
INTEL/311848-01 /
Touchstone Project

DTIC FiLE COPY Mach Port
Special Technical Report

N) Milestone Event Q4 D TIC
W) ~ELECT JUL 1 9 9 0 f

N 1

Don Cameron
Joel Clark

C LE AR i
Intel Corporation 7", M :'110,',ON

JUL 1990 4
December 28, 1989 N, I C, W .- , - J,*.NAi1QN

C P:,L T V Q f ' t ., PA)

Defense Advanced Research Projects Agency I
Information Science and Technology Office IVMW OF THS MATIIAL DOES NOT MPLY

DEPARTEh-T OF DEFENSE INDOFLU.MNI OF,

FACTUAL ACC U MICK O

Coniract No. MDA972-89-C-0034

Conuactr Ine g~mo

lbS an to~ g inc mdiMW i "tia" "ov dw at dow a I \d bgm am\n\
visu fql usro X1)cw a 27-7 o h
pwoducd ci.mcadua any POW=tiaa o diIinitalia. Cm dMa wffl rabrjo t it

_ ._____oN "_A T , A

Alopiwr"d Jar public 0 7Ieaa-
Dirimutcz Uni~mawd 01 favC~9

-~9 07 -U0N *

INTEIJ31 1848-001

Mach Port
Special Technical Report

Milestone Event Q4
"A" per Karen SchroderPrepared By: DARPA Library, 1400 Wilson Blvd.

Arlington, VA 22209-2308

Don Cameron TELECON 7/25/90
Joel Clark VG

NrAC CRA&I

DrC TAB 0
Unannouaced

Justificallor

Intel Corporation 1Y

Intel Scientific Computers Dist 'button I15201 NW Greenbrier Parkway Availability Codes
Beaverton, OR 97006 -

AvR al IO

December 28, 1989 A-1 l

Sponsored by

Defense Advanced Research Projects Agency
Information Science and Technology Office
Research in Concurrent Computer Systems
ARPA Order No. 6402.6402-1; Program Code No. 8E20 & 9E20
Issued by DARPA/CMO under Contract #MDA972-89-C-0034

DISCLAIMER

"The views and conclusions contained in this document ae those of the authors and
should not be interpreted as representing the official policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency or the U.S. Govenment."

Abstract
The purpose of this thiei report is to describe the porting of the Mach operating
system to the Touchstone IOTA prototype. The report describes the major activities
associated with the port and the kernel design issues that they brought to our atten-
tion. ,

cach was ported to a small cube of integrated I/O nodes. Drivers for the SCSI disk
drive, serial line, and the Direct-Connect hypercube routing hardware were written.
Serial communication to the nodes was multiplexed through a terminal connected to
Ai ltel SYP-301 host platform.

We found that to extend the Mach thread model onto a multcompr architecture
such as Touchstone, a compatible form of "'shared virtual memory' must be provided.
Alternately, supporting the multicomputing model of high-speed inter-node message
passing will require better support from the Mach kernel. For both of these usage
models, the speed of inter-node message passing is critical. Further research is re-
quired into how to best provide this in the Mach environment. (V p

Ii

be technical data contained n this pag~e is sbject to the use tnd disclosure retricw idedfi in the mstricive lgend an thehmronw= e of thi report.

Contents

1. Sum m ary ... 1

2. Introduction ... 2

2.1 Project Goals .. 2

2.2 Overview of M ach ... 2

2.2.1 Tasks and Threads ... 3
2.2.2 Virtual M em ory M anagem ent .. 3

2.2.3 Interprocess Comm unications ... 3

3. M ethods, A ssum ptions, and Procedures ... 5
3.1 Implem entation Strategy and Scope .. 5

3.2 IOTA Prototype System ... 5

3.3 Design ... 6

3.3.1 Bootstrapping .. 6

3.3.2 M em ory M anagem ent Interface ... 8

3.3.3 Device Drivers ... 9

4. Results and Discussion ... 11

4.1 Com iTY driver .. 11

4.2 D CM Driver ... 11
4.3 M ach and Distributed M em ory .. 12

4.3.1 M ulticom puting M odel ... 12

4.3.2 M ultiprocessor M odel ... 12

5. Conclusions ... 14

6. Recom m endations ... 15

6.1 Future work .. 15

6.2 Changes and Extensions to M ach ... 15

The wacdnicl dma contained am di& pese is mbjea to the = wd discloum remunionm fid in ft f icdve legwd m ona
front cowof ibis repom

,I

7. Acknowl1edg ents ... 16

8. References ... 17

9. Distribution ... 18

Figures

Figure 1. M ach Kernel Virtual Address Space .. 8

. tacbdc. d a a W ca Wis pap is subjea to te nn and disol , w str s iWe~ifd in the w icive Is nd on te
fron cowe OdhI wepw

IV

1. Summary
This report describes the porting of the Mach operating system to the Touchstone
IOTA prototype. Our objectives were to implement the Mach operating system on a
small IOTA prototype and to pass messages between at least two nodes via the
Direct-Connect hypercube routing modules.

To achieve these goals, the porting activities included the development of mecha-
nisms for bootstrapping, interfacing to the node processor's memory management
unit, and developing several device drivers. The later task, device drivers, required
the largest single effort since drivers were written for the node's SCSI disk controller,
Com/fTY function, and Direct-Connect Module (routing hardware). A small IOTA
system was used to debug the port consisting of two integrated I/O nodes, two 760
MB Winchester disks, a System Resource Manager (SRM) for program loading, and
a second SRM for holding the Mach source code and building Mach binaries.

Mach was successfully ported to the IOTA prototype and messages were passed
between two I/O nodes; this will now serve as a base from which we can compare
and contrast Mach with NXt2 and the Reactive Kernel.

Overall, this development process has indicated that to extend the Mach thread
model onto multicomputer architectures a compatible form of "shared virtual memory"
must be provided. Alternately, supporting the multicomputing model of high-speed
inter-node message passing will require better support from the Mach kernel.

For both of these usage models the speed of inter-node message passing is critical.
Further research is required how to best provide this in the Mach environment.

Mtae whm dmi ataind an this page is subjem to them un d disclosre nwuictlcs Iduaifed in the mstrikve legend an the
r ver otQhs MPoL

• • e~e na mmm inln~m m m ~ mmll~llml ' m -

2. Introduction
Intel Scientific Computers, in cooperation with Carnegie Mellon University (CMU),
and Intel's Software Technology Operation, has completed an initial porting of CMU's
Mach operating system to the Touchstone IOTA prototype. This report describes the
results of this project and key issues raised in its porting to the IOTA prototype.

This report is organized as follows. The first section reviews the goals of the project
and provides an overview of the Mach operating system. The next section covers the
implementation details for Mach on the IOTA prototype. The following section
discusses various design and implementation issues that arose during the course of
the project. Finally, the last two sections conclude the report and offer
recommendations for further study.

2.1 Project Goals

The goals of the port of Mach to the Touchstone IOTA prototype were to:

* Implement the Mach operating system on a small IOTA prototype containing
integrated I/O nodes.

* Pass messages between the nodes via Direct-Connect Module (DCM) routing
hardware.

2.2 Overview of Mach

The Mach operating system was developed at CMU to address the increased com-
plexity of the UNIX kernel as it was stretched to handle characteristics of modem
host hardware systems-such as multiprocessors, memory management units, and
networking-that were absent when UNIX was first developed1.

Mach features that support these new characteristics are:

* multiple threads of control.

" machine independent virtual memory management.

• interprocess communication that is transparently extensible across a network.

In addition, the Mach kernel is intended to be small but flexible enough to allow a
variety of operating systems interfaces to be implemented on top of the kernel. Mach
is binary compatible with 4.3 BSD UNIX2.

The dd dm cmmined cc d" pqe is subject to the u nd discW= ruuians did in tiW micdve legend on dte
font covet f ibs report

2

2.2.1 Tasks and Threads

In Mach, the traditional process model of UNIX is replaced by tasks and threads. A
UNIX process is represented by a task with a single thread of control. Tasks are the
basic unit of resource allocation; e.g., virtual address space and port rights. Threads
are the basic unit of scheduling and execution. In essence, a thread is a program
counter and a set of registers. Threads belong to exactly one task. A task consists of
one or more threads.

Threads can run in parallel. In a system with shared memory and multiple processors,
more than one thread may execute at a time; either from a single task or from multiple
tasks.

Tasks are related to one another in a tree structure determined by task creation oper-
ations. The virtual memory management interface allows regions of memory to be
inherited in a number of ways.

2.2.2 Virtual Memory Management

Mach virtual memory management is architecture independent. This is a significant
advantage when porting the kernel because only a small machine dependent module
needs to be written3 .

More importantly, the architecture independent memory model allows the advanced
features of Mach's virtual memory management to be available to users writing
application programs.

The advanced features of Mach virtual memory management are:

" flexible inheritance of memory from parent tasks: copy-on-write, shared, or not-
inherited.

• shared libraries.

" memory mapped files.

" the ability to specify an associated paging server when allocating regions of
memory.

" the ability to create paging servers outside of the kernel.

These last two features are important in a distributed environment because they
should allow a mechanism such as shared virtual memory to be implemented as a
simple extension to Mach4.

2.2.3 Interprocess Communioations

Within a network node, Mach provides a secure Inter-Process Communication (IPC)
facility based on ports. Ports are kernel objects on which messages can be queued
and dequeued. A task can access a port only if it has rights to do sos.

la ticbmndi data onained on tis &ge is subje to dt us ad diciom rstdo idatift t ricve leed on the
n covw odi reps.

3

The rights associated with a port are:

Receive Only one task at a time may hold receive rights to a port. A task with
this right can dequeue messages from a port.

Ownership Only one task at a time may hold ownership rights to a port. A task
with this right will acquire receive rights to the port in the case where
the receiver terminates.

Send Many tasks may simultaneously hold send rights to a port. Send rights
allow a task to queue messages on a port.

A task gains access rights to a port only from the kernel or from another task that
already has access.

The Mach kernel, by itself, does not contain a mechanism for passing messages over
a network. However, hooks are provided for support of a user level task known as a
network server which can be used to transparently extend IPC across a network. At
one time, Mach also contained a mechanism known as nerports which for efficiency
placed network servers in the kernel; this facility is no longer actively supported by
CMU.

Me Wcmad data ontained ce dis paMe is subje to he un and disdoswm rusticido idai in the muiWve legd on the
hmr cove of this repom

4

3. Methods, Assumptions, and
Procedures

This section describes the strategy used to port Mach to the IOTA prototype and the
scope of this initial implementation. It also describes the design of key elements of
the port.

3.1 Implementation Strategy and Scope

The version of Mach ported to the IOTA prototype is internal release X95 from July,
1989. This release is in between external release 2.0 and the current release of 2.5.
While source code more recent than X95 became available as the project proceeded, it
was safer to continue with a single stable release.

Ultimately, we want to have the "pure kernel" version of Mach on the DELTA proto-
type. This version, known as Mach 3.0, will implement the UNIX interface outside of
the kernel, leaving a small and flexible kernel with a well defined and generic set of
services. This version of the kernel was not available in time for the initial port to
IOTA.

Mach requires a file system; this is both to provide virtual memory swap space and to
allow the normal UNIX program loading model. For this reason Mach was ported to
the IOTA prototype integrated node. The integrated node contains a SCSI interface
that can be connected to disk and/or tape drives. We require a disk to be present on
each integrated node. We did not implement NFS or other mechanisms to support
diskless nodes. Similarly, no support is provided for tape drives.

An autonomous copy of the Mach operating system is in place on each node. In many
ways this resembles a network of workstations running Mach as would be typical in a
more loosely connected environment such as a L %N. We did not make any changes to
Mach to make it more of a distributed operating system.

3.2 IOTA Prototype System

Mach was ported to an IOTA I/O node with an eight-channel Direct-Connect Module
and not the normal single-channel module used in non-integrated I/O nodes. This
approach enables one I/O node to communicate with the other and the System
Resource Manager (SRM). The latter is used to down-load programs into the nodes.

whe techal del oatained an thi page is abjea to the ue and diswe rrictn ientfied in t reicev, legend an th
fruom araof dhis npm.

5

In addition, these I/O nodes contained a SCSI interface to Winchester disks because
each copy of Mach requires a disk drive for its local file system and virtual memory
swap space.

The entire prototype system consisted of two IOTA I/O nodes connected to two 760
MB Winchester disks all driven by an Intel SYP-301 system resource manager
(386-based workstation). A second SYP-301 was used to hold the Mach source
code and to perform software builds. Mach binaries were then written onto cartridge
tape and transferred from one SYP-301 to the other. Finally, a light pen and terminal
were used to decode the optical messages generated by the firmware and emitted by
the LED's on the I/O node board.

3.3 DesIgn

The work necessary to port Mach to the IOTA prototype can be broken in to the
following areas:

" bootstrapping.

* interface to the memory management unit.

• device drivers.

Key design issues in each of these areas is discussed below.

3.3.1 Bootstrapping

Typically, Mach is booted from disk in several steps. First a PROM boot monitor
loads a bootstrap loader into memory from the boot device. This bootstrap loader
reads the Mach executable file into memory and starts execution.

For Mach on the IOTA prototype, we chose to implement the method used by NX/2. 6

1. A bootloader is downloaded onto each node from the SRM via the unit services
module (USM) diagnostic line.

2. The bootloader initializes the DCM channels to the topology specified in a
configuration file.

3. The OS image is read onto node 0 (the node connected to the SRM) from the
DCM channel which then broadcasts it to each of the other nodes.

4. The bootloader transfers control to the OS image.

Bootstrapping in this manner was helpful for several reasons: first, it allowed us to
load and begin to debug Mach before we had a reliable disk driver;, second, it made it
easier during the development cycle to test new versions of the kernel without having
to build a new file system image for each of the disks.

"e wcd da= aind cc dis pe is "jea to the =e md di&awcof remalam idanffe in t mnijaj le gud an &be
fRWi Mover f repot.

6

Mach is significantly larger than NX/2 and the kernel virtual address space is in high
memory (see Figure 1). This made it necessary to change several of the NX/2 tools.
These were:

bootld This is the bootloader that runs on the node. Because the i386TM
microprocessor comes up in real-mode, this program needs to be
located in the first megabyte of physical memory; NX/2 is then loaded
below boodd. Since Mach is larger, there was not enough room to load
the text segment unless boodd was modified so that it was located at a
higher address. We also changed boodd to load the data and other
segments above 1 megabyte.

Finally, we modified boodd to build a i386 task state segment entry for
Mach, and to transfer control to Mach's new starting address.

mkimage This is a program run on the SRM that takes aout format files and
creates an image file suitable to be loaded by bootcube. For NX,
mkimage creates a single image where the byte position in the image
file corresponds to the addresses specified in the a.out file. Because
Mach kernel virtual addresses do not correspond to the physical
addresses where Mach will be loaded, we had to subtract an offset
when creating the image file.

As shown in Figure 1, the loadable portion of Mach is not contiguous,
and if we attempted to load it as a single image it would overwrite
boodd. We therefore changed mkimage to create two image files: one
with the text segment, and another with the data and other segments.

bootcube This SRM program sends the bootloader to the nodes across the USM
line and then sends the OS image over the DCM channel. For Mach,
this program needed to be modified to send the additional image file
mentioned above.

The aticl data cmtainWd a ds page is .Abjem to the um ad dsclut fewici= Wid in dh restuicdve leged an the
ht cover O this u pOI

7

ADDRESS MAP

NX/2 Mach

Physical Physical Virtual& Virtual

Mach
data &

1MB OxcOl0 0000

bootid

bootld 750K OxcOOb b800

320K
Mach

NX/2 text
text 64K Oxc001 0000
data Mach

0 BSS 0 Stack Oxc000 0000

Figure 1

Mach Kernel Virtual Address Space

3.3.2 Memory Management Interface

A key part of porting Mach to a new architecture is providing the architecture specific
interface to the memory management uniL Mach had already been ported to the i386
microprocessor by the consortium of Intel, Prime, Olivetti, and AT&T; and we were
able to use their code without modification.

Tw odulb, m d maied a thib pp is xjetm to fta mnd disdo rm frkd= idfod iiemuiw& kgmd = fts
bm camr ofd &is xpmt

- - -- l i i t mmm mmm m Imw w -- -- - --- 6

Mach allows logical page sizes to be any power of 2 of the physical page size. We
chose 4-Kbytes as the virtual memory logical page size. This corresponds to the
i386's physical page size and to the largest block that could be transferred from disk
in a single operation.

3.3.3 Device Drivers

A major part of the porting effort was developing the device drivers. These are
described below.
SCSI disk driver

The NX/2-CFS SCSI disk driver was modified to conform to the BSD UNIX style
driver, this was a significant effort. Because transferring data blocks larger than
4-Kbytes can not be done in a single operation on the IOTA prototype SCSI interface,
we chose this value as the file system block size. Normally, file system accesses that
exceed a single block are broken up by the file system routines in to a series of smal-
ler requests. When Mach is initializing, however, a request to read an 8-Kbyte block
is made; the driver was modified to handle this case.

ConTrY driver

Mach requires access to a console. Lacking any direct support on an I/O node for such
a connection, we chose to provide this service the USM diagnostic line. Because the
USM line is connected to each node in the cube--k, an NX/2 program on the SRM,
implements a protocol that allows the USM line to be shared by many nodes. A node
views the USM as being in one of three states:

1. IOSELECT - the node is free to read and write the USM line.

2. GSELECT - global selection, the node can read but not write the USM line.

3. NOSELECU' - the node can not read or write the USM line.

The nodes are connected to the USM via an asynchronous serial controller (UART).
We were able to take a Mach driver for the UART and modify it to recognize the At
protocol. The driver contains entry points for both polled 10 (used by kdb the kernel
debugger) and interrupt driven 10.

The polled output routine buffers characters sent to it when it is not IOSELECT'ed,
and dumps them when it is next selected. The interrupt-driven output routine uses
the UNIX character buffering scheme.

Another change to the UART driver was needed to handle flow control. Normally, a
UART driver knows when the next character can be sent by examining a bit in the line
status register that indicates a transmission is complete. Polled 10 routines poll this
register, while interrupt driven routines interrupt on the transition of this bit. The
design of the USM precludes using the line status register to indicate that transmis-

The tndbmal &un axmcined = tWn s pne is =6j= to t d dbisclosuretm dseifud in the eacive Wuad = th

9

sion is complete. Instead, kt sends a special character to indicate that a character has
been received. The Con/ITY driver waits for receipt of this character before sending
the next character.

The driver for the IOTA prototype DCM hardware is implemented as a UNIX char-
acter device. Since the read and write driver entry points do not contain parameters
that will allow us to indicate the node to write to or the node read from, the ioctl entry
point is used to perform input and output. The device specific structure in the iocd call
contains fields for the address of a buffer, the length of the buffer, and a node number;
the ioctl command parameter indicates whether to do a read or write.

It is the responsibility of the DCM driver to perform flow control; i.e., to regulate the
rate at which messages are sent so that the receiving node is not overrun. On a net-
work such as Ethernet a receiving node may simply ignore the network when it no
longer has the resources to accept more messages. In contrast, if a node using the
IOTA prototype DCM hardware stops reading from a channel it blocks the sending
node and blocks other nodes from utilizing the portion of the network in use. Thus,
nodes using the DCM hardware should only send a message when it is known that
the receiving node is in a state to accept it.

The DCM driver for Mach implements a modified version of the protocol used for
NX/2. There is a queue of message buffers on each node used for receiving messages.
The queue is logically partitioned so that a set number of buffers "belong" to each
node in the cube. Nodes keep a table that indicates how many buffers they have avail-
able at each other node. This count is decremented when a message is sent to a node.
When the count for a particular node reaches zero, no further messages can be sent to
that node until an indication is received that a buffer on the receiving node is once
again available (i.e., the contents of the buffer have been copied to user memory).

This indication is put in the give field of the message header. The give field is a one
byte integer that indicates the number of buffers that have been made available; this
field is in the header of every message sent and is set to zero when not used. In the
best case, the give information can be sent in the normal flow of messages between
nodes. It is possible, however, to reach a situation where a node's count of buffers
available on the receiving node reaches zero, while the receiving node has buffers
available but has not had the opportunity to send a message with the gives. To
handle this situation the DCM driver notices when the number of pending gives is
within a threshold of the number of buffers per node and sends a control message to
carry the necessary give information.

The size of the buffers, the give threshold, and the number of buffers reserved for each
node are all configurable. For this first implementation, we are using a buffer size of
4-Kbytes, a give threshold of zero, and eight buffers per node.

Thw wbduk dm a hd&ta pS is sbjs to &be = d diclosuresuis idaziflhd in Urnsuimai egmd = th
ft cove df *As wWpst

10

4. Results and Discussion

This section presents the results of the research and interprets the significance of
each result.

4.1 ComITTY driver

A console input/output device is required by Mach. The console is used to display
warnings and errors, it is used by the kernel debugger, and (unless some other device
is provided) it is where the user logs in and executes programs.

We chose to multiplex the USM serial line between nodes (see discussion of
comITY driver in previous section). Using kr the user can have a terminal on the
SRM serve as the console device for one node at a time on the IOTA prototype.

We expected this scenario to be awkward for large numbers of nodes. In practice, it
was burdensome even when using just two nodes. A better method for console
communication needs to be found. For example, polling each node in turn to collect
error and warning messages.

4.2 DCM Driver

Because Mach provides virtual memory, message data being sent between nodes
cannot be assumed to be in physical memory; in fact, the message may be larger than
available physical memory. This prompted several differences between the message
passing protocols for Mach and NX12.

I. For Mach we did not implement the NX/2 long-message protocoL This is because
there is no guarantee that a buffer of sufficient size will ever be made available on
the receiving node. This also avoids having to lock into physical memory a large
number of pages.

2. The small-message packet size has been dramatically increased from 100 bytes
to 4-Kbytes which is the virtual memory page size. We use a larger packet
because a page is the minimum amount of memory that may be locked at a time.

Note that in a system with a large number of nodes the packet size may need to
be reduced to avoid reserving excessive amounts of physical memory for receive
buffers.

ba tdtcl dft wwaisd an d& ple is aubi to d =@ md diclomm ruu ns imdem dwA h in " mv m m &e
frot cor ofd &is ropaL

11

3. User message data longer than the message packet size must be broken up into a
series of transfers. This is done by the ioctl routine.

On the sending node, message data is transferred directly from user buffers to the
DCM. On the receiving node, message data is moved from the DCM into driver
buffers and then copied into user space when the application calls the driver to
perform a receive.

4.3 Mach and Distributed Memory

Mach offers two ways of structuring programs for parallelism, multiple tasks and
multiple threads within a task; and two ways to coordinate these parallel activities,
message passing and shared memory. These correspond, roughly, to the multi-
computer (Intel iPSC/'2 and NCUBE 2) and multiprocessor (Encore and Sequent)
models of parallelism.

4.3.1 Multicomputing Model

Operating systems for multicomputers are geared towards high-speed inter-node
message passing. While we do not yet have measurements of Mach message
passing performance between nodes, analysis indicates that it will be significantly
slower than that provided by NX/2. This is because of context switches, data copies,
and other overhead associated with the user level process network message server.
At one time Mach provided a facility known as "netports" which placed support for
inter-node message passing in the kernel. This facility is no longer supported by
CMU.

4.3.2 Multiprocessor Model

The Mach kernel does not allow tasks to span physical memory boundaries. Nor does
the kernel itself provide a way for tasks to share access to virtual memory across
physical memory boundaries. To allow applications written for shared memory
multiprocessors to work on distributed memory multicomputers these limitations
must be lifted.

A technique known as "shared virtual memory" 4 can be used on distributed memory
machines to allow nodes to share access to virtual memory objects. The Mach virtual
memory implementation allows this technique to be supported outside of the kernel.
Shared virtual memory would support load balancing and task propagation. 8

The support of shared virtual memory is necessary to allow tasks to span physical
memory boundaries, but it is not sufficient; work by Joseph Banrera at CMU is under
way to address this issue within the Mach context.

Mw wodiml d= omuined an tis p%* is sbjec to the me ad disciom frssuknims idaed, it muiedve kgui on do
ham oor o thin tpom

12

a

For both of the above usage models the speed of inter-node message passing is
critical. Further research is required how to best provide this in the Mach
environment.

7Ms Odecud date woafbd an d& pag a subject to do o mad dislcime mrict m aWndmau in di. ruwicdvs legmd an ab
from covsr at ds rpor.

13

5. Conclusions

The goals of the activities reported in this document were to implement the Mach
operating system on a small IOTA prototype system and to successfully pass
messages between two nodes via the Direct-Connect routing modules. Our major
results are as follows:

" We identified and completed the tasks necessary to port Mach to the IOTA proto-
type including: bootstrapping, an interface to the memory management unit, and
the device drivers.

* Bootstrapping was accomplished using the techniques developed for NX/2 that
involve the RS-422 serial line and Direct-Connect routing modules.

* The virtual memory logical page size of 4 Kbytes was selected because it corres-
ponds to the i386 physical page size and to the largest disk block that can be
transferred in a single operation.

* Three device drivers were written: SCSI disk driver, Com/fTY driver, and DCM
driver. These tasks represented a major part of the porting effort.

* Finally, a program was written and executed which successfully passes mes-
sages between two nodes,

Mach was successfully ported to the IOTA prototype; this will now serve as a base
from which we can compare and contrast Mach with NX/2 and RK.

We found that in order to extend the Mach thread model onto multicomputer archi-
tectures shared virtual memory must be provided. Alternately, supporting the multi-
computing model of high-speed inter-node message passing will require better
support from the Mach kernel. For both of these usage models the speed of inter-
node message passing is critical.

ne wical dade cmuined a n i& Mge is mbjem to the =e ond d c o readcou idifte umre lepad an th
franz cover ofhis r u1

'14

IS

6. Recommendations
As we continue our research, several of the activities reported in this document may
benefit from additional study. This section discusses several of these possible
extensions to the Mach port.

6.1 Future work

There are several areas that would be worth pursuing in evaluating Mach on the
IOTA and DELTA prototypes:

" Implementation of a network message server transport module for the DCM.

* Implementing shared virtual memory.

" Examining ways to improve Mach message passing performance between nodes.

* Eliminating the requirement of a local disk.

• Finding a better way to display console messages.

* Providing a pseudo-terminal facility through the DCM or Ethernet.

In the future, we would like to work cooperatively with CMU to investigate improve-
ments to Mach in support of distributed memory, message passing, multicomputers.
It would be very useful to expand Barrera's efforts in shared virtual memory to
include Touchstone architectures.

6.2 Changes and Extensions to Mach

Early releases of Mach provided a mechanism known as netports which for efficiency
placed network servers in the kernel; this facility is no longer actively supported by
CMU.

As the speed of inter-node message passing is critical in multicomputer architectures
such as the IOTA and DELTA prototypes, the support and/or structure of the netport
mechanism should t re-examined.

Me whrbd data o&=&kWd " pae is mbja, to the =se and dsloem rem c andfiu in ric ve kgen an &e
n cover ci'ds repat

15

7. Acknowledgments
We gratefully acknowledge the support and cooperation of the Computer Science
Department at Carnegie Mellon University and, in particular, of Robert Baron. We
also thank Intel's Software Technology Operation for providing Mach sources and a
version of Mach that ran on the Intel SYP-301 platform.

The mdmiml data mained = ts pe is s"bject to the = md dscom mtndonan idente he ucdve lmd =n the
front coer of thb rpor.

16

8. References

1. Tevanian and Rashid, Mach: A Basis for Future UNIX Development, CMU-CS-
87-139, June, 1987.

2. UNIX is a registered trademark of AT&T.

3. Tevanian, Architecture-Independent Virtual Memory Management for Parallel and
Distributed Environments: The Mach Approach, CMU-CS-88-106, December,
1987.

4. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, YALEU/DCS/RR-
-492, September, 1986.

5. Sansom, Julin, and Rashid, Extending a Capability Based System into a Network
Environment, 1986 ACM 0-89791-201-2/86/0800-0256.

6. Pierce, P., The NX12 Operating System, Proceedings of the 3rd Conference on
Hypercube Concurrent Computers and Applications, ACM, New York, 1988.

7. Seizovic, J, The Reactive Kernel, Caltech CS-TR-88-10, 1988.

8. Forin, Barrera, Young, and Rashid, Design, Implementation, and Performance
Evaluation of a Distributed Memory Server for Mach, CMU-CS-88-165, August,
1988.

Mw tWcmcb dut contaid c tWs ple is objec to the se md disclosm fenieoew idem u in the fmuicdvs legmad on the
front cover ci ds repa.

17

9. Distribution

Delivery of this report has been made to the following:

DARPA/ISTO
Attn: Stephen L. Squires
1400 Wilson Boulevard
Arlington, VA 22209-2308
(one copy)

DARPA/RMO/Retrieval Services
1400 Wilson Boulevard
Arlington, VA 22209-2308
(one copy)

Defense Technical Information Services
Building 5, Cameron Station
Attn: Selections
Alexandria, VA 22304
(two copies)

Mws tedcbea dou cosained an t pe ge is bjec to the e and dslm sreawx in the ngsictive legend an the
fmat ov ds r epar

18

