescribed for an IK component.

5.2.2 IK Cryptoperiod Issues

An IK component's cryptoperi~d is dictated in part by a tradeoff

between key management overhead -d re-cktion responsiveness. It

would be undesirable to delete an IK component permanently before

receipt of a message encrypted using that IK component, as this would

render the message permanently undecipherable. Access to an expired

IK component would be needed, for example, to process mail received

by a user (or system) which had been inactive for an extended period

of time. In order to enable very old IK components to be deleted, a

message's recipient desiring encrypted local long term storage should

transform the DEK used for message text encryption via re-encryption

under a locally maintained IK, rather than relying on IA maintenance

of old IK components for indefinite periods.

117

6. User Naming

6.1 Current Approach

Unique naming of electronic mail users, as is needed in order to

select corresponding keys correctly, is an important topic and one

which has received significant study. Our current architecture

associates IK components with user names represented in a universal

form ("user~domain-qualified-host"), relying on the following

properties:

1. The universal form must be specifiable by an IA as it

distributes IK components and known to a UA as it processes

Linn [Page 29]

RFC 1113 Mail Privacy: Procedures August 1989

received IK components and IK component identifiers. If a

UA or IA uses addresses in a local form which is different

118

from the universal form, it must be able to perform an

unambiguous mapping from the universal form into the local

representation.

2. The universal form, when processed by a sender UA, must have

a recognizable correspondence with the form of a recipient

address as specified by a user (perhaps following local

transformation from an alias into a universal form).

It is difficult to ensure these properties throughout the Internet.

For example, an MTS which transforms address representations between

the local form used within an organization and the universal form as

used for Internet mail transmission may cause property 2 to be

violated.

6.2 Issues for Consideration

The use of flat (non-hierarchic) electronic mail user identifiers,

which are unrelated to the hosts on which the users reside, may offer

value. As directory servers become more widespread, it may become

appropriate for would-be senders to search for desired recipients

based on such attributes. Personal characteristics, like social

security numbers, might be considered. Individually-selected

119

identifiers could be registered with a central authority, but a means

to resolve name conflicts would be necessary.

A point of particular note is the desire to accommodate multiple

names for a single individual, in order to represent and allow

delegation of various roles in which that individual may act. A

naming mechanism that binds user roles to keys is needed. Bindings

cannot be immutable since roles sometimes change (e.g., the

comptroller of a corporation is fired).

It may be appropriate to examine the prospect of extending the

DARPA/DoD domain system and its associated name servers to resolve

user names to unique user IDs. An additional issue arises with

regard to mailing list support: name servers do not currently perform

(potentially recursive) expansion of lists into users. ISO and CSNet

are working on user-level directory service mechanisms, which may

also bear consideration.

7. Example User Interface and Implementation

In order to place the mechanisms and approaches discussed in this RFC

into context, this section presents an overview of a prototype

implementation. This implementation is a standalone program which is

120

Linn [Page 30]

RFC 1113 Mail Privacy: Procedures August 1989

invoked by a user, and lies above the existing UA sublayer. In the

UNIX system, and possibly in other environments as well, such a

program can be invoked as a "filter" within an electronic mail UA or

a text editor, simplifying the sequence of operations which must be

performed by the user. This form of integration offers the advantage

that the program can be used in conjunction with a range of UA

programs, rather than being compatible only with a particular UA.

When a user wishes to apply privacy enhancements to an outgoing

message, the user prepares the message's text and invokes the

standalone program (interacting with the program in order to provide

address information and other data required to perform privacy

enhancement processing), which in turn generates output suitable for

transmission via the UA. When a user receives a privacy-enhanced

message, the UA delivers the message in encrypted form, suitable for

decryption and associated processing by the standalone program.

121

In this prototype implementation (based on symmetric key management),

a cache of IK components is maintained in a local file, with entries

managed manually based on information provided by originators and

recipients. This cache is, effectively, a simple database. IK

components are selected for transmitted messages based on the

sender's identity and on recipient names, and corresponding "X-

Sender-ID:" and "X-Recipient-ID:" fields are placed into the

message's encapsulated header. When a message is received, these

fields are used as a basis for a lookup in the database, yielding the

appropriate IK component entries. DEKs and IVs are generated

dynamically within the program.

Options and destination addresses are selected by command line

arguments to the standalone program. The function of specifying

destination addresses to the privacy enhancement program is logically

distinct from the function of specifying the corresponding addresses

to the UA for use by the MTS. This separation results from the fact

that, in many cases, the local form of an address as specified to a

UA differs from the Internet global form as used in "X-Sender-ID:"

and "X-Recipient-ID:" fields.

8. Areas For Further Study

122

The procedures defined in this RFC are sufficient to support

implementation of privacy-enhanced electronic mail transmission among

cooperating parties in the Internet. Further effort will be needed,

however, to enhance robustness, generality, and interoperability. In

particular, further work is needed in the following areas:

1. User naming techniques, and their relationship to the domain

system, name servers, directory services, and key management

Linn [Page 31]

RFC 1113 Mail Privacy: Procedures August 1989

functions.

2. Detailed standardization of Issuing Authority and directory

service functions and interactions.

3. Privacy-enhanced interoperability with X.400 mail.

123

We anticipate generation of subsequent RFCs which will address these

topics.

9. References

This section identifies background references which may be useful to

those contemplating use of the mechanisms defined in this RFC.

ISO 7498/Part 2 - Security Architecture, prepared by ISO/TC97/SC

21/WG 1 Ad hoc group on Security, extends the OSI Basic Reference

Model to cover security aspects which are general architectural

elements of communications protocols, and provides an annex with

tutorial and background information.

US Federal Information Processing Standards Publication (FIPS

PUB) 46, Data Encryption Standard, 15 January 1977, defines the

encipherment algorithm used for message text encryption and

Message Authentication Code (MAC) computation.

FIPS PUB 81, DES Modes of Operation, 2 December 1980, defines

specific modes in which the Data Encryption Standard algorithm

may to be used to perform encryption.

124

FIPS PUB 113, Computer Data Authentication, May 1985, defines a

specific procedure for use of the Data Encryption Standard

algorithm to compute a MAC.

NOTES:

[] Key generation for MIC computation and message text encryption

may either be performed by the sending host or by a centralized

server. This RFC does not constrain this design alternative.

Section 5.1 identifies possible advantages of a centralized

server approach if symmetric key management is employed.

[2] American National Standard Data Encryption Algorithm (ANSI

X3.92-1981), American National Standards Institute, Approved 30

December 1980.

[3] Federal Information Processing Standards Publication 46, Data

Encryption Standard, 15 January 1977.

Linn [Page 32]

RFC 1113 Mail Privacy: Procedures August 1989

125

(4] Information Processing Systems: Data Encipherment: Modes of

Operation of a 64-bit Block Cipher.

[5] Federal Information Processing Standards Publication 81, DES

Modes of Operation, 2 December 1980.

[6) ANSI X9.17-1985, American National Standard, Financial

Institution Key Management (Wholesale), American Bankers

Association, April 4, 1985, Section 7.2.

[7) Postel, J., "Simple Mail Transfer Protocol" RFC-821,

USC/Information Sciences Institute, August 1982.

[8] This transformation should occur only at an SMTP endpoint, not at

an intervening relay, but may take place at a gateway system

linking the SMTP realm with other environments.

[9] Use of the SMTP canonicalization procedure at this stage was

selected since it is widely used and implemented in the Internet

community, not because SMTP interoperability with this

intermediate result is required; no privacy-enhanced message will

126

be passed to SMTP for transmission directly from this step in the

four-phase transformation procedure.

[10] Crocker, D., "Standard for the Format of ARPA Internet Text

Messages", RFC-822, August 1982.

[11) Rose, M. and E. Stefferud, "Proposed Standard for Message

Encapsulation", RFC-934, January 1985.

[12] CCITT Recommendatibn X.411 (1988), "Message Handling Systems:

Message Transfer System: Abstract Service Definition and

Proced'ires".

£133 CCITT Recommendation X.509 (1988), "The Directory -

Authentication Framework".

[14] Kille, S., "Mapping between X.400 and RFC-822", RFC-987, June

1986.

[15] Federal Information Processing Standards Publication 113,

Computer Data Authentication, May 1985.

[16) American National Standard for Information Systems - Data

127

Encryption Algorithm - Modes of Operation (ANSI X3.106-1983),

American National Standards Institute - Approved 16 May 1983.

[17] Voydock, V. and S. Kent, "Security Mechanisms in High-Level

Linn [Page 33]

RFC 1113 Mail Privacy: Procedures August 1989

Network Protocols", ACM Computing Surveys, Vol. 15, No. 2, Pages

135-171, June 1983.

Author's Address

John Linn

Secure Systems

Digital Equipment Corporation

85 Swanson Road, BXB1-2/D04

Boxborough, MA 01719-1326

Phone: 508-264-5491

128

EMail: LinnOultra. enet dec. corn

Linn [Page 34]

Appendix B

RFC1114 Privacy Enhancement

for Internet Electronic Mail: Part

II - Certificate-Based Key

Management

Network Working Group S. Kent

Request for Comments: 1114 BBNCC

J. Linn

DEC

IAB Privacy Task Force

August 1989

Pi-ivacy Enhancement for Internet Electronic Mail:

Part II -- Certificate-Based Key Management

STATUS OF THIS MEMO

129

130

This RFC suggests a draft standard elective protocol for the Internet

community, and requests discussion and suggestions for improvements.

Distribution of this memo is unlimited.

ACKNOWLEDGMENT

This RFC is the outgrowth of a series of IAB Privacy Task Force

meetings and of internal working papers distributed for those

meetings. We would like to thank the members of the Privacy Task

Force for their comments and contributions at the meetings which led

to the preparation of this RFC: David Balenson, Curt Barker, Matt

Bishop, Morrie Gasser, Russ Housley, Dan Nessett, Mike Padlipsky, Rob

Shirey, and Steve Wilbur.

Table of Contents

1. Executive Summary 2

2. Overview of Approach 3

3. Architecture 4

3.1 Scope and Restrictions 4

3.2 Relation to X.509 Architecture 7

3.3 Entities' Roles and Responsibilities 7

131

3.3.1 Users and User Agents 8

3.3.2 Organizational Notaries 9

3.3.3 Certification Authorities 11

3.3.3.1 Interoperation Across Certification Hierarchy Boundaries 14

3.3.3.2 Certificate Revocation 15

3.4 Certificate Definition and Usage 17

3.4.1 Contents and Use 17

3.4.1.1 Version Number 18

3.4.1.2 Serial Number 18

3.4.1.3 Subject Name 18

3.4.1.4 Issuer Name 19

3.4.1.5 Validity Period 19

3.4.1.6 Subject Public Component 20

Kent & Linn [Page 1]

RFC 1114 Mail Privacy: Key Management August 1989

3.4.1.7 Certificate Signature 20

3.4.2 Validation Conventions 20

3.4.3 Relation with X.509 Certificate Specification 22

132

NOTES 24

1. Executive Summary

This is one of a series of RFCs defining privacy enhancement

mechanisms for electronic mail transferred using Internet mail

protocols. RFC-1113 (the successor to RFC 1040) prescribes protocol

extensions and processing procedures for RFC-822 mail messages, given

that suitable cryptographic keys are held by originators and

recipients as a necessary precondition. RFC-1115 specifies

algorithms for use in processing privacy-enhanced messages, as called

for in RFC-1113. This RFC defines a supporting key management

architecture and infrastructure, based on public-key certificate

techniques, to provide keying information to message originators and

recipients. A subsequent RFC, the fourth in this series, will

provide detailed specifications, paper and electronic application

forms, etc. for the key management infrastructure described herein.

The key management architecture described in this RFC is compatible

with the authentication framework described in X.509. The major

contributions of this RFC lie not in the specification of computer

communication protocols or algorithms but rather in procedures and

conventions for the key management infrastructure. This RFC

133

incorporates numerous conventions to facilitate near term

implementation. Some of these conventions may be superceded in time

as the motivations for them no longer apply, e.g., when X.500 or

similar directory servers become well established.

The RSA cryptographic algorithm, covered in the U.S. by patents

administered through RSA Data Security, Inc. (hereafter abbreviated

RSADSI) has been selected for use in this key management system.

This algorithm has been selected because it provides all the

necessary algorithmic facilities, is "time tested" and is relatively

efficient to implement in either software or hardware. It is also

the primary algorithm identified (at this time) for use in

international standards where an asymmetric encryption algorithm is

required. Protocol facilities (e.g., algorithm identifiers) exist to

permit use of other asymmetric algorithms if, in the future, it

becomes appropriate to employ a different algorithm for key

management. However, the infrastructure described herein is specific

to use of the RSA algorithm in many respects and thus might be

different if the underlying algorithm were to change.

Current plans call for RSADSI to act in concert with subscriber

organizations as a "certifying authority" in a fashion described

134

Kent & Linn [Page 2)

RFC 1114 Mail Privacy: Key Management August 1989

later in this RFC. RSADSI will offer a service in which it will sign

a certificate which has been generated by a user and vouched for

either by an organization or by a Notary Public. This service will

carry a $25 biennial fee which includes an associated license to use

the RSA algorithm in conjunction with privacy protection of

electronic mail. Users who do not come under the purview of the RSA

patent, e.g., users affiliated with the U.S. government or users

outside of the U.S., may make use of different certifying authorities

and will not require a license from RSADSI. Procedures for

interacting with these other certification authorities, maintenance

and distribution of revoked certificate lists from such authorities,

etc. are outside the scope of this RFC. However, techniques for

validating certificates issued by other authorities are contained

within the RFC to ensure interoperability across the resulting

jurisdictional boundaries.

2. Overview of Approach

135

This RFC defines a key management architecture based on the use of

public-key certificates, in support of the message encipherment and

authentication procedures defined in RFC-1113. In the proposed

architecture, a "certification authority" representing an

organization applies a digital signature to a collection of data

consisting of a user's public component, various information that

serves to identify the user, and the identity of the organization

whose signature is affixed. (Throughout this RFC we have adopted the

terms "private component" and "public component" to refer to the

quantities which are, respectively, kept secret and made publically

available in asymmetric cryptosystems. This convention is adopted to

avoid possible confusion arising from use of the term "secret key" to

refer to either the former quantity or to a key in a symmetric

cryptosystem.) This establishes a binding between these user

credentials, the user's public component and the organization which

vouches for this binding. The resulting signed, data item is called

a certificate. The organization identified as the certifying

authority for the certificate is the "issuer" of that certificate.

In signing the certificate, the certification authority vouches for

the user's identification, especially as it relates to the user's

affiliation with the organization. The digital signature is affixed

136

on behalf of that organization and is in a form which can be

recognized by all members of the privacy-enhanced electronic mail

community. Once generated, certificates can be stored in directory

servers, transmitted via unsecure message exchanges, or distributed

via any other means that make certificates easily accessible to

message originators, without regard for the security of the

transmission medium.

Kent & Linn [Page 3]

RFC 1114 Mail Privacy: Key Management August 1989

Prior to sending an encrypted message, an originator must acquire a

certificate for each recipient and must validate these certificates.

Briefly, validation is performed by checking the digital signature in

the certificate, using the public component of the issuer whose

private component was used to sign the certificate. The issuer's

public component is made available via some out of band means

(described later) or is itself distributed in a certificate to which

this validation procedure is applied recursively.

137

Once a certificate for a recipient is validated, the public component

contained in the certificate is extracted and used to encrypt the

data encryption key (DEK) that is used to encrypt the message itself.

The resulting encrypted DEK is incorporated into the X-Key-Info field

of the message header. Upon receipt of an encrypted message, a

recipient employs his secret component to decrypt this field,

extracting the DEK, and then uses this DEK to decrypt the message.

In order to provide message integrity and data origin authentication,

the originator generates a message integrity code (MIC), signs

(encrypts) the MIC using the secret component of his public-key pair,

and includes the resulting value in the message header in the X-MIC-

Info field. The certificate of the originator is also included in

the header in the X-Certificate field as described in RFC-1113, in

order to facilitate validation in the absence of ubiquitous directory

services. Upon receipt of a privacy enhanced message, a recipient

validates the originator's certificate, extracts the public component

from the certificate, and uses that value to recover (decrypt) the

MIC. The recovered MIC is compared against the locally calculated

MIC to verify the integrity and data origin authenticity of the

message.

138

3. Architecture

3.1 Scope and Restrictions

The architecture described below is intended to provide a basis for

managing public-key cryptosystem values in support of privacy

enhanced electronic mail (see RFC-1113) in the Internet environment.

The architecture describes procedures for ordering certificates from

issuers, for generating and distributing certificates, and for "hot

listing" of revoked certificates. Concurrent with the issuance of

this RFC, RFC 1040 has been updated and reissued as RFC-1113 to

describe the syntax and semantics of new or revised header fields

used to transfer certificates, represent the DEK and MIC in this

public-key context, and to segregate algorithm definitions into a

separate RFC to facilitate the addition of other algorithms in the

future. This RFC focuses on the management aspects of certificate-

Kent & Linn [Page 4]

RFC 1114 Mail Privacy: Key Management August 1989

139

based, public-key cryptography for privacy enhanced mail while RFC-

1113 addresses representation and processing aspects of such mail,

including changes required by this key management technology.

The proposed architecture imposes conventions for certification paths

which are not strictly required by the X.509 recommendation nor by

the technology itself. The decision to impose these conventions is

based in part on constraints imposed by the status of the RSA

cryptosystem within the U.S. as a patented algorithm, and in part on

the need for an organization to assume operational responsibility for

certificate management in the current (minimal) directory system

infrastructure for electronic mail. Over time, we anticipate that

some of these constraints, e.g., directory service availability, will

change and the procedures specified in the RFC will be reviewed and

modified as appropriate.

At this time, we propose a system in which user certificates

represent the leaves in a shallow (usually two tier) certification

hierarchy (tree). Organizations which act as issuers are represented

by certificates higher in the tree. This convention minimizes the

complexity of validating user certificates by limiting the length of

"certification paths" and by making very explicit the relationship

140

between a certificate issuer and a user. Note that only

organizations may act as issuers in the proposed architecture; a user

certificate may not appear in a certification path, except as the

terminal node in the path. These conventions result in a

certification hierarchy which is a compatible subset of that

permitted under X.509, with respect to both syntax and semantics.

The RFC proposes that RSADSI act as a "co-issuer" of certificates on

behalf of most organizations. This can be effected in a fashion

which is "transparent" so that the organizations appear to be the

issuers with regard to certificate formats and validation procedures.

This is effected by having RSADSI generate and hold the secret

components used to sign certificates on behalf of organizations. The

motivation for RSADSI's role in certificate signing is twofold.

First, it simplifies accounting controls in support of licensing,

ensuring that RSADSI is paid for each certificate. Second, it

contributes to the overall integrity of the system by establishing a

uniform, high level of protection for the private-components used to

sign certificates. If an organization were to sign certificates

directly on behalf of its affiliated users, the organization would

have to establish very stringent security and accounting mechanisms

and enter into (elaborate) legal agreements with RSADSI in order to

provide a comparable level of assurance. Requests by organizations

141

to perform direct certificate signing will be considered on a case-

by-case basis, but organizations are strongly urged to make use of

the facilities proposed by this RFC.

Kent & Linn [Page 5]

RFC 1114 Mail Privacy: Key Management August 1989

Note that the risks associated with disclosure of an organization's

secret component are different from those associated with disclosure

of a user's secret component. The former component is used only to

sign certificates, never to encrypt message traffic. Thus the

exposure of an organization's secret component could result in the

generation of forged certificates for users affiliated with that

organization, but it would not affect privacy-enhanced messages which

are protected using legitimate certificates. Also note that any

certificates generated as a result of such a disclosure are readily

traceable to the issuing authority which holds this component, e.g.,

RSADSI, due to the non-repudiation feature of the digital signature.

The certificate registration and signing procedures established in

this RFC would provide non-repudiable evidence of disclosure of an

142

organization's secret component by RSADSI. Thus this RFC advocates

use of RSADSI as a co-issuer for certificates until such time as

technical security mechanisms are available to provide a similar,

system-wide level of assurance for (distributed) certificate signing

by organizations.

We identify two classes of exceptions to this certificate signing

paradigm. First, the RSA algorithm is patented only within the U.S.,

and thus it is very likely that certificate signing by issuers will

arise outside of the U.S., independent of RSADSI. Second, the

research that led to the RSA algorithm was sponsored by the National

Science Foundation, and thus the U.S. government retains royalty-free

license rights to the algorithm. Thus the U.S. government may

establish a certificate generation facilities for its affiliated

users. A number of the procedures described in this document apply

only to the use of RSADSI as a certificate co-issuer; all other

certificate generation practices lie outside the scope of this RFC.

This RFC specifies procedures by which users order certificates

either directly from RSADSI or via a representative in an

organization with which the user holds some affiliation (e.g., the

user's employer or educational institution). Syntactic provisions

are made which allow a recipient to determine, to some granularity,

143

which identifying information contained in the certificate is vouched

for by the certificate issuer. In particular, organiz t n.- rill

usually be vouching for the affiliation of a user with that

organization and perhaps a user's role within the ciwanization, in

addition to the user's name. In other circumstances, as discussed in

section 3.3.3, a certificate may indicate that an issuer vouches only

for the user's name, implying that any other identifying information

contained in the certificate may not have been validated by the

issuer. These semantics are beyond the scope of X.509, but are not

incompatible with that recommendation.

The key management architecture described in this RFC has been

Kent & Linn [Page 6]

RFC 1114 Mail Privacy: Key Management August 1989

designed to support privacy enhanced mail as defined in this RFC,

RFC-1113, and their successors. Note that this infrastructure also

supports X.400 mail security facilities (as per X.411) and thus paves

the way for transition to the OSI/CCITT Message Handling System

144

paradigm in the Internet in the future. The certificate irsued to a

user for the $25 biennial fee will grant to the user identified by

that certificate a license from RSADSI to employ the RSA algorithm

for certificate validation and for encryption and decryption

operations in this electronic mail context. No use of the algorithm

outside the scope defined in this RFC is authorized by this license

as of this time. Expansion of the license to other Internet security

applications is possible but not yet authorized. The license granted

by this fee does not authorize the sale of software or hardware

incorporating the RSA algorithm; it is an end-user license, not a

developer's license.

3.2 Relation to X.509 Architecture

CCITT 1988 Recommendation X.509, "The Directory - Authentication

Framework", defines a framework for authentication of entities

involved in a distributed directory service. Strong authentication,

as defined in X.509, is accomplished with the use of public-key

cryptosystems. Unforgeable certificates are generated by

certification authorities; these authorities may be organized

hierarchically, though such organization is not required by X.509.

There is no implied mapping between a certification hierarchy and the

naming hierarchy imposed by directory system naming attributes. The

145

public-key certificate approach definea in X.509 has also been

adopted in CCITT 1988 X.411 in support of the message handling

application.

This RFC interprets the X.509 certificate mechanism to serve the

needs of privacy-enhanced mail in the Internet environment. The

certification hierarchy proposed in this RFC in support of privacy

enhanced mail is intentionally a subset of that allowed under X.509.

In large part constraints have been levied in order to simplify

certificate validation in the absence of a widely available, user-

level directory service. The certification hierarchy proposed here

also embodies semantics which are not explicitly addressed by X.509,

but which are consistent with X.509 precepts. The additional

semantic constraints have been adopted to explicitly address

questions of issuer "authority" which we feel are not well defined in

X.509.

3.3 Entities' Roles and Responsibilities

One way to explain the architecture proposed by this RFC is to

examine the various roles which are defined for various entities in

146

Kent & Linn [Page 7]

RFC 1114 Mail Privacy: Key Management August 1989

the architecture and to describe what is required of each entity in

order for the proposed system to work properly. The following

sections identify three different types of entities within this

architecture: users and user agents, organizational notaries, and

certification authorities. For each class of entity we describe the

(electronic and paper) procedures which the entity must execute as

part of the architecture and what responsibilities the entity assumes

as a function of its role in the architecture. Note that the

infrastructure described here applies to the situation wherein RSADSI

acts as a co-issuer of certificates, sharing the role of

certification authority as described later. Other certifying

authority arrangements may employ different procedures and are not

addressed by this RFC.

3.3.1 Users and User Agents

The term User Agent (UA) is taken from CCITT X.400 Message Handling

Systems (MHS) Recommendations, which define it as follows: "In the

147

context of message handling, the functional object, a component of

MHS, by means of which a single direct user engages in message

handling." UAs exchange messages by calling on a supporting Message

Transfer Service (MTS).

A UA process supporting privacy-enhanced mail processing must protect

the private component of its associated entity (ordinarily, a human

user) from disclosure. We anticipate that a user will employ

ancillary software (not otherwise associated with the UA) to generate

his public/private component pair and to compute the (one-way)

message hash required by the registration procedure. The public

component, along with information that identifies the user, will be

transferred to an organizational notary (see below) for inclusion in

an order to an issuer. The process of generating public and private

components is a local matter, but we anticipate Internet-wide

distribution of software suitable for component-pair generation to

facilitate the process. The mechanisms used to transfer the public

component and the user identification information must preserve the

integrity of both quantities and bind the two during this transfer.

This proposal establishes two ways in which a user may order a

certificate, i.e., through the user's affiliation with an

organization or directly through RSADSI. In either case, a user will

148

be required to send a paper order to RSADSI on a form described in a

subsequent RFC and containing the following information:

1. Distinguished Name elements (e.g., full legal name,

organization name, etc.)

2. Postal address

Kent & Linn [Page 8]

RFC 1114 Mail Privacy: Key Management August 1989

3. Internet electronic mail address

4. A message hasn function, binding the above information to the

user's public component

Note that the user's public component is NOT transmitted via this

paper path. In part the rationale here is that the public component

consists of many (>100) digits and thus is prone to error if it is

copied to and from a piece of paper. Instead, a message hash is

149

computed on the identifying information and the public component and

this (smaller) message hash value is transmitted along with the

identifying information. Thus the public component is transferred

only via an electronic path, as described below.

If the user is not affiliated with an organization which has

established its own "electronic notary" capability (an organization

notary or "ON" as discussed in the next section), then this paper

registration form must be notarized by a Notary Public. If the user

is affiliated with an organization which has established one or more

ONs, the paper registration form need not carry the endorsement of a

Notary Public. Concurrent with the paper registration, the user must

send the information outlined above, plus his public component,

either to his ON, or directly to RSADSI if no appropriate ON is

available to the user. Direct transmission to RSADSI of this

information will be via electronic mail, using a representation

described in a subsequent RFC. The paper registration must be

accompanied by a check or money order for $25 or an organization may

establish some other billing arrangement with RSADSI. The maximum

(and default) lifetime of a certificate ordered through this process

is two years.

The transmission of ID information and public component from a user

150

to his ON is a local matter, but we expect electronic mail will also

be the preferred approach in many circumstances and we anticipate

general distribution of software to support this process. Note that

it is the responsibility of the user and his organization to ensure

the integrity of this transfer by some means deemed adequately secure

for the local computing and communication environment. There is no

requirement for secrecy in conjunction with this information

transfer, but the integrity of the information must be ensured.

3.3.2 Organizational Notaries

An organizational notary is an individual who acts as a clearinghouse

for certificate orders originating within an administrative domain

such as a corporation or a university. An ON represents an

organization or organizational unit (in X.500 naming terms), and is

assumed to have some independence from the users on whose behalf

Kent & Linn [Page 9]

RFC 1114 Mail Privacy: Key Management August 1989

151

certificates are ordered. An ON will be restricted through

mechanisms implemented by the issuing authority, e.g., RSADSI, to

ordering certificates properly associated with the domain of that ON.

For example, an ON for BBN should not be able to order certificates

for users affiliated with MIT or MITRE, nor vice versa. Similarly,

if a corporation such as BBN were to establish ONs on a per-

subsidiary basis (corresponding to organization units in X.500 naming

parlance), then an ON for the BBN Communications subsidiary should

not be allowed to order a certificate for a user who claims

affiliation with the BBN Software Products subsidiary.

It can be assumed that the set of ONs changes relatively slowly and

that the number of ONs is relatively small in comparison with the

number of users. Thus a more extensive, higher assurance process may

reasonably be associated with ON accreditation than with per-user

certificate ordering. Restrictions on the range of information which

an ON is authorized to certify are established as part of this more

elaborate registration process. The procedures by which

organizations and organizational units are established in the RSADSI

database, and by which ONs are registered, will be described in a

subsequent RFC.

152

An ON is responsible for establishing the correctness and integrity

of information incorporated in an order, and will generally vouch for

(certify) the accuracy of identity information at a granularity finer

than that provided by a Notary Public. We do not believe that it is

feasible to enforce uniform standards for the user certification

process across all ONs, but we anticipate that organizations will

endeavor to maintain high standards in this process in recognition of

the "visibility" associated with the identification data contained in

certificates. An ON also may constrain the validity period of an

ordered certificate, restricting it to less than the default two year

interval imposed by the RSADSI license agreement.

An ON participates in the certificate ordering process by accepting

and validating identification information from a user and forwarding

this information to RSADSI. The ON accepts the electronic ordering

information described above (Distinguished Name elements, mailing

address, public component, and message hash computed on all of this

data) from a user. (The representation for user-to-ON transmission

of this data is a local matter, but we anticipate that the encoding

specified for ON-to-RSADSI representation of this data will often be

employed.) The ON sends an integrity-protected (as described in

RFC-1113) electronic message to RSADSI, vouching for the correctness

of the binding between the public component and the identification

153

data. Thus, to support this function, each ON will hold a

certificate as an individual user within the organization which he

represents. RSADSI will maintain a database which identifies the

Kent & Linn [Page 10]

RFC 1114 Mail Privacy: Key Management August 1989

users who also act as ONs and the database will specify constraints

on credentials which each ON is authorized to certify. The

electronic mail representation for a user's certificate data in an ON

message to RSADSI will be specified in a subsequent RFC.

3.3.3 Certification Authorities

In X.509 the term "certification authority" is defined as "an

authority trusted by one or more users to create and assign

certificates". This alternate expansion for the acronym "CA" is

roughly equivalent to that contemplated as a "central authority" in

RFC-1040 and RFC-1113. The only differa-'7 is that in X.509 there is

no requirement that a CA be a distinguished entity or that a CA serve

154

a large number of users, as envisioned in these RFCs. Rather, any

user who holds a certificate can, in the X.509 context, act as a CA

for any other user. As noted above, we have chosen to restrict the

role of CA in this electronic mail environment to organizational

entities, to simplify the certificate validation process, to impose

semantics which support organizational affiliation as a basis for

certification, and to facilitate license accountability.

In the proposed architecture, individuals who are affiliated with

(registered) organizations will go through the process described

above, in which they forward their certificate information to their

ON for certification. The ON will, based on local procedures, verify

the accuracy of the user's credentials and forward this information

to RSADSI using privacy-enhanced mail to ensure the integrity and

authenticity of the information. RSADSI will carry out the actual

certificate generation process on behalf of the organization

represented by the ON. Recall that it is the identity of the

organization which the ON represents, not the ON's identity, which

appears in the issuer field of the user certificate. Therefore it is

the private component of the organization, not the ON, which is used

to sign the user certificate.

In order to carry out this procedure RSADSI will serve as the

155

repository for the private components associated with certificates

representing organizations or organizational units (but not

individuals). In effect the role of CA will be shared between the

organizational notaries and RSADSI. This shared role will not be

visible in the syntax of the certificates issued under this

arrangement nor is it apparent from the validation procedure one

applies to these certificates. In this sense, the role of RSADSI as

the actual signer of certificates on behalf of organizations is

transparent to this aspect of system operation.

If an organization were to carry out the certificate signing process

locally, and thus hold the private component associated with its

Kent & Linn [Page 11]

RFC 1114 Mail Privacy: Key Management August 1989

organization certificate, it would need to contact RSADSI to discuss

security safeguards, special legal agreements, etc. A number of

requirements would be imposed on an organization if such an approach

were persued. The organization would be required to execute

156

additional legal instruments with RSADSI, e.g., to ensure proper

accounting for certificates generated by the organization. Special

software will be required to support the certificate signing process,

distinct from the software required for an ON. Stringent procedural,

physical, personnel and computer security safeguards would be

required to support this process, to maintain a relatively high level

of security for the system as a whole. Thus, at this time, it is not

recommended that organizations pursue this approach although local

certificate generation is not expressly precluded by the proposed

architecture.

RSADSI has offered to operate a service in which it serves as a CA

for users who are not affiliated with any organization or who are

affiliated with an organization which has not opted to establish an

organizational notary. To distinguish certificates issued to such

"non-affiliated" users the distinguished string "Notary" will appear

as the organizational unit name of the issuer of the certificate.

This convention will be employed throughout the system. Thus not

only RSADSI but any other organization which elects to provide this

type of service to non-affiliated users may do so in a standard

fashion. Hence a corporation might issue a certificate with the

"Notary" designation to students hired for the summer, to

differentiate them from full-time employees. At least in the case of

157

RSADSI, the standards for verifying user credentials that carry this

designation will be well known and widely recognized (e.g., Notary

Public endorsement).

To illustrate this convention, consider the following examples.

Employees of RSADSI will hold certificates which indicate "RSADSI" as

the organization in both the issuer field and the subject field,

perhaps with no organizational unit specified. Certificates obtained

directly from RSADSI, by user's who are not affiliated with any ON,

will also indicate "RSADSI" as the organization and will specify

"Notary" as an organizational unit in the issuer field. However,

these latter certificates will carry some other designation for

organization (and, optionally, organizational unit) in the subject

field. Moreover, an organization designated in the subject field for

such a certificate will not match any for which RSADSI has an ON

registered (to avoid possible confusion).

In all cases described above, when a certificate is generated RSADSI

will send a paper reply to the ordering user, including two message

hash functions:

158

Kent & Linn [Page 12]

RFC 1114 Mail Privacy: Key Management August 1989

1. a message hash computed on the user's identifying information

and public component (and sent to RSADSI in the registration

process), to guarantee its integrity across the ordering

process, and

2. a message hash computed on the public component of RSADSI, to

provide independent authentication for this public component

which is transmitted to the user via email (see below).

RSADSI will send to the user via electronic mail (not privacy

enhanced) a copy of his certificate, a copy of the organization

certificate identified in the issuer field of the user's certificate,

and the public component used to validate certificates signed by

RSADSI. The "issuer" certificate is included to simplify the

validation process in the absence of a user-level directory system;

its distribution via this procedure will probably be phased out in

the future. Thus, as described in RFC-1113, the originator of a

message is encouraged, though not required, to include his

159

certificate, and that of its issuer, in the privacy enhanced message

header (X-Issuer-Certificate) to ensure that each recipient can

process the message using only the information contained in this

header. The organization (organizational unit) identified in the

subject field of the issuer certificate should correspond to that

which the user claims affiliation (as declared in the subject field

of his certificate). If there is no appropriate correspondence

between these fields, recipients ought to be suspicious of the

implied certification path. This relationship should hold except in

the case of "non-affiliated" users for whom the "Notary" convention

is employed.

In contrast, the issuer field of the issuer's certificate will

specify "RSADSI" as the organization, i.e., RSADSI will certify all

organizational certificates. This convention allows a recipient to

validate any originator's certificate (within the RSADSI

certification hierarchy) in just two steps. Even if an organization

establishes a certification hierarchy involving organizational units,

certificates corresponding to each unit can be certified both by

RSADSI and by the organizational entity immediately superior to the

unit in the hierarchy, so as to preserve this short certification

path feature. First, the public component of RSADSI is employed to

validate the issuer's certificate. Then the issuer's public

160

component is extracted from that certificate and is used to validate

the originator's certificate. The recipient then extracts the

originator's public component for use in processing the X-Mic-Info

field of the message (see and RFC-1113).

The electronic representation used for transmission of the data items

described above (between an ON and RSADSI) will be contained in a

Kent & Linn [Page 13J

RFC 1114 Mail Privacy: Key Management August 1989

subsequent RFC. To verify that the registration process has been

successfully completed and to prepare for exchange of privacy-

enhanced electronic mail, the user should perform the following

steps:

1. extract the RSADSI public component, the issuer's certificate

and the user's certificate from the message

2. compute the message hash on the RSADSI public component and

161

compare the result to the corresponding message hash that was

included in the paper receipt

3. use the RSADSI public component to validate the signature on

the issuer's certificate (RSADSI will be the issuer of this

certificate)

4. extract the organizatiot public component from the validated

issuer's certificate and use this public component to

validate the user certificate

5. extract the identification information and public component

from the user's certificate, compute the message hash on it

and compare the result to the corresponding message hash

value transmitted via the paper receipt

For a user whose order was processed via an ON, successful completion

of these steps demonstrates that the certificate issued to him

matches that which he requested and which was certified by his ON.

It also demonstrates that he possesses the (correct) public component

for RSADSI and for the issuer of his certificate. For a user whose

order was placed directly with RSADSI, this process demonstrates that

his certificate order was properly processed by RSADSI and that he

162

possesses the valid issuer certificate for the RSADSI Notary. The

user can use the RSADSI public component to validate organizational

certificates for organizations other than his own. He can employ the

public component associated with his own organization to validate

certificates issued to other users in his organization.

3.3.3.1 Interoperation Across Certification Hierarchy Boundaries

In order to accommodate interoperation with other certification

authorities, e.g., foreign or U.S. government CAs, two conventions

will be adopted. First, all certifying authorities must agree to

"cross-certify" one another, i.e., each must be willing to sign a

certificate in which the issuer is that certifying authority and the

subject is another certifying authority. Thus, RSADSI might generate

a certificate in which it is identified as the issuer and a

certifying authority for the U.S. government is indentified as the

Kent & Linn [Page 14]

RFC 1114 Mail Privacy: Key Management August 1989

163

subject. Conversely, that U.S. government certifying authority would

generate a certificate in which it is the issuer and RSADSI is the

subject. This cross-certification of certificates for "top-level"

CAs establishes a basis for "lower level" (e.g., organization and

user) certificate validation across the hierarchy boundaries. This

avoids the need for users in one certification hierarchy to engage in

some "out-of-band" procedure to acquire a public-key for use in

validating certificates from a different certification hierarchy.

The second convention is that more than one X-Issuer-Certificate

field may appear in a privacy-enhanced mail header. Multiple issuer

certificates can be included so that a recipient can more easily

validate an originator's certificate when originator and recipient

are not part of a common CA hierarchy. Thus, for example, if an

originator served by the RSADSI certification hierarchy sends a

message to a recipient served by a U.S. government hierarchy, the

originator could (optionally) include an X-Issuer-Certificate field

containing a certificate issued by the U.S. government CA for RSADSI.

In this fashion the recipient could employ his public component for

the U.S. government CA to validate this certificate for RSADSI, from

which he would extract the RSADSI public component to validate the

certificate for the originator's organization, from which he would

extract the public component required to validate the originator's

164

certificate. Thus, more steps can be required to validate

certificates when certification hierarchy boundaries are crossed, but

the same basic procedure is employed. Remember that caching of

certificates by UAs can significantly reduce the effort required to

process messages and so these examples should be viewed as "worse

case" scenarios.

3.3.3.2 Certificate Revocation

X.509 states that it is a CA's responsibility to maintain:

1. a time-stamped list of the certificates it issued which have

been revoked

2. a time-stamped list of revoked certificates representing

other CAs

There are two primary reasons for a CA to revoke a certificate, i.e.,

suspected compromise of a secret component (invalidating the

corresponding public component) or change of user affiliation

(invalidating the Distinguished Name). As described in X.509, "hot

listing" is one means of propagating information relative to

certificate revocation, though it is not a perfect mechanism. In

165

particular, an X.509 Revoked Certificate List (RCL) indicates only

the age of the information contained in it; it does not provide any

Kent & Linn [Page 15]

RFC 1114 Mail Privacy: Key Management August 1989

basis for determining if the list is the most current RCL available

from a given CA. To help address this concern, the proposed

architecture establishes a format for an RCL in which not only the

date of issue, but also the next scheduled date of issue is

specified. This is a deviation from the format specified in X.509.

Adopting this convention, when the next scheduled issue date arrives

a CA must issue a new RCL, even if there are no changes in the list

of entries. In this fashion each CA can independently establish and

advertise the frequency with which RCLs are issued by that CA. Note

that this does not preclude RCL issuance on a more frequent basis,

e.g., in case of some emergency, but no Internet-wide mechanisms are

architected for alerting users that such an unscheduled issuance has

taken place. This scheduled RCL issuance convention allows users

166

(UAs) to determine whether a given RCL is "out of date," a facility

not available from the standard RCL format.

A recent (draft) version of the X.509 recommendation calls for each

RCL to contain the serial numbers of certificates which have been

revoked by the CA administering that list, i.e., the CA that is

identified as the issuer for the corresponding revoked certificates.

Upon receipt of a RCL, a UA should compare the entries against any

cached certificate information, deleting cache entries which match

RCL entries. (Recall that the certificate serial numbers are unique

only for each issuer, so care must be exercised in effecting this

cache search.) The UA should also retain the RCL to screen incoming

messages to detect use of revoked certificates carried in these

message headers. More specific details for processing RCL are beyond

the scope of this RFC as they are a functiOL Of local certificate

management techniques.

In the architecture defined by this RFC, a RCL will be maintained for

each CA (organization or organizational unit), signed using the

private component of that organization (and thus verifiable using the

public component of that organization as extracted from its

certificate). The RSADSI Notary organizational unit is included in

this collection of RCLs. CAs operated under the auspices of the U.S.

167

government or foreign CAs are requested to provide RCLs conforming to

these conventions, at least until such time as X.509 RCLs provide

equivalent functionality, in support of interoperability with the

Internet community. An additional, "top level" RCL, will be

maintained by RSAD-SI, and should be maintained by other "top level"

CAs, for revoked organizational certificates.

The hot listing procedure (expect for this top level RCL) will be

effected by having an ON from each organization transmit to RSADSI a

list of the serial numbers of users within his organization, to be

hot listed. This list will be transmitted using privacy-enhanced

Kent & Linn [Page 16]

RFC 1114 Mail Privacy: Key Management August 1989

mail to ensure authenticity and integrity and will employ

representation conventions to be provided in a subsequent RFC.

RSADSI will format the RCL, sign it using the private component of

the organization, and transmit it to the ON for dissemination, using

a representation defined in a subsequent RFC. Means for

168

dissemination of RCLs, both within the administrative domain of a CA

and across domain boundaries, are not specified by this proposal.

However, it is anticipated that each hot list will also be available

via network information center databases, directory servers, etc.

The following ASN.1 syntax, derived from X.509, defines the format of

RCLs for use in the Internet privacy enhanced email environment. See

the ASN.1 definition of certificates (later in this RFC or in X.509,

Annex G) for comparison.

revokedCertificateList SIGNED SEQUENCE {

signature AlgorithmIdentifier,

issuer Name,

list SEQUENCE RCLEntry,

lastUpdate UTCTime,

nextUpdate UTCTime}

RCLEntry SEQUENCE {

subject CertificateSerialNumber,

revocationDate UTCTime}

3.4 Certificate Definition and Usage

169

3.4.1 Contents and Use

A certificate contains the following contents:

1. version

2. serial number

3. certificate signature (and associated algorithm identifier)

4. issuer name

5. validity period

6. subject name

7. subject public component (and associated algorithm identifier)

This section discusses the interpretation and use of each of these

certificate elements.

170

Kent & Linn [Page 17)

RFC 1114 Mail Privacy: Key Management August 1989

3.4.1.1 Version Number

The version number field is intended to facilitate orderly changes in

certificate formats over time. The initial version number for

certificates is zero (0).

3.4.1.2 Serial Number

The serial number field provides a short form, unique identifier for

each certificate generated by an issuer. The serial number is used

in RCLs to identify revoked certificates instead of including entire

certificates. Thus each certificate generated by an issuer must

contain a unique serial number. It is suggested that these numbers

be issued as a compact, monotonic increasing sequence.

3.4.1.3 Subject Name

A certificate provides a representation of its subject's identity and

organizational affiliation in the form of a Distinguished Name. The

171

fundamental binding ensured by the privacy enhancement mechanisms is

that between public-key and the user identity. CCITT Recommendation

X.500 defines the concept of Distinguished Name.

Version 2 of the U.S. Government Open Systems Interconnection Profile

(GOSIP) specifies maximum sizes for O/R Name attributes. Since most

of these attributes also appear in Distinguished Names, we have

adopted the O/R Name attribute size constraints specified in GOSIP

and noted below. Using these size constraints yields a maximum

Distinguished Name length (exclusive of ASN encoding) of two-hundred

fifty-nine (259) characters, based on the required and optional

attributes described below for subject names. The following

attributes are required in subject Distinguished Names for purposes

of this RFC:

1. Country Name in standard encoding (e.g., the two-character

Printable String "US" assigned by ISO 3166 as the identifier

for the United States of America, the string "GB" assigned as

the identifier for the United Kingdom, or the string "NQ"

assigned as the identifier for Dronning Maud Land). Maximu

ASCII character length of three (3).

2. Organizational Name (e.g., the Printable String "Bolt Beranek

172

and Newman, Inc."). Maximum ASCII character length of

sixty-four (64).

3. Personal Name (e.g., the X.402/X.411 structured Printable

String encoding for the name John Linn). Maximum ASCII

character length of sixty-four (64).

Kent & Linn [Page 18]

RFC 1114 Mail Privacy: Key Management August 1989

The following attributes are optional in subject Distinguished Names

for purposes of this RFC:

1. Organizational Unit Name(s) (e.g., the Printable String "BBN

Communications Corporation") A hierarchy of up to four

organizational unit names may be provided; the least

significant member of the hierarchy is represented first.

Each of these attributes has a maximum ASCII character length of

thirty-two (32), for a total of one-hundred and twenty-eight

173

(128) characters if all four are present.

3.4.1.4 Issuer Name

A certificate provides a representation of its issuer's identity, in

the form of a Distinguished Name. The issuer identification is

needed in order to determine the appropriate issuer public component

to use in performing certificate validation. The following

attributes are required in issuer Distinguished Names for purposes of

this RFC:

1. Country Name (e.g., encoding for "US")

2. Organizational Name

The following attributes are optional in issuer Distinguished Names

for purposes of this RFC:

1. Organizational Unit Name(s). (A hierarchy of up to four

organizational unit names may be provided; the least significant

member of the hierarchy is represented first.) If the

issuer is vouching for the user identity in the Notary capacity

described above, then exactly one instance of this field

174

must be present and it must consist of the string "Notary".

As noted earlier, only organizations are allowed as issuers in the

proposed authentication hierarchy. Hence the Distinguished Name for

an issuer should always be that of an organization, not a user, and

thus no Personal Name field may be included in the Distinguished Name

of an issuer.

3.4.1.5 Validity Period

A certificate carries a pair of time specifiers, indicating the start

and end of the time period over which a certificate is intended to be

used. No message should ever be prepared for transmission with a

non-current certificate, but recipients should be prepared to receive

messages processed using recently-expired certificates. This fact

results from the unpredictable (and sometimes substantial)

Kent & Linn [Page 19]

RFC 1114 Mail Privacy: Key Management August 1989

175

transmission delay of the staged-delivery electronic mail

environment. The default and maximum validity period for

certificates issued in this system will be two years.

3.4.1.6 Subject Public Component

A certificate carries the public component of its associated entity,

as well as an indication of the algorithm with which the public

component is to be used. For purposes of this RFC, the algorithm

identifier will indicate use of the RSA algorithm, as specified in

RFC-1115. Note that in this context, a user's public component is

actually the modulus employed in RSA algorithm calculations. A

"universal" (public) exponent is employed in conjunction with the

modulus to complete the system. Two choices of exponents are

recommended for use in this context and are described in section

3.4.3. Modulus size will be permitted to vary between 320 and 632

bits.

3.4.1.7 Certificate Signature

A certificate carries a signature algorithm identifier and a

signature, applied to the certificate by its issuer. The signature

is validated by the user of a certificate, in order to determine that

176

the integrity of its contents have not been compromised subsequent to

generation by a CA. An encrypted, one-way hash will be employed as

the signature algorithm. Hash functions suitable for use in this

context are notoriously difficult to design and tend to be

computationally intensive. Initially we have adopted a hash function

developed by RSADSI and which exhibits performance roughly equivalent

to the DES (in software). This same function has been selected for

use in other contexts in this system where a hash function (message

hash algorithm) is required, e.g., MIC for multicast messages. In

the future we expect other one-way hash functions will be added to

the list of algorithms designated for this purpose.

3.4.2 Validation Conventions

Validating a certificate involves verifying that the signature

affixed to the certificate is valid, i.e., that the hash value

computed on the certificate contents matches the value that results

from decrypting the signature field using the public component of the

issuer. In order to perform this operation the user must possess the

public component of the issuer, either via some integrity-assured

channel, or by extracting it from another (validated) certificate.

In the proposed architecture this recursive operation is terminated

quickly by adopting the convention that RSADSI will certify the

177

certificates of all organizations or organizational units which act

as issuers for end users. (Additional validation steps may be

Kent & Linn [Page 20]

RFC 1114 Mail Privacy: Key Management August 1989

required for certificates issued by other CAs as described in section

3.3.3.1.)

Certification means that RSADSI will sign certificates in which the

subject is the organization or organizational unit and for which

RSADSI is the issuer, thus implying that RSADSI vouches for the

credentials of the subject. This is an appropriate construct since

each ON representing an organization or organizational unit must have

registered with RSADSI via a procedure more rigorous than individual

user registration. This does not preclude an organizational unit

from also holding a certificate in which the "parent" organization

(or organizational unit) is the issuer. Both certificates are

appropriate and permitted in the X.509 framework. However, in order

to facilitate the validation process in an environment where user-

178

level directory services are generally not available, we will (at

this time) adopt this certification convention.

The public component needed to validate certificates signed by RSADSI

(in its role as a CA for issuers) is transmitted to each user as part

of the registration process (using electronic mail with independent,

postal confirmation via a message hash). Thus a user will be able to

validate any user certificate (from the RSADSI hierarchy) in at most

two steps. Consider the situation in which a user receives a privacy

enhanced message from an originator with whom the recipient has never

previously corresponded. Based on the certification convention

described above, the recipient can use the RSADSI public component to

validate the issuer's certificate contained in the X-Issuer-

Certificate field. (We recommend that, initially, the originator

include his organization's certificate in this optional field so that

the recipient need not access a server or cache for this public

component.) Using the issuer's public component (extracted from this

certificate), the recipient can validate the originator's certificate

contained in the X-Certificate field of the header.

Having performed this certificate validation process, the recipient

can extract the originator's public component and use it to decrypt

the content of the X-MIC-Info field and thus verify the data origin

179

authenticity and integrity of the message. Of course,

implementations of privacy enhanced mail should cache validated

public components (acquired from incoming mail or via the message

from a user registration process) to speed up this process. If a

message arrives from an originator whose public component is held in

the recipient's cache, the recipient can immediately employ that

public component without the need for the certificate validation

process described here. Also note that the arithmetic required for

certificate validation is considerably faster than that involved in

digitally signing a certificate, so as to minimize the computational

burden on users.

Kent & Linn [Page 21]

RFC 1114 Mail Privacy: Key Management August 1989

A separate issue assoc;iated with validation of certificates is a

semantic one, i.e., is the entity identified in the issuer field

appropriate to vouch for the identifying information in the subject

field. This is a topic outside the scope of X.509, but one which

must be addressed in any viable system. The hierarchy proposed in

180

this RFC is designed to address this issue. In most cases a user

will claim, as part of his identifying information, affiliation with

some organization and that organization will have the means and

responsibility for verifying this identifying information. In such

circumstances one should expect an obvious relationship between the

Distinguished Name components in the issuer and subject fields.

For example, if the subject field of a certificate identified an

individual as affiliated with the "Widget Systems Division"

(Organizational Unit Name) of "Compudigicorp" (Organizational Name),

one would expect the issuer field to specify "Compudigicorp" as the

Organizational Name and, if an Organizational Unit Name were present,

it should be "Widget Systems Division." If the issuer's certificate

indicated "Compudigicorp" as the subject (with no Organizational Unit

specified), then the issuer should be "RSADSI." If the issuer's

certificate indicat- . "Widget Systems Division" as Organizational

Unit and "Compudigicorp" as Organization in the subject field, then

the issuer could be either "RSADSI" (due to the direct certification

convention described earlier) or "Compudigicorp" (if the organization

elected to distribute this intermediate level certificate). In the

later case, the certificate path would involve an additional step

using the certificate in which "Compudigicorp" is the subject and

"RSADSI" is the issuer. One should be suspicious if the validation

181

path does not indicate a subset relationship for the subject and

issuer Distinguished Names in the certification path, expect where

cross-certification is employed to cross CA boundaries.

It is a local matter whether the message system presents a human user

with the certification path used to validate a certificate associated

with incoming, privacy-enhanced mail. We note that a visual display

of the Distinguished Names involved in that path is one means of

providing the user with the necessary information. We recommend,

however, that certificate validation software incorporate checks and

alert the user whenever the expected certification path relationships

are not present. The rationale here is that regular display of

certification path data will likely be ignored by users, whereas

automated checking with a warning provision is a more effective means

of alerting users to possible certification path anomalies. We urge

developers to provide facilities of this sort.

3.4.3 Relation with X.509 Certificate Specification

An X.509 certificate can be viewed as two components: contents and an

182

Kent & Linn [Page 22]

RFC 1114 Mail Privacy: Key Management August 1989

encrypted hash. The encrypted hash is formed and processed as

follows:

1. X, the hash, is computed as a function of the certificate

contents

2. the hash is signed by raising X to the power e (modulo n)

3. the hash's signature is validated by raising the result of

step 2 to the power d (modulo n), yielding X, which is

compared with the result computed as a function of certificate

contents.

Annex C to X.509 suggests the use of Fermat number F4 (65537 decimal,

1 + 2 **16) as a fixed value for e which allows relatively efficient

authentication processing, i.e., at most seventeen (17)

multiplications are required to effect exponentiation). As an

alternative one can employ three (3) as the value for e, yielding

even faster exponentiation, but some precautions must be observed

183

(see RFC-1115). Users of the algorithm select values for d (a secret

quantity) and n (a non-secret quantity) given this fixed value for e.

As noted earlier, this RFC proposes that either three (3) or F4 be

employed as universal encryption exponents, with the choice specified

in the algorithm identifier. In particular, use of an exponent value

of three (3) for certificate validation is encouraged, to permit

rapid certificate validation. Given these conventions, a user's

public component, and thus the quantity represented in his

certificate, is actually the modulus (n) employed in this computation

(and in the computations used to protect the DEK and MSGHASH, as

described in RFC-1113). A user's private component is the exponent

(d) cited above.

The X.509 certificate format is defined (in X.509, Annex G) by the

following ASN.1 syntax:

Certificate ::= SIGNED SEQUENCE{

version [0] Version DEFAULT v1988,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

184

subj ectPublicKeylnfo Subj ectPublicKeylnfo}

Version ::= INTEGER {v1988(O)}

CertificateSerialNumber :: INTEGER

Kent & Linin [Page 23]

RFC 1114 Mail Privacy: Key Management August 1989

Validity : = SEQUENCE{

notBef ore UTCTime,

notAfter UTCTime}

SubjectPublicKeylnfo ::SEQUENCE{

algorithm Aloihmtf,

subjectPublicKey BIT STRING}

AlgorithmIdentifier ::= SEQUENCE{

185

algorithm OBJECT IDENTIFIER,

parameters ANY DEFiNED BY algorithm OPTIONAL}

All components of this structure are well defined by ASN.1 syntax

defined in the 1988 X.400 and X.500 Series Recommerdations, except

for the AlgorithmIdentifier. An algorithm identifier for RSA is

contained in Annex H of X.509 but is unofficial. RFC-1115 will

provide detailed syntax and values for this field.

NOTES:

[1] CCITT Recommendation X.411 (1988), "Message Handling Systems:

Message Transfer System: Abstract Service Definition and

Procedures".

[2] CCITT Recommendation X.509 (1988), "The Directory Authentication

Framework".

Kent & Linn [Page 24]

RFC 1114 Mail Privacy: Key Management August 1989

186

Authors' Addresses

Steve Kent

BBN Communications

SO Moulton Street

Cambridge, MA 02138

Phone: (617) 873-3988

EMail: kentOBBN.COM

John Linn

Secure Systems

Digital Equipment Corporation

85 Swanson Road, BXB1-2/D04

Boxborough, MA 01719-1326

Phone: 508-264-5491

EMail: Linn~ultra.enet.dec.com

Kent & Linn [Page 25]

Appendix C

RFC1115 Privacy Enhancement

for Internet Electronic Mail: Part

III - Algorithms, Modes, and

Identifiers

Network Worki,& Group J. Linn

Request for Comments: 1115 DEC

IAB Privacy Task Force

August 1989

Privacy Enhancement for Internet Electronic Mail:

Part III -- Algorithms, Modes, and Identifiers

STATUS OF THIS MEMO

This RFC suggests a draft standard elective protocol for the Internet

187

188

community, and requests discussion and suggestions for improvement.

This RFC provides definitions, references, and citations for

algorithms, usage modes, and associated identifiers used in RFC-1113

and RFC-1114 in support of privacy-enhanced electronic mail.

Distribution of this memo is unlimited.

ACKNOWLEDGMENT

This RFC is the outgrowth of a series of IAB Privacy Task Force

meetings and of internal working papers distributed for those

meetings. I would like to thank the following Privacy Task Force

members and meeting guests for their comments and contributions at

the meetings which led to the preparation of this RFC: David

Balenson, Curt Barker, Jim Bidzos, Matt Bishop, Morrie Gasser, Russ

Housley, Steve Kent (chairman), Dan Nessett, Mike Padlipsky, Rob

Shirey, and Steve Wilbur.

Table of Contents

1. Executive Summary 2

2. Symmetric Encryption Algorithms and Modes 2

2.1. DES Modes 2

2.1.1. DES in ECB mode (DES-ECB) 2

189

2.1.2. DES in EDE mode (DES-EDE) 2

2.1.3. DES in CBC mode (DES-CBC) 3

3. Asymmetric Encryption Algorithms and Modes 3

3.1. RSA 3

4. Integrity Check Algorithms 3

4.1. Message Authentication Code (MAC) 4

4.2. RSA-MD2 Message Digest Algorithm 4

4.2.1. Discussion 4

4.2.2. Reference Implementation 5

NOTES 7

Linn [Page 1]

RFC 1115 Mail Privacy: Algorithms August 1989

1. Executive Summary

This RFC provides definitions, references, and citations for algorithms,

190

usage modes, and associated identifiers used in RFC-1113 and RFC-1114

in support of privacy-enhanced electronic mail in the Internet

community. As some parts of this material are cited by both RFC-1113

and RFC-1114, and as it is anticipated that some of the definitions

herein may be changed, added, or replaced without affecting the citing

RFCs, algorithm-specific material has been placed into this separate

RFC. The text is organized into three primary sections; dealing with

symmetric encryption algorithms, asymmetric encryption algorithms, and

integrity check algorithms.

2. Symmetric Encryption Algorithms and Modes

This section identifies alternative symmetric encryption algorithms

and modes which may be used to encrypt DEKs, MICs, and message text,

and assigns them character string identifiers to be incorporated in

encapsulated header fields to indicate the choice of algorithm

employed. (Note: all alternatives presently defined in this category

correspond to different usage modes of the DEA-1 'DES) algorithm,

rather than to other algorithms per se.)

2.1. DES Modes

The Block Cipher Algorithm DEA-1, defined in ANSI X3.92-1981 [3] may

191

be used for message text, DEKs, and MICs. The DEA-1 is equivalent to

the Data Encryption Standard (DES), as defined in FIPS PUB 46 [4].

The ECB and CBC modes of operation of DEA-1 are defined in ISO IS 8372

[s].

2.1.1. DES in ECB mode (DES-ECB)

The string "DES-ECB" indicates use of the DES algorithm in Electronic

Codebook (ECB) mode. This algorithm/mode combination is used for DEK

and MIC encryption.

2.1.2. DES in EDE mode (DES-EDE)

The string "DES-EDE" indicates use of the DES algorithm in

Encrypt-Decrypt-Encrypt (EDE) mode as defined by ANSI X9.17 [2] for

key encryption and decryption with pairs of 64-bit keys. This

algorithm/mode combination is used for DEK and MIC encryption.

192

Linn [Page 2)

RFC 1115 Mail Privacy: Algorithms August 1989

2.1.3. DES in CBC mode (DES-CBC)

The string "DES-CBC" indicates use of the DES algorithm in Cipher

Block Chaining (CBC) mode. This algorithm/mode combination is used

for message text en ryption only. The CBC mode definition in IS 8372

is equivalent to that provided in FIPS PUB 81 [6] and in ANSI X3.106-

1983 [7].

3. Asymmetric Encryption Algorithms and Modes

This section identifies alternative asymmetric encryption algorithms and

modes which may be used to encrypt DEKs and MICs, and assigns them

character string identifiers to be incorporated in encapsulated

header fields to indicate the choice of algorithm employed. (Note:

only one alternative is presently defined in this category.)

3.1. RSA

193

The string "RSA" indicates use of the RSA public-key encryption

algorithm, as described in [8). This algorithm is used for DEK and

MIC encryption, in the following fashion: the product n of a

individual's selected primes p and q is used as the modulus for the

RSA encryption algorithm, comprising, for our purposes, the

individual's public key. A recipient's public key is used in

conjunction with an associated public exponent (either 3 or I+2**16)

as identified in the recipient's certificate.

When a MIC must be padded for RSA encryption, the MIC will be

right-justified and padded on the left with zeroes. This is also

appropriate for padding of DEKs on singly-addressed messages, and for

padding of DEKs on multi-addressed messages if and only if an exponent

of 3 is used for no more than one recipient. On multi-addressed

messages in which an exponent of 3 is used for more than one recipient,

it is recommended that a separate 64-bit pseudorandom quantity be

generated for each recipient, in the same manner in which IVs are

generated. (Reference [9] discusses the rationale for this

recommendation.) At least one copy of the pseudorandom quantity should

be included in the input to RSA encryption, placed to the left of the

DEK.

194

4. Integrity Check Algorithms

This section identifies the alternative algorithms which may be used

to compute Message Integrity Check (MIC) and Certificate Integrity

Check (CIC) values, and assigns the algorithms character string

identifiers for use in encapsulated header fields and within

certificates to indicate the choice of algorithm employed.

Linn [Page 3]

RFC 1115 Mail Privacy: Algorithms August 1989

MIC algorithms which utilize DEA-1 cryptography are computed using a key

which is a variant of the DEK used for message text encryption. The

variant is formed by modulo-2 addition of the hexadecimal quantity

FOFOFOFOFOFOFOFO to the encryption DEK.

For compatibility with this specification, a privacy-enhanced mail

implementation must be able to process both MAC (Section 2.1) and

RSA-MD2 (Section 2.2) MICs on incoming messages. It is a sender option

195

whether MAC or RSA-MD2 is employed on an outbound message addressed to

only one recipient. However, use of MAC is strongly discouraged for

messages sent to more than a single recipient. The reason for this

recommendation is that the use of MAC on multi-addressed mail fails to

prevent other intended recipients from tampering with a message in a

manner which preserves the message's appearance as an authentic message

from the sender. In other words, use of MAC on multi-addressed mail

provides source authentication at the granularity of membership in the

message's authorized address list (plus the sender) rather than at a

finer (and more desirable) granularity authenticating the individual

sender.

4.1. Message Authentication Code (MAC)

A message authentication code (MAC), denoted by the string "MAC", is

computed using the DEA-1 algorithm in the fashion defined in FIPS PUB

113 [1]. This algorithm is used only as a MIC algorithm, not as a CIC

algorithm.

As noted above, use of the MAC is not recommended for multicast

messages, as it does not preserve authentication and integrity among

individual recipients, i.e., it is not cryptographically strong enough

for this purpose. The message's canonically encoded text is padded at

196

the end, per FIPS PUB 113, with zero-valued octets as needed in order to

form an integral number of 8-octet encryption quanta. These padding

octets are inserted implicitly and are not transmitted with a message.

The result of a MAC computation is a single 64-bit value.

4.2. RSA-MD2 Message Digest Algorithm

4.2.1. Discussion

The RSA-MD2 Message Digest Algorithm, denoted by the string "RSA-MD2",

is computed using an algorithm defined in this section. It has been

provided by Ron Rivest of RSA Data Security, Incorporated for use in

support of privacy-enhanced electronic mail, free of licensing

restrictions. This algorithm should be used as a MIC algorithm

whenever a message is addressed to multiple recipients. It is also

the only algorithm currently defined for use as CIC. While its

continued use as the standard CIC algorithm is anticipated, RSA-MD2

Linn [Page 4]

RFC 1115 Mail Privacy: Algorithms August 1989

197

may be supplanted by later recommendations for MIC algorithm

selections.

The RSA-MD2 message digest algorithm accepts as input a message of any

length and produces as output a 16-byte quantity. The attached

referenc;' implementation serves to define the algorithm; implementors

may choose to develop optimizations suited to their operating

environments.

4.2.2. Reference Implementation

/* RSA-MD2 Message Digest algorithm in C */

/* by Ronald L. Rivest 10/1/88 */

#include <stdio.h>

/* Message digest routines: */

/* To form the message digest for a message M

/* (1) Initialize a context buffer md using MDINIT

/* (2) Call MDUPDATE on md and each character of M in turn

/* (3) Call MDFINAL on md

198

/* The message digest is now in md->D[O... 15] */

/* An MDCTX structure is a context buffer for a message digest */

/* computation; it holds the current "state" of a message digest

/* computation */

struct MDCTX

{

unsigned char D[48]; /* buffer for forming digest in */

/* At the end, D[O... 15] form the message */

/* digest */

unsigned char C[16]; /* checksum register */

unsigned char i; /* number of bytes handled, modulo 16 */

unsigned char L; /* last checksum char saved */

/* The table S given below is a permutation of 0.. .255 constructed */

/* from the digits of pi. It is a "random'' nonlinear byte

/* substitution operation.

int S[256] = {

41, 46, 67,201,162,216,124, 1, 61, 54, 84,161,236,240, 6, 19,

98,167, 5,243,192,199,115,140,152,147, 43,217,188, 76,130,202,

30,155, 87, 60,253,212,224, 22,103, 66,111, 24,138, 23,229, 18,

190, 78,196,214,218,158,222, 73,160,251,245,142,187, 47,238,122,

169,104,121,145, 21,178, 7, 63,148,194, 16,137, 11, 34, 95, 33,

199

128,127, 93,154, 90,144, 50, 39, 53, 62,204,231,191,247,151, 3,

255, 25, 48,179, 72,165,181,209,215, 94,146, 42,172, 86,170,198,

79,184, 56,210,150,164,125,182,118,252,107,226,156,116, 4,241,

Linn [Page 5]

RFC 1115 Mail Privacy: Algorithms August 1989

69,157,112, 89,100,113,135, 32,134, 91,207,101,230, 45,168, 2,

27, 96, 37,173,174,176,185,246, 28, 70, 97,105, 52, 64,126, 15,

85, 71,163, 35,221, 81,175, 58,195, 92,249,206,186,197,234, 38,

44, 83, 13,110,133, 40,132, 9,211,223,205,244, 65,129, 77, 82,

106,220, 55,200,108,193,171,250, 36,225,123, 8, 12,189,177, 74,

120,136,149,139,227, 99,232,109,233,203,213,254, 59, 0, 29, 57,

242,239,183, 14,102, 88,208,228,166,119,114,248,235,117, 75, 10,

49, 68, 80,180,143,237, 31, 26,219,153,141, 51,159, 17,131, 20,

/*The routine MDINIT initializes the message digest context buffer md.*/

/* All fields are set to zero.

void MDINIT(md)

struct MDCTX *md;

200

{ int i;

for (i=O;i<16;i++) md->D[i] = md->C[i] = 0;

md->i = 0;

md->L = 0;

}

/* The routine MDUPDATE updates the message digest context buffer to */

/* account for the presence of the character c in the message whose */

/* digest is being computed. This routine will be called for each */

/* message byte in turn.

void MDUPDATE(md, c)

struct MDCTX *md;

unsigned char c;

{ register unsigned char i,j,t,*p;

/**** Put i in a local register for efficiency ****/

i = md->i;

/**** Add new character to buffer ****/

md->D[16+i] = c;

md->D[32+i] = c - md->D[i];

/**** Update checksum register C and value L ****/

md->L = (md->C[i] -= S[OxFF & (c - rd->L)]);

/**** Increment md->i by one modulo 16 ****/

i = md->i = (i + 1) & 15;

/**** Transform D if i=O ****/

201

if (i == 0)

{t = 0;

for (j=o;j<18;j++)

{/*The following is a more efficient version of the loop:*/

/* for (i=0;i<48;i +) t = md->D[i] = md->DEi] - S[t]; */

p = md->D;

for (i=O;i<8;i++)

{ t = (*p++ SetJ);

t = (*p++ Sit]);

t = (*p++= Set]);

t = (*p++ Set]);

t = (*p++ = Set]);

Linn [Page 6]

RFC 1115 Mail Privacy: Algorithms August 1989

t = (*p++ = S[t]);

}

/* End of more efficient loop implementation */

t t +j;

202

}

}

}

/* The routine MDFINAL terminates the message digest computation and */

/* ends with the desired message digest being in md->D[O...15]. */

void MDFINAL(md)

struct MDCTX *md;

{ int i,padlen;

/* pad out to multiple of 16 */

padlen = 16 - (md->i);

for (i=O;i<padlen;i++) MDUPDATE(md,(unsigned char)padlen);

/* extend with checksum */

/* Note that although md->C is modified by MDUPDATE, character */

/* md->C[i] is modified after it has been passed to MDUPDATE, so

/* the net effect is the same as if md->C were not being modified.*/

for (i=O;i<16;i++) MDUPDATE(md,md->C[i]);

}

/* End of message digest implementation */

NOTES:

203

[I] Federal Information Processing Standards Publication 113,

Computer Data Authentication, May 1985.

[2] ANSI X9.17-1985, American National Standard, Financial

Institution Key Management (Wholesale), American Bankers

Association, April 4, 1985, Section 7.2.

[3] American National Standard Data Encryption Algorithm (ANSI

X3.92-1981), American National Standards Institute, Approved 30

December 1980.

[4] Federal Information Processing Standards Publication 46, Data

Encryption Standard, 15 January 1977.

[5] Information Processing Systems: Data Encipherment: Modes of

Operation of a 64-bit Block Cipher.

[6] Federal Information Processing Standards Publication 81,

DES Modes of Operation, 2 December 1980.

204

Linn [Page 7]

RFC 1115 Mail Privacy: Algorithms August 1989

[7] American National Standard for Information Systems - Data

Encryption Algorithm - Modes of Operation (ANSI X3.106-1983),

American National Standards Institute - Approved 16 May 1983.

[8] CCITT, Recommendation X.509, "The Directory: Authentication

Framework", Annex C.

[9] Moore, J., "Protocol Failures in Cryptosystems",

Proceedings of the IEEE, Vol. 76, No. 5, Pg. 597, May 1988.

Author's Address

John Linn

Secure Systems

Digital Equipment Corporation

85 Swanson Road, BXB1-2/D04

Boxborough, MA 01719-1326

205

Phone: 508-264-5491

EMail: LinnOultra. enet .dec. corn

L inn [Page 8]

Appendix D

Source Code and Description -

Makekeys.c

f* Filename: makekeys.c

Author: Gordon D. Wishon

Date: 30 Mar 1990

Description: This file allows a user to create and store public/private

key pairs. The keys must be restored from the files using the BSAFE

module restorekey() before they can be used subsequently.

This file contains proprietary information of RSA Data Security, Inc., and

is used under a license granted to the U.S. Government.

*]

#include "global .h"

206

207

#include "bsafebit .h"

#include (stdio.h>

*if MICROSOFTC

*include <stdlib .h>

#include <string.h>

*include <sys\types .h>

#include <sys\timeb li>

#endif

#if THINKC

#include <unix.h>

* include <storage. h>

*endif

*if MPWC

include <fcntl .h>

#endif

#if UNIX

#include <ctype .h>

#include <sys/time~h

#endif

208

*include <math.h>

include "bsafe .h'

*include "'myclib.h"

/* GLOBAL VARIABLES *

BSAFE-.KEY DS DigestKey{ O};

BSAFE.KEY DS SecretKey{ O};

BSAFE-KEY DS PublicKey{O}1;

BSAFE-KEY DS PrivateKey={O};

#if PROTOTYPES /* If we should use function prototypes.*/

void savekey(char *, BSAFE-.KEY BSAFE-.PTR);

STATUS makedigest(BSAFE-KEY BSAFE-.PTR);

STATUS makersakeys(void);

int main(void);

#else /* no PROTOTYPES *

209

void savekeyo;

STATUS makedigesto;

STATUS makersakeyso;

int maino;

endif / PROTOTYPES *

void savekey(keyname ,key)

char *keyname;

BSAFEJ(EY BSAFE-.PTR key;

char of ilename [80;

FILE *ofile;

get oname:

printf ("Enter file name for saving Yes: '1, keyname);

gets(ofilenane);

if ((of ile = fopen (of ilename,"w")) == NULL)

puts("Bad. Try again.");

goto getonaie;

fwrite((char *)key->data,1,key->size,ofile);

210

fclose(ofile);

STATUS makedigest (ikey)

BSAFEJ(EY BSAFE.PTR ikey;

int opcode;

BSAFE_.CTX ctx;

STATUS stat;

BSAFE,.KEY BSAFEPTR key;

int istat, len;

irit writeval = 0;

ULONG size;

BYTE ibuffer[40961;

BYTE *obuffer = NULL;

char of ilenaie [80];

FILE *of4'.e;

/* Initialize context and keys *

BSAFE-.InitCtx((BSAFE-.CTX BSAFE-.PTR)&ctx);

BSAFE-.InitKey((BSAFE-.KEY BSAFE-.PTR)&DigestKey);

DigestKey class = BSAFE-class.-DIGEST;

211

DigestKey.alg = BSAFE.alg-.DIG1;

DigestKey.level = 0;

getonane:

printf("\nEnter file name for saving message digest:");

gets(ofilename);

if ((ofile = fopen (ofilename,"w")) == NULL)

puts("Bad. Try again.");

goto getonane;

/* Select enciyption key/keys *

key = &DigestKey;

opcode = BSAFE-opcodeNJLL;

/* Now prepare to operate on the input file *

/* Allocate buffer */

if (stat = BSAFE-.ComputeSize(key,opcode, (ULONG)4096,&size))

goto transform-.ex it;

obuffer = (BYTE *) mallo((UWORD) size);

212

if (obuffer==NULL)

printf("\nError: buffer of size %d could not be found.",size);

goto transform-.exit;

/* Encryption loop for file data *

len =ikey->size;

printf ("Size of key data is YWdn", len);

do

if (len > 4096) istat = 4096;

else istat = len;

memcpy (ibuffer, ikey->data, istat);

/* Encrypt this data block (or do final call if istat==0)

while ((stat = BSAFE-TransfornData(

(BSAFE-.CTX BSAFE-PTR)&ctx,

key, opcode,

(ULONG) istat, ibuffer,

&size, obuffer))

-- ERR-.BSAFE-YAUSE) printf(".")

if (stat !0) goto transform-.exit;

213

#if DEBUG

printf("\nWriting 7.ld bytes out on file.",size);

*endif

writeval = fwrite((char *)obuffer,l,(int)size,ofile);

len =len - istat;

while (istat > 0);

transform-exit:

if (obuffer!=NULL)

free Cobuffer);

BSAFE-CtxHandler((BSAFE-CTX BSAFE-.PTR)&ctx,BSAFE-opcode.FREE);

fclose (ofile);

#if UNIX

if (stat)

unlink (ofilenane);

*else

if (stat)

remove (ofilename);

end if

return(stat);

214

STATUS makersakeys()

STATUS stat;

static int keylength;

BSAFE-.CTX ctx;

char buf f er [8011

if (MINMODBITS ==MAXMODBITS)

printf ("RSA modulus length set at %d bits.\n",MINMODBITS);

keylength = MINMODBITS;

else

getklen:

printf("Enter desired RSA key length in bits (%d-'-%d): "

MINMODBITS ,MAXMODBITS);

gets (buffer);

sscanf (buffer," Yd",kkeylength); /* kill CR *

if (keylength > MAXMDDBITS 11I keylength < MINMODBITS)

puts ("Illegal key size.");

goto getklen;

215

printf ("\nStand by please ... n)

initrandomo;

printf("Generating RSA key pair.. .");

PublicKey .class = BSAFE.class-.PUBLIC;

PublicKey.alg = BSAFE-.alg-.RSA;

PublicKey.level = keylength;

PublicKey .memstate = BSAFE..memstate-NULL;

PrivateKey .memstate = BSAFE-.memstate-NULL;

BSAFE-nitCtx((BSAFE-CTX BSAFE-PTR)&ctx);

/* Release storage in case these were previously created *

stat = BSAFE..KeyHandler((BSAFE..KEY BSAFE-.PTR)&PublicKey,

BSAFE-opcode..FREE);

if (stat !=0)

return(stat);

stat = BSAFE-KeyHandler((BSAFE-.KEY BSAFE-PTR)&PrivateKey,

BSAFE-.opcode..FREE);

if (stat != 0)

return(stat);

while ((stat = BSAFE-MakeKeyPair((BSAFE.CTX BSAFE..PTR)&ctx,

(BSAFE-KEY BSAFE-PTR)&PublicKey,

(BSAFE-.KEY BSAFE-.PTR)&PrivateKey))

216

-- ERR..BSAFE-.PAUSE)

printf(".");

if (stat != 0)

return Cstat)

if (stat = BSAFE-.KeyHandler(

(BSAFE-.KEY BSAFE-YTR) &PublicKey,

BSAFE..opcode-.ENTRY))

return(stat);

if (stat = BSAFE-KeyHandler(

(BSAFE-.KEY BSAFE-PTh) &PrivateKey,

BSAFE..opcode.ENTRY))

return (stat);

printf("OK. \n");

savekey("public kel" ,&PublicKey);

savekey("private key" ,&PrivateKey);

printf ("\nlf you are using the public key in an email certificate\n");

printf ("application, you will need to create a message digest of\n");

printf ("the key, which should be placed in a separate file.\n");

printf ("\nCreate message digest?\n");

gets (buffer);

if (toupper (buffer[l) == 'Y')

217

stat = makedigest(&PublicKey);

return(stat);

int main()

static int operation = 2; /* Make rsa keys *

STATUS stat;

extern int BSAFE-.MaxStackUsed, BSAFEjMaxStackNeeded;

char buf f er [80] ;

setbuf(stdout, NULL); /* Tell stdout to be unbuffered.*/

BSAFE-InitKey((BSAFE-KEY BSAFE-.PTR)&PublicKey);

BSAFE..InitKey((BSAFE-KEY BSAFE-.PTR)&PrivateKey);

printf (

"\nThis program will create a public/private key pair f or use in");

printf (

"\nprotecting data. The keys created by this program will be");

printf C

"\nstored in the files of your choice. The owner should place");

printf C

218

'\nthe private key in a file to which he alone has access. If");

printf(

"1\nthe private key is compromised, any data encrypted by the");

printf (

"\npublic key is in danger of compromise.\n");

BSAFE-.MaxStackUsed = BSAFE-MaxStackNeeded = 0;

srand(123);

stat = 0;

stat = makersakeyso;

printf("\nMax Stack Used = %d bytes." ,BSAFE-MjaxStackUsed);

if (BSAFE..MaxStackUsed!I=BSAFE-YaxStackNeeded)

printfC"\nMax Stack Needed = %d bytes.",BSAFE-MaxStackNeeded);

printf("\nFinal status code returned = %d ",stat);

printstatus(stat);

return (0);

}/* end of main *

Appendix E

Source Code and Description -

Cert.c

/*

Filename: CERT.C

Author: Gordon D. Wishon

Date: 9 April 1990

Description: This file contains operations necessary to create new

certificates for use in the PE-Mail system. This program contains

material copyrighted by RSA Data Security, Inc. and is used under a

license granted to the U.S. Government.

*/

#include <stdio.h>

#include <math.h>

#include "global.h"

#include "bsafe.h"

219

220

*include "cert .h"

*include "myclib .h"

*if MICROSOFTC

*include <dos.h>

*include <stdlib.h>

* include <string.h

*include <sys\types .h>

*include <sys\timeb .h>

S end if

#if UNIX

include <ctype .h>

*include <sys/time.h>

tendif

/* GLOBAL VARIABLES *

BSAFE-.KEY DS DigestKey{ O};

BSAFEJ(EY DS PublicKey{fO};

BSAFE..KEY DS PrivateKey.{O};

cert-.struct new-.cert;

221

#if PROTOTYPES /* If we should use function prototypes.*/

void printstatus(STATUS);

void initrandom(void);

void initcert(cert-struct *);

STATUS makedigest(CERTIFICATE *, BYTE *);

STATUS sign(BYTE *, BYTE *, ULONG *);

STATUS restorekey(void);

int main(void);

else / no PROTOTYPES */

void printstatuso;

void initrandomo;

void initcerto;

STATUS makedigest(;

STATUS signo;

STATUS restorekey(;

int maino;

#endif /* PROTOTYPES */

222

void printstatus(stat)

STATUS stat;

{

switch(stat) {

case 0: printf("OK."); break;

case 1: printf("FALSE."); break;

case 2: printf("ALLOCATE error."); break;

case 3: printf("FREE error."); break;

case 4: printf("ENTRY error."); break;

case 5: printf("EXIT error."); break;

case 6: printf("PAUSE."); break;

case 7: printf("BAD KEY error."); break;

case 8: printf("BAD CTX error."); break;

case 9: printf("BAD OPCODE error."); break;

case 10: printf("BAD CHECKSUM error."); break;

case 11: printf("BAD DATA error."); break;

case 12: printf("NEED RANDOM BYTES error."); break;

case 13: printf("INTERNAL error."); break;

case 14: printf("HARDWARE error or malfunction."); break;

default: printf("UNKNOWN error code 7,d.",stat); break;

223

void initrandom()

long int i;

*i UNIX

struct timeval tv;

struct timezone tz;

*endif

#if MICROSOFTC

int j, k;

struct timeb *tv;

#endif

/* Initialize random number generator *

BSAFE-.ResetRandomo;

printf ("\nStandby, please..An)

for (P=O;i<100;i.+)

*if UNIX

gettimeofday(&tv ,&tz);

BSAFE.JMixlnByte((BYTE)tv .tv-.usec);

* end if

224

*if MICROSOFTC

ftime(tv);

BSAFE-.MixlnByte((BYTE) tv->millitm);

/* pause for random amount of time -- otherwise, a PC

may return the same time in subsequent calls to ftime *

j=rando;

for (j0; j<k; j++);

#endif

void initcert (cert)

cert-.struct *cert;

{et>otnsvrin=0

cert->contents.versionu = 0;

* (cert->contents issuer..name. country) =NULL;

*cert->contents. issuer-name .organization = NULL;

*cert->contents issuer-.name .org-unitI = NULL;

*cert->contents issuer-.name .org..unit2 = NULL;

225

*cert->contents.issuer-naine.org-unit3 = NULL;

*cert->contents. issuer-.name .org-.unit4 = NULL;

cert->contents.valid-period.start-.date.day = 0;

cert->contents .valid-period.start-date.month = 0;

cert->contents .valid-period.start-date.year = 0;

cert->contents.valid-period.end.date.day = 0;

cert->contents .valid..period.end.date.month =0;

cert->contents.valid-period.end-date.year =0;

*cert->contents .personal-nane country = NULL;

*cert->contents.personal-name.orgalization = NULL;

*cert->contents personal-name org-unitl = NULL;

*cert->contents .personal-nane org-unit2 = NULL;

*cert->contents.personal-name.org.unit3 = NULL;

*cert->contents.personal-naine.orgunit4 = NULL;

cert->contents.pub-component.size = 0;

*cert->contents.pub-component .key..alg = NULL;

*cert->signature. signature =NULL;

cert->signature.tsize = 0;

*cert->signature.ash-alg =NULL;

I

STATUS restorekey 0

226

static char ifilenameE8O];

int readval;

STATUS st;

BSAFE-.KEY key;

BSAFE-KEY BSAFE-.PTR keyp;

FILE *ifile;

BSAFE-InitKey((BSAFE.KEY BSAFE-PTR)&key);

initrandomo;

get maine:

printf ("\nEnter file name:");

gets(ifilenane);

if ((ifile = fopen(ifilenanie,"rb")) ==NULL)

puts("Bad. Try again.");

goto getiname;

/* get file size *

printf ("Getting key size from file\n");

fseek (ifile,OL,2);

key.size = (UWORD)ftell(ifile);

rewind (if ile);

227

printf ("\nCalling key handler\n");

if (st=BSAFE-.KeyHandler(&key, BSAFE-.opcode-.ALLOCATE))

goto exitlabel;

printf ("\neading key data from file\n");

if ((readval = fread

((char *)key.data,l,key.size,ifile)) < key.size)

st = ERR-BSAFE-.BADKEY;

goto exitlabel;

printf ("\nCalling BSAFE..RestoreKeyData\n");

if (st=BSAFE-.RestoreKeyData(&key))

goto exitlabel;

/* Now move to right place *

if (key.class == BSAFE-class-~PUBLIC)

printf("\nPUBLIC")

keyp = &PublicKey;

else if (key.class ==BSAFE-class-PRIVATE)

f

printf ("\nPRIVATE";

keyp = &PrivateKey;

228

else

printf("\nlmproper key -- Exiting.\n");

st =20;

return(st);

I

printf("key restored from file ?.s.\n\n", if ilename);

keyp->size =key.size;

keyp->data = key.data;

keyp->handle = key.handle;

keyp->memstate =key.memstate;

keyp->class = key.cl ass;

keyp->alg = key.alg;

keyp->level = key.level;

exitlabel:

fclose(ifile);

return(st);

STATUS sign (buffer, obuffer, tsize)

BYTE *buffer, *obuffer;

229

ULONG *tsize;

int opcode, istat, len;

BSAFE-.CTX ctx;

STATUS stat;

BSAFE-.KEY BSAFE-.PTR key;

ULONG size;

/* Initialize context and keys *

BSAFE-.InitCtx((BSAFE-.CTX BSAFE-PTR)&ctx);

printf ("\nigning certificate.");

key = &PrivateKey;

opcode = 1; f* encrypt *

/* Now prepare to operate on the input buffer *

if (stat = BSAFE-.ComputeSize(key,opcode, (ULONG)4096 ,&size))

goto transform-.exit;

/* Encryption ioop for certificate data *

len = 16;

do

230

istat =len;

/* Encrypt this data block (or do final call if istatO) *

while ((stat = BSAFE-.Transformflata(

(BSAFE-.CTX BSAFE-.PTh) &ctx,

ke,opcode,

(ULaNG) istat, buffer,

&size, obuffer))

-- ERR-.BSAFE-.PAUSE) printf(".")

if (stat !=0) goto transform-.exit;

len =len - istat;

while (istat > 0);

*tsize = size;

transform-..exit:

BSAFE-.CtxHandler((BSAFE-CTX BSAFE-.PTR)&ctx,BSAFE-opcode.YREE);

return(st at);

STATUS makedigest(icert, obuffer)

CERTIFICATE *icert;

231

BYTE *obuffer;

int opcode;

BSAFE-CTX ctx;

STATUS stat;

BSAFE-.KEY BSAFE-.PTR key;

int istat;

int len;

ULONG size = 16;

BYTE ibuffer[4096];

/* Initialize context and keys *

BSAFE-InitCtx((BSAFE-CTX BSAFE-.PTR)&ctx);

BSAFE-.InitKey((BSAFE-.KEY BSAFE-.PTR)&DigestKey);

DigestKey class = BSAFE-.cla ,.DIGEST;

DigestKey.alg = BSAFE-.alg-.DIG1;

DigestKey.level = 0;

/* Select encryption key/keys *

key = &DigestKey;

opcode - BSAFE-.opcode-.NULL;

/* Now prepare to operate on th~e input buffer *

232

/* Encryption loop for certificate data *

len = sizeof(*icert);

printf ("Size of certificate contents is Mdn", len);

do

f

if (len > 4096) istat = 4096;

else istat = len;

memcpy (ibuffer, icert, istat);

/* Encrypt this data block (or do final call if istat0=) *

while ((stat = BSAFE-ransformnfata(

(BSAFE-.CTX BSAFE-.PTR)&ctx,

key ,opcode,

(ULONG) istat, ibuffer,

&size, obuffer))

-- ERRWBSAFEYAUSE) printf C" ")

if (stat != 0) goto transform-exit;

len =len - istat;

while (istat > 0);

transform-exit:

233

BSAFE-.CtxHandler((BSAFE-.CTX BSAFE-.PTR)&ctx,BSAFE-.opcode-.FREE);

return(stalt);

main0

char buf f er [80J;

#if MICROSOFTC

struct dosdate-.t date;

*endif

BYTE *hash = HASH-.ALGORITHM;

BYTE *keya = KEY-.ALGORITHM;

char of ilename [80];

FILE *ofile;

STATUS stat;

extern int BSAFE-.MaxStackUsed, BSAFEMaxStackNeeded;

extern int TimerRate = 1;

ULONG size;

BYTE *obuff or, digest[l6];

BSAFE..MaxStackUsed = BSAFE-.MaxStackNeeded = 0;

stat = 0;

234

setbuf (stdout, NULL);

BSAFE-.InitKey((BSAFE-.KEY BSAFE-.PTR)&PublicKey);

BSAFE-.InitKey((BSAFE-.KEY BSAFE-.PTR)&PrivateKey);

initcert(&new-.cert);

new..cert .contents .version = CERTVERSION;

printf

("This program generates certificates for use in privacy\n");

printf

("enhanced mail. To succCssfully generate certificates, you\n");

printf

("must be authorized for access to the PRIVATE component of the\n");

printf

("issuing organization.\n");

printf

("\nEnter serial number for this certificate:");

gets (buffer);

sscanf (buffer, "U", &(new-.cert.contents.serialnun));

priritf

("\nSerial number set to YXd\n", neu..cert.contents.serialnuO;

printf

235

("\nEnter organizational name of issuer:");

gets (new-cert.contents.issuer-name.organization);

printf

("\nEnter country abbreviation of issuer (e.g., US):");

gets (new.cert .contents .issuer-.name country);

printf

("Organizational Unit -- Level 1 [optional]?");

gets (new-ert.contents.issuer-name.org-unitl);

printf

("Organizational Unit -- Level 2 [optional]?");

gets (new-cert .contents .issuer-.name .org..unit2);

printf

("Organizational Unit -- Level 3 [optional]?");

gets (new-.cert.contents.issuer..name.org.unit3);

printf

("Organizational Unit -- Level 4 [optional]?");

gets (new-.cert.contents.issuer-nane.org.unit4);

printf

("\nlssuer is %s\n", new..cert.contents.issuer..name.organization);

*if MICROSOFTC

..dos.getdate (&ate);

236

new-.cert .contents. valid-.period .start-date .day

date.day;

new-.cert .contents .valid..period.start-.date.month

date .month;

new..cert .contents. valid-period. start-.date .year

date .year;

date.year = date.year + 2;

new-.cert .contents .valid.period. end-.date .day=

date.day;

new-.cert .contents .valid-.period. end-.date .month

date .month;

new-.cert .contents .valid.period. end-.date .year=

date. year;

*endif

printf

("\nThis certificate will be valid for two years from today's\n");

printf

("date: Yd/ /d//.d through %d/%d/%d\n",

nev..cert .contents. valid-period. start-.date. day.

new..cert .contents.valid-period.start-.date.month,

new..cert .contents .valid-.period. start-.date .a,

237

new-.cert .contents .valid-.period. end-date day,

new-cert .contents valid-.period .end-.date .month,

new..cert .contents .valid-.period. end-.date .year);

printf

("Enter the subject's Distinguished Name information\n");

printf

("Country Name Abbreviation (US for United States)?")

gets (new-.cert.contents.personal-.name.country);

printf

("Organizational Name? (i.e. Air Force Institute of Technology)?\n");

gets (new-cert.contents.personal-name.organization);

printf

("Organizational Unit -- Level 1 [optional]?");

gets (new-.cert .contents .personal.name .org-unit 1);

printf

("Organizational Unit -- Level 2 [optional]?");

gets (new-cert.contents.personalname.org-unit2);

printf

("Organizational Unit -- Level 3 [optional]?");

gets (new-.cert .contents .personal-name .org-.unit3);

printf

("Organizational Unit -- Level 4 [optional]?");

gets (new-cert.contents.personal-name.org-.unit4);

238

printf

("\nName?");

gets Cnew-.cert .contents .personal-.name .subject-.name);

strcpy (new..cert .contents .pub-.component .key-.alg, keya);

strcpy (new..cer-t.signature.hash..alg, hash);

/* get applicant's public component */

printf ("\nRecovering applicant's public component.");

if (stat = restorekey()) goto exitlabel;

/* place applicant's public component into certificate *

new..cert.contents.pub-.component.size = PublicKey.size;

/* key-.data area only large enough for 320 bit modulus key *

/* mail program must be set up to accept keys of this size *

memcpy (new..cert .contents .pub..component .key-.data,

PublicKey.data, PublicKey.size);

printf

("\ney data is:X100. lO0s\n", new-.cert.contents.pub-.component.key..data);

/* certificate complete -- compute *

239

/* signature on digest of certificate *

if (stat = makedigest(&(new-.cert.contents), digest)){

printf ("\nDigest computation failed -- exiting.\n");

goto exitlabel;

I

/* get issuing authority's private component *

printf

("\nPreparing to sign certificate with issuing")

pr intf

("authority's private key.");

if (stat=restorekeyo) goto exitlabel;

/* compute signature value *

if (stat = sign

(digest, new-cert.signature.signature, &new..cert.signature.tsize))

goto exitlabel;

printf ("\nCertificate compjleted.\n");

printf ("Version: %d'", new-.cert .contents.version);

printf ("\nSerial Number: U1d1, new-.cert.contents.serialnum);

printf ("\nSignature: Y,.80c", new-.cert.signature.signature);

printf ("\n'/s", new-.cert .signature .hash-.alg);

240

printf ("\nlssuer Name: %s",

new-cert contents issuer-name organization);

printf ("\n'/s\n/.s\n/ s\n'/.s\n",

new..cert contents. issuer-.name org-.unit 1,

new..cert contents issuer-.name org..unit2,

new.,cert contents issuer-.name org-.unit3,

new-.cert contents issuer-.name org-.unit4);

printf ("\nValid Until: %df%d/%d",

new-cert contents valid-period. end-date day,

new-cert contents valid..period. end-.date.t,

new-cert contents valid-period end-date year);

printf ("\nCertificat. issued for: %s",

new..cert contents .personal-name subject-.name);

printf ("\n%s\n%s\n/.s\n%s\n~s\nio,

new..cert contents .personal-name organization,

new-sert .contents .personal.name.org-.unitl,

new-cert contents personal-naie org-.unit2,

new-.cert contents personal..name org-.unit3,

new..cert contents personal-name org-.unit4);

getonane:

printf ("\nEnter file name for storing certificate:");

241

gets(ofilenaie);

if ((of ile = fopen (ofilename,'u")) == NULL)

puts("Bad. Try again.");

goto getoname;

fprintf (of ile, 17,.3d", new-.cert.contents.version);

fprintf (of ile, "%.3d", new..cert.contents.serialnum);

fprintf (ofile, "%3.3s",

new-.cert .contents issuer..name country);

fprintf (of ile, "7.64.64s",

new-cert .contents. issuer-.name .organization);

fprintf (of ile, "%.32.32sY.32.32sX.32.32sX.32.32s",

new-.cert .contents .issuer-.nanie.org..unitl,

new-.cert .contents .issuer ..nane .org..unit2,

new-cert .contents issuer-.name .org-.unit3,

new-.cert .contents. issuer-.name .org-.unit4);

fprintf (ofile, "*/.3.3d%/3.3d / 4.4dll,

new..cert .contents .valid..period.start-.date.day,

nev..cert .contents.valid-period.start..date.month,

new-.cert .contents. valid-.period. start-date-year);

242

fprintf (of ile, '1.3. 3d73. 3d%4 .4

new-cert .contents .valid-.period. end-date day,

new-cert .contents. valid..period .end..date .month,

new-cert .contents .valid-.period. end-.date year);

fprintf

(of ile, "Y3.3s%64.64s7.64.64s%32.32s%32.32s%/32.32s%32.32s",

new-.cert .contents .personal-naie . country,

new-.cert .contents .personal-.name .organization,

nev..cert .contents.personal-naie.subject-.name,

new-cert .contents .personal-.name .org-.unitl,

new-cert .contents .personal-name .org-.unit2,

new..cert contents .personal-nane . org-.unit3,

new..cert .contents .personal-nane .org-.unit4);

fprintf

(of ile, "%3.3d", new-.cert.contents.pub-.component.size);

fwrite

(new-cert.contents.pub-componentkey.data, sizeof(char) ,100,ofile);

fprintf (of ile, "7.80.80s", new-.cert.signature.signature);

fprintf (of ile, "X.2.2d", new..cert.signature.tsize);

fprintf (of ile, "%.8.8s", new..cert.signature.hash-.alg);

exitlabel:

/* close any open files, printstatus *

free (new-cert .signature. signature);

243

free(obuffer);

fclose(ofile);

printstatus(stat);

retui-nCO);

Appendix F

Source Code and Description

Pemail.c

/*

Filename: pemail.c

Author: Gordon D. Wishon

Date: 9 April 1990

Description: This program accepts a previously created text file

and performs privacy enhanced mail processing. The file is then

suitable for handing off to a mail User Agent program. This

file contains proprietary information of RSA Data Security, Inc., and

is used under a license granted to the U.S. Government.

#include <stdio.h>

*include "global.h"

244

245

*if HICROSOFTC

*include <stdlib .h>

#include <string.h

*include <sys\types .h>

#include <sys\timeb .h>

*endif

Wf THINKC

*include <unix.h>

*include <storage .h>

*endif

*if MPWC

#include <fcntl .h>

#endif

Wi UNIX

include <ctype .h>

#include <sys/time.h>

*include <strings .h>

*endif

*include <math.h>

246

*include 'bsafe .h"

#include "bsafebit .h"

#include "cert .h"

#include "mheaders .h"

/* GLOBAL VARIABLES *

/* Keys *

BSAFE-.KEY DS DigestKey{O};

BSAFE-.KEY DS SecretKey{ O};

BSAFE-.KEY DS PublicKey{O};

BSAFE-.KEY DS PrivateKey{O};

/* Mail header fields *

Proc-Type X-Proc-.Type = {"X-.Proc-.Type:", '3',',' ,'ENCRYPTED"}I;

DEK-.Info X-.DEK.Info = {"X-DEK-Info:" ,"DES-CBC",',' ,NULL};

Sender-.ID X-.Sender-.ID = {"X-Sender-ID:",NULL,' ',NULL};

Certificate X-.Certificate = {"X-Certificate:",O,NULL};

MIC-Info X-MIC-.Info = {"X-MIC-Info:",NULL,' ,' ,NULL, ',' ,O,NULL};

Issuer-Certificate X-.Issuer-.Certificate

{"X-Issuer-Certificate:" ,ONULL};

Recipient-.ID X-.Recipient-.ID = {"X-Recipient-ID:",NULL,':',NULL,' :' ,NULL};

247

Key-Info XKeyInfo = {"X-Key-Info:","RSA",O,NULL};

UWORD FILESIZE = 0;

STATUS stat = 0;

#if PROTOTYPES /* If we should use function prototypes.*/

STATUS receive(FILE *);

STATUS msgdecrypt(FILE *, BYTE *, ULONG);

STATUS recovercert(certstruct *);

STATUS read-convert(BYTE *, FILE *, int *);

STATUS send(FILE *);

STATUS msgencrypt(BYTE *, int *, BYTE *, int *);

STATUS dekdecrypt(BYTE *, ULONG);

STATUS micencrypt(BYTE *, int *, BYTE *);

STATUS dekencrypt(BYTE *, ULONG *);

void initcert(cert.struct *);

STATUS makemic(BYTE *, int *, BYTE *);

STATUS makedeskey(void);

int main(void);

else / no PROTOTYPES */

248

STATUS receiveo;

STATUS msgdecrypto;

STATUS recovercerto;

STATUS read-converto;

STATUS sendo;

STATUS msgencrypto;

STATUS micencrypto;

STATUS dekencrypto;

STATUS dekdecrypto;

void initcerto;

STATUS makemico;

STATUS makedeskeyo;

int main();

#endif /* PROTOTYPES */

STATUS receive (ifile)

FILE *ifile;

/* This routine performs privacy enhancement processing on */

/* a text file. It expects an input text file which conforms */

/* to format requirements of RFC 1113. It calls routines which *1

/* will parse the header fields of the input text file, extracts */

/* the encrypted, encoded Data Encryption Key (DEK), decodes the */

249

/* DEK, restores the private component of the recipient, uses it *

/* to decrypt the DEK, decodes the encrypted/encoded text portion I

/* of the input file, and decrypts the text. The results are

/* placed in an output text file. *

f

FILE *ofile;

char of ilenane [80], tmp [3];

BYTE *inbuff, *keybuf, *outbuff, *lastbuff;

mnt readval = 0, ksize, keysize;

ULONG osize, lastsize;

BYTE *foundstr;

/* Receiving: *

/* Decode from printable characters *

/* Decipher text using DEK *

/* Verify MIC quantity */

/* convert canonical form to local form *

/* print (or save) decrypted text file *

BSAFE-InitKey((BSAFE-KEY BSAFE-PTR)&SecretKey);

BSAFE..InitKey((BSAFE-.KEY BSAFF...PTR)&PublicKey);

BSAFE-nitKey((BSAFE-KEY BSAFE..PTR)&PrivateKey);

250

if ((inbuff = (BYTE *) malloc (80)) == NULL){

printf C"\nUnable to allocate space for input buffer.");

stat = 17;

goto exitlabel;

I

rewind (if ile);

/* Parse input file for DEK field.

foundstr = (BYTE *) malloc (sizeof (X-.Key-.Info.name));

do

f

if (Mfgets (inbuff, 80, ifile)) f

fprintf (stderr, "\nUnable to read input file");

stat = 17;

goto exitlabel;

I

readval = sizeof(X-.Key-.Info.name);

strncpy (foundstr, inbuff, readval);

I

while ((readval = strcmp (foundstr, 'IX-Key-Info:")) 0);

251

/******Get encoded/encrypted DEK size. *****

fgets (tmp. 80, ifile);

ksize = atoi(tmp);

if ((eybuf = (BYTE *) malloc (ksize)) == NULL){

fprintf (stderr, "\nUnable to find space for keybuf");

stat = 17;

goto exitlabel;

if ((readval = fread((char *)inbuff,1,ksize~ifile)) < ksize){

fprintf (stderr, "\nUnable to read key from input file");

stat = 17;

goto exitlabel;

I

Wi DEBUG

printf ("\nSize of encoded secret key is Yd", ksize);

*endif

/* Decode from all printable characters. *

dencode (inbuff, ksiz.e, kkeybuf, kkeysize);

#if DEBUG

printf ("\nSize of decoded secret key is %d", keysize);

252

#endif

/* Decrypt DEK. *

if (stat=dekdecrypt(keybuf, (ULONG) keysize)) goto exitlabel;

printf ("\nDEK restored.");

/* Now read in encrypted text. *

if (Mfgets (inbuff, 80, ifile))){

fprintf (stderr, "\nUnable to read input file");

stat = 17;

goto exitlabel;

I

Osize = 0;

outbuff = (BYTE *) malloc (0);

do

f

if ((inbuff[O] != '\n') && (inbuff[0] 1\0')) f

realloc (outbuff, strlen(inbuff));

strncat (outbuff, inbuff, 62);

253

/** Read until reach special character "-", or EOF.**/

while ((fgets (inbuff, 80, ifile)) kk (!(strpbrk(inbuff, ""))

printf ("\nEncrypted text read.");

/* calculate size of buffer */

for (osjze=1; outbufffosize-1J != '\n'; osize++);

/* Decode from all printable characters. *

dencode (outbuff, osize, &lastbuff, &lastsize);

/* Decrypt decoded encrypted text. *

getoname:

printf ("\nEnter output file name:");

gets (of ilename);

if ((ofile = fopen(ofilename, "w")) == NULL){

puts("\nBad. Try again~\n");

254

goto getonaie;

I

rewind (of ile);

if (stat--msgdecrypt(ofile, lastbuff, lastsize)){

printf ("\nUnable to decrypt message.");

stat = 17;

goto exitlabel;

I

exitlabel:

if (keybuf !=NULL)

free (keybuf);

if (inbuff != NULL)

free (inbuff);

if (outbuff !=NULL)

free (outbuff);

if (lastbuff != NULL)

free (lastbuff);

fclose(ifile);

fclose (ofile);

return(stat);

255

STATUS recovercert (cert)

cert-struct *cert;

/* This routine builds a certificate structure in memory */

/* and fills it with data read from the input file. */

{

FILE *cfile;

char certfilename [80];

char tmpl[4];

char tmp2[S];

/* Initialize the certificate structure. */

initcert (cert);

/* get recipient certificate from file */

getcname:

printf ("\nEnter file name of certificate:");

gets (certfilename);

if ((cfile = fopen(certfilename, "r")) == NULL) {

puts("\nBad. Try again.\n");

256

goto getcname;

I

rewind (cfile);

fscanf (cfile, "%.3c", tmpl);

cert->contents.version = atoi(tmpl);

fscanf (cfile, aO13c", tmpl);

cert->contents.serialnum = atoi(tmpl);

fscanf (cfile, '13c", cert->contents.issuer-.name.country);

fscanf (cf ile, "%64c", cert->contents .issuer-.name.organization);

fscanf (cf ile, "%32c%32c%32c7.32c",

cert->contents issuer-name org-.unitl,

cert->contents issuer-name org..unit2,

cert->contents issuer-nane org-.unit3,

cert->contents issuer..name org-.unit4);

fscanf (cfile, "%3c", tmpl);

cert->contents.valid-.period.start-date.day = atoi(tmpl);

fscanf (cfile, "%3c", tmpl);

cert->contents.valid-period.start-ate.month =atoi(tmpl);

fscanf (cfile, "%4c", tmp2);

cert->contents.valid.period.start-.date.year atoi(tmp2);

fscanf (cfile, "%.3c", tmpl);

cert->contents.valid-period.end-.date.day = atoi(tmpl);

fscanf (cfile, "%3c", tmpl);

257

cert->contentsvalid-period.end-.date.month = atoi(tmpl);

fscanf (cfile, '14c", tmp2);

cert->contents.valid-.period.end..date-year = atoi(tmp2);

fscanf (cdile, "Y%3c%64c%64c/32c/32c%32c%32c",

cert->contents .personalname. country,

cert->contents .personal-name.orgaiization,

cert->contents .personalname. subj ect-.name,

cert->contents .personalname.orgjinitl,

cert->contents .personalnaie org..unit2,

cert->contents .personalname org..unit3,

cert->contents .personal~name.org.unit4);

fscanf (cfile, "%.3c", tmpl);

cert->contents.pub-component.size = atoi(tmpl);

fscanf (cfile, 11100~c", cert-contents.pub-.component .key-data);

fscanf (cfile, "%80c", cert->signature.signature);

fscanf(cfile, "1%2c", tmpl);

cert->signature.tsize = atoi(tmpi);

fscanf (cf iJe, "%8c", cert->signature.hash.alg);

*if DEBUG

printf ("\nCertificate contains:\n");

print! C"\nVersion nuxnber:%d", cert->contents.version);

printf ("\nSerial number:%d", cert->contents.serialnum);

printf ("\n%3.3s", cert->contents.issuer-.name.country);

258

printf ("\n%64.64s",

cert->contents issuer-.nanie organization);

printf (I\nh.32.32s\ri.32.32s\nh.32.32s\n%.32.32s1,

cert->contents issuer..name org-.unitl,

cert->contents issuer-.name org-.unit2,

cert->contents issuer-.name org-.unit3,

cert->contents issuer-.naine org-.unit4);

printf ('\n/.3d\n%.3d\n%4.4"

cert->contents .valid-.period.start-.date.day,

cert->contents .valid-.period.start..date.month,

cert->contents .valid-.period.start..date.year);

printf ("\n/.3.3d\nY.3.3d\nY.4.4d",

cert->contents valid..period end..date~dy

cert->contents .valid-.period.end-.date .month,

cert->contents .valid-period.end-date .year);

printf

("\nY.3 .3s\n /*64 .64s\n*/64 .64s\n /32.32s\n%*/32.32s\n,/32.32s\n / 32 .32s",

cert->contents .personal.name country,

cert->contents .personal-name. organization,

cert->contents .personal-nae. aubj ect-.name,

cert->contents .personalname.org.unitl,

cert->contents .personal-.name.org-.unit2,

cert->contelts .personalnane org-.unit3,

259

cert->contents .personalnane. org-.unit4);

printf ("\nY3.3d". cert->contents.pub-.component.size);

printf ("\nSignature follows:");

printf ("\n80 .80c", cert->signature .signature);

printf ("\nSize of signature is U.". cert->signature.tsize);

printf ('\nY.Bc", cert->signature.hash-.alg);

*endif

exit label:

fclose (cfile);

printf ("\nCertificate recovered.1");

return (stat);

I

STATUS dekdecrypt (ibuffer, isize)

BYTE *ibuffer;

ULONG isize;

/* This routine first restores the private component of the *

/* recipient, and then uses it to decrypt the DEK passed in *

/*via ibuffer. *

f

FILE *ifile;

char if ilenane [80J;

BYTE BSAFE-PTR buffer;

260

BSAFE.CTX ctx;

int len, keylen;

mnt readval;

STATUS stat;

/* Get key data from file. *

get maine:

Printf("\nEnter file name of your PRIVATE key:)

gets(ifilenaie);

if ((file = fopen(ifilenaie,"r")) == NULL)

puts("Bad. Try again.");

goto getinane;

/* get file size *

fseek (ifile,OL,2);

PrivateKey.size = (UWORD)ftell(ifile);

rewind (if ile);

if (stat=BSAFE-.KeyHandler(&PrivateKey, BSAFE-opcode-ALLOCATE))

goto transform-.exit;

if ((readval a fread

261

((char *)PrivateKey.data~l,PrivateKey.size,ifile)) < PrivateKey.size)

stat = ERR-.BSAFE-.BADKEY;

goto transform-.exit;

printf ("\nestoring...");

if (stat=BSAFE-.RestoreKeyData(&PrivateKey))

goto transform-.ex it;

if (PrivateKey.class != BSAFE..class.PRIVATE){

printf ("\nNot a PRIVATE key -- terminating.");

stat = 17;

return (stat);

Printf("\nkey restored from file Ys.\n\n",ifilename);

/* Now decrypt the DEK. *

if (stat = BSAFE-ComputeSize(

kPrivateKey,

BSAFE-.opcode-DECRYPT-CHECKSUM,

(ULONG) 256,

262

&keylen)) return (stat);

/* allocate output buffer */

if ((buffer = (BYTE *) malloc ((int) keylen)) == NULL) {

fprintf (stderr, "\nUnable to allocate output buffer.");

stat = 17;

goto transform-exit;

}

/* Initialize context */

BSAFEInitCtx (&ctx);

/* Decryption loop. */

len = (int) isize;

do

{

while ((stat = BSAFETransformData(

&ctx, &PrivateKey,

BSAFE.opcodeDECRYPTCHECKSUM,

(ULONG) len, ibuffer,

&keylen, buffer))

== ERRBSAFEPAUSE) printf (".");

if (stat != 0) goto transform-exit;

263

len = len - (int) isize;

while (len >= 0);

/* Place in proper location *

SecretKey.data =NULL;

SecretKey. class =BSAFE-.class-.SECRET;

SecretKey.handle 0;

SecretKey memstate = BSAFE-.memstate-.NULL;

SecretKey.alg = BSAFE-.alg-.DESX;

if (stat=BSAFE-.MakeKeyFrom~eyValue

(&SecretKey, buffer, (UWORD) keylen))

goto transform-.exit;

transform-.exit:

fclose(ifile);

if (buffer != NULL)

free (buffer);

*if DEBUG

printf ("\nSecret Key decrypted."1);

#end if

264

BSAFECtxHandler((BSAFECTX BSAFEPTR)&ctx,BSAFEopcodeFREE);

return(stat);

}

STATUS micencrypt (ibuffer, outsize, obuffer)

BYTE *ibuffer, **obuffer;

ULONG *outsize;

/* This routine encrypts the message digest created by the */

/* makemic routine, creating the Message Integrity Check */

/* value. The encryption is performed using the private */

/* component of ths provides a digital signature for the */

/* message being sent.

/* ibuffer contains the 16 byte MIC value. A pointer to the */

/* results of the encryption is returned in obuffer, and */

/* size of the result is returned in outsize. */

{

int isize;

FILE *ifile;

char *ifilename;

BSAFECTX ctx;

BYTE keyval[16];

265

BYTE *buffer;

UWORD keylen;

int readval;

STATUS stat;

BSAFE.KEY key;

BSAFE-.KEY BSAFE-PTR keyp;

1* Recover sender's private key. *

get maine:

printf("\nEnter file name of sender's PRIVATE key:")

gets(ifilenane);

if ((file = fopen(ifilenane,"r")) ==NULL)

puts("Bad. Try again.");

goto getinane;

/* get file size *

fseek (ifile,OL,2);

key.size = (UWORD)ftell(ifile);

rewind (ifile);

if (stat=BSAFE-.KeyHandler(&key, BSAFE-.opcode-.ALLOCATE))

266

goto transform-ex it;

if ((readval = fread

((char *)key.data,l,key.size,ifile)) < key.size)

stat = ERR-.BSAFE-.BADKEY;

goto transform-.ex it;

if (stat=BSAFE-.RestoreKeyData(&key))

goto transform-.ex it;

/* Now move to right place *

if (key.class == BSAFE-~class-.PRIVATE)

keyp = &key;

else f

printf ("\nNot a PRIVATE key -- terminating.");

stat = 17;

return (stat);

prifltf("Ikey restored from file %s.\n\n",ifilename);

keyp->size = key.size;

keyp->data = key.data;

keyp->handle = key.handle;

keyp-)memstate = key.memstate;

keyp-)class = keyclass;

267

keyp->alg = key.alg;

keyp->level = key.level;

if (stat = BSAFE-.GetKeyValueFromKey

(keyp, keyval, 16, &keylen)){

fprintf (stderr,

"\nError obtaining key value from PRIVATE Key.");

goto transform-.ex it;

/* Now encrypt the message digest found in ibuffer. *

/* allocate buffer *

if (stat = BSAFE-ComputeSize(

fkey,

BSAFE-opcode-.DECRYPT..CHECKSUM,

(ULOJNG) 16,

outsize)) return (stat);

1* allocate output buffer *

if ((uffer = (BYTE *) malloc ((int) outsize)) == NULL){

fprintf (stderr, '\nUnable to allocate output buffer.");

268

stat = 17;

goto transform-.exit;

I

/* Initialize context *

BSAFE-.InitCtx (&ctx);

isize = 16;

do

f

while ((stat = BSAFE..Transformflata(

&ctx, keyp,

BSAFE-opcode-ENCRYPT-CHECKSUM,

(ULONG) isize, ibuffer,

&outsize, buffer))

== ERR.BSAFE-PAUSE) printf (K)

if (stat != 0) goto transform-..exit;

isize = 0;

I

while (isize >= 0);

transform-~ex it:

269

*obuffer = buffer;

if (buffer != NULL)

free (buffer);

fclose(ifile);

BSAFECtxHandler((BSAFECTX BSAFEPTR)&ctx,BSAFE-opcodeFREE);

return(stat);

}

STATUS dekencrypt (obuffer, outsize)

BYTE *obuffer;

ULONG *outsize;

/* This routine encrypts the DEK using the public */

/* component of the recipient. The results of the */

/* encryption and its size are returned in obuffer */

/* and outsize. NOTE: The DEK has been restored */

/* from a file in a previous step. */

{

int isize;

ULONG tsize = 0;

BSAFECTX ctx;

BYTE keyval[16];

UWORD keylen;

270

printf ("\nEncrypting the SECRET Key...");

BSAFE-InitCtx (&ctx);

/* Extract the key data from the key structure. *

if (stat = BSAFE-.GetKeyValueFromKey

(&SecretKey, keyval, 16, &keylen)){

fprintf (stderr,

'\nError obtaining key value from Secret Key.");

goto transform-.exit;

/* Encryption loop. *

isize = (int) keylen;

do

while ((stat = BSAFETransformnfata(

&ctx, &PublicKey,

BSAFE-.opcode-ENCRYPT-CHECKStJM,

(ULONG) isize, keyval,

outsize, obuffer))

ERR-BSAFE.YAUSE) printf C.)

271

if (stat != 0) goto transform-exit;

tsize = tsize + *outsize;

isize = isize - (int) keylon;

}

while (isize >= 0);

transform-exit:

*if DEBUG

printf ("\nDone encrypting the DEK.");

#endif

*outsize = tsize;

BSAFECtxHandler((BSAFECTX BSAFE_PTR)tctx,BSAFE-opcodeFREE);

return(stat);

}

STATUS msgencrypt (ibuffer, buffsize, buffer, outsize)

BYTE *ibuffer, **buffer;

ULONG *buffsize, *outsize;

/* This routine performs the encryption of the text */

/* message. The text message and size are found at */

/* ibuffer and buffsize. The results and result size */

/* are returned in obuffer and outsize. */

{

272

BSAFE.CTX ctx;

ULONG isize, istat;

ULONG tsize = 0;

BYTE *obuffer;

ULONG offset = 0;

printf ("\nEncrypting * 1)

if (stat = BSAFE-ComputeSize(

&SecretKey,

BSAFE-opcodeENCRYPTCHECKSUM,

(ULONG) 26,

outsize)) return (stat);

/* allocate temporary buffer *

if ((obuffer = (BYTE *) malloc ((jnt) *outsize)) NULL){

fprintf (stderr, "\nUnable to allocate output buffer.");

stat = 17;

return (stat);

I

/* allocate output buffer *

if ((*buffer = (BYTE *) malloc (0)) -= NULL){

fprintf (stderr, "\nUnable to allocate output buffer.");

273

stat = 17;

return (stat);

/* Initialize context *

BSAFE-.InitCtx (&ctx);

/* encrypt ibuffer to buffer *

/* Encryption loop *

isize = *buffsize;

do

if (isize > 256) istat = 256;

else istat = isize;

/* Encrypt this data block (or do final call if istatO) *

while ((stat = BSAFE..TransformData(

(BSAFE..CTX BSAFE..PTR)&ctx,

&SecretKey, BSFEoCRPTCHCUM,

istat, kibuffer [offset],

outs ize, obuffer))

== ERR-.BSAFE-PAUSE) printf(".")

if (stat != 0) goto transform-.exit;

274

*if DEBUG

printf ("\noutsize is now %d", *outsize);

lendif

realloc (*buffer, *outsize);

memcpy (*buffer+tsize, obuffer, *outsize);

tsize = tsize + *outsize;

isize = isize - istat;

offset = offset + istat;

I

while (istat > 0);

transform-.exit:

if (obuffer != NULL)

free (obuffer);

*outsize = tsize;

BSAFE-CtxHandler((BSAFE-.CTX BSAFE.YTR)&ctx ,BSAFE-opcode-FREE);

return(stat);

STATUS read-.convert(obuffer, if ile, buffsize)

BYTE **obuffer;

FILE *ifile;

ULONG *buffsize;

275

/* This routine reads the text message from the input file */

/* and converts it to a canonical form in accordance with */

/* RFC1113. The input text file is at ifile, and the

/* results are placed in obuffer, the size in buffsize.

{

int i, j, currentsize, readval, charcount;

BYTE *ibuffer, *tbuffer;

UWORD FILESIZE = 0;

BYTE tmp[1];

/* read text file */

clearerr(ifile);

rewind (ifile);

/* get file size */

do

{

fread((BYTE *)tmp,1,1,ifile);

FILESIZE++;

while (!feof(ifile));

FILESIZE--;

rewind (ifile);

#if DEBUG

276

printf ("File size is %Id\n", FILESIZE);

#endif

if ((ibuffer = (BYTE *) malloc ((int) FILESIZE)) == NULL){

fprintf

(stderr, "\nCouldn't find space for input buffer");

stat = 17;

goto exitlabel;

I

if C(tbuffer = (BYTE *) malloc ((int) FILESIZE)) == NULL){

fpriiv-f

(stderr, "\nCouldn't find space tor temp buffer");

stat =17;

goto exitlabel;

I

/* read file into ibuffer *

if ((readval =

fread((BYTE *)ibuffer,1,FILESIZE,ifile)) < FILESIZE){

fprintf (stderr, "\nCould not read text file.");

stat =17;

goto exitlabel;

277

/* convert to canonical form *

*if DEBUG

printf ("Converting to canonical formAn");

8 end if

currentsize = (int) FILESIZE;

charcount = 0;

j = 0;

for (i0O; i<FILESIZE; i++){

charcount4+;

/* Valid ascii character ? *

if ((ibuffer[i] < '\000') 11 (ibufferli] > '\177')){

fprintf

(stderr, "\nnput file contains invalid characters.");

fprintf (stderr, " Processing terminated.");

stat = 17;

goto exitlabel;

I

/* Check for premature EOF *

if ((buffer[i] == '\r') && (ibuffer[i+1] == nI

&& (ibuffer[i+2] == '.') && (ibuffer[i+3] == \r')

278

&& (ibuffer~i+4) == '\n')) f

fprintf

(stderr, "\nEOF encountered in input stream-")

fprintf (stderr, " processing terminated.");

stat = 17;

goto exitlabel;

I

tbuffer[j+4] = ibuffer[i];

if (ibuffer[i] == '\n') f /* insert <CR> *

/* allocate additional byte for output buffer *

if ((tbuffer =

(BYTE *) realloc (tbuffer, currentsize+l)) ==NULL){

(stderr, "\nCan't extend tbuffer-")

fprintf

(stderr, " processing terminated.");

stat = 17;

goto exitlabel;

}--

tbufferlj++] = '\r';

tbuffer[j++] = ibufferti];

279

currents ize4+;

charcount = 0;

I

if (charcount >= 998) {/* insert CR-LF *

if ((tbuff or=

(BYTE *) realloc (tbuff or, currentsize+2)) ==NULL){

fprintf

(stderr, '\nCan't extend output buffer-")

fprintf

(stderr, " processing terminated.");

stat = 17;

goto exitlkbel;

I

currents ize++;

currents ize4+;

tbuffer[j++] = '\r';

tbufferlj.+] = n;

charcount = 0;

exitlabel:

*buffsize = (ULONG) currentsize;

#if DEBUG

280

printf ("\nSize of tbuffer is %d", currentsize);

#endif

/* canonicalization step left out for test purposes */

*obuffsr = tbuffer;

*obuffer = ibuffer;

return (stat);

}

STATUS send (ifile)

FILE *ifile;

/* This routine performs privacy enhancement processing on

/* a text message. It calls routines which reads the text */

/* and converts it to canonical form in accordance with

/* RFC1113. It then calls creates a Data Encryption Key */

/* DEK, which is used to encrypt the canonical text. Next, */

/* a digital signature is computed, and the DEK is

/* using the recipient's public component, which is */

/* restored from the recipient's certificate. Finally,

281

/* headers which conform to RFC1113 are prepended, and the *

/* output written to a text file. *

char buff er[80];

int i. readval;

ULONG buffsize = 0, certsize = 0, outsize = 0, lastsize =0;

ULONG isize = 0, deksize = 0;

FILE *ofile;

char of ilenaie [80];

cert-.struct *rcert, *scert;

extern int BSAFEJ-laxStackUsed, BSAFE..MaxStackNeeded;

BYTE *canonbuffer, *outbuffer, micquantity[16];

BYTE *dekbuffer, *enc-mic, *lastbuf;

BYTE tmp 1 [3] , tmp2 [41 ;

BSAFE-InitKey((BSAFEKEY BSAFE-.PTR)&DigestKey);

DigestKey. class = BSAFE-class-DIGEST;

DigestKey.alg = BSAFE-alg-DIG1;

DigestKey.level = 0;

BSAFE.InitKey((BSAFE-KEY BSAFE-PTR)&SecratKey);

BSAFE-InitKey((BSAFE.KEY BSAFE-PTR)&PubiicKey);

BSAFE-.InitKey((BSAFE-.KEY BSAFE-PTR)&PrivateKey);

282

/* get recipient's certificate *

/* allocate space for certificate *

if ((rcert=

(cert..struct *) malloc (sizeof(cert.struct))) == NULL){

fprintf

(stderr, "\nCouldn't find space for certificate.");

stat = 17;

goto exitlabel;

if (stat=recovercert(rcert)) goto exitlabel;

PublicKey.size = sizeof(rcert->contents.pub-component.key.data);

if (stat=BSAFE-.KeyHandler(&PublicKey, BSAFE-opcode..ALLOCATE))

goto exitlabel;

PublicKey .data = rcert->contents .pub-component .key..Aata;

if (stat=BSAFE-.RestoreKeyData(&PublicKey))

goto exitlabel;

printf ("\nRecipient's public key restored.");

283

/* get sender's certificate */

l*

if (stat=recovercert(scert)) goto exitlabel;

/* Validate recipient's certificate */

******* ****** **** **** *** *******s***

/* Read teir file -- convert to canonical form */

/* *********** ** **** ****** ******** ****** ***** ****

if (stat=readconvert (&canonbuffer, ifile, &buffsize))

goto exitlabel;

/* compute message digest quantity *1

if (stat=makemic (canonbuffer, kbuffsize, micquantity))

goto exitlabel;

284

/* Create DEK from DEA-1 (Secret) key */

if (stat=makedeskeyo) goto exitlabel;

/* Encipher message using DEK */

#if DEBUG

printf ("\nSize of buffer being encrypted is %d", buffsize);

#endif

if ((stat--msgencrypt

(canonbuffer, &buffsize, &outbuffer, &outsize)))

goto exitlabel;

#if DEBUG

printf ("\nSize of output from encryption is %d", outsize);

#endif

/* Encipher DEK using recipient public component */

285

/* determine size needed for buffer *

if (stat = BSAFE-.ComputeSize (&PublicKey,

BSAFE-.opcode-.ENCRYPT-.CHECKSUM,

(ULONG) 16, &deksize)) goto exitlabel;

/* allocate buffer for result *

if ((dekbuffer = (BYTE *) malloc ((int)deksize)) == NULL){

fprintf

(stderr, '\nCould not allocate buffer for encrypted DEK.");

stat = 17;

goto exitlabel;

I

if (stat = dekencrypt (dekbuffer, &deksize)){

fprintf (stderr, "\nEncryption failed.");

goto exitlabel;

/* encrypt the MIC using sender's private component *

if (statmicencrypt(micquantity, &X-.MIC-.Info.micsize, enc..mic))

286

goto exitlabel;

/* now encode it place it in header field *

if (stat=pencode

(enc-.mic, &X_.MIC-.Info .micsize, &X.MIC-Info .141, &X-MIC-Info .Mlsize)){

fprintf (stderr, "\nUnable to encode MIC quantity.");

goto exitlabel;

/* encode sender's certificate *

certsize = sizeof (cert-.struct);

if (stat=pencode

(scert, &certsize, &X-.Certificate.cert, &X-.Certificate.certsize)){

fprintf (stderr, "\Unable to encode certificate.");

goto exitlabel;

/* Prepend other appropriate header fields *

287

getoname:

printf ("\nEnter output file name:");

gets (of ilename);

if ((ofile = fopen(ofilename, "ii")) == NULL){

puts("\nBad. Try again.\n");

goto getoname;

I

rewind (ofile);

fprintf (ofile, "\n"); /* start with blank line *

fprintf (of ile,

----PRIVACY-ENHANCED MESSAGE BOUNDARY--n)

printf

("\nUse full Internet names in From: and To: fields.\n");

printf ("\nnFrom:");

gets (X-.SenderID.EntityID);

fprintf (ofile, "%12.12s", X_.SenderID.name);

fprintf (ofile, "%-64.64s", X-.Sender-.ID.EntitylD);

fwrite (X-Sender-.ID.delimiter, sizeof(char) ,1, ofile);

fprintf (of ile, "Y.-64.64s", X-.Sender_.ID.IA);

fprintf (ofile, "\n");

printf (IIAnTo:II);

gets (X-.Recipient-.ID.EntitylD);

288

fprintf (ofile, "%15.15s", X-.Recipient-.ID.name);

fprintf (ofils, "%/-64.64s", X..Recipient-.ID.EntityID);

fprintf (of ile, "\n\n");

/* encode encrypted DEK *

if (statpencode

(dekbuffer, deksize, &X-.Key-.Info.DEK, &X.KeyInfo.deksize)){

fprintf (stderr, "\nUnable to encode DEK.");

goto exitlabel;

fprintf (ofile, "'.11.11s", XiKey-.Info.name);

fprintf (of ile, "YX4.4s\n", XJKey..Info.IK..Use);

fprintf (ofils, "'.d\n", X-.Key-.Info.deksize);

fwrite (X..Key-.Info.DEK, sizeof (char), X-.Key-.Info.deksize, of ile);

fprintf (ofile, "\n");

fprintf (ofile, "\n");

/* Encode encrypted message *

289

if (stat = pencode (outbuffer, outsize, klastbuf, klastsize)){

fprintf (stderr,

"\nUnable to encode encrypted text.");

goto exitlabel;

/* Write to file for sending by mail User Agent *

/* Output lines to be limited to 64 char (plus *

/* CRLF) per RFC1113. *

do

f

if (lastsize > 62) isize = 62;

else isize = lastsize;

fwrite (lastbuf, sizeof(char), isize, of ile);

fprintf (ofile, II\nI) ;

lastsize =lastsize - isize;

lastbuf =lastbuf+isize;

I

while (lastsize > 0);

fprintf (of ile,

-\ ---PRIVACY-ENHANCED MESSAGE BOUNDARY -- \n ;

290

exitlabel:

if (canonbuffer != NULL)

free (canonbuffer);

if (dekbuffer 1= NULL)

free (dekbuffer);

if (outbuffer != NULL)

free (outbuffer);

if (lastbuf != NULL)

free (lastbuf);

f close Cif ile);

fclose (of iJe);

return(stat);

I

void initcert (cert)

cert..struct *cert;

/* This routine initializes elements of a certificate *

/* structure. *

f

cert->contents.version = 0;

c~drt->contents.serialnum = 0;

* (cert->contents .issuer-name. country) =NULL;

291

*cert->contents. issuer-.name organization = NULL;

*cert->Contents issuer-.name org-.unit 1 = NULL;

*cert->contents issuer-.name org..unit2 = NULL;

*cert->Contents issuer-.name org..unit3 = NULL;

*cert->contents issuer-.name .org-jinit4 = NULL;

cert->contents .valid-.period.start..date.day = 0;

cert->contents valid..period. start-date .month = 0;

cert->contents .valid-.period.start-~date.year =0;

cert->contents .valid-.period.end-.date.day = 0;

cert->contents valid-.period. end-.date .month =0;

cert->contents .valid-.period.end..date.year =0;

*cert->contents .personal-name. country = NULL;

*cert->contents personal-name organization = NULL;

*cert->contents personal-name org-.unitI 1 NULL;

*cert->contents .personal-naue .org-ujnit2 = NULL;

*cert->contents personal-nane org-unit3 = NULL;

*cert->contents.personal-name.org-.unit4 = NULL;

cert->contents .pub-.component size = 0;

*cert->contents.pub-.component .key-.alg = NULL;

*cert-).signature signature =NULL;

cert->signature.tsize = 0;

*cert->signature.hash-.alg= NULL;

I

292

STATUS makemic (buffer, buffsize, quantity)

BYTE *buffer, *quantity;

ULONG *buffsize;

/* This routine creates a message digest from the text in */

/* buffer, passing it back in quantity for subsequent */

/* encryption, creating the Message Integrity Check (MIC) */

/* value, per RFC1113. */

{

int opcode;

BSAFECTX ctx;

BSAFEKEY BSAFEPTR key;

ULONG len, istat;

ULONG size = 16;

BSAFEInitCtx(&ctx);

/* Select encryption key/keys *1

key = &DigestKey;

opcode = BSAFE-opcodeNUTLL;

/* Now prepare to operate on the input buffer */

/* Encryption loop */

293

len =*buffsize;

do

if (len > 4096) istat = 4096;

else istat = len;

/* Encrypt this data block (or do final call if istat==0) *

while ((stat = BSAFE_.Transformflata(

(BSAFE-.CTX BSAFE-YTR)&ctx,

key, op code,

(ULONG) istat, buffer,

&size, quantity))

== ERR..BSAFE-PAUSE) printf(".")

if (stat !0) goto transform-.exit;

len =len -istat;

while (istat > 0);

transform-.ex it:

BSAFE-.CtxHandler((BSAFE-.CTX BSAFE-PTR)&ctx,BSAFE-opcode-FREE);

return(stat);

294

STATUS makedeskey()

/* This routine creates a SECRET key, leaving the result in *

/* the global SecretKey. *

initrandomo;

SecretKey .class = BSAFE-class .SECRET;

SecretKey.alg = BSAFE-.alg-.DESX;

mekel:

stat = BSAFE-.KeyHandler((BSAFEJ(EY BSAFE-.PTR)&SecretKey,

BSAFE-.opcode-FREE);

if (stat 0)

return (stat);

printf("\n\nGenerating SECRET key... .11);

stat = BSAFE-akeKey((BSAFE-KEY BSAFE-PTR)&SecretKey);

if (stat !=0)

return(stat);

return(0);

I

mnt main()

/* This is the top level routine of the pemail program. *

1* It simply prompts for the name of the input text file *

295

/* and determines if the text is to be prepared f or

/* sending or receiving. *

f

FILE *ifile;

static char if ilename[80];

char buff er[801;

setbuf (stdout, NULL);

get inanie:

printf ("\nEnter name of text file:");

gets (if ilename);

if ((ifile = fopen(ifilename, "r")) == NULL) f

puts("\nBad. Try again.\n");

goto getinaie;

I

/* Sending or Receiving? *

getresponse:

printf

("\nEnter 'S' to prepare for sending, 'D' to decrypt received message:");

gets (buffer);

if (toupper(buffer[OJ) == 'S') stat = send(ifile);

else if (toupper(buffer[O]) == 'D') stat = receive(ifile);

else f

296

printf ("\nBad response. Try again.\n");

goto getresponse;

I

printstatus(stat);

printf ("\n\n");

STATUS msgdecrypt(ofile, ibuff, isize)

FILE *ofile; /* output file handle */

BYTE *ibuff;

ULONG isize;

/* This routine decrypts the encrypted text message. The */

/* text will have been previously decoded from its printable */

/* form, and passed in through ibuff, along with its size in */

/* isize. The name of the output file is passed through */

/* ofile. */

{

BSAFECTX ctx;

ULONG istat;

ULONG size;

ULONG offset = 0;

BYTE *obuffer = NULL;

297

/* Initialize context *I

BSAFEInitCtx((BSAFECTX BSAFEPTR)&ctx);

/* Now prepare to operate on the input file */

/* Allocate buffer */

if (stat = BSAFEComputeSize(&SecretKey,

BSAFE-opcodeDECRYPTCHECKSUM,

(ULONG) 256, &size))

goto transform-exit;

obuffer = (BYTE *) malloc((UWORD) size);

if (obuffer==NULL)

{

printf("\nError: buffer of size %d could not be found.",size);

goto transform-exit;

/* Encryption loop for file data */

printf ("\nDecrypting...");

do

{

298

if (isize > 256) istat =256;

else istat = isize;

/* Decrypt this data block (or do final call if istatO) *

while ((stat = BSAFE..TransformData(

(BSAFE-.CTX BSAFE..PTR) &ctx,

&SecretKey, BSAFE..opcode-.DECRYP-CHECKSUM,

(ULONG) istat, kibuff [offset],

&size, obuffer))

-- ERR..BSAFE-PAUSE) printf C" ")

if (stat != 0) goto transform-exit;

*if DEBUG

printf("\nWriting %ld bytes out on file.",size);

* end if

fwrite((char *)obuffer,1,(int)size,ofile);

isize =isize - istat;

offset =offset + istat;

I

while (istat > 0);

transform-ex it:

if (obuffer!=NULL)

free(obuffer);

299

BSAFE-.CtxHandler((BSAFE-.CTX BSAFE..PTR)&ctx,BSAFE-.opcode..FREE);

return(stat);

Appendix G

Source Code and Description -

Pesupport .c

*include <stdio .h>

*include "global .h"

#include <math.h>

*if MICROSOFTC

#include <stdlib.h>

*include <string.h>

#include <sys\types .h>

*include <sys~timeb .h>

end if

Wi UNIX

#include <ctype .h>

#include <sys/time .h>

* end if

300

301

#include "bsafe.h"

void printstatus(stat)

STATUS stat;

{

switch(stat) {

case 0: printf("OK."); break;

case 1: printf("FALSE."); break;

case 2: printf("ALLOCATE error."); break;

case 3: printf("FREE error."); break;

case 4: printf("ENTRY error."); break;

case 5: printf("EXIT error."); break;

case 6: printf("PAUSE."); break;

case 7: printf("BAD KEY error."); break;

case 8: printf("BAD CTX error."); break;

case 9: printf("BAD OPCODE error."); break;

case 10: printf("BAD CHECKSUM error."); break;

case 11: printf("BAD DATA error."); break;

case 12: printf("NEED RANDOM BYTES error."); break;

case 13: printf("INTERNAL error."); break;

case 14: printf("HARDWARE error or malfunction."); break;

default: printf("UNKNOWN error code ,d.",stat); break;

302

void initrandom()

long int i;

*if UNIX

struct timeval tv;

struct timezone tz;

#endif

#if MICROSOFTC

int j, k;

struct timeb *tv;

#endif

/* Initialize random number generator *

BSAFE..ResetRandomo;

for (i0O;i(100;i+e)

f

#if UNIX

gettimeofday kt,ktz);

303

BSAFEMixInByte((BYTE)tv.tv.usec);

#endif

#if MICROSOFTC

ftime(tv);

BSAFEMixInByte((BYTE)tv->millitm);

/* pause for random amount of time -- otherwise, a PC

may return the same time in subsequent calls to ftime */

j = rando;

for (j=O; j<k; j++);

#endif

}

/* pencode and dencode routines

Author: Gordon D. Wishon

Date: 30 April 1990

These routines encode and decode data per the printable encoding

scheme described in RFC 1113, para. 4.3.2.4. They accept an input

buffer and size, and leave the encoded/decoded text in separate output

304

buffers.

/* RFC 1113 Printable Character Used for Encoding */

/* note: '=' is used as a padding character

char map[] = {', 'B', 'CJ, 'D',o'E', 'F', G, 'H',

)V , ' J), 'K',)L), 'M), JNI,)Of, ,PI,

'Q',)RI, YS',)T), 'U', ;V),)WI,)X),

'Y), 'Z',)a), Wb , 'c', 'd', 3e), 'f',

'g), Ph), yi', 'j), 'k), 'i', Imp, 'n',

)oy', 'p', 'q', 'ry, Js', yt', 'uy,)v),

)w),)x),)yy,)z), 101, fl), 12),)3),

'4', '5', '6', '7', '8', '9', '+),/, };

STATUS pencode (ibuffer, isize, obuffer, osize)

BYTE *ibuffer, **obuffer;

ULONG isize, *osize;

305

{

BYTE *buffer;

int i = 0, j = 0, div = 0, rem = 0, add = 0;

int tmpbuf[3];

STATUS stat = 0;

BYTE qI = NULL, q2 = NULL;

printf ("\Encoding... 1);

div = isize / 3;

rem = isize % 3;

if (rem) add = 4;

*osize = (ULONG) 4*div+add;

if ((buffer = (BYTE *) malloc ((int) *osize)) == NULL) {

fprintf

(stderr, "\nCouldn't allocate space for encoding buffer.");

stat = 17;

goto exitlabel;

}

/* do integral bytes */

for (i=O; i<(div*3);) {

/* move three bytes from ibuffer to tmpbuf */

306

memcpy (&tmpbuf [0], ibuffer++, 1);

memcpy (&tmpbuf[1], ibuffer++, 1);

memcpy (&tmpbuf [2] * ibuffer++, 1);

qi = tmpbuf[0] >> 2;

ql = qi & '\077';

buffer[j++] = map[ql]; /* first output char *

qi = tmpbuf[0] << 4;

ql qi & 1\060';

q2 =tmpbufEl) >> 4;

q2 = q2 & '\017';

qi ql I q2;

buffer[j++] = map~qi]; /* second output char *

qi = tmpbuf El] << 2;

qi = qi & '\074';

q2 = tmpbuf [2] >> 6;

q2 = q2 & 1\0031;

ql = ql I q2;

buffer[j++) = map~qi]; /* third output char *

qi = tmpbuf [2] & '\077';

buffer[j+4] = map [qi]; /* fourth output char *

i=i+3;

307
/* do remaining bytes *

if (rem == 1) f

memcpy (&tmpbuf [0], ibuffer.+, 1);

qI = tmpbuf [0] >> 2;

qI = q1 & 1\077';

buf fer [j ++1' = map [qIl];

qI = tmpbuf[0] << 4;

q1 = q1 & 1\060';

buf fer [j +]1 = map Eq1i];

buffer[j++] =

bufferli]

else if (rem == 2){

memcpy (&tmpbuf [0], ibuffer++, 1);

memcpy (&tmpbuf[l], ibuffer++, 1);

q1 = tmpbuf[0] >> 2;

qI = qI & '\077';

buffer~j.+] = map~qi]; /* first output char *

q1 = tmpbuf[O] << 4;

q1i q1 & '\0601;

q2 = tmpbuf El] >> 4;

q2 = q2 & '\017';

q1 = qi I q2;

308

buffer~j++] = map[ql]; /* second output char *

ql = tmpbuf[l] << 2;

qi = qi & 1\074';

buffer~j++] = mapli; /* third output char *

buffer[jJ

exit label:

*obuffer = buffer;

return (stat);

STATUS dencode (ibuffer, isize, obuffer, osize)

BYTE *ibuffer, **obuffer;

ULONG isize, *osize;

f

int j = 0, k = 0, p =0, padchars =0;

ULONG i = 0;

BYTE tmpbufl[4], qi, q2;

BYTE *buffer;

mnt tmpbuf 2[4];

STATUS stat = 0;

309

for (i-O; i<isize; i++) {

/* count number of padding characters */

if (ibuffer[i] -- '') {

padchars+;

}

}

*osize = (ULONG) isize/4*3-padchars;

/* allocate space for output buffer */

if ((buffer = (BYTE *) malloc ((int) *osize)) == NULL) {

fprintf

(stderr, "\nCouldn't allocate space for encoding buffer.");

stat = 17;

goto exitlabel;

}

/* decoding loop */

for (i=0; i<isize;) {

memcpy (tmpbufl, &ibuffer[i], 4);

if (tmpbufl[2. == '=') {

/* found two padding characters */

for (p=O;p<64;p++)

310

f or (k0O;k<2;k++){

if (tmpbufl~k] -map~pJ) tmpbuf2[k] p;

qI = tmpbuf2[O] << 2;

q1 = qI & 1\374';

q2 =tmpbuf2[i] >> 4;

q2 = q2 & '\003';

bufferri) = qI I q2;

I

else if (tmpbufl[3] == '='){

/* found one padding character *

f or (p=O;p<64;p..)

for (k0O;k<=2;k4+){

if (tmpbuf 1 [k] == map [p])

tmpbuf2[k] = p

qI = tmpbuf2[OJ << 2;

qi = qI & '\374';

q2 = tmpbuf2[l] >> 4;

q2 = q2 & '\003';

buffer[j4+] = qI I q2;

qi tmpbuf2[1] << 4;

311

qI = q1 & '\360';

q2 = tmpbuf2[2] >> 2;

q2 = q2 & '\017';

buffer[j] = qI I q2;

}

else { /* no padding characters */

for (p=O;p<64;p++)

for (k=O;k<4;k++) {

if (tmpbuf 1[k] == map [p]) {

tmpbuf2[k] = p;

}

q1 = tmpbuf2[O] << 2;

q1 = q1 & '\374';

q2 = tmpbuf2[l] >> 4;

q2 = q2 & '\003';

buffer[j++] = q1 I q2;

qI = tmpbuf2[1] << 4;

q1 = q! & '\360';

q2 = tmpbuf2[2] >> 2;

q2 = q2 & '\017';

buffer[j++] = qi I q2;

312

qi = tmpbuf2[2] << 6;

qi = qi & '\300';

q2 = tmpbuf2[3] 077;

buffer~j++] = qi q2;

ii+4;

I

exitlabel:

*obuffer =buffer;

return (stat);

Appendix H

Source Code and Description -

Header Files

/*** PORTABILITY DEFINES **/

This can be used to turn debugging print statements on and off.

$define DEBUG 0 /* I = debugging on. 0 = debugging off.*/

The following defines tells which compiler is being used

to compile BSAFE. Generally speaking you will want to

choose to define one of these constants to 1 and all the

others to 0.

*/

/* Microsoft C (5.0) compiler for the IBM pc.*/

*define MICROSOFTC 0

313

314

/* Think's Lightspeed C (3.0) Macintosh compiler.*/

#define THINKC 0

/* Apple's MPW C (3.0) Macintosh compiler.*/

#define MPWC 0

/* Vax VMS C (2.4) compiler.*/

#define VAXC 0

/* Generic UNIX version.*/

*define UNIX I

I*

The following compiler time switch flags the byte ordering within words.

If the bytes within a word are ordered from lo to hi then WORDBYTESHILO

should be 0 (this is the case for the IBM-PC and other 80x86 families).

If the bytes within a word are ordered from hi to lo then WORDBYTESHILO

should be 1 (this is the case for the 68000 family, HP's processors...)

#define WORDBYTESHILO 0 /* Byte ordering. 1 = hi-lo. 0 = lo-hi.*/

The following define tells whether the compiler you are using supports

ANSI function prototypes.

#if MICROSOFTC 11 THINKC 11 MPWC I VAXC

315

#define PROTOTYPES 1 /* Include prototype definitions.*/

*else

#define PROTOTYPES 0 /* Do not include prototype definitions.*/

#endif

These are the standard simple data-type definitions BSAFE uses.

#if MICROSOFTC 11 THINKC II MPWC II VAXC II UNIX

#define BYTE unsigned char /* Unsigned 8 bit.*/

#define SWORD short int /* Signed 16 bit.*/

#define UWORD unsigned short int /* Unsigned 16 bit.*/

#define SLONG long /* Signed 32 bit.*/

#define ULONG unsigned long /* Unsigned 32 bit.*/

tendif

These are standard defines that specify calling conventions and other

special features for the Microsoft C compiler on the IBM PC and compatibles.

*/

#if MICROSOFTC

#define BSAFECALL far pascal /* Standard Pascal calling convention.*/

#define BSAFEPTR far * /* Standard pointer type assumption */

316

#define HANDLE UWORD /* Standard memory handle */

typedef UWORD STATUS; /* Status code ERRBSAFE.....

#define DS near /* Some things are faster if near

*else

#define BSAFECALL /* Standard C arguments calling convention.*/

#define BSAFEPTR * /* Standard pointer type assumption */

#define HANDLE UWORD ** Standard memory handle */

typedef UWORD STATUS; /* Status code ERRBSAFE....

#define DS /* Meaningless for this compiler */

#endif

/** GLOBAL COMPILE-TIME CONSTANTS *****************************/

#ifndef TRUE /* Define this if not defined already.*/

#define TRUE 1

#endif

#ifndef FALSE /* Define this if not defined already.*/

#define FALSE 0

#endif

317

/* MAX???BYTES and MAX???WORDS are set at maximum capacity independant of */

/* MAXMODBITS which is used for evaluation and export limitations

*define MAXMODBYTES 100

#define MAXPRMBYTES 50

*define MAXMODWORDS 50

#define MAXPRMWORDS 25

#define BSAFESTACKSIZE 5000 ** default stack size */

*define BSAFECHECKSUMSIZE 5 ** default checksum size in bytes */

/* GLOBAL VARIABLES **/

/* for error detection location */

extern BYTE DS BSAFEErrorProgram[];

extern UWORD DS BSAFEErrorNumber;

/* The variable BSAFEErrorCode is to help diagnosing the cause of specific

error. The specified STATUS codes (ERRBSAFE-whatever) are rather

sparse. Whenever one of these are returned, the variables

BSAFEErrorProgram and BSAFEErrorNumber are set to indicate the

name of the file and a number which indicates the EXACT cause of the

318

error. The macro BSAFEError(num) sets these two variables,

assuming that the variable PROGRAM-NAME has been defined.

*!

*define BSAFEError(num) { char *p = PROGRAM-NAME, \

*q = (char *) BSAFEErrorProgram;\

do {*q++ = *p;} while (*p++); \

BSAFEErrorNumber = num; \

BSAFEErrorLog((BYTE BSAFEPTR)PROGRAMNAMEnum); }

/* for RSA/bignumber computations */

#define bignuml-...r -signed short

extern bignumber DS BN[]; /* N = p*q */

exterr bignumber DS BE[]; /* Encryption exponent */

extern bignumber DS BP[]; /* Prime p */

extern bignumber DS BQ[]; /* Prime q */

extern bignumber DS BD[]; /* Decryption exponent */

extern bignumber DS BDP[]; /* Decryption exponent mod p-i */

extern bignumber DS BDQ[]; /* Decryption exponent nod q-i */

extern bignumber DS BCR[]; /* CRT coefficient = inverse of Q modulo P */

extern int DS BPSIZEBITS; /* Prime Size in bits *!

extern int DS BPSIZEBYTES; /* Prime Size in bytes */

extern int DS BPSIZEWORDS; /* Prime Size in words */

319

/* RSA encryption formatting parameters */

#define RSAMACBYTES 2 /* Number of bytes of mac per RSA block */

#define RSARANDBYTES 5 /* Number of random bytes per RSA block */

#define RSAHEADERBYTES 1 /* Number of header bytes per RSA block */

#define RSAHEADERVALUE 11 /* Value to put in header byte for BSAFE */

/* For context usages */

typedef struct {

UWORD maxsize; /* maximum size of stack allowed, in bytes */

UWORD currentsize; /* current number of bytes used */

BYTE data[100; /* stack contents; actual length may vary */

} BSAFESTACK;

extern BSAFESTACK BSAFEPTR DS BSAFE-stack; /* main stack */

compile time constants for determining if DES or RC2 are present */

$define DES-PRESENT 1

#define SXMPRESENT 0

32u

/* compile time constants for limiting the SX1 secret algorithm key size */

#define SXIKEYMAXBITS 64

#define SX1KEYMINBITS 2

/* Compile time constants for lseek() function (defined for Microsoft) */

#define SEEK-SET 0

#define SEEK-CUR 1

#define SEEK-END 2

/* Global variable for determining Encryption Exponent size in words */

extern UWORD DS BSAFEEESIZEWORDS;

/* compile time constants for enabling testing and storage of D decryption */

321

/* exponent and testing and storage of CHINESE REMAINDER coefficients */

/* D mod P-1, D mod Q-1, inv P mod Q, prime P and prime Q

#define ENABLEDD 0

#define ENABLECR 1

322

/* Filename: bsafebit.h

Description: This file contains the definitions for maximum and

minimum key sizes created using bsafe routines. */

/* *define MINMODBITS 256 Standard BSAFE minimum

#define MINMODBITS 320 /* Minimum for pilot PE-Mail implementation */

#define MAXMODBITS 320 /* Minimum for pilot PE-Mail implementation */

/* #define MAXMODBITS 632 Standard PE-Mail maximum

/* #define MAXMODBITS 720 Standard BSAFE maximum */

323

/* Filename: CERT.H

Author: Gordon D. Wishon

Description: This file contains global declarartions for PE Mail

certificate generation and validation. Certificate generation and

validation make use of software copyrighted by RSA Data Security,

Inc. and is used under a license granted to the US Government.

Created: 4 April 1990

#define HASH-ALGORITHM "RSA-MD2"

#define KEY-ALGORITHM "RSA"

#define CERTVERSION 0

Certificate Data Structure -- See RFC 1114 for format and contents

typedef struct

{ BYTE signature[80]; /* one-way hash results */

ULONG tsize; /* size of signature field */

324

BYTE hash-.alg[8]; /*name of algorithm

used for one-way hash *

}cert-signature;

typedef BYTE cert.v'ersion;

typedef BYTE cert-.serialnum;

typedef struct

f BYTE country [3];

BYTE organization[64];

BYTE org-.unit 1 [3211;

BYTE org-unit2 [321 ;

BYTE org-.unit3 [32] ;

BYTE org-unit4[3211;

I cert-ssuer.name;

typedef struct

f BYTE day;

BYTE month;

UWORD year;

I vdate;

typedef struct

325

{ vdate start-date;

vdate end-date;

} cert-valid-period;

typedef struct

{ BYTE country[3];

BYTE organization [64] ;

BYTE subj ect-name [64] ;

BYTE org -unit 1 [32] ;

BYTE org-unit2[32];

BYTE org-unit3[32J ;

BYTE org-unit4[32];

} cert-personal-name;

typedef struct

{ ULONG size; /* size of key in bytes -- non-standard field; not

needed if ASNi encoding used */

BYTE keydata[1O0]; /* 100 bytes corresponds to 320 bit modulus

size -- non standard field */

BYTE key-alg[4] ;

} certpub.component;

typedef struct

326

{cert-.version version;

cert-.serialnum serialnum;

cert-.issuer-.name issuer-name;

cert-.valid-.period valid-period;

cert-.personal-name personal-name;

cert-pub-.component pub-component;

}CERTIFICATE;

typedef struct

{ CERTIFICATE contentz;

cert-signature signature;

}cert-.struct;

327

/*Filename: mheaders. h

Author: Gordon D. Wishon

Date: 1 May 1990

This file contains the definition and format of the pemail

header fields as described in RFC 1113.

/*Enclosing Headers*/

typedef struct

f BYTE nazne[13];

BYTE subfieldl;

BYTE delimiter;

BYTE subfield2 [10];

I Proc-.Type;

typedef struct

{ BYTE name[III]

BYTE alg [8];

328

BYTE delimiter;

BYTE vector[ll6];

) DEK-.Info;

typedef struct

f BYTE name[12];

BYTE EntityID[64];

BYTE delimiter;

BYTE IA[64];

I Sender-.ID;

typedef struct

{ BYTE name[14];

ULONG certsize; /* non standard field *

BYTE *cert;

I Certificate;

typedef struct

f BYTE name [11;

BYTE aig [7];

BYTE delimiteri;

BYTE encralg(3] ;

BYTE delimiter2;

329

ULONG MlCsize; /* non standard field *

BYTE *MIC;

I MIC-.Info;

typedef struct

(BYTE name[21];

ULONG certsize; /* non standard field *

BYTE *cert;

I Issuer-.Certificate;

typedef struct

f BYTE name[15];

BYTE EntityID[64];

BYTE delimiteri;

BYTE IA[64J;

BYTE delimiter2;

BYTE version;

I Recipient-.ID;

typedef struct

f BYTE name[ll];

BYTE IK-Use[4];

BYTE delimiteri;

330

ULONG deksize; /* non standard field *

BYTE delimiter2;

BYTE *DEK;

}Key-.Info;

Bibliography

[1] Abrams, Marshall D. and Podell, Harold J., Computer and Network Security, IEEE

Computer Society Press, Washington, D.C., 1987.

[2] Summers, R.C., An Overview of Computer Security, IBM Systems Journal, Vol 23, No

4, 1984, International Business Machines Corp., 1984.

[3] Bell, David E. and La Padula, Leonard J., Secure Computer Systems: Unified Exposi-

tion and Multics Interpretation, Foundations, and Model, The MITRE Corp., Bedford,

Mass. MTR-2997 Rev 1, March 1976.

[4] Rushby, John, Networks are Systems, from Proceedings of the Department of Defense

Computer Security Center Invitational Workshop on Network Security, 1985.

[5] National Computer Security Center, Trusted Network Interpretation of the Trusted

Computer System Evaluation Criteria, National Computer Security Center, NCSC-TG-

005, 31 July 1987.

331

332

[6] Voydock, Victor L. and Kent, Stephen T., Security in High-Level Network Protocols,

IEEE Communications Magazine, July 1985, The Institute of Electrical and Electronic

Engineers, Inc., 1985.

[7] Merkle, Ralph C., Secrecy, Authentication, and Public Key Systems, UMI Research

Press, Ann Arbor, Michigan, 1982.

[8] Analysis Communications Systems Corp., Everything You Wanted to Know About DES

Security But Did Not Know Who to Ask, 1984, Analysis Communications Systems Corp.,

1984.

[9] Diffie, W., and Hellman, M., New Directions in Cryptography, IEEE Trans. Inform.

Theory IT-22, 6 (Nov 1976), 644-654.

[10] Diffie, W., The First Ten Years of Public-Key Cryptology, Proceedings of the IEEE,

Vol. 76, No. 5, May 1988.

[11] Rivest, R., Shamir, A., and Adelman, L., A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems, Communications of the ACM, Vol. 21, No. 2, Feb 1978.

