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Frequency dependence and spatial distribution of
seismic attenuation in France:

experimental results and possible interpretations.

M. Campillo
Laboratoire de Geophysique Interne et Tectonophysique Universite
Joseph Fourier and Observatoire de Grenoble IRIGM, BP 53X, 38041
Grenoble, France
J.L. Plantet
Laboratoire de Detection Geophysique Commissariat a l'Energie
Atomique BP 12, 91680 Bruyere-le-Chatel, France

Abstract:

We processed digital records from 431 earthquakes at 25
stations of LDG network in France. We computed spectral
amplitudes of Pg and Lg in different group velocity windows. We
used this large data set to compute a map of mean crustal
attenuation by evaluating simultaneously source amplitude, site
response and apparent Q. We used a procedure combining an
iterative reconstruction technique with an adjustment of source
amplitudes ans site responses at each step of the inversion. The
stability of the result is tested with different subsets of data
and the resolution is evaluated. We obtained maps of apparent
attenuation at frequencies between 1.5 and 10 Hz, computed from
Pg, Lg and early coda of Lg.

The results obtained are in a good agreement with the
predictions of the single scattering model both for frequency
dependence and Qs-Qp ratio. The comparison between the
attenuation anomaly found in the Variscan belt and a deep
reflexion seismic profile confirms the prominant part played by
scattering for the apparent attenuation of seismic waves in the
crust.



Introduction

The short period seismic phases Pg and Lg have been

extensively studied for the purposes of nuclear test monitoring,

magnitude determination or attenuation measurements (e.g.

Nuttli,1973,1986). Considering regions in which a flat layering

can be regarded as a reasonable model for the earth crust, the

mode of propagation of these phases has been clearly established

by the comparison between observed and theoretical properties.

The theoretical results were obtained considering oversimplified

models of the crust which consist of stacks of a few flat

visco-elastic layers, each of them being considered as homogeneous

at any scale. Nevertheless, these numerical simulations fail to

explain several very general features of regional phases. The

long duration of the signals (the existence of a coda) in most of

the observations is not accounted for. Similarly, to explain the

actual attenuation of these signals, it is necessary to include in

the models a frequency dependent quality factor that is not

compatible with accepted processes of intrinsic attenuation at

depth. These phenomena are generally attributed to the scattering

due to unprecisely defined heterogeneities that have to be added

to the vertical layering usually hypothesized. The description

of crustal heterogeneity can be separated into two parts. The

first one deals with the small scale heterogeneity that consists

of the fluctuations of the elastic properties at a scale roughly
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equal or smaller than the wavelengths considered in short period

seismology. These fluctuations cannot be described in a

deterministic point of view because the detail of the crustal

structure is far beyond our present knowledge. The implications

of this type of heterogeneity were studied in detail, particularly

to explain the coda of local seismograms and the frequency

dependence of the apparent attenuation. Since the pionneering

work of Aki (1969), it has been now clearly established that

scattering on small fluctuations of elastic parameters can

account, at least partially, for the existence of coda and for the

frequency dependence of apparent attenuation (see Herraiz and

Espinoza (1986) for a review). Most of the developments of the

theory of coda waves concern the perturbations of an homogeneous

medium. This represents a severe limitation to the interpretation

since the earth presents a strong vertical heterogeneity. The

importance of the layering for scattered waves was investigated by

Wang znd Herrmann (1988) and theoretical developments in this

domain rei,,in of crucial importance for the understanding of

propagation ot regional distances. The most obvious effect of the

stratificat.Lon on the scattered field is the generation of surface

waves.

Large scale shallow irregularities such as sedimentary basins

also produce the local conversion of body waves into propagating

surface waves (Campillo, 1987). Nevertheless, because of the large

observed attenuation near the surface (Toksoz et al., 1988) and

the great variability of the thickness of the surface low velocity
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layer, we expect the short period surface waves to be unable to

propagate along paths of several hundreds of kilometers as Pg or

Lg do. Various authors have tried to numerically infer the effect

of deep irregularities, such as Moho uplifts, on short period Lg

(Kennett, 1984; Campillo, 1987; Maupin, 1989). Their basic

conclusion is that Lg appears to be a robust and stable phase even

when strong lateral variations of the crustal structure occur. In

view of this result, the Lg wavetrain could be used to measure the

mean attenuation in the crust. Solely, a measure of the apparent

attenuation does not bring much information about the cause and

the mechanism of seismic attenuation. An approach to move farther

on can be to correlate the characteristics of the attenuation in

different regions with the different particular crustal structures

encountered. In order to avoid spurious differences that can be

produced when comparing measurements made with different types of

data or with different techniques, we choose to use an inversion

process and a large homogeneous data set. To this end, we have to

collect enough data to be able to describe the attenuation in both

space and frequency domains, beneath an area sufficiently large to

include different geological units.

We have obtained from the LDG seismic network a data set

sufficient to cover a great part of France. We require unclipped

seismograms showing an acceptable signal to noise ratio in the

epicentral distance range 200-1000 km. Because of the dynamic

range of the network and the modest seismicity of France this
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represents long observation time. In a previous study (Campillo,

1987), we used a limited number of earthquakes (18) and of

stations (22) to study a region of central France. Because of the

small number of records available at that time, we applied the

backprojection technique to construct a map of apparent

attenuation. We shall discuss these results in a following

section. In this study, we have widely increased the data set and

the area studied. We will use an iterative SIRT-type

reconstruction technique to determine source amplitude and quality

factors. We also consider early coda of Lg and Pg waves. Gupta

et al. (1989) studied the distribution of Q from Lg in eastern

North America assuming a regionalization based on Bouguer gravity

contours and geological maps.

Data Processing

We selected 431 earthquakes in France and in its vicinity

(Figure 1). These events were recorded at 26 short period

vertical seismometers of the LDG network. Unfortunately we have

never recorded simultaneously in good conditions at more than 20

stations. The records were collected during the period 1985-1987.

For each record, we computed the density of spectral amplitude for

four phases defined by the group velocity windows:

6.2 km/s> V > 5.6 km/s Pg

3.6 km/s> V > 3.1 km/s Lgl

3.1 km/s> V > 2.6 km/s Lg2
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2.6 km/s> V > 2.3 km/s Lg3

At this stage, we eliminated the traces where glitchs were

detected. For each record, we also computed the density of

spectral amplitude of the noise in a window of 30 sec before the

first arrival. For a given phase and a given frequency, the

spectral density is validated if the signal to noise ratio is

greater than 3.

Data Analysis

We model the spectral amplitude observed at station j for

earthquake i in the form:

Al, (f,d) = S (f) * E(d) * AA i,(f,d) * St I(f) (1)

where d represents the epicentral distance, f the frequency and:

-S (f) = the source excitation. We neglect the radiation pattern

due to the focal mechanism as well as the directivity effect

associated with rupture propagation. The directivity is known to

be a strong effect only on wavelengths much smaller than the

source dimension. The Pg and Lg wavetrains are made up of

arrivals corresponding to very different take-off angles and

therefore the radiation pattern is, in general very smoothed for

these phases.

-E(d) = the geometrical spreading of the phase considered in the

time domain. After numerical investigations in flat layered

models, we found (Campillo et al., 1984):
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E(d) = d-° 3 for Lg

and (2)

E(d) = d"1"s for Pg

We assume in our analysis that Pg and Lg propagate mostly along

straight ray paths i.e. that the mean velocity of S-waves in the

crust is roughly constant. Therefore we neglect the effect of

focusing-defocusing that was recognized for surface waves (e.g.

Zeng et al., 1987).

-AA i (f,d) = the apparent attenuation that we express in the

form:

nf dt

AAIi(f,d)=exp-(- Q(f,x,y)) (3)

where V is the group velocity and Q the quality factor. This term

includes the intrinsic attenuation but also other types of

attenuation such as scattering, or propagation effects in a

heterogeneous crust that affect the geometrical spreading.

-ST (f) = the station response that represents the amplification

due to site effects at a given station. The azimuthal dependence

of the site response is neglected.

We performed data analysis, then constructed the map of the

quality factor independently for each frequency. The first step

of our analysis was to assume that the quality factor is constant

over the area considered. Then we evaluated the mean quality
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factor, the source excitation and the station response by an

iterative process similar to the scheme used by Campillo et al.

(1985). At first, we performed a linear regression to compute Q

and S for each earthquake. When the correlation coefficient

obtained is smaller than 0.8, the event is eliminated. This value

allows us to remove some erroneous data that were kept after our

previous sorting, but it can also lead to exclusion of data

corresponding to sharp propagation anomalies. We accept this risk

because we believe that the anomalous zones are well known and are

located outside our study zone. In order to avoid wrong

determinations of the source excitation, we use only the data for

which the earthquake was recorded by at least 5 stations. An

additional condition is that the difference of epicentral distance

between the closest and the farthest station is larger than 40 per

cent of the largest epicentral distance.

The results obtained at this stage are used as a starting

model for an iterative reconstruction that will be described in

the next section. The mean values of Qs that we get from Lg are

very similar to our previous results (Campillo et al., 1985) and

show the same frequency dependence (Qs varies as the square-root

of the frequency). Nevertheless, the fact that we are willing to

cover a large area with a dense set of paths limits the frequency

range available. In fact we can work properly only with

frequencies larger than 1 Hz. Figure 2 shows an example of the

effective path coverage for a frequency of 3 Hz, after sorting out

the data set.
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Algorithm of inversion

This algorithm is based on the use of an iterative

reconstruction technique that allows us to consider large data

sets on small computers. The general scheme of the complete

processing is presented in Figure 3. Stage I, as denoted in

Figure 3 was discussed in the last section and consists of setting

up a starting model with an homogeneous Q(f). In the next stage,

we compute a set of Q values at the nodes of a regular grid to

describe the actual continuous distribution of apparent

attenuation.

After stage I we use equation l,the expression for the

apparent attenUation and the estimations of S and st to evaluate

parameter 1: dt

ik=d Q(f,x,y)
k

The set of the 1 k-s will be used to invert Q(f,x,y).

The inversion techniques used are slightly modified versions

of backprojection and simultaneous iterative reconstruction

technique. We shall briefly describe them.

Backprojection and S.I.R.T. operate for a given unknown

Q(f,x,y)=Q, corresponding to location X,=(x,y) and with the data

from the neighbouring paths. Following Mason (1981), we define a

circle of influence around Xi. Each path contributes with a

weighting coefficient proportional to its length within the circle
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of influence. This approach is particularly well adapted to the

present problem since we know the important part played by

scattered waves and multipathing in the propagation of regional

phases.

The backprojection is then slightly modified by using the

expression:

NV 1
-l Lr, LQ- =r (4)

1 Ni
za

where N is the number of pathes that cross the circle of influence

centered in X1 , a is the length of the path in the circle and

Lr is its total length. We compute Q values at the locations X,

for which the number of rays is larger than N A supplementary

condition is that these rays are coming from a number of distinct

sources larger than N smn. When

these conditions are not satisfied, the mean value of Q is

assumed. Without further precision, the results presented here

are computed with Nmin equal to 15 and NSmin equal to 8.

Following Cote (1988), we implemented an iterative inversion

basically derived from S.I.R.T. (Gilbert, 1972). After the

(j-l)th iteration we compute the estimation of 1 in the jth model:

1]-1  We define the residue by:r

res ] = 1 - li - 1
r r r

The jth iteration consists ot applying to Q-1 at location X the

correction:
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O(e N res
r, L

I r~1 r

with: (5)
N
FI

and where e is the azimuth of the path r and f and g arer

weigthing functions which we are about to describe.

g(e) represents the azimuthal weighting:

g1 (er) = G + (l-G) (NI - D(e r)) / NI

where Di(e ) is the number of paths whose directions are in the

range (et-10 ,er+1 00 ) and which intersect the circle of influence

centered in XI. G is a constant that controls the amplitude of

the variation of the weighting and that we chose in practice equal

to 0.5. The effect of g is to temperate the influence of strong

heterogeneities in the distribution of rays.

The damping factor O(e ) varies with the location and depends

mainly on the density of rays as:

O(e) = R + (1-R) e I / emax

where e is the maximum value of the cumulated weighting factors

at each point computed over the entire region studied. R is a

constant chosen to be equal to 0.5 in the following examples. By

using a spatially dependent damping we want to limit the

variations of the model in zones where the path coverage is poor.

This is specially useful considering the uncertainties implied by

our parametrization of the problem as will be discussed in the
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next section. We have also performed tests where we added a

constant to the weighting term e,, as proposed by Comer and

Clayton (1987) who suggested that this operation may stabilize the

solution. In our case, this damping affects the convergence rate

but has a very weak influence on the final image.

After a series of iterations to actualize the current Q

model, we compute the mean residues associated with each station

and each earthquake. Next, the station responses and the source

excitations are corrected by terms equal to these biases

multiplied by damping factors. The values of these damping

factors, relative to the mean damping applied for the inversion of

Q alone, can be evaluated by comparing the partial derivatives of

the amplitude with respect to Q,, S and St in equation 1. In

practice the coefficients of damping c and est, as well as the

number of iterations on QI only, are chosen after numerous trials.

We have studied systematically the influence of damping factors

and number of internal iterations on the final misfits between

model prediction and actual observations. To this aim, we

repeated the inversion process tens of times with different

parameters. In the following examples we have taken e between

0.06 and 0.04, ct between 0.03 and 0.02, and the number of

iterations of SIRT on QI only, equal to 3. With these values the

complete scheme converges in about 20 iterations.

Accuracy of the results
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As pointed out before, the parameters of the inversion were

chosen by trial and error for the specific data set considered.

After these numerical tests, it appears that applying strong

damping on source excitation and station response corrections

warrant the stability and the convergence of the process. The Q

model obtained when the process has converged to a mimimum root

mean square residue is weakly sensitive to the parameters of

damping used, at least when the number of data is large enough.

We will illustrate the importance of reaching a critical number of

data by considering independant subsets of records of phase Lgl at

a frequency of 3 Hz. We performed the inversion with 4 different

sets of data. The number of sources whose records are used in the

inversion are: 25, 25, 55 and 100. In the case of the 25

earthquakes subsets, we reduced Nmin to 8 and NSminto 3 in order

to cover an area comparable to that of the other cases. The Q

models obtained are presented in Figure 4. The result computed

from the global data set is shown in Figure 6 (Lgl). The results

obtained with the two subsets of 25 events are clearly in

ccntradiction. On the opposite, the main features of the

Q-distribution computed with the entire set of records are defined

correctly when using only 55 or 100 earthquakes. We interpret

this very strong dependence of the stability of the solution on

the number of data by two characteristics of the technique of

measurement used here. The first point concerns the

representation of the term of geometrical spreading by a simple

smooth functional dependence (equation 2). This is an
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oversimplification even for synthetic Lg seismograms whose

amplitudes exhibit large spatial fluctuations due to

interferences, as shown in Campllo et al. (1984). The functional

form of the spreading was defined by least squares over a large

range of epicentral distance. The second point is that we make an

assumption of azimuthal independence of both source excitation and

site response that results in a poor precision of isolated

attenuation measurements. These points explain why the

measurements,and therefore the inversion reaches statistical

significance only for large data sets. In our first attempt to

infer the attenuation in a limited part of France through a simple

backprojection (Campillo, 1987), the number of events considered

was too small. Nevertheless, even if some of the maps of Q were

erroneous, the general conclusions of the study are confirmed by

our new results, as will be shown later.

In order to add a control on the solution obtained for the

entire data set, we constructed maps of resolution computed as

follows. Considering a model of Qs, S and St, we changed

arbitrarily the value of Qs , computed the new residues and

operated 3 iterations of the global inversion process (that

includes perturbations on source excitation and station response

values). We plotted the perturbations obtained on Qs to verify if

the trade-off between the parameters results in specific

unrealistic deformation of the image. We obtained a map for each

location XI. A perfectly decoupling process must produce a

perturbation completlv concentrated in X,. The results obtained
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are presented in Figure 5 for 6 different locations. These maps

give a critical view of our results; the perturbations are far to

be perfectly concentrated. Nevertheless, the perturbation occurs

mostly in the region around the point considered with very small

effects in remote regions. This means that we can draw a

relatively optimistic conclusion: our maps are very smoothed and

therefore represents a long wavelength image of the distribution

of the quality factor, but on the other hand the inversion process

does not produce strong spurious anomalies.

The last point that we need to discuss for an objective

presentation of our results is the misfits between observed and

predicted values. Our main interest in this study is the mapping

of Qs. We have seen that to infer Qs we also need to compute

source excitation and station response. Considering these two

last terms as a part of our model, we can compute directly from

the actual spectral amplitude an apparent Qs- value for each

record that we compare with the value predicted by the

heterogeneous Q model. All misfits due to source or stations are

included in this comparison. The fact that we compute the misfits

directly in term of Qs-1 allows to compare the amplitude of the

unresolved fluctuations of the data with the amplitude of the

spatial variations of Qs-1 obtained from our inversion. For a

frequency of 3 Hz, we found in a model with homogeneous Qs-1 a

standard deviation of 8 10-4 for a mean Qs"1 of 1.8 10"3. After

the inversion, the standart deviation is reduced to 4.5 10-4 .
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This indicates the significancy of the quality factor fluctuations

with respect to the average misfit of the data.

Results obtained at 3 Hz

We have performed the inversion for the 4 time windows

defined previously at the same frequency of 3 Hz. The results

obtained are presented in Figure 6. The lowest Q values are

reached for Qp deduced from Pg waves. This result is somewhat

surprising. As it is generally admitted that the values of

intrinsic Q are larger for P waves than for S waves, another cause

of apparent attenuation is required to understand this result.

One possible explanation is that the Pg phase is more sensitive

than the Lg phase to lateral large scale heterogeneity in the

crust. This can be explained by the fact that P-waves incident on

the Moho can always be refracted in the upper mantle while S-waves

are trapped in the crust in a wide range of incident angle.

Nevertheless, as we will see later, considering the frequency

dependance will lead us to invoke the scattering in a randomly

inhomogeneous medium to interpret our results. The distribution

of Q inferred from Pg does not exhibit strong variations at 3 Hz.

The results obtained with the records corresponding to the window

Lgl are more contrasted. The zones of high attenuation correspond

to the perialpine region, the central Massif and more surprisingly

an area in the North western corner of the region studied that we

,,i11 A - a + t cmn+4-T -=1 rm- ri can Zone. This example
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illustrates the difficulty to base a regionalization of Q on

surface geology only. We shall examine later the frequency

dependence for Pg and Lg.

We also presen". in Figure 6 the results obtained for the windows

Lg2 and Lg3 that correspond to the early coda of Lg. We processed

and inverted these data exactly in the same way as we did for Lgl,

without taking into consideration their nature of coda waves. For

Lg2 the image presents a clear similarity with the results

obtained with Lgl. There is a slight increase of the mean value

cf Qs between Lgl and Lg2. For Lg3 the image is poorly resolved,

although one can distinguish features which are common to Lgl and

Lg2. The interpretation of the results obtained with late

arrivals is difficult. Nevertheless, the very close average value

of Qs that we found from primary waves (Lgl) and from early coda

(Lg2), assuming the same geometrical spreading for both phases

suggests that these waves are associated with a only mode of

propagation, as discussed in Campillo (1990).

Frequency dependence of Qs inferred from Lgl

Figure 7 presents the Qs distributions computed at different

frequencies. The images are less constrasted at high frequency in

addition to the fact that, for high frequencies the contrast

between quality factors with large values are much less

significant in term of energy attenuation. There are two

different features for the patterns shown on the figure. First
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some patterns have amplitudes that vary strongly with frequency

and disappear almost completly at high frequency. This can be

explained by the fact that the attenuation is dominated by the

effect of scattering, which is known to result in a peak of

attenuation in the frequency domain. The anomalous attenuation in

the Central Armorican Zone is in this first category. Otherwise,

the Alpine and peri-Alpine region seems associated with

attenuation whatever the frequency is, although the contrast is

more significant for the lowest frequencies. This point suggests

the addition of a strong intrinsic attenuation to the scattering

effect in this region. Indeed there is a sedimentary basin as deep

as 10 km at the western periphery of the Alpine arc. However one

cannot neglect the fact that a mountain range like the Alps is

associated with large scale crustal heterogeneity. This can

affect the geometrical spreading of Lg and result in apparent

attenuation.

One conclusion that we can draw from these images is the

clear frequency dependance of the mean quality factor and the

decrease in amplitude of the spatial variations of Q at high

frequency. It was one of the main conclusions of a previous work

(Campillo, 1987) to show that apparent attenuation in the crust

occurs in a limited frequency band. This result supports the

hypothesis that attenuation of crustal waves is caused mainly by

scattering on small scale inhomogeneity rather than by factors

producing frequency independent effects such as inelasticity or

'ar-C scale lateral heterogeneity. The distribution of 0 follows
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the trend towards associating tectonically active regions with low

Q. But an intriguing problem is , for frequencies between 2 and 8

Hz, the existence of a region of high attenuation beneath the

Hercynian basement of western France.

Frequency dependence of Qp inferred from Pg

The results obtained for Qp at 4 different frequencies are

presented in Figure 8. The image obtained at 2 Hz is shown only

to illustrate the strong "frequency dependence of Qp in this

frequency range. Actually Qp varies with frequency even faster

than Qs. There is a relatively good agreement between the

patterns obtained for Qp and Qs, although the images obtained for

Qp are less contrasted. This seems to indicate that, in spite of

the different absolute values obtained for Qs and Qp, the causes

of attenuation are the same for the two types of waves.

Discussion of the mean values of apparent Qs

Qp inferred from Pg is smaller than Qs obtained from Lgl over

the whole frequency range. We can interpret both apparent

attenuations in terms of intrinsic attenuation and scattering

effect. If we consider the mean values of the quality factors we

find that the frequency dependance is stronger for Qp than for Qs.

As this is also true for the different regions we will discuss

only the results obtained for the mean values. This does not mean
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that the inversion is useless, on the contrary it allows a better

evaluation of source excitations and station responses and

therefore a more accurate measurement of Q.

The frequency dependence cannot be directly analyzed because

anelasticity and scattering are both acting with a priori unknown

strength. In fact we can make reasonable assumptions about the

frequency dependence of these two terms. Intrinsic Q has a high

value with a very weak frequency dependence as found from

measurements in shield areas (Nuttli, 1982; Singh and Herrmann,

1983; Hasegawa, 1985). Sato (1984), under a single scattering

assumption, predicted that scattering Q varies with the frequency

for wavelenghths smaller than the correlation distance. In the

same paper Sato showed that his theoretical results are in

agreement with the observations made in different active regions.

Assuming that we deal with wavelength smaller than the correlation

distance, Sato's results indicate that the scattering Q is

expected to be larger for S waves than for: P waves and it is

effectively our observation. We have substracted from our results

the effect of the intrinsic attenuation that we consider to be

represented by a constant Q of 1500. After this correction we

find Qssctt and Qpscatt to be proportional to the frequency in

the range 2 Hz-10 Hz as shown in Figure 9. The ratio between

quality factors of S and P waves (about 1.5) is not as large as

predicted by Sato (1984): 2.41. If we assume a correlation

distance of 2 km, our results indicate a mean fluctuation of 5%

when measured from S wdve and of % w'-en measured from P waves.
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These values are actually very close. One can remember that this

simple interpretation is done under the assumption that the entire

path of the wave is within the randomly inhomogeneous medium.

These values can be underestimated if it appears that only a part

of the crust is concerned by the scattering. We can conclude from

the mean values of the quality factor that there is a good

agreement between our experimental results and the theoretical

predictions drawn by Sato within the mean wave formalism

framework.

Discussion of the spatial distribution of apparent attenuation

We have discussed our results in terms of average values for

the entire area and the whole depth of the crust. We may now try

to understand the distribution of the apparent quality factor.

One of the main features of our image is the attenuative character

of the Alpine region. Nevertheless we have seen that the poor

resolution of our inversion in this area that does not allow a

detailed analysis of this very complex region. It is a well known

observation that active mountain ranges are associated with low Q.

A more puzzling feature is the existence of a region of

attenuating material elongated in the direction NW-SE in the

north-western part of France. This pattern is neither correlated

with the surface geology nor with the distribution of seismicity

(Figure 1 gives a realistic view of the seismicity). The

direction of elongation corresponds to the structural direction of
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the Variscan basement in this region (Matte and Hirn, 1988). The

deep crustal structures are known in this region since the "ECORS

Nord de la France" experiment which consisted of a vertical

reflection seismic profile and of a wide angle profile. The

records obtained with this last technique have been interpreted by

Matte and Him (1988). Their profile crosses the low Q region

that we found in northwestern France. This is z. very fortunate

opportunity to compare the apparent attenuation of the crust in a

given region with its heterogeneity as revealed by seismic

exploration. The part of the seismic section that corresponds to

the intersection with the zone of higher attenuation is

characterized by a very specific seismic signature as shown in

Figure 10. This zone is bounded by two faults that seem to cross

the entire crust. The reflections from the lower crust are

numerous and have large amplitudes, indicating strong impedance

contrasts. This comparison between the image produced by seismic

reflection experiment and the apparent attenuation supports the

hypothesis that scattering plays an important part in the

attenuation of seismic waves within the crust. Indeed this

agreement may be fortuitous but it is the only examp-e of such a

comparison that we can make with our data set.

An interesting feature of this comparison is that it

indicates a correlation between the apparent attenuation of

multiply reflected crustal waves and the heterogeneity of the

lower crust. The hetezogeneity of the lower crust is revealed by

its large refiz-tivity in most of ihe examples of deep reflexion
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profiles (e.g. Brown et al., 1986; Peddy and Hobbs, 1987). On the

contrary the upper crust is generally more transparent to seismic

waves. The strong scattering of short period waves in the crust

could be localized in the region of strong reflectivity, i.e. the

lower crust. A controversial hypothesis can be drawn: most of the

attenuation occurs in two regions of the crust: the first few

kilometers beneath the surface as suggested by Toksoz et al.

(1988) and the highly inhomogeneous lower crust as shown in our

study. The fact A14at an important part of apparent attenuation of

S waves originates in the possibly ductile lower crust is

consistent with the explanation of the temporal variation of coda

Q proposed by Jin and Aki (1989).

Conclusion

We have shown that a precise measurement of Qs or Qp from

regional phase records requires the processing of a large data

set. The very large trade-off between the unknowns necessitates a

very careful interpretation of the results of the inversion. We

believe that the inversion may be also useful to increase the

accuracy of the measurement of the mean value of the quality

factors. We have shown that the relatively poor resolution of our

inversion results in an important smoothing of the image but does

not produce artefacts.

The results obtained show the frequency dependance of Qp and

Qs. A simple analysis shows that the mean values obtained are in
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agreement with the single scattering model of Sato (1984) which

implies a linear dependence of the quality factor with frequency

and larger values of Qp than Qs. We found that the mean

fluctuation of velocity needed to explain the data is about 5%.

The distribution of quality factors is governed by large scale

structures such as the alpine range. We found that ancient

structures can be associated with zones of high attenuation. The

Central Armorican Zone in the Variscan belt is an example of that.

Because we have an image of the crustal structure obtained with

wide angle reflexion, we can associate the high apparent

attenuation in this zone with scattering in a highly heterogeneous

lower crust. Such a comparison between the apparent attenuation

and the observed heterogeneity of the crust must be repeated to

confirm the correlation obtained in this paper. The quality

factor tomography is useful for the quantitative interpretation of

short period seismic phases but if such a correlation is

confirmed, it can also be a promising tool of investigation of

deep crustal structures.
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Figure Captions

Figure 1: Locations of earthquakes (squares) and stations (black
dots) used in this study.

Figure 2: Path coverage at a frequency of 3 Hz.
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Figure 3: Scheme of data processing and inversion.

Figure 4: Results obtained with different subsets of 25, 25, 55

and 100 events.

Figure 5: Resolution maps relative to 6 different locations.

Figure 6: Results obtained at 3 Hz for the 4 group velocity

windows considered.

Figure 7: Results obtained for the group velocity window Lgl at

different frequencies.

Figure 8: Results obtained for Qp in the group velocity window

corresponding to Pg

Figure 9: Frequency dependence of the quality factor for P and S

waves after correction of our result from a frequency independent

intrinsic Q of 1500.

Figure 10: Wide angle reflection profile showing a zone of strong

heterogeneity in the crust (after Matte and Him, 1988) and the

apparent Qs inferred from Lg (Lgl).
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