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INTRODUCTION

The dynamic modeling part of an experimental/theoretical effort to develop and
test pointing and tracking control techniques for a mechanical system containing both
rigid and flexible bodies is presented in this report. Recently, much work was done to
model open-loop chains of ridig and elastic bodies with application to kinematic
linkages, spacecraft, and manipulators.

In this modelling effort, the work of Schmitz1 was used as a guide. The mechani-
cal system consisted of a flexible beam fixed to a rigid disk and rotating in the horizontal
plane. The new contributions that result from this work are: (1) the inclusion of the size
(the radius of the rigid disk) as well as the mass properties of the rigid moving base in
deriving the equations of motion, (2) the study of the effect of the size of the moving
rigid base on the dynamic response of the system, and (3) the development and com-
parison of several modelling approaches which can be used for control design: a
reduced-order model with cantilever modes, a reduced-order model with system modes,
a model based on finite element analysis, and a lumped parameter model.

The computer software used for this work was: MSC Pal2 (finite element
analysis), MATRIXx (dynamic analysis and control design), and MathCAD
(multipurpose engineering software). The book of Meirovitch 2 was referred to often
during the course of this work.

Work currently engaged in is: (1) completion of model validation, including study
of the effects of Coulomb and viscous damping; (2) development and testing of several

control algorithms: PID, LQG/LTR, adaptive and HO; and (3) addition of an end-point
position sensor to the experimental apparatus to allow for end-point position feedback
control.

'Schmitz, E., "Experiments on the End-Point Position Control of a Very Flexible One-
Link Manipulator," Ph.D. Thesis, Stanford University, Guidance and Control Laboratory,
Department of Aeronautics and Astronautics, Stanford, CA, 1985.

2Meirovitch, L., Analytical Methods in Vibrations, The Macmillan Company, New York,
1967.



EXPERIMENTAL APPARATUS

An experimental apparatus (fig 1) was built to demonstrate pointing and tracking
control strategies for fast-moving, lightweight, flexible appendages to rigid bodies. It
consists of a one degree of freedom rigid disk, rotating about a vertical axis, with a long,
thin, flexible beam fixed to it in the horizontal plane. Two dc torque motors, one used
for disturbance input and one used for control, cause the disk to rotate about the vertical
axis. A resolver is used to measure disk angle, which is the only sensor on the system
at the present time. A beam end-point position sensor is presently being added to the
system.

DYNAMIC MODELLING

Dynamic equations were developed for a mechanical system consisting of a
flexible beam fixed to a rigid disk. Goals were to understand the fundamental charac-
teristics of the system and to develop a model of the system which can be used to test
new control algorithms.

Model Description and Derivation of Equations of Motion

Consider a uniform flexible beam of length L, fixed to a rigid disk of radius R, and
moving in the horizontal plane, as shown in the figure below.

- Fixed Reference Line

u(t) J,R

- - --- -------------- - X

R i DFlexibleRigid Disk Fixed Attachment E,I,A,L,p Beam

u(t) = externally applied torque
J = mass moment of inertia of rigid disk about axis of rotation
R = radius of rigid disk
E = modulus of elasticity of beam material
I = area moment of inertia of beam cross section about neutral axis
A = cross-sectional area of beam
p = density of beam material a = p.A = mass per unit length
L = length of beam

2



Displacement of any point P along the beam's neutral axis at a distance x from the
disk is given by the arbitrarily large disk angle 0(t) and the small elastic deflection w(x,t)
measured from the line OX. The assumptions made in deriving the equations of motion
are:

9 Neglect axial deformations and axial forces. The dynamic stiffening effect
and increased natural frequencies that result from the axial forces are assumed negli-
gible in this situation.

e Contribution of the rotational moment of inertia of an elementary beam
section to the kinetic energy of the system is neglected. This is valid if the cross-
sectional dimensions of the beam are small compared to its length.

9 Effects of shear deformation are negligible. This is valid if the cross-
sectional dimensions of the beam are small compared to its length and if the frequency
of beam oscillations is low.

* Elastic deflection of the beam and angular velocity of the disk are small.

* Neglect any energy dissipation. This will be added later in the analysis.

Expressions for the kinetic energy, T, and the potential energy, V, of the mechani-
cal system are as follows:

1 (() 2 +2

T = a J e(t) + [ c (R + x). d O(t) + d w(x t)] dx-2~ E dt od t
v = 1 L E. 2. w(x,t) ]2dx -Ut), O(t)

Given the expressions for the kinetic and potential energy, the Hamilton's principle

was applied:

f2 (T- V) dt = O

The equation of motion and boundary conditions that result are:

Equation of motion:

E-I. d .w(xt) +0. (R+x)- d[ .O(t)] +[ d .w(xt)]] =0

3



Boundary conditions

O . (t) -U(t) - E l I w(x,t) + R E .I w(xt) =0
1x=O --x x=O=

* w(x,t) = 0 at x = 0 (deflection at fixed connection = 0)

d
dx& w(x,t) = O at x = 0 (slope at fixed connection =0)

* d-X •w(x,t) = 0 at x =L (moment at free end = 0)

d3

* a-ij w(w,t) = 0 at x = L (shear force at free end = 0)

Definition of a new coordinate: y(x,t) = (R + x) 0 0(t) + w(x,t) = inertial lateral
displacement of the beam at a distance x from the edge of the disk.

The equation of motion and boundary conditions reduce to the following:

E.I. d-x .Y(X,t) +0. d y(xt) =0

S. J[d.O(t) U(t) - EI d. Y(xt) + R E I . Y(xt) =0

* y(x,t) = R • O(t) at x = 0

d• dil- 'y(x,t) =OMt

d 2

0 dx- .y(x,t)=0atx=L

d3

* cd-. y(xt)=0atx=L

The following section show several ways to solve these equations in a form which
is useful for feedback control systems.

4



Exact Solution and Open-Loop Transfer Functions

The variables y(x,s), u(s), and 0(s) are defined as the Laplace transforms of the
variables y(x,t), u(t), and 0(t), respectively. Taking the Laplace transform of the equa-
tion of motion and boundary conditions, the following is obtained:

Equation of Motion

Boundary Conditions:

9 J.s 2  (s)  .yxs) +R E.l.[sL EY(XS) =0
xdX =0 d X (' 1=0 0

@ y(x,s) = R - (s)at x=0

d
* d x "y(x,s) = (s) at x = 0

0 -x y(x,s)=0atx=L

d3
* dx-.y(x,s)=0atx=L

The following dimensionless ratios are defined:

R JR= 8 L1 = 0

Note that o L = (o- L) -L2 = m. L2 where m is the total mass of the beam. The dimen-
sionless complex number X related to the Laplace variable s is defined by:

The general solution of the equation of motion is:

y(x,s) = A. sin(P - x) + B • sinh(P • x) + C cos(, -x)

5



With this equation and the boundary conditions stated above, the following is
found:

M(1 L . 0]] -1 D R -C
E.I1 ( B= -A

[-sin(X) - sinh(k)] [-cos(X) - cosh(X)] R cosh(X) + sinh(k)

[-cos(X) - cosh(X)] [sin(X) - sinh(k)] cosh(X) + R. sinh(k) = M(k)
13 3

2. 6. -2 k
L + R

Solving for A, C, and 0:

1 f"-U(s 1 [1 + sin(X) sinh(k) + cos(k) cosh(k)]
K 1 2

LE .I 13. h + (-R) [cos(k)- sinh(k) + sin(X) cosh(k)]

C=1 R [1 + cos(X) cosh(k) - sin(X), sinh(k)].
K ~ 2.

LE -1-1 [cos(X) sinh(4) - sin(?) cosh(k)]J

= 2 u(s) [1 + cos(X) cosh(k)]
K 2

E -I 3.

-22
K= - [1 + cos(k) cosh(k)] •X + sin(k) cosh(k) 6l+

L+ 2. k. 6 sin(k)- sinh(X) + cos(X). sinh(o) • • 2  j

L

The following open-loop transfer functions are of interest:

Os)O(s,) Disk angle sensor colocated with the actuator.

6



y(L,s) Tip position sensor (now being added to experimental
0(s) apparatus) non-colocated, i.e., separated from the actuator

by the elastic beam.

O(s) NO(X) y(L,s) Ntip(X)
u(s) andu(s)

-v cs(A)]c3 2 2
D(X)= -2.L 1 +cos() -cosh()].c. +sin(X) cosh(X). 1 +? .8

L+2 . 8 sinQ) sinh(k) + cos(X) .sinh(X) . - 1
J

2

NO(X) 2 L 2 [1 + cos(X) • cosh(X)]

1 2]

Ntip(X) (L [sinQ) + sinh(X)] + R. X [cos(X) + cosh(X)])IL3I

The roots of the function D(X) are the poles of the transfer functions, also called
the natural vibration frequencies of the rigid disk/flexible beam system. As stated in the
initial assumptions, this equation is valid only to predict the first few vibration frequen-
cies of the system.

D(X), N0(X), and Ntip(X) are expressed in Taylor series expandions. For example, in
the case of D(X), write: -

n n
D(k)= X' d D l . (k)

nD n

LdX J?

The effect of the radius and mass moment of inertia of the rigid disk on the funda-
mental frequency of the rigid disk/flexible beam system are shown in figures 2 and 3.
The computation of the exact open-loop transfer functions and the reduced order
open-loop transfer functions using a Taylor series expansion is shown in appendix A
which gives a Bode plot comparison between them. The beam tip response and disk
angle response to a unit step torque applied to the disk is shown in figure 4. Reduced-
order models of the open-loop transfer functions were used for this simulation with the
first four vibration modes kept.

7



The roots of NO(X) are the same as the roots of D(X) for r = 0, i.e., for an infinitely
large disk moment of inertia. Therefore, the colocated zeros (the roots of NO(X)] cor-
respond to the natural vibration frequencies of a cantilevered beam. These frequencies
are also called antresonance frequencies. If the actuator is driven with a sinusoidal
command at one of these frequencies, the rigid disk will not move and the elastic beam
vibrates according to the selected cantilevered mode shape.

The tip position transfer function has zeros with a positive real part; therefore, the
system is a nnnminimum phase system. The initial time response of the beam tip to a
unit step torque input to the disk is a short quasi-stationary period (approximately
0.0066 seconds) followed by motion of the tip in the opposite direction to that of the rigid
disk (fig. 4). The contributions to the tip position of the rigid body mode and the first
flexible modes. This type of initial response presents a difficult contrcl problem.

Reduced-Order Model with Cantilevered Modes

It is common to use the constrained mode shapes (cantilevered modes) rather
than the unconstrained mode shapes of the system in order to attempt to describe the
dynamic behavior of an elastic structure. Although the system modes lead to a very
simple formulation for the dynamic equations, they are difficult to use for a multilink
flexible manipulator because of their dependence on the relative orientation of the links.
Formulation in terms of the cantilevered modes does not have this drawback.

The elastic deflection w(x,t) is expressed in terms of the following series:

w(x,t) =(x) q(t)
ii

The mode shapes for a cantilever beam have been previously derived in various

reference books and textbooks and can be expressed as follows:

O(x) = A [cos(Pi• x) + cosh(P • x)] + B. [cos(P • x) - cosh( • x)...

+ C. [sin(3 x) + sinh(. • x) + D. [sin(3 x) - sinh(13• x)]

The boundary conditions are:

atx=0: O(x)=0

2 3

atxL: d d d (x) = 0
dx d3

dx dx

8



Therefore,

A=C-0and D F cos(l .L) + cosh(13. L)-] sin(P - L)_- sinh(P . L) 1
Aii -0ad si([3. L) + siii(13 L)j L cos (1-L) + cosh(-31) j

Therefore, the mode shapes can be expressed as:

O(x) = -L. cos(Y, x) - cosh(3, x) - Lcish(X) -+ (c_9 [sin(P3 x) - sinh([3• x]

where X = PL is a root of the equation [1 + cos(X)cosh(X)] = 0. The first four roots of this
equation are 1.8751, 4.6941, 7.8548, and 10.9955, and the values of D/B correspond-
ing to these values of X are -0.7341, -1.0185, -0.9992, and -1.0000, respectively. The
cantilevered frequencies are related to the values of X by the following equation:

;)2 - E I .X4
,a. L4

In the expressions for kinetic energy, t, and potential energy, V, in w(x,t) is re-
placed with its series representation. The result is:

T= . [(j + Fl) -02 + 0 .1 F2, + F3j I .. + ,i 12. F4]

1 1

1 2 F5 - u(t)-1

F2. = 2. R..[Lo . (X)i dx

F3 = 2. fo .x.O(x)i dx

F41 = o a I O(x), 2 dx

F51 = J E .I. d- • .4(x)i dx

O n dl9



Lagrange's equations was applied:

d [ dd.] dT+ d dV=•t "qj dq---j " d qj

An infinite set of coupled ordinary differential equations was obtained. Using the
first three mode shapes of the cantilever beam, the equations of motion that result are
as follows:

(j + Fl). + F2j + F3j I = u(t)

11 .jF2 +F3jJ .0+F4.i +F5j q =0 i=1 ,2,3

There are four equations and four unknowns: 0 q, q2 q3 These equations can
now be put in state-space form where the state variables are:

x, =0 x3 =ql x5 = q 2  x7 = q3

x2 = x 4 = 6I x6 = C12 x 8 
= q 3

The state-variable equations that result are as follows:

2 .-1 = x 2 -i i = 1,2, 3, 4

1
;K2: .[~t) -"F5, F2j + F3j

1 I I _F2, +F3j 2  i F4, 2 .x 2 ,1

1FJ + F 1 4 F4i

x2 [F2i + F3i] J + 1

2 1IF2j + F312

J+F1 4.F4,

2u(t) +• F5L FZ + F3, X2 j, ] -[ Li] x2 i+1 i =1,2, 3

10



The computation of the stare-variable equations and the equations of motion in
state-space matrix form are shown in appendix B. Bode plots of magnitude (dB) versus
frequency (rad/sec) for disk angle motion and beam tip motion are shown in figure 5.
Also shown in this figure are the beam tip response and disk angle response to a unit
step torque applied to the disk.

Finite Element Analysis

A finite element analysis program was used to generate a dynamic model in the
following form:

[M] (q + [K] [q] = [0]

where [M] is the mass matrix, [K] is the stiffness matrix, [q] is the nodal displacement
matrix, and [Q] is the external force matrix. This model is valid for small linear elastic
deformation and small angular velocities of the rigid base. Using the same parameter
values as given in appendices A and B, the output from the finite element analysis
program is given in appendix C. The above equation can be transformed into a set of
decoupled modal equations as follows. First, solve the eigenvalue problem

[M] [U] [632] = [K] [u]

where

[u] = modal matrix

[6;2] = diagonal matrix of eigenvalues

The response may be described as a superposition of normal modes in the form:

[q] = [u] [P]

where [[P(t)] is a column matrix consisting of a set of time-dependent generalized coor-
dinates. Therefore,

[ = [u] [[3]

[M] [u( j] + [K] [u] [1] = [01

[u]T [M] [u] [] + [u]T [K] [u] [13] = [u]T [Q]

11



But normal modes are such that

[u] T [Mu]u = [I]

[u]T [K] [ul = [ 2]

In addition, a column matrix of generalized forces N(t)O was introduced associated
with the generalized coordinates 3(t) and related to the forces Q(t) by

[N] = [u]T [0]

therefore,

[I] + [i2] [13] = [N]

This represents a set of n uncoupled differential equations of the type

P (t) r + (e62. 1P(t), = N(t)r  r = 1, 2,.. n

Therefore, modal analysis consists of uncoupling the equations of motion by
means of a linear coordinate transformation; the transformation matrix is just the modal
matrix [u]. Details of this procedure are given in appendix C. Using the results of this
analysis, bode plots of magnitude (dB) versus frequency (rad/sec) for disk angle motion
and beam tip response and the beam tip response and disk angle response to a unit
step torque are shown in figure 6.

Lumped Parameter Model

P. Sheth and K. Craig have developed a rigid disk, 2 rigid link, 2 torsional spring
model of the rigid disk/flexible beam dynamic system that preserves the following
characteristics of the continuous system:

1. Natural frequencies of the first two modes of vibration

2. Mode shapes of the first two modes of vibration

This lumped model is a first approximation of the real structure, although it may be
an excellent approximation for specific situations. A diagram of the lumped model along
with its parameters is shown below.

12



Rigid disk: R, J Link 1: ml, L1, I1 Link 2: m2, L2, 12

+ \Torsional Spring k

1' ~Torsional Spring k1ieoue on

Revolute Joint 1

Rigid fixed extension from rigid disk: length = a

Parameter values (units: in-i bf-sec):

ml = 0.000674 I1 = 0.008346 k1 = 506.668 Li = 18.96
m2 = 0.000478 12 = 0.003814 k2 = 264.105 L2 = 13.44

a = 3.6

The details of this work and its extension to other multilink dynamic systems are
now in preparation for publication.

Reduced-Order Model with System Modes

A standard way to solve the dynamic equations previously given is to expand the
solution y(x,t) as the infinite series:

y(x,t) = , (x)i • q(t)

where O(x) are the eigenfunctions of the equation of motion with the boundary condi-
tions, and q(t) are the corresponding time-dependent generalized coordinates. O(x) are
called the system or unconstrained mode shapes. To find the mode shapes O(x), the
external torque u(t) is set equal to zero. Then search for the eigensolutions of the
equation of motion and boundary conditions of the form:

y(x,t) i = O(x)i • e

13



We obtained a fourth order ordinary differential equation in the variable x whose

general solution is:

)(x) = A. sin(13, x) + B. sinh(3 • x) + C cos(P , x) + D . cosh(P • x)

This equation has already been studied. The solution to the following system of
equation is given in appendix D.

-sin(X) - sinh(k) -cos(X) - cosh(? ) R • cosh(?) + L snh(X)

coh()A 0
-cos(X) - cosh(k) sin() - sinh(k) L csh(X) + R. sinh(X) C = 0

2 6. X -2 L - X 30L + R

D=R0e-C
D R=a  J

B=- -A =-
B - L L 3

In the previously given expressions for kinetic energy, T, and potential energy, V,
y(x,t) = (R + x) 0(t) + w(x,t) with its series representation was replaced. The result is:

[ [j ] (0)i + T . (x)2 dx

V = - q"f E I .2 (x)i dx - u(t). [([O(0)] qj]

The modes were normalized so that the expression2 L

J .d-x.()] +i a (x)2dx] equals one for each mode shape.

When this is done, the expressions for T and V reduce to the following:

T= 2 2 V=. q2 (,.u.q. e d 0)

L1i

14



The summation is over the range 0 to 3 where the value i = 0 corresponds to the
rigid body mode for which the frequency of vibration is 0. Lagrange's equations were
then applied, and a set of decoupled ordinary differential equations of the following form
were obtained:

q+q =u(t) (0), i = 0, 1,2, 3

These equations are easily put in state-space form and are shown in appendix E.
The Bode plots of magnitude (dB) versus frequency (rad/sec) for disk angle motion and
beam tip response and the beam tip response and disk angle response to a unit step
torque are shown in figure 7. These results are slightly different from previous models
as slightly different values of the parameters J,R,L and d were used to match actual
experimental parameters.

Complete Model of Electromechanical System and Experimental Verification

The reduced-order model with system modes derived in the previous section was
used as the model for the mechanical part of the system. The following equations of
motion for the electrical part of the system must be added.

State variables: i1 and i2

1
il = [ [-R1 il - Kbl * 0 + Kal • e(t)l]

1
i = [ [-R2 i2 - Kb2. 0 + Ka2. e(t) 2]

The torque on the disk from the motors is given by:

Torque from motors = Ktl .ii + Kt2 .i2

R1 = electrical resistance of motor 1
R2 = electrical resistance of motor 2
Li = electrical inductance of motor 1
L2 = electrical inductance of motor 2
Kal = amplifier gain for motor 1 (amplifier 1 was linear in the range -1 < 0 < 1 input

volts)
Ka2 = amplifier gain for motor 2 (amplifier 2 was linear in the range -1 < 0 < 1 input

volts)
Kbl = back emf constant for motor 1
Kb2 = back emf constant for motor 2
e(t), = input voltage to motor 1

e(t), = input voltage to motor 2
15



To this torque must be added the torque due to Coulomb friction, TA, which is
represented by the following diagram:

Tp
0.39

e
-0.39

The complete equations of motion for the electromechanical system are given in
state-space form in appendix F along with a summary of all the experimentally deter-
mined physical parameters of the dynamic system.

The results of two open-loop simulations for the complete electromechanical
system along with an example of the block diagram used in MATRIXx for the simulation
are shown in figure 8 through 11.

In the first case, the input from both motors is a sine wave of magnitude 0.5 volts
and frequency 8.5 Hz, which is the fundamental frequency of the mechanical system.
Only the output, the disk angle, from this simulation is shown.

In the second case, the input from both motors is a triangular wave of magnitude
0.125 volts and frequency 0.5 Hz. Both the input from a motor and the output, the disk
angle, are shown.

CONCLUSIONS

In recent years, the use of lightweight materials with distributed flexibility in ad-
vanced space applications and in the construction of robotic manipulators has led to a
new and challenging problem in the combined area of modelling and control. Increas-
ing interest has arisen to properly account for the inherent flexibility of these structures,
the coupling between the rigid and flexible motions, and the interaction between the
control system and the flexible structure itself.

In this report, the problem of modelling a flexible beam fixed to a rigid rotating disk
has been analyzed in great detail. The equations of motion and boundary conditions
developed by a means of Hamilton's Principle were considered. The effect of the radius
and mass moment of inertia of the rigid disk on the fundamental frequency of the sys-
tem was observed. Unconstrained and constrained mode expansions were obtained for
the system. In the absence of controller dynamics, it was found that the constrained
mode expansion yields very good results only if the flexible/rigid inertia ratio is small.

16



Finite element and lumped parameter models of the system were also derived. The
motor dynamics were integrated into the structural model considering a specific labora-
tory setup. This experiment was also used to validate the model.

Mu!tiple-link robot arms with motors at the joints can be considered to satisfy the
condition of small flexible/rigid inertia ratio so that constrained expansions are expected
to perform well. However, a question which requires further research effort is whether
constrained mode expansions together with controller dynamics are suitable for cur-
rently projected space structures that have very large flexible/rigid inertia ratios.
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Figure 8. Open loop response to sine input
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Figure 9. Open loop response Figure 10. Triangle input
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Figure 11. MATRIXX model for simulation
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APPENDIX A

RIGID DISK AND FLEXIBLE BEAM: EXACT OPEN-LOOP TRANSFER
FUNCTIONS AND REDUCED-ORDER MODELS OF THE OPEN-LOOP

TRANSFER FUNCTIONS
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Parameter values (units: inch-lbf-sec)

E:=3.0 107  L:=36.0 d:=0.25

R d4  d4
8(R): - - -- =) 0 .0 0 0 7 2 5  A : =r .64 I t= -6

L:0OO 2  64 1.i 6 4

a 1) A C(j) ._ 1 - E_ 1I .2o -L 3  f( ' 2.E '.L 4

6 2(X) :=2•f(Q,) R :=5.625 J:= 0.416

N(X) := 1 + cos(.) -cosh(X)

NTIP(X, R) := L [sin(k) + sinh(X)] + R • k (cos(X) + cosh(?)]

D(XR,J) : c(J) X3 . [1 + cos(k) • cosh(k)] + I1 + 6(R)21 • sin(X) • cosh(X)...

+ 2 .X 6(R). sin(X), sinh(X) + 1k2  6(R) 2 - 11 . cos(k), sInh(k)

TF(K,R,J) : = -L N(K) TFTIP(k,R,J) " - -I NTIP(,R)

V. DQ(XA E . -,-, , RJ

X := 1.8 root[N(k),k] = 1.875 f(1.875) = 5.489

6(1.875) = 34.488

K: 4.6 root[N(k),K] = 4.694 f(4.694) = 34.401

6(4.694) = 216.149

K: 7.8 root[N(k),k) = 7.855 f(7.855) = 96.334

6 (7.855) = 605.284

K:= 10.9 root[N(X),K] = 10.996 f(10.996) = 188.78

6i(10.996) = 1.186. 103

X := 2.3 root[D(k,R,J),K] = 2.3993 f(2.393) = 8.941

6 (2.393) = 56.176
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S= 4.8 root[D(,R,J),.] = 4.807 f(4.807) = 36.077

6(4.807) = 226.681

= 7.8 root[D(X.,R,J), ] = 7.895 f(7.895) = 97.318

6;(7.895) = 611.464

X:= 10.9 root[D(k,R,J),.j = 11.018 f(11.018)= 189.536

6(11.018) = 1. 191 10 3

X = 2.0 + 2.0. i
root[NTIP(X,R),X,] = 2.12 + 2.12i 12.12 + 2.12 • il = 2.998

? = 5.0 + 5.0. i
root[NTIP( ,R),?L] = 5.081 + 5.081i 15.081 + 5.081 • il = 7.186

k 8.0 + 8.0. i
root[NTIP(X,R),X] = 8.129 + 8.129i 18.129 + 8.129. il = 11.496

= 11.0 + 11.0.i
root[NTIP(X,R),X] = 11.214 + 11.214i 111.214 + 11.214. il = 15.859

X:=0
6i(2.998) = 88.172

N(X) = 2 6(7.186) = 506.572

(*(11.496) = 1.296 .103
N1N,(,),0Nl(X) •=d N(k.) N1 (?,) = 0

6(15.859) = 2.467 • 103

N2(k) d N1.) N2(k) =-1.91 1012

N3(k) d N2(X) N3(.) = 0

D(X.,R,J) = 0

D1(X,R,J) = .D(X,R,J) D1(kXR,J) = 1.563- 1011

dX

D2(.,R,J) D= D1 (.,R,J) D2(X,R,J) = 0
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D3(4,R,J) = D2(4,R,J) D3(X,R,J) = 9.174

NTIPXR =

NTIP(X,R) 0

NI1 ,,R) dX NTIPQ(.,R) NTIP1 (X,R) = 83.25

NTIP2(X,R) =d NTIP1 (X,R) NTIP2(?X,R) = 0dX

NTP() dX NTIP2(X,R) NTIP3(X,R) = -4.734. 10

-L 1 X2- [1 X4 ] F 41 .41
DD(X) .032701' L .93- 4.0jL- 9 iL-_ _

ENI() =166 . + 2.9984] 7 186 4][+ 114964] [i 15.8594]
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APPENDIX B

REDUCED-ORDER MODEL OF RIGID DISK/FLEXIBLE
BEAM SYSTEM WITH CANTILEVERED MODES
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Parameter values (units: inch-lbf-sec)

E: = 3.0 • 107 L: = 36.0 d: = 0.25

R & '  d 2

8(r): = p: = 0. 0 0 072 5 I: = n - 64 A: x 4

J 1 __E._

E(a): F(X)=2. L

(1)X):= 2 f(X)

R: = 5.625 J: = 0.416

Mode shape of a cantilever beam: O(x) Origin =1

X1:= 1.8751
X2: = 4.69409
X3: = 7.85476

cosh(X) + cos(X)
F(k)" = -si nh(X) + in(R) F(,1) = 0.734096

F(X2) = 1.018467
F(X3) = 0.999224

(x,X): [CS LL x}. cosh[E .x]. F(X) [sin[~ L x]sinh [ - . x]]]

¢(L,X1) = 71,999785 O(L,X2) = -71.999917 o(L,X3) = 72.000184

Fl:= a L.[ R2 + R L + L] F2() =2 R.J fL(x,X) -adx

F3(X): = 2-Jo x. (XX), adx F4(X): = - (T-_[0(XX)] 2 dx

F5k:= ddOx,k] ]2 x
F1 = 0.853447

F21 := F2(X1) F21 = 0.406276
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F31 := F3(X1) F31 = 1.888962
F41 :=F4(X1) F41 = 1.660399

F51 :=F5(X1) F51 = 1.975365. 10

F22 := F2(X2) F22 = 0.225161
F32 := F3(.2) F32 = 0.30142
F42 := F4(X2) F42 = 1.660409

F52 := F5Q(2) F52 = 7.758082 104

F23 := F2(.3) F23 = 0.132019
F33 := F3(?,3) F33 = 0.107644
F43 := F4(Q3) F43 = 1.660408

F53 := F5(R3) F53 = 6.082459 105

State variables: xl = e x2 = Odot x3 = q1 x4 = qldot
x5 = q2 x6 = q2dot x7 = q3 x8 =q3dot

7 -

0 1 0 0 0 0 0 0

0 0 3.206102 103 0 2.88881 104 0 1.030814 105 0
0 0 0 1 0 0 0 0

A= 0 0 -3.405655 103  0 -1.99666.104 0 -7.124681 -104 0
0 0 0 00 1 0 0

0 0 -254.195034 0 -4.901431 104 0 -8172785 103 0
0 0 0 0 0 00 1

0 0 -115.692072 0 -1.042426 103 0 -3.700429 105 0

0-01
2.348253

0 c; 0 0 0 0 0 0o

-1.623043 C = 4 1.6 2 5 0 72 0 -72 0 72 01
B 0 L

-0.186181
0 O

-0.054737j D := L
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APPENDIX C

FINITE ELEMENT ANALYSIS OF RIGID DISK/FLEXIBLE BEAM SYSTEM

39



Using six beam elements to represent the flexible beam offset from the center of

rotation of the disk and a lumped inertia to represent the rigid disk, the mass matrix, [M],
and stiffness matrix, [K], are:

4.201 •10 14.94 -8.729 3.662 -1.321 0.4059 -0.1055
17.52 2.644 -1.361 0.5450 -0.1762 0.04927

18.52 2.207 -1.185 0.4371 -0.1429

18.70 2.099 -1.009 0.4293 10 =[M]
18.88 1.662 -1.227

19.88 3.345

L 5.992

r1.722. 102 -24.85 9.041 -2.413 0.6413 -0.1599 0.02659)
4.997 -3.159 1.271 -0.3376 0.08415 -0.01400'

3.895 -2.863 1.186 -0.2957 0.04918

3.811 -2.821 1.102 -0.1833 .102 =[K]
3.727 -2.525 0.6863

2.625 -0.9692

L 0.4275

0
y
1 Torque

y 0
2 0

y 0 =[0]
3 =[q] 0 external force vector

y nodal displacement vector 0
4 0
y
5
y
6

Solution to the eigenvalue problem: [K] [u] = [(j)] [M] [u]

('J2= 1; = 3.1938.- 103  2 { 5.1292- 104  0)3 3.7616. 10s

i,2 =065466

(,42 1.4584 10 4.1546 106 1; 9.0099 10
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2.469 -2.535 0.8549 -0.3914 0.2364 -0.1620 0.1389
28.68 -20.82 -15.69 46.52 -67.04 73.36 -77.37
43.34 -12.27 -54.78 72.19 -19.63 -48.45 89.98
57.74 7.786 -71.04 3.162 69.07 -0.9024 -94.63 .10 . =[u]
71.91 35.43 -44.11 -63.90 -16.45 50.69 87.39
85.97 67.07 20.09 -21.95 -52.03 -64.88 -66.79
100 100 100 100 100 100 100

Normal modes must be normalized so that: [u] T[M] [U] = [I]
[u]T[K] [U] = [C2]

The result is.

0.8985 -1.1314 0.4669 -0.2201 0.1388 -0.1002 0.0660
10.4357 -9.2940 -8.5689 26.1614 -39.3613 45.3776 -36.7462
15.7682 -5.4752 -29.9182 40.5986 -11.5230 -29.9682 42.73461
21.0086 3.4755 -38.7995 1.7785 40.5556 -0.5582 -44.9412 = [u]
26.1672 15.8138 -24.0894 -35.9363 -9.6564 31.3545 41.50601
31.2821 29.9402 10.9742 -12.3428 -30.5504 -40.1319 -31.7223

'L.36.3838 44.6376 54.6172 56.2393 58.7158 61.8603 47.4935]

The equations of motion become: [f] + [i2] [1 ] = [ulT[Q ]

0.8985 [Torque]
-1.1314
0.4669

-0.2201
0.1388

-0.1002
_-0.0660_

The output equations are: [q] = [u] [1]

These equations are uncoupled and it is straightforward to put them in state variable
form.
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APPENDIX D

REDUCED-ORDER MODEL OF RIGID DISK - FLEXIBLE BEAM
WITH SYSTEM MODES
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NOTE: Parameter values for L, d, R, and J are different here than in previous simula-
tions. These are the actual parameters for the apparatus on which experiments were
performed.

E := 3.0. 10' L =35.125 d := 0.249

R d 2  d 4

8(R) := L p =0.000725 AREA . := t 6 4

5:=pAREA C(J) :- J) 1 - E I 

6(X) := 2 • • f(QX) J := 0.57301

D 1 (.,R,J) := E(J) - .3. [1 + cos(X ) • cosh(k)] + I1 + X 2  5(R) 2 1 sin(k) • cosh(3)...

+ 2 k X. 6(R). sin(X) • sinh(X) + 1X2  6(.) 2 - 11 cos(?,) • sinh(X)

D)X,RJ)= k2 D1(XR,J)

X =2.3 X1 := root[d(X,R,J),,] Xl = 2.281132052
f(k1) = 8.500007313

6,;(;1) = 53.407121063

k := 4.8 2 := root[D(k,R,J),K] ?2 = 4.777449767
f(2,2) = 37.282987411
6(2) = 234.255918709

X := 7.8 3 := root[D(.,R,J), X] L3 = 7.884939741
f(X3) = 101.558248674
6(?K3) = 638.109295891

.:= 10.9 .4 := root[d(Q,R,J),3.j .4 = 11.012274831
f(?,4) = 198.094550571

i (X 4) = 1.24466477 103

Xl1 (K) := -sin(?,) - sinh(k) X21 (k) := -cos(X) - cosh(K)
X1 2(K) := -cos(k) - cosh(K) X22(K) := sin(?.) - sinh(k)

L- sinh(k) L cosh(K)
X13(X) := R cosh(k) + X23() X + R. sinh(Xk)
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X31 (X,R) := 2- 6(R)
X32 :=-2

X33(X,J,R) := L . E(J) - L* 5(R) + R

x11(X) x12(X) X13(X)-
X(X,R,J) : X21(X, X22,) X23(X,

[X31(X,R) X32 X33RJR)j

4 := X1 .= 2.281132052

7-5.600935951 -4.2928731 104.548427761]
X(X,R,J) = -4.2928731 -4.084649959 105.502227379

,_ 0.787437043 -2 68.454784401J

jX(X,R,J)I = 1.37069393510-
5

X2 = 4.777449767

,-58.398403556 -59.469720184 796.837320401-'
x(X,R,J) =.-59.469720184 -60.394172143 796.848176783,

_ 1.649155258 -2 300.258431662j

Ix(X.,R,J)l = -6.553719071 • 10-'

.:= X3 = 7.884939741

F-1.329481791 103  -1.328451693 103  1.397190909 10 4

X(A.,R,J) =j1.328451693. 10
3  -1.327482749 103  1.397190849 104

L 2.721847526 -2 817.899062996 .1

IX( ,R,J)I = -4.009991272. 10
7

The solution to the set of homogeneous equation with 0i = 1 is given by the following:

ORIGIN = 1
i= 1, 2..3 - 31.938591]1.3= t2 C :=i 87.7208561

LX3j "179.353947J
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- -5.813294- 21.2113511 r-25.876091-
A:= -75.685245 B 83.0374941 D -81.658356,

L-168.705692] L1 73.160387j L-1 73.291447J

The modes of vibration are:

1(x) :=A si A, x] + B, sinhI_ .x +C, .+cosI-L x]+D, .cosh[ x]

02(x) :=A 2 sin -x] + B2 sinh[ x] +C2 C2 x] +D2 cosh[ k 2 ]
03(x) :: A3 sin[ . x] + B3 sinh[X + C3 cosL x] + D3 cosh[3 X]

00(x) := R + x This is the RIGID BODY mode.
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APPENDIX E

STATE-SPACE FORMULATION OF EQUATIONS OF MOTION FOR
REDUCED-ORDER MODEL OF RIGID DISK - FLEXIBI _ BEAM

SYSTEM WITH SYSTEM MODES
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x =Ax + Bu y =Cx + Du

0 1 0 0 0 0 0 0

~d
0 0 0 0 0 0 0 0 d-- p(0)o

0 0 0 1 0 0 0 0 0

(4)2 0 0 0 0 0 [A] d

0 0 0 0 02 1 0 0 0

0 0 0 0 46 0 0 0 dx 0(0)2

0 0 0 0 0 0 02  1 0

S00 0 dx (0)31

3() 7-
- O(L)o O (L), o(L) 2  o (L)3

0 0 0 0 =[C] F 0
d 0d d d i D

dx O(O)o 0 dx(0) 1 0 &0(0)2 0 x0(0)3 0 = [D]
_- -J

Output 1: absolute beam tip position (inches)
Output 2: disk angle (radians)
Input: Torque u(t) to disk
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APPENDIX F

COMPLETE EQUATIONS OF MOTION IN STATE-SPACE FORM FOR THE
ELECTROMECHANICAL SYSTEM
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State of variable equations: x = Ax + Bu y = Cx + Du

0 1 0 0 0
0 0 0 0 0

0 0 0 0
0 0 -2.. l)c 01o

0 0 0 0 02
0 0 0 0 -0)2  columns 1 through 5 of [A]

0 0 0 0 0
0 0 0 0 0

-Kbi d -Kbl d
0 L dx.(0)0 0 -- 0

o i- a10) L d
-Kb2d.(0) 0 -Kb2 d 0

0 -0L2 d-0x --L2 20 0

o 0 0 Kti. .(0)o Kt2. -(0)o

0 0 0 0 0d 00) t d

0 0 0 K. .(), Kt20 0.(O),

0 0 0 0 0 =columns 6
through 10

-2.12.0)2  0 0 Kt1. ---0(0)2 Kt2 "d 'x 0)2 of [A]

0 02 1 0 0

d 0 Kt2-d0

0 "o3 -2"q3")3 Ktl.-.(0)3 "ax(0)3

-Kbi d -Kbi d -R1 0BEl &'(0)2 0 -L_- - .0(0 -Ui-

-Kb2 d -Kb2 d -R2

L2 -d- . 0 L2- (0)3 05L2
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d70 0 0 O(L)o dx-.(O)o 0

d d0 0 .(0)o 0 0 d .(0)o

d
0 0 0 O(L)I dx 0(0)1 0

0 0 dd O(O)0

S[B]= [C] T

d d0 0 d x.(0)2 O(L) 2  & .P(0)2 0

d dx0 0 , (0)3 0 0 ,()

Kal dL1 0 0 O(L) 3  0(0)3 0

Ka2 d0 L2 0 0 0 & 0(0)3

0 0 0
0 0 0

70 0 01
'0 0 0 =[D]
LO 0 oJ

Inputs: 1 - el (t) = voltage input to motor 1
2 - e2(t) = voltage input to motor 2
3 - Tp = Coulomb friction torque on disk

Outputs: 1 - beam tip position (inches)
2 - disk angular position (rad)
3 - disk angular velocity (rad/sec)

Summary of parameter values: (units: in-lbf-sec)

E := 3.0. 10' L =35.125 p : 0.000725

R := 6.0625 J := 0.573 d := 0.249
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R1 :=29 Q :=55Q Li :=0.0125 H

L2 := 0.025 H Kal 17.84 Ka2 := 17.92

Ktl := 4.204 in-lbf/A Kt2 := 5.511 in-lbf/A

Kbl := 0.473 V-sec/rad Kb2 0.620 V-sec/rad

ll .01 112 := .01 3 01

Tp :0.39 in-lbf

E = modulus ot elasticity of beam material
L = length of beam
1) = mass density of beam material
R = radius of rigid disk
J mass moment of inertia of rigid disk
d = diameter of uniform beam
R1 = electrical resistiance of motor 1
R2 = electrical resistance of motor 2
Li = electrical inductance of motor 1
L2 = electrical inductance of motor 2
Kal = amplifier gain for motor 1
Ka2 = amplifier gain for motor 2
Ktl = motor 1 torque constant
Kt2 = motor 2 torque constant
Kbl = motor 1 back emf constant
Kb2 = motor 2 back emf constant
11 = damping coefficient associated with each mode
Tp = Coulomb friction torque acting on disk
6i =frequency in rad/sec

O(L)o := 34.9017 O(L)1 := -46.5615 O(L) 2 := 55.7653 O(L) 3 .= -56.5945

d d d d
dx .(0)o := 0.8474 d .(0)l := 0.9226 ai .(0)2 0.3433 .0P(0)3 := 0.1625

I6 := 53.4071 (62 := 234.2559 6 3 := 638.1093
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