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Stability Properties of Slotted Aloha with 
Multipacket Reception Capability 

1YLVIE GHEZ, STUDENT MEMBER, IEEE, SERGIO VERDÜ, MEMBER, IEEE, AND-STUART C. SCHWARTZ.SENIOR MEMBER, IEEE 

abstract—The stability of the Aloha random access algorithm in an 
•nfinite-user slotted channel with multipacket reception capability is 
considered. This channel is a generalization of the usual collision channel, 
in that it allows the correct reception of one or more packets involved in a 
collision. The number of successfully received packets In each slot Is 
.nooeled as a random variable which'depends exclusively on the number 
of simultaneous attempted transmissions; This general model includes as 
special cases channels with capture, noise, and code division multiplexing. 
It is shown by means of drift analysis that the channel backlog Markov 
cnain is ergodic if the packet arrival rate is iess than the expected number 
oi packets successfully received in a collision of n as n goes to infinity. 
Finally, the properties of the bäcklog in the nonergodlcity region are 
examined. 

I: INTRODUCTION 

( ANE of.the main problems in random access communications 
V/is;the-determination of'the maximum stable throughput. "In 
;>anicular, an important, result is that the Aloha protocol is 
unstable ,[l]-[3]; in- an. infinite-user slotted collision channel 
wnere a transmission is successful only if no other users attempt 
transmissions simultaneously. Several strategies have been de- 
signed to stabilize this channel, such as collision resolution 
algorithms (see [4j; for example) where transmissions are 
aeferred.until the current conflict is solved, and more recently, 
rtloha^type strategies using decentralized control, where the 
etransmission probability is updated according to previous 
•narinel outcomes. It has been shown [5]-[7] that the maximum 
jiable throughput achievable by such Aloha-type strategies with 
decentralized control is e~K 

However, the collision channel model does not hold in many 
Important. practical multiuser communication systems [8]-[21] 
because simultaneous transmission of several.packets does not 
necessarily result in the destruction of all the transmitted 
information. For instance, the capture phenomenon is common in 
:ocal area'radio networks [12]-[15]; if the power of one of the 
•eceived packets is sufficiently large compared to the power of the 
other packets involved in a collision, then the strongest packet can 
be correctly decoded, while the other packets are lost. Other 
examples are multiple-access channels where several users 
transmit simultaneously, in the same frequency band, and a 
multiuser detector demodulates the information transmitted by all 
active users (e.g., [8]-[ll]j. Although those systems do not 
necessarily require a random access.protocol, it is sometimes 
useful to exercise some flow control through such a protocol so as 
to limit the maximum number of simultaneous transmitters, in 
order to bound the multiuser receiver complexity, and guarantee 
lower bit-error rates. 

Manuscript received July 23, 1987; revised January 8, 1988. Paper 
recommended by Past Associate Editor A. Ephremides. This work was 
supported in part by the Office.of Naval Research under Contract N000I4-87- 
k-0054 and by lhe Army Research Office under Coniract DAAL03-87-k- 
0062. 

The authors are with lhe Department of Electrical Engineering, Princeton 
University, Princeion, NJ 08544. 

IEEELogNumber.8821359. 

Previous studies of some of the aforementioned systems [9], 
[12]-[18] where some of the packets involved in a collision may 
be correctly received have shown that the performances arc 
noticeably improved with respect to slotted Aloha. However, even 
in those special cases, no precise stability result is available,-either 
because finite population networks with no buffer space were 
considered, or because the Poisson approximation of channel 
traffic was used for infinite population networks. In [19] (see also 
[20]), upper and lower bounds are derived for the capacity of a 
multiple access channel where all packets are correctly received if 
the collision size does not exceed a fixed threshold and otherwise 
all packets are destroyed. 

In this paper, we- consider a generalization of the collision 
channel, where the. receiver can demodulate several packets 
simultaneously. It is assumed that the number of correctly 
demodulated packets is a random variable, which, given the 
number of packets simultaneously transmitted, is independent of 
the backlog and of the number of previous retransmission 
attempts. This random variable can take ^any integer value 
between zero and the collision size. Thus, the channel is described 
by a matrix of conditional probabilities (e„k) where enk is the 
probability that k packets are correctly demodulated given that 
there were n simultaneous transmissions. We analyze the usual 
Aloha algorithm with the multipacket reception capability just 
described. Users are synchronized so that transmissions take place 
within one slot, and at the end of each slot, stations that did 
transmit a packet learn whether or not their transmission was 
successful. Unsuccessful or backlogged packets are retransmitted 
in each subsequent slot with probability p;0 < p < 1. It turns out 
that multipacket reception capability can stabilize Aloha. Our 
main result states that the maximum stable throughput is equal to 
the limit of the average number of packets correctly received in 
collisions of size n when n goes to infinity. To show this, we 
model the channel backlog as a Markov chain, and then study its 
properties by using some simple drift analysis techniques. 

The last part of this paper is a study of the properties of the 
backlog in the nönergodicity region. Unlike the backlog Markov 
chain for slotted Aloha which is always transient [1], the backjog 
for our model does in general have a null recurrence region of 
positive length, which depends on the matrix (e„k) and on the 
retransmission probability p. However, transience in the nönergo- 
dicity region can be ensured for a large class of systems, and in 
particular for channels where the number of successful simultane- 
ous transmissions is bounded. 

II. MULTIPACKET RECEPTION MODEL 

Let Ak be the number of new packets arriving during"time slot 
k. Assume that (Ak)ki0 are i.i.d. random variables with 
prooability distribution: 

P[Ak=n] = \„      (nsO) 

such that the mean arrival rate X = S"., «X„ is finite. New- 
packets are transmitted with probability one at the beginning of 
this first slot following their arrival. 

Given that n packets are being transmitted in one slot, we define 

0018-9286/88/0700-0640$01.00 ©1988 IEEE 
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for« 2: 1,0 &.k.£ n. 

erfc=P[k packets are correctly received|n are transmitted]. 

The multipacket reception properties of the channel are summa- 
rized by the stochastic matrix 
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£= 

«10        «11 
620       «21      «22 

C<iO       ««I 

which we refer to • as the reception matrix of the-channel. For 
instance, the reception matrix for. the usual collision channel is 

0 1 
1 0 
1 0 
1 . 

0 

while for a system with capture it has the form 

0 
o 

l-*2 

1 
*2 

*    -*n. -*n 

where x„ is the probability of capture given that the collision size 
is n. The model studied in [19], [20] can be described by a 
reception matrix of the form 

0 1 
0 0   1 

0 0 
1 0 
1 0 

Note that by letting «io * 0 our model allows not only collisions 
but also background noise to be a source of errors. 

Denote by X„ the number of backlogged packets in the system 
at the beginning of slot n. The discrete-time process (.X„)nio is 
easily seen to be a homogeneous Markov chain. We define the 
system to be stable if (,X„)ni0 is ergodic and unstable otherwise. 
The average number of packets correctly received in collisions of 
size n is denoted by Cn, = l"kml ke„k. We can now state the main 
result. 

Theorem 1: If C„ has a limit C = linv.. C„, then1 the system 
is stable for all arrival distributions such that X < C and is 
unstable for X > C. This also holds if C is infinite: if lim,,..» C„ 
= + oo, then the systemis always stable. 

The proof is given in Section III. In the-remainder of this 
section, we use Theorem 1 to analyze several simple random 
access channels that fall within the scope of the multipacket 
reception channel. 

1) Mobile Users with Pairwise Transmissions: Consider an 
infinite nurnber of transmitters Tu T2t • • •, and .an infinite 
number of receivers R{, R2, • • •, whose positions in the plane are 
i.i.d. random variables. Suppose that transmissions are pairwise 

« 
'This result holds under the assumption that lhe Markov chain of the 

number of backlogged packets is irreducible and aperiodic (for details and 
sufficient conditions, see Section III). 

/ 

© 

A.. 
/ 
/ 

A 
'-© 

O 
/ 

& 

A. 
-© 

k© 

A 
/\ : TRANSMITTER 

Q: RECEIVER 

Fig. 1.   Pairwise transmissions with only one success (3-3). 

in Lhe sense that transmitter T„ sends packets only to receiver R„, 
and Rn is only interested in the packets sent by T„ (see Fig. 1). 
Assume also that each recejver can only detect correctly the 
packet sent by the closest transmitter (in particular, this is the case 
if there is perfect capture, see Example 3 below). The successes Of 
transmissions occurring at the same time are independent, so that 
for n £ 2 

<**=U )p(n)kV-P(.n)r-k 

where p(n) is the probability that any given transmitter is 
successful in a collision of size n, which is equal to \/n if we 
assume that all locations are memoryless, i.e., independent from 
slot to slot. It follows that 

C„=np(n)=l 

and the maximum throughput is 1. More generally, if because of 
channel noise, the message of the closest transmitter is received 
correctly with probability a (in other words eu = a), then the 
throughput is equal to a. The assumption that the locations of the 
stations are memoryless is equivalent to assuming that they move 
infinitely fast. If this simplifying assumption is dropped, then the 
number of successes depends not only on the current number of 
retransmissions, but also on the previous history of retransmis- 
sions, arid thus.the problem is no longer encompassed by our 
multipacket reception model. In Fig. 2, the result of a simulation 
shows that for moderate speeds, the actual throughput is well 
approximated by the foregoing analysis. 

2) Frequency Hopping Random Access Channel: Consider a 
finite population of//users transmitting by frequency hopping, as 
in [11], [22j! For each packet he wants to transmit, a user selects 
with equal probability one frequency in ä fixed set of q 
frequencies. A packet is correctly received iff no other packet is 
transmitted on the same frequency during the same slot. We 
compute.(«AT*)IS*SATI and C = lim/v-« CN. If the users have 
infinite buffer space, then Ccan be taken as a good approximation 
for'large N of the maximum stable throughput of the system, 
which is unknown. If the users have no buffer space, as is often 
assumed, the backlog Markov chain is always ergodic, but even 
then, one should expect reasonable delays in large population 
problems only for arrival rates below C. Tne cornpiitation of the 
reception matrix of this channel is a simple combinatorial problem 
of random assignment of objects „to cells (e.g., see [23, App. A]). 
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j + A: constant, we get 

N 
Q^N^qiq-l) ••• (q-i+ 1)(<7-i)N-' 

;-1 

A/! 

10 15 20       25 
VELOCITY 

30 

Fig. 2. Throughput as a funciion of velocity, for mobile users with pairwise 
transmissions. Stations moving'in a square region; velocity units: percent- 
age of square side traveled in one slot. Retransmission probability set to 

Denote by T,, T2, •••, TNlhe users, all involved in the collision, 
and also denote by S the set of users whose packets are correctly 
received. Two cases need to be considered. 

a)2 £ N < q: We have, for 1 < j < N 

and the following decomposition: 

P[{Tly T2, ••-, 7}} c S]=P[S={Tit 7i, ••-, 7}}] 

+P I   I i MT„-:T,.Tk} =S) 

0) 

I   Ü   {{Ti,---,Tj,Tk}cS}\ 

easily yields the desired expression 

N-J 

P[S={TUT2, ---, 7»]=S (-1)* 
*-o 

(v> ^ )^[{7-„ 7j, •••,Tk+J} &S]   (2) 

where only one term is left to.compute 

PliTi,T2,~;Tk+j}SS] 

q{q-\) ••' {q-J-k+\){q-j-k)N-i-k 

(3) 

for 1 <,j<,N,Q^k^N - j. Putting (1), (2), and (3) together 
gives the result 

-(?)!<-'(v 
, g(g-.l) ••• (q-j~k+lKq~j~k)N-J-k    ...  _    (4) 

for i £j £ N. Notice in particular that e^-i = 0. Let us now 
compute, the average number of packets correctly received in 
collisions of size N, CN = 2£ Jt^. By using (4) and summing at 

V (-I)-- '11  
„o n\(i-n- 1)!(/V-/) 

which can be simplified as 

£ /V' 

q(q-\)... fa-i+l)fa-i)"-'(l--l)»-i 

to get the final result, 

-»(.-r- 
ty /v* > q: In this case, there can be at best q - 1 successes 

in a collision of size N. The same method applies to get the 
following probabilities: 

-(7)i'(V)«-» 
<7(<7-.l) ••• ta-y-Ar+Dta.-y-A:)"-.''-* 

(!</:£?-1) 

«w=0      (qsj<N) 

resulting in the same expected number of successes as before 

Now we let the population size N go to infinity and we apply 
our result. If we let N grow to infinity while keeping q constant, 
we have lim^-«» CN = 0, so the system is always unstable. On the 
other hand.if we let N go toinfinity while keeping q equal to a 
fixed percentage of the population size, i.e., N/q constant, then 
lim^-M CN = +oo, and the system is always stable. It is easily 
shown that to get a finite maximum stable throughput, q has to 
grow asN/ln'N. 

3) Mobile Radio Network with Capture: Consider an infinite 
number of users independently and uniformly distributed in a 
circle of radius R, whose positions are independent from slot to 
slot. Users transmit packets to a common receiver located at f: *• 
center of the network. Denote by Pt and P2 the received powers 
of the strongest and the next to strongest packets involved in a 
collision. Assume, as in [12]-[14], that the strongest packet is 
correctly received iff P\/P2 > K (AT being a. system dependent 
constant), and that all the other packets involved in the collision 
are not received successfully. Assume, moreover, that the 
received power of a packet only depends on the distance r between 
the sender and the receiver 

P= 
constant 

(a£2). 

Then there will be capture iff 

r2>ßrt 

where ß = K1/tt is the capture parameter, and rlt r2 are the 
distances of the closest and the next to closest senders from the 
receiver. 
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Denote by D the distance between a given user and the 
receiver. It is easily shown that the pdf of D is given by 
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and for / 2: 1 

pD(r) = 2—2 (0<r<P). 

Given/Vusers, denote by UN the closest from the receiver, and by 
jDjv.its distance from the receiver. Computing the cdf of DN and 
talcing its derivative, we obtain 

P^(/-)=2^^|^!-^J2JA'"1       (OZrZR).      (5) 

Given DN = r, the other N - 1 users are uniformly distributed in 
the. annular region (r, R). So if N users collide and DN = r, Uti 
will be correctly received iff all the other users are in the annular 
region (0/-, R), which is empty if ßr > R. Therefore, if we denote 
by 

Pi.i-k= £ x» £ AO)e„+/.n+*      (1 <ksi) 
n-0      j»k 

P,i=h>   a,(0) + £ *iO')«;o  + S \. S *iO")«.u« 
L y«l J     nw'       y-o 

PKM= S W S *IC/)«/+*+...      (*&!)• (8) 

Sufficient conditions for (A^),,;^ to be irreducible and aperi- 
odic, are as follows: 

• ifO < p < 1: 

Pv(r)=P[capture|/V collide, DN=r]       (#2:2) 

we have 

^.mr -i 
•c R 

,fra- 
(6) 

• ifp = 1: 

Thus, the probability of capture in a collision of N (N 2: 2) is 

<wi=]     PN(r)pDN(r) dr. 

Using (5) and (6), and with the change of variable x = ß/R, this 
is easily computed 

em=\    2Nx(l-ßix2)N-idx=T2. 
Jo P'' 

It follows that C = 1//32 is the maximum stable throughput. 
Notice, in particular, that for ß = 1 (perfect capture), we have C 
= 1 and for ß -* oo (no capture), we have C -* 0. 

Under certain conditions, the performances of Aloha in the 
multipacket channel can be improved by varying the retransmis- 
sion probability as a function of the channel history, and a 
maximum stable throughput of sup,i0 e~x^n-i ^nln\xn can be 
reached (see [31]). 

III. ERGODICITY REGION 

The number of backlogged packets in the system at time n, 
(Xfl)n*o> is a homogeneous Markov chain whose one-step 
transition probability matrix can be computed as a function of p, 
(A*)*i0. and £. Denoting by Ä,(y) the probability of having j 
retransmissions out of / backlogged packets 

Xo*0 

Xo+S A/I«/I/I<1 
n-I 

f|0*l 

\)*0 

/i-l 

for all »2:1, 6/o^l. 

(9a) 

(9b) 

(9c) 

(9a) 

(9b) 

(9d) 

BAJ) -0 pj(l-p)'-j (7) 

These are only sufficient conditions, but they hold for almost all 
nontrivial systems. For example, if (9b) does not hold, then zero 
is an absorbing state, since the left-hand side of (9b) is equal to 
Poo- Also, (9c) simply means that the successful reception of a 
single packet in the absence of other active users is possible. 
Assume, for instance, that 0 < p < 1 and that the arrivals are 
Poisson distributed. Then we only have to assume (9c), and (9b) is 
true unless there is perfect reception, that is e„„ = 1 for all n 2: 1, 
in which case the system would of course always be stable. The 
case p - 1 gives rise to a number of pathological situations, 
hence, the much stronger condition (9d). It generally turns out 
that either (9d) is not necessary or the stability region of the 
system is obvious. For instance, it is clear from the transition 
probabilities that slotted Aloha with p = 1 is always unstable. In 
any case, it is assumed in what follows that (X„)„^0 is irreducible 
and aperiodic. 

Proof of Theorem 1: The proof is based on drift analysis. 
Recall that in general, the drift at state / (/ 2: 0) is defined by 

</,=£[*,•,-*,!*,-/]. 

If we denote by S, the number of successful transmissions in slot 
I, we have 

Xt+i —X,—A,—2, 
ve set 

ind therefore 

Joo=^o+ y] \i«/in 

.1-0 

d,»\-E[E,\X,-i). (10) 

Now if R, is the number of retransmissions in slot t, we get 

P[S,=*|*,=/, A,=n, R,=j] = t„+j,t 

for 0 :£ j :£ /, 0 :£ k :£ n + j and with the convention that foo = 
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Q, = 0. Thus, 
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Also, if L is an upper bound for C„ 

and 

E{Zt\Xt=i,-A,=n, R,=j] = C„+j 

.it »0       y»0' 
(ID 

The value of the drifts for our model follows from (10) and (11) 

d,/=X-2X«2*'Ü>c«« (12) 
fl«0       y«0 

The idea of the proof is to compute lim,-» dt which will turn out 
to be a very simple expression, and then apply the results of [3] 
and [24] to determine the ergodicity region of (X„)ni0. Let us first 
recall the two results that will be used in the sequel. 

Lemma A (Pakes [24]): Let XXn)„i0 be an irreducible and 
aperiodic Markov chain having as state space the nonnegative 
integers, denote by (P,y) its transition probability matrix, and by 
d-, its drift at state /. Then if for all / \d\ < oo, and if lim sup,-M d-, 
< 0, (X„)ni.o is ergodic. 

Lemma B (Kaplan [3]): Under the assumptions of Lemma A, 
if for some integer N > 0 and some constants B > 0, c 6 [0? 1] 
the following two conditions hold, then (Xn)„^0 is not ergodic: 

i) for all / > N, d-, > 0 
ii) for all / > N, all 6 E [c, 1], 6' - VjPfl > -5(1 - 6). 
From (12), it can be seen that |rf,| is finite since 

M 

2 BiU) X K\Cn+J-0\<;2L 2 ßiU)<- 
j-o j-o 

for / big enough because (13) holds,.which takescare of the first 
term in (14) andends the proof of Lemma-1. 

Putting together(l2) and Lemmas A and 1, we get that l)"if 
lim,,-» C„ = +oo, then lim,-M- d\ = -co, and (X^„±o is 
ergodic; and 2) if limn^M Cn = C < + oo, then lim,-« d, = X - 
C, and (X„)„zo is-ergodic for X < C. If X > C, we can apply 
Lemma Band conclude that (X„)„i0 is not ergodic provided that 
Kaplan's condition ii) holds. This is the-purpose of Lemma 2, 
which is the laststep in the proof of Theorem 1. 

Lemma 2: If for all n a 1, C„ < L for some L E (0, oo), then 
Kaplan's condition holds: there exists a constant B, an integer N, 
and a real c E [0, 1] such that 

*'-2 pvei- -BV -v    a11 '-N> e e tc> U- 

Proof of Lemma 2: According to [25], it is enough to show 
that the downward part of the drift, defined as 

£(/)=-£ */>,,,_, 

is bounded below. From the transition probabilities (8), we get 

|4|<X+ S \„ j B,U)Cn+j£2\ + ip. 
/i«0       y«0 

Next, the drift limit is given by the following lemma. 
Lemma 1: If C„ has a limit C, finite or not, then lim/-» 2M 0 

\„y.0B,<J)C„+j= C. 
Proof of Lemma 1: We consider two separate cases 

depending on whether C'is finite. 
1)C=   +00. 
Fix A > 0 and pick r > 0 such that X, * 0. There exists an 

integerMsuch that for all n a Af, C„ > A. Fix such an Af. Then 
we have for / S A/ 

2 X„ S 5,Ü)G+y>X, S B,(y)Cy„>M   S  5,0') 
t«o    y.o y.o y«« 

which terminates the proof, since for any fixed A/aO 

im £ 5/0") =1. (13) 

j C < + oo. 
Ve have for / > M 

n-0     y.o 

Af 

y«o JI-0 

+   £    SiO") 2 Xfl|CÄ+y-C|.    (14) 
•-Af+1 /i-O 

?ix e > 0. There exists Af such that for all n > Af. \C„ - C\ < 
/2. Fix such an Af. Then 

„••M+l n«0 " 

ö(i) = - 2 k 2 X" 2 BiU)e„+J,„+k 
*«1      /l-O y-* 

which can also be put in the form 

D(i)= -2 S/0) 2 X" 2 *««*-* 
y«i /i-O     *«i 

from which it follows that 

z?(o^-2^o')2x« 
y-i n«0 

C„+Jz-L. 

O 

Notice that in the proof of Theorem 1 (and this also holds for 
"Tieorem 2 below), the exact expression (7) for B,{j) is never 
usea. The only requirements are mat (B,{j))oSjsi is a probability 
distribution, and that (13) holds. Therefore, our results are valid 
for a larger class of retransmission policies than was first 
issumea. For example, there could be K priority groups, each 
with a different retransmission probability. 

Although Theorem 1 is quite general, in many practical cases, 
the reception matrix has a very simple structure and the stability 
region can be obtained with virtually no computations. This 
happens for instance in radio networks with capture where all is 
needed is the limit of the second column of the matrix, or also in 
the simple case where above a certain collision size N, the 
transmission is too garbled for the receiver to be able to decode 
anything correctly, so that Cn = 0 for n > N. 

Tiis last example is a particular case of a noteworthy feature of 
Theorem I, namely that the stability region does not depend on 
any finite number of rows of the reception matrix. In fact, any 
number of modifications of the matrix that leaves lim«-» C„ 
uncnanged does not affect the stability region. Although this may 
be surprising at first sight, it can be intuitively explained by the 
fundamental instability of the collision channel: unless the 
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receiver is perfect (all e„„ equal to 1); the backlog will-eventually 
-xceed.any prefixed value,with probability one, thus it is the limit 
Ji Ci, that determines the stability region. 

"he stability region is also unchanged if the first transmission of 
rackets is delayed. Jf new packets are backlogged, that is, 
•ransmitt'ed for the first time with probability p in each slot 
ollowing their-arrival (this, transmission rule appears in the 
iteratufe as contrölled-access or delayed firet transmission); the 
irifts become d-, = .X - 2}„i B,{j.)Cj for-/ "Si 1, and'.from 
^emmas 1 and 2.the~ergodici'ty region remains thesame. 

f C, does not tiave^a limit, Theorem 1 does not give the stable 
throughput of the system. Even'though, in almost -.all. practical 
-ases,.and.indeed in all the examples of Section II, C'n doeshave a 
imit. it js conceptuallyinteresting to,examine-the case when lim 

.nf,-.» <t„ ^ lim sup^^cC^.jIt is:worth pointing out that adding 
constraints as strong as the following on the reception matrix still 
toes not :imply that C„ has a limit: 

1 (f/Ki)/ia l is nondecreasing 

i' (en*)/ia* is nonincreasing       for all k> 1 

ii) (nk^-fn.k+1      forn>2,,\£ksn-l 

uthough the counterexamples we have been able to build are 
•omewnat contrived. Notice that conditions i) and ii) aboveimply 
hat each column has a limit a* = lim,-» e„*(A: > 0), which is 
'erv likely to happen in practice. In any case, Theorem 2 below 
:till gives some information on the stability region, although the 
-xact result requires in general' the complete knowledge of the 
«auence {C„)ni.i- In fact, given any nonnegative numbers a < y 

IS, one can construct a,reception matrix with «th row average 
-', such that: 

) liminf C„=a 
i-»CO 

i) limsupC„=/3 

ma such that the maximum stable throughput is y. 
heorem 2: The system is stable for X < lim inf,-« C„ and 

insiable for X > lim sup«-» C„. 
Voof: 

•) If X < lim inf,-« Cn, then (X „)„*(> is ergodic. 
f lim inf,-« C„ = +oo, then lim„-, Cn = +», and the 

esuit has already been proved, so assume that lim int"«-.» C„ is 
inite. From Lemma A. it is enough to prove that for all e > 0, 
here exists N such that 

J;<X- lim inf C„+e      all /&JV. 

Recall from (12) that we have 

(15) 
i»u      7»0 

:o it is only needed to prove that for all« > 0 there exists N such 
hat 

J X„ S B>U)Cn*j> Um inf C„- e      all i*N. 
.-Ö      J-0 

-tow by definition there exists A/such that for all k > M: 

-»iim inf Cn-e 
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and. therefore for-all / > M: 

» f f 

S X« 2 BiU)C„+j>(lim inf C„-e) t) Bjj) 
/i=0       j-0 j-M 

which completes the proof since (13) holds. 
b) If X> lim sup,,-« Cn, then (X„)Ki.0 is not ergodic. 
Since X is finite, in this case lim supÄ_„ C„ is necessarily finite. 

Therefore,.(C'^ai is bounded and from Lemma 2, Kaplan's 
condition holds. Thus, it is enough to show that for all e > 0, 
there exists AT such that 

dt>\- lim sup C„ - e      all />N. 

From (15), we only heed to show 

y. X« S BiV)c«+J< lim SUP C» + «      all />N. 

"ince there exists M such that.for all" A: > M 

Ct< lim sup Cfl + e 
.1-*» 

then if L is an upper bound for Cn, we have for / ä M 

<»_ i M~\ 

£ X, 5) BiU)Cn+J<L £ Ä,(y')+limsup C„ + e 
/i-0       y-0 y-0 

from which the result follows, using (13). D 

V. BEHAVIOR OF THE BACKLOG MARKOV CHAIN IN THE 
NONERGODICITY REGION 

n this section, we further investigate the properties of (X„)ni0 
in the case X > C, assuming of course that (C„)nl?i has a finite 
'imit. It has been Droved in [1] that the backlog Markov chain for 
Jie usual slotted Aloha algorithm is transient, but this result 
cannot be generalized to our model when X > C. We give below 
an example showing that {Xn)nio can be null recurrent when the 
mean arrival rate X belongs to an interval of positive length. The 
boundary between the null recurrence and the transience regions 
generally depends in a rather complicated manner on both the 
reception matrix and the retransmission probability p. We give a 
sufficient condition for (X„)nio to be transient when X > C, as 
well as bounds on the recurrence region. 

Consider the reception matrix defined by 

1 
(lä Ars«) 

fbr/tal, Then Cn - Sj., k/n2 = (n + l)/2n, and C = 1/2. 
Msing Lemmas C and D below, we show in [26] that X,, is 
«current for X < R(p) and transient for X > R(p), where R(p)< 
is a function of the retransmission probability p and is given by 

R(p)=-+^ßln(l-p) 
f     P 

«(1) = 1. 

(0<P<1) 

it is easily seen that R(p) is an increasing function of p for/? G 
X), 1[ with extrema limp-0 R(P) = 1/2 and limp-, Ä(p) = 1. 
•;ig. 3 summarizes the behavior of Xn for this example. 

It is somehow surprising to see that in this case, as well as in all 
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Sufficiencyjunder the additional constraintsyt > 0 and lim,--» y-, 
- 0 has also been proved in:[28]. Also, the sufficiency parts of 
both lemmas are an immediate'consequence of [29, Theorems 5 
and 6] together withthe results in [30]: 

Proof of Theorem 3: We use Lemma D with>»n = l/(« + 
l)\6 E ]0, 1[. We have 

£ Pyyj^yi • ^ (y,-k-yi)Pi.i-k 
j *-i 

/               1 
/               1 
(                • i 

'   1/2          R(p) • 1 X' 
cRG0DIC lRECURREfrf 

NULL 
TRANSIENT 

ig. 3.   Transience and ergodiciiy regions as a function of lhe reiransmission 
irooability when £„* = 1/n2. 

"he-other examples we have-computed, the recurrence region 
«comes larger as-p;increases. Intuitively, the recurrence,of X„ 
vnen X > C seems to be due to the fact that transitions from any 
:tate / to 0 (or tö some fixed integer k0) are possible and that the 
irooability of such an event, Pl0 (or JP/*0), goes to zero slowly 
vith /'. It can be checked that these probabilities are increasing 
unctions of D when / is large-enough. 

'ransience is ensured for X > C if the supremum of the 
uements of the fan-column goes to zero faster than k2. This 
onaition holds for all the examples in Section II, as well as for 
nanv reai life cases, due to the practical limitations on the 
eceiver caoabilities. In particular, it is always verified if the 
eceDtion matrix has only a finite number of nonzero columns (or 
auivaiently, if the backlog Markov chain has uniformly bounded 
•ownwards transitions, as defined in [3]) which happens, for 
nstance. if there is capture. Note that the proof of Theorem 3 
«low is of course valid for the conventional collision channel, 
•no in this case becomes somewhat simpler than the proof in [1]. 

heorem 3: If !im*~. k2 sup«;.* «„* = 0, then (X„)ni0 is 
ransient for X > C. 

Because of the complexity and lack of structure of the one-step 
ransition probabilities (8), few results on the recurrence and 
ransience of Markov chains can be applied to our model. Before 
iroving Theorem 3, let us introduce the following two criteria 
rom 127]. 

emma C: Let' (X„)ni0 be an irreducible and aperiodic 
vfarkov chain, having as state space the set of nonnegative 
ntegers, and with one-step transition probability matrix P - 
Pi])- (X„)„i0 'S recurrent if and only if there exists a sequence 
yjnzo such that 

) lim y„= +00 

+ 2(>'<+*->V)Plll+*sO   (16) 
*-i 

and 

(/+i),+rS o*-* ->vm./-*+('+i)1+s 

^r-1 

\ (y,*k-yi)P!.i+l!=D'(i)+u'U) (17) 
*-i 

where we have defined 

»•<o-e+i>'«i; [jfihwwv] 

^ X„ 2J BlU)tn+J.n+k 
n-0       /-* 

•   2  X*+„ 2 B'UK+k,j.n-     (18) 
n-0 J-0 

The drift of X„ at state / can be computed from the transition 
probabilities (8) 

d,= - 2 kP,,,.k+ 2 kPu+k=D(i) + U(i) (19) 
*-i *-i 

where we have defined 

I 0. / 

k-l     n-0      j1-* 

) for some integer A/>0 » yjP(j£yi      all i^N. 
-o 

Ve will onlv use the sufficiency part, which has also been proved 
.n [24]. 

^emma D: With the same assumptions as in Lemma C, 
iX„)nio is transient if and only if there exists a sequence (yn)n*o 
iucn that 

1) Wnso is bounded 

2) for some integer A/>0 2 yjPyZyi      all i^N 
y-o 

3) for some ktNyk.<y0, •••,yN-\- 

0» 0* 

C/(l>S k S X"+* S BlU)*J+k+n.n- 
.-1     n-0 y-o 

The idea of the proof is to show that 

lim [£>'(/)+ £/'(/)]= -8 lim d, ;-» ;-» 

(20) 

(21) 

and since it has been proved in Section III that lim;-,» d{ - X - 
C, we will be able to conclude that (X„)„i0 is transient for X > 
C. 

1) lim[D'(/)+6Z)(/')]»0. /-» 



*"****!, 

GHEZ el a/.: STABILITY PROPERTIES OF SLOTTED ALOHA 

From.(18)and (20) 

n-0     y-* 

which is more conveniently written as 

D'(i)+6D(i) = (i+1) 2 \. S Ä.Ü) J 
n-0       y-l *-l 

[V/+l-ArJ "'"i + lj €n+ln+k' 

This expression is nonnegative since 

i+l    V   ,6k    n      ,     ,    ., 
-1-—->0      (!<*</). 

v/+l-*/ i+1 

Define 7* = sup,,..* e„k. Then 

0sZ>'(/)+M>(i)Ä</+l) fj X„ S Ä,(y) S 
n-0       y-1 *«l 

s(,,1)S,,i;[(J-.)'.,-«],„,. 
i-u       *-i   L \ / J 

hat is 

J'fO+ÖZ?(i)s*,(/)+*2(') 

vith. assuming for instance that /' is odd 

'647 

If lim*-«, k2yk = 0, then lim,,-,,, 1///S" , *27* = 0. So we can 
choose/ large enough so that for n. > (/ + l)/2, S? A:2?* < 
n«. Then 

Now if we choose / big enough so that for k > (/ + 3)/2, we have 
7* < e/A:2, then 

Ar2(/)<eS^    S     (/+1> 
R.O       *.(/+3)/2 

. rf_LLi_V_1_ü]-_L^ 
[\i+l-kj /+lj (n + *)2 

By bounding the sum in the last equation by integrals, it can be 
seen that it is upper bounded by a linear function of/. 

2) lim,— [£/'(/) + 9Ü(i)] = 0. 
From (18) and (20) 

«,m+,«,«o-j<^(^)'-.+&] 

2 A*+» S Ä'(-/)ey+*+n./>- 
n-0 y-0 

With a change of variable 

00 n 

(22) 
/'(/)+0L/(/)=(/+D 2; ftcy) s x„ S 

'-0 n-l        *-l 

(23) 

We show that *i(/') and *:(/) go to zero independently. Fix e > 0. 
Define for 0 < x ^ /' the function 

It is easily proved that for each /' >  1, P,{A:) is a positive 
nondecreasing function of x. Also 

'(¥)-£"<*-»-»•-£ 
where /I is a positive constant depending only on 0. From (23) 

» (/+l)/2 ^       e» fl + (/+l)/2 

*-0 *.| n-0 *-l 

17 /+i V      a* 1 
J^+1+Ar/      l+lj e',+•'•',-*• 

By using the following inequalities: 

OSrp—j-l+ö^ö(l+ö)i-       (*2rO,O<0<i)} 

we get 

0s(/'(/) + ö(/(/)sö^-i^(/+l)S Ä/O") 
z y-o 

N       "     k2 

n-l       *-lv'T '' 

+0(/+1)£ *,(;)  S  *« 2 777 ««•/..-* 
y-o n-N+l       *-l 

S
7TTS"

2X
«
+

   2   WX
- 

n-l n-N+l 

Fix e > 0. Choose N such that 2£+.nXfl < e/2, and then, N 
being fixed, choose / large enough so that l/(/ + 1)2*. «2X„ < 
e/2. D 

It should be clear at this point that unlike the ergodicity region, 
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•he recurrence region depends in general on the elements of the 
eception, matrix (instead of :.öhly; the row .averages]I anä.öh the 
eiransmission probabtjity p. ForJHts reason.an exact expression 
or- the recurrence region seems, rather -difficult to- obtain; 

•lohetheless. the. method (see [26]) that we used to-study the 
xamoie in Fig. 3 can be generalized to obtain the following upper 

ind lower-bounds.on.the recurrence region. 
'heorem4:.{Xn)hi.oh recurfentfor X < L and transient for X 
U.müi L = max{4, sup0«xi /<>, sup0««i //}-and Ü = min 

«i» info<(<r«9,'info<9<i w/}. where 

.=l^(/.i)ix,i;^)|,„.(7i^)fB+M 

w I 

•o     ;.i 

-] [(/+H+-l)»-(/+ni.* + l)»]«Ä*yl4 
V-l 

; =- lim (/+1) [In (/+1)]1"' 2'*» S Ä'0') 
'""* i'-0        y-l 

1 [Dn(/+H+1)]»-Pn (/+«-*+1)]»]^,+;.* 

•na 

t, = lim (/+1) [In (/+l)]2 £ X„ ]g /3,(/) 

.+; r ? I 1 _J 1 
_J, |_ln(i + n + 2-*)   ln(/+« + 2)J **+'* 

%*> X 

i-0       7-1 • 

!" i—I— —±—\ 
:.\ lU+n+l-k)l,~'(i-i-n+iyj 6fl+^ 

'-: -^ ('+1) Dn (/+1)]'*• S \. S Ä'C/) 
,-0       7«! 

•;'  i 1 1 1 
./i LPn(/+Ä + 2-*)]'   Iln(/+H + 2)]'J 6n+M' 

Ve .are assumini? that the limils above exist, which indeed 
iaDpens in most practical cases. The theorem is valid if any of 
nese limits is infinite. In particular, if L = +oo, then Xn is 
•iwavs recurrent. Note that usually, it is not necessary to carry out 
•il the computations, because one of the three terms in the 
lefinition of L is eaual to one of the terms in the definition of U, 
n fact, in most cases, we have supo<i< i /# = inf0<i<t u, if 0 < p 

1. and u, = /, ifp = 1. The proof of Theorem 4 can be found 
•n [26]. 
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•^erfotmance Analysis of ail Asymptotically 
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^AVTD BRADY. .STUDENT MEMBER, IEEE, AND SERGIO VERDÜ, SENIOR MEMBER, IEEE 

abstract—In this paper,- we'analyze an optical; direct-detection DPSK 
eceiver whose error probability Is qaaarum-Umited as the;transmitting 
aser iinewidth:vanishes. The receiver design is. basedon.a binary 
-auiprobable hypothesis test with donUy stochastic point process obser- 
-ations. the conditional random* rates of which depend on the transmit- 
ioi laser phase noise, which .is: modeled as a Brownian motion. The 

•eceiver structure consists of a simple, delay-and-sum optical preproces^ 
•or; rollowed by a photoelectric converter and an * integrate-and-dump 
•rcuit. Uoper and lower bounds on the receiver bit error rate are derived 
•y developing bounds on the conditional rates of the point process, and it 
« shown that the error probability bonads converge to the true value as 

•he transmittini laser Uaewidth decreases. Bounds on the power penalty 
re comouted, for.'parameters corresponding to. eating semiconductor 
niection lasers, and are seen to be less than the limiting power penalty for, 
he balanced DPSK receiver. 

.INTRODUCTION 

N differential phase shift keying (DPSK), information is 
conveyed by the carrier<phasejn thecurrent symbol interval 

eiative to that in the previous interval. While less efficient 
nan phase shift keying (PSK), DPSK is less sensitive to large, 
mase noise amplitudes by utilizing phase noise correlation in 
adjacent symbol intervals. Demodulation in conventional 
radio frequency) DPSK systems can be achieved by multiply- 
ng the total received scalar field by a delayed version of itself, 
ollowed bv integration over a symbol period [1]. However, 
iue to the lack of efficient optical multipliers and sharp filters, 
his receiver structure is not yet feasible at optical frequencies. 
\n alternative solution is to heterodyne the received optical 
:i?nai to the microwave frequency range, and employ a 
onvenuonal demodulation scheme. This heterodyne DPSK 
eceiver has been analyzed previously [2]. While incurring a 3 
iB loss inherent to the. heterodyning operation, this receiver 
=voids the need to count photons, which may introduce an 
appreciable loss in some existing avalanche photodiodes [3]. 

n this paper, we assume an ideal, photon-counting device 
•na concentrate on the design and analysis of a direct-detection 
JPSK receiver. Performance is measured by the power 
>enaity, which is the ratio of the transmitted optical power 
eauired to achieve a given bit error rate to that required by a 
eceiver, whose power requirement is determined solely by the 
statistical nature of the ohotodetection process. Thus, the 
-x>wer penalty is a measure of demodulation efficiency, and a 
eceiver with 0 dB newer penalty is described as quantum 
imlted. In [2], a balanced, direct-detection DPSK receiver 
vas found to have a power penalty of at least 3 dB. We analyze 
n this oaper a DPSK receiver whose power penalty is 0 dB for 
: transmitting laser with no phase noise, and less than 3 dB at 
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10"9 bit error:rate (BER) for existing semiconductor.injection 
läsers. 

The remainder of this paper is organized as follows. In 
Section, n, we formulate a. DPSK receiver from a binary 
hypothesis test with point process observations. The random- 
ness of the rates of the point process, under each hypothesis is 
due to the transmitting laser phase noise, which is modeled as 
a Brownian motion. It is shown why the optimum receiver is 
not feasible, and then attention is restricted to simple strategies 
that use photon counting only. The proposed DPSK receiver 
implements a suboptimum .binary Hypothesis test preceded by 
a delay-and-sum optical preprocessor. In Section in, we 
analyze the receiver performance as a function of system 
parameters. The exact error probability expression depends on 
the moment generating; function (mgf) of a functional of the 
aser phase noise sample'path. Since this mgf appears to be 

intractable, the receiver error probability is bounded by using 
:=n alternative functional, whose mgf is computable. 

II. OPTICAL DPSK RECEIVER 

In binary DPSK modulation, the transmitted scalar field is 
amplitude-modulated by a bit stream derived from the infor- 
mation sequence. Denoting the information sequence as {• • • 
A_i,,Aa, by'"} where b„ € { - 1,1} is the information bit in 
the time interval nT £ t < (n + l)T, we compose a sequence 
{••• a-i,ab, «i •••},<?„'€ {-1,1} from the relationa„.taH 

k b„ to amplitude-modulate the transmitted scalar electric 
field. Under the assumptions of spatial homogeneity and 
distortionless transmission, the transmitted (and received) 
scalar electric fields may be described as 

5(/)>aRj4 cos (W+0,)=V2 Re    ^=- e^e'" , 

nTzt<(n+ l)T  (1) 

where the Brownian motion {6lt t €= 03} models the 
transmitted laser phase noise and v is the carrier frequency. 
Note that in the absence of laser phase noise the transmitted 
optical energy is f k A2T/2 photons per bit. 

The decoding from {«/} to {bi} is performed in the same 
operation that compares the received signal in [nT, (n + 1)7") 
to the reference signal. This suggests the demodulation 
scheme shown in Fig. 1. The optical signal'described in (1) is 
divided by a half-silvered.mirror into two signals of equal 
power, one of which is delayed by the symbol period T, and 
then added to the other. The resultant optical signal is incident 
on the photodetector in Fig. 1 and is given by 

r(/)=— {anA cos (yt+e,) + a„.iA 
V2 
• cos([»t+e,]-{}>T+A0,])} 

=V2 Re lE,e>") (2) 

X)9O-677?/89/010O-O046SO1.00 © 1988 IEEE 
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-ig. 1: -Proposed optical DPSK receiver:. 

vntn.E, & A/2e"t{cin +• an.xe-J('T+^i)}. is-th« complex 
=nveiobe of the-electric field incident on the photodetector, 
jna M, is an increment of Brownian motion given by 

V0./I 9,-6,-T. (3) 

"He remaining receiver structure will be based on the 
lectron point process observations' at the output öf the 
•nptodetectof. This process may be modeled as a doubly 
itochastic point process wiüi'coünt 'Nt, occurrence times"{ W\, 
-Fi, •••, %,}, arid rate X, = a|£",fJ_+ d where a and d are 
•aramerers of the photodetector [4]. It should be pointed out 
hat it is equivalent to express the rate as X, = ar\t) + d, and 
o ignore the double frequency terms. Although the following 
esuits may easily be extended for arbitrary values of a and d, 
ve assume in the following that the photoelectric conversion is 

•deal. i.e., a = 1 arid d = 0. Under these assumptions the rate 
irthe electron departure process forO s t < Tis 

»=-r [l + *ocos A9t],   0£/<r (4) 

vnere we have assumed v 7" = 0 mod 2x. The hypothesis pair 
or the interval TO, T) may be described'as 

V is a doubly stochastic counting process with intensity: 

In : X,=X<°> 4 ± (l - cos &6,)   Ont<T 

./i:X,=X{» i~(l +COSAÖ,)   Oat<T (5) 

where f is the transmitted optical energy in photons per bit as 
defined earlier. If we define £«> k E[\W\{N.; 0 £ a < /}], 
then the test which minimizes the probability of error is [5] 

1-1       A/ 
-•[rfcJ»-KWtf2g0. (6) 

The formulation of this log-likelihood ratio has an interesting, 
two part structure. First derive the minimum mean' squared 
error causa] estimates of the intensities given the observation 
under each hypothesis, and then solve a binary hypothesis 
testing problem with observations from a nonhomogeneous 
Poisson process whose conditional rates are these estimates. 
This fact has commonly been referred to as the separation 
theorem of detection, and motivates the use of suboptimal 
estimates in hypothesis testing with doubly stochastic point 
process observations [4], [5]. 

Unfortunately, the explicit structure of (6) is unknown due 
to the difficulty in evaluating the conditional estimates %.fK 
One approach to this problem is to«replace the optimum 
estimates &<" with suboptimum estimates. In this paper, we 
propose the suboptimum estimates 2?[X{"]. A justification of 
this approach is the following. Denoting- Bi as the laser 

:inewidth in Hertz, y ä l/BtT, and choosing Xo such that 1 - 
?-*'» < Xo •< e-*/T, we have 

--'[3/ € [0, T) : |cos A8j-E [cos 40,]|>JbJ- 

2e -ty/32x) [co.->.(e-t*/T)-Jf0)J2.    (7) 

"liis'upperbound follows from Lemma 1 in Section HI. For 7 
ifjOO, and XQ = 20 percent of E [cos 6.0,], the left-hand side 

>i (7) is less than 0.03. For-y = 1500 and JT0 = 20percentof 
_>' fcös A0,], the probability is less than 0.003. So the 
•rooability that a sample path of the intensity deviates from the 

mean in a symbol interval by more than 20 percent is bounded 
4Doveby.a.small number forreasbnable values of 7. Based on 
this argument, we employ.the (constant) mean E [cos A0,] to 
-estimate the process {cos A9„ t'€ [0,.77)}, and the suboptimal 
estimates of the conditional rates follow directly. The'advan- 
:age to assuming a constant: estimate is that the test assumes 

•homogeneous Poisson point .process, observations,- and: the 
decision strategy is very simple: compare the photon count to a 
threshoId.-By (7) we can expect this strategy to be optimum for 
large 7. although it may befar.from optimum for low 7. 

A suboptimal receiver design is specified below. Since {$„ t 
€ K} is a Brownian motion with zero drift and diffusion 
coefficient- V2T2?/( {A$„ t €• K} .is a stationary Gaussian 
.random process with zero mean and autocorrelation function 

I 0      otherwise 

The means of X}'' are easily computed 

*[XJ»]-±(l+e-"*). 

(8) 

(9) 

Employing these suboptimal estimates in (6), a suboptimal 
hypothesis test is 

K rf 
2{-C-'

/
T 

log 

(10) 

where [/J indicates the greatest integer function. Due to the 
sUtionarity of the laser phase noise increment, the suboptimal 
test is not a function of the photon arrival times, and the 
remaining portion of the DPSK receiver need only count the 
number of receiVed photons in the interval [0, 7*J. The entire 
suboptimal receiver structure is shown in Fig. 1. Nöte that the 
threshold obtained in (10) is not the threshold that minimizes 
the error probability of a test which uses the statistic NT. The 
optimum threshold is also a function of the optical power and 
7, and is closely approximated as a by-product of the error 
probability analysis of Section m. 

It is worthwhile to compare this DPSK receiver to the 
balanced receiver analyzed in [2]. The balanced receiver 
divides the received optical signal into four streams of equal 
intensity, two of which are delayed by the symbol period T. A 
delayed stream is added to a nondelayed stream in the same 
way as in the proposed receiver, except at one-hälf the power. 
The remaining pair of optical streams are subtracted. The 
outputs of the summer and subtracter are each input to 
photoelectric converters, and the resulting counts, are sub- 
tracted. The resulting hypothesis test-requires no .threshold 
setting. That is, the difference of the electron counts is 
compared to zero, and the receiver is independent of 7. 
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.However,, in using, this information about the laser phase 
noise; the proposed DreK-receiyer requires one-half the 
transmitted opücal.power of the.balanced DPSK receiver to 
achieve the same error rate. This claim wUl. be verified in 
Section HI. This comparison assumes.iSt.the three-port beam 
combiners used in both receivers are lossless. It should be 
noted that if a Mach-Zehnder interferometer is used as the 
beam combiner [6], then the proposed DPSK detector uses 
only one of the.two output port beams, and.the energy of the 
signal incident on the photodetector is one-half of that assumed 
in the analysis of this paper. In this case, the performance of 
our receiver is asymptotically equivalent to that of the 
balanced,detector in [2], implemented using both output ports 

•of a Mach-Zehndeh interferometer [7]. 
As suggested above, the parameter y is central in the 

analysis of optical.communication systems employing coher- 
ent light with nonzero linewidth. It characterizes the perform- 
ance degradation due to the transmitting laser phase -jitter 
relative to the symbol rate. For fixed laser linewidth.the effect 
of the phase noise on system performance is less pronounced 
as the symbol rate increases, as reflected by an increase of y. 
Typically, y €.[50,1600], which follows from 5/ € [6 MHz, 
20 MHz] for semiconductor injection lasers [8], arid symbol, 
rates from 1 to 10 Gbits/s. 

JH. PERFORMANCE ANALYSIS 

In this section, we characterize the performance of the 
proposed DPSK receiver. We show that as y -* oo the 
probability of error is the quantum limit of optical communica- 
tions. We then derive upper arid lower bounds on the 
probability of error for arbitrary y and show that these bounds 
converge to the true value as y — oo. Finally, we present 
Monte Carlo simulation results of the receiver performance' 
and compare them to the error probability bounds. 

We begin by showing that the performance of the proposed 
DPSK receiver is quantum limited as y — oo. In this case, the 
transmitting laser is ideal arid it is easy to see that (10) 
becomes 

"i 

NT^O. (11) 

As y ~* oo, the rates under each hypothesis are deterministic 
and NT is an unconditionally Poisson random variable under 
each hypothesis. If we define A/ £ {*" \<" dt, i € {0, 1} then 
the probability of error is • 

P[error]=^P[Arr=0|/Y,]=^e-A>. (12) 

Since Ai = 2f for. an ideal transmitting laser, (12) becomes 

P[errorl=^c-2r (13) 

which is known as the quantum -limit. Thus, the receiver 
performance is quantum limited as the transmitting lsser 
linewidth goes to zero. 

Next, we consider the error probability for finite values of 
y. It is convenient to define the moment generating function 
A//(i>) g E[e'Ai] and to let /V(A) denote a Poisson random 
variable with mean A. Conditioned on the rate and the 
hypothesis, the observation process is a Poisson point process. 
Therefore, the probability of error under H\ may be found by 
first conditioning on {A0„ 0 s / s 7} 

i>[errori//,]=£[P[yV(A,)s/|{M,0^^r}]] 

-*[££-] 
i 1^1 

k\dv" 
Mi(v)\vm.i (14) 

where / is an arbitrary rionnegative integer threshold,-and the 
'last-line follows from an application of me abounded, conver- 
gence theorem. By a similar argument we have .tinder H0 

P[mot\H0] = 1 - £ 1 ^-kM0(v)\, 
f* k\ dvk (15) 
*-o' 

It appears that there is no closed-form expression for the 
foregoing moment generating functions, when {A0„ 0s(£ 
7*} is a 7* increment of Brownian motion. In the remainder of 
this section, we consider upper and lower bounds to (14) and 
(15). Based on the fact that the mgf of 1/27" JJ (Ad,)2 dt is 
computable (see the Appendix), our approach is to find upper 
and lower.bounds on the-error probability based: on quadratic 
bounds of cos x- 

1—-<cosx£ftt(x) ä 

i i      x 
[A-a- 

1 

if .|x| <xa 

otherwise 
(16) 

where 0 < a < 1 and x„ is the smallest positive real number 
such that 1 - ax\/2 = cos x„. If each cosine in the 
expressions for A« is replaced by the upper bounding function, 
the corresponding rates are further apart, hence it is easier to 
discriminate between them and a lower bound on the error 
probability is obtained. Analogously, an upper bound is 
obtained if each cosine is replaced by the lower bounding 
function. More precisely, the cumulative distribution function 
(cdf) of a Poisson. random variable is a stricdy decreasing 
function of its mean, that is, P[N(A) ü /] is decreasing in A. 
If the'error probability under each hypothesis is found by first 
conditioning on {Ad„ 0 £ / £7}, then the conditional 
probabilities are.Poisson cdf's, and substituting the bounds 
from (16) in the expressions for A, will yield upper and lower 
bounds for the conditional probabilities as well as the 
unconditioned probabilities. Denoting A," as the bound on A/ 
which yields an upper bound to the error probability on Hi, 
and Af as the-bound on Aj which yields a lower bound to the 
error probability under Hi, we have 

*?-£(<*,)»* 

kL
0=*-\T\-f.W,)dt 

Af = 2r-A£. (17) 

As seen by (14), (15), and (17) computation of these bounds 
requires the moment generating functions of A J and A^. The 
following two leriinias loosen two of the bounds so that we 
require only #(u) k E[e'Ao], which is derived in the 
Appendix! Lemma 1 quantifies the fact that the probability that 
a T length sample path of Ad deviates far from the origin 
decreases with increasing y. Lemma 2 uses this fact in 
deriving!a lower bound on the error probability under Ho, 
which does not depend on the mgf of Aj. 

Lemma /:' Let * € '«+. Then 

P[3t £ [0, T] :\A8,\>x]<;4Q 

1 Q[x] A l/y/Tx j; r<*n dt. 

Ml 
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Proof: Let {W„ i G. (ß+} be a Wiener process, and K k 
x'/'hJlTcBi. For »"€ 08+, we define the stopping times T, 4 inf 
{t:Wt>v} and 7t," 4 ihf {/l»', < -u}. Then, 
P\it e [0, T] : \A8,\>x)       • 

=P[3/6[0;r]:|^^^-r|^i 

<P Ute[ot2Ty:\d.r+t-d.T\>^\ 
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Applying Lemma i,.we have proved the "first bound of this 
claim. To prove the, second bound, we recognize the fact that 
Äi "'< 2fr and that the. cdf of N(A) is a monotonically 
decreasing function of A* • 

As a direct result of Lemma 2 a lower bound on the total 
probabUity/of error is 

-f 3*fe.Ip;iTl--:,|Vö,|> a (18) 

3/6[0,2r]:|FF;|>- 
2V2TB, 

=P[min(7„ r_,)<27] 
*:Plt<<2T] + P[T-K<2T] 
= 2P[TK<2T] 
= 2{P[TK<2T, W2T*K)+P[TK<2T, W2T<K}} 

= 4P[r,<27, W2T^K] 

(1?). 
(20) 

-m] 
Equation (18) follows from the Markov property of the 
Brownian,motionK(19) from the union bound, (20) from the 
fact that - W^'has the-same-probability law as W, and (21) 
from the reflection principle of the Wiener process. • 

It should be pointed, out that a tighter upper bound is 
possible by using the.first passage times for the process {A0„ / 
€ [0, T]}, whose distributions are known [9], or by 
strengthening the inequality in (19) using the first passage time 
of Brownian motion out of a symmetric interval about the 
origin [10], [11]. However, the easy upper bound used in the 
proof suffices for our needs. 

Lemma2: Let /be an arbitrary, nonnegative integer. Lower 
bounds on the conditional error probabilities are 

1-4Q IUY E[P[N(aA")*l\{A8lt0st*T}}} 

sE[P[N(Ao)>l\{M„ OztzT})) 

where 1 - ax1/! a cos x V|x| € (0, x,\, and 

2 ^ (2^e-2^E[P[N(Ai)^l\{Ad„ OstzT})). 
k-0 kl 

Proof: Let 1A be the indicator function of event A. 
Then 

E[P[N(Ao)>l\{AdltO*t*f})) 

= l-E[P[N(Ao)*l\{Ae„ 0*t*T})) 

^l.-E[P[N(Ac)^l\{^it 0*tzT}] 

' {l{|A#/|sxa,V/6l0,n} +1{!/6l0.71:|A#,|>jrB}}] 
i 1 -E[P[N(aA%)iSl\{Mh Oirs7}] 

' 1(1^1 «»„.v/eio.-njl 

-P[ir6[0,r]:|AÖ,|>x.] 

^-E\P[N(aAX)*l\{M„ QütisT})] 

-•rir€[0,T]:|A,o,|>x.] 

vnere 1 - <zxV2 - cos X 2: 0 Vlx| S [0, X.]. 

-4e[y:l+;lit2f,,'"'f 
akdk 

-?IT5S^>' *-0 

<2£[error]   (22) 

where #(u)sis as defined-earlier, and / is an arbitrary non- 
negative integer. From (17) as well the fact that the Poisson 
cdf is a decreasing function of the mean, an upper bound on 
the. total error probability, is 

1   dk 

(21)      2P[error]s 1 + jj - — [e2*>i(- v)-*(«)]„ 
*-o 

(23) 

Both (22) and.(23) depend on *(i>), which is computed in the 
Appendix. 

In the next lemma, we show that the bounds in (22) and (23) 
converge as y -* oö. 

Lemma 3: Let / be an arbitrary, nonnegative integer. 

k-0 

= lim l-4ß iUH kl 
(2f)*e k„-2{ 

'akdk        I 

*-0 k\dvk 

Proof: We rewrite (22) as 

l-4ß WH* (2j-)*«r2f 

-ElP[N(aA%)xl\{Adt,0xtsT}))<;2P[crTor). 

Taking limits of both sides as y -* oo, we have 

P[N(2ftHl) +1 - lim E[P[N(fiA")*l\{AOtt 0£tt£ T}]) 
y-m 

s2P[enor]. 

The last two terms cancel by an application of the bounded 
convergence theorem, and the continuity of the Poisson cdf 
with the mean. The same result follows from the limit of (23) 
by similar arguments. • 

Since the upper and lower bounds result by replacing the 
mgf of l/rf0

rcos A6, dt by that of l/rf0
r(l - A6)/2) dt, it is 

of interest to explore the difference between the mgf's of the 
two random variables. In Fig. 2, we compare the mgf of \/T 
lo cos Aß, dt via Monte Carlo simulation to the theoretical mgf 
of 1/7" {J(l - A0*/2) dt fot.y =» 30, which is conservative 
jjta well below the range of values of interest in the analysis of 
the oroposed detector. The theoretical mgf of 1/7" \l (1 - 
aB)/2) dt begins to differ from the mgf of \/T \ J cos A9, dt 
obtained bv Monte Carlo simulation at v = - 6. As seen in the 
Appendix, this sharp rise of the mgf is due to a branch point in 
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Fig. 2.   Momeni generating functions (7 ±= 30). 
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Fig. 3.   Error rate bounds and simulation results (6 photoos/bil). 

the infinite product expression of the mgf. As 7 increases, this 
branch point occurs for smaller values of v. Fortunately, we 
are concerned with the region v G [ - 1, 1] where we evaluate 
the mgf for the error probability bounds. 

Fig. 3 presents the .upper and lower bounds on the error 
probability of the test in (10) for an optical power of 6 photons 
per bit. Also shown are results cf Monte-Carlo.simulations of 
the hypothesis test. It appears from the simulation results that 
the upper bound is tighter than the lower bound. This is 
because the lower bound on E[P[N(A{) ^ /|{A0„ 0 :S t ^ 
rr\]] obtained in Lemma 2 is derived by trivially upper 
•ounding cos (*) by unity for |JC| > x,. In Fig. 3, it can also be 
:een mat the error probability bounds are discontinuous 
.unctions of -v. These discontinuities occur for values of (f, 7) 
vnere the suboptimal threshold, given by the RHS of (10), 
nanges value. Indeed, these discontinuities result from the 
>se of a suboptimal threshold. As the LHS of.(10) is integer- 
'aiued. it is straightforward to optimize the threshold so as to 
lunimize either the uoper or lower bounds. Because of the 
«tfitness exhibited by the upper-bound, we choose the 
hreshold function which minimizes (23). Additionally, since 
ne process {Xj'>, t G [0, T)} is close to the mean E[\M] for 
iioaerate v, the suboptimum threshold function in (10) is 
4tiai to the optimized threshold function except in very small 

intervals in the range of interest of 7. In Fig. 4, we have 
displayed the lower envelope of the upper bounds correspond- 
ing to all integer thresholds, (which is, obviously, an upper 
jöund to the error probability of the test obtained with the 
jpnmum threshold) together with the lower bound computed 
a trie threshold that minimizes the upper bound for several 
•aiues of f . That is, Fig. 4 displays (22) and (23) replacing / by 

•he optimized threshold function. 

1 1 
(a) (b) 

Fig. 4.   (a) Error probability bounds with optimized threshold, (b) Error 
probability bounds with optimized threshold. 
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Fig. 5.   Bounds on the power penalty of proposed DPSK receiver. 

The power penalty is an alternative way to characterize the 
receiver performance. Fig. 5 shows bounds on the power 
penalty of the proposed DPSK receiver at 10"' BER. These 
curves were obtained by recording the values of y, for fixed 
optical energy, at which the lower bound (22) and upper bound 
(23) were equal to 10"'. The optimized threshold was 
employed for these curves as well. It should be noted that the 
lower bounding curve in Fig. 5 is a smooth lower bounding 
envelope to the power penalty data. By comparison, the power 
penalty for the balanced DPSK receiver as described in [2] is 
always greater than 3 dB, and attains this value only as 7 -* 
00. As Fig. 5 illustrates, the power penalty for the quantum- 
limited DPSK receiver is below 3 dB for 7 > 700. 

rv.SUMMARY 

In this paper, we have analyzed the error probability of an 
asymptotically quantum-limited direct-detection DPSK re- 
ceiver. The receiver consists of a delay-and-sum optical 
preprocessor in tandem with a photoelectric converter and an 
integrate-and-dump circuit. The output is initially compared to 
a suboptimal threshold that was derived under the assumption 
that the conditional rates are constants. We tightly bounded the 
error probability for arbitrary thresholds by developing upper 
and lower bounds on the conditional intensities of the photon 
point process at the photodetector. Prompted by the tightness 
of the upper bound, we then improved the receiver perform- 
ance by minimizing the upper bound over all integer threshold 
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levels/This, optimized threshold coincides with the RHS of 
(10) except in very, small: intervals in the .range of 7. The 
power penalty bounds were computed using the optimized 
threshold function, and appear in Fig. 5. While the balanced 
DPSK receiver analyzed in [2] had a power penalty greater 
than 3 dB, the receiver.presented here had a power penalty less 
than 3 dB for-reasonable values of 7. 

APPENDIX 

MOMENT GENERATING FUNCTION OF l/2T\l&d] dt 

In this section, we find an expression for the moment 
generating function of the random variable 1/27* jj A02 dt. A 
more general problem has been solved previously [12], 
Consider the random process- {zt ä J0 x*h{t, t) dr, t G ffi+ } 
where {x„, a G 8S+} is a zero mean, wide-sense stationary 
Gaussian random process with autocorrelation function Ä(r). 
Then the moment generating function MZl(v) is given in 
infinite product form as 

1 M*(">-n« 
where {X,-, /  =   1, 2  •••} are obtained by solving the 
homogeneous integral equation 

hMc) = (' R(r-c)h(t, r)4>i(j) dr. (A.2) 
Jo 

For our particular case, we have 

t=T 

51 

close to, but not exactly {2x/(y[2nic]2) , n = 1, 2 • • •}. Now 
that the eigenvalues are known, the moment generating 
function of \/2T {J AOj dt may be found by (A. i). 
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h(T, r) = 
IT 

and R(T) as in (8). By substituting these equations into (A.2), 
we find for 0 < a < T 

X;&(<7)=- I7<r- \o-r\)Mr) dr. (A.3) 
7 Jo 

Similar equations result for other values of a. Taking the first- 
and second-partial derivatives of (A.3) with respect to a we get 

T f 
h<t>i(o)=- \  sgn(r-a)<j>i(r)dr   0<a<T      (A.4) 

7 Jo 

and 

2x 
<t>i(°)=—rtf/fr)   0<a<T. (A.5) 

Equation (A.5) suggests the general solution 

4>i(o)=At cos w/ff+Bisin w/ff   0<a<T.     (A.6) 

If we substitute (A.6) into (A.3) and (A.4) to solve for the 
unknowns A/, uh and Bi, we find that {X,, / = 1, 2 • • •} are 
the solutions to 

1   ,/2xT .      J2TT   , , 5TT 
-    -—sin =l+cos    —- — . 
? \ 7 X,     \ 7 X, \ 7 X, 

Included among these eigenvalues are {2x/(y[2n + l]2x2), n 
= 0, 1,2 • • •}. The remaining portion of the eigenvalues are 
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Multiple-Access Channels with Memory 
with and without Frame Synchronism 

SERGIO VERDU, SENIOR MEMBER, IEEE 

Abstract—Tht capacity region of frame-synchronous and asynchronous 
discrete two-us»r multiple-access channels with finite memory is obtained. 
Frame synchronism refers to the ability of the transmitters to send their 
codewords in unison. The absence of frame synchronism in memoryless 
multiple-access channels is known to result in the removal of the convex 
hull operation from the expression of the capacity region. We show that 
when the channel has memory, frame asynchronism rules out nonstahon- 
ary inputs to achieve any point in the capacity region, thereby allowing 
only coding strategies that involve cooperation in the frequency domain but 
not in the time domain. This restriction drastically reduces the capacity 
region of some multiple-access channels with memory, and in particular the 
total capacity of the channel, which is invariant to frame asynchronism for 
memoryless channels. 

I.   INTRODUCTION 

THE CENTRAL result in multiuser information theory 
states that the capacity region of a two-user discrete 

multiple-access channel is equal to the convex closure of 
the set of rate pairs (Ä,, R 2) satisfying 

0^R^I(X;Z\Y), 

Q£R2^I(Y',Z\X), 

J^ + ÄjS/U.y-.Z) (1) 

for some independent input distributions X and Y and 
output distribution Z. This result was obtained by 
Ahlswede (1] in 1971 under the key assumptions that the 
channel is memoryless and frame (or block)-synchronous, 
i.e., the beginnings of the codewords sent by the transmit- 
ters coincide. In the absence of frame synchronism, an 
unpredictable offset exists between the epochs at which the 
codewords of each user are received at the decoder. Even 
though the receiver can easily acquire timing synchronism 
with each user and hence know the value of the offset prior 
to decoding, the transmitters must encode their messages 
without knowing the offset between their codewords. As- 
suming that the offset can be guaranteed to be negligible 
with respect to the codeword length (eg., if an upper 
bound on the offset is known by the transmitters), Cover 
et al. [5] and Narayan and Snyder (15] proved that the 
capacity region and the cutoff rate region, respectively, of 
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the discrete memoryless multiple-access channel are the 
same as in the frame-synchronous case. Poltyrev [18] and. 
independently, Hui and Humblet [12] have shown that if 
no information on the actual value of the offset is available 
to the transmitters (i.e., if the channel is "completely" 
frame-synchronous), then the capacity region of the dis- 
crete memoryless multiple-access channel is as stated above 
but without the convex hull operation. This implies that in 
most memoryless channels of interest, frame asynchronism 
does not change the capacity region, the most well-known 
exceptions being, perhaps, the Massey-Mathys collision 
chan il without feedback (13] and the counterexamples in 
[6, p. 287] and [3J. Furthermore, the Poltyrev-Hui- 
Humblet result implies that the maximum achievable rate 
sum (Ät + Rt) (or total capacity) of the memoryless multi- 
ple-access channel is never decreased by the lack of frame 
synchronism, because the rate sum of any convex combi- 
nation of rate pairs is equal to the convex combination of 
the respective rate sums. As we shall see, these conclusions 
are no longer true when the multiple-access channel has 
memory. 

Even though the study of the capacity of single-user 
channels with memory has occupied a prominent position 
I-, the development of the Shannon theory, multiple-access 
channels with memory have received scant attention in the 
literature (see van der Meuten [14, open problem 12]). 
Aside from their inherent conceptual and practical inter- 

. est, multiple-access channels with memory play a key role 
in the modeling of symbol-asynchronous channels.1 These 
are continuous-time channels where each codeword sym- 
bol modulates a finite-duration signal waveform and the 
transmitters do not cooperate so that the symbol epochs 
are aligned at the receiver. Since each symbol overlaps 
with two consecutive symbols transmitted by the other 
user, the equivalent discrete-time multiple-access channels 
required to model symbol-asynchronous channels have 
memory [21]. Therefore, the study of multiple-access chan- 
nels where the transmitters are completely asynchronous 
leads to frame-asynchronous discrete-time multiple-access 
channels with memory. 

'One more type of channel "asynchronism" is that which allows 
deletions and insertions of symbols at locations unknown to the decoder. 
This has been studied by Dobruthin (7] and by Ahlswede and Gacs (2] in 
the context of single-user and multiple-access memoryless channels, re- 
spectively. 3 

X)18-9448/89/0500-0605S01.00 ©1989 IEEE 
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The multiple-access channel with memory studied in this 
paper has finite input ..alphabets Ax and A2 and finite 
output alphabet B. Except for the general converse theo- 
rem for synchronous channels proved in Section II, our 
results are obtained under the assumption that the multi- 
ple-access channel is stationary and has finite (input) 
memory, in the sense that each channel output depends on 
up to m consecutive inputs of each user, and the outputs 
are conditionally independent given the inputs.2 The mul- 
tiple-access chanriel with finite memory encompasses many 
cases of.practical interest such as the symbol-asynchronous 
channel.and channels with finite-length intersymbbl inter* 
ference; its capacity has been solved in the single-user 
case in the works of Tsaregradsky [20], Feinstein [8], and 
Wolfowitz [22]. 

As usual when dealing with sources or channels with 
memory, the capacity region of the multiple-access channel 
with memory does not admit single-letter characterizations 
and, rather, is given in terms of a limit of regions. This fact 
does not curtail the applicability or interest of these results 
because those, limits are computable, as we show in several 
examples where they result in explicit closed-form expres- 
sions. Moreover, we provide a theorem (which generalizes 
Wolfowitz's result 122, theorem 5.5.1] on the speed of 
-onversence oi single-user capacity) that allows the com- 
mutation of the capacity region of the channel with mem- 
>rv up to any desired, degree of approximation via the 
•omouiation of achievable regions for memoryless chan- 
ieis. 

As in the case of the memoryless multiple-access chan- 
nel, the frame-synchronous channel with memory is shown 
to satisfy the time-sharing principle, i.e., its capacity region 
is convex. As a form of cooperation in the time domain, 
time-sharing requires nonstationary input distributions. 
Note that, while stationary inputs always achieve capacity 
in time-invariant single-user channels, there are time« 
invariant multiple-access channels (e.g., the aforemen- 
tioned channels whose capacity region is decreased with- 
out frame-synchronism) that require nonstationary inputs 
to achieve all points in the capacity region. In this paper 
we show that only stationary inputs are allowed for 
frame-asynchronous multiple-access channels with mem- 
ory. Hence cooperation between the users is beneficial in 
the frequency domain (dependent inputs are necessary to 
achieve capacity because the channel has memory) but not 
in the time domain due to the lack of a common time 
eierence. The ooposite situation is encountered in the 
rame-svnchronous memoryless multiple-access channel, 
vnere it is enough to restrict attention to independent 
nDut sequences and time-sharing (hence nonstationary) 
nouts may be required to achieve capacity. In the light of 
iur results, the Poltyrev-Hui-Humblet result for memory- 
ess channels is a consequence of the nonstationarity of 
lme-sharinx strategies. 

Tie results and oroof techniques of lhis paper easily generalize to the 
ase when lhe outputs are conditionally -vdependent given the inputs, 

;.e„ when all pain of subsets oC random variables whose indices differ by 
more than m are independent 
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The actual impacMhat the lack of frame synchronism 
(i.e., the restriction to stationary inputs) has on the capac- 
ity region of the multiple-access channel with memory is 
quite diverse. On one hand, there are many frame-synchro- 
nous channels (e.g., the symbol-asynchronous multiple- 
access channel considered in [21]) whose capacity regions 
are achieved by stationary inputs, and therefore, they do 
not decrease if the users are not guaranteed to transmit 
their codewords in unison. On the other hand, we show in 
this paper the existence of channels with memory where 
hot only the capacity region but the total capacity is 
drastically reduced by the lack of frame synchronism. 

II.   FRAME-SYNCHRONOUS CAPACITY REGION 

We give first a general converse coding theorem for the 
discrete frame-synchronous multiple-access channel that 
puts no restrictions on its transition probabilities. 

Theorem 1: The capacity region of the discrete frame- 
synchronous multiple-access channel satisfies3 

Cc closure (liminf-cJ (2) 
\ »-»00   ft      I 

wnere 

v-yi 
U ({Rx,R2):QzRlzI(X*;Z''\Y'') *****   * 

0^R2^I(Yn;Zn\Xn) 

Rj + AjS/fX-.r-.Z")}  (3) 

and the union is over independent «-dimensional input 
distributions. Note that the convex closure of C„ is the 
capacity region of the discrete memoryless multiple-access 
channel whose input and output alphabets are A*, A\, and 
B", respectively, and whose transition probabilities are 

Proof: We need to show that, for all 0 < t < 1, every 
«-achievable rate pair (Rv R2) belongs to the right side of 
(2). If (Rv R2) is «-achievable, then for all y > 0 and for 
all sufficiently large n there exists an («, Af„ A/2,<) code 
(i.e., a code with block length «, A/, codewords for user i. 
and average probability that both messages are correctly 
decoded greater or equal than 1 - <) such that 

logM, 
-£Ä,-Y»       <-l,2. (4) 

Fix one such code and let Sj and S2 denote independent 
random variables uniformly distributed on {l,---,/Vi\}, 
and {V • •, A/j}. The message transmitted by user / is a 
realization of S,. Let Z" denote the output of the channel, 
when Sj and Sj are transmitted using the above 
vrt, A/„ M2,<) code, and let (S„S2) be the messages se- 

5AU the logarithms, exponentials, entropies and mutual informations in 
this paper have a common arbitrary base. 
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lected by the decoder. The Fano inequality states that 

H{SltS2\Z") Zlog2+ J?[(ilt Si)-* (S;,£)] 

log MXM2   (5a) 

i/(5l|Z")^log2+?[5l^Sl]log3/l (5b) 

/J(S2|Z")<;log2+i,[S2#.S2]log3/2.        (5c) 

Since the average probability of error of the code does 
not exceed c, the probabilities in the upper bounds of (5) 
can be replaced by c, and because 5t and S2 are uniformly 
distributed, we can write 

/(51;Z")2t(l-0log^/1-log2 (6a) 

7(52;Z")^(l-<)logA/2-log2 (6b) 
/(5„S2;Z")^(l-()logA/1A/2-log2.       (6c) 

If /,: {1,- • •, M,} -» Al denotes the code book of user /, 
then since Sx and S2 are independent, 

/(/i(5,);Z-|/2(^))-/(/i(Si):/2(^)) 

+ /(/,(51);Z-|/2(52)) 
-l(h{Sx);Z\f2(S2)) 

i/(/i(^i);Z-) 

s/ta;Z") (7) 
where the last inequality follows from the data-processing 
lemma. In a similar way, we obtain 

/(/a(*);Z"|/ite))*/te;Z") (8a) 

/(/I(5|),/2(^);Z-)2:/(SI,^;Z").       (8b) 
Now, putting (4) together with (6)-(8), we get 

log2    1 
(I-CXä.-Y)- —S-Zf/AJsZ-l/ate)) n       n 

lo«2     1 
(1-C)(ä2-Y)--~^-/(/2(52);Z-|/1(51)) 

n /I 

(l-c)(Äl + Ä2-2y)-^si/(/l(Sl),/a(SI);Z") 
n       n 

which implies that 

v. /lo»2  lol2\    *., 

for all sufficiently large n, and consequently, 
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the same generality as Theorem 1. We will henceforth 
focus our attention on the following class of multiple-access 
channels with memory. 

Definition: A multiple-access channel with finite mem- 
ory m is one whose channel transition probability satisfies 

Pz-\ir.Awv' • *. *,,I<V •'. a». V • *. K) 
" Pzt,~.Zm.üX,.:-. *._,. *!.-. Ym.x 

•(^l.- * * • »"«-llfll.- * * • «*-!• V • * • bm. ,) 

• riA(H'*la.-**i.---.ai.*.-m*i.-•••*.)   (10) 
j —/it 

for all /t > 0. 
This implies that the outputs Zm>- • •, Z„ are condition- 

ally independent .given the inputs, and each of them de- 
pends on m consecutive inputs of each user, thus encom- 
passing intersymbol interference of finite duration. This 
definition allows us to handle the boundary outputs 
Zlt« • •, Zm_t (which depend on fewer than m input sym- 
bols from each user) in any arbitrary way, and it i: 
therefore preferable to the single-user definition of [8] and 
[22] where the boundary outputs are not available to the 
decoder.. As we shall see, the capacity region of the multi- 
ple-access channel with memory depends only on the tran- 
sition probability pc and not on the conditional distribu- 
tion of the first m -1 outputs. 

In what follows it is convenient to refer to a memoryless 
multiple-access channel derived from the channel with 
memory in the following way. 

Definition: Let / «t m. The /-block multiple-access chan- 
nel derived from a multiple-access channel with finite 
memory m is a memoryless channel characterized by input 
alphabets A[ and A2, output alphabet B'~m*\ and transi- 
tion probability 

p({^mr",w,)l(aU'",a,),(b1, ••-,*,)) 

- n/,c(Hr/ifl/-*+i.---.fl/.v*+i. ••••*/)• (ii) 
i — m 

It follows from (1) that the capacity region of the /-block 
memoryless multiple-access channel is equal to the convex 
closure of 

Q," U URvR2)'.0^R^l{X';Z'm\Y') 
*.y 

Q*R2Zl(Y';Z'm\X') 

•or all sufficient large n, or in other words 

(9) l-c)(Ä1-2y,Äj -^yJeliminf-C,,. 
. -*oo   n 

lowever, since c and y are arbitrarily small, (9) implies 
hat (Ai, A 2) 

must be the limit of a sequence of. points 
lelomting to UmM,,^m(l/n)CH, and therefore it belongs 
0 the right side of (2) (as was to be shown). 

\s in the case of the single-user channel with memory, 
no universal direct coding theorem is known to hold with 

iCl + Ä2s/(^.rl;Zi,)}(12) 

where the union is over independent distributions on the 
«ets A[ and A'2, respectively, and Zj,«(Zm,- • •, Z,). The 
direct coding theorem for the multiple-access channel with 
finite memory gives the following achievable region as a 
function of the achievable region in (12) for the /-block 
multiple-access channel. 

Theorem 2: The capacity region of the frame-synchro- 
nous multiple-access channel with finite memory m satis- 
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ies 

1 
(13) :o closure I U TÖil 

••Um1      j 

'roof: We need to show that, for all l>m and 
Ä„ R2) e (l//)ß, and for every 0 < < < 1 and y > 0, there 
xist in, A/„ A/2,<) codes for all sufficiently large n such 
nat 

os A/, 
-Ä.-Y,      i-1,2. 

hen Ul>m(l//)<2/ will be an achievable region and so 
viil its closure since the caoacity region is a closed set. 

•-irst, we will fix / and show the existence of said codes 
or sufficiently large multiples of /: n » kl. Since Q, is an 
•cnievable region of the /-block memoryless multiple-access 
channel, if (R\, R'2) e Q„ then for every y, > 0 and all k 
ufficiehtlv large, there exist (k, A/,, A/2,e) codes for the 
-block channel such that 

os A/, 
*-R',-y„      /-1.2. (14) 

>Iow. we fix one such code and view the symbols in each 
JI its codewords sequentially. In this way, we have a code 
or the multiole-access channel with memory with block 
en gth kl and M, codewords for user /. Its probability of 
rror is not greater than c because if we were to constrain 
ne decoder not to use the outputs 
-   ...   7 7 

''+«-1»' ' '' Z(*-l)/+l'* * • i Z(jk_l)/+m_j, 

nen the situation would be entirely equivalent to decoding 
n the /-block memorvless channel where there is no inter- 
erence between the /-blocks. Gearlv, if those outputs ire 
iot aiscarded. the probability or' error cannot increase. 
>Iow letting 

Ä{,Ä2)-/(Ä„Ä2).eß, Y,-T 
14) results in 

otM, y 
d    -R'    2 (15) 

=s we wanted to show. However, this only proves (he 
xtstence of reliable codes with the desired rates for block 
engths that are multiples of /. To find codes whose block 
.ength is n*°kl + t, /«l,-",/-l, we append t arbitrary 
nDut symbols to each of the codewords of the foregoing 
kl, A/„ A/j.O codes, and let the decoder discard the last / 
•umuts. Then, it is clear that the probability of --rror 
emams unchanged and the rates of the new codes satisfy 
via (15)) 

R.—rr— r,      /-1,2.  (16) 
otM, 
<7+7 " R'~ kl + tn'~ kl + tl' 

For sufficiently large k, however, tR,/(lk + t)<y/2 in 
•vnich case the right side of (16) can be further lower- 
•ounded bv R{ - y. Thus even though the new code has 
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lower rates than the original code with block length kl, the 
decrease is inappreciable for large k. 

The following result proves that the inner and outer 
'lounds shown in Theorems 1 and 2 coincide. 

Theorem 3: The capacity region of the frame-synchro- 
nous multiple-access channel with finite memory m is 
given by 

C » closure    U - Q„ J » closure lim inf - ß, 
n 2<n \ d-»oo n 

«closure  Iimsup -C„ I »closure liminf -cA.  (17) 
\ »-<»   n    ) \ »-<*> n    ) 

froof: The essence of the proof is the following in- 
equality which holds for all J t. m: 

.'       r": Z') -l{X'tY
f, Z'm) + l{X', Y'; Z-l\Z'm) 

S/(X',y';Zj,) + (m-l)log|B|     (18a) 

and simiiarly, 

/r^,;Z,|y,)i/(^';Zi,|y,) + (m-l)log|B| (18b) 

!(Y';Z'\X')zl{Y'\Z'JX') + e"-l)\°g\*\ (18c) 
which imply that 

C,cQ, + (m-l)\o%\B\U (19) 

where U is the unit square {(xx, x2): 0 £ xx £ 1,0 £ x2 <, 1}. 
"Ye now have the following chain of inclusions: 

closure! Iimsup-CHI c closure Iimsup -Q, 
r-»oo    "      / \   n-»oo    " 

c closure    (J -fi« 

CC 
1 

c closure Urn inf - C„ 
\ «-»oo n 

c closure I lim inf-ß„    (20) 
v n-»oo n     j 

where the fust and last inclusions follow easily from (19) 
and the third and fourth inclusions are Theorems 2 and 1, 
respectively. Finally, since the liminf is a subset of the 
Iimsup all the inclusions in (20) are in fact equalities. 

The closure operation in (17) is indeed necessary be- 
cause even if Iim^^C/n) exists, it may not be a closed 
set (e.g., if the first m-1 boundary outputs are indepen- 
dent of the inputs). At first sight it may seem surprising 
that the capacity region of Theorem 3 does not involve an 
explicit convex hull operation, especially in light of the fact 
ihat the particular case of the frame-synchronous memory- 
less multiple-access channel is known to require the convex 
hull operation. In fact the capacity region of Theorem 3 is 
already convex because it is given as a limit of achievable 
regions for n-block channels whose input distributions are 
allowed to time-share among several distributions as a 
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result of the assumption that the users are frame-synchro- 
nous. This is formalized in.the following result. 

Corollary (Time-Sharing Principle): The capacity region 
of the frame-synchronous multiple-access' channel with 
finite memory is a convex set 

Proof: It follows from Theorem 3 that the capacity 
region is independent of the conditional probability of the 
(m-1) boundary outputs; therefore, we can prove the 
corollary for any arbitrary choice of this probability; in 
particular, we shall assume that Zv- • •, Zm_v are indepen- 
dent of the inputs. Then we can follow the same approach 
as in the proof of the time-sharing principle for memory- 
less channels [6] which juxtaposes two codes. If we impose 
the restriction that the decoder must discard the leading 
(m-1) output symbols of each of the two blocks, then the 
decoding of the new code is decoupled and equivalent to 
the case when the codewords are sent individually. There- 
fore, the error probability of the new code is better than 
the sum of the probabilities of error of the two component 
codes, the rate pair is a convex combination of the rate 
pairs of both codes, and the proof proceeds as in the 
memoryless case [6, p. 272]. 

Theorem 3 can easily be generalized in several direc- 
tions. For example, the proof of both the converse and the 
direct theorems remain essentially unchanged for continu- 
ous-alphabet channels with input constraints. Another 
generalization which is of interest in the symbol-asynchro- 
nous channel [21] is that of a compound multiple-access 
channel where the transmitters only know that the channel 
belongs to an uncertainty set T (cf. [6, p. 288] for the 
corresponding memoryless result). In that problem, the 
proof of the direct theorem requires very little modifica- 
tion since the construction of codebooks therein is inde- 
pendent of the channel, and the proof of the converse only 
needs to take care of the fact that a good code must be so 
for any possible channel in the uncertainty set. Then 
Theorem 3 holds by replacing C„ by 

Q- U   fl {(RvR2y.0£RlZl(X";Z"(u)\Y") 

0^A2s/(y";Z-(w)|X") 

Äf+Ä2i/(*\:r";z»)} 

where Z"(u) is connected to X" and Y" through channel 
wer. 

For the Durposes of illustration we will show several 
xamDies where the limits of Theorem 3 are explicitly 
•omputable. However, in cases without much structure an 
uternative to the analytical computation of those limits is 
heir numerical aoproximation. This can be done using the 
ollowing theorem, which allows the computation cf the 

capacity region as accurately as desired via the computa- 
tion of achievable regions for memoryless channels. Theo- 
rem 4 is a generalization of the single-user result obtained 
by Wolfowitz (22, theorem 5.5.1].4 

'Added in proof: Theorem 4 jives * solution to Problem 1 in (23). 
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Theorem 4: The capacity region of the frame-synchro- 
nous multiple-access channel with finite memory satisfies 
for every / £ m 

closure I convex - Qt I 

/ 1    \    m-1 
c C c closure i convex - Q, + —— log | B\U   (21) 

where U is the unit square {(xv x2): 0 £ x^ £ 1.0 £ .r2 £ 1}. 

Proof: The inner bound is a consequence of Theorem 
2 and the corollary to Theorem 3. To show the upper 
bound, fix / £ m and notice that for any n = kl. Xn, and 
Y", 

I{Xn,Y"\ZH) 

jm ll y  V' 71 72/    •.. 7*' ^ 

+ i(x\Y\z?-xz',tT*x 

y ... 7(*-l)/+m-l|7/ ... 7kl \ 

*k(m-\)log\B\ 

+ l{X\y;Z'm-Z^{k.w) 

-/c(m-l)log|B|+/f(z;.--Z*'+(ik.1)/) 

-ff(zj,...zfl_1),+j*\r-) 

S*(m-l)log|B|+ tn(z'my,) 
7-0 

-H(z'm.--ZtL_l)l+m\X\Y") 
»*(m-l)log|B| 

+ *I (*(z'X.) - H{z'm%\xr4, tf tf)) 
i-o 

-*(m-l)log|B| 

+ I1/(^.TO;zj.*4i) (22) 

where the next-to-last identity follows from the definition 
of the channel with finite memory. Similarly, we can 
upper-bound 

7(^";Z"|r")i*(«-l)Iog|B| 

+ ZllXltfrZWAYiy)   (23a) 
J-o 

7(y";Z"|Jlf")iJk(ifi-l)Iog|B| 

+'liiirlifiizZWy). (23b) 
7-0 

However, we saw in the proof of Theorem 1 that if 
{RvR2) is c-achievable, then for all y>0 and for all 
sufficiently large », there exist (», 3/„ M2,i) codes such 
that 

^iA,-Y.       /-1,2 (24) 
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and for some input distributions X* and Y", 
(l-i^otK-loglzIiX'iZ'W) (25a) 
(i-c)logA/2-log2^/(y,;Z''|A'") (25b) 

(l-<)logA/,M2-log2:<;/(X\y'';Z"). (25c) 
Now, combining (22)-(25), we obtain for all sufficiently 
large k 

-[(l-c)logA/,-log2]-(m-l)log|B| 

-[(l-OiogMj-log2]-(m-l)log|B| 

-((l-c)logM,M2-log2]-(m-l)log|B| 

which implies that 

io-cJOogAfplogA/,) 

s convex {0/} + (^+(m-l)log|B|)t/ 

for all sufficiently large k. This together with (24) implies 
that any e-achievable pair (Rx, R2) satisfies 

(l-c)(Ä„Ä2) 
/ 1    \    m-\ 

e closure convex - Q, I + —— log \B\V.   (26) 

Thus if (/?,, Äj) is an achievable pair, then it must belong 
to the closed set in the right side of (26). 

The following examples serve to illustrate the analytical 
evaluation of the capacity region of the frame-synchronous 
multiple-access channel with memory. In Section HI, we 
derive the capacity of these channels in the absence of 
synchronism. 

Example 1: Consider the following multiple-access 
channel with finite (m«2) memory which is a simple 
discrete-time noiseless model of two-user duobinary trans- 
mission: A^ A2-{Q,\), B" {0,1,2,3,4} 
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we have 
/(^.•••.«.•••.JV.Zj.—.zj 

«#(Z2.---,ZJ (28a) 

/(V".*.;z2."-.z.lV".i;) 
-ff(V-.Z.lV-'.0 (28b) 

HYv ••. y»\ z2,- -,zn\xv- • -,*„) 
-»(Zj.-.ZJV.-X.). (28c) 

Moreover, the properties of conditional entropy result in 
//(Zj.-.-.z^+y.) 

£ff(Z2,-,Z„) 
^(Zj.-.z^+yo+tfU.+y,)   (29) 

and 
H(z2,.--,z),i^+y1) 

-ff(z2|*1+yl)+/?(zJ|*l + yl,z2) 
+ ...+//(z,|^1+yl,z2,...,z,_l) 

-ff^+y^+n) 
+ tf(*3+y,i;r1+yI,*2+y2) 
+ -- + ff(z.|Äi+yl,--,x'..I + y..I) 

-Ä(*i+rl,---,*1,+yll)-ff(Xi+yI). (30) 
Also, using the definition of the channel and the fact that 
(Xv- • •, AT,) and (Yv- • •, y„) are mutually independent, we 
can write 

H(Z2,---,Zn\Yv--;Y„) 
-H(^+^2,.-.,^.1+^|y1,-.-,y)1) 
-*(*, + *„•••,*„-, + *„) (31a) 

and, similarly, 
H(Z2,---,Zn\Xlt---,X„) 

-»(n+n.-.n-i+y.)- (3ib> 
Now, putting together (28)-<31), we obtain 

C-closure I liminf 

*.-*i + *i-i + J'i + J'/-i (27) 

ninf-öJ 
-*aa   ft      I 

-closure  liminf IJ {(Äx,Ä^): 

0* Ät*-üT(Xi+ *!,•••, *„-! + *,,) 

0iA2ii/r(n+y2,—,n-l+yj 

.   Äl+Ä22jiif(^+y1,-",^+yj}j 

-closure  liminf U ((/tt,Jl2): 

where, according to Theorem 3, it i< not necessary to 
specify the initial conditions as far as computing the 
capacity region is concerned. To evaluate C, first we 
compute the mutual informations in the definition of QH 
(12). Since the outputs are deterministic given the inputs, 

osÄ2s-ff(y„--,n) 

Ä,+Ä22i-/f(x,+yl,---,A'J,+yj] (32) 



•^••^^"^^ 

VOtOCl: MUITIFU-ACCÖS CHANNELS WIXM MtMOftV 

and since each of the.three entropies in (32) is maximized 
by independent cquiprobablfi. inputs {maxXYH(X+Y) 
over independent binary A" and Y is equal to 1.5 bit and is 
achieved by equiprobable distributions), the right-side of 
(32) is equal to the pentagon C- {0 s /?, £ 1, 0 s R2 s 1, 
Ä, + Ä2£l.5}. 

Example 2: Let Ax \ A2- {0,1,2} and B- {1,2} 

if X,-*0 and y,»0and..y,_, * 0 

,(1/2,1/2), 

if .y, * 0 and *, = 0 and *,_, 
otherwise 

*0 

(33) 

where (1/2,1/2) indicates that z, is equally likely to be 1 
or 2. 

In this channel it is necessary for the encoders to use 
some sort of time-sharing to achieve optimum rates be- 
cause simultaneous zeros or nonzeros and consecutive ze- 
ros result in equally likely outputs. We take the following 
initial conditional distribution (this choice does not affect 
the capacity region but simplifies the proof): 

'l-U^i/M :r.. ^n (34) 

^2* + l 

'2*' 

if^A+,-0 
if **•,*<> 

if*,*-«) 

(35a) 

(35b) 

(1/2,1/2),        ii>,*0. 

We will now investigate the maximum achievable rates 
when transmitter 1 (respectively, 2) sends nonzeros at 
odd-numbered (respectively, even-numbered) times (with 
no restrictions otherwise). Then, it follows from (33) and 
(34) that 

(1/2,1/2), 

(1/2,1/2), 

which means that the channel is actually decoupled into 
two identical memoryless channels whose capacity region 
is obtained as follows. 

If (X2k,Y2k,Z2k) are connected by (35b), then their 
mutual informations are easily shown to be given (in bits) 
Hv 

(*«;Z2*inJ-M^*»-o]/2)-J»[*„-o] 

IV. Z»l*2*)- hh(P[Yu r\])P[Xu * 0] 
(X2k.Y2k\Z2k)-hb(\/2 + P[X2k + Q](\/2 

-'iY2k-l)))-P[X2k-0) 

vnere hh(x)^-x\ogx-{\-x)log{l-x). All these 
nutuai informations are maximized simultaneouslv by 
'\Y2k -1] - P[Y2k - 2] -1/2, and so the capacity region 
if the channel in (35b) is 

J 
UPS 

{QzR^hJ^-p-    U   (0SA,W£)-P 

i<S/?,£l-/>      0^/?2^l 

-<. + R2Z\~p) 
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and the capacity region of (35a) is obtained by interchang- 
ing /?! and R2 in (36). The sum of these two regions 
divided by 2 (since each channel is only used half the time) 
is found -in Fig. l. Another example where the capacity 
region of the multiple-access channel is explicitly com- 
puted is the symbol-asynchronous energy-constrained 
Gaussian channel ([21] is devoted to the evaluation of the 
limit characterizing the capacity region). 

(36) 

Fig. 1.   Achievable regions with and without frame-synchronism of mul- 
tipfe-acctss channel in Example 2. 

III.   FRAME-ASYNCHRONOUS CAPACITY REGION 

Unlike frame-synchronous channels where it is enough 
to consider "one-shot" models in which each user trans- 
mits only one codeword, the (completely) frame-asynch- 

•aonous multiple-access channel cannot be decoupled into 
independent blocks due to the overlap between consecutive 
codewords, and the optimum decoder needs to decode all 
messages simultaneously, i.e., all outputs are useful in 
aiaking decisions about any particular codeword. Ideally, 
the goal would be to analyze a model with doubly infinite 
streams of codewords subject to an arbitrary shift. How- 
ever, to formulate a well-posed problem, it is necessary (at 
'east within the realm of channel block coding) to work 
with a finite number ti, of transmitted codewords per user 
and then analyze the limiting behavior of the capacity as 
S -»oo. Since the offset between both strings is arbitrary, 
the approach we take is to arrange the N codewords of 
cacn user in- a ring (codeword N is followed by codeword 
1) and to model the offset by an arbitrary relative rotation 
of both rings (Fig. 2). As AT-•oo, the radius of the ring 
oecomes infinite, and the ring models the disired infinite 
codeword streams offset by an arbitrary shift because, for 
wach output symbol, the boundary condition at infinity is 
irrelevant. As we will see and should expect (because of the 
finite memory the codeword boundaries become irrelevant 
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USER I 

USER2 

OUTPUT 

Fig. 2.   Four-nng with codeword length equal lo 12 and memory length 
m~2. 

as the codeword length goes to infinity), the capacity 
region (per channel use) of the Airing does not depend on 
/V, and therefore, it is not necessary to investigate its 
limiting behavior. The main disadvantage of an alternative 
linear arrangement of the N codewords is that, due to the 
lack of synchronism, not all the codewords overlap with 
the other user's stream, and those that do overlap have 
different decoding error probabilities depending on the 
offset and their relative location to the boundaries. Note 
that this problem can be partially avoided by restricting 
the shift not to exceed the length of a codeword, but since 
the total number of codewords is assumed finite, it can be 
argued that such an approach would assume a certain 
degree of cooperation between the transmitters. 

Each transmitter encodes its N messages independently 
(each message is drawn independently from {!,•••, M,)) 
and is not restricted to use the same code book for each 
message. While the receiver acquires the location of each 
codeword prior to decoding (this can be easily accom- 
plished using synchronization prefixes), the messages are 
encoded-without knowledge of the relative rotation. There- 
fore, the channel is a decoder-informed compound chan-% 

nel, which is equivalent, from the viewpoint of finding the 
capacity region, to a bank of parallel multiple-access chan- 
nels (one per rotation value) sharing the same inputs. 

Theorem 5: 
W-ring, then 

If (Ä,, R2) is an achievable rate pair for the 

1 
(/?,, R2) 6closure   liminf —Q%N 

\ «-»oo nn 

c closure (lim sup -Q% 
\   /l-OO    " 

- closure   lim sup -C* (37) 

where Q* and C/ are defined as in (12) and (3), except 
that the union therein is taken only over n-dimensional 
distributions induced by stationary probability measures. 

Proof: There are N (n, M,) code books for the ith 
user and each of the N messages are encoded indepen- 
dently. Thus the (nS, M,H) juxtaposition cod« book of the 
»th user for the tf-ring consists of the Cartesian product of 

the N- (n, M,) code books. If (Ä„ Ä2) is achievable, then 
for all « > 0, 5 > 0 and all n sufficiently large, there exists 
a (n/V, M", A/*,«) juxtaposition code for the N-rtng such 
that 

log Mt 

n 
i.e., there exist N (n,M,) code books for user 1 and N 
(/i, A/2) codebooks for user 2 (which are independent of 
the offset) and a decoding strategy (which depends on the 
offset) such that the average (over the set of equiprobable 
messages) probability of error does not exceed < regardless 
of the offset. Select one such code and denote the indepen- 
dent messages of both users by (Slt---,SN) and 
(T,,-- -,TN), respectively. Then, the Fano inequality im- 
plies that 

H{Sv---tSH\Z) £€\ogMC + \og2  (38a) 

H(Tlt-~,Ts\Z)Z€logMf + log2  (38b) 

//(s„---,5w,r„---,rAr|Z)s<iogA/1
ArA/i

v 

+ log2 (38c) 

where Z is the distribution of the totality of the outputs of 
the tf-ring. If X and Y are the distributions of the A[N 

and A\N valued random variables resulting from the en- 
coding of the messages by the selected code books, the lack 
of frame synchronism is modeled by assuming that the 
inputs to the Af-ring are rotated versions of X and Y. If x 
is an A/-vector, then rT(x) denotes an M-vector whose 
components coincide with those of x rotated by r posi- 
tions, where T e {(),• • •, M -1}, i.e., 

rT(fl,,- • •, aM) - (aw_T+1,- • •, a„, a„- • •, aM_r). 

Even though it is enough to consider a relative rotation of 
both rings, it is more convenient in the proof of the 
converse to allow a rotation of both input rings with 
respect to an arbitrary reference. Denoting the rotations by 
Tj and Tj, the data-processing lemma implies that 

/(rnW;Z,rTi(y))*/(V--,S„;Z) 

-ff(V--,S„)-ff(S.---S„|Z) 
i(l-«)logM,"-log2 (39) 

where the last inequality follows from (38a) and with a 
slight abuse of notation we have denoted by rt(X) the 
probability measure that assigns the same mass to 
rT(aV'",aM) as X assigns to (a„»",aw). From the 
independence of X and Y and (39), we have that 

;(r;i(X);Z|rrj(y))i(l.-0logM/'-log2. 

However, since this is true regardless of the actual value of 
the offsets r, and T2 we can write 

1   HN-I 

(l-OlogM.'-lc^—  E l{rri(X);Z\rti(Y)) 

-!{rJX);Z\c(Y)) (40) 

where the probability measure c(Y) is equal to the follow- 



*VW—"H».t| 

VEKDü: Mutnru-Accsst CHANNEU WITH MEMORY 

ing mixture of the probability -measures r,(K),  T2 = 

0,---,/itf-l: •..••; : 

1    nN-\ 

«"   r-0 
(41) 

and the second equation in (40) follows from the fact that 
the distribution of the conditioning random variable enters 
linearly in the definition of conditional mutual informa- 
tion. 

An Af-dimensional probability measure p will be re- 
ferred to as circulant if rr(p)». p for all T, and we will say 
that p is stationary if, for any subset {i"i •"'"»}c 

{l,---,iV} and shift j>0such that {i\+s,'--,i, + s}cz 
{l.-",M). 

P(ott,"-,a,t)"p(all+t,'";a,i^) 

For any probability measure p, c(p) (defined in (41)) is a 
circulant probability measure. To see this note that, for 
any \<= {0,---,Af },J 

1  S4-X i st-i 

rdc(p))~77 I r(r+X)w(p)-T7 Z rT(p)'c(p). 
*r-0 M r-0 

Furthermore, it is easy to check that an M-dimensional 
circulant probability measure is an M-dimensional station- 
ary probability measure. Now, since (40) holds for all 
T,€{0,'--,/!tf-l}, 

1   nN-l 

(l-*)log<-log2s-- I /fo(*);Z|c(K)) 
""    T,-0 

*I(c(X);Z\c(Y)) (42) 
where the second inequality follows from the concavity of 
mutual information. Proceeding in a similar way we obtain 
from (38) 

(l-c)logJ/j"-log2s/(c(K);Z|c(Jl0)     (43) 
and 

(l-c)logA//'A/2
w-log2s:/(c(Jf),c(K);Z). (44) 

If m -1 consecutive components of Z are discarded, then 
we have a channel analogous to an ntf-block channel 
whose B*N~m*1 valued output random variable is denoted 
by Z£*. Then, the following upper bounds follow in a way 
similar to (18) 

l(c{X);Z\c(Y)) 

S/(c(*);Z:"|c(K)) + (m-l)lo||*|    (45a) 

/(c(K);Z|c(*)) 

S/(c(K);Z;"|c(J0)+(m-l)lo||*|   (45b) 
I(c(X),c(Y);Z) 

i/(c(^).c(K);Z:") + (m-l)log|B|.  (45c) 

Finally, it follows from (38), (42)-(45) and the stationarity 

(')«« (l,---.M) a equal (o the remainder 1-qM where ^ is an 
inicfer. 
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of c(X) and c(Y) that 

[l-cj(Ä,-5,Ä2-3) 

,0g^ + ^,0g,Ä,](U)e^0- 
Thus if n> [log2 + (,^-l)log|5|]/(5(l-<)]. then 

[l-<](Rl-2S.R2-28)e~Q^ 

which implies that 

n-«](Ä,-2*,Ä2-2*)eHminf-5-(?flV 
n —aa   fl/V 

However, since c and & are arbitrarily small. (/?,. /?,) has 
to be a limit point of a sequence of points belonging to 
liminf(,_.00(l//iAOÖ»*. and (37) follows. 

Theorem 6: The following set is an achievable region 
for the Af-ring: 

closure       U    {(*„Ä2):0£Ä,£/0t;r;MzM 
I   /»».Mr 

stationary 

where 
(46) 

• /(fWzM- Mm -/(*"; Z»m      (47a) 
»-•oo n 

/(fWzlfx)- Uni -/(yjZ-l*")      (47b) 
»-•oo /T 

'fox-fr^z)- Um -/(Af\r;Z")     (47c) 
»-•oo /T 

and X", Y* are the «-dimensional distributions induced by 
the stationary probability measures p^Py, and Z* is the 
output of the frame-synchronous multiple-access channel 
with memory when the inputs are independent with distri- 
butions X" and y\ 

Proof: The existence of the limits in (47) is an easy 
consequence of the stationarity of the inputs, the time- 
invariance of the channel, and the existence of entropy rate 
for any discrete stationary process (e.g., (9)). The symbols 
transmitted by each user wUl be denoted by 

ym [yd')* *-i,---,tf,/-i,•••.«} 
where n is the codeword length and N is the number of 
codewords in the ring Similarly, the output symbols are 
labeled by 

*~ {2k(i),k»l,'",N>i"l,"-.n}. 

If the users were frame-synchronous, then zk(i) would 
depend on {xk(i- j) (or x(k.i)tj(l-j + n) if /"£ j))fö 
and {yk(i~j) (or ytk.n„(i - j + n) if i^j))7.'o: 

The 

lack of frame synchronism introduces a relative rotation of 
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the rings which can be quantified by s _ {0,- • •, N -1}, 
the number of codewords shifted, and r e {0, •••,»-1}, 
the rotation modulo the codeword length. More precisely, 
the input xk(i) is aligned with yk(i), defined by 

.      Mj)'\y(l-„l)H(j-r + n),        l_y_r 
or, equivalently, 

fy(,*k)fl(
r + i^ i + rzn 

[P(,+k+i)lt(
r + '-»)<        i + r>n. 

ä(0- 

We will now fix an integer 7 _ 0 independent of all other 
parameters and force the decoder to discard the following 
output values: 

zt(/),/_7; /- {/ + m,---r}u{/ + m + r,---,rt} 

which corresponds to discarding, the l+m—l symbols 
following the beginning of each received.codeword. Note 
that if / is large enough, 7«0; however, we will eventu- 
ally be interested only in the asymptotic behavior as n -* oo, 
in which case 7 is practically identical to {1,* • •,«}. Note 
further that the relative shift r is allowed to be any integer 
{0,- • •,«-I}, and so the cardinality of each of the two. 
components of 7 may grow linearly in n. We may rear- 
range the codewords of Fig. 2 in the matrix form shown in 
Fig. 3. In this figure, each codeword of user 1 occupies a 
single row, whereas each codeword of user 2 occupies two 
consecutive rows. The blacked-out outputs correspond to 
the l + m-l symbols following the beginning of each 
codeword which are discarded by the decoder. In connec- 
tion with this figure, it is useful to introduce the following 
notation 

xt-[xk(i),i-l + l,-~r) 

#-{&('). i-/ + l,...,r} 
tf-UOV-' + ' + l."-,«} 
tf- {**(«'). i-/ + m,---,r} 

f£- [zk(i),i-l + r + m,•••,«} 

i-[zk(t),krl,»;N,ieI) 

-{(*£rf).*'-l."-.tf). 

useni 

USER2 

2_    _____    _* 

3_ --J--        ~-3 

4 4 

3 
4 
I 
2 

•i OUTPUT 
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Then, the definition of the multiple-access channel with 
finite memory (10) implies that 

J»_ixf(«l*. 9) - fl npc(2*(')l**('-'n+l),-- 
*-i/«/ 

**(0. ÄÜ-« + l).-".Ä(0) 

•Pz:\x!?k*{z*\xk<y*) (48) 

which implies that the output subblocks {z£, r£, fc = 
V • •, S) are conditionally independent given the inputs 
and only depend on their corresponding input subblocks. 
Notice also that the inputs with indices / e {1,- • •, /} u {r 
+ l,"-,r + /} do not affect any outputs used by the 
decoder. 

We now proceed to show that for any pair (/t*./ty) of 
stationary /-dependent measures defined on the infinite 
sequences drawn from Al and A2, respectively, the follow- 
ing pentagon is achievable 

C(M*,My)-{(Äi,Ä2):   0_ Ä,_ 7(/v,MzlMy) 

0_Ä2_7(My;MzlMz) 

Ri + Ri£l(nx,}iY<Pz)}- 

To this end, we must show that for any fixed (Ä,, R2) e 
C(/ijr,jir)>c>0, and y>0, and all sufficiently large n 
there exist («Af, M,", M2, <) juxtaposition codes for the 
Af-ring such that 

\o%M, 
_Ä,-Y,       i-1,2. 

Fig. 3.   Rearraniemeni of codewords tu Fig. 2 showing discarded out- 
puts^» 2 and m-2). 

i.e., there exist N (n, 3f,) code books for user / (indepen- 
dent of the relative rotation), and a decoding rule (possibly 
dependent of the relative rotation) such that the probabil- 
ity that any of the N messages transmitted by each user 
are decoded incorrectly is not higher than t. The codes are 
chosen as follows. 

Random Coding: The N code books of user / are de- 
noted by {/,/. {1,- • •, M,) -> Af)^ and are the outcomes 
of random selection where each codeword in each code 
book is independently selected with probability 

Pr^mMu-• •.a„) - Pr(<»i»- •'><**) 

me{l,.-.,A/2} 

where X" and Y" are the independent «-dimensional 
distributions induced by (ft*, My)- Tbc overall code book 
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of user / resulting from the juxtaposition of the foregoing   1,- 
N code books is denoted by /,: (1,..... M^-Af". 

Decoding: The decoder performs simultaneous decoding 
of the N messages transmitted by. both users, upon observ- 
ing f and the rotation (r, s), in the knowledge of the code 
books /, and f2. The decoder selects the messages 
(m„ m2) e {V • -, W,}" x {I,- • .,M2)i* if (m„ m2) is the 
unique pair that satisfies 
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•, N}) are independent, then we obtain via (48) that 

'!(*.^2)-   £  log- V-HSL\ 

, Pt!\xt9l{*k\Xk,?k) 
Ptt\ff{2k\9k) 

(52a) 

(/i(«i)./2(«2).«)eyC«.a) (49) 

where 0 < 5 < y, and it outputs a decoding error if there 
are zero or more than one such pairs. The set J(n,S) in 
(49) is the set of jointly typical sequences according to 
three criteria: 

y(/i,a) »/,(rt,5)nyj(/t,8)ny3(/j, 8) 

U(x,y,i)-1-I(X;Z\Y) 
n n 

i*(x,y,i)- £ log    *'" ( _  M 
A-I Pit\xt\zk\Xk) 

[ p±i\xt9*{zk\Xk<yk) 
p±:\xi{2k\Xk) 

'3(JC.^0-   I   lOg —T^JT  

(52b) 

y,(n,a)- (x,j,f) 

PtllxwizftXkJk) 

pq{**) 

•/a(«. *)-{(*.**) 

y,(«,«)- (jc,j,f) 

k(*.*f)-i/(f;i|*) 

-/3(*. .?,*)-^/(*,r;z") 

(52c) 

*») 7     Taking expected values of (52) with respect to (X, Y, Z) 
(*0a) and recalling that the inputs are stationary we obtain that 

l(X;Z\Y)-Nl(X*;Z"\Y») (53a) 

7(f;Z|*)-iV/(y";Z"|^") (53b) 

/(*,?; Z) «#/(*", y";Z") (53c) 
_l_v    where Z" and Y* denote {Z,(»), /€/} and {Y{(i), i 

(50b) 

where 

'i(*.^.2")-log 

'2(x,y,f)-log 

'3(*.i'.2)-log 

Pt\xt(i\x>y) 
Pl\x(f\*) 

Pt\xt(i\*>y) 
Pi{i) 

Note that the expected values' of the functions in (51) 
evaluated with the distribution (X, Y,Z") are equal to the 
mutual informations appearing in (50). We can decompose 
the functions in (51) taking advantage of the assumed 

V••,«}, respectively. Furthermore, since [Z^i), is/} 
(50c) depends on the inputs only through Xf-, X*, ?{-, and Yf, 

and since /iy is stationary and /-dependent, {?{; ?*} has 
the same distribution as {Y£,Yf) and therefore (53) can 
be written as 

l{X\Z\Y)-Nl{Xn\Z"\Y*) (54a) 

l{Y;Z\X)-Nl{Y\Zn\Xn) (54b) 

/(*,f;Z) »#/(*", 7"; Z*). (54c) 
The probability that the transmitted messages (S,, S2) - 

(mlt m_) are not decoded correctly given that (/j, f2) are 
the chosen code books is 

tmtmi(/i,/l)'Pl{Fi('nl).Fl{m2),Z)eJ(n.i)ot 

3(m{, m'2) * {mx, m2) such that 
(F,K), F2(m'2),Z)e J(n, a)|(f,./i) 

-(/i./2).(Si,S,)-K.«2)]. 

(51a) 

(51b) 

(51c) 

/-dependence of the inputs, which implies that the random 
variables  {Xk

L,X£,  k-\,---,N) (and {?£,??,  *»    Averaging over the random selection of code books and 
     invoking the union bound, we obtain 

E[^imi(
FvF2)]^Pl{Fl(ml)tF2(m2)1Z)^J(nMSuS2)^(ml,m2)} 

+   £      £   P[{Fi(mi).F2('n2)J)eM«MSi.S2)-(ml,m2)] 

+   £   /[(f,,(m{),F2(«2).Z)eyl(«,a)K5„5.)-(m„«,)] 

+    £   P[(/i(m,). F2(m_). -_?) « ya(/t,«)|(Sl, S_) - («!, ma)]. (55) 
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The first term in the right side of (35) is smaller than </2 
for sufficiently Targe ri because 

Urn P[{F1(m1),F2(m2),Z)<=Jk(n,8)\(SvS2) 
n — oo 

-(•m„m2)]-l,       k -1,2,3.  (56) 

This holds because the inputs and output are jointly sta- 
tionary and ergodic [4] (the output is (/ + m + \y 
dependent) and therefore the Shannon-McMillan theorem 
(see e.g., [9]) implies that each of the 2 tf terms in the right 
sides of (52) converges in probability (when scaled by n) to 
its expected value (which may be zero if, for example; r 
remains finite as n -»oo). (Notice that this holds even 
though each output subblock zj; (or r*) has m ~1 fewer 
elements than the corresponding input subblocks xf; and 
?£ (or JC* and y*), since convergence is not affected by 
any fixed .number of elements.) 

To investigate the behavior of the second term on the 
right side of (55), we will introduce the independent ran- 
dom vectors U and V defined on A\N and A\H, respec- 
tively, whose distributions are px and pf, but which, 
unlike X and Y, are independent of Z, i.e., 

Puri(*> P>z) - Px(*)Pi( y)pt(0 

-/>*«(*. .K»2)exp(-'3(*. •?.*))•  (57) 

If (*, P,z) s y3(n,&), however, then (50c) implies that 

exp(-/3(x, y.f)) <;exp(-/(*, f; Z)+/»«) 

and, consequently, 

P[{FM),Fi(>n2),Z)eM"MS»S2)-(mltm2)] 

(59) is further upper-bounded by 
Ele^&.Fj] 

£ exp I nN •*x~i{X;Z\f) 

+exp inN 

+expinN 

1 
R2-—I(Y;Z\X) 

R^R2-—I(X,Y;Z) -»Yl+j. 

(61) 

(62a) 

(62b) 

Ztxp(-I(X,Y;Z) + nS). (58) 

Proceeding similarly with the third and fourth terms on 
the right side of (55) we obtain that, for sufficiently large 
n, 

+ M?txp(rl{Y;Z\X) + nd) 

+ Ml
NM2

stxp(-l(X,Y;Z)+n8) + ^. 

(59) 

Thus if Mx and M2 grow sufficiently slowly with n we will 
be able to show that for large n the right side of (59) does 
not exceed t. Specifically, we choose A/, and M2 to satisfy 

y     XogM, 8 + Y 
*''!;* n*R,~~W'   /"1,2- (60) 

(This choice is possible for all sufficiently large n.) Then, 

Using (54) and recalling that S < y, it is seen that if 

0 £ Äj <; liminf -/(X"; Z*\Y*) 
»-•oo n 

0 *R2Z liminf -7(7"; Z"|^") 
»-•00     It 

Rl + R2Z liminf -l{Xm,Y'\Z*),        (62c) 
«-«oo n 

th»n the right side of (61) does not exceed < for sufficiently 
large n. Therefore, at least one realization of the code 
books must exist that results in probability of error better 
than c, and so the pentagon in (62) is achievable. Actually, 
that region coincides with C(nx,nY) because Z" was 
obtained by discarding 2(1+ m-I) elements from Z"« 
(Z^i), /»V ••,/!} (which is the output of the frame-syn- 
chronous channel with inputs X* and Y") and therefore 
(cf. (18)) 

l(X'\ZH\YH) sl^Z^Y") 

£ /(X"; Z"\Yn) + 2(1 + m - l)log \B\   (63a) 

7(7"; 2"!*") S 7(7"; Z"!*") 

^/(y";Z"|^")+2(/ + m-l)log|5|   (63b) 

/(.¥", y";i")i/(^",y";Z") 

£/(jr\Y";Z")+2(/ + m-l)log|B|. (63c) 
Hence we may replace Z" by Z" in (62), obtaining the 
limits of (47). Thus we have shown that the region 

closure   U       U      {(RltR2): 
\/»0      ßx.ßr 

jtatiouiy A4«p 

O^Äji/^rJMzlMr) 
O^Äj^/(Mr;MzlMx) 

Ä,+ Ä2 */(/»*, Mr? Mz)} (64) 

is achievable. 
It remains to show that the restriction to /-dependent 

input distributions can be dropped without changing the 
region in (64). We will do so in three steps where we show 
that the union can be written over 1) 5-processes, 2) 
ergodic stationary processes, and finally, 3) stationary pro- 
cesses. 

4 
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Step 1: The B-processes'are an important class of sta- 
tionary ergodic discrete-time random processes (intro- 
duced by. Ornstein [16]) that can be defined as the outputs 
of the time-invariant systems driven by independent iden? 
tically distributed (i.i.d.) inputs. This is, in effect, a mixing 
condition requiring that the influence of the sufficiently 
distant past becomes negligible._It was shown by Ornstein 
[16] that the closure in the J-metric of the stationary 
/•dependent processes is equal to. the set of ^-processes. 
The J-metric between two stationary ergodic measures /i 
and ji is equal to the minimum percentage of time samples 
we need to change a representative realization of /i to 
make it look like a representative realization of jl. Due to 
the finite memory of the channel, it is easy to show that.if 
z sequence of stationary ergodic input measures ySjp, ffi 
converges in the J-metric to px and /ir, then the cone- 
sponding output measures also converge in the. J-metric, 
because one way to generate a representative sequence of 
H2 is by modifying representative strings of ji^' and ffi 
to get representative strings of px and /ir without chang- 
ing the output samples unaffected by those modifications. 
Therefore,. d($\ MZ) £ m[d(^\ /i*)+ d($\ /ir)] since 
each input value affects at most m output values. Now, 
since the entropy rate is a continuous function of the 
stationary measure under the J-metric [19] and the three 
constraints in (64) can be written as 

/(M*;MzM-#(Mr.Mz) + #(M*)-#(M*.Mr.Mz) 
(65a) 

(65b) 

/(M*,M/.Mz)-tf(M*)+ff(M,) + tf(Mz) 

-#(M*.My,Mz).   (65c) 
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oh the n + m— 1-dimensional distributions of/$' and 
ityK Furthermore, since the entropy rate is a lower semi- 
continuous function in the weak topology, we can write 

iimmf#(M<.*>)-//(Mz) 

and (cf. [17]) 

and 

Uminftf^V^-^MzM. 
*—oo 

iim If(jgW.M?*) - #(MzlM*,My), 

since the latter expression is linear in the conditioning 
measures. This implies that the union appearing in the 
achievable region can indeed be extended to the stationary 
ergodic measures. 

Step 3: This step has a well-known counterpart in the 
solution of the capacity of single-user channels with mem- 
ory (cf. [11, sec. III]). There, the ergodic assumption is 
needed to invoke the Shannon-McMillan theorem in the 
proof of the direct theorem, whereas the usual converse 
techniques upper-bound capacity by the minimum of mu- 
tual information rates over all stationary inputs. A proof 
that the lower and upper bounds thus obtained coincide 
was given by Parthasarathy [17] using the ergodic decom- 
position theorem. Even though in the multiuser case capac- 
ity is not given as the maximization of a scalar function, 
we can use Parthasarathy's result by noticing that all we 
need to show is that for every 0 s a £1 (cf. [21]) 

sup   G.(M*.Mr)-    sup   Ga(M„My)     (66) 

stationary 
ef|odic 

stationary 

where 

<?.(ft*.My)-      , nux «Äj-Kl-flOÄj 

(2a-l)/(M*;MzlM + (l-a)AM*.My'.Mz).        l/2SaSl 
(l-2a)/(My;MzlM*) + «'(M*,My;Mz). Osa^l/2 

(67) 

the region (64) is unchanged if we enlarge the set of 
stationary /-dependent processes to its closure, the set of 
^-processes. 

Step 2: The stationary mixing multistep Markov pro- 
cesses are ^-processes (the mixing condition essentially 
rules out processes with periodicities), whose closure in the 
weak topology is the set of stationary ergodic processes 
[10, p. 360], where we say that y.{k) converges weakly to /i 
if, for all n > 0, the n-dimensional distribution induced by 
/i(*' converges to that of ji. Again, due to the finite 
memory of the channel it is easy to show that if yfp,^ 
converge'weakly to nx and /ir, then the corresponding 
output measures also converge weakly, because the n- 
dimensional distribution induced by /iz

t) depends linearly 

where the second equality holds because the maximization 
on the left side is attained at one of the two (Pareto) 
optimum vertices of the feasible pentagon (note that 
f(M^My;Mz)^f(MV,MzlMy)+f(My;MzlM^))- We may 
now fix a e [0,1/2], the other case being entirely parallel. 
We then obtain that for all stationary pairs /i*.My 

^.(M^My)-(l-a)/(M^My;Mz)-(l-2a)/(M/,Mz) 

-(i-a)fl(iLXt,iLr;,n2)dPx(x)dPY(y) 

-(l-2a)flfrXi;nz)dPx{x) 

-fGm(iix,,fiYr)dPx(x)dPy(y) (68) 

*< 
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where the second equation follows from Parthasarathy's    [0,1/2] and 
representation theorem[17], and {nXt,xe A,} and {/xy, v 
e A2) are the stationary ergodic measures in the ergodic 
decompositions of px and ^y: 

*" YIA + YJA-1/2 

PxW-f HxJLE)<IPx(x) (69a) 

(69b) 

for all measurable sets E and F. Notice that the only 
restriction of Parthasarathy's result is that the channel 
connecting input and output be stationary, and this is the 
case for the channel that connects (nx,nY) with j*z> M 

well as the channel seen by the first user, which connects 
Hx and nz because both nY and the multiple-access chan- 
nel are stationary. 

Finally, for a stationary pair nx, \iY to achieve a value of 
Ga(px,pY) close to the supremum, there must exist (x, v) 
eAjXAj such that (7.(/i^,/iy) is close to the supre- 
mum, because the average with respect to Px X PY in (68) 
cannot be larger than each of its sample values. This fact 
shows (66) and completes the proof of the theorem. 

We will now use Theorems 5 and 6 to find the frame- 
asynchronous capacity region of the examples we studied 
at the end of Section II. 

Example 1: Since the frame-synchronous capacity re- 
gion is achieved by stationary (ii.d.) inputs, it remains the 
same if the users are frame-asynchronous. The same is true 
for the symbol-asynchronous Gaussian multiple-access 
channel [21] where the capacity region is achieved by 
stationary colored Gaussian processes. (In that case, the 
capacity region does depend, in general, on whether the 
transmitters are symbol-synchronous.) 

Example 2: We will show first that the triangle (0 £ Rlt 
0 £ R2t /?! + R2 £ 0.5 bit} (Fig. 1) is an outer bound to 
the frame-synchronous capacity region. In the second part 
of the proof we will show that it is achievable. From the 
definition of this channel (33), it is easy to compute the 
conditional entropy (in bits): 

H(Z,\Xl.l,XltYl_ltYl)'.l-ßlyi-ßiyl      (70) 

with 

Yl-?[*(/) *0]       ft-/»[*(/) -0,*(/-l)*0] 

Y2-p[y(/)*o]     &-p{y(/)-o,y(/-i)*o] 

where the foregoing probabilities are independent of the 
time i because X" and Y" are stationary. Since the out- 
puts are independent conditioned on the inputs, we have 

i{x\Y*,z"m)z i «x^x.j.^Yr.z,) 

•«j t [l-HiZM^X^.Y,)] 
i-m 

-(n-m + l)[yiß2 + yM (71) 

and since yk + ßk e [0,1] and yk-ßke [0,1J, we have ßk e 

which, together with (71), implies that the total capacity of 
the frame-asynchronous channel is bounded from above 
by 

1 
lira -   max I(X',Y";Z^) sl/2, 

*—oo n   x"Y* 
JUtiooaiy 

in contrast to the total capacity of the frame-synchronous 
channel, which is equal to 1 bit. 

To show achievability of the triangle, we choose both 
input processes to be stationary and Markov with 

PMnoiJU-oj-i 
pft^oiy^-ol-i 

(i.e., yk"\-ßk, k-1,2). Then, as there are no consecu- 
tive input zeros, the channel is equivalent to the memory- 
less channel 

,(1/2,1/2), 

if x, * 0 and v, - 0 
if v, # 0 and x,» 0   (72) 
otherwise. 

Furthermore, we will only consider inputs whose nonzero 
values are independent and equally likely to- be 1 or 2. 
Then the outputs are independent both unconditionally 
and conditioned on either input sequence: 

*(Z:)-n-m + l (73) 

n(Zi\r)- in(z,\Y") 
t">m 

£ H(Z,\Y,) 

(rt-m + 1) -Y: + TA(Y)]   (74) 

where the second equation follows from (72) and the 
independence of X" and Y\ Then (70), (73), and (74) 
imply that 

/(^•;Z*|y")-(n-wM) 

• Yi(l-*) + 7i(A»(y)-Y,)]        . 

7(y";Z;|*")-(rt-m + 1) 

' Y^l-Yj + r^dJ-Y:)] 
/(jr,y;z;)- («-m+i) 

•lTi(l-Ti) + Tfi(l-Tfi)]. 

However, hk(yk/2) i yk, and thus the LJowing region is 
achievable: 

U     {(Äi,Ä2):0sillSYl(l-Y2), 
«•(1/2.11 

0sÄ2iy,(l-Y|)}     (75) 
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vnich can be shown to coincide with the triangle {(/?„ Ä2): 

t can be seen that in this examole full frame-synchro- 
IOUS caoacity would be achieved if the encoders were 
nformed of the relative shift modulo 2. and without this 
nformation. they cannot do better than the frame- 
:svncnronous region. This points out that, in contrast to 
tie memorvless channel, even a mild form of asynchro- 
nsm where the shift mav be only 0 or 1 reduces the 
aoaciiy region. The reason is that in the memoryiess 
nannel. a large time-scale type of cooperation (time-shar- 
m?) is enough to achieve capacity, whereas in a channel 
vnh memory, the encoders may need to cooperate in a 
mail time-scale. Mild frame-asvnehronism only precludes 

• ooDcrauon in the small time-scale. 
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The Capacity Region of the 
Symbol-Asynchronous 

Gaussian Multiple-Access Channel 
SERGIO VERDU, SENIOR MEMBER, IEEE 

Attract—In the infarction theory of the multiple-access channel, two 
types of synchronism are usuafiy assumed among the transmitters, tumefy, 
frame and symbol synchronism. Frame synchronism refers to the ability of 
the users lo start the transmission of their codewords in unison. Hie issue 
of symbol synchronism arises in continuous-tune channels in which each 
codeword symbol modulates a fixed assigned waveform; the channel fa 
symbol synchronous if the users cooperate so that their symbol epochs 
coincide at the receiver. In practice symbol synchronism is harder to 
achieve, yet the only reported progress so far has been in the removal of 
the assumption of frame synchronism. It is shown that if the transmitters 
are assigned the same waveform, symbol asynchronism has no effect on 
the two-user capacity region of the white Gaussian channel which fa equal 
to the Cover-Wyner pentagon, whereas if the assigned waveforms «re 
different (e^ code division multiple access), the symbol-asynchronous 
capcdty region fa no longer a pentagon. 

!.   INTRODUCTION 

THE MAIN GOAL of the information-theoretic study 
of the multiple-access channel is to find its capacity 

region, i.e., the set of information rates at which simultane- 
ous reliable communication of the messages of each user is 
possible. This problem was solved in the pioneering work 
of Ahlswede [1], [2] on the two-user discrete memoryless 
channel; later, an explicit expression for the. capacity re- 
gion of the Gaussian memoryless discrete-time multiple- 
access channel was given by Cover (3] and Wyner [4]. 
These and most of the subsequent results on the subject 
assumed so-called frame (or block) synchronism among 
the users in the sense that the beginnings of the codewords 
of each user were guaranteed to coincide at the receiver. It 
has been shown by Poltyrev (5] and, independently, by Hui 
and Humbtet [6] that the only effect of frame asynchro- 
nism on the discrete memoryless multiple-access channel is 
the removal of the convex hull operation from the expres- 
sion for the capacity region. It was recently shown [7J that 
if the multiple-access channel has memory, frame «syn- 
chronism may drastically reduce the capacity region and, 
in particular, the maximum achievable rate sum. At any 

Manuscript received June 6,1987; revised October 10,1988. This work 
was supported in part by the Office of Naval Research under Contract 
N00014-87.K-0054. This paper was presented in part at the IEEE Inter- 
national Symposium on Information Theory, Ann Arbor, MI. October 
1986. and in part at the IEEE Workshop on Information Theory, Bella- 
gio. Italy. June. 1987. 

The author is with the Department of Electrical Engineering. Princeton 
UniversiJv, Princeton. NJ 08544. 
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Fig. 1.   (a) Frame-asynchronous symbol-synchronous two-user channel. 
(b) Frame-synchronous symbol-asynchronous two-user channel. 

rate, in many practical situations it is perfectly reasonable 
to assume that this type of synchronism is achievable with 
a modicum of channel feedback or cooperation among 
transmitters. 

The type of synchronism that is difficult to achieve in 
many practical situations (owing to the much smaller time 
scale involved) is symbol synchronism. This issue arises in 
continuous-time channels where each codeword symbol 
modulates a signal waveform of finite duration, as is the 
case in most conventional digital communication sys- 

tems. In these systems, user k transmits a codeword 
(M*)»* * '• M"))e A\ by sending the signal 

Zsk(t-iT;bk(i)) 
i-i 

where the waveforms [sk(t\ b), b e Ak] vanish outside the 
interval [0,7] and constitute the fixed signaling alphabet 
of user k, which is known to all transmitters and to the 
receiver. If the symbol epochs of the signals transmitted by 
the users are not aligned at the receiver, then the channel is 
symbol asynchronous (Fig. 1). For a channel with two 
senders and one receiver, assuming frame synchronism and 
an additive white Gaussian noise channel model, we can 
write the channel output as 

y(i)' E'iO-Ä'-T,; *,(/)) 
1-1 

+ E'j('-'T-r,;M0) + *  0   (LI) 
i-i 

0018-9448/89/0700-0733$01.00 ©1989 IEEE 
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where the delays or offsets T, S [0, T), r2 e [0, T) account 
for the symbol asynchfonisra between the users and are 
known to the receiver (because it acquires the timing of 
each of the received signals to decode reliably each of the 
transmitted messages) and unknown to the transmitters. 

While the derivation of coding strategies for symbol- 
asynchronous channels has been addressed before [8], it 
appears that no results on the capacity region of the 
multiple-access channel are available when symbol syn- 
chronism is not assumed. In this paper we find the capac- 
ity region of a fairly general symbol-asynchronous Gauss- 
ian multiple-access channel in which user k modulates 
linearly a fixed signature waveform sk(t), i.e., sk(t; b) « 
bsk{t). This encompasses many interesting channels in 
applications, such as direct-sequence spread-spectrum 
code-division multiple-access channels (CDMA) wherein 
each transmitter is assigned a distinct signature waveform 
which is used to modulate information simultaneously and 
independently of the other transmitters.1 We focus our 
attention on energy-limited channels where Ak = R, and 
each codeword of user k is constrained to satisfy 

1 
E«(0S"*.     *-u. (1.2) 

The methods employed in this paper can be used to solve 
the case where the Ak are finite alphabets; however, in this 
case, as in the single-user discrete-time Gaussian channel 
with finite alphabets or amplitude constraints, no explicit 
expressions for capacity can be obtained. 

If the transmitters are assigned identical signature wave- 
forms and are symbol synchronous, i.e., T, = T2, then it is 
easy to see that the channel is equivalent to the standard 
one-dimensional discrete-time Gaussian multiple-access 
channel, and therefore, its capacity region is given by the 
Cover-Wyner pentagon: each individual rate is con- 
strained not to exceed single-user capacity and the sum of 
the rates cannot exceed the capacity of a single-user chan- 
nel whose signal-to-noise ratio is the sum of the signal-to- 
noise ratios of both users. In this paper it is shown that the 
same result holds even if the users are not symbol syn- 
chronous. However, that is no longer true when the trans- 
mitters are assigned different signature waveforms. Then 
the symbol-asynchronous capacity region is no longer a 
pentagon and depends not only on the respective signal- 
to-noise ratios, but also on the similarity between the 
:i%nature waveforms quantified by their cross correlations, 
n some aoplications it may be of interest to use the 
-aoacuy region found in this paper for any arbitrary 
-noice of signature waveforms as a basis for optimum 
lgnai design (i.e., to find the elements that achieve the 
•oundary of the union of capacity regions over a certain 

set of signature waveforms) under a variety of specific 
constraints on the set of feasible signals, such as direct- 

'Mosi capacity analyses of the CDMA channel have focused on 
single-user receivers and approximated the multiple-access interference 
by a white Gaussian process [9]—[II]. thereby providing limited insighi 
into the fundamental limits of thai channel. 
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sequence waveforms with a maximum number of chips- 
pcr-symbol or signals approximately bandlimited to a 
specified bandwidth. However, it is worth noting that in 
many practical applications the choice of signature wave- 
forms is dictated by considerations such as jamming resis- 
tance and the use of specific waveforms selected from 
families of pseudonoise sequences with favorable cross- 
correlation properties (such as Gold sequences or maxi- 
mal-length shift-register sequences). 

The first step in the derivation of the capacity of the 
symbol-asynchronous Gaussian channel is to obtain an 
equivalent channel model with discrete-time outputs. This 
is the purpose of Section II, where an equivalent discrete- 
time Gaussian channel parametrized by the signal cross 
correlations is derived. The main feature introduced by the 
lack of symbol synchronism is that the channel has mem- 
ory. This is due to the overlap of each symbol transmitted 
by a user with two consecutive symbols transmitted by the 
other user. The capacity of discrete-time multiple-access 
channels with finite memory was obtained in [7] with and 
without frame synchronization. Those results are used in 
Section III to obtain the capacity region of the symbol- 
asynchronous Gaussian multiple-access channel, which 
turns out to be independent of whether or not the channel 
is frame synchronous. Since the relative offset T2 - T, be- 
tween the received signals is not known to the transmitters, 
we must deal with a compound multiple-access channel 
where the encoders only know that the actual channel 
belongs to an uncertainty set parametrized by the relative 
offset. For the sake of clarity of exposition we deal first 
with the case where the relative offset is known to all 
parties (i.e., the uncertainty set is a singleton), and then we 
use those results to find the sought-after capacity region of 
the compound channel. Finally, in Section IV we consider 
an alternative representation of the capacity region which 
results in a particularly compact characterization of the 
fundamental limits of the multiple-access channel in the 
region of high signal-to-noise ratios. 

II.   CHANNEL MODEL 

The goal of this section is to obtain a channel with 
discrete-time outputs whose capacity is the same as that of 
the channel with continuous-time output 

j(0- EM'M'-'T-T,) 
;-t 

+ Lb2(i)s2(t-iT-r2) + n(t) (2.1) 
i-i 

where nit) is white Gaussian noise with power spectral 
density equal to a\ This goal is achieved by considering 
the projection of the observation process {y(t)} along the 
direction of the unit energy signals {J,(0} and {^(0} 
and their T-shifts: 

yk(i)-r
l)T+tty(t)sk(t-iT-rk)dt,     *-l,2. 

(2.2) 
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b,(i) b.(W> 

I*   I 
b,(i-l) b,(M 

Fig. 2.   Symbol periods and cross correlations. 

It is possible to obtain an expression for {)>i(i)}?-i and 
{^2(')}?-i i° terms of the transmitted codewords 
{*i(0)7-i and {62(i)}7_i by substituting (2.1) into (2.2) 
and by defining the cross correlations between the as- 
signed signature waveforms {*i(0} and {s2(t)} as (assum- 
ing without loss of generality that rt £ T2 (Fig. 2)) 

Pi2-/r'i(0'2(' + *i-T2)<a (2.3a) 
•'o 

p2i = A(0^(' + 7' + T,-T2)dr.       (2.3b) Jo 

It follows easily that 

*(0 
0 

10 
Pa 
0 

6,0-1) 1 

Pl2 

Pl2 
1 

*l(0 
MO 

0 
Pa 

6,(1+1) «i(0 

«2(0 
(2.4) 

for 1 £ i! £ « (with 6A(0) - bk(n +1) - 0, k -1,2); the dis- 
crete-time random process {[«,(/) «2(')lr} 'a Gaussian 
with zero mean and covariance matrix: 

«id') 
«2(0 l»i(j) m(j)\ <o2H(i-j) 

where H(i) - 0 if |/| > 1, and ff(l), ff(0), and H(-1) are 
the matrices appearing in (2.4), i.e., 

/(0) " 1       Pl2 

Pi2     1 
H(1)-HT(-D- 0      Pa 

0     0 

'ince the receiver knows the assigned waveforms {*,(*)} 
ma (s2{t)} as well as the symbol epochs {/T+T,} and 
JT+r2), it can compute {^(OW-i and {ä(0}7-I bv 

passing the observations through two matched filters for 
signals (*,(/)} and {s2(t))t respectively. The key observa- 
tion is that this operation does not destroy any informa- 
tion that is valuable in deciding which messages were 
transmitted. This is because the likelihood function (i.e., 
»he conditional exoectation of the Radon -Nikodym 
lerivative between the measure induced bv the observa- 
10ns and Wiener measure niven that {6,(0}7-, and 
^2(0}7-i 2St tne transmitted .codewords) is equal to a 

onstant times (e.g., [12]) 

XD 
I"/ y(t)- Z Zbk(i)sk(t-iT-Tk) 

Jk-W-1 
dt 

which can be factored into 

MW0})M{*I(0}.{M0}.U(0}.{A(0}); 

hence because of the factorization theorem [13], {y,(i)}"_, 
and {^2(')}7-i ait sufficient statistics for the transmitted 
messages. This implies that the channel output {y(t)} 
enters in the computation of the posterior probability of 
each message only through {>»,(/)}"_, and {^(O^-i- 
Thus, no matter which codeb">oks are chosen by the trans- 
mitters, the probability that the maximum a posteriori 
decoder selects the true transmitted message remains the 
same if instead of working with the original continuous- 
time observations {y(t)} the decoder is constrained to 
work with the discrete-time sequences {^(i)}"-, and 
{y2(0}7-i. Therefore, if a rate pair is «-achievable for the 
multiple-access channel (2.1), it is also «-achievable for the 
multiple-access channel (2.4), and hence the capacity re- 
gions of both channels coincide. In this respect, notice for 
future use that if t(W) is a sufficient statistic for Z, then 
the data-processing inequality is satisfied with equality 
because Z and W are conditionally independent given 
t(W). Therefore, 

/(Z; t{W)) - /(Z; W,t(W))-I(Z; W\t(W)) 

= I(Z;W) + l(Z;t(W)\W) 

-I{Z;W). (2.5) 

Note that even though channel (2.4) has two output 
sequences, it is a multiple-access channel rather than an 
interference channel because both outputs are available to 
the multiuser receiver. Channel (2.4) is parametrized by the 
cross correlations p,2 and p21, which depend on the rela- 
tive offset T2 - Tj and, therefore, in general, are unknown 
to the transmitters. Consequently, it is necessary to analyze 
a compound multiple-access channel where the transmit- 
ters only know that (p12, p21) belongs to an uncertainty set 
determined by (s^t)} and {s2(t)}. 

The main characteristic of the discrete-time multiple- 
access channel in (2.4) is that it has memory because the 
noise sequence is correlated and each output value de- 
pends on three input symbols, while each of these symbols 
ufects two consecutive output vectors (cf. Fig. 2). It is 
possible to obtain an equivalent multiple-access channel 
(Appendix I) whose noise process is independent at the 
expense of an enlarged set of observables. The advantage 
of the latter discrete-time model is that it is possible to 
invoke coding theorems for channels where the outputs are 
conditionally independent given the inputs [7]. 

If either p12 - 0 or p21 - 0, then the channel becomes 
memoryless because in thai case the* users are in effect 
symbol synchronous. For example, if the users are assigned 
the same signal and the channel is symbol synchronous, 
both outputs in (2.4) coincide and are equal to 

j(0-*i(0 + M0 + «(0 (2.6) 

where {«(/)} is a Gaussian independent sequence. Then 
the channel is the conventional scalar discrete-time Gauss- 
ian channel, whose capacity region, subject to the energy 
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constraints in (1.2), is the Cover-Wyner region: 

•; = l{Rx,R2):0zRx<L-log 

0zR2£-log 

1 + ^1 
<x2j 

1 + 
w, 

Ä, + Ä2<;-log 1 + 

(2.7) 

If the assigned signals are not equal but the users remain 
symbol synchronous, then (2.4) reduces to the memoryless 
multiple-access channel 

(2.8) 

where {[nl(i)n2(i)]T) is an independent Gaussian process 
with E[nl(i)] = a2 and E[nx(i)n2(i)] = a2p, and 

'Mi)' 
.*('). 

= 1 p 
p 1. 

MO' 
MO. 

+ '*l(0' 
."2(0. 

p = f\{t)s2{t)dt. 

In this case, the Cover-Wyner region can be easily gener- 
alized (Section III) thanks to the lack of memory when the 
users are symbol synchronous. 

HI.   CAPACITY REGION 

Before we obtain the capacity region of the symbol- 
asynchronous Gaussian multiple-access channel, we will 
generalize the Cover-Wyner region (2.7) to the symbol- 
synchronous channel where both users are not necessarily 
assigned the same waveform. To this end, according Jto 
(2.8) we need to find the convex closure over independent 
random variables Xx and X2 such that E[X2]£wx and 
E[X2]£w2 of the union of the pentagons {OrSi?,^ 
I(Xx; r|*2),0 <; R2 <; I(X2\ Y\XX), Ä, + R2 <; 
I( Xv X2\ Y)}, with the output Y given by 

1    P 
P    1 x2 

(3.0 

where Nx and N2 are jointly Gaussian with zero mean, 
E[N?]~o2, and E[ffxff2] = pa\ The case |p|=-l results 
in the region (2.7); we will therefore assume |p| <1. Since 

Xi 
ance of Y is equal to2 
Xx and X2 are independent random variables, the covari 

:oviy)-| 
1 p I» 'var(^) 0 fl    P 

1 
<r/2 + 

0 var(*2) .P    * 

3.2) 
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and we can upper-bound the mutual informations 

I(XVX2;Y) 
1 

£ - logdet [cov(y)] 
1 

--logdet a2 1    P 
.P    1 

1 
= - logdet 

l 
/2 + ^ 

var(^)         0     1 
0         var(^2)j 

1    P] 
P    lj 

1 
-5hi 14 

var(*i) 
o2- 

var(*2) 

'       a2 

var(*,) var(*2) 
(1-P2) (3-3) 

I(Xx;Y\X2)z-logtel '* + ri 
var(*,)    0 

0 0 
1    P 

P    1 

1      /.varUO 
-lOg   1 +  r— (3.4) 

and similarly, 

I(X2;Y\Xl)*j]ag{l + 
var(*2) 

(3-5) 

with equality in (3.3), (3.4), and (3.5) if Xx and X2 are 
Gaussian. Furthermore, all three rate constraints are si- 
multaneously maximized by letting Xx and X2 attain the 
maximum allowable variances, i.e., wx and w2, respec- 
tively. Hence the capacity region is equal to the pentagon 

C-{(Ä1,Ä2):0£Ä1silQg(l+^) 

0^Ä2^ilog(l + ^) 

•Ri + R2^-\og 

(3.6) 

', denotes the n X n identity matrix. 

which differs from (2.7) in that the maximum rate sum is 
no longer the capacity of a single-user channel whose 
signal-to-noise ratio is equal to (w,+ tv2)/o

2. Notice that 
when {sx{t)) and {^(0} are orthogonal (p = 0), then, 
effectively, both users transmit in separate noninterfering 
channels and can send information at single-user rates. 
The A'-user capacity region of the symbol-synchronous 
Gaussian channel can be found in [14]. 

Jefore we state and prove the formula for the capacity 
of the symbol-asynchronous Gaussian multiple-access 
channel, we will motivate the expression of the capacity 
egion by finding the mutual information rates in channel 

'2.4) when ths inputs are stationary Gaussian processes 
vuh oower spectral densities {Sx(o), oe[-ir,ir]} and 
(S2(w), we[-ir,ir]}. Channel (2.4) is a two-input two- 



'EJUHI: THE CAPACITY REGION OF THE SYMBOL-ASYNCHXONOUS GAUSSIAN MULTIPLE-ACCESS CHANNEL 737 

lUtout dynamic linear time-invariant system whose out- 
>uts are embedded in colored'stationary Gaussian noise. If 
fte uiDUts are stationary Gaussian processes, then the 
liutuai information rates can be-written as the difference 
»etween the differential entropy rates of the output with 
•no without each of the input processes. Consequently, all 
s needed is an exDression for the differential entropy rate 
u a stationary vector Gaussian discrete-time process. In 
he scalar case the differential entropy rate of a Gaussian 
liscrete-time Drocess whose power spectral density is S(u) 
s eauai to [15, p. 542] 

•,(S)--la&{2veL(S)) (3.7) 

vnere L(S) is the geometric mean of S(u), i.e., 

AS) - exp — f \ogS{u)du. (3.8) 

his follows because the differential entropy of a Gaussian 
i-vecior with covariance matrix I, is 
n/2)log(2•?(detI)I)

1/'1) and according to the Toeplitz 
listribution theorem [16], lim(t_09(detl)1)

1/'1 coincides 
vith the geometric mean of the Fourier transform of the 
«variance seauence. What we need for our purposes is a 
generalization of this result to vector random processes, 
.e.. we need to find lim(I_00(detE(t)

,/'1 when En Is an 
i-olock Toeplitz matrix whose elements are 2x2 covari- 
uice matrices R(i - j)Ä Z„(i, j). A solution to this prob- 
em can be found in [17] where it is shown that if the 
jower spectral density matrix M(u) -1". ^ne'JUKR(n) is 
onunuous and positive definite in [-ir,ir]/ then the 
oregoing limit is equal to the geometric mean of the 
determinant of M(u). 

-«low the output of channel (2.4) is a zero-mean vector 
iaussian Drocess with power spectral density matrix given 

Therefore, the mutual information rate between the output 
and the inputs is equal to 

1 
lim rI{X?,X;;Y*) 

= h{Z)~h(o*T) 
1 r =• — /    logdet 

1 S,(u)        0 
0        S2{u) r(«) du 

+ —A \\-p\u)\\du (3-9) 

where 

/(«) =|Pl2 + P21^U|2 = pi2 + P21+2P2lPl2«>S<0.    (3.10) 

Similarly, setting S2(u) = 0 and ^(u) = 0, respectively, in 
3.9) we get 

lim - /(*,"; Y'\ ^)" — J    log 11 + -^r-  du 
n — aan 

(3.11) 

lim -7(^;H^)-T-/   log 1+——U«. 

(3.12) 

As mentioned in Section I, we will find the capacity 
region of the asynchronous channel first in the case where 
the transmitters know the offset, and hence the cross 
correlations between their signals, and then in the case 
where they do not. 

Theorem 1: The capacity region of the energy-con- 
strained asynchronous Gaussian multiple-access channel 
when the transmitters know their mutual offset is given by 

1   ,»      /      S,(u)\ 1   r      I     S2(u)\ 

!J.I.../i
(Äi'Ä2)*0SÄi^/->(l+^rftt'°^8S^/--Sl+"?") du 

i 
i(") a0.u€(- <r.«r) 

-1.2 

S,(u)     S2{u) S,(«)$t(«) 
T 11 ~ Pi2 - P21 - 2Pi2p2i cos «] J </« J.   (3.13) 

>v 

lu)-T(u)\ 
sM 

lu) 
1 

Pl2 + P2l'7W 

0 
S2(u) 

1 

T(u) + a2T{u) 

*n the oresem case the power spectral density of the outpul vector 
•recess is indeed continuous, but in problems with heavily correlated 
vavetorms ii mav fail 10 be nonsmgular at particular frequencies. How- 
~.;r the caoacity region is derived laier m this section without imposing 
ay oi those assumptions. 

Proof: It is shown in [7, Theorem 3] that the capacity 
region of the frame-synchronous discrete-time multiple- 
access channel with finite memory where the outputs de- 
pend on several consecutive input symbols and are condi- 
tionally independent given the inputs is equal to 

1 
r- =* closure I liminf - C. 

n -»oo   n 
(3.14) 

where C„ is the following achievable region for the «-block 
memoryless multiple-access channel whose input symbols 
correspond to n consecutive channel uses of the original 
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channel with memory: 

C*m   U   {(*i.*S):0*Af £/(*{•; y"|*j") 

R[ + R\ Z I(X?, Xf; Y«)}   (3.15) 

where the union is over the independent random variables 
X? and X? satisfying in the present case E\Xk

nTXZ\ <. wk, 
k -1,1 

The aforementioned class of multiple-access channels 
with finite memory includes as a special case the discrete- 
time channel in (1.3) whose noise sequence is independent. 
It does not encompass channel (2.4) directly because the 
noise sequence therein is dependent. However, since the 
observables of (2.4) are sufficient statistics for the inputs 
and are deterministic transformations of the redundant 
observables in (1.3), not only their capacities coincide but, 
according to (2.5), the mutual informations arising in the 
achievable regions, C„, of the respective induced «-block 
memoryless channels are also equal. Therefore, it is enough 
to show that the closed set in (3.13) is equal to 
limll_)B(l/n)C(l, where C„ is the achievable region in 
(3.15) for the n-block memoryless multiple-access channel 
induced by (2.4). To this end it is easy to check using (2.4) 
that the n-block multiple-access channel can be written as 

b,(n) 

n,(n) 

»yj(i) 

•~yi(«) 

•ntfn) 

Fig. 3.   n-block memoryless two-user channel. 

As in (3.3), (3.4), and (3.5) we can upper-bound the mutual 
informations by 

/(Xf, XZ; Y") z - logdet [cov(y»)] - - logdet [a2R] 

*-logdet[/2fl + a-2£[*"*'ir]*j   (3.19) 

1       Pl2 

Pt2     !     Pu 

P21     !     P12 

nd) 
Y2(D 
n(2) 

Y2(n) 

which is depicted in Fig. 3 and where according to (2.4), 
the noise vector is Gaussian with zero mean and covari- 
ance matrix a2R, where R is the block diagonal In X2n 
cross correlation matrix multiplying the input vector in 
(3.15). This is a positive-definite matrix because xTRx is 
equal to the energy of L"m{L2

kmiXk(i)sk(t -rk- iT) which 
is guaranteed to be nonzero if x * 0, pl2 + 0, and p21 * 0. 
Throughout this proof we assume that pu * 0 and p21 # 0; 
otherwise, the channel is equivalent to a symbol-synchro- 
nous channel and the capacity region is given fry (3.6) 
(which coincides with (3.13) because if puPn * 0, then the 
three rate constraints therein are maximized by white 
spectra). 

The output covariance matrix is equal to 

cov(y)«Ä[o2/2),+£[;rr,7']Ä]    (3.n) 

where4 

X"-[Xl(\),X2(l).Xl(2),---Xl(n),X2(n)]T 

-*,"«[*]+*2"®[0]. (3.18) 

imB denotes the Kronecker oroduct of the matrices A and B. 

P21      !      P12 

P12      1 

[*«(!) 1 [>i(Dl 
^l(l) W) 
*,(2) 

+ *t(2) 

*i(») Nx(n) 

U(»)_ N2(n) 

(3.16) 

and 

/(*,"; Y'\X2») Z - logdet [/„ + a-%]    (3.20a) 

/(*,"; Y"\X?) Z -logdet[/fl + a-%]   (3.20b) 

where 24 - cov(^;), k -1,2, and equality holds in (3.19) 
and (3.20) if X" and X2 are Gaussian. The following 
identity whose proof is in Appendix II gives an explicit 
expression of (3.19) as a function of 2t, 22, p12, and p21. 

Lemma 1: The following identity holds 

del[lu + o-2E[X"X',T]R] 

det •2« 

where 

1 
/,. + — a1 

S'PnIn + Pn 

2, 
0 

1 
0 
0 

0 

22 s    I. 
(3.21) 

0 
1 
0 

1 
0 
0 

(3.22) 
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Therefore, (3.15) reduces to the following union over all 
trace-constrained nonnegative-definite n x n matrices: 

Q=      U     f(Ä1,Ä2),0^Ä1£-logdet[/,, + a-221] 

-u2kSw 

*-1.2 

0 <. R2 <. - logdet [/„ + o"%] 

Äi + Ä2^ -logdet 
1 

'2-V 
2,     0 
0    22 

/,    S* 
S    I. 

(3.23) 

Region C„ is a convex set because each of the three rate 
constraints in (3.21) is a concave function of (2„ 22). This 
is a consequence of the fact that logdet[^4] is concave in A 
if A is a positive-definite matrix [18, p. 125]. Note that 
even though the determinant appearing in the rate-sum 
constraint is not that of a symmetric matrix, it is equal to 
the determinant of the positive-definite matrix 

1 2t     0 
0    22 

QT,      where   QTQ- 1.   S* 
S     I 

There is no covariance pair (2,, 22) that maximizes ail 
three rate constraints in (3.23) simultaneously. This is in 
contrast to the symbol-synchronous channel where we saw 
that the mutual informations in (3.3)-(3.5) are maximized 
simultaneously by a pair of input distributions, thus result- 
ing in a capacity region which is equal to a pentagon. 
Nevertheless, we will be able to show that there is a set of 
optimum eigenvectors for each user in the sense that it is 
enough to take the union in (3.23) only over the subset of 
covariance matrices having those eigenvectors, thereby ef- 
fectively reducing the union to one over diagonal matrices. 
To prove this, the first step is to apply the singular-value 
decomposition theorem to the matrix S defined in (3.22). 
According to this result [19, p. 192], we can write 

S»UDV (3.24) 

where U and V are orthogonal matrices (of the eigenvec- 
tors of SSr and STS, respectively) and D is a diagonal 
matrix of the singular values {d,)1ml of S, i.e., the non- 
negative square roots of the eigenvalues of the nonnega- 
tive-definite Jacobi matrix 

~^ -y,(l) 

b.(2) 

n*(2) 

b.(n)- 

b.(n)- 

<*n 
— y,(n) 

-<Jn 

—r 
n,(n) 

t  ^- ~tfn) 

Fig. 4.   Decoupled it-block meaooryless two-user channel. 

Now, using the orthogonality of U and K, we can 
express the determinant in the rate-sura constraint in (3.23) 
as 

det [7 
o 
IT 

det *u+_2 
1 

"a' 

d« I/*, + -! 
1 

det hn + ~i 

' £p #„J] 

A,     0 

det 

0     A, D    I. 

V 0 
10 u\ 

(3.26) 

where we have set A, = F*2,r and A2 = UT2-JU. Since 
tr( A*) = tr(2A), 2k £ 0 if and only if Ak 2s 0, and 

det[/,, + a-2Aitl-det[/ll + a-%l,      (3.27) 

the region in (3.23) is equal to 

O     U     ((Ä1,Ä2).0j£Ä1^rlogdet[/ll + a-2A1l 

k-\.2 

•0 £ R2 <. -logdet [/„ + o~2A2] 

Rx+R2£- logdet 'a, + rf 
At     0 
0    A2 

(3' 28) 

STS> 

P\2 P12P21 

PnP21 P12 + P21 

P12P21 

P12P21 

Pn + p\i 
P12P21 

Pl2 + p\\ 

P12P21 

P12P2I 

P12 + P21 

(3.25) 
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Thus in effect the singular-value decomposition theorem 
has allowed us to substitute the matrix S in (3.23) by the 
diagonal matrix D. This is advantageous because the set in 
(3.28) is actually the capacity region of the two-user Gauss- 
ian memoryless channel shown in Fig. 4. This channel 
differs from the one in Fig. 3 in that the inputs corre- 
sponding to different coordinates do not interfere, and the 
noise covariance matrix is 

«i(0 
Ü2Ü) 

[ffi(0Ä»O)] = a26\ 
1     d, 
d.    1 

(3.29) 

Therefore, the singular-value decomposition of S effec- 
tively decouples the original channel in (3.16) into inde- 
pendent 2x2 multiple-access subchannels. The capacity 
region of this decoupled channel is achieved by input 
distributions whose coordinates are independent. To prove 
this, we will show that the rate constraints in (3.28) are 
maximized by diagonal matrices A, and A2, and there- 
fore, the matrices of optimum eigenvectors for 2X and 22 

are V and U, respectively. First we apply the Hadamard 
inequality (the determinant of a nonnegative-definite ma- 
trix is upper-bounded by the product of its diagonal ele- 
ments) to the individual rate constraints in (3.28): 
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matrices; hence we can now write 

" X»,a<U-t."-nl 2n f-I        \        ° 
1 

k-1.2 

O^Ä2^T-Elogfl + -T In »-I 

«.•«.«it^li+^+^+^d-«) In i-l 

(3.32) 

It remains to show that the limit as n -* oo of the set 
(3.32) is equal to (3.13). The approach we follow is to show 
that the Pareto-optimal5 rate pairs of (3.13) coincide with 
those of lim.-ao(l/»){;. 

The integrand in the rate-sum constraint of the region C 
in (3.13) is equal to (cf.(3.9)) 

logdet •>*? 
S,(u)       0 

0       S2(u) r(«) 

ilogdet[/J1 + a-2Ai]^^Elog(l+^),       *-l,2 

(3.30) 

where \kl is the <th diagonal entry of A*, and equality 
holds in (3.30) when Ak is diagonal. Second, to upper- 
bound the rate-sum constraint in (3.28) in terms of the 
diagonal elements of A, and A2, we will invoke the 
following result proved in Appendix III. 

Lemma 2. Let A and B be n X n nonnegative-definite 
matrices, and let A = diag{5l,- • •,&„}, where 8, is a com- 
plex scalar such that \i,\ £l for /-!,•••,«. Then 

det '2„ + 
A     0 
0    B A    /„ 

nni{l+au + btt + ahb„(l-\8l\j,
2}   (3.31) 

with equality if A and B are diagonal. 
We apply Lemma 2 to the case A = o~2A,, B = o"2A2 

and A = D, where the singular values of S (i.e., the diago- 
nal elements of D) ar* real numbers belonging to the 
interval (0,1) since R is positive-definite. (See [19, p. 382], 
and (II.7).) It then follows from (3.30) and Lemma 2 that 
the three constraints in (3.28) are maximized by diagonal 

which is a concave function of (S,(u),S2(u)) for all 
u e [ - v, ir]. Then C can be shown to be a convex set by 
following the reasoning we used to show the convexity of 
C„. However, if the closed set C is convex, then each of its 
Pareto-optimal rate pairs has the property that it attains 
the maximum 

max    aÄ, + (l-a)Ä2 (3.33) 
<Ä„Äj)«C 

for some 0 £ a <. 1 (see [20]). 
For each spectral pair, denote the rate-sum constraint in 

(3.13) by 

1   f,      I     SAu)    St(w) 

+ sMsM{1_pHa))jda p34) 

Notice that the individual rate constraints in (3.13) are 
F(S„0) and F(0,Sj), respectively. Furthermore, to sim- 
plify the notation, the LJ- v. ir] subset of power spectra 
satisfying (l/2ir)flwS(u)du£w. will be denoted by 

5An achievable rate pair (Ä,. R:) is Parotivnptim.il if no other pair 
(Ä, + J,, Ä2 + 8j) with *| a 0 and"«. > 0 is achiciablc. For example, in 
the pentagons (2.7) and (3.6) only the points on the boundary of the 
capacity region belonging to the 135* segment are Parcto optimal 
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P(w). Then for every 0 £ a <il, (3.33) is equal to If a =• 1, then (3.38) follows immediately because the maxi- 

max • max        a/l1 + (l-a)/?2 S, £/>(»*,)   OsÄ|if(J|.0) 
Sj £/>(.**)   OsÄiSF(0.^) 

=    max   max{aF(Su0) + (l- a^FiSi,^)- F(Slt0)l a[F(SvS2)- F(0,S2)]+(l- a)F(0,S2)} 
St £/><>*,) 

/ 1 
max   (la-ljFto.Oj + O-ajFto.Sj),        if-£a<n 

= 
max   (l^eOFfO.SiJ+a^Si.Sz), 

[SjGPiwi) 

1 
ifO£a£- 

2 

(3.35) 

where (3.35) follows from 

F(SltSl)£F(Sl,0)+F(0,Sl) 
mizing arguments in the left and right sides therein are 

(3.36)    easily shown to be the constant functions **(«) = <£Al = 
wk/a

2, «e[-ff,ir], i=l,-•-,/», A: = 1,2. If 1/2^a <1, 
Following the same approach with the convex set (3.32),   we invoke the following result (proved in Appendix IV) 

we obtain that every Pareto-optimal pair in {\/n)Cn at-   regarding the optimization problem in (3.38). 
tains 

max      aRl + (l-a)R2 

(Ä,.Ä,)e-c; 

max       i£(i.-,)h|(,+ M+(i-.)hi(,+ ^f+^+^2(,-rfl.)). 

- 

l 
-E,"_,X,, s wt 
n 

A -1.2 

k,,i0.i-i.-.« 2« ,_, \       a   / \      o       o a / 

if-£a£l 

ifO£a£- 

i-i 
A -1.2 

(3.37) 

for some 0 £ a £ 1. To show that, for every 0 £ a £l, the 
limit as «-• oo of the right side of (3.37) coincides with 
(3.35), we will fix 1/2 £ a £ 1 (the proof for 0 £ a < 1/2 is 
identical) and we will prove that 

ma*    ^/_"y(*i(«).*2(«).P2(«))^ 

1 

I<?mma i: If 1/2 £ a < 1, then 

--^f_g{p2(<->)AA)dU   (3.40) 

lim max       — £ /(^».«k/« d?)>   (3.38)    where 0lt02 are positive scalars such that 
»-•oo f4/Ä0./-1.---.« 2n J_J 

:-1.2 
^rY^P».*,.«:)''»-^.       *-U (3.41) 
AVJ-w O 

Yhere 

(zpzj.p2) -(2a-l)log(l + z,) 
ö\p2A,e2) -fMfAAUiifAAW) (3-42) 
la Y*('.^i.^). k -1,2 are continuous functions. 
Proceeding as in the proof of Lemma 3, it follows that 

3.39)    the same result holds for the finite-dimensional optimiza- 

. .       ana Y*(".01.02)» *-1,2 are continuous functions. 
(l-a)logll + zI + z2 + zIz2(l-p )). Proceeding as in the proof of Lemma 3, it follows that 
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tion problem in the right side of (3.38), i.e.. 

max       — t f{*u,<h„d?) = — £ g{d},BxA) 
•i.aOi-i..--.« In f_j 

1 K-4 
2«,-i 

/I o' 
A-1.2 

(3-43) 

with 0,, 02 such that 

HV 

rEY*(^.ö..ö2) = 9 A: =1,2.     (3.44) 
«-1 

Since for any pair of signal-to-noise ratios (wl/a
2, w2/a

2) 
there exist solutions 0, and Qj to (3.41) and to (3.44), the 
identity in (3.38) will follow if we can show that for every 
fixed positive pair (8l,82) 

Km ~ tsitiAA)- r-f 8{?(>*)AA)d» 
ii-.00 Alt        j *MT *-» 

(3.45) 

and 

Km - tyk{d?AA)~z: f yk{p2HAA) d». 
(3.46) 

To prove this, we need to examine the behavior as 
n -»oo of (</{*,- • •,</*), the eigenvalues of the Jacobi ma- 
trix STS in (3.25). It can be shown that 

42 = Pi2 + P2i + 2Pi2p2iA.      i-l,-",n   (3.47) 

where {j8,, / = l,---,n} are the roots of the nth degree 
polynomial TB+t(x) obtained through the recursion6 

Tk+l{x)-2xTk{x)-Tk^(x) 

TM-U  r0(*)--^. 
Pl2 

In special cases it is indeed possible to obtain closed-form 
expressions for the eigenvalues of STS, for example, if 

Pi2 = P«. ^cn l22l 

d,^ = Pi2 + p2i+2PnP2iC0S U+lJ* / = !,- 

(3.48) 

At any rate, it is easy to show that the eigenvalues of the 
Toeplitz matrix T obtained by substituting the entry 
(STS)n * p\2 by p\2 + p\\ are equal to [22] 

^? = Pll + Pl2+2Pl2P2tCOS (£)• /-!,- 

(3.49) 

Thus if d} were replaced by d} in the left sides of (3.45) 
and (3.46), these equations would follow immediately be- 
cause of the continuity of the Riemann integrands therein. 
It is indeed valid to carry out this replacement because T 

*Excepi for the initial conditions, this is the recursive definition of the 
Chebyshev polynomials, whose zeros are trigonometric (21]. 

R, 

S,0) 

t 

°»1" l& 

t 

Fig. 5. Symbol-asynchronous Gaussian capacity region for rectangular 
signals and identical signal-to-noise ratios, when transmitters know 
offset between their signals. 

and STS differ in only one entry and are uniformly 
bounded in operator norm; thus they are asymptotically 
(as their dimension grows) equivalent [23], i.e., STS is 
asymptotically Toeplitz, and since g(-,8lt82) and 
yk(',9i,92) are continuous functions, their averages evalu- 
ated at {^,2}".! and {d?}1„l coincide as n-*co [23, 
Theorem 2.3]. Hence (3.45) and (3.46) hold and the proof 
of (3.38) is complete. 

Finally, note that Theorem 1 was proved under the 
assumption that the transmitters are frame synchronous. 
However, it follows from the results in [7] that the same 
capacity region holds even if the transmitters are frame- 
asynchronous because the capacity region is achieved by 
stationary distributions. 

Fig. 5 shows the capacity region of the simplest possible 
symbol-asynchronous Gaussian multiple-access channel: 
the transmitters are assigned the same rectangular wave- 
form and know the offset between their signals. The nu- 
merical computation of the capacity region is carried out 
using the results (IV.5-rV.13) of the functional optimiza- 
tion problem solved in the proof of Lemma 3. The worst- 
case offset between the signals is zero—in which case the 
channel is symbol synchronous and admits the scalar dis- 
crete-time model (2.6) resulting in the Cover-Wyner ca- 
pacity region (2.7). The most favorable case occurs when 
the symbol offset is equal to half of the symbol period, in 
which case the outer region in Fig. 5 is the capacity region 
C in (3.13) computed with p12 - Pji =» 0.5. This capacity 
region, which is representative of that of any strictly asyn- 
chronous channel (i.ex, when pl2 and p21 are both nonzero), 
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resembles a pentagon with smooth corners. As we saw, the 
reason the region C is not a pentagon is that there is no 
unique pair of spectral densities in (3.13) that maximizes 
all rate constraints simultaneously. Consider the pentagon 
defined by points B and B' in Fig. 5. This is the subset 
of (3.13) 

{(Ä1,Ä2):0^Ä1^F(S1*,0),0^Ä2^F(0,52*), 

achievable with the unique spectral pair (Sf.Sf) that 
maximizes the rate-sum constraint, i.e., 

FiS^Sf)*   max   F(SltS2) (3.50) 

and the rate-pairs B and B' correspond to (RltR2) = 
(F(Sf,0), F(Sf, S2*)-F(S{,0)) and (Ä„Ä2)- 
(F(S{, S?)- m Sj«), F(0, S:*)), respecüvely. 

Note that according to the optimality conditions in 
(IV.3), (IV.4) (particularized to a-1/2), the spectral pair 
(Sx*, Sj*) is the solution to 

V(«) 
-**•(«) 

max{ 
! + •/(«) 

20t    l + */(a>)(l-p») 

(;,*)- (1,2),(2,1) 

,0 , 

where (0,, 02) is chosen so that (IV.2) is satisfied. Since p,2 

and P2X are nonzero, p^u) is not a constant function of <•>, 
and hence neither are S1*(w) and S^«). However, the 
individual rate constraints 

hr.M^) da 

are maximized over the set P(wk) by the constant func- 
tions Sk(u) - wk and thus (Sf,Sf) fails to achieve the 
largest possible individual rates? 

jlog(l^), Ar—1,2. 

These rates are achieved (by one user at a time) at the 
points A and A' in Fig. 5. Point A is achieved by the 
spectial pair (wv SJ), where 

Sj «?(«*,) 

max    _, 

1 + 5(1-«-»]) 

i+-4+ 
S2(o>) 

rfto (3.51) 

is the best spectrum for user 2 when user 1 
> at full single-user speed (l/2)log(l+(w1/o

2)). 
ttriTi In CX S1\ !c 

i.e., z>2 1S tne bcsi spectrum foi 
transmits at full single-user speed 
The solution to (3.51) is 

S2
a(u)=o2max{ß-- 

1 + 
H\ 

l+^(l-p») 
a 

,0}   (3.52) 

where ß is chosen so that l/2ir /Sf (a) du * w2. Note that 
(3.52) admits the classical water-filling interpretation [24], 
[25] arising in the study of colored Gaussian single-user 
channel capacity. 

The segment uniting A and B does not belong to the 
boundary of the capacity region, and therefore, C is not a 
heptagon. This property which is illustrated by the capac- 
ity region in Fig. 5 can be proved as follows. Choose 
1/2 < a* < 1 such that the rate pairs A and B (and their 
convex combinations) achieve the same value of the func- 
tion a*Rx + (1 - a*)R2, i.e. (cf. (3.35)), 

(2a'-l)F(w1,0) + (l-a')F(wl,Si) 

-(2a*-l)f(S1*,0) + (l-a*)F(S1«,S2«). 

If the segment between A and B belonged to the 
boundary of the capacity region, then both A and B 
would attain rnax(ÄiJ,2)sCa*/?,+(l-a*)Ä2. However, 
this is not possible due to the strict concavity of the 
function (2a-l)/?(S1,0)+(I-a)/:'(S1,S2): any convex 
combination of the spectral pairs (w^Sf) and (S*,S2*) 
will achieve strictly higher values of a*R1+(l-a*)R2 

than A and B. In fact, the same argument can be em- 
ployed to show that the transition from A to B contains 
no straight lines. 

We are now ready to state and prove our main result 
• concerning the capacity region of the asynchronous Gauss- 
ian multiple-access channel wherein the transmitters ignore 
their mutual offset TJ-TJ. The transmitters only know 
that the crosscorrelations (p12,p21) that parametrize the 
channel belong to an uncertainty set I\ which is deter- 
mined by the choice of the signature waveforms. For 
example, if both users are assigned a rectangular waveform 
then the uncertainty set is equal to the segment r = 
(0 £ p12 £ 1, 0 £ p2, £ 1, p12 + p21 -1}. Note that in practi- 
cal applications it may be of interest to model channels 
where the offset is not the only source of uncertainty for 
the crosscorrelations; for example, if the signature wave- 
forms are sinusoidally modulated, the crosscorrelations 
depend on the relative phase between the carriers (e.g., for 
rectangular signals modulated by sinusoids whose fre- 
quency is a large multiple of the inverse of the symbol 
period T, we get r-±{0s;p,2ül. Osp^sl, p12 +p21 

£l}). The following result puts no restrictions on the 
source of the uncertainty of the set of cross correlations I\ 

Theorem 2: The capacity region of the energy-con- 
strained asynchronous Gaussian multiple-access channel 
where the transmitters do not know their mutual offset is 
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given by true, and we need to follow an alternative route, suggested 
by the following result 

C*= U (ApA^.O^A,^ —/   log 1 + -V-U«, 0^Ä2^—/   log 1+—r- 
st<u>;>o.uei-*.ir|l 4»'-.      \ a      J 4W-«      \ a      j 

S2(u) 

A-1.2 

S,(W)     52(co)     St(<o).S2(u) 1   /IT       /      5[(w) 
Ä,+ K2<;      inf      —/    log 1+-^ + 

Proo/- Having shown the result for the special case of a 
singleton uncertainty set T= {(Pi2>P2i)}> we will be able 
to proceed at a faster tempo by invoking several lemmas 
used in the proof of Theorem 1. The capacity of the 
compound decoder-informed multiple-access channel with 
memory can be shown to satisfy ([7], see a!so [26, p. 288]) 

[l-p\2-pl1-2Pnp2lcosu]\du\.   (3.53) 

Lemma 4: Define the circulant matrix 

S-PHJI + PII 

,' 1 
•closure  lim inf —C* 

\  n — oa   n 
(3-54) 

0    1    0 
0    0    1 

0    0 

1 

1 
0 
0 

with 
which differs from S only in the («,1) entry (cf. (3.22)). 
Then for every 5 > 0, and n > ns (independent of 2,, 

1{RIR\):     0^A^/(^-;r-(p12,p21)|^) 

C/-   U        PI 0^A-2^/(.V2-;y-(Pl2,p21)|^-) 
*T. *?<*,.*,>« r^ Äj + Ä-2^/(^",^;y(o12,p21))J 

(3.55) 

where Y"(pl2, p21) denotes the output of channel (2.4) with 
crosscorrelations (p12,p21), and AT" and X2 are indepen- 
dent random variables satisfying the same input con- 
straints as in (3.15). This follows simply because the direct 
coding theorem can be proved using codebooks that do 
not depend on the actual channel (via random selection) 
while the fact that for reliable communication a code has 
to be good no matter which actual channel is in effect 
establishes the converse theorem. Using Lemma 1 and 
proceeding as in Theorem 1, we obtain that 

22,p12 and p21) 

1 
logdet 

1 

/„ + — 'Zi 

2t     0 
0     22 S 

ST 

I. 

— logdet 
1 7*V 

2t     0 
0    2, 

/.    Si 
S     I. 

<S.   (3.57) 

c; U     ((*„ R2),0^R^\ logdet [/B + a-221] 
E4a0    \ l 

l 
-tr24 sw» 

k-1.2 

0£R2£- logdet [/„ + o"222] 

R, + R2 

1 
£      inf      - logdet 

(*>u-pji)sr 2 

1 
7* + ? 

'2t     0' 
0    22 ) 

(3.56) 

where the only different x with r< spect to (3.23) is t he 
minimization of the rate-sum constraint with respect to the 
cross-correlation-dependent matrix 5. 

In Theorem 1, we showed using the singular-value de- 
composition theorem that a set of eigenvectors exists that 
maximizes the three constraints in (3.23) no matter which 
eigenvalues are used, thus reducing the union therein to 
me over diagonal matrices. Here this property is no longer 

Therefore, as far as computing lim,_00(l/n)CB* is con- 
cerned, we can substitute S by 5 in (3.56). The effect of 
this substitution is to introduce an artificial interference 
term between symbol 1 of user 1 and symbol n of user 2 
(Fig. 6). resulting in a channel which can be thought of as 
a wrapped-around version of channel (2.1). By the circular 
symmetry of this new channel, we can intuitively expect 
the covariances achieving capacity to be circulant, and 
consequently, the existence of a set of optimum eigenvec- 
tors (whose components are powers of the complex roots 
of untity) which do not depend on the crosscorrelations. 
To show this, it suffices to write 

S-ÜDÜ* (3.58) 

where D is a diagonal matrix of the eigenvalues of 5, 
which coincide with the DFT of the first row of the 
circulant matrix S [23] 

^*-Pii + /»2i«"y2"<*",v". *-l.---.n (3-59) 
and Ü is the orthonormal matrix of eigenvectors of S 
given by 

1 
U, Ik 7T 

,-y2»(*-lX>-l>/» /'-l,••-,/:, k '1, ••',/». 
(3.60) 



VESDÜ: THE CAPACITY REGION OF THE SYMIOL-ASYNCHJIONOUS GAUSSIAN MULTIPLE-ACCESS CHANNEL 745 

b,(l) 

b.{2> 

b,(n) 

However, note that the right side of (3.63) can be written 
as 

lim      max inf 

••(3) 
*"-(3) 

1 

"-<» 0|ep]^l^)«>',lir 

•f/(*i(«).*:(«).P*(«))</"   (3.64) 

where 

b.(n) -tf") 
,/2«(/-l)', 

p*(u)=pzl |,       foru< 
2ir(/-l)   2ir; 

n       '   n 
nj(n) 

Fig. 6.   Circular n-block mcmoryleu two-user channel. and Pn(wk/a
2) is the subset of P(wk/a

2) of piecewise 
constant functions on the partition [0,2ir/n,- • •, 2it\. Since 
pl(u) is piecewise constant on that partition, it is easy to 

Using the decomposition (3.58) in Lieu of (3.24) and    show that we can replace P„(wk/a
2) by P(wk/a

2) in 
Lemma 2 with A =• D, and proceeding in a way similar to    (3.64) without changing the maximum value for any n. 
the proof of Theorem l, we obtain Finally, (3.63) follows from the fact that for every «> 0, 

U     ((ÄI,Ä2),0^ÄI^^-logdet[/ll + a-22I],0^Ä2i^-logdet[/ll + a-%] 
2» SO 

l 
-ltltSwt 

Jk-l.2 

2/t 2/t 

l 
Rl + Ri^      inf      — logdet 

(Pi:-Pii)sr 2/t 
f2n+-2 

2,     0 
0    22 S    I. 

U ((*i,Ä2).0£Ä,£~ £ log(l + nf), 0*R2Z±- t log(l + 4 
,,*0.i-l.—.»l 2n/-i       \       °   / 2n/-i       \       a 

l 

•1.2 

vhere 

dl\   ",Pl2 + Pll+2Pi2P2lCOS. 

i. + Ä^      mf     -Eiogfl^ + ^ + ^l-^l2)))   (3.61) 
•pij.fti)«r2n,.,      \      a2     a2       a*   V //j 

i»(/-l)      ,/2ff(/-l) 
-p> 

3.62) 
\s we saw in the oroof of Theorem l, the convergence 

n the riidit side of (3.61) to (3.53) reduces to 

,,aXH^ ,    inf
l.P7ir/(*i(M).*j(w).P?("))<'" „crt^Ll <Pu.pji)«r4irJ-w 

=na /t > /t, (independent of •,, <t2, pl2, and p2l) 

j/^y(*,(«),»2(«),fl2(«))rf« 

£2irlog 

•"3) 
('•3H (3.65) 

•im max inf      — 
.—oo •,, so./-!.•••.« (P|].p],)6r 2/t 

-1.2 

•-/l*ii.*w.PJ 

-i    \ 

2*(i-l) 

F))- 

Again notice that since the capacity region is achieved with 
stationary inputs, Theorem 2 holds regardless of whether 
or not the transmitters are frame synchronous. 

Corollary: If both users are assigned identical wave- 
jorms (and they do not know their mutual offset), then the 

(3.63)    capacity region is invariant to symbol (and frame) asyn- 
chronism. 
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S,(l) 

Sz(t) S2(t) 

Fig. 7.   Symbol-asynchronous Gaussian capacity region when transmit- 
ters do not know offset between their signals. 

Proof: Because 1 - p\2 - p21 - 2pl2p21 cos w ^ 0, it is 
easy to see that the asynchronous capacity region (3.53) 
reduces to the Cover-Wyner region (2.7) if the uncertainty 
set T includes either (0,1) or (1,0). This occurs when both 
users are assigned the same waveform. 

In Fig. 7 we can see the asynchronous capacity regions 
corresponding to two different assignments of the signa- 
ture waveform: a) identical signals, resulting in the 
Cover-Wyner pentagon, and b) signals that are orthogonal 
when symbol synchronous, resulting in a pentagon with 
smooth corners. 

IV.   EFFICIENCY REGION \ 

A fruitful way to represent the multiple-access capacity 
region is to consider the effective signal-to-noise ratio of a 
user who transmits at rate R, which we define as the 
signal-to-noise ratio, y, required to achieve capacity R in a 
single-user channel, i.e., 

Y«exp{2/*]-l. (4.1) 
Since the mapping in (4.1) is one-to-one, the rate and 

the effective signal-to-noisc ratio give the same informa- 
tion. It is convenient to normalize the effective signal-to- 
noise ratio with respect to the actual signal-to-noise ratio. 
This results in the performance measure we refer to as 
efficiency7 TJ, which is a parameter ranging from 0 to 1 
that quantifies the performance degradation suffered by 
each user because of the presence of other users in the 
channel. Once the capacity region of a multiple-access 
^nannel is known it is immediate to obtain the efficiency 

\n analogous performance measure was defined in the analysis of the 
mnimum uncoded error probability of Gaussian multiple-access channels 
271. 

Fig. 8.   Efficiency region as function of background noise level. 

region, by substituting each of the individual rates in terms 
of the respective efficiencies, i.e., 

Re iMl+v)- (4.2) 

For example, it follows from the capacity region in (3.6) 
that the efficiency region of the symbol-synchronous chan- 
nel is equal to 

J(ih.ij2)"-0<;T|,<;1,0<;T|2<;1, 

a2 o2 \ 
r)ir)2-(l-r)l)--(l-rl2)-^l-p2\    (4.3) 

W2 Wl j 

where recall that p is the crosscorrelation between the 
assigned waveforms. 

This efficiency region is illustrated in Fig. 8, as a func- 
tion of the background noise level. For low signal-to-noise 
ratios the efficiency region occupies nearly all of the unit 
square because the main mechanism limiting performance 
is the background Gaussian noise, rather than the multi- 
ple-access interference. Conversely, it is apparent from 
Fig. 8 that for moderate-to-large signal-to-noise ratios the 
efficiency region converges to an asymptotic rc^on which 
quantifies the underlying limitation of the multiple-access 
channel due to the cross correlation between the assigned 
signal waveforms. The region in (4.3) admits a particularly 
simple asymptotic expression as the noise spectral density 
goes to zero: 

£-{(T>,,T>2):0<;III<;1,0<;IIJ<;1, T,,T,2 <a - p2}. 

(4.4) 

The usefulness of the asymptotic efficiency region is 
threefold: it provides a simple way to characterize multi- 
ple-access capacity in high signal-to-noise ratio situations; 
it gives a lower bound* to the efficiency region achievable 
at any background noise level, which depends only on the 
assigned signal waveforms and not on the signal-to-noise 
ratios, and it gives an intuitive characterization of the 
icnormance degradation in a multiuser channel in terms 

It is shown in [14J that the efficiency region is monotonically increas- 
ing in o2 (cf. Fig. 8). 
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Letting a2-*0, the asymptotic efficiency region results: 

£=        U    •   {(li.i?2):i?i£exp--/>   \ogS{(u)du, i?2£exp— f \ozS2(u)du 
s,(u)*o     v litJ-i, Lit'-« 

1-1.2 

17x772£ exp — /    logS^wJdwexp — /    logS2(u)</u      inf      exp—/    \og(l-p2(u))du)    (4.6) 

of the additional power required to achieve single-user 
capacity. 

For example, suppose that the users' objective is to 
transmit at rates Rx and R2, respectively. If they were 
operating in a single-user channel, these rates could be 
achieved with powers: wk=*o2(cxp[2Rk]-l), k = 1,2. 
However, when they share the same channel, these powers 
are no longerjuffirient to guarantee reliable communica- 
tion at rates A, and R2. The asymptotic efficiency region 
(4.4) indicates that the sum of their powers in dB has to 
increase by -101og(l-p2) dB and that the way the users 
split the burden of increasing their powers is immaterial as 
long as the total power increases by the prescribed amount. 

In the conventional scalar multiple-access channel, which 
corresponds to the users being assigned the same wave- 
forms, i.e., p = 1, the asymptotic efficiency region is (via 
(4.4)): 

{0^71,^1, T,2 = 0}U{7J1-0,0^7J2£l}. 

Thus when the signal-to-noise ratio is high, the best strat- 
egy is to let one of the users transmit at practically full 
single-user speed, while the other user's rate is kept at a 
very low level. This is considerably more efficient than 
time-division multiple-access (TDMA) signaling whose 
asymptotic efficiency is equal to zero for both users— 
although if both rates are required to be the same, then 
TDMA is indeed almost as good as the best coding for low 
background noise (see [280. 

These conclusions do not hold in the case where the 
assigned waveforms are different (|p|<l). For example, 
suppose that p = 0.1 and two equal-rate equal-energy users 
with signal-to-noise ratio equal to 20 dB transmit at the 
maximum possible rates. Had the users employed TDMA, 
each of them would have required approximately 40 dB to 
attain the same rate. Even in the case where there is heavy 
cross correlation between the signals, TDMA is not near- 
optimum, eg., if p - 0.9, then TDMA would still require 
33 dB to attain the same rate. 

The efficiency region of the asynchronous Gaussian 
multiple-access channel is (via (3.S3) and (4.2)) equal to 

;S,(u)du-l 

-1.2 

ij, + —   fjexp hf* 

The constraints in (4.6) depend on the spectral densities 
only through their geometric mean; therefore, all three 
constraints are maximized simultaneously by a single pair 
of spectral densities because the function that maximizes 
the geometric mean subject to a constraint on its arith- 
metic mean is constant. Therefore, (4.6) is equal to the 
efficiency region achievable with white spectral densities 
5A(«) = 1, «e[-ir,ir], which implies that white inputs, 
while not optimum in general, achieve capacity asymptoti- 
cally as the background noise level goes to zero. Then the 
asymptotic efficiency region is the intersection of the unit 
square with the hyperbolic region 

1 
ihih <;      inf      exp — 

(pti-<>jt>€'       Lit 

f   log[l-(p2
2 + p|,)-2p12p21cosu] du 

yi-(p12 + p21)
2 +\/l-(p12-p21)

2 

inf 
(Pii.Pii)er 

(4.7) 

where the definite integral is found in [29, p. 560] (see also 
[30, p. 384]). Note that this result generalizes the constraint 
1 — p2 obtained for the product of the asymptotic efficien- 
cies in (4.4) when the users are synchronous. Equation 
(4.7) indicates that contrary to what is sometimes assumed 
in pseudonoise sequence design, it is as important to 
minimize the difference between the cross correlations as 
to minimize their sum (the so-called periodic cross correla- 
tion). The function on the right side of (4.7) is tightly 
approximated by l-p?2-p2i for low cross-correlation 
values such as those in Fig. 9, where we can see the 
uncertainty set of cross correlations between two carrier- 
modulated spread spectrum waveforms used in CDMA 
[31]. In this case, the minimization in (4.7) is attained by 
the rightmost point in Fig. 9. 

— + S,(«) w. 
du 

1 

• h+^Hexp27/jog 
w, 

+ S2(u) du 

°2\l     °M ! r 
TJI+— hh+~ *    inf p^Pri  log sM+ w, 

S1(a)+ — \-p2{oi)Sl(u)S2(u) 
w- 

du   (4.5) 
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sufficiency of the respective outputs, the channels in (14) and 
(1.3) have the same capacity region. 

APPENDIX II 

Proof of Lemma 1: To prove the identity 

det[/2„ + a-2£[;r;r7"]Ä] 

det 
023 QO QIS 

Fig. 9.   Locus of cross correlations for maximal-length pseudonoise 
sequences with 31 chips per symbol. 

APPENDIX I 

To simplify the coding theorems for multiple-access channels 
with memory invoked to find the capacity region of the asyn- 
chronous Gaussian channel, it is convenient to obtain a discrete- 
time channel equivalent to (2.4) and whose noise process is 
independent. The idea is to obtain a set of sufficient statistics 
that are independent given the transmitted symbols, but that 
unlike those in (2.4) are not a minimal set. We define (cf. Fig. 2): 

**(0-/(' + 1)r+V<)':(<-'T-T2)*       (I.la) 

f* + 7 
?•,     0 

0    22 S    I. (Ill) 

ytiO'f \(<K(<-'T-T2)*. (Lib) 

It is clear from (2.2) and (1.1) that 

MO-tiiO+tiiO- 

Thus the set of quantities U(i)}7..i.{>2*(«')}"-i. and {ytWl-i 
are sufficient statistics for the transmitted messages. To obtain 
the explicit dependence of ^"(i) and yi(i) on the transmitted 
-vmbols, it is convenient to define the partial energies of {J2(0}: 

/ '2(0* 
T'+T.-T, 

,-/ 
r+n-T, j <sl(t)dt. 

(1-2*). 

(I.2b) 

nus *,* + <•£ -1, and it folkjwj from (2.J.), (14), (LI), and (L2) 
hat we can write 

MO 
hLd) 

1 

Pti 

Pit 

Pu    Pu r ^(i) i * »i(0 1 
4   o MO + «J(0 
0     *£ LM«-i)J L«?c-i) 

1.3) 

vhere 

iv(f) - lU*l)T*\(t)^t-{T-ii)tlt      (L4a) 
'i+nr+T, 

.,-(/) - /(,+I)r+n
B(0*,(«-ir-T2)<ft     (i.4b) 

T+T, 

"he channel in (1.3) has memory because of the dependence on 
>revtous inputs; however, since the random process {«(0} is 
vnite. the noise sequence in (1.3) in independent Because of the 

we will first decompose the crosscorrelation matrices E[X"X"T] 
and R using the Kronecker product: 

£t•-n-*[(*r.[J])(*;-.[j])r 

•«{(«•RIM])' 
Ml DMl ?] (112) 

and 

*-Wi °o]+^[°o !]**•[? °oHr®[°o }]• 
(n.3) 

It is straightforward to check that if A, B, C, D are n Xn 
matrices, then 

'•[I X]*"[X llMl ?] 
+H? SMS ?]'r «u> 

where P is the permutation (orthogonal) matrix whose only 
•orrzero entries are 

fy-W-l.      y-1.'".« (U-5a) 

^2y-2»y-l.       J —* + l."-.2n. (IL5b) 

"herefore, (II.2) and (IL3) can be written, respectively, as 

SfJTA-n-Ho    2°]^ (H.6) 

*-l» 
5    /. 

(n.7) 

and (II.l) foUows from (0.6), (TL7), and the orthogonality of 2» 
iDon using the identity det(J + AB] - detJJ + A4 j. 

APPENDIX III 
Droo/ of Lemma 2: Define the following diagonal matrices: 

/•'- diag{cos0,,-••,<»$*„}, G -diag{e^ sin0„•••,«•'•• sin0„} 
where 0, - (1/2) arcsin(|8(D 6 [0, #/4] and 3, -I«,!«*', i - 
'.-••,n. It is straightforward to check that 

\F    G']\F    G'fjF    G'fjl*    *' 
IC    fJlC    FJ      [G    F\     I A    /, (mi) 
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~ nerefore. we can write 

•etl/,,+ A    0 
10    B\ 

that maximizes the strictlv concave Lagrangian (if p2 <1. then 
/(*,, 22,p

:) is strictly concave in (zv z2)) 
if'"    A11 

(IV.l) 

*or some pair of positive Lagrange multipliers (0|,02) selected so 
vnere /* is the orthogonal matrix introduced in Appendix II. It     tj1at 

ollows from (TI.4) that 

^-/* *»•(«)rf«--^.       *-1.2. (IV.2) 

is a block diagonal matrix whose ith diagonal block is the 2X2     Thc_°P,i^Um
r.
p_a^_(?i:*fi* ^üS* ^fÜJ?' ^.f01* °f 

matrix 

F    Gm 

G    F 

cosS, ,->*• sind, 

whereas 

e^'smO,       cos0, 

A    0 
.0    ÄJ 

is a block matrix whose »th diagonal block is 

0     *„ 

Because of the assumption on the magnitude of the elements of 
A, the hermitian matrix 

A    /. 

nonnegative function pairs that satisfies10 (e.g. [33, p. 227)) 

<?is/1(*1«(«),*2«(«o),p2(«)) 

2a-l 

" 1 + *,*(«) 

(l-a)[l + 9r(»){l-l?(»))] 
+ l+*,*( w) + *f(«) + <l>i,(«)<l>f(w)(l-p2(w)) 

fl«s/2(*i'(»).*r(»)y(«)) 

(l-a)[H-4>,»(M)(l-p2(M))] 

" l + <D1*(«) + <D2*(w) + <D«(«)*2«(«)(l-p2(«)) 

(IV .3) 

(IV.4) 

s nonnegative definite and, therefore, so is the matrix in the right 
iae of fIII.2). This allows us to apply the generalized Hadamard 
neauaiity (18)* (the determinant of a positive-definite matrix is 
•Dper-oounded by the product of the determinants of its diago-    whjch implies that 
iai blocks! to the matrix in the right side of (H1.2); the result is 
he ineauality 

with equality if *,*(«) > 0 and **(«) > 0, respectively; here /, 
and f2 are the partial derivatives of / with respect to its first two 
arguments. It follows from the second condition that 

*2«(«)-maxi-; ,,,».,,.J,    ^...x.O)   (IV.5) 62       l + **(w)(l-p2(w)) 

•   !      [        if   cosö,      e-»'sxaO, 
ll(det /2 + -      .     ' 
-it      [       «2[e*'sin*,       cos*. 

i-a>«2 (IV .6) 

tor otherwise *2*(w)-0 for all ue[-v,v), which does not 
satisfy (IV.2). Let us now see what conditions force each of the 
solutions to be zero at a narticular frequency. 

On the one hand, if *,*(üy,) -0, then (IV.5) and (IV.6) imply 
that 

0    b» 
cost e'^'saS, 

e*'äa8,       cosO, 

I [l + a„ + *„ + a,A0-|«/02}. (III.3) 

1-a 
*i'K)—-r-i o 

which when substituted in (IV.3) results in 
a — B. 

P'K)* 

(IV.7) 

(IV.8) 
(l-a)-*' 

inallv, it is immediate to check that (3.31) is satisfied with    One conclusion that can be drawn from condition (IV 8) is that 
auaiity if A and B are diagonal matrices. a>6, (W.9) 

.^nn>ioA Ath*miir«    lTh*/*»\ «A  f/\r ««11   /.i C t— mt   m\ 

\PPENDIX IV 
uecause otherwise, $*(«) -0 for all we [- tr,ir]. 

~>n the other hand, if *,*(«o) - 0, then (IV.3) and (IV.9) imply 
'roof of Lemma 3: The proof involves the solution of the    that 

naxunization in (3.40), thus yielding an explicit way to compute a 
He canacity region in (3.13). The maximum on the left side of 
3.40) is achieved by the pair of nonnegative functions CD,*,**) 

*i"(m)-r-i (IV.10) 

"\mons the many existing proofs of the Hadamard inequality. Cover 
>no El Gamal [32] have given a simple infornuüon-theoreüc proof. One 10If IPUI+IPIII-L then //(«^-l for either «^ - 0 or ^ - tr. and 
n the race features of that proof is that it can be immediately extended to uniqueness of (*,•,*,•) is guaranteed, except in the set {^} of measure 
.rove we generalized Hadamard inequality. zero, because /(*,. /2,1) is not strictly concave. 
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which upon substitution in (IV.S) results in the condition be shown for the reverse difference in (V.l), i.e., 

(IV.ll) 

Note that since l/2ia<l. (IV.8) and (IV.10) cannot be true 
simultaneously if p2(m>)<l. However, they can indeed be false 
simultaneously, in which case (IV.3) and (IV.4) are satisfied with 
equality and (**("),^'(u)) are the positive solutions to the 
system of the following equations: 

1-a l + «.*(u) 
^(")--S--,.^,..J,\.,,..,i      (I•) e2     i+«'(u)(i-p2(u)) 

2o-l 

l + «,*(u) 

[ (l-«)[l + 4>2*(<o)(l-P
2(<o))] 

l + «i,(u) + «l)2*(u) + «l)1*(u)«l)2*(w)(lr-p2(u)) *  l' 

(IV.13) 

It follows that for each fixed pair of Lagrange multipliers, the 
maximizing spectra (Q{(u),$f(u)) depend on u only through 
^(u), i.e., **(") - yt(p^(w),^i,^2)« which is a continuous func- 
tion of p2(co). 

APPENDIX V 

Proof of Lemma 4: Let £ be the 2n X2n matrix whose only 
nonzero elements are £12„ - £j, , -1, and let Z, be the nonneg- 
ative-definite square root of 2,. Then we can write 

logdet 
1 2, 

0 Ill's Sr 

- logdet /»•4[o 
ol 2J s 

-logdet[/2„+p21A/£] 

where 

M-o-2 

0 * 

i 
f7 

2i     0' 
0    22j is ST 

sr 

I. 

(V.1) 

0   z, (V.2) 

The determinant in the right side of (V.l) is easily computed: 

det[/2„ + p2,Af£]-l + pi,A/,2
2(, + 2p2,W,2),-pi2MuM2),2, 

*l + 2pj,M2. 

*2/i2/i 

! + • :2n (V.3) 

vnere the first two ineaualities follow from the nonnegative 
•efiniteness of M. and the third inequality is a consequence of 
he fact that, according to (V.2), »he largest eigenvalue of M is 
iDper-oounded by that of 

-M*     ° 0    22j 

vnich is in turn unper-bounded by (tr2, + tr22)/o
2 5(H'1 + 

y.;/V. Interchanging the roles of S and S, the same bound can 

1 
- logdet 
n 

1 

/2« + 7 [i ilft t]] 
-**+••# its m 

i 

n 
logll + - 

C2      '"j' 
(V.4) 

completing the proof of Lemma 4. 
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Control and Optimization Methods in 
Communication Network Problems 

ANTHONY EPHREMIDES, FELLOW, IEEE, AND SERGIO VERDÜ, SENIOR MEMBER, IEEE 

Abstract— In lhis paper we focus on two areas of communication 
network design in which methods of control and optimization theory have 
proven useful. These are the area of multiple access communication (for 
networks with shared links such as radio networks and local area 
networks) and the area of network routing (for networks with point-to- 
point interconnections). We review a few selected problems in each area 
to show the role of the control concepts involved and we then proceed to 
identify other areas of communication network design in which the same 
control theoretic and optimizalics methodology may be applicable and 
useful. We do not survey the work done in this area, nor do we review 
work in control areas whose methods are applicable in other communica- 
tion network problems. Instead, we attempt to bring to the attention of 
the control systems community the numerous instances of problems 
arising in the pure communication network design process lbat can 
benefit from the attention and the capabilities of this community. 

I. INTRODUCTION 

COMMUNICATION networks are designed and built in order 
to share resources If interconnecting systems and bandwidths 

were available at no cost, then the solution to the problem of 
communication would be to assign dedicated communication links 
(channels) of sufficient capacity to every pair of conceivable users 
to meet their needs. This not being the case, it is necessary to 
multiplex the sources of communication traffic in order to 
optimize various cost criteria. Frequently, this optimization is 
dynamic and done on the basis of feedback that monitors the 
evolution of the degree of utilization of the network resources. 
Thus, we should expect a number of problems arising in 
communication network design to fit naturally in the framework 
of control systems design In this paper we wish to demonstrate 
that indeed this is the case and to show how various control and 
optimization methodologies have beer, used in the study of 
communication networks. 

In the beginning there was a single communication network, the 
telephone network It represented a multibillion dollar investment 
and seemed to serve reasonably adequately the voice communica- 
tion needs The explosive growth in data communication needs 
during the last 30 years built up the pressure for additional and 
alternative networking options. As a result, the notion of store- 
and-forward switching (known also as message switching) was 
introduced in the early 1960's. This notion represented a 
breakthrough since it constituted a radical reversal of thinking 
with respect to the circuit-switching process, namely, instead of 
securing an open, dedicated "pipe" for the transmission of 
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messages by means of hardware switches, it allowed a step-by- 
step (node-by-node) forwarding of messages, thereby permitting 
each node to switch messages by deciding when and where to 
transmit the messages in its buffer. In the last 20 years we have 
seen an avalanche of technologies (fast switching, time division 
multiplexing, local area networks, fiber optical networks, inte- 
grated services digital networks, etc.) and a proliferation of 
operational public and private networks that put these technolo- 
gies to test and challenged communication engineers. In addition, 
they should challenge control engineers as well. 

Without attempting a survey of this vast application area we 
wish to promulgate the viewpoint that many (if not most) specific 
sub-problems in the network design process are natural control 
problems. In support of this thesis, we choose, first, to demon- 
strate how two major areas in communication networks (routing 
and multiple access) have benefitted from the use of techniques 
borrowed from what is traditionally perceived as control systems 
methodology and, second, to mention additional areas that are 
likely to benefit from the control systems community. As 
illustrated in this paper, the techniques that have proved useful in 
communication networks include, dynamic programming (e.g., 
[2], [6], [8]-[10], [22], [29], [38], [39], [47], [49], [54]); linear 
programming (e.g., [50], [51]); constrained and iterative optimi- 
zation (e.g., [5], [14], [16], [42]); Markov decision theory tools 
(e.g., [2], [26], [29], [38]); control of Markov chains (e.g., [11], 
[17], [18], [20], [40], [45]); stability analysis of stochastic 
systems via Lyapunov methods (e.g., [31], [43]); sample path 
dominance (e.g., [2], [52]); and convergence of distributed and 
asynchronous algorithms (e.g., [6], [16], [42]). 

The problem of routing is encountered in all and every network 
that does not permit the source to reach the destination in a single 
transmission hop, but instead it must traverse a path of intermedi- 
ate links. By contrast, the problem of multiple access is 
encountered primarily in those networks that permit the nodes to 
reach their destination directly in one hop by having to share the 
same link with other transmitting nodes. In addition, the two 
problems are fundamentally different in nature and, jointly, cover 
considerable ground in the networking area. Finally, together they 
facilitate the identification of additional design issues and the 
extension of the applicability of suitable control methods. Thus, 
they represent "cornerstone" areas of network design. 

Routing can be studied either macroscopically or microscopi- 
cally. The macroscopic viewpoint considers basically a flow 
model and determines the splitting of the flow in order to reach the 
destination in minimum time with efficient use of the network 
resources. It is traditionally referred to as static routing. The 
microscopic viewpoint dissects the flow process down to the 
atomic level of the individual transmission unit, the message (a 
string of bits commonly referred to as packet), and determines the 
path each message must follow at each of its hops through the 
network. It is traditionally referred to as dynamic routing. Both 
viewpoints are explored in Section II. 

Multiple access is a collective term that refers to numerous 
problems that deal with the dynamic allocation of a single 
resource among users who can coordinate their use of that 
resource only by making use of that resource. These problems 
arise primarily in the context of radio channels but also in the 
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Fig  1 

u2 Us 

Layered network showing link lengths. Source is node 1 in U, and 
destination is node 5 in (/;. 

context of shared cable resources in local area networks. In 
Section III, we explore the main multiple access problems where 
control methods have been successfully applied. 

Both in the case of routing as well as in the case of multiple 
access we place the emphasis on the control techniques that have 
been used. We then show how these techniques, sometimes with 
slight modification, can be naturally transported to other problem 
areas such as voice-data integration, flow control, and the 
scheduling of messages and links. This is done in Section IV. 

II. NETWORK ROUTING 

The problem of routing in communication networks is one that 
has received early attention and has experienced significant 
breakthroughs in the brief history of the field of communication 
networks. It is one of the first problems that gained prominence as 
a result of the emergence of store-and-forward switching. It is also 
one in which analytical tools and available theories applied nicely 
from the beginning. 

A. Static Routing 
Given a network (a set of nodes connected by directed links) a 

path connecting the source node to the destination node has to be 
selected from the set of all possible such paths.' In the simplest 
ormulation. the problem is one of finding the shortest path, i.e., a 
ength is assigned to each link and the optimization criterion is the 
otal Dath length. This problem is one of the archetypical 
omoinatorial optimization problems (the solution can be found by 
:xnaustive enumeration of a finite set of possibilities—all possible 
ains from source to destination). Among the many existing 
mortest path algorithms (see, e.g., [41]), the Bellman-Ford 
algorithm (1956) is of particular interest to our exposition, both 
because it is based on dynamic programming and because, as we 
will see below, it easily lends itself to distributed asynchronous 
implementation A natural choice to find the shortest path from 
source to destination in a layered network (i.e., one in which the 
nodes can be grouped in subsets Ult • •• UM such that the source 
and destination nodes belong to Ui and U\f, respectively, and 
there are links only between nodes in adjacent layers Uk.l and 
Uk) such as the one in Fig. 1, is the dynamic programming 
algorithm, where the shortest paths and distances (costs-to-go) of 
the nodes in layer Uk to the destination are computed based on the 
shortest paths and distances of the nodes in layer £/*+!• If the 

1 All the algorithms and results discussed in this section can be extended lo 
the case where there are several source-destination pairs in the network. 

Fig. 2. Arbitrary network showing link lengths. Source is node 1 and 
destination is node S. 

network is not layered (such as that in Fig. 2), its shortest path can 
be obtained by finding the shortest path in a layered network 
derived from the original one as specified in the Bellman-Ford 
algorithm: the number of layers is equal to the number of nodes in 
the original network, say N, each layer contains a copy of each of 
the N nodes, and there is a link connecting two nodes in 
consecutive layers if such a link exists in the original network, in 
addition, copies of the same node in consecutive stages are 
connected by a zero-length link. (Fig. 1 was actually derived from 
Fig 2 using this rule ) It is easy to see by induction that Dk(i), the 
cost-to-go of node / in layer N - k, is the minimum length of any 
path from / to the destination that uses at most k links (in the 
original network). Since no shortest path uses more than N - 1 
links (link lengths are assumed nonnegative and, therefore, no 
path containing loops need be considered), the cost-to-go of node / 
at layer 1, DN.i{i) will indeed be the length of the shortest path 
from node / to the destination. Thus, the Bellman-Ford algorithm 
can be formulated as the iteration 

£>,(/)= min [£,-,(./) +4,] forJt=l, ••• N-\   (2.J) 

where d,j is the length of the link from / to j, N(i) is the set of 
nodes for which such a link exists and it is assumed that D0(i) = 
o° if / is not the destination node, which corresponds to the 
removal of all the nodes but the destination in the final layer (Fig. 
1). 

Contrary to what may appear at first glance there is a lot more 
to network routing than finding shortest paths. After all, the 
shortest path may not be the best path. The reason is that the real 
goai is to minimize the delay experienced in going from source to 
destination, and the delay encountered in each link is usually a 
function of the amount of traffic carried by the link (as the link 
becomes congested, it takes longer to go through it), which is 
referred to as the link flow and is quantified in packets (or 
messages) per second. Then, assuming a given desired flow level 
from source to destination, the problem is how to distribute it 
among all the possible paths so as to minimize the total delay. In 
contrast to the previous more elementary formulation of the 
routing problem which led to the shortest path combinatorial 
optimization problem and which corresponds to the special case in 
which the link delays are independent of the flows, we now face a 
continuous optimization problem which can be written as 

minimize F(x) - ]£ D<, (    ]£   x(n) J 

subject to x G X= J (x(l), • • -x(J)) e RJ, 

5J x(n) = \,x(n)>o{    (2.2) 
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Fig   3    Characterization of the solution to the minimum-dela) routing 
problem. 

where the set of all paths from source to destination is labeled {1, 
•••, J}; x = (jf(l), •••, x{J)) is the vector of unknown 
nonnegative path flows which sum up to X, the desired flow from 
source to destination; P(i,j) C {1 ,••,/} is the subset of paths 
that traverse link (/", j); and Dy(x) is the portion of the overall 
delay contributed by die link from node / to node j when the flow 
it carries is equal to x. In order to characterize a global solution to 
the optimization over a convex set in (2.2), it is natural to restrict 
attention to convex penalty functions. In practice, it is common 
that the incremental delay in a link grows with the amount of 
traffic it carries and, therefore, it can be assumed that the 
functions D0 are convex without affecting significantly the 
practical applicability of the results. 

Now, the characterization of the solution to (2.2), x*, is 
straightforward. Since the feasible set X and the penalty function 
F are convex, it is necessary and sufficient that the directional 
derivative of the penalty function be nonnegative when evaluated 
at** in the direction of any of the elements of A" (e.g., [37]) 

Ozlim-[F((l-<x)x* + ax)-F(x*)]      Vx € X   (2.3) 
alO a 

which translates into 

(ij) \mePlu) J neP(ij) 

J 

= 2 M") - **M1 d«M       for all JC e A' (2.4) 
«-I 

where dx(n) = S^eu«» Dy(2m£fll>y) x*(.m)) is the length of path 
n when the length of each link is equal to the derivative of its delay 
evaluated at the set of flows x, and L (n) is the set of links used by 
path n. The solution to (2.4), x*, is the vector in A" that minimizes 
its inner product with the vector of distances tf,*. Thus, x* puts 
all its weight on the smallest component(s) of dx* The conclusion 
is that the optimum flow uses only shortest paths computed 
according to the derivative of the link delays. 

This solution to the minimum-delay routing problem allows us 
to check whether a given set of flows is optimum. Unfortunately, 
it does not tell us how to find the optimum flows. Indeed, we face 
the chicken-and-egg situation depicted in Fig. 3. The optimum 
flows are obtained by solving a shortest path problem; but in order 
to compute the link lengths it is necessary to know the optimum 
flows. Nevertheless, the foregoing characterization of the optimal 
solution does suggest a possible iterative procedure to find the 
optimum set of flows. Starting with a given set of flows x one can 
compute the minimum derivative shortest paths for that flow, and 
hence, a new flow, x*(x) that is positive only along those shortest 
paths. The process can then be repeated, until there is no 
appreciable cost decrease. The region of convergence of such a 
procedure can be improved by letting the new flow be a convex 
combination of x and x*(x), i.e., 

xk+1 = (1 - ak)xk + akx*(xk). 

This is the so-called flow deviation method of Fratta, Gerla, and 
Kleinrock [14], where 0 < ak ^ 1 is chosen to minimize 

F((l-ak)xk + akx*(xk)) 

which is a special case of the feasible-direction nonlinear 
programming algorithm due to Frank and Wolfe [13]. The 
convergence of the flow deviation method to the optimum routing 
is rather slow because unfavorable paths tend to carry considera- 
ble flow during many iterations unless the initial routing guess is 
particularly fortuitous. Such a behavior can be improved by 
reducing the flow along each nonminimum derivative path in 
accordance to the delay experienced in that path. This is the idea 
of iterative routing algorithms based on gradient projection 
nonlinear optimization methods (e.g., [4]) in which the flow 
decrease along a nonminimum derivative path is proportional to 
the difference between its length and that of the shortest path 
(according to the first derivative of the delay function). If such a 
decrease would result in a negative flow, then the flow along that 
path is set to zero (hence, the projection to the set of feasible 
flows). 

We have seen that the problem of static network routing can be 
formulated as a conceptually straightforward optimization prob- 
lem that admits well-known solutions in nonlinear programming. 
What sets optimum routing in communication networks apart 
from other multicommodity flow problems arising in operations 
research is the fact that the optimization is carried out in real 
time, and often, in distributed fashion, where each node makes its 
own routing decisions based on local information. The review of 
centralized routing has revealed that the shortest path problem 
plays a central role in solving for the optimum routing regardless 
of whether the link congestion measures depend on the link flow 
or not. Hence, we will start the exposition of distributed routing 
algorithms by discussing the distributed version of the Bellman- 
Ford shortest path algorithm. 

The Bellman-Ford updating equation in (2.1) suggests that the 
algorithm is suited for decentralized operation because each node 
can update its own estimate of distance to the destination (cost-to- 
go) provided it receives from its neighbors their own estimates 
[appearing on the right-hand side of (2.1)]. The feature that makes 
the study of the distributed Bellman-Ford algorithm interesting is 
that it can run completely asynchronously, in the sense that the 
updating and communication times need not be coordinated and 
convergence can be guaranteed by simply assuming that updating 
and communication between nodes never cease, without any 
requirements whatsoever on the rate of communication. The proof 
of convergence is a nice illustration of the analysis of decentral- 
ized algorithms where the processors are allowed to perform their 
computations and to communicate the corresponding results 
completely independently of one another [5], [6]. The idea is to 
show that the estimates computed in the distributed asynchronous 
algorithm are always sandwiched by the estimates computed by 
the centralized version of the algorithm when started at two 
different initial conditions, and that both centralized estimates 
converge to the true distances to the destination node. 

Those centralized estimates are denoted by Dk - (Dk{\), • • •, 
Dk(N)) and Dk = (P*(l), • • •, Dk(N)), and are the result of 
the centralized Bellman-Ford iteration (2.1) when it is started 
with initial conditions Do = (», • • -, oo, 0) and Do = (0, 
0), respectively. (The destination node is assumed" to be the Mh 
node.) Define the operator [see (2.1)] 

Bi[Dk)= min [DkU) + d,j) 
JSNV) 

= Dktl(i) (2.6) 

if 1 S / < N, and BN[Dk] •= Dk(N). This operator is monotone 
in the sense that if D £ D* (i.e., if D(i) £ D*(/), /=!,••• 
N), then 

B,[D]SB,[D*\. (2.7) 

The monotonicity of Bi implies that 

Dk<zDk+lzDk+lzDk (2.8) 
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and, moreover, it is easy to show that for sufficiently large k 

Dk=ÖN.x=Dk (2.9) 

which is the vector of distances from each node to destination as 
we saw in the discussion of the centralized algorithm. 

In the asynchronous distributed version of the algorithm, it is 
assumed that each node / keeps at time / > 0 an estimate of its 
distance to destination A,(i), and an estimate of the distance from 
each of its neighbors j € N(i) to destination A\(j), which is 
simply the latest estimate received from node./. In view of (2.8) 
and (2.9), convergence of the algorithm will follow if we show 
that for every index k, there exists a time tk > 0 such that for all / 
2: /* 

pk<A,£Ök (2.10) 

and for / = 1, •••, N - 1 

PtU)*A',U)sOtU)    yeN(i). (2.11) 

This is shown by induction. If k = 0, then (2.10) and (2.11) hold 
as long as the initial estimates of the decentralized algorithm are 
nonnegative. Assuming that the induction hypothesis is true for k, 
the monotonicity of Bt implies that if / a tk, then 

Dk+t{j) = B,[Dk\*B,[A\\*Bt[Ük\ = ßM{il.     (2.12) 

But A,{\) is a picccwise constant function of time which only 
jumps at the updating times of node /, at which times it takes the 
value 

A,{i) = B,[A% 

Therefore, we can write 

I>»t,(/)£i4,(/)s/>tt,(i)      for/:»/*(/)        (2.13) 

where tk(i) is the smallest updating time of node / which is greater 
than /*. Moreover, if we wait long enough aftei max; /*(/), not 
only all the nodes will have earned out their first updates after tk 
but the result of those computations will have been communicated 
to their neighbors because of the assumption that updating and 
communication occur infinitely often. Hence, there exists tk+l 2: 
max( /*(/) such that for all / 2: r*+i and for all / andy 

A!,U)=ASU) 

for some j 2 tk(j) (which depends on /, /, and j). Thus, it 
follows from (2.13) that 

DMU)£A\U)sßk+iU)      J € N(i)      i= 1, • • -, N- 1 

completing the inuuction proof and, therefore, the proof of 
convergence of the distributed asynchronous Bellman-Ford al- 
gorithm. 

When the link delays depend on the traffic flows, it is also 
possible to obtain the optimal routing that solves (2.2) in a 
distributed asynchronous fashion. Gradient projection algorithms 
are belter suited for this task than the flow deviation method 
because in the latter method a higher degree of synchronization is 
required in order for the nodes to use the same step size at each 
iteration. In the distributed asynchronous implementation of 
gradient projection optimum routing algorithms, each node 
broadcasts from time to time the value» of its outgoing flows to its 
upstream neighbors, who m rum pass that information on to their 
upstream neighbors. In this way, the source keeps estimates at all 
times of the link flows and can carry out the gradient projection 
iteration autonomously based on those estimates. The first 
algorithm based on this idea was due to Gallager [16], who posed 
an alternative formulation to (2.2), where the unknowns are the 
fractions of flow routed to each outgoing link at each node, rather 
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Fig. 4.   Queueing model of a node with one incoming link and lwo outgoing 

links. 

than the path flows. Tsitsiklis and Bertsekas [42J showed the 
convergence of the distributed asynchronous implementation of 
gradient projection optimal routing algorithms provided the time 
between consecutive broadcasts is small enough relative to the 
speed at which the flows generated by the algorithm change. The 
approach for showing the stability of this algorithm is very 
different from the proof of convergence of the distributed 
Bellman-Ford algorithm where the monotonicity of the dynamic 
programming mapping implied that the est. ates are closer and 
closer to the solution regardless of the actual sequence of 
communication and computation times. The idea here is that if the 
step size of the algorithm is small enough, then the flows change 
so slowly with respect to the periods between communication 
times that their evolution is very close to that of the centralized 
algorithm which uses the unique, true value of each link flow 

B. Dynamic Routing 

As mentioned earlier, there are two fundamentally different 
philosophies to network routing: either viewing it as a "flow" 
problem in which the traffic of messages is modeled as a 
"macro"-commodity entering the network as a single entity 
(static or quasi-static routing), or as an individualized-message 
path-finding problem in which the traffic is broken down to its 
constituent elementary units (dynamic routing)—a dichotomy akin 
to that of statistical/quantum mechanics in physics. Whereas the 
first approach leads to optimization problems where time plays no 
role, the essential ingredient of the second approach is the 
randomness of the time-evolution of the buffers in the network, 
thus placing dynamic routing within the sphere of stochastic 
control. 
• The most elementary instance of dynamic routing is the simple 
queueing system shown in Fig. 4 which models a node with one 
incoming link and two outgoing links. It simplifies considerably 
the dynamics of the message arrival process and of the service 
time characteristics and ignores processing delay. Thus, the 
arrival instants of messages over the incoming link are assumed to 
constitute a Poisson process of constant rate \. Upon arrival each 
message is put in the buffer of one of the two outgoing links This 
action represents the "control." The buffers are assumed to have 
unlimited (infinite) capacity and the message lengths are assumed 
to be random with exponential distribution (an obvious additional 
simplification) with parameter ft. The two outgoing links have 
equal capacity of C bits/s. Thus, each link is modeled as a 
queueing system with exponential service time distribution with 
parameter /iC. It is desired to characterize the optimal control 
policy that minimizes the average total delay per message based 
on the observations of the "state" of the system, namely the 
number of messages qt and ft in the two buffers. The model, of 
course, assumes that the head of-the line message is dropped from 
the buffer as soon as the transmission of its last bit is completed 

This model, despite its simplicity, proved to be rather difficult 
to analyze. For details, see [10], it is not important to repeat them 
here. It should suffice to state that the main result, which simply 
requires that upon arrival a message should join the shortest queue 
(with arbitrary decision in case the two queues have equal 
numbers of messages), was hardly surprising Yet an intricate 
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irgument on trie dynamic programming equation (DPE) was 
iceaed and there were some counter-intuitive side-results includ- 
ng the relaxation of the Poisson assumption on the arrivals, and 
he fact that in the incomplete state information case, the 
ertaintv-equivalent control (i.e., send the message to the 
-XDecied shortest queue) need not be optimum unless both queues 
lave the same number of customers initially. 

he oDtimality of the send-to-shortest-queue (SS) policy in the 
complete state information case can be proved in a rather strong 
^ense. At all times, the sum (qt + q2) and maximum (max {^i, 
'2i) of the number of messages in both buffers are stochastically 
ninimized bv the SS policy in the sense of the partial order 
«tween random variables acco:   ng to which the random variable 
* is stochastically smaller than , if P[X :£ a] > P[Y <, a] for 
ul a. The Droof of optimality can be obtained by the method of 

. orward induction [53], whereby the desired stochastic ordering 
«tween the aueue sizes under the optimum and an arbitrary 
loiicy is shown to be preserved at each transition. 

he Droblem formulation of [10] is one of many related ones 
see [8], [9], [22], [24], [33], [38], [54], [55]) which are slightly 
iiore complicated but share some fundamental characteristics 
vnich. in fact, extend beyond the confines of the routing problem 
nto the areas of Driority assignment, resource allocation, and flow 
•ontroi. Thev are all Markovian decision process (MDP) prob- 
ems. In the seauel we will describe a fairly general MDP that 
nciudes the dvnamic routing problem as a special case. In fact, it 
nciudes almost all of the aueueing control problems that have 
«en studied in connection with communication network issues. 
Ve will then outline the solution methodologies that have been 
•sea. These include basically: 1) the derivation of optimality 
onaitions fiom the DPE associated with the corresponding MDP; 
:) the use of sample path stochastic dominance arguments, and 
Inallv; 3) the reformulation of the MDP as a linear program. We 
nould emDhasize, lest the reader be unduly encouraged, that the 
iroolems in this area are sufficiently complex, so that only modest 
esuits can be generally obtained despite involved arguments and 
lontnvial machinery. Typically, these results characterize some 
tructural Droperties of the optimal policy. However, knowledge 
if such structure is often sufficient to permit close approximation 
•I the actual optimal policy by well-founded heuristics. 

-et us recall briefly what an MDP is (for details, see [30]). We 
ieeo a state description of the process to be controlled. Let S be its 
täte space. When in state j£S,a set A, of admissible control 
iciions is specified. When action a G A, is applied, there is a 
ransition from state s to s' tha. is governed by the probability 
listribution D(S' \S, a), and which occurs after a random time r 
vnich is exponentially distributed with distribution denoted by 
(T\S, a, s'). Clearly, p and / together describe the stochastic 
ivnamics of the process to be controlled. Finally, each transition 
s accompanied by a cost penalty that we denote by C(T, S, a,s'). 

he dvnanic routing problem we considered before fits in this 
ormulation easily. In that case, the state space is S = {0, 1, 2, 3, 

• •i2. An element s = (qlt q2) G S is simply the pair of values 
if the respective queue sizes. The set of actions A, is the same for 
mv state and consists of at and a2 where at is the action that 
assigns an arriving message to the buffer of link /. The 
listribution p is of trivial form, in that the transitions are 
leterministic Assignment of an arrival to queue / augments q, by 
me Note, now, that in addition to the arrival instants, the 
leparture (or service completion) instants are important because 
hev induce state transitions as well. A departure from queue i 
eauces a, by one When a departure occurs there is no 
neaningful control action that can be applied in this particular 
iroolem The exponential distribution / corresponds to times 
«tween arrivals and/or departures.- Finally, the cost rate c must 

\ slighi modification of lhe model of lransinons, called uniformizauon, is 
iserul in lhal il inirodut.es dummy transitions from a state into itself, lhus, 
-ome suualions whiih inlroduie nonessenlial lomplndtion* v.an be handled 
viihoui departure from this discrele lransnion lime formulauon. 

reflect the delay. By Little's result in queueing theory, we know 
that the average delay is proportional to the average number of 
customers in the queue. Thus, C(T, a, s, s') can be taken to be 
simply equal to (qt + q^. This MDP formulation can be extended 
to encompass more complicated queueing control problems. 

Let us return now to the general MDP. We need to specify the 
notion of a control policy and the optimization criterion. Let us 
denote by £i, £2, • • •, the state transitions that occur at instants tu 
/2, • • •. A policy x is a sequence of decision rules xi, x2, • • •, 
where x„ determines the choice of action at the transition time /„. 
It can be viewed as a conditional distribution on the set of actions 
parametrized by the past history of the process. 

The optimization criterion that corresponds to the practical case 
of expected total delay is the long-run average expected cost; 
namely, if we denote by K(x, /, t) the expected cost incurred 
under policy x, with initial state /, until time / we consider as the 
optimization criterion the value function 

'(x, 0 k Hm inf r(x, i, t) 
t 

For technical reasons, however, that are well known to optimiza- 
tion specialists, it is easier to establish optimality conditions if we 
consider, instead, the so-called a-discounted cost, i.e., 

P«(T,I>["   e-°'dV(x,i,t). 
J/.O 

The latter converges to the former as a -* 1 under a variety of 
stationarity conditions. For technical reasons that will become 
apparent in the sequel, we will also consider the finite-horizon 
costs. These are defined in a similar fashion except that we let 
time extend only to /„, the instant of the nth transition. If we 
denote by V(i) andV(i) (and also K°(/), Vn(i) for the finite 
horizon cases) the values of these cost functions when x is chosen 
optimally, we are led to the following DPE: 

'/°(i)= inf £ [c(i, a, i') + ß(i, a, i')Va(i'))pU'\a, i) 

or 

a^A 
^+l(')= inf £ Mi, a, i') + ß(i, a, i')Va

nU')Mi'\a, i) 

where 

i i' 

ß(s, a, s') ä \   e-<" dt(r\s,a,s') 
Jo 

and 

{CO 

C(T,S, a,s')dt (T\S, a,s') 
o 

are the discount factor and cost values per transition, respectively. 
The DPE is of fundamental importance in the study of MDP's 

because the value function V" has the usually convenient 
properties of convexity, supermodularity, and other forms of 
monotonicity that lead readily to sufficient conditions for optimal- 
ity. The difficulty with the analysis of the DPE is that the 
optimality conditions are heavily problem-dependent and often 
lead to explosively large numbers of cases to be verified 
eparately. This is especially true for MDP's that arise from 
jueueing models. For this reason, and because of additional 

difficulties that arise when the state is on the boundaries (see 
[22]), it became evident that alternative methods of solution were 
needed. 
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One alternative method that has received attention recently and 
which produced successful results in problems of queueing control 
(akin to the routing problem) is a probabilistic method called 
sample-path or stochastic dominance. This method bypasses 
completely dealing with the value function. Instead, it focuses 
directly on seeking the optimal policy. Let G be the class of 
admissible policies. If we suspect that the optimal policy x has a 
property p, then we can proceed as follows in order to prove that 
it actually does have that property. Let 5 be a subset of G, to 
which we know tne optimal policy belongs. We consider a subset 
of policies Sp C S, all elements of which have the property p. For 
every ir € S„, we attempt to construct a policy i which 
outperforms T. If we succeed, we must conclude that the optimal 
policy belongs to Sp. In constructing i we often need to engage in 
a careful reorganization of the underlying probability space in 
order to align the sample paths properly, so that the comparison of 
the two policies can be made for every sample path. This 
procedure is full of risks and extreme care is required to avoid 
faulty arguments. Note, also, that to apply this method usefully, 
we must have "guessed" the properties rf the optimal policy 
correctly. Thus, at best, it is a method to > <-nf> the validity of our 
conclusions, rather than a method tha, le-ds us to the right 
conclusions. 

Successful use of the stochastic dominance approach was made 
in [52] and [50] where a problem that is dual «o the problem of 
dynamic routing was studied. Specifically, in a two-server 
queueing system in which the two servers have unequal service 
rates, we wish to determine whether and when the slower server 
needs to be activated if we are interested in minimizing the usual 
total expected delay function. That the optimal policy has a 
threshold form (namely that the slower server must be activated 
when the queue size exceeds a crucial value) was proven in [29] 
via the DPE method. However, the alternative proof via the 
arguments of stochastic dominance was much simpler and led to a 
generalization of the result to cases of nonexponential arrivals 
and/or service, that could not have been easily accomplished by 
means of the DPE method. 

Another successful use of the stochastic dominance method has 
been noicd in [2]. In this case the problem of optimally choosing 
whicl. customer to serve next in a single queueing system was 
considered under the constraint that each customer must begin (or 
terminate; service by an individually assigned random deadline or 
else it is dropped from the system. The cost criterion is then to 
minimize the expected number of lost customers. It was proven 
that scheduling the customer with shortest time to extinction 
minimizes this cost. 

Although these problems differ from routing, the model 
structures are quite similar, and it has been observed that, usually, 
queueing control problems with such structural similarities can be 
studied equally successfully. 

The third method, which was first used in [38] in the study of a 
specific queueing control problem, and which has been broadly 
extended recently in [51], is the linear programming approach 
Almost any queueing control problem that can be formulated as a 
MDP (therefore the problem of dynamic routing, as well) can be 
converted to an equivalent linear program (LP). The advantages 
of this conversion are that it is problem-independent and it leads 
occasionally to successful study of semi-Markov decision prob- 
lems as well. Furthermore, it facilitates considerably the charac- 
tcrhation of optimal solution properties. Here is how this 
equivalence can be demonstrated. 

Let us concentrate on an MDP under a finite-horizon, dis- 
counted cost formulation.3 We shall consider a queueing model 
with state dynamics given by 

•*k • 1 " xk + £* » I Zk 11. 

J The reason thai we cannoi work direcily wiih infinne horizons is lhe 
possibility of so-called duality gaps in linear programming theory with 
infinite-dimensional variables. 

Here, xk denotes the state at tk (the instant of the Arth transition), £* 
represents that transition, and z* represents the control action at 
that transition. The transition $* can represent an arrival or a 
departure as an increment of the state. The control zk is 
conveniently defined to enable (z* - 1) or disable (zt = 0) a 
transition. For example, in the routing model discussed at the 
beginning of the section, the su«e is equal to a two-dimensional 
vector of queue sizes, and the transition corresponding to sending 
an arriving message to the first queue would be represented by £* 
= [1 0]r. Indeed, a variety of queueing control problems (in fact, 
the vast majority of those that have been considered in connection 
with communication network problems) can be so represented 

Note that the crucial aspect of this state equation is the linear 
dependence on the controls. Note also that usually the cost 
function is linear in the state (since the usual cost criterion is the 
expected delay which is coupled to the queue sizes, and hence the 
state, by Little's result). Consequently, the cost is linear in the 
controls. The minimization of the cost over the set of control 
trajectories is constrained since the state equation must be satisfied 
and the state must always belong to an admissible set (typically, a 
set of vectors with integer-valued coordinates belonging to given 
ranges). Thus, the constraints are also linear in the controls, and 
the problem is easily formulated as an LP. There are, however, 
two points that require attention. First, the controls are integer 
valued, i.e., z* 6 {0, 1}. Second, in the MDP the vectors $* are 
random and depend on past history. 

The first problem is taken care of in one of two ways' by 
construction or by use of a property of the constraint matrix of the 
linear program, called unimodularity The construction method 
involves using a noninteger optimum control whose quantized 
version satisfies the MDP optimality conditions (see [38], [51] for 
details). The use of unimodularity involves a well known result in 
the theory of integer linear programming (eg., [34])- if the 
constraint matrix of an LP is integer valued and totally unimodu 
lar (i.e., each of its sub-determinants is +1, - 1, or 0), then all 
the vertices of the feasible polytope are integer valued Therefore, 
no further restrictions are needed to guarantee that the solution of 
a conventional LP will result in the integer-valued optimal 
control. Fortunately, in many queueing problems of interest 
(including the dynamic routing problem), the constraint matrix is 
indeed totally unimodular. 

The second problem is easily taken care of by thinking of the 
it's as functions from the sample space Q to the action space 
Thus, the cost criterion can be written as a functional on the 
underlying probability space. 

Let Zk(<>>k) represent the control action at the Arth transition, 
where u>* denotes the random "history" until the Arth transition 
We have 

**+I(«**I) = **(«*) +z**i(w**i)S*+i(w*+i). 

Let 5 and 2 be the set of admissible states and controls, 
respectively. The ^-discounted, n-step, expected cost under 
policy z and initial condition x is given by 

J°(x,z) = El
,Zß>L(Zk) 

where 

L(Zk) = cTxk + dTZk 

(c and d denote constant column vectors). This is a cost function 
that is adequately general. For example, in a pure resource 
allocation problem without blocking or rejection of messages we 
have d = 0, while in pure blocking problems we take c = 0. The 
state equation, after repeated iterations, yields 

* 
**(«*) = *+£ z,(«j)S,(u,),       Ar>0. 

;-i 
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Therefore, 

/»(*, z) = Ex S ß" \cTx+cT S z,s,+drz* j 

=T^cTx+E* tßk\t cTzM<rzi\ 

But 

Hence 

EAZk) = Y,Zk^k)Pr^k)- 

J*(x> V = TZ7icTx+ 2 S 7*<«*>*<«*> 

where ?*((<]*) is a known function that depends on Pr(dik), c, £*, 
and ßk. Consequently, the MDP is equivalent to 

min ^ S 1r*(w*)2*(w*) 
:*   k-l uk 

subject to 

which is a conventional LP where the initial condition plays the 
role of a parameter, the sensitivity with respect to which can be 
studied by the well-developed theory of sensitivity analysis of 
linear programming [15]. 

In conclusion, we see that the MDP is converted to an 
equivalent LP under very mild conditions that are usually satisfied 
by dynamic routing and other queucing control problems. Thus, a 
third alternative methodology becomes gcner.dly available for the 
study of these problems. Whether to choosr I'rom the arsenal the 
DPE approach, or the LP method, or stochssjc dominance tools, 
depends on the problem and on die, as yet undeveloped, intuition 
that the investigator should possess. 

Hl. MULTlPLE-ACChSS COMMUNICATIONS 

"he communication networks considered in the discussion of 
outing problem« in Section II consist typically of a set of nodes 
onnectcu bv point to point communication links. Each of these 
inks viewed in isolation can be modeled as a classical communi 
anon channel with one sender and one receiver. In this section, 
ve consider multipoint to- point communication links where sev 

cral  transmitters share a common channel.  Multiple access 
channels are the basic building blocks of radio networks, satellitr 
communication, and local area networks, and during the last 15 
years have attracted the attention of many communication, 
information, and control theorists. 

There is a wide variety of strategies to divide the "resou. 
of a communication channel among several geographically ...» 
jerseu transmitters. The simplest methods are those that assign a 
»ermaneni independent sub .hannel to each transmitter (e.g., in 
reauency division multiple access and time division multiple 
iccessr, these strategies are easy to analyze and are widely used in 
iracuce in situations where the users need to transmit at fairly 
:teaay rates. If the transmitters are bursty (i.e., the radio of peak- 
o average rate at which the need to transmit is high) those static 
netnods are inefficient since most of the time the channel is 
•ncerutilized while demand (and induced delay) accumulates at 

busy terminal locations. Dynamic channel sharing strategies 
overcome this problem by allocating cliannel resources on an on- 
demand basis. Consistent with the overall spirit of this paper, our 
goal here is not to review this vast topic, but rather to demonstrate 
how control theory can play a useful role in its study. Here we 
wish to single out two multiple access strategies: random access 
and simultaneous transmission, which are broadly representative 
of dynamic channel sharing systems and in which control theoretic 
concepts have played a pivotal role. 

In random access communication, the conceptual allocation 
model is addressed without an effort to exploit the signaling 
degrees of freedom and the micro-structure of the transmitted 
messages. For this purpose, a crude channel model is considered, 
that achieves this separation of the "macro" from the "micro" 
problem. In simultaneous transmission systems, however, a more 
refined viewpoint is adopted, by taking the realities of the medium 
into account, modeling them, and exploiting them. 

A. Random-Access 

The object of interest here is the so-called collision channel 
model, in which messages (called packets) require one time unit 
(called slot) for transmission and are sent by a population of users 
who are synchronized so that their slots coincide at the receiver, 
but are otherwise uncoordinated and unaware of which and how 
many users have packets to transmit. If two or more packets are 
simultaneously transmitted, it is assumed that the receiver is 
unable to recover any of the messages, and they have to be 
retransmitted in a future slot. In the ALOHA algorithm, which 
was developed in the early 1970's [1] at the University of Hawaii 
and marked the beginning of the area of random-access communi- 
cation, each packet that has been unsuccessfully transmitted 
before is transmitted with probability p in the next slot. New 
packets which have not attempted transmission before are 
transmitted with probability either 1 or p depending on which 
version of the ALOHA algorithm is used. In our discussion, we 
will assume the latter choice. 

Under these conditions, and assuming that the number of newly 
generated packets in each slot is a random variable (with mean K) 
independent from slot to slot, the number of packets awaiting 
transmission (called backlog) is a Markov chain taking values in 
{0, 1, 2, }. The central problem is to investigate under what 
conditions the backlog Markov chain is ergodic, i.e., it is stable in 
the sense that it reaches a steady state in which the periods 
between the times when there are no packets to transmit arc not 
too infrequent (they have finite expected value). The transition 
probabilities of the Markov chain are parametrized by the rate of 
iinvai of new oackets \ and the retransmission probability p. 
Whereas X is fixed and given, p is chosen by the transmitters. 
Hence, we arc dealing with a fairly simple controlled Markov 
chain whose control space is the interval (0, I). In the original 
ALOHA algorithm, the control p remained constant and common 
to all transmitters regardless of the information acquired by 
listening to the channel, thereby resulting in the open-loop cunirol 
of the Markov chain. Depite several "proofs" of the stabilitiy ot 
ALOHA published during the 1970's, neither the actual system 
built in Hawaii nor the ideal Markov chain model were stable. The 
reason why the open loop system is unstable can be easily 
understood by considering the backlog drift, d(n), which is 
defined as the expected increase in the backlog over the next slot 
when the current value of the backlog is equal to «. It is easy to see 
that the backlog drift is given simply by the expected number ot 
new packets per slot minus the expected number of sjccessfully 
transmitted packets in the next slot, i.e., 

«/(lO-X-fepO-pV-'i. (3.1) 

The drift quantifies the expected evolution of the Markov chain 
from each state, and therefore it is a valuable tool in analyzing the 
stability of the chain. For any p G (0, 11 the term in brackets in 
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(3.1) goes to 0 as n -• oo, and hence, the drift is positive and close 
to X for sufficiently large backlogs. This implies that when the 
backlog is large it tends to grow, thereby eliminating any hope for 
stability. Using standard results, this reasoning can be formalized 
straightforwardly to prove not only the instability of the open-loop 
system (11) for all values of X and p, but the fact that the backlog 
goes to infinity with probability one [25J, (35], [401. 

Fortunately, the system can be stabilized by closed-loop 
control. Let us examine first the case of complete-state informa- 
tion, i.e., each station is informed at the end of each slot of the 
current value of the backlog and chooses the retransmission 
probability on the basis ofthat information. As far as stability is 
concerned, the best choice of the retransmission probability p is 
the value that minimizes the drift because that results in the 
maximum possible arrival rate that guarantees stability (called the 
throughput). It follows from (3.1) that the optimum value of p is 

P*(n)J-, « = 1,2, 

and the resulting drift is 

d*(n) ->-hr 

(3.2) 

(3.3) 

which is negative for n > 1 when X < e"1, and is positive for 
large backlogs when X > e~l. Therefore, the throughput of the 
closed-loop system with complete state information is e"1 = 
0.368. However, the relevance of complete state information 
feedback is rather limited in practice. This is because the 
instantaneous value of the backlog is available to each station only 
if there exists so large a degree of communication among the 
transmitters that much more efficient algorithms than ALOHA 
can be used. 

The case of partial state information is the problem of interest in 
practice, since the only feedback available to each station is the 
outcome (collision, success, empty) of the transmission in each 
slot. The analysis of the controlled system with partial state 
information was pioneered by Hajek and Van Loon [20] who 
proposed a recursive updating law of the retransmission probabili- 
ties as a function of the channel outcomes. This feedback policy 
was shown in [21] to attain the throughput achievable with 
complete-state information, namely e~l. Those papers and subse- 
quent works have referred to the problem as decentralized 
control of ALOHA, motivated by the fact that each station 
chooses the retransmission probability autonomously based on the 
channel feedback. However, it is useful to recognize that the 
problem boils down to (centralized) stochastic control with one 
decision maker and incomplete state information because all 
stations arc constrained to use the same retransmission probabili- 
ties. 

We will review here the proof of stability of the following 
certainty-equivalence closed-loop control: 

PW-i (3.4) 

where n is an estimate of the backlog updated according to 

_ \ max {1, nk + a) Arth slot is idle 
kth slot is success or collision. 

(3.5) 

The throughput attainable with this feedback law depends on the 
constants a < 0 and ß > 0. As we will see, there exists a set of 
choices for those constants that results in throughput equal to e~'. 

Unlike the case of complete-state information, the proof of 
stability is not straightforward because now it is the two- 
dimensional process formed by the backlog and its estimate {(«*, 

BACKLOG 

Fig. 5.   Drift of (backlog, backlog estimate) Markov process for decentral- 
ized control with o = - 1.48, ß = 0.8, and X = 0.33. 

nk)}k (rather than the backlog itself) which is a Markov process. 
According to (3.4) and (3.5) the drift of this Markov process is 
given by 

£[(i*+i.i*+i)-(i*.i*)l(lt,i*) = (i, s)] 

-(^~ [l~] ""./» + &»"{«. !-*>-« [l~]") 
i (d(n, s), c(n, s)). (3.6) 

Contrary to what we saw in the case when the state is known, it is 
not true that the backlog drift is negative for sufficiently large 
backlogs. As we can see in Fig. 5, if the estimate is far from the 
true value, then the backlog may actually L 1 to increase. 

However, at every point in the state space the tendency of the 
process is to approach the diagonal where the estimate is equal to 
the true value of the backlog. Furthermore, as Fig. 5 or the 
analysis of the perfect-state information case shows, the drift 
along the diagonal is negative. Such a behavior is a strong 
indication of the stability of the controlled Markov process. 

This can be proved using a powerful sufficient condition found 
by Mikhailov [31] for the stability of a Markov proccsb taking 
values in iß+ x I8+. In essence, Mikhailov's condition states that 
it is enough to restrict attention to those points of the »täte space 
where either the backlog or its estimate arc large and at which the 
drift is radial, i.e., 

d(n, s)   n 
c(n, s)   s ' 

then, it is sufficient for stability that the drift point towards the 
origin at those states. To see that this condition is indeed satisfied 
for our system, we compute first the asymptotic drifts along the 
radius {(«, s): n/s - ^} for ^ 6 [0, a>) 

dW) = l\mdWs,s) = \-+e-* (3.7a) 
s—x 

cW)=lim c(+s,s)=ß + (a-ß)e-*. (3.7b) 

It can be checked using (3.7) that if the constants a and ß in (3 5) 
are chosen such that ß > 0.23XandX - e~l = ß + (a - ß)e"\ 
then the drift is radial only at \p = 1 (cf. Fig. 5), where it points 
towards the origin as long as d(l) = X - e~l < 0. 

Mikhailov's sufficient condition can be justified constructing a 
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Stochastic Lyapunov function to prove the stability of a Markov 
process {xk}k with state space !a+ x lfl+. To that end, it is 
advantageous to switch to polar coordinates (r, <f>) and to define 
the radial drift 5(r, <f>) as the projection of the drift along the 
direction of the point (r, <£) and the tangential drift ix(r, <t>) as the 
projection of the drift along the direction perpendicular to (r, <j>). 
Denote the asymptotic drifts S(<£) = lim, .„ 5(r, $) and p(<f>) = 
lim,-.» it(r, <f>) and define the function 

V(r,<j>)=r*(<l>) 

where 

<f>(«)=exp(-cj* lt(v) dv )      <j> 6 N 
Note that V(r, <£) is a candidate Lyapunov function because it is 
positive outside the origin and V(r, <j>) -* » as r -* co. 
Furthermore, it can be shown {31] that the asymptotic drift of the 
candidate Lyapunov function is equal to 

lim E\V{xM)- V(xk)\xk=(r, 01=*(fl[«(«-C/i2(01.  (3.8) 

Now, under Mikhailov's condition, the asymptotic drifts are 
assumed continuous on [0, x/2] and 6(<f>) < e for any phase such 
that /i(<f>) = 0 (i.e., whenever the drift is radial it points towards 
the origin), therefore, the constant C can be chosen large enough 
so that the left side of (3.8) is upper bounded by a negative 
constant. This implies thai V(r, <f>) is indeed a stochastic 
Lyapunov function and therefore standard results on the stability 
of stochastic systems [27], [45] can be applied to show the 
stability of the system.4 

In some multiaccess environments, the receiver can indeed 
demodulate reliably one or more packets even in the presence of 
other interfering packets and the collision channel model no 
longer applies to those cases. The results reviewed in this section 
can be generalized to a general channel with multipacket 
reception capability, to show that: 1) the throughput of open-loop 
ALOHA is equal to the limit of the expected number of 
successfully received packets per slot as die backlog goes to 
infinity [17]; and 2) the throughput of closed-loop ALOHA (with 
either complete or partial state information) is equal to the 
maximum over v of the expected number of successfully received* 
packets per slot when the number of attempted transmissions is a 
Poisson random variable with mean v [18]. 

Returning to the case of the collision channel, the next natural 
step is to drop the main restriction in the ALOHA algorithm, 
namely, that all stations use the same retransmission probability. 
This is done in a class of random-access algorithms referred to as 
collision resolution algorithms which are characterized by the fact 
that not only are all blocked packets eventually retransmitted 
successfully, but all users eventually become aware that these 
packets have been successfully retransmitted. Contrary to the 
ALOHA algorithm, the decision whether or not to transmit a 
packet takes into account the previous history of attempted 
retransmissions ofthat particular packet. The introduction of this 
new dimension into the problem renders Markov chain tools 
considerably less useful than in the foregoing analysis and 
converts it into a very difficult decentralized stochastic control 
problem, for which the optimum throughput remains unknown5 

despite many efforts. 

4 Another choice of stochastic Lyapunov function for the specific case of 
decentralized control of ALOHA can be found in (43], 

5 The besl known algorithm has been shown lo achieve a throughput of 
0.488 using Howard's policy iteration for sequential infinite-horizon problems 
(32] or by reduction to a simple optimization problem (48). On the other hand, 
il is known thai the optimum throughput is upper bounded by 0.S68 (44]. 

B. Simultaneous Transmission 

In contrast to random-access communication systems, in 
simultaneous transmission multiple-access systems, the transmit- 
ters send their messages simultaneously, independently, and 
without monitoring the channel in any way. The must common 
type of simultaneous transmission system is code-division multi- 
plexing, where each user modulates a preassigned signature 
waveform known by the receiver. 

Specifically, we will assume that in order to send the message 
{bk(i) £ A }¥~l (i.e., a string of M symbols drawn from a finite 
set A), the kih user transmits 

A4-1 

2 bk(i)sk(t-iT) 
i = 0 

where {sk(t), 0 < t < 7"} is the waveform assigned to the kth 
user, and T is the symbol period. Then the demodulator receives 
the sum of the signals transmitted by the K active users embedded 
in noise 

X   M— 1 

/•(')= 2  2 bk(i)sk(t-iT-rk) + n(t) (3.8) 
*-l   /-0 

where the offsets T*_ I ^ T* S [0, 7") model the fact that the users 
do not synchronize their transmissions. Then the task of the 
receiver is to recover the transmitted information strings 
{WO/Jiö't.i- Following [47] we will show how to obtain an 
optimum multiuser demodulator via dynamic programming. First, 
denote the MK-vector 

d={dk+ac=bk(i), *=1, —,K, /=0, —,M-\) 

and the multiuser signal in (3.8) 

K   M-1 MK 

S(/, d) = 2  2 **(/)**(/ - iT- rk) = 2 d,zM    (3.9) 
*-l  /-0 i-l 

where Zt+*{t) = sk(t - iT - rk). 
A reasonable criterion for dernodulating the information carried 

in S(t, d) upon observation of fit) is to select the MK-veetor d 
that best explains the received waveform in the sense of 
minimizing the energy of the corresponding noise realization, 
i.e., 

min   \S{t,d)-r(t)\\ (3.10) 

If the noise n(t) is while and Gaussian, then this criterion results 
in maximum likelihood decisions. Equivalently, the objective is to 
find the vector that solves 

max  Q(d) (3.11) 

where 

Q(d)=2 f   S(t,d)r(t)dt-\"   S2(r, d) dt.    (3.12) 

Since the maximization in (3.11) is over a finite set, we could solve 
it by the brute-force method of evaluating Q(rf) for each possible 
argument. However, it is possible to decompose Q(d) in a 
sequential fashion that lends itself to efficient optimization. From 
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Symbol epochs for K = 

12' 15 
3 and M - 5. 

3.9) it  is immediate to write the first integral in (3.12) 
icauenually 

nfK 

vnere 

J(t, d)r(t) dt=Y, djyj 

J -CD 

(3.13) 

(3.14) 

This implies that the objective function (3.12) depends on r(t) 
only through the quantities {yj}^, which are obtained by 
correlating r(t) with each of the signature waveforms during each 
symbol epoch. In order to find an explicit expression for the 
second integral on the right-hand side of (3 12), which is the 
energy of the multiuser signal, we will denote 

*0\/)=r   ZjU)z,U)dt. 
J -co 

(3.15) 

It follows immediately from the definition that these coefficients 
satisfy the following properties. 

1) R(k + lK,k + iK) = frfr) i wk. 
2) R(k + iK, n + iK) = R(k, n) for all /. 
3) R(j,l) = 0 unless \j - l\ < K. 
The first property indicates that each of the diagonal elements 

of R(i, j) is equal to the energy of one of the K assigned 
waveforms. The second and third properties can be illustrated by 
referring to Fig. 6 which represents the symbol epochs of three 
svncnronous users sending strings of M = 5 symbols Each 
:vmool period in Fig. 6 is labeled with the index of the 
orresoonaing component of the vector d. The second property 
naicates that the cross-correlations between two signals depend 
miv on their relative location (e.g., /?(4, 6) = Ä(13, 15) in Fig 
i) and the third property states that each symbol only interferes 
.vith 2K - 2 symbols of the other users [e.g., in Fig. 6, d9 = 
63(2) only overlaps with d-, = 6i(2), dt = 62(2), dt0 = 6,(3), and 
tfii = 62(3)]. It follows from these properties that the coefficients 
in (3.15) can be obtained from the K X K matrix {R(k, 
")} *+1 n-1 whose diagonal elements correspond to the energy per 
symbol of each user and whose off-diagonal elements correspond 
to the cross-correlations between the signature waveforms of each 
pair of users. Using (3.15), the foregoing properties, and letting 
K(J) & {1, •••, K) be the modulo-tf remainder of./ (i.e., for 
some i,j - K(J) + iK), we can write 

^SHt,d)dt=^l^dJdlR(j,l) 
J'll'l 

MK    r j-i i 

-Zdj\w.(J) + 2    2    d,RU.l)\ 

•IK        f K-l "1 

-l (. n-I J 

Q39 

where gk(m) = R(k + K, k + m). Putting together (3.12), 
(3.13), and (3.16) we see that we can express Q(d) as a sum of 
AK terms, each of which depends on K components of d and such 

that consecutive terms depend on the same components but one. 
Specifically, we can write 

wnere 

A« 

QW=yj\J(xj,dJ) 

\.(JC, U) = H[2>-,+ MW,,,,- 2xTgKi;)\ 

(3.17) 

(3.18) 

3.16) 

and Xj is die state of a shift-register K - 1 dimensional system 

---r+, = [Ar,+1(l), •••,xJ+l(K-l)) = [xJ(2), •••,xJ(K-l),dJ); 

x0 = 0.   (3.19) 

It is now apparent that the solution to (3.11) entails solving a 
finite-horizon deterministic optimal control problem with 
additive costs per stage for the linear system in (3.19), and with d 
finite admissible control set A. Therefore, optimum multiuser 
demodulation is equivalent to a shortest path problem in an M- 
stage layered directed graph, where at each stage there are A*-* 
states. This optimization problem can be solved by dynamic 
programming (e.g., [7]) in backward or forward fashion. In 
practice, it is necessary to demodulate the transmitted symbols in 
real-time, and since M is usually a very large integer, it is not 
feasible to wait until all the observables \y,Y^\ ^ave ^en 
obtained before starting to make decisions. Therefore, a subopti- 
mum version of the forward dynamic programming algorithm is 
adopted in practice whereby each decision is based on the paths 
corresponding to the cost-to-arrive function computed a fixed 
number of steps ahead. This real-time version of forward dynamic 
programming is known in communication theory as the Viterbi 
algorithm [12], and was originally devised (without resorting to 
the dynamic programming framework) f«( decoding convolu 
tional codes. The maximum-likelihood criterion used in (3 10) is 
not the only possible optimality criterion. For example, if the 
objective is to minimize the probability of error for each user, 
then the multiuser demodulator uses a backward-forward 
dynamic programming algorithm [49] whereby optimum deci 
sions are based on the independent computation of a cost to go 
and a cost-to-arrive function. 

IV. OTHER PROBLEM AREAS 

Routing and multiple access are not the only problem areas in 
the field of communication networks which control theory can 
help formulate, study, and solve We have deliberately chosen to 
confine our attention to these two areas in order to get across in a 
concise manner our belief that the field of communication 
networks offers a rich selection of applications for control theory. 
We would feel remiss, however, if we did not even make an 
attempt to provide a taste of some of the numerous other design 
and operation issues that, again, bring forth control systems 
concepts and techniques. For this purpose, and with a conscious 
effect not to expand in depth but only to describe, we will mention 
two areas from point-to-point networks and one from radio 
networks. The first two concern flow control and integrated 
switching, respectively, while the third concerns the problem of 
scheduling transmission in multihop networks. Unlike the cases of 
routing and multiple access, these areas have not yet fully 
•enefitted from the use of control theoretic approaches although 

such approaches would be very well suited to them indeed. 



•'—T—ra^zs: 

940 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 34. NO. 9. SEPTEMBER 1989 

A. Flow Control 

A stark reality in the design of networks is that despite the 
reduction of the cost of memory, storage at each node is going to 
be finite. Coupled with another reality, namely that data transmis- 
sions on the whole continue to be bursty, it implies that buffer 
overflow may occur and, along with it, congestion and deadlocks. 
Flow control is the name we use to describe the collection of 
measures taken to avoid buffer overflow and highly congested 
nodes in the network. Congestion and saturation are often the 
consequences of diverging, unstable behavior. Thus, it is of 
interest not only to optimize over possible flow control strategies, 
but to determine their robustness against disturbances or modeling 
inaccuracies that may lead to unstable behavior. 

The control variables in flow control problems are admission 
(or blocking) probabilities for messages or sessions at the source 
node In practice these are often implemented in terms of a bang- 
bang control strategy known as window flow control whereby 
input ports are allowed to continuously inject messages into the 
network at the full desired input rate until the number of 
unacknowledged6 messages exceeds the value of the "window 
size" w. A simple, yet unanswered question is, what should the 
value of w be? 

Previous efforts to use control theory tools to analyze optimal 
flow control problems include [28] and [46] where the optimality 
of window flow control is proved within the domain of a 
simplified model, and [39] where dynamic programming value 
iteration techniques are used to characterize optimal flow control 
performance An alternative approach to the flow control problem 
is to subsume it into the static routing problem considered in 
Section II-A [19j: suppose that for every source-destination pair a 
fictitious direct link is added between them. We can then interpret 
the blocking action of a flow control procedure as a diversion of 
the blocked portion of the traffic through this fictitious link to the 
destination. Thus, we can consider that no traffic is blocked. Of 
course, in order to discourage the use of this fictitious link we 
must augment the overall delay cost function with a term that 
penalizes appropriately the use of this linl:. 

B. Integrated Switching 

A revolutionary development in the field of networks whose 
implementation is currently under way is the combination of the 
capabilities of what have been separately developed in the past and 
called voice networks and data networks. Voice is a commodity 
that must meet different requirements than data. For example, 
speech signals have inherent redundancy that make them quite 
robust with respect to occasional errors or deliberate compres- 
sion At the same time, except in applications of voice messaging, 
speech signals occur in the context of real-time conversations and, 
as such, must encounter short and, more importantly, constant 
delay On the o'her hand, data must preserve their integrity and 
cannot tolerate errors; however, long and variable delays can be 
often tolerated. 

How does one design a single network that can handle such 
dissimilar commodities with automated procedures? The natural 
course of events in the last decade or two was to attempt to force 
data on primarily voice networks or to let voice ride on what were 
mainly data networks. The literature is full of ideas for baseline 
integration that are mostly heuristic and difficult to analyze. An 
attempt to formulate the problem of integrated switching as an 
optimization problem was presented in [50]. In it simplest form 
the model is as follows: consider a single node in the network with 
a single outgoing link on which incoming voice calls and data 
packets must be multiplexed. Let W be the bandwidth of the 
outgoing link. Let V be the bandwidth required for the continu- 
ous, uninterrupted accommodation of a single voice call. Let, 
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Fig. 7.   Switching-iype optimum policy for integrated switching. 

therefore, N = W/Kbethe maximum number of calls that can be 
assigned dedicated circuits simultaneously if no data packets are 
transmitted. A voice call can either be accepted (and assigned the 
necessary bandwidth V) or blocked. Data packets can be stored in 
a buffer facility. If, at a given time, there are /calls in the system, 
the data packets can be served at the full rate corresponding to the 
remaining bandwidth W — iV. Such a switching architecture 
represents what has been called the movable boundary idea in 
integration. A natural MDP can be simply formulated as follows: 
choose the control action of blocking or accepting a call upon 
arrival in order to minimize the weighted sum of the average data 
packet delay and the call-blocking probability. If we assume that 
both arrival streams (voice calls and data) are independent Poisson 
processes, that the call holding time is exponentially distributed, 
and that the message lengths are likewise exponential, we can 
apply the technique described in Section II of converting the MDP 
to an LP and show that the optimal policy has the useful 
switching-type form. Namely, if / is the number of ongoing calls 
and,/ the total number of data messages at the node, the optimal 
control action should be to block the call in region B of the state 
space as shown in Fig. 7 and to accept it in region A. 

C. Link Scheduling 

Let us now turn our attention back to the radio network 
environment. In Section III the multiple access channel was 
considered and a number of difficult but interesting control 
problems were identified. Throughout that discussion, it was 
assumed that all terminals are within a single transmission hop 
from the destination. In many radio networks, however, this is not 
the case. Messages need to be relayed via intermediate nodes to 
their final destinations. Thus, the familiar problem of routing 
arises again, except that this time there is a new twist to it. In 
point-to-point networks, transmissions between different node 
pairs can take place simultaneously because there are dedicated, 
"hard-wired" links between the corresponding nodes. In a radio 
(or, more generally, in a multiaccess/broadcast) environment, if 
the nodes are densely connected, not all transmissions can take 
place simultaneously (unless separate dedicated channels or 
simultaneous transmission signaling techniques (Section 1II-B) are 
used). They must be scheduled in time to avoid the interference 
that would occur otherwise. 

It becomes evident that the mere fact that the transmission 
among a group of nodes must take place one at a time raises the 
question whether the intended transmissions are routing-wise 
optimal any more. Several versions of this problem have been 
studied [3], [23], [36]. In every case and even if the routing 
problem is sidestepped, we are led to hard combinatorial 
optimization problems where questions of computational com- 
plexity and distributed implementation are of primary importance. 

V. CONCLUSION 

Note the .mpln.it d^umptiun uf delved IcedbaiA infurmatiun irum the 
'ieslination 10 lhe source node. 

It should be clear b> now that the theory of linear and nonlinear 
ODtimization, dynamic programming, stochastic control, stability 
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analysis, and distributed control have found interesting applica- 
tions arising in the analysis and design of communication 
networks. Unlike other complex systems that have been success- 
fully studied by control system theorists in the past (such as 
chemical plants, flexible aircraft, robot systems, etc.), communi- 
cation networks stand out in that the commodity to be controlled is 
information (including its transmission, storage, processing, etc.). 
This feature, perhaps, misleads and intimidates those who do not 
feel sufficiently inter-disciplinarian to tackle these problems. We 
hope that by having selected to present a few examples in which 
concrete, purely control-theoretic problems can be formulated and 
have been (or can be) studied successfully, we may encourage 
attention by the control community to this application area that is 
especially rich in new challenges. 

As stated from the outset, we did not attempt to survey or 
completely cover the multiple control facets of communication 
networks. The collection in this paper merely represents an effort 
to illuminate a few selected problem areas and to show how 
control techniques apply to them. 
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Abstract—\ decentralized conirol algorithm is sougbl lhal maximizes 
tbe stability region of lhe Inflnile-user slotted multipackei channel and b 
easily Implementable. To ibis end, ibe perfect stale Information case 
where ibe stations can use ibe Instantaneous value of tbe backlog to 
compute the retransmission probability Is studied first. The best through- 
put possible for a decentralized conirol protocol is obtained, as well as aa 
algorithm tbat achieves It. Those results art then replied to derive a 
control scheme when lhe backlog is unknown, wbicb is lhe case of 
practical relevance. This scheme, based on a binary feedback, Is shown to 
be optimal given some restrictions on lhe channel multipackei reception 
capability. 

this model, the leader is referred to [6] and [8]. Denoting by C„ = 
SJ_, ktnk the average number of packets correctly received in 
collisions of size n, we assume that the limit C = lim*-» C„ 
exists, as is usually the case with models of practical interest. It 
has been proved in [8] that the Aloha random access algorithm has 
a maximum stable throughput % = C in the multipacke channel. 

Decentralized control strategies have been shown [11], [12], 
[19], [25], [30] to stabilize the slotted Aloha algorithm in the case 
of the usual collision channel, hence, it is reasonable to expect that 
when those strategies are used in the multipacket channel, the 
resulting throughput will be higher than t]0. We consider schemes 
of the form 

I. INTRODUCTION 

MOST studies on random access communications rely on the 
assumption that when two or more packets overlap, all the 

information that was sent is irremediably lost, hence the need to 
repeat all transmissions at some later time. This is actually a 
pessimistic point of view, since there are many examples of 
random access systems where one or more packets may be 
successful in the presence of other simultaneous transmissions. In 
order to represent such random access systems, a model for a 
channel with multipacket reception capability has been developed 
in [6]-[8]. We consider a slotted channel with an infinite 
population of users, and we assume that the probability of having 
k successes in a slot where there are n transmissions depends only 
on the collision size n 

tnk = P[k packets are correctly received|/i are transmitted] 

(nal, Osksn). 

We define the reception matrix as 

Pn = F(Sn) 

S„+\ = G{S„, Z„) 

£= 

«10    «11 

«20    «21     «22      0 

«/tO    «/i I «nn 

This model can be applied to channels with capture [l]-[3], [10], 
[16], [18], [20], [23], [26], [28], [34] and to systems using 
CDMA [22], [24], [29]. It is also relevant for many other 
applications, such as systems with multiuser detectors (33] or, for 
instance, the channel studied in [17], [31 ]. For more details about 

Manuscript received April 18. 1988; revised January 20. 1989 and May 7, 
1989. Paper recommended by Associate Eduor. X. R. Cso. This work was 
supported in pan by the Office of Naval Research ui.«ü*r Contracts N0O0I4- 
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Grani 85-990660-A. 
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(1) 

where p„ is the retransmission probability in slot n, Sn is an 
estimate of the backlog X„ at the beginning of slot n, and Z„ is the 
feedback at the end of slot n. The number of new packets arriving 
during slot,«» A„ is assumd to form a sequence of l.i.d. random 
variables with probability distribution P[A„ = k] = \k(k > 0), 
such that the mean arrival rate X = S"., nXn is finite. Each of the 
A„. i new packets that arrived during slot n - 1 is transmitted in 
slot n with probability pn. 

As in the case of conventional channels, it is useful to study first 
the case of control with perfect state information where the value 
of the backlog is given to the users prior to the selection of the 
retransmission probability. To keep track of the exact value of the 
backlog, a central controller is usually necessary, which is an 
unreasonable requirement for most practical random access 
channels. However, the study of the perfect state information case 
allows us to determine an upper bound to the best throughput i;c 

achievable by any decentralized control of the form (1), and 
suggests a simple implementation. Those results are in turn helpful 
to derive control protocols in the case where the backlog is 
unknown. This is done in Section III where we consider a backlog 
estimate which is recursively updated using the binary feedback 
empty/nonempty. In addition, it is assumed throughout the paper 
that each station is informed when its packet is successfully 
received. It is proved that provided a certain condition on the 
reception matrix holds, the throughput achievable with this type of 
feedback is the same as the perfect state information throughput. 
This condition is verified for most multipoint-to-point channels of 
practical interest. 

In a paper whose translation appeared only very recently [19] 
(after our work [7]), Mikhailov has derived sufficient conditions 
for stability and instability of two-dimensional Markov chains. 
Although this was meant to be used for decentralized control 
schemes in the usual collision channel, this approach is powerful 
enough to be applied to the multipacket channel. In Section IV we 
show by using Mikhailov's result that the scheme presented in 
Section III is stable under weaker assumptions. However, only a 
weaker form of stability can be proved in this way. 

0018-9286/89/1100-1153SO 1.00 © 1989 IEEE 
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n. CONTROL OF THE MULTIPACKET CHANNEL wrra PERFECT which becomes d„(p) = X - /„( p) if we define /„( p) to be the 
STATE INFORMATION average number of successes given the backlog n and the 

retransmission probability p 
In this section we assume that all the users know the value of X„ 

at the beginning of slot n, and we let the retransmission n   /   \ 
probability be a function of the exact value of the backlog, i.e., p„ 'n0>)=2 (  .) pJ(l-p)""JCJ.                  (5) 
= F{Xn). In this ideal case, the system is much simpler to j.\\JJ 
analyze than in the general case (1) since (X„)„&j is a homogene- 
ous Markov chain. Our goal is to determine the optimal control Since /„( p) is a polynomial on the compact [0,1], it achieves its 
function F* that yields the largest ergodicity region, and the maximum and we can define 
corresponding throughput, denoted by tjc. For instance, it is well 
known [4] that for the usual collision channel with the access rule p *=arg max t (p)=arg min dip) 
in effect here, F*{X„) = \/X„ is the retransmission probability "     pe(o.ii   "         pi(o.ii    " 
that minimizes the drift at each step, resulting in an ideal ,,..,...«., 
throughput of n   = e"1 e now 9TO<xt^ t0 compute the limit of the drift v/hen the 

First note that all the "results herein are valid provided that the retransmission probability p* is used. We show that 
backlog Markov chain (X„, S„)„i0 corresponding to a control (1) 
is irreducible and aperiodic. It can be easily checked that for both _x £,      x" 
access rules considered in this paper (see below), as well as all the •* '»&* >" »P e    2jCnJ\~ •P t{xl           (6) 

algorithms, a simple set of sufficient conditions for irreducibility ""' 
and aperiodicity is Let us first assume that C < +». 

a) Xo*0 

a» 

b) Xo+ S K<nn< 1 We have for n  > M 

Properly I: 

lim t(x) = C. 

C)  «10*0 I//vA _/-!«? •»-*/-.I.--Jt V  - |/W-C|se-'C+«"* 2^10.-01+   2   JjlC-C|. 
which are analogous to the conditions for the open-loop system "~x »-w+i 
studied in [6]. The theorem below gives the best throughput 
possible for a control protocol (1). *• ' 

Theorem 1: There exists a retransmission probability p» that    pick e > 0 and fix Msuch that \C„ - C\ < e for n > M. Then if 
miST$n       CX 8 UKrCaSe * "    Be iS M Upper b0Und °n ^ Sequcnce (Cn)"!'(7) yidds 

With such a retransmission probability, the system is stable for M 
X < tje and unstable for X > tjc, with \t(x)-C\*e-xC+2Bce-x V —+< 

n- I 

r\c - sup c "x y\ C„ — . and the right-hand side of this last equation goes to zero as x goes 
**o       „.,      "'• to infinity. 

Property 2: For all e > 0, there exists A > 0 such that for all 
Proof of Theorem 1: The proof is based on standard drift    np > A, \t„(p) - C\ < t. We have 

analysis techniques. (X„),l0 is a homogeneous Markov chain 
which evolves according to 

|/„(/>)-c|s2 ( " )pJ(i-py-'\Cj-c\+(i-pyc. 
Xnl-X,+A,-2, (2) •c|<?,0) 

where 2, is the number of packets successfully transmitted in slot Choosing M as for Property 1 we get 
t.   ^c system is defined to be stable if (X,)lt0 «s ergodic and 
ur>  ible otherwise. Let d„ be the drift of X, at state /»:</„ = »  /   \ 
£LY/*i - X,\X, = /»]. WehaveOs; I, s X„ and if we denote \t„(p)-C\<i2Be £ ( • ) p'd-/>)"-' + €. 
byp the retransmission probability used in slot t, then for n 2: 1, ,.o \J / 
the probability of having k successes is given by 

(3) 

t then follows from (2) that the backlog drift at state n a 1 is 
4tven by 

..I    ,-* \J / 

»i \ / 

Let us denote by /?»the random variable corresponding to the 
number of retransmisaons in a slot given that the backlog is equal 
to n. We have 

£ (")p'(\-pr-'=P[Rn*M]*P \ ~P >f J 

or no > 2A/. Then from the Chebyshev inequality 

P^-Py^ PIR.SM)*!- (8) np 

and Property 2 follows. 
•py-'Cj (4)       Property 3: t„(x/n) converges uniformly to t(x) on any 

compact [0, A], 
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=ix e > 0 and choose Msuch that 2" uA'CJj\ < e. Then for 
i > M + landJce \0,A\ 

'"©-'whf/'f 
 * \l-n) + 2t. 

:ince lim,-» n(n - 1) •••(«- y + 1)/V = 1 for 1 sjsM, 
i is enough to show that (1 - x/n)n~J converges uniformly to e~" 
or 1 ^ /" £ M. We have 

1--)" '-e-x-&e-x{e*"n-\\*e*M'n-\. (9) 

Jn the other hand, for n > A, 

l_f ^_/_e-x>(l_£ )'_e-xae-x(e^ + /.!og(l-/)//.)_l] 

I 1 
-*)'-' 

(10) 

;na uniform convergence follows from (9) and (10). 
*roDerty 4: t„(x/n) converges uniformly to t(x) for x a 0. 
ix e > 0. From ProDerties 1 and 2 we can fix A such that: 

i for all np > A, \t„(p) - C\ < «, 
i) for all x > A, \t(x) - C\ < e. 
"lien we distinguish two cases. If x € [0, A], then from 

^Derty 3 there exists N such that for all n > N, \tn(x/ri) - 
tt)| < «. If on the other hand x € (A, + oo), we have 

;)-<4K;)- + \t(x)-C\s2t    (11) 
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Proof of Theorem 2: To prove the first part of the theorem 
we use a result of [27] which is a generalization of Kaplan's 
Tieorem. If D, = F(S,) and S/+i = G(S,, Z,), consider the 
Markov chain (X,, S,) and the Lyapunov function V(n, s) = n. 
Assume that X > TJC. Then 

t[V(Xl+l, S,+1)- V{X„ S,)\X,=n, S,=s\ 

X-Ifc 
(12) 

rom \) and ii). 
Tius. we have shown that when C is finite, /„(*/«) converges 

miformlv to t(x) forx z 0. It follows that lim,-.» supxä.o tn(x/ri) 
suptj-o t(x) and so (6) is proved. 
inallv, we show that (6) holds when C = + oo. Choose A 

:roitrarilv large and M such that C„ > A for n > M. Then for n 
M 

•rom (8) P[R„ s A/] is arbitrarily small for nx/rt =» x large 
mougn. Therefore, sup^o t«(x/n) = + oo and lim,-.» '*(/>?) =• 

oo. since it is clear that if C = + oo. then supXi0 /(A:) = + oo, 
6) holds. 

rom the eauality lim,-» d„(pf) = X - supxl0 t(x) and Pake» 
-emma in f21), it follows that if Um„-„ C„ = + oo, then Urn«-» 

'•>( p J) = - oo, and the system is always stable, whereas if lim„-,. 
-, < + oo, then (X„)„i0 is ergodic for X < r\e = supxi0 '(*)• 
\lso. it is shown in the Aopendix that Kaplan's condition holds 
or this svstem when the sequence (Cn)nxi is bounded, thus from 
Caülan's result [13], the backlog Markov chain is nonergodic 
vnen X > ne. • 

t is intuitively obvious that no decentrüned control algorithm 
u the form (1) can have a maximum stable throughput larger than 
if. The theorem below gives a rigorous proof of (his fact and also 
:nows that this throughput can be achieved with a control which is 
nucn simoler than p*. 

"heorem 2: The best throughput achievable by a decentralized 
control algorithm (1) is tjc = stipxt0e'''Z^,lx''/n\ C„. Iffo > C 

'im„-» C„, then there exists a constant A > 0 such that the 
•ontroi D, = A/X, for X, > A yields the optimal throughput tjf. 

for all n large enough and all s. Therefore, the drift of V is strictly 
positive outside a finite subset of the state space. Since it is shown 
•n the Aüpendix that the generalized Kaplan's condition is 
verified, it is enough to conclude that (X,, S,) is nonergodic. 
Hence, tje is indeed the best throughput achievable by any 
decentralized control algorithm of the form (1). 

lo prove the second part of the theorem, we need the following 
property. 

Property 5: If for all x 2: 0, t(x) < supxl0 /(*), then supxl0 

-ix) = C. 
If sup«)) '(*) = + oo, it is easily seen that C = + oo. if supxl0 

!(x) < +oo, then C < +oo. Consider a sequence (x„)nil of 
nonnegative reals such that lim,,..«» t(xn) = supxä.0 t(x). If (x„)nil 
was bounded above by K < + oo, we would have for all n > 1, 
:(x„) * sup,et0Jn t(x), and in the limit supxl0 t(x) = supxeio./n 
!(x). Then there would exist XQ 6 10, A") such that t(Xo) = supxa0 
!(x), which is a contradiction. Therefore, (x„)nt | is unbounded, 
^nd one can build a subseauence (xnk)kil such that lim»-» x„k = 
+ oo. We still have, of course, lim,-«» t(x„k) = supxl0 '(x), but 
on the other hand, we have lim*-«» /(*„,) = limx-» t(x). From 
Property 1 in the proof of Theorem 1, lim,-» t(x) =J C and 
»'roperty 5 follows. 

Thus, if »je > C, then t(x) achieves its supremum at some finite 
positive real A. Let us consider the control p, = A/X, for X, > 
,4. (Note that-the value of the retransmission probability is left 
unspecified for A*, < A because it does not affect the throughput.) 
Then from (4) d„ = X - tn(A/n), and from Property 3 in the 
proof of Theorem 1 lim,-» d„ = X - t(A). Then it follows from 
'211 ÜUU (*,),><> is ergodic if X < t(A) and from (13) and the 
vppendix that (X,)li0 is nonergodic if X > t(A). Thus, the 

maximum stable throughput of the system is t(A) = supxl0 t(x) 
= nc- a 

Note that the closed-looD throughput obtained in Theorems 1 
:na 2 can be interoreted as ije = sup^./^,,,,)) E[CN], that is as the 
supremum over x of the expected value of CN if JV is a Poisson 
distributed random variable with mean x. Note that if we were to 
follow the popular approximation (1), (2), [10], [16], [18], [24], 
[26] that assumes that the number of transmissions in each slot, N. 
is Poisson distributed, and if we could choose any positive number 
as the mean of JVby regulating the retransmission probability, ihe 
throughput would be equal to the average number of successes per 
slot, E[CN], maximized over the mean of N. As in the usual 
collision channel, a wrong analysis leads to a correct conclusion. 
Several examples are gathered in Table I (see [8] for details). 

Probably the most important conclusion of this section is that in 
general it is not necessary to compute the exact value of p*. which 
would require a large amount of on-line computations, and 
seriously hinder any application of Theorem 1 to the case where 
the backlog is unknown. Two cases may occur. If t(x) does not 
attain its supremum, from Property 5 in the proof of Theorem 2, 
we have rj, = J/O = C(e.g., this happens in the model developed 
in [6] for mobile users with pairwise transmissions). In this case 
no throughput improvement can be achieved by varying the 
retransmission probability, and therefore it is enough to restrict 
attention to the open-loop strategy studied in [8]. On the other 
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IPEN-LOOP    AND 
ABLE I 

CLOSED-LOOP   THROUGHPUTS 
.iULTIPAGKET CHANNELS 

FOR   SEVERAL 

c. ijj- lim  C, 

cofi*«ntioAii 
COlllMO« chUBti 1    n -1 

0   n > 1 
0 «-' 

aoppiif (I) 
n(l-i)-' 0 »•-' 

mobil« tutn 
with ptirviM 
irtAimiMto« l| 

1 1 l 

ctpturt 
1 >+('-i)^-£r) 

ctpturt 
1           n -1 0 •u { (XO-1) «-* + •-">} 

noiseö <CiS 1 andC, = Oforn 2 2.Thenr(x) = C,e-*(X, 
+ \QX) and 7"(*) = Cie-x(Xo - h - X»x). Therefore, for any 
distribution such that Xo < X|, T(x) is maximum at 7(0) + C,X„ 
ana the stability region is empty since CJXJ •& Xj £ X. Note that 
in this sense, the immediate first transmission does not perform as 
well as the delayed first transmission with which the system can 
always be stabilized. 

If there are solutions to X < supXJ.0 T(x), then the best 
throughput achievable by the class of algorithms in (1) is vc = sup 
{X:X < sup^o T(x)}. This is what happens, for instance, when 
the new packet arrivals are Poisson distributed. 

Theorem 3: If the new packet arrivals are Poisson distributed, 
the best throughput achievable with an IFT rule is the same as in 
the DFT case, ve = supXJ.0 '(*)• 

Proof of ITteorem 3: If \\mK-mCn - +oo,then77f = vc = 
+ <». Assume now that C < + ». We get 

.-0     • Jt-0  Jt! 

iand. if there exists A, 0 < A < + «, such that t(A) = sup^o 
(x), then we have shown in the proof of Theorem 2 that the 
oraroi a, = A/X, for X, S A yields a maximum stable 
nroui?hput t(A) = rje, meaning that the system is optimal. Hence, 
iiuv A has to be computed, and this can be done before starting 
tie operation of the system. 

-Jthough in most practical applications (C„)„ 2 1 does have a 
imit. it is worth noticing that Theorem 1 can be generalized to the 
ase wnere C does not exist. It can be shown [9] that if the drift is 
Minimized at each step, then the system is stable for X < supx2o 
ix) and unstable for X > supxk0 t(x) + lim»-« sup C„ - lim»-, 
nf C,. As in the open-loop system when (Cn)n*i does not have a 
imit, nothing more can be said about the throughput without 
urther information on the seauence (CH)Hl\. But the main 
irawback in such a case is that there may not exist any control pH 

VA", that yields the optimal throughput. 
"he access rule for new packets that we have been considering 

o iar is usuailv referred to as delayed first transmission (DFT). 
Vith this access rule, newly arrived packets are treated exactly in 
tie same wav as backlogged packets. Let us now examine what 
laDpens when on the contrary an immediate first transmission 
IFT) rule is used, that is when new packets are transmitted with 
•rooabiliry one in the slot immediately following their arrival. It 
ias been cioved in [8] that the open-loop throughput .is the same 
or both first transmission rules. The closed-looD throughput on 
tie other hand deoends on the access rule. For instance, it is well 
mown 14] that for the usual collision channel in the IFT case, the 
journal retransmission probability is p* = Xo - Xi/Xofl - Xi, 
•leiding an optimal throughput Xoexi/xoe-', in contrast to the 
nroughput rje = e~' for the DFT case. In the multipacket channel 
vuh the IFT rule, the optimal throughput depends not only on the 
nean out on the whole distribution of new packet arrivals, 
nterestinsly enough, it can be proved that both throughputs 
oincide when the new sacket arrivals are Poisson distributed. 
:till with the same method as in the proof of Theorem 1, it can be 
4SÜV shown that there exists a retransmission probability that 
ninimizes the drift dn at state n. With such a retransmission 
•rooability, the system with IFT rule is stable for X < supXJ:o 
~(x) and unstable for X > supx*0 T(x), with T(x) = e'x S*. 
."/n! S* 0 X;C»t/, where we have defined C0 = 0 for notational 
convenience it can also be Droved that a control of the form pH => 
i/X. yields a maximum stable throughput T(A). Since supxk0 
~(x) depends on the whole new packet arrival distribution 
X*)<i«o. this result is not as conclusive as in the DFT case. This is 
«cause the stability region X < supXJ.0 T(x) is actually given in 
tie form of an imDlicit equation in X, which cannot be solved in 
;eneraj without further specifications on the distribution (KH)Kio- 
-or instance, this stability region could be empty. Consider, for 
xamDie, the usual collision channel with possibly some added 

= e-U*M V ^(x + X)" 
*•   ft! 

(13) 

Thus, in this case, T(x) depends only on X, and to clarify the 
proof below, we denote it by T\(x) 

7\(*) = /(x+X). (14) 

Assume that t{x) does not achieve its supremum. Then from 
Property 5 in the proof of Theorem 2, we have tje = C = lim,-, 
.'(*). It follows from (14) that for any X > 0, limx_<» Tx(x) = C. 
Therefore, for all X > 0, supxl0 Tx(x) 2 C. Hence, for all X > 
0, supx20 7\(x) = supXJ:0 t(x), and by definition of vc, we finally 
get ve - supXJ.01(•*)• Note that 7X does not achieve its supremum. 
in the sense that if there existed X € (0, ve) and *x £ 0 such that 
?c = 7\(x0, we would have supXJ.0 t(x) - /(X + xj. 

Assume now that t(x) does achieve its supremum. there exists 
Xo Ä 0 such that supXJ.0 t(x) = t(xo). Then for all X in [0, x0]: 
T\(Xo - X) = supxs0 t(x) ä supXJ.0 Ttix). Thus, for all \ € [0, 
Xo] 

sup rx(*) = sup /(*) = 7"x(.*b - \). 
120 X£0 

(15) 

We have for all x a 0 t(x) s x, therefore supxi0 ^W =s x^. 
Together with (15), it follows that for all X G (0, supxi0 '(*)). X 
< supxJ:o T\(x), and therefore vc > supxi0 'W = v Since from 
(14) sup«,, T\(x) ^ supXJ.0 /(*) = Vc for all X, we get ve s rje and 
finally vc = tjf=supxlo *M- Note that from (14), T\ reaches its 
supremum too, since for all X < vc, there exists ^2 0 such that 

Note that we have also shown in this proof that T(x) reaches its 
supremum iff t(x) does, which means that tff can be achieved with 
a control of the form pH = A/XH iff vc can. Ü 

m. OPTIMAL CONTROL FOR THE MULTIPACKET CHANNEL 

It is assumed from now on that the users do not have access to 
the value of the backlog, so the problem becomes one of control of 
the Markov chain with partial state information provided by the 
channel feedback. We build a backlog estimate S, with feedback 
which is such that Z, = 0 if slot / was empty, and Z, =0 
otherwise. The results of the previous section strongly suggest 
that we should use as a retransmission probability p, - A/S„ 
where A is a point at which t(x) achieves its supremum (according 
to Property 5, A is assumed to be finite). We show that the 
resulting control algorithm achieves the optimal maximum stable 
throughput Tje. This holds provided that the following assumption 
on the reception matrix is verified. 
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-0: There exists 0 > 0 and B such that for ail n 2: 1, 2lm, e" 
« s B. 

"lie ourpose of condition; CO is to bound the probability of 
mving large numbers of simultaneous successes. Unbounded 
lumoers of successes per slot are difficult to deal with because 
nev may result in very large instantaneous errors in the backlog 
sumate. Note that condition CO is likely to hold in most 
iiuitiDoint-to-point channels because of practical limitations on 
ne receiver caoabilities, and that it is verified for all the examples 
n Table I. 

=heorem 4: Assume that there exists A € (0, + ») such that 
(A) = supxa0 'W. that the new packet arrivals (A,),i0 are 
^xoonentiai type', and that condition CO holds. If a < Oand ß < 
J verify the following two conditions2: 

-7: ß > X 

H57 

-2: ß(l *) + Vc - X + ae-A = 0 
nen the control algorithm (cf. the control laws proposed in {15], 
19], and [25]) 

:,+ i = max [A, S, + a/(Z, = 0) + /3/(Z,=0)} 

ias maximum stable throughput equal to 77,.. 
-roof of Theorem 4: The proof is based on the method 

•evelooed in [30]. The idea is to use the properties of the 
lOmogeneous two-dimensional vector Markov chain of the 
lacklo? and its estimate M, = (X„ S,) to build a Lyapunov 
unction whose drift is negative in the first quadrant of the (n, s) 
uane when X < 77,. It turns out that this fails to hold in two cones 
if the state soace, but it can be proved that the 7-step drift of the 
-vapunov function is negative for some integer J, arid that this is 
nougn to ensure that M, is geometrically ergodic. It follows from 

"Tieorem 2 that M, is nonergodic if X > TJC. For substantial 
onions of the proof, the reader is referred to [9] because of space 
imitations. 

denote bv X, = S, - X, the error in the backlog estimate. The 
irst oart of the proof mainly consists of computing and 
ioproximating the drifts of X, and X, which are the basic building 
•locks for the Lvapunov function. 

denote bv c(n, s) = E[X,+ \ - X,\Mj - (n, s)] the backlog 
irift at state (n, s), and by d{n, s) = E[Xli.l - X,\M, = (n, s)] 
ne drift of the backlog error. For technical reasons, what we most 
iften use in the oroof are the truncated drifts, which correspond to 
ne value of the drifts restricted to those oaths where the variation 
n the backlog is bounded by some integer J, that is c(n, s,J) = 
<KX,tl - X,)H\X,.X - X,\ £J)\M, = (n,s)]mddi[n,s,J) 

«!(*,•, - X,)I(\X„X - X,\ SJ)\M, = (n, s)]. Clearly, 
nese truncated drifts will be good approximations of c(n, s) and 
Hit, s), respectively, when J is large. It will turn out that the 
.nfts depend primarily on the ratio x = n/s for large values of n 
jr s. rhus. it is convenient to define the following two regions in 
.ne in, s) plane: 

:f\o, \i)={(n, s): nzO, s&0, 1 + XoS-sl+Xi} 

l\t= {(n, s): nzM or s&M] 

vnere X« and Xi are such that -os^s\, s +00. The aim 
if the first part of the proof is to show Proposition 1 below which 
ummanzes ail the properties of the drifts that are needed for our 
lurposes (see Fig. 1). 

i. a exponential type if there exists d > 0 such that £!**"<] is finite. For 
nsumce. tnis is lrue if A, is Poisson disinbuted. 

•"onailions Cl and C2 define half a straight line in the plane, and therefore 
•n intinite number of possible estimation schemes, all of them yielding the 
^ame inroughpui. 

Fig. I.   Drift properties (Proposition I). 

Proposition 1: There exist 7 6 (0,1/5), 5 > 0, and an integer 
'0 > 0 such that for all J a J0: 

1) for all (n, s) 6 C( - 57, 57) PI UM, c(n, s) <; - 5 and c(n, 
s, J) £ -5 + v{J); 

ii) for all (n, s) 6 C( - 00, -7) n U», d(n, s) <, -5 and 
d(n,s,J) £ -5 + K-/); 

iii) for all («, s) €C(y, + ») fl Uu, d(n, s) > 6 and d(n, s, 
j) a 5 - y(J) 
where v(J) is a nonnegative function which goes to zero a 7 goes 
to infinity. 

The detailed proof of Proposition 1 can be found in [9]. After 
computing the value of the drifts 

c(0, s) = \ Ü6a) 

**-k-i(f)(?)'(i-i)'~'c> ("ä,)(,6b) 

a(0, j) = max {A-s, a}-\ 

/ 
d(n, j)=/3-X + (max {As, a}-/3) I 1- 

(17a) 

im(^ 
{'- 

Cj      (nzl)   (17b) 

we work out upper and lower bounds by truncating the sums (16) 
and (17) to a fixed number of terms, and then we approximate 
those bounds as a function of the sole variable n/s. The main idea 
is that the dynamic behavior of the Markov vector M, = (X,, S,) 
depends essentially on the ratio X,/S,. For instance, if* is nearly 
•ouai to 1, the backlog estimate is close to its ideal value, and we 
anould have c(n, s) < 0 since the backlog drift is negative in the 
perfect state information case. Also, a well-behaved estimate 
hould be such that if x < 1. then the errors - n is positive, and 

Jierefore should have a negative drift d(n, s) < 0 (see [15]). In 
fhe same wav, we expect to have d(n, s) > 0 for x > 1. 

utl us define the following Lyapunov function: 

C    I+37 
V(n,s) = max \n, —;—(n- s), 

I-37 
(s-n)\ 

vnere the constants have been chosen so that V is continuous. 
V(n, s) is equal to the first, second, and third term inside the 
bracket when (n, s)isinC(-37,37), CCty, +»), andC(-<», 
- 37), respectively. Notice that Kis defined so as to take the best 
advantage of the drift properties listed in Proposition 1. For 
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instance, when V(n, s) is equal to n, then the Markov chain M, 
belongs to C(-3-y, 3-y) which is included in C(-5y, 5-y) where 
the backlog drift is negative provided that either n or s is 
sufficiently large. Similar comments can be made about the other 
two regions. Unfortunately, this does not enable us to conclude 
that the drift of the Lyapunov function is negative in UM because 
Ml4.i may well be in a different region than M,. However, this 
change of region becomes unlikely if we exclude a small zone 
around the lines x = 1 ± 3-y where V changes definition and 
indeed the second part of this proof consists of showing that the 
Lyapunov function has a negative drift in the remainder of the 
state space. 

Proposition 2: There exist M0 ä 0 and 5o > 0 such that for all 
N> Mo and for all (n,s) E UN D lC(-oo, -47) U C(-2y, 
27) U C(47, 00)], 

E[V(Ml+i)- V(M,)\M, = U, s))< -5o- 

Proof of Proposition 2: We consider separately likely and 
unlikely events 

£[W..)-r(A/,)|A/, = (/i,:01 
= £[(^(^,)-^(A/,))/(|/l,-2,|sy)|A/, = (/J,5)] 

+ £[(K(A/,.,)-K(A/,))/(M,-S,|>7)|A/, = (n,5)l.     (18) 

We start by showing that the first term, which corresponds to 
likely events, is negative when J is large by using the properties of 
the truncated drifts from Proposition 1 and a simple geometric 
result. The lemma below, whose proof is in [9), gives a measure 
of how much a cone C(Xo, X,) expands if each of its points is 
allowed to move of some distance that cannot exceed B in absolute 
value along each axL 

Lemma: Consider •y>0, B > 0, and 7 - 1<X0.<\1< 
+ 00; and assume that \n - n'\ S B, \s - s'\ s B, andQ ä Bl 
7(1 + |X,|)(X, + 2 +.7). Then: 

1) (/J, s) € C(Xo. ») n UQ 

=. (n'.s')G C(Xo-7. ») n UQ-B 

2) {n.s) € C(-oo, \,)H UQ 

- (n',s') € C(-», \, + 7) n UQ.a 

3) (n, s) € C(Xo, X,) n UQ 

- (n',5')€ C(Xo-7, x,+7)n uQ.B. 

Set B(J) - max {J, \a\ + ß}. jnd define Q(J) to be any real 
such that 0(7) a max {B(J) t- M, B{J)/y (1 + 47) (2 + 
37)}. We have |S„, - S,\ <. \a\ + ß <. B(J), and if \A, - l,\ 
5 7. then \XIMX - X,\*J £ B(J). From the lemma, Q(J) is 
such that 

M, € C(-27, 27) n t/^j, - A/,., € C(-37. 37) n t/w 

(19) 

M, S C(47, 00) n UQU) - A/,., € C(37. 00) n VM    (20) 

M, € C(-oo,-47) n £/0t„ - A/,., € C(-», -37) n t/w 

(21) 

where M has been defined in Proposition 1 Assume, for instance 
(hat M, belongs to C(-27, 27) D UW}. From (19). Af,», € 
C( - 37,37) ft t/w n C( - 57, 57) O l/M. Hence, if J a 70. we 
can apply Proposition 1 i): 

E[(V(Mltl)-y{\f,))l(\Al-i:l\sJ)\M, = {n,s)) 

-in,s, J)s -5n>(J). 

If M, belongs to the other two regions, C(47, 00) n UW) or 
C( —00, -47) n UQlJ), a similar argument holds, using 
Proposition 1 iii) and ii), respectively, along with (20) and (21). It 
follows that for all / > /o and for all (n, s) S t/0U) 0 [C( - *>. 
-47)UC(-27, 27) U C(47, »)] 

£[(K(iM'i+i)-I'(iM'/))/(K-Sf|ssy)|A#,=(»,5)l«-«, + ir,(y) 

(22) 

with 5, = min {1, 1 - 37/37)6 and vt(J) = v(J) I + 37/ 37. 
To deal with the second term on the right-hand side of (18), we 

consider the further decomposition 

E[(V(M,^)- K(A/,))/(M,-S,|>y)|A/,=(/j, 5)1 

= £[(K(A/M.,)- K(A/,))/(|/t,>E,+y)|A/, = (/i, s)\ 

+ E[(V(M,+ d- K(A/,))/(S,>/l, + y)|A/,= (n,5)].    (23) 

Let us denote by 7t (n, s, J) and r2(n, s, J) the two terms on the 
right-hand side of (23). The first term Tt(n, s, J) corresponds to 
a case where the variation in the backlog is bounded below, and 
can be shown to vanish as J increases by using the sole fact that 
the mean arrival rate X is finite. Consider now T^n, s, J). If M, 
= (n, s) belongs to a region such that x'= n/s > XQ, then XQ can 
be chosen large enough so that if M,., belongs to C( - 00, - 3-y), 
then the error in the backlog estimate which results from the large 
number of successes just compensates the initial error n - s > 0. 
On the other hand, when M, belongs to any region such that x is 
bounded above, then E[Z,I(Z, > J)\M, = (n, s)] goes to zero 
uniformly in (n, s) and T2(n, s, J) can be dealt with by using the 
following rather crude bound for the variation of V: 

['•^•^] |K(A/,+ 1)-K(A/,)|smax 

• (|o|+/J+M,-Sf|)SÄ(l+M,-Sf|)   (24) 

where R is some positive constant. It is shown in [9] that 

E[(V(Mlti)- K(A/,))/(M,-S,|>y)|A/, = (/j, 5)1 

£»i{J) + ij{n,s)   (25) 

where limy-«, ^(V) = 0, and cj(n, s) is a nonnegative function 
' that depends on J, and goes to zero as either n or s goes to infinity. 

By using (22), (25), and the decomposition (18), we get the 
desired result that the drift of V is negative in this part of the state 
space: fix an integer J^ such that /„„ £ J0 and that for all J ä 
J<mn, fi(J) + viU) 2 5,/3. Then from (22) and (25), we have 
for all (n, s) € UQUmmt 

n [C(-«, -47) U C{-2y, 2y) U 
C(47, «)), 

E[V(Mltl)- K(A/,)|A/, = (/J,5))S --6t+tjn An ,s). 

Then we can choose an MQ > Q(JmJ which is large enough so 
that tjmAn, s) < 5,/3 for all (n, s) in t/,w0- Ü 

This concludes the »cond part of the proof. Unfortunately, it is 
not always true that the drift of V is negative outside a finite subset 
of the state space. For instance, we have proved that in the case of 
the usual collision channel with Poisson new packet arrivals, there 
exist constants Ba > 0 and Ma such that for all (n, s) G UM for 
which x = 1 ± 37, and for all a and B verifying Cl aria C2, 
E\V{M,+\) - V{M,)\M, = (n,5)l > Ba. However, discontinui- 
ties around the lines x = 1 ± 37 cancel out when one waits long 
enough, and in the last part of this proof we show that the y-step 
drift of V, ElV(M,.j) - V(M,)\M, = (/», s)] is negative for 
some integer J. 

Proposition 3: There exist Jr > 0, p > 0, and Mf > 0 such 
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that for all (/», s) € VMf 

E[V(M,+Jf)- V(M,)\M,-=(n, s)]* -p. 

Proof of Proposition: One of the main problems in dealing 
with the /-step drift of V is to control the changes of regions 
between M, and A/,*/. To this end, we define the stopping time 

1159 

T/=min 52:0,    £ (/W-S/+J>/3j 

If TJ > /, then for 1 s k < J, \X,*k - X,\ <; /'and |S,+* - S,\ 
<. J{\a\ + ß). Thus, if we define B'(J) = max {/(|a| + j8), 
Z3}, and Q'(J) to be any integer such that Q'(J) > B'(J) + 
max {A/0, A/} and Q'(J) > 25'(/)/7(l + 9/27)(57 + 2), 
then, still assuming that ry 2: /, we get from the lemma for 0 £ k 
£ J 

M,ec(-oo, -47-|J n t/0,(y) 

M„k e C(-«, -47>n t/Wo (26) 

A//ecf-27+|,27-|j n t/( 

Fig. 2.   If Af, EZvO £/Q'W> and if T, a ./, then A/,, i belongs to the region 
where the drift of V is negative. 

Q'U) 

M,.k(z C(-2y,2-,)n UMa   (27) 

A/,e cu7+|,ooj n t/0,(y) 

A/,+, e C(47, «) D UMa   (28) 

w,e c( -47-|. -2i+\ ) n i/0,(y) 

- M,.ke C(-57, -7)0 (/«   (29) 

A//eC(27-|,47 + | )nt/c 

- A/,+Jt € C(7, 57) H t/w.   (30) 

In other words, we have partitioned the plane into two zones 

ZN=c(-», -47-|J Ucf-27+|,27-|J 

U c(47 + |.»J , 

and 

Then we have chosen Q'(J) such that if M, belongs to Zu which 
is slightly smaller than the region in which the drift of the 
Lyapunov function is negative, and if ry £ /. then the Markov 
chain remains in the region in which Proposition 2 applies up to 
time / + / (see (26)-(28) and Fig. 2). Q'(J) is also such that if 
M, is in Zpznd if ry a /, then up to time t + J the ch&in stays in a 
region such that two out of the three properties of Proposition 1 
hold at each step (see (29), (30), and Fig. 3). 

We start by showing that the /-step drift of Kis negative at (fl, 
s) whm (/», s) belongs to ZN. We decompose the /-step drift of V 

Fig. 3.   If M, € Zf D £/0.y, and if TJ £ A then A/,.i belongs to a region 
where two properties of Proposition I hold. 

as follows: 

^C(Wlt/)-C(W,)|M, = (/i,j)] 

j-\ 

= £ fJEl^A/,^*.)-^,^)!^*] 
t-o 

y-i 

• /(ryS:/)|A// = (n,j)3+2 £(£(^(A^.*.i) 

- ^A//>*)lA//»*l/(ry</)lA// = (/!, 5)]. (31) 

Denote by U, (/,."», s) and y2(/, n, s) the two sums on the right- 
hand side of (31). If r, a /. dien (26)-(28) hold, and therefore we 
can apply Proposition 2 

i/,(/, n, s)n -J&oPlTj^J\M,=(n, s)]. (32) 

Let us now show that ry < / is indeed an unlikely event, the 
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•rooability of which goes to zero as 1/7 uniformly in (n, s) 

>\Tj<J\M,=(n,s)] 

-1     i 

-0        L 

* I 1 £ (>W S,w) >/3|M, = (n,.0 
i-o | -J 

-ii* "1 

-0 L-/»0 J 

-II* "j 

---O      1-/-0 
rom Markov's ineauality we have 

.,-1 

'rTy<y|A/,=(/i.*)is-^5; (*+i)X 

-i * 
-2 S £"[S,+/|A/, = (/t,^)]. 

• 0/-0 

«noting by B, an upper bound on the sequence t„(p*), it follows 
rom Section II that £IS/+/|Af, = (n, s)) = £[£lS/+/|A!r/4.,]|Af, 

•n, s)] 5 S„ so we get 

since max {a, b} - max {c, d} s max {a - c, 6 - d}. Then 
•sing the fact that max {a, b) s max {0, a + f} + max {0, b + 
f) - /for/2: 0, we get 

E[(V(M,^j)- V(M,))I(Tj7*J)\M, = (n, s)\ 

££   max jO.^y-^ + S,^ 

•/(Tyay)|A/, = (n,5) 

+ £|max [o,-^(-^w+-?,) + 5,M 

• /Ova 7)| A/, = (n,5) 

E Ux
J-I(Tj-zJ)\M,=(n,s)\ (36) 

^<y|A/, = (n, s))s^ßl J-±*J< 
vhere 5| = min {1, (1-37)/3Y} has been defined in (22). We 

(33)    show that the first two terms on the right-hand side of (36) are 
P " J bounded. Since (33) limy-« - StJ/2P[rj a /] = - oo, this will 

vnere B. is some positive constant. From (24), it is easy to check    be sufficient to prove that limy-« £I( K(Af,w) - K(M,))/(r, > 
hat the drift of V is bounded bv some positive constant By, so that    7)|Af, = (n,s)] = -oo.Define Wk = X,<.k - X, + &7|/2and 

i( i .. -\- ID at   ^ IM*   i     M /->JX    '* = F'+k\ where F, is the sigma-field generated by {A„s 5 t - 

onsidering (31), (32), (33), and (34), we get time t. To prove that the first term in (36) is bounded, we show 
•twixM    x    f/zwxiw   /     H>   ,,  ,.  .no Jiat there exists 0 > Osuch that (yt,/i) is a supermartingale, 
ifI'(A/lw)->'(A/,)|A/l-(fl.*)]S-M+(ÄK+«o)Ä,. ^ n = e*^/(r, Ä *). We need to show that Sn., |/?] <; 

herefore. there exist constants MI > 0 and /t > 0 such that for     Yk, which is equivalent to 
;il J > /, and for all (n, s) € l/0m H Z*, 

nWw)-K(M,)Mr(M)ls-/ft. (35) 'V'     *„„, 
Ve now oroceed to show that the 7-stcp drift of the Lyapunov v '     ' 

unction is negative in the remaining part of the state space ZP smce j{Tj >*+!) = j(Tj ^ k)l(Tj 2 k + 1), and /(T, > *) >s 
•onsisting of the two cones around x = 1 ± 37. This is done in measurablc with respect to F,+k 
wo steps. We first show that the /-step drift of V restricted to 
ikelv events {7, 2 /} goes to - oo as J increases, and then we /(Ty2it)£[e*<Ar'+*+i-Ar/+*+*i/«|F,+t]s/(TyaJt).   (37) 
irove mat the /-step drift of V restricted to unlikely events {r, < 
. \ is bounded above independent of /. Now if r} 2 Ar, then from (30), Ml+k E C(y, 57) fl U». Lemma 

•ssume. for instance, that (n, s) E C(y - 7/2,47 + 7/2) fl 2.2 in [11] states that if A" is a random variable such that |A"| is 
-:'•} {J) The difficulty here is that Kcan take two possible values, stochastically dominated by an exponential type random variable 
ma therefore ProDOsition 1 cannot be used directly. If r, 2: /, Z. and if the expectation of X is strictly negative, £|A"| < - e, 
nen from (30) M,.k € C(y, 57) fl UM for 0 s * £ J, so that then ti.erc exist "two constants tj > 0 and p < 1 such that E\e"x] 
'(M,.k) - max {X,.k, (1 + 37)/37(AT/+* - S,»*)}. There- < p < 1. Hence, there exists 4> > 0 such that 
ore, 

.or all (n, s) € C(-Sy, 57) D UM, 

i£[e^xi+l-xi*i/l>\M, = {n,s)]<l   (38a) 

for all (n, s) € C(-oo, -7) n l/M, 

£[e«<^i+i--*/+»/«|A/,=.(n,5)]<l   (38b) 

.or all (n, s) € C(y, 00) n (/w, 

E[<.tf-*/+!+*/+*'«|A//=(n,.y)l<l.   (38c) 

It follows from (37) and (38a) that (Yk, fk) is a supermartingale. 
Therefore, 

ElYj\Fo)'*E[',yJl(Tj*J)\Fl)£E[Y0\fi0)=\.       (39) 

Finally, considering that max {0, *} s 1/0 e*', it follows from 
(39) that the first term in (36) is bounded. Using (30) and (38c). it 
can be shown with the same method that the second term in (36) is 
also bounded. Thus, threre exists a constant BT independent of / 

WA/,w>- V(M,))I(Tj-ä:J)\M, = (n,s)\ 

-n max JX,.j, iy^ (X..J-S..J)] 

•(Tjl*J)\M, = (n,s)\ 

i-l max j*„i^(,Y,-S,)j 

•(Tj*J)\Ml = (n,s)\ 
J 

,E I max {x^j-^.^i-X^j + X,)] 

(TJzJ)\M, = (n,s)\ 
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uen that 

WW+j- V{M,))I{Tj*J)\M,={n, s)]*BT-- $IP[TJ*J]- 

Tie case (n, s) E C(-4> - 7/2, -2y + 7/2) n £/e.y)canbe 
lealt with in a similar way, using (38a) and (38b). Therefore, we 
iave shown that there exist ;tj > 0 and J2 > 0 such that for all J 

-'•> and for all (n, s) £ Y0{J) C\ ZP 

<W{M,.A- V(M,))I{Tj*J)\MMn, s)]< -fa.   (40) 

t is shown in [9] that there exist a constant B > 0, a function 
;{J) with limy-» vj(J), and a nonnegative function vj{M) 
leoending on J verifying limw-c. vj{M) = 0, such that for all («, 
-i 6 Uo-{j)+M\ f Zp> 

Theorem 5: Suopose that: 
> the number of new packet arrivals per slot has finite second 

moment E[A2,] < +«; 
ii) there exists A 6 (0, +00) such that t(A) = sup„.0 t(x); 
ii) CO*: there exists B <   +» such that for all n >   1. 

Fix X < 7je and f > 0 such that X < t{A$). Choose a < 0 and 
0 > 0 such that 

£+»«(/)+ l»/(Af|). (41) 

Ve are now ready to conclude the proof of Proposition 3. From 
40) and (41), we have for all (n, s) 6 U0-{J)+M. H ZP, 
WW,.J) - V(M,)\M, = (n, 5)] 5 5 - /w + v,(7) + 
•\M\). Fix an integer Jj 2 max {/1, 7j} such that for all / ä Jf, 
1 - fa + wj(/) < -M2- Then for all (n, 5) 6 UQVJ)*M\ n 

:», we have £[K(A/|W,) - K(A/,)|A/, = («, 5)] 5 -/i, + 
'vlWi)- On the other hand, we also have from (44), for all (a, s) 

low fix M, large enough so that vj(tfi) 5 /i2/2. Then define Mt 
••V{Jj) + A/i, andp = min {^2/2, Jjfi,}. U 

•Ve can now conclude that (M,),t0 is geometrically ergodic for 
» < ne by invoking the following result. 

heorem (Hajek fllj): Let \W,} be a sequence of random 
'arables adapted to an increasing family of u-fields {F,}. 
:uopose that W0 is deterministic, that {W,, F,} is exponential 
vpe, and that for some t > Oanda > 0 we have E[(Wni - W, 

-)1(W,> a) \Ft) £ 0 for all / ä 0. Then for each value of 
W the stopping time r = min {/ S 0; W, <, a} is exponential 
vpe. 

Kfine W, = K(W,y,)anda = A<> max {1,(1 + 37)/37, (1 - 
»/37}. If K(A/,) >' a, then Af, 6 UM/. From (24) and CO 
V(M,), F,) is exponential type since A, is. From Proposition 3, 
ve can aopiy Hajek's result to our system to conclude that r =*. 
nin it 2 0, V(M,Jf) <, a) is exponential type for any initial 
täte, since V(M,) S a implies that X, 5 a and S, 5 a/(l - 
•v), it follows that r' = min {/ a 0, Xu, S a, and S«^ £ a/(l 

W)} is also exponential type for any initial state, as well as T" 
min it 2: 0, X, £ a, and 5, <, a/(l - 37)}. Hence, it follows 

rom f 14] that (A",, S,) is geometrically ergodic, concluding the 
.»roof of Theorem 4. • 

V. STABILITY PROOP VIA MKHAILOV'S THEOREM 

vlikhailov fl9, Theorem 3] has recently found a powerful 
urficient condition to guarantee the stability of a Markov process 
sjdnij values on R* x R*. This result can be used to weaken the 
urticient conditions we imposed in Section 01 and obtain a much 
«ore simoie ptvX)f of stability. However, the form of stability 
iseo bv Mikhailov is weaker than the geometric ergodicity used in 
action IH. 

jti A/, be a discrete-time Markov process taking values in Y S 
i\ U(r) = {x € R':\\x\\ <; r), and r,(S) = min {/ 2: 0:A/, S 
;IM0 = x), i.e., TX(S) is the time it takes to reach the set S from 
:. then we sav that the process M, is stable if there exist constants 
, ana ct such that E[T2(U(,r))] <z c, ||x|| + c2 for all x 6 Y. 
Isin? this definition of stability we show the following result 
vnich is analogous to Theorem 4. 

v.1': «e-«-!)-l4-'W» >M-, 
s 

C.': ß>mf(X)=   sup   - 

rhen the control algorithm 

x-xe-***-" 

S,+ l=max {A, S, + a/(Z,=0) + j3/(Z, = ö)} 

is stable. 
Proof of Theorem 5: Let us state first Mikhailov's Theorem 

(cf. (35] for an exposition of this result and its application in the 
decentralized control of the conventional collision channel). 

Theorem (Mikhailov 119]): Let M, = {X„ S,) be a homogene- 
His ivfarkov process on R* X R*, with drifts 

c(n, s), e(n, 5))=£[Af,+ l-A/,|Af,=(/J, *)]. 

Suppose that: 
i) there exists B < + » such that for all (n, s) 6 R* x R* 

£l||Af,+1- M,V\M,~(n,s))sBi 
ii) for all ^ G (0, +«), the drifts (c(n, n/^), e{n, n/^)) 

converge uniformly in ^ as n goes to infinity to (c(^), ei<P)); 
iii) the limit drifts (c(^), e($)) are differentiable on [0, + 00), 

with (<?(0), e(0)) = lim,-„ (c(0, s), e{0, s)); 
iv) there exists t > 0 such that if c(^0) = ^0 e(^o). then c(^0) 

< -e. 
Then A/, is stable. 
Since both the new packet arrivals and the rows of the reception 

matrix have finite variance, it is easy to check that condition i) in 
Mikhailov's Theorem holds 

£[||A/,+ I-A/,II2|A/,=(/.,J)1 

= £[(*(+l-*()
J + (S(+l-S,)J|A/, = (/!,.s)]. 

Now £1(5,,., - S,)2\M, = (fl, s)) 5 a1 + ß\ and from (2) 

£K*,*i-*,W/=(/>, *)]s£li4*] + £[S*|M,-(ii. 5)]. 

^rom CO' the variarxe of the number of successes is also bounded 

-W\M,~{n,s)] 

i»imw"* SB. 

It follows directly from (16) and (17) that the limit drifts are 
given by 

c(*) = X-r(/l*) 

e(i)=>ß + (a-ß)e-A*, 

respectively, for ^ 6 [0, + »). Uniform convergence to the limit 
drifts follows immediately from the results given for the perfect 
state information case (Property 4). Also it is clear the t(x) is 
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differentiable (see (6), where OsC,s /»). Therefore, properties 
ii) and iii) in Mikhailov's Theorem aie satisfied. 

In order to check property iv) note that if ^0 = £. then it 
follows fromCr that 

But, at that point, c($0) < 0 because of the choice of £. There is 
no other root of the equation c(\p) = rf/ed), and, therefore, 
property v) follows. To see this, note that because of Cl', c(^) = 
iM^) for ^ ^ £ is equivalent to 

A-/W*) 

0=- 

1) One-Dimensional Kaplan's Condition: Consider the 
model of Section II with a control scheme p„ = F{X„), and the 
Lyapunov function V(x) = x. To check Kaplan's condition, it is 
enough from [27] to show that the downward part of the drift 
-£>(/) = l'kml kPtJ.k is bounded below. For i ä 1 and 1 s k 
S i we have 

which is impossible if $ ± £ because of C2'. O 
It can be shown [9J that m{(X) is finite for all nonnegative X and 

£, and therefore the set of control laws defined by Cl' and C2' is 
nonempty. Actually, the set of control laws in Theorem 4 is a 
subset of those in Theorem 5 because in Theorem 5 we can choose 
£ = 1, in which case C2 is equivalent to Cl' and Cl is more 
restrictive than C2' because X ä m,(X) [9J. D 

V. CONCLUSION 

In this paper we have investigated the properties of decentral- 
ized control algorithms for a random access channel with 
multipacket reception capability. By using the working hypothesis 
that the users are aware of the value of the backlog, we have 
determined the best throughput achievable by any such protocol, 
as well as a simple way to achieve it. The optimum throughput has 
been shown to be given by the maximum average number of 
successes per slot when the number of transmissions, per slot is 
Poisson distributed. In the imperfect state information case, we 
have shown that the same throughput achieved in the perfect state 
information case can be achieved by using in lieu of the true 
backlog, an estimate of the backlog computed at each station using 
binary feedback, and we have used this estimate to derive a 
control scheme which is optimal in the sense that it achieves the 
optimal throughput determined earlier. This is true provided the 
reception matrix verifies condition CO, which puts some restric- 
tions on the number of successes per slot. By using Mikhailov's 
result, CO can be replaced by the weaker condition CO'. In this 
case however, geometric ergodicity was not ensured. Note that 
the feedback empty/nonempty used in Sections 01 and IV may be 
less than the available feedback in many practical situations, but 
no further information is needed: a ternary feedback would not 
shorten the proof or achieve better throughput. 

Finally, let us mention that one can easily modify the proof of 
Theorem 4 to show that a similar result holds with the IFT access 
rule. More precisely, under a hypothesis paralleling those of 
Theorem 4, one can build a control scheme based on a binary 
feedback empty/nonempty such that the Markov vector (X„ S,) is 
geometrically ergodic for X < sup«0 T(x). Using Theorem 3, it 
can be seen that the maximum stable throughput is the same for 
both access rules when the new packet arrivals are Poisson 
distributed. 

APPENDIX 

KAPLAN'S CONDITION 

Consider a Markov chain with denumerable state-space D, and 
one-step transition probability matrix (P^^eo- Let V(x) by a 
Lyapunov function on D. Then the generalized Kaplan's condition 
holds if there exists a positive constant B such that for all z 6 (0, 
lfand all x€ D 

*W=2\.   2   ('.JF(/V(l-F(/))'-V+- 
fl-0       j'k + n V/ 

After a change of variable, it follows that 

D(» = i('j)F(0J(l-F(i)y-<2K   £   (*-n)e,.*. 

(A-l) 

If (CB),,ai is bounded, then Kaplan's condition holds independent 
of the retransmission policy. Denoting by Bc an upper bound for 
(C„)„a„ (A-l) becomes 

-D(i)z - S ( J ) FWQ -^('))'"y 2 X"^' 
,-1   V/ n.O 

"2 ( ) J WQ -F('))"JCj* -Bc. (A-2) 

2) Two-Dimensional Kaplan's Condition: Consider now the 
multipacket channel with a general control algorithm (1). Then 
(X„ S,) is the Markov chain of interest, and the relevant Lyapunov 
function is V(n, s) = n. We prove again that Kaplan's condition 
holds provided that (<?„)„*, is bounded. From (27), it is enough 
also in this case to show that the downward part T(x) of the 
generalized drift is bounded below, with T(x) => l^y(y)<y(X)Px, 
(V(y) - V(x)). Given a state x = (i, s), we have 

T(x)= -^ r^ P[Xntl = i-r, S„^=k\X„ = i. S„ = s] 
f\       k 

i 

= _2 rP[*„+1 = i-r|;c„=/, S„=s] 
r-l 

which is, in the same way as before 

i-k     i-e i      / .\ 

*•<*)»-2r2K 2 (j)(F(s)y(i-F(s)y-'(j.,„ 

--2(J)/r<*w,-/w'''2x» 2 (>-"*" 
jml   V / fl-0 r./n-l 

this expression is similar tu (A-l), and the end of the proof is the 
same as in (A-2). 

,Vb1 -2 P„ZyM*-B(l~z). 
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Abstract 

This work studies optical Code Division Multiple Access 
(CDMA) systems, and presents the exact error expression for 
the noncoherent, single-user matched-RHer receiver based on the 
electron count in a symbol period. This analysis is valid for arbi- 
trary pholomultipliers, adheres fully to the semi-classical model 
of light, and does not depend on approximations for large user 
groups or strong received optical fields 

The general error rate expression is specialised tu the case 
of unity gain photodetectors and prime sequences, and the exact 
minimum probability of error and optimal threshold are com- 
pared to those obtained with simplifying assumptions on user 
transmission coordination or multiple-access-interferencc (MM) 
distribution. We lind that the approximation of chip synchro- 
nism yields a weak upper bound on the true error rate, and 
ive demonstrate that the approximations of perfect oplicnl-to- 
electrical conversion and Gaussian MAI yield an optimal hypoth- 
esis test whose error rate overestimates the true minimum error 
rate and underestimates the optimal threshold for moderate and 
large received optical energies. 

Optical CDMA Model 

The digital modulation format studied in this paper 
is optical Direct Sequence Spread Spectrum, i.e., during 
each symbol interval of duration T, the jth transmitting 
laser is amplitude- modulated by the product of the data, 
which takes on values in {0,1}, and an assigned, sigua- , 
ture sequence of relatively short rectangular pulses. This 
scheme divides the symbol interval into A' equal length 
subintervals, called chips, on which tne signature sequence 
is constant and takes on values in {0,1}. Further, we define 
P} = P as the nainber of non-zero chips in each signature 
sequence, 6;n as the transmitted symbol of the j'h user in 
the interval [nT,(n + \)T], and c;(() as a periodic repli- 
cation of the signature sequence of the ;"' user such ili.it 

Cj(«), t 6 [nT,(n + l)T)} is the;'"1 signature sequent c for 
inv rixed integer n. Tl.en the transmitted complex scalar 
ield from the ?    laser may be expressed as 

nT< t-Tj  < (n + 1)T 
(1) 

where s is proportional to the optical energy per bit of the 
transmitting laser, v denotes the optical carrier frequency 
(assumed to be identical for all users), and B} is the phase 
offset of the j' laser from the first laser. In this expression 
Wj(t) is a standard Brownian motion, and aj is related to 

the jth transmitting laser linewidth, fly, by aj = J2xB}. 
The relative delays {r,-} are defined on (0,r) witn refer- 
ence to the receiver of the first user. With dispersion-free 
transmission (1) also represents the complex scalar field at 
the first receiver due to user j. 

We shall assume that the symbol rate of each user is 
the same, the optical fields of the K users add in a nonco- 
herent fashion, and tha* each single-user receiver acquires 
the timing of its transmitter's symbol epochs. As there 
is no cooperation between the users, it is appropriate to 
model the remaining relative delays, {ijJjLj, as indepen- 
dent, identically distributed, random variables that are uni- 
formly distributed on the interval [0,T]. It follows that the 
intensity of the optical field at the receiver of the first user 
is 

M  K 

WOP = V £*;.-!';(' -»i)w(0,r,) + *^e,(t - r;)p,(r„D 

Where Pt(o..b) a rectangular pulse of unit height with 
support («,&). Due to the modulation shown in (1), the 
resulting photon point process depends on the data 6ivo 

only on the set {«|ci(«) = 1, 0 < t < T). A commonly used 
receiver for this channel is the noncoherent matched-filter, 
which sums the photon counts in each of the nonzero chip 

subintervals of the user of interest. Given that the lunction 

ci(0 takes values on {0,1}, the correlation operation would 
be easily achieved at extremely low chip rates by an electro- 
iptiL modulator, which would allow received light to pass 

only when c\{t) — 1. A more effective device to achieve 

the matched-filtering operation at higher chip rates is the 
.liber ontic tap delay line, which uses the finite  «I ,       -      - .imt.1   »lfm.   \,ny   wem*   ni^,   "men   uo 

ilus work was Dartially supported by the U S  Army Research Office under Contract DAAL03-87-K- 
1062 and bv the U S. Office of Naval Research under Contract N00M-87.K-0054 

"o aDpear in the Proceedings of the Conference on 
nformation Sciences and Systems, Johns Hopkins University, 1989 



>r»pag.iiion velocity oflighl in achieve llie pmper n-l 

Hive delavxjf two optical signals by passing them through 
ibers of different lengths. The matched-filter direct, 

ictection receiver has been studied in several experiments 

1,2] and will be the CDMA receiver analyzed in this work 

-es i   ••condiiy 
electron 

\ «•»»'• C   inltgrat« oi> \l „„.,.«.,«-...\< 
y—ÖT\ IIT/N.».|)T>NI/1 ""«».inteter \y 

Iciirt 1. Opdcil Noncoherent Mitchcd-FIUcr CDMA R«tlv«r 

is shown in Figure 1, the total received optical signal 

it) is coupled to a lxP beam splitter. Each of the outputs 

•i the solitter arc identical copies of the input signal, only 

ittenuated in intensity by P. These signals arc input to the 

aD delay line. The function of the i'h tap is to delay the 

cccivcd field so that the optical signal in the l1'1 non-zero 

nil) of the first .signature sequence overlaps, in lime with 

nc iast (P'h) non-zero chip of the same bit interval in tlio 

inaolavcd signal.  Thus, the first tap requires more liliot 

aule than the second.  The tanped signals are IKIIKOIKT- 

•ntiv reconibined, and the output optical signal is incident 

>n tnc nhotodctcctor. To decide on tlio value of '»i,o, we 

isc tlic secondary electron count during the last non-zero 

mo interval of the first signature sequence    For the rc> 

iiamucr of this work we denote this sccond.m  electron 

omit Dv A    We shall employ a common pliotoiiiulli|ilier 

iiotiel. in which the intensity of primary elet Irons is given 

>v /-»Ir(/J|J + ;), where a is proportional to ilie ini.uitiiin 

elficicncy of the photodetector, and l3 denotes the rate ol 

primary electrons due to au independent dark current   1 he 

nth primary electron yields a random number of secondary 

(output) electrons g„, and the collection {gn} is assumed to 

be mutually independent, identically distributed, and in- 

dependent of the photon or primary electron point process 

jjj. The common probability generating function of {</„} 

is denoted as G(z) = ]T?LoPJt2*- In this case, .V is umtli- 

lionally compound Poisson given tlic intcgraied intensity, 

which we define as A, and the distribution of A' depends 

only on G(z) and tilt integrated intensity A, given !>\ 

A 
\   ^  O.S6,OW+^X>J,-I«,,I(>-,) + /I,M/>, ilV I-') 

} = i 

Y-hcre  R,,\'T) and   Rh\(r) are the normalized  lp.iiti.il) 

i IO.SS (orrelatioiiH 

nat represent the contributions to the conditional mean A 

me to the ;'* signature sequence for the duration of 6,(_i 

Jin 6.,o, respectively. Also, d represents the portion of the 

»rimary eiectron count mean due to thermoelectrons. In 

he remainder of this work we set the au an turn efficiency of 

the photodetector to unity, as this effects the distribution 

of Af only through an attenuation of intensity. Further, we 

set x = 0561,0 = 0 under hypothesis Ho and 1 = 5 under 

hypothesis Wj. 

r=nH .Derivation of V 

rn this section we obtain the general expression for the 

"MF of the secondary electron count A/-, at the integra- 
tor output for an arbitrary photomultiplier and for syn- 

chronous or asynchronous transmission. We will use this 
"csult in a later section to compare the error rates under 
•'arious simplifying approximations to the exact error rate. 

Uso. lac form of the general expression will be used in the 

iext section to develop arbitrarily tight, computationally 

'fliciciit bounds on the cumulative distribution function of 
:•/. 

in the following, we define M as the upper bound on 

ihc set of total cross-correlations R}j. + R}lki and as the 
signature sequences are from {0,1}, these bounds hold 
ior the partial cross-correlations as well. Since the rela- 
tive delays are uniformly distributed and the chip w.ive- 
101111 is rectangular, it is straightforward to show that each 
cioss-correiation is a mixed random variable whose mea- 
sures have point masses on the integers {0, 1,...,A/} and 
continuous portions that are constant between these inte- 
gers  We shall employ the following notation 

>[*,,,  = .]=!*, ;(') •6 {0.1,..., A/} 

p[",. P\itj.i e[v,v + dv) = c;(i)(/u       (w,ti + .Zti)e(i,i+1) 

and we denote the distribution of R}ii as {rf;(0),rf;(l),..., 

(/;(A/),c;(0),...,c;(Af - 1)}. Thus the marginal distri- 
bution of each cross-correlation is completely specified by 

2M parameters. Further, the superscript-T notation will 
he used to distinguish the distribution of the total cross- 

lorrclation Rhl + R}i from that of R},\, and the hat no- 
tation will be used for the distribution of RJt\. 
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Our approach to finding tin; PMF of Af is Hi«' f»llnw 
ing: we will derive the z-transform of AT from its condi- 
tional compound Poisson nature, and then sliow lli.it tin.', 
z-lransform has a particularly straightforward and explicit 
Maclaurin series expansion. Tiic PMF is the collerlioii of 

coefficients of this scries, and may be explicitly represented. 

By conditioning on (x,{ltj,i,ltj,i}, ] = 2,... A"), I lie 
count Ar has a compound Poisson distribution, whose v.- 
tiansform is given by 

E[*v|*,{/e,.,.A,,,),j = 2.    .!<)= (.1) 

A- 

e(i+d)(C(t)-l, x TT(.p{*,.-in,.i+>,/)Ä,.i}(C(=)-l) 

;=2 

Due to the mutual independence of the pairs {fi,,i. /?,,i} 
we need to determine only the expectation of each fac- 
tor in (3), as the j factor depends only on the random 
mixture b}i_iRJti + bjfiRJt\. It is clear that the random 
mixture has the same kind of distribution as R]t\, and 
we donoie this mixed distribution by (D,(0), D}(\)> 
DJ(M),CJ(0),...,CJ(M - 1)). With this notation, the 
closed form expression of the power seres of inicrcst is 

E|:y|x   =e(G,'*)-"(x+J)> (I) 

n 
£>,(?) exp(?-(G(;)-l))- 
1=0 

7      l-G(z)       E^OCXPW^)-!)-) 

r], wl Inch is Ve are interested in finding V\.V = 

lie coefficient of zn in tiie nower scries of (-1) about the 
irigin. This power scries is straightforward but uiiiicrcs- 
aniv general for most signature sequence sets of inlcrrsl 
"or example, the number of parameters in the power sp- 
ies is reduced bv a factor of A' - 1 by assuming that the 
nnrginaisof ß,|,/c;j and fi; ,i + /f;,i are independent of j, 
e . the contribution of user j to the MAI is statiMic.iily ui- 

usiniguishable from the other intcrfercrs. We have verified 
tiat tins is an excellent approximation when the signature 
enuences come irom the prime codes, and will drop the 

subscript from the distribution of the random mixtures^ i.i 
the sequel. Also, the power scries of this expression is con- 
cisely written if we define C{- 1) = C{M) = 0   Willi lliese 
"implifications, (•!) becomes 

E -• >'l ,(G(x)-l)(x+d). (">) 
M 
£D(?)C**

(G
W-'> 

5=0 

/' I M 

i 1 - G(z) ̂
iCii-D-CM),«*•-»* 

There are 2M+2 terms inside of the »races. Letting 
nq index the number of occurrences of D(q), and m? the 
number of occurences of [C(q- l)-C(?)] in a multinomial 
expansion, we rewrite (5) as 

exp[(C(z) - 1){I + d + j, £jio ?K + m,])] 
 ^-J  (o) 

(l-C(z))^«-om' 

where the outer summation is over all the indices such 

that ZqUmq + n, = A" - 1. We find the PMF of Ar in 
the following way. Suppose that we knew explicitly the 
coefficients of the following power series 

j^72»s(»j.a,/3)z »  £    ^o(C(,)-1) 

"   0-<?(*))" 
,    a 6 III.,      (7) 

Using (7) in (6) we express the PMF for M as 

I J Il,=o'V"V,=o       L 

( s M M     \ Tie «    n, {x + d + -i £ ?(n, + m,]), £ m,        (8) 
\ ?=o ?=0     / 

All that remains to be determined is an explicit expres- 

sion for the coefficients ~R.es/ of the power series in (7). In 
the following we show that Ties may be calculated by a 
lnic.tr recursion on the integers n and 0. 

"he recursion for Ties is most easily seen by substitut- 

ing the identity 

-,«(C(»)-l) e«(CW-l) ,<*(C(*)-U 

fl-C(*))*+» ~ G(Z) (1 - C(*))"+1 + (1-(?(*))" 

vUicrc /i 6 {0,1,2,.,.}, into the definition for Ties (7) 
This yields 

; 1 - p0)Zes(n + l,a,ß + 1) = £ PJ^e*(» + l-l,a,ß + D 
'=1 

!^es(»+ I.«*./?),   *>./?€ {0,1,2,...} (9) 

where G(;) = EfcoP/*'- For most pholomultiplisr models 
;>0 = 0, .vhicli we will assume in the sequel. The initial 
conditions of this recursion arc also easily extracted from 

the definition of fits, 

7^es(0,a,/3) = ^-o, ,   /? 6 {0,1,2,...} (10) 

,  n€{0,l,...}. 
n   ak t k 

The linear recursion for Ties on n and /? permits fast, ef- 
ficient computation for any arguments n,/? >  1.   Kote 
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that the second initial condition lor tin» utiiiwun il<' 

pends on V \£A=\ Si — n > which must he known for 

n,k £ {0,1,2,...}. These probabilities require iterated 
convolutions of (he PMF of the random gain ///. in.iv be 
precomputed and stored for small n and k, and inav ho 
accurately approximated online for large n,k. We are nat- 

urally interested in special cases where "P\^2i=i'jl - " 

has an explicit form - it is easy to show th.it tins i.s I he 
case for random gains that are shifted Poisson-distributed, 
as well as for the unity gain case. 

Arbitrarily Tight Bounds on PAr < n   x 

Computationally efficient bounds must reduce the coin 
plexity of (S) in both the multinomial summation and the 
computation of Ties, while controlling the loss of accuracy 
by a parameter of our selection. In this section we show 
that by quantizing the random n.ixtures, we achieve .ill 

lluee objectives, 

The complexity of the PMF is, due to the smoothing 
over the joint distribution of the random mixtures we 
onyr.ally conditioned on these random variables to lake 

advantage of the conditional compound Poisson nature of 
A'. We could have also conditioned according to the ton- 
ditioual mean. A, for which Af is also compound Pois<.ou 

If juever, the exact disturbution of the conditional mean A 
is not easily obtained, as it is formed by the convolution 
of A' - 1 mixed distributions. It is obvious that if the con- 

volved distributions weiediscrete,say, with QM+l points, 
then the exact distribution of A' would be straightforwaid 
to compute. More importantly, the distribution of A would 

'ake on (A' - l)QM + I points, rather than a number lli.it 
!•> exponential in the number of intorferers. 

But how do we obtain bounds on PLV < n\x\ that use 

.1 discrete distribution on A, and are arbitrarily tight'.' .Sup- 
pose we quantize the random mixtures {6;,_ ] RJti +i;U ft;j} 
with a ^ quantization step size, Q 6 {1,2,...}, and round- 
up or round-down to form bounds on the random mixtures 
That is, we form A;,A„ given bv 

A, = x r d-r ~ £ ft,,., ~[QH, ,J + b,.An>ll, , i 

where [R\ ([R]) is the grc-aioM (least) nitegei fuiiciiou 

of R I'lien it is obvious that A, < A < A„, l>ul <.ui we 
use A„,A( to form bounds on the secondary elerlion <o<<nl 
fDF' 

A subtle point is raised by considering the fo/in of A" 

n(A) 
MA, = x: 9p 

where 11(A) is the conditionally Poisson number of pri- 
mary electrons with conditional mean A. Since gp are 
non-negative, we have that A" is an increasing function 

of the primary electron count, II. It is not clear that 
(a.s.) bounds on A produce similar bounds on il(A), as 

V n(A|) > 11(A) \x\ > 0, and this representation of A" 

does not guarantee bounds on V\M < n i . In the lemma 

below we use a statistically equivalent representation of/V 

to show that we may achieve bounds on PW < n x by 

using the distributions of A|,A„. 

Lemma. Let 11(A) be a conditional Poisson random 

variable with mean A given A, and let AT,A) = £t=i »l» 
aheie {<7A} are independent, identically distributed, non- 

negative integer-valued random variables. Let A' < A, a.s. 

Then 

pf/V(A)< n| <vW(A')<n , n >0. 

Proof.     We recall that Pt   =   v\g}   =   k ,  and de- 

linc {Mt(A'pk), Ih(Apt)} to he a set of conditionally 
mutually-independent, Poisson random variables with the 

indicated means given (A, A') so that 11(A) = ICisl 1U(AJ>IJ 

Under this conditioning, Af(A) has the same distribution 

A/-(.\) = £ *nt(Apt) 
1=1 

it is straightforward to show that if {A';,A2,V^.l'i} are 
conditionally mutually-independent random variables given 

A, A' and 

p\xt < «IA.A'I <vWt <n|A,A'l ,   1= 1,2 

then the same is true lor the sum 

P|A'I + X2 < n I A, A'] < V\YX + Y2 < n j A, A'j. 

Since the Poisson CDF is a decreasing function of the moan, 
we have for / = I 

r / i      1      r ' 
n £ UWApit) < n A. A'   < 7>n^tAfjtfA'pjt) < n 

Us»! I J ^k=l 

The same is tri'e for the unconditioned CDFs by smooth- 

ing. The same holds for finite / by induction on the above 
fact, and for / -• 00 by monotone sequential continuity of 

the probability measure* 

A. A' 



Rxninpl«*: Prim«; Sequences mid PIN PIiolo<li<xlcs 

A necessary prerequisite to the comparison between er- 
ror rates of the CDMA matched-filter receiver is the com- 
putation of the random mixture distribution (/?(())  

0(jl/),C(O),...,C(,W-l)),assccnin (3). These arc coin- 
puted by a knowledge of the signature sequences, a.-. well 
as the distribution of the relative delay. Since the cioss- 
correlations of prime sequences are bounded above in [,r>] 

M = 2, we must compute (£>(0),£(1),£(2),C(0),C(1)) 
for the chip-synchronous, and asynchronous cases. For I he 
prime sequences from GFpl), we have found thai ilie av- 
eragc distributions for the random mixtures are 

(D(0),D(l),D(2),C(0),C(\)) 

chip synchronous => (.57, .36, .07, .00, .00) 

asynchronous  => ( M, .22, .01, 2-1, .00) 

As noted earlier, we have verified that the MAI for prime 
sequences is well-modeled by a sum of independent, ideniicnllv 
distributed (IID) random variables in the v ».se that the 
mean, variance, and third central moment ol 'lie MAI us- 
•ng the IID assumption and the average di.sinluition were 

identical to the exact MAI moments, while tin fourth ieii- 

'ral moments differed b\ less than .004% for 29 intcrfcrers. 
Further, these distributions did not differ significantly for 

the prime sequences fioin G1'(I I) .ind (•'!''( 17), and "< use 
11,esc distributions for all r.ilrulations 

In Figure 2 we have plotted the minimum error prob 

ability of the matched-filter CDMA receiver for the chip- 

-vudironoiis assumption and for completely asynchronous, 
transmission. We have used the weight 17 and length .'*'• 

pume sequences from GF(I7), a received optical energy of 
. = 1000 photons per bit, and a dark current conlrihiiiior 
» d = .">0 thcrmoelcctrons oer bit.  For a bit rale of it bits 
er second, these numbers correspond to a peak received 

<mver oi R I0_7mH' and a photodetector daik ciinout 
" approximately R   10-8n/t   From Figure 2 we see that 

i Uns Darticular case the chip svnehronous approxmialiu'i 
iDper oounds the error rate in the as>nchruiioiis case In 
i least one order of magnitude 

"he error rates are ordered in this way due cxiliisuelv 

o the differences of the distiibulious of the i.indoui nn\ 
lies shown above. Note that the means of tli landoin 

,.\!ures are identical in both cases, while the uidemm. uf 
'ic variances coincides with that of the error rates. Tim» 
'.i. MAI has identical means under these distribution*, ami 
•ton« moments uhose ordering coincides with th.il of ill. 

rror rates It is easv to .show that clA'lij = .\. and 
'«r^Vli) = Ä - (A)3 + A-, wi ich implies   hat under IM. II 

hypothesis on x the mean of M is unchanged by the approx- 
imation of chip synchronism, yet the variance of A/" given 
x increases as we proceed from complete asynchronisin to 
chip-synchronism. From the ordering of the minimum er- 
ror rate curves in Figure 2, we see that an increase in the 
variance of A/- under each hypothesis results in an increased 
uror rate as the conditional means of M are fixed. 

Dirk CurrcnlMiia: JO «iKlroni ptr Ml 
Opllcil Cn«r|v : 1MÖ pVtfan p*r hit 
Signature Stqucnc«* From CHI?) 

Chip S jTKhrort. 
Traiumllil 

Fljure i ComplrUon oflh« Minimum Error Ril« For Compltlt 
Asynchron Um UKJ Chip Synchronouj Apprmlmitlon 

Direct detection systems often require large received 
optical energies to achieve an acceptable error rate when a 
PIN photodiode is used, so we are interested in the asymp- 
totic distribution of (a scaled version of) A/". The question 

is more formally worded as: if A/-is a conditionally-Poi.isor 
random variable with mean A given A, and &f£- tena 
in distribution to a random variable <j> as some paramete.i 

grows without bound, what does the distribution of ~j 
tend to? In the simple case when A is deterministic, it is 

well known that the normalized count converges in distri- 
bution to a standard Gaussian random variable. Is this the 

-ase in general? 

The answer was solved independently by Serfozo [6] 
and Grandell [7] for the special case when Ä —> co, and 
depends on the limit p defined as WmoljK. If p =0. 
then the normalized count converges in distribution to a 
standard Gaussian. If p = oo, then the normalized count 
converges in distribution to <j>. Finally, if 0 < p < co, 
then the normalized count converges in distribution to an 

independint mixture of a standard Gaussian and <f>, 

'n on. case, the parameter is the received signal en- 
ergy per bit, s, and the condition Ä -• co is satisfied at, 

\ is proportional to s. It is this fact that also sets p to 

-o, and wo have from the result above that for large signal 

rncigies the normalized count converges in distribution to 
the scaled conditional mean <$>. This asymptotic result is a 
iveahe. form of whit is more commonly known as "perfect 

uptua'-to-electrical conversion", in which the integrated 
pliotocurrent is equal (a.s.) to the integrated optical in- 
tensity   It will be seen in the numerical results presented 
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terministic signal in Gaussian noise, as the MAI is f.ir from 

Gaussian even for a moderate number of users. 
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In Figure 3 we have compared the minimum error 

rates of the CDMA matched-filter receiver based on per- 

fect optical-to-electrical conversion (the high energy limit) 

to those for the true distribution of A/" at various finite op- 

tical energies. In this example we have used the prime se- 

quence from GF(ll). Also, we have plotted the minimum 

error rate under the additional assumption of Gaussian- 

distributed MAI. We note that even for modest received 

optical energies of 10,000 photons per bit the error rate 

exceeds that predicted by the asymptotic distribution by 

at least an order of magnitude. Figure 3 shows that the 

minimum error rate is a decreasing function of the received 

optical energy, as expected. Further, we note that a Gans- 

=ian assumotion on the MAI, together with the perfect 

)Diical-to-electrical assumptions is a poor estimate of the 

rue minimum error rate curve, except for user group sizes 

!\ceeaing, say, 10 users. In particular, this assumption 

"verestmiales the error rate for moderate to lari;u incident 
iDiical energies. 

is a result of the nerfect optical-to-clectrical-conversion 

-oproximation, the boundedness of the MAI leads to an 

'Tror-free" condition for sufficiently small numbers of in- 

erferers. This occurs since the supports of the conditional * 

listributions of the test statistic are disioint under these as- 

sumptions. Since prime sequences have cross-correlations 

that are bounded above by 2, the necessary condition for 

prime sequences is K - 1 < P/2. This assumption pre- 

dicts zero error rate for K < 6 in Figure 3, which indicates 

that the perfect optical-to-electrical assumption accurately 

predicts the "error-free condition" only for incident optical 

•nerves exceeding 10,000 photons per bit - the error rate 

or K=6 at this eneriy is roughs I0_M. 

n Figure <l we have plotted the optimal tliroshohk. 

lormaiized by the signal energy, s, for those enoi rate 

i urvoK plotted in Figuru 3. A« tho iiic'ulunl optical en- 

ergy per bit increases, the normalized optimal threshold 

increases to unity, which is the curve corresponding to 

the asymptotically optimal test. Note that the Gaussian 

MAI, perfect optical-to-electrical approximation predicts a 

threshold that significantly underestimates the true opti- 

mal threshold for those incident optical energies needed to 

dominate the dark current. 

»udMttllHn * 
Flgnx« 4. Optimal Thrtuhold» For Xh% Untchtd-TOttr 
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Observe that the asymptotic test yields a more accu- 
rate estimate of the optimal threshold for moderate signal 
energies. Optimal thresholds for large incident optical en- 
ergies are not plotted for the "error-free" region because 
they could not be reliably determined due to the vanishing 
error rate. 
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Abstract 
The optimal signal design problem for a band-limited 

PAM symbol-synchronous Gaussian two-user multiple-access 
channel is investigated. Using the root-mean-square and the 
fractional out-of-band energy bandwidth definitions, we find 
the capacity region of the channel and the signature waveforms 
to achieve each point inside the capacity region. The optimal 
pair of signature waveforms are minor images of each other, 
and are obtained by minimizing their cross-correlation sub- 
ject to a fixed finite duration and the bandwidth constraint. 
The two-user capacity region, in the rms case, is found to con- 
tain the capacity region of the two-user strictly band-limited 
Gaussian channel. This demonstrates the fact that by relaxing 
constraints in the frequency domain, we can introduce struc- 
ture (PAM) in the time domain and obtain a larger capacity 
region. 

1. Introduction 

The capacity region of ths 
sian multiple-access channel 

two-user discrete-time Gaus- 

y, = xu + I2I + ni 

where n, is an i.i.d. Gaussian sequence with variance equal to 
a2 and the energy of each codeword is constrained to satisfy 

1   " 4, <   wk       fc = l,2 

is equal to the Cover-Wyner pentagon [l], [2]: 

CD ={(Äi,Äa) 

0<Äi<£log[l + ^] 
0<A2<ilog[l+^] 

ßi + Ä2<^l=gU+H^22] 
(1) 

in information units per channel use. Analogously, the capac- 
ity region of the continuous-time band-limited channel with 
noise power spectral density, bandwidth and k%* user signal 
power equal to a2, B, and S* respectively, is given by [2], a* 
(in units per second) 

Cc 

0<Ri<B\odl + $g) 

(Äi,Ä2):0<ÄJ<Slog(l+ Jfe] 

Äj + Ä2< *Iog(l t^lj 

(2) 

This capacity regioj is achieved by approximately band- 
limited and approximately time limited waveform« which have 
no particular structure. In order to deal with modulation and 
demodulation schemes with manageable complexity, it is cus- 
tomary .u digital communications to introduce structure on 
the transmitted waveforms by slotting the time domain into 
intervals of length T and sending a symbol in each slot by 
means of a digital modulation format such as PAM, PSK, 

This work was partially supported by the office of Naval 
Research under Contract N00014-87-K-0054 

FSK, etc. In the case of PAM (Pulse Amplitude Modulation), 
the ktb user is assigned a fixed deterministic waveform, Si(t). 
which is time-limited to [0, T] and is modulated by the in- 
formation stream. Then, assuming that the transmitters are 
symbol-synchronous, the PAM two-user multiple-access chan- 
nel becomes 

n 

JKO = £ *i(0*i(« - iT) + 6a(i)ja(t - xT) + n(t)    (3) 
1=1 

where n(t) is white Gaussian noise with spectral density a- 
and {bk(i)} is the symbol stream transmitted by the k1^ user 
Assuming that, without loss of generality, the signature wave- 
forms have unit energy, the energy constraints on the trans- 
mitted waveforms become 

£l>2(0 < »t = TSk k= 1,2 (4) 

CV = (5a) 

CV = • 

It is easy to show that if s\(t) = S2(')> then the capac- 
ity of (3) under constraints (4) is equal to the Cover-Wyner 
pentagon (1) (this result remains true even if the users are 
completely asynchronous [3].; If the signature waveforms are 
not necessarily identical, then the Cover-Wyner pentagon gen- 
eralizes to [4] 

0<Ai<*log[l + ^] 
,„   fi,.0<Ä2< 2-108(1 + ^] 
(KuK2)- Rl + R2< Uog[l+ **$*+ 

ÄRW2)] 

in information units per channel use or 

0<Ai< A-logU+^-l 

(M2):
0-Ä2-^,1OgU+%U Utl* K2>   ft + R2 < fr log[l + UripL+ 

^(W2)] 
(5b) 

in informatioL units per second, where p = $ »\{t)s2{t)dt is 
the cross-correlation between the signature waveforms. 

A natural.question to address is the choice of the unit- 
energy waveforms »\{t) and $2(0 to maximize the capacity 
region Cy. It is clear that the unconstrained solution is to 
choose orthogonal signature waveforms. Then, p = 0, and the 
multiple-access channel is decoupled into independent single- 
user channels, and each transmitter can transmit at single-user 
capacity. However, in practice, there are constraints on the 
choice of the signals (e.g. in Spread Spectrum CDMA systems, 
the waveforms may be constrained to be Pseudo Noise shift 
register sequences of given period,) and it is not always possi 
ble to assign orthogonal waveforms for all users. In this paper, 
we will address the optimization of the signature waveforms 
and their duration T under bandwidth constraints. Since the 
signature waveforms are strictly time-limited, they cannot be 
strictly band-limited, and the need arises to quantify the band- 
width of these signals. There are several established ways to 
accomplish this [5]. In this paper, we will consider the two 
bandwidth measures of baseband signals that have received 
most attention from the information theoretic community: the 

w 
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root mean square (rms) bandwidth and the fractional out-of- 
band energy (fobe) bandwidth. 

The rms bandwidth was popularized by Gabor [6] (it is 
sometimes referred to as Gabor bandwidth) and studied sub- 
sequently in (5], (7], and [8]. A finite-energy signal s(t) has 
rms bandwidth B if its Fourier transform S(f) satisfies 

SZof2\SU)\2df 
/r„i5(/)p<i/ = B* (6) 

i.e. the rms bandwidth is the square root of the "second mo- 
ment" of the energy spectral density (|5(/)|2) of the normal- 
ized signal or. proportional to the square root of the energy 
of its derivative, 

1     1%XUtä* 
(2T)2   £SOJ2(0* 

fl2 
(7) 

The fobe bandwidth has been used in e.g.[5], [8] and is 
defined as the bandwidth necessary to encompass a given frac- 
tion (say a) of the signal energy, i.e. the a-fobe bandwidth is 
B if 

rB „ ta> 
(8) [    \S(f)\2df = af     \S(f)\2df 

J-B J-co 

Notice that the bandwidth constraints imposed on the 
signature waveforms will be inherited by the transmitted sig- 
nals because, as is well known [9], the power spectral density 
of £, M')•**(' — iT - r) where r is uniformly distributed in 
[0,T] and {Äjt(<)} is an i.i.d. sequence, is a scaled version of 
the energy spectral density |5i(/)|2. 

2. Single-user Channel 

Before solving for the capacity region of the PAM 
multiple-access channel under bandwidth constraints, it is en- 
lightening to examine the PAM single-user channel with con- 
s rained rms bandwidth. This channel differs from the classi- 
cal band-limited Gaussian channel in that the allowable trans- 
mitted signals 1) have much more structure (PAM) and 2) are 
rms band-limited but not strictly band-limited. It turns out 
that the effect of the laxer bandwidth measure cancels the ef- 
fect of the additional structure imposed on the transmitted 
signals in the time domain, and the capacity of the channel is 
given by the celebrated Shannon formula [10]. 

Theorem 2.1. 
The capacity of the single-user PAM white Gaussian chan- 

nel with noise power spectral density, rms bandwidth and sig- 
nal power equal to «r2, B, and S respectively is given by (in 
units per second) 

C5 =  Slog(l + ^l (9) 

Proof. 
The single-user PAM white Gaussian channel is a special 

case of (3): 

y(t) = 52b(i)3(t-iT) + n(t) (10) 

Assuming that, without loss of generality, s(t) has unit energy, 
the power constraint becomes 

I £>'(,•) < TS (11) 
i=l 

and the T-shifts of s(t), {s(t - iT)}[Lj, form an orthonormal 
set. The projections of y(t) on this orthonormal set are equal 

JxT 
y(0=L        y{t)t{t-iT)dt   iri n      (12) 

JiT 

or, substituting y{t) from (10), 

y(») = 6(«)+n(«) (13) 

where {n(t)} is an i.i.d. Gaussian sequence with variance equal 
to a1. 

The important point to note is that {y(»)}JL1 are suffi- 
cient statistics for the transmitted messages; therefore, the 
capacity of the PAM channel (10) for a fix T coincides with 
the capacity of the discrete time memoryless channel (13) with 
constraint (ll), which is given by (e.g. (11]) (in units per sec- 
ond) 

1 ST 
(14) 

Since C$(T) is monotonically decreasing in T, the ca- 
pacity is maximized by minimizing T. However, due to the 
rms bandwidth constraint, the value of T cannot be arbitrar- 

ily small. Using the fact that the set {\/f sin(^)}^i is a 
complete orthonormal set in the space of all rms band-limited 
signals in (0, T] [7], we can express s(t), as 

*(0 = E<W£sin(^) (is) 
i=i 

Then, the unit energy assumption and t) e constraint in the 
rms bandwidth (7) translate into 

and 

ml 

£i2<f2<(2/?T)2 

i=l 

(16) 

(17) 

respectively. 
The minimum T consistent with (16) and (17) is chosen 

by taking equality in (17) and minimizing (he left hand side 
of (17) subject to (16). Since 

i = £<*2<I>2 

i=l :=1 

(18) 

with equality if and only if dj = 1 and <f,- = 0 if 1 < i, it follows 
that the optimum T is equal to j^ which upon substitution 
in (14) results in the desired result. | 

3. Two-user Channel 

We turn our attention to the main results of the paper, 
namely the optimization of the capacity region of the syn- 
chronous PAM channel (5b) with respect to the choice of the 
signature waveforms, including their duration T. In both the 
rms and the fobe bandwidth constrained problems, we will 
solve the problem in two stages: 
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1. Fix T, and find p'(TB), the minimum absolute cross- 
conelation, |p|, achievable under the time-bandwidth con- 
straint (and the optimal waveforms which achieve that p.) 
Then, the capacity region for fixed T is given by Cy in 
(5b) evaluated at p = p*(TB). This is because Cy de- 
pends on the signature waveforms only through the rate- 
sum constraint which is monotonic decreasing in p. 

2. Take the union of the capacity regions found in the first 
stage over all T. Note that there is a minimum vaiue of T 
below which the time-bandwidth product is so small that 
no waveform can be found to satisfy the bandwidth con- 
straint and therefore, the capacity region is an empty set. 
Also, there is a maximum value of T above which the al- 
lowed time-band width product is so large that orthogonal 
signals can be assigned to both users, and therefore the 
capacity region decreases with T beyond that maximum 
value of T. 

Theorem 3.1. 
If TB > 0.5, then the minimum cross-correlation, 

pUTB), between any two unit-energy signals of duration T 
and rms bandwidth less than or equal to B is 

o'G{TB) = max{0,i[5-8CTB)2]} 

and is achieved by the signature waveforms 

, .      ll+pUTB) .   Tt ,   /l - Ph(TB) .  2xt 
»i(0 = y—ilf—L^ f + \j—T—sin y 

, v      ll + pUTB) .   xt      jl-pUTB) .  2xt 
»a(0 = y—^f-^MT-y f smy- 
IfTB < 0.5, then there exists no signal of duration T and 

rms bandwidth less than or equal to B. 

Proof. 

If TB < 0.5, we have seen in the proof of Theorem 2.1, 
that there is no signal of duration T and rms bandwidth less 
than or equal to B. 

If TB = 0.5, we have seen that there is only one signal of 
duration T and rms bandwidth B and is yj$ sin ^, t g [0,T\. 
Therefore, the theorem follows immediately when TB = 0.5. 

If TB > 0.5, let 3i (0, .»2(0 be any two unit-energy sig- 
nals with duration T and rms bandwidth B. Using the same 
complete orthonormal set in the last theorem, we denote the 

vector M(t)   =   (^fsin^), yßsin(if),.. ]T, t 6 [0,7], 
and express s\(t) and sj(t) as 

3t(0 = «kM(t)   Jt = l,2 (19) 

Then, the rmi bandwidth constraint can be expressed, via (7), 
as 

(2*)2 

where II = diag[l2,22,32,...]. Denoting p as the cross- 
correlation, we can assume that, without loss of generality, 
0 < p. From the unit energy assumption, we have the cross- 
correlation matrix, H, as 

H = AAa *ß]i«.'-!;!]   w 

Since the mapping between st(t) and «^ is an one-to-one map- 
ping, the problem is equivalent to finding the minimum p such 
that there exists A satisfying (20) and (21). 

We solve this problem by first giving a lower bound on 
the cross-correlation and then showing that the lower bound 
is achievable. Let Ba be the minimum of the sum of the 
rms bandwidth of M equal energy signals of duration T and 
correlation matrix, H. B0 is found by Nuttall [7], as 

Bl = 
{2TfMfr[ crX><2 

(22) 

where each pi is the positive eigenvalue of H with ft, < p.: for 
j < t, and r is the tank of H. 

Appling this result with M = 2, r = 2 (since s\{t) £ s->[t) 
implies p j4 1) and the correlation matrix H in (21), we'eet 
from (20) and (22) that 

2(2T) ?
((l+p) + 4(l-p)j <B2 

(23) 

where it can be easily verified that 1 + p and 1 - p are eigen- 
values of Hin (21). 

After rearrangement, (23) become» 

i[5-8(rs)2]<p (24) 

Since si(t) and 3i(t) are arbitrarily chosen, and p belongs to 
[0, l], we have the lower bound, 

max {o, i[5-8(TB)2)| <p'G(TB) 

We now show a signal pair that achieves this lower bound. 
Stimulated by the fact that the functions /(<) and f{T -1) 
have the same magnitude spectrum, we consider signature 
waveforms which are mirror images of each other about T/2. 
Also, we note that sin ?• is even about T/2 while sin 2f£ is 
odd about T/2. Therefore, we assume that the matrix A has 
the form 

A-[a   ->/T=7F   0   ...j (25) 

for some 0 < o < 1. 
From  (20),   the   rms  bandwidth  constraint  becomes 

sß^Z < a.   ff we let a = yBpE and substi. 
tute (25) into (21), we have p = 2a2 - 1 = S~S{JB)\ If 

5=S!p£ < o, yÖpE <} and we can let a = * which 
give* p = 2a2 -1=0. Therefore, we have shown that the 
lower bound is achievable by signature waveforms character- 

ized by the matrix A in (25), with a = ^/.1+<>*jTg), Then, 
(19) results in the optimal signature waveforms stated in the 
theorem. • 

Theorem 3.2. 

The capacity region of the two-user PAM white Gaussian 
multiple-access channel with noise power spectral density, rms 
bandwidth and signal powers equal to a2, B, Si and S2, re- 
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spectively, is given by 

0<A,<flogll + $fc] 

0<Ä2<flog[l + ^] 

(26) 

Proof. 

Recall that the capacity region, CQ, is the union of C\r 
in (5b) evaluated at p*{TB) over T. We proceed to find the 
range of T of interest. From the last theorem, if TB < 0.5, no 
signature waveforms can be found to satisfy the constraints 

and the capacity region is an empty set. Also, if TB > \/§, 
P*(TB) = 0, and the capacity region for fixed T is a pentagon 
which is monotonic decreasing in T. Therefore, the range of 
T in interest is the interval [^, js\f\\. Denoting 1TB by 7, 
and substituting 7 into Cy in (5b), we have, after taking the 
union, CQ in the theorem. 1 

At a first glance, it seems that there is a conflict with 
Theorem 2.1 since the total capacity of CQ is larger than 
the single-user capacity of an nns band-limited channel with 
power constraint Si + S2. However, the signal transmitted 
over the channel in the two-user case is a sum of two PAM 
signals and, in general, it is no longer a PAM signal since the 
signals in different time slots need not have the same shape. 

Figure 1 shows the capacity region of the nns band-limited 
PAM two-user channel, CQ and the strictly band-limited two- 
user channel, CQ- In contrast to the single-user case where 
they coincide, CQ is a subset of CQ. It can also be seen 
from (26) and (2) that CQ is the pentagon inside the union 
in (26) when 7 = 1. However, by increasing 7, we trade off 
the decrease in the single-user rate by the increase in the rate 
sum, such that the union gives a larger capacity region, CQ. 
This indicates that, in the two-user case, the laxer bandwidth 
constraint more than offsets the additional structure (PAM) 
in the time domain. 

Figure 2 and 3 show the signature waveforms which 
achieve the boundary points of the capacity region for two 
different time-bandwidth products. The signature waveforms 
are minor images of each other and as 7 increases, they be- 
come more asymmetric so as to decrease the cross-correlation 
while maintaining the same rms bandwidth. 

Finally, although the union in Theorem 3.2 is taken over 

7 in the interval [1, W§], not every 7 in that interval achieves 
some boundary points of CQ. The set of values of 7 that 
achieves boundary points of CQ is & function of the signal- 
to-noise ratios, , j«, k = 1,2. According to Figure 1, the 
boundary points in the segments AB and EF are achieved by 
7=1, while those in the segment CD are achieved by some 

7max in [1, \]§] depending on the signal-to-noise ratio«. The 
boundary points in BC and DE are achieved by 1 < 7 < 7m4X. 

We now proceed to the optimal signal design problem 
under a-fobe bandwidth constraint. Denote the prolate 
spheroidal wave functions ( [12], [13], and [14]) at rj),(TB,t) 
and the associated eigenvalues as X,(TB), i.e. 

\,{TB)UTB,t) = J'    *,(TB,r) sin[2xr5(t - r)] 
dr 

for i = 0,1,2,. 

*(r-r) 

and X0(TB) >  X\(TB) >  X2(TB) 

•••.   It is known [8] that t!>0(TB,j> - i) and 0i(2\B,f - 
j) are even and odd  about   £  respectively and  the set 

\JX\TB)^TB'T ~ j)| forms a comPlete orthonormal set 
in [0,T]. Also, A0(T5) and X0(TB) + X^TB) are continuous 
and monotonic increasing in TB (Figure 4). 

Theorem 3.3. 

For any 0 < a < 1, 
If TB > Ag (a), lAen the minimum cross-correlation, 

p*p(TB), between any two unit-energy signals of duration T, 
and a-fobe bandwidth less than or equal to B is 

»•rrm-n,«/n  *°-MTB)-X^TB)} Mr*)-max (0,      XQ(TB)_XI(TB)    ) 

and is achieved by the signature waveforms 

" *i(0 = 

/W*•.*-J, + «^Wr*i-i) 
*a(0 = 
\ll4äfifr*VB, f - J) - f-£$$MTB, f - J, 

IfTB < Xg1(a), then there eztsts no signal of duration 
T and a-fobe bandwidth less than or equal to B. 

Proof. 
As in Theorem 3.1, we would like to find a suitable com- 

plete orthonormal set in [0, T]. To that end, we rewrite the 
definition of a-fobe bandwidth as 

a < j*g\S(f)\2df 

= j   j   ^t)s(r)f    ^^-^dfdtdr 

Since the prolate spheroidal wave functions are eigenfunctions 
of the kernel 2T5sinc(t - r), a good choice for the complete 
orthonormal set will be the set of all prolate spheroidal wave 
functions. 

For notational convenience, we will drop the explicit de- 
pendence on TB of the eigenvalues of the prolate spheroidal 
wave functions. If TB > Ag'(a), we can express any s\(t) and 
s2(t) in terms of *(i) = [-^-MTB, f - }), ^i(TB, f - 

£),...], 1 6 [0,T], a» 

j4(i) = •£*(')   *=1,2 (28) 

Using (27) and (28), we have 

<* < /     |S(/)|2 V = «k A»k = tr(Aaka£)       Jfe = 1,2 
J-B 

(29) 
where A = diag[Ao, Ai, A2,...]. Also, the cross-correlation 
matrix, H, is 

H = AAr = 
*2 J 

l«l«2] = 
1 

IP 
(30) 



Similar to the rms case, we find the lower bound by maximiz- 
ing the average over k = 1,2 of the right hand side of (29). 
Rewriting the average, we have 

iX>£Arak = itr(AArA) 

= -tr(APASAPA) 

= jtr(SApjAPA) (31) 

where A^A is diagonalized by the orthonormal matrix, PA> 
and SA = diag[;i ft 0 ...]. Since the eigenvalues of 
AAr and ArA are the same, we have £i = 1 + p and £2 = 
1-p. 

Now, let's denote P as the 2xoo matrix formed by taking 
only the first two rows of P^, and 2 as diag[£ 1 ft ]• Then, 
the maximum of the average is 

max    tr(SPAPr) (32) 

We will solve the maximization problem using the Lagrange 
multiplier method. We form the Lagrangian, 

2 2    k 

T, f*Pk APk + £ £ *Wfc(PkPn ~ *»*) (33) 
i=l i=ln=l 

where p£ is the k,k row of P. Taking derivative with respect 
to pjt, we have 

?lApi + zuPi + 2zi2P2 = 0 (34) 

and 
ftAp2 + Z22PJ + 2zi2Pi = 0 (35) 

If we pre-multiply (34) by p£ and (35) by pi, we have zn = 
0 since ft yf ft; therefore, from (34) and (35), pi and pj 
are eigenvectors of A. Since A is diagonal and the diagonal 
elements are distinct and decreasing down the diagonal axis, 
we have 

P = [l2x3    01 (36) 
Substituting back into (31), we show that the maximum value 
of (31) is Ao^ + X\^. Comparing to (29), we have 

a<5[(Ao + A,) + p(Ao-A,)l 

or, together with 0 < p < 1, 

. /     2a-A0-An 
^n"t°'      A.-A,     } 

The achievability of the lower bound can be verified, as 
in the rms case, by letting 

A = (37) 

which corresponds to the optimal set of signals stated in the 
theorem. 

The proof of the second part of the theorem (TB < 
Ajj (a)) can be found in [13, p.54). 

Theorem 3.4. 

The capacity region of the two-user PAM white Gaussian 
multiple-access channel with noise power spectral density, a- 
fobe bandwidth and signal powers equal to a1, B, S\, and S*, 
respectively, is given by 

CF = 

U 

0<Äi<flog[l+|^l 

(Ä,,Ä2) 
0<Ä2<fl°g[l + 5f%l 

Äl + Ä2<flog[l+<4£§i2+ 

where a = A0(^) =   J[A0(2^) + Ai(Z=£i)]. 

Proof. 

The proof is very similar to that in Theorem 3.2 where 
7 = 2TB. The lower limit of 7 is carried over from Theorem 
3.3, while 7m„ is the smallest 7 such that pj-(|) = 0. | 

Notice that the range of 7 in taking the union is only a 
function of a. In Figure 4, we show \Q(TB) and j[Ao(rB) + 
Ai(7\ö)| vs the time-bandwidth product, and 7min and imtx 
can be obtained directly from the figure. Also, Figure 5 
shows the capacity region, Cf, with the capacity region of 
the strictly band-Limited channel, CQ- Similar comments to 
those we made in the rms case apply to the values of 7 that 
achieve the boundary points in the capacity region. However, 
we see that for sufficiently high a, Cp does not contain Cc in 
contrast to the rms case. 

Finally, in Figure 6, we show the signature waveforms 
which are, as expected, mirror images of each other. However, 
in contrast to the rms case where the signature waveforms 
must be zero at the end points to have finite rms bandwidth, 
the transmitted signal waveform in the a-fobe case may have 
jumps at t = xT. 
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ABSTRACT 

Jontinuous-time additive white Gaussian noise channels with strictly time-limited and 

root mean square (RMS) bandlimited inputs are studied. RMS bandwidth is equal to the 

normalized second moment of the spectrum, which has proved to be a useful and analytically 

tractable measure of the bandwidth of strictly time-limited waveforms. 

WP "id the Total Capacity (TC) of the JT-user channel under total power and pcwer- 

weig^c-i average RMS bandwidth constraints. A lower bound to the TC under equal-power 

constraint is obtained. Total Capacity Ratio (TCR) is defined as the ratio of the ÜT-user TC 

to K times the single-user capacity. Power (Bandwidth) efficiency is defined as the ratio of the 

effective power (bandwidth) to the actual power (bandwidth). The effective power (bandwidth) 

is the corresponding power (bandwidth) needed for a single user channel to achieve the same 

capacity. We find lower bounds to the TCR and efficiencies which indicate that savings in 

bandwidth compared to the FDMA scheme can be achieved by the CDMA scheme at the 

expense of more complicated decoding hardware. 

1. INTRODUCTION 

In this paper, we deal with the continuous-time Pulse Amplitude Modulation (PAM) Gaus- 

sian multiple-access channel (MAC). Each user is assigned a fixed deterministic continuous-time 

signature waveform, .Sfc(t), which is time-limited to [0,T] and is modulated linearly by the in- 

formation stream. Assuming that the transmitters are symbol-synchronous, the channel can 

be expressed as 

t=l Jfe=l 

where n(t) is white Gaussian noise with spectral density, ^ and {b^i)} is the symbol stream 

transmitted by the k• user. 

The capacity region of this channel has been found by Verdu [1] [2]. Denoting W and H 

as the diagonal matrix with the users' powers as its diagonal entries, and the cross-correlation 

matrix of the normalized signature waveforms, respectively, the capacity region is expressed as 

CV= |(Äi,Äa,...,Äjr): EÄ;^^1°g[det(Im + ^w^H^]   VJc{l,...,*}! 

•2) 
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vnere AT is the |j|x|J\ matrix formed by the jttx row and column of A for all j €~77~ItTs 

lear that, without other constraints, the capacity region is maximized by orthogonal signature 

-vavetorms. However, under bandwidth constraints, orthogonal signature waveforms are not 

lecessaniv optimal since orthogonality can only be achieved by lowering the symbol rate, 1/T. 

"here are manv different bandwidth definitions [3]. In this paper, we concentrate on the 

root mean square (RMS) bandwidth because it is analytically tractable andean be applied to 

strictly time-limited signals. The RMS bandwidth was introduced by Gabor [4] and studied 

subsequently in [3], [5] and [6].   It is the square root of the second moment of the energy 

spectral density (jSjfe(/)l2) of the normalized signal which is proportional to the square root of 

the energy of its derivative. 

In the two-user case, the capacity region of the RMS bandlimited PAM channel has been 

found in [7] and the total capacity (the maximum rate sum over the capacity region) is larger 

than the single-user capacity with the power equal to the sum of the users' powers. The gain 

in the total capacity from the single-user to the two-user case can be explained by the increase 

in the dimensionality of the signal set. We can consider the transmitted signal in a symbol 

interval as a signal drawn from a signal set. Then, the signal set-in the single-user and the 

two-user case are one-dimensional and two-dimensional, respectively. From this viewpoint, it 

is easy to see that the total capacity increases as the number of users increases while the total 

power remains constant. 

In this paper, we find the total capacity (TC) of the üf-user channel under the total power 

constraint 

tr(W) <  W (3) 

and the power-weighted averaged RMS bandwidth constraint 

^E%/7l«/lf«<^ (4) 
The power constraint is placed on the total power instead of the individual power since the later 

requires finding all possible sets of eigenvalues of a positive definite matrix with fixed diagonal 

entries which is, in general, iniractable. The bandwidth constraint is justified because the 

power-weighted average RMS bandwidth is the RMS bandwidth of the power spectral density 

of the transmitted signal. 

Several performance measures, Total Capacity Ratio, Power efficiency and Bandwidth 

efficiency, are defined and analyzed. Bounds and limiting values of these measures are also 

obtained. 

2. TOTAL CAPACITY 

Theorem 2.1. 

The Total Capacity of the K-user RMS bandlimited PAM Gaussian MAC with total power 

ma vower-weighted average RMS bandwidth constraints is 

B   N ) rtCf B, K, A) = max { - £ log[l + hn{\)} \ loge (5) 
7 n=l J 
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where the maximization is over 1 < N < K, 2^ < A, and 1 < 7 < y/Jif such that 7 = vTtf 
iff A = 2§A, and 

N 
Y,hn(\) = fKA (6> 
n=l 

A   A  JT Afr + 7JJ:A[A(7
2
 - 1) - 1] - v?(N\ - 7*A) 

^l ; ~      N(fN-l-\) + 'r2KA. + ni(N\-fKA)     >U l j 

/* =  ]7 X>2  =  |(^ + 1)(2^ + 1) (8) 

and the average signal-to-noise ratio is denoted by 

Proof. 

Since the signature waveforms are RMS bandlimited, and the set {<f>i(t, T)}^ where 

<Pi(t,T) =  \\f?M*r)   if*6[0,ri; (10) 
(. 0 otherwise. 

forms a complete orthonormal basis for all RMS bandlimited signals, we can write 

= AT*(t,r) (11) 

3l(t) 
-2(0 

*JC(0. 

where *(i,T) = [<£i(i,T) <fo(i,T) .. .]T. Then, the power-weighted average RMS bandwidth 

constraint can be written, via the Parsaval's theorem, as 

K        rT.d 

tr(HAWAr) r, (12) 
(2T)2tr(W) 

<  52 

From the capacity region in (2), it is clear that the total capacity is maximized when 

tr(W) = W. We denote the time-bandwidth product by 7 = 2BT, the average signal-to- 

noise ratio by A = %% B, and the eigenvalues of j^WH by A* such that \j < A,-, Vt < j < K. 

Then, the total capacity becomes 

R  K 

TCv = -5>g[l + A*] (13) 
7 Jfe=i 

and the power constraint becomes 

£ *k = 7* A (14) 
Jfe=l 
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Since the eigenvalues of ^WH are also the eigenvalues of ^AWAr, and once {Xk}k=\ are 

fixed, the left hand side of (12) is minimized when AWA• is diagonal with decreasing diagonal 

entries, we can rewrite (12) as 
K 
5>2Ajfc<73#A (15) 
Jfe=l 

For fixed T, the total capacity is found by maximizing (13) over all A$ > 0, k = 1,..., K 

under the constraints (14) and (15). Using the Kuhn-Tucker Theorem, we form the Lagrangian 

K K K 
- £ log[l + A*] + z(£ h - IKK) + y(]T k2\k - f'KA) (16) 

Jfe=l k=l k=l 

and obtain the necessary conditions: 

A„ =   r-1  >  0       n=l,...,N. (17) 
i + yn* 

and An = 0 for all n. > N, 
N 

y(Y,n2\n-1
3KA) = Q (18) 

n=l 

and 0 < y. 

Rewriting (17) as (i + yn2)(l + An) = 1, and summing over all n, we have, from (14) and 

(18), 

(N + 7 KA)x + (NfN + iZKh)y = N (19) 

Particularizing (17) to n = 1, and substituting in (19), we have 

 NXi - 7ÜTA  
V     (l + \1)(N(fN-l) + 1KA(1*-l)) W 

and 
N(fN-l-\1) + 7>KA 

(l + Ai)(tf(/„-l) + 7*A(72-l)) 
Substituting (20) and (21) into (17), and denoting Ai by A and An by An(A), we have (7), and 

the power constraint in (14) becomes (6). 

When y = 0, A = hn(\) = ^ for all n = 1,...,N. Upon substituting into (15), we 

have VTy ^ 7- Since the total capacity becomes 4plog[l + •r^] which is monotonically 

decreasing in 7, the optimal 7 is equal to -\/7y an<* (15) is satisfied with equality. If we rewrite 

(7) and sum up over all n, we have 

N 

(N\1-iKA)(Y,n2hnW-l3KA) = ° (22) 
n=l 

When 0 < y, ^^ < A, and from (22), (15) is again satisfied with equality. Therefore, if we 

require 7 = y/JJf iff A = ^77^, (15) is superfluous. Finally, specifying the range of 7 and A 

and the condition that 7 = v757 iff A = ^-JJ^-, we have the desired result. | 

This theorem gives the exact calculation needed for the TC. The main reason why we can- 

not obtain a simpler solution is the lack of a closed form expression of £n=l a+tng • However, 
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despite the complicated expression, the TC can be computed once the average signal-to-noise 
ratio, A, and K is given. In Figure 1, we show the TC with different values of K and A. 

For a given W, we show that any set of signature waveforms, with A such that AWAT 

is a diagonal'matrix with the n1^ diagonal entry equal to hn(X), is optimal. However, such an 
A does not always exist for any arbitarily given W. For fixed total power, W, finding the set 

of W where A exists is equivalent to finding the possible set of diagonal entries of a positive 

definite matrix with fixed eigenvalues, which seems intractable. Reversing the problem, one 

may want to fix the W and find the total capacity. In general, this is equivalent to finding 

the possible set of eigenvalues of a positive definite matrix with fixed diagonal entries, which 

is again intractable. 

In the following theorem, we give a lower bound to the TC in the equal-power case where 

W = y I. Cleariy, this is also a lower bound to the capacity of the original channel with the 

total power constraint in Theorem 2.1. 

Theorem 2.2. 

The lower bound to the Total Capacity when the users' powers are the same is 

TCBP(W)>     max    g1og([1 + W7'-1);*f-7V7Af^]*-'} 

(23): 

Proof. 

The lower bound is found by exhibiting a symmetric positive definite matrix H, such that 

the total capacity for that particular signature waveform set is easy to find. We let H be 

H = 

1     P 

P    1 

'•   P 
P     1 

(24) 

the eigenvalues of H with 0 < p < 1 to be be specified in the sequel are 1 + (K - l)p and 1 — p 
with multiplicity K — 1. Then, the total capacity under the equal-power constraint becomes 

TCV = -logfde^I^- + 7AH)] 
7 

= - log {[1 + 7A(1 + (K - l)p)][l + 7AQ - p)]*"1} (25) 

while the bandwidth constraint (15) becomes 

P > Sjf^- (26) 

Since (25) is monotonically decreasing in p when 0 < p < 1, the TC is maximized when p 

achieves equality in (26). Substituting p from (26) with equality into (25), and maximizing 

over all 7, we have (23). | 
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In Figure 1, we plot the lower bound to the TCgp for "different values of K and A. Since 

the TC under the total power constraint serves as an upper bound to the TCEP, Figure 1 give« 

a tight upper and lower bound to the Total Capacity of a equal-power constrained channel, for 

moderate number of users. 

As a performance measure, we define the Total Capacity Ratio (TCR) a« the ratio of the 

üf-user TC to K times the single-user capacity with the same RMS bandwidth and average 

signal-to-noise ratio constraints. Since the single-user capacity of a RMS bandlimited PAM 

channel is equal to 51og[l + A] (see [7]), the TCR can be written as 

The TCR gives the ratio of the capacity available to an average user (when the channel is 

shared by K users) to the single-user capacity. In other words, it measures, from the user's 

viewpoint, the ratio of the average user capacity in a multi-user channel to the capacity in a 

single-user channel. Notice that the TCR depends only on K and A, and is independent of 

B. Using the lower bound in Theorem 2.2, we obtain a lower bound to the TCR under the 

equal-power constraint for all signal-to-noise ratios. 

Corollary 2.1. 

A lower bound to the TCR under the equal-power constraint for all signal-to-noise ratio is 

TCR(K,A)>- (28) 

where 7 is the positive real root of the equation 

7(72-l) = /tf-l (29) 

Proof. 

In order to obtain (28), we simply substitute 7 from (29) into (23) and (27). Since there 

is one and only one real positive solution in (29), there is no ambiguity in the value of 7. | 

In Figure 2, we show the TCR under the total power constraint and the lower bound to 

the TCR under the equal-power constraint for different number of users and different average 

signal-to-noise ratios. 

3. EFFICIENCIES 

The TCR gives the performance degradation, from the user's viewpoint, when a bandlim- 

ited channel is shared by K users instead of a single user. A natural question to be asked is 

"How to maintain the same rate in the presence of other users?" If we want to maintain the 

same information rate, we have to modify some of the parameters. In the following, we will 

analyze two alternatives. First, we increase the signal-to-noise ratio by increasing the power 

while the bandwidth remains constant. Second, we increase the bandwidth of the channel 

while the power of each user remains the same. 



"The power efficiency, denoted by np{K, A), is defined as   ~ 

TC(B.y.A) 
A   e—BK— -1 

w(jr,A) £ 5 1 (30) 

or, equivalently, implicitly as 

TC(5, K, A) = SiT log[l + Vp(K, A)A] (31) 

The bandwidth efficiency, denoted by T]B(K, A), is defined implicitly as 

TC(B,K,A) = VB(K,A)BK\og[l + ^^1 (32) 

The power efficiency, r]p(K,A) (bandwidth efficiency, r]ß(K,A)) gives the ratio of the 

effective power (bandwidth) to the actual power (bandwidth) whan the actual signal-to-noise 

ratio is A. The actual power (bandwidth) is the power (bandwidth) used in transmission while 

the effective power (bandwidth) is the corresponding power (bandwidth) needed for a single 

user channel to achieve the same capacity. In other words, — lOlogfT^.K'.A)] gives the power 

in db that we have to add to each user in order to maintain the single-user capacity. Similarly, 

1/T]B(K,A) gives the ratio that we have to increase the bandwidth in order to maintain the' 

same information rate. 

Theorem S.l. 

The power efficiency satisfies, 

lim 77p(Ä\A) = 0 (33) 
A—»oo 

A lower bound to the bandwidth efficiency, r]ß(K,A), for all signal-to-noise ratio under the 

equal-power constraint is 

nB(K,A)>-±= (34) 

where fa is defined in (8). 

'roof. 

:Tom the definition of np(K, A), we have, 

/ 
J (1 + hn(X)) = [1 + VP(K, A)A]** (35) 
n=l 

where N, hn(X) and 7 are all optimally selected for that A. Subtracting (14) from (15), it is 

easy to get 

MA) < 7#A(72 - 1)       n = l,...,N. (36) 

".ubstitutin«? (36) into (35), and dividing both side by A^7, we have, in the limit as A -* 00, 

jm,Arf-** n {{ + 7*(72 " 1)} > VP(K,A)*7 (37) 
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If 7 -* 1 as A -» oo, the second factor on the left hand side'öijsfj"tends to Ö, while the first 

factor tends either to 0 (N < K) or to 1 (N = K). On the other hand, if 7 -• a > 1 as 

A -» 00, the .first factor on the left hand side of (37) tends to 0 for any N < K, while the 

second factor is bounded. Therefore, in both cases, the left hand side tends to 0 and since 

1 < 7 < V7K> 
we nave Vp{K> A) -* 0 as A -» 00. 

Substituting 7 = VTJF iQ Theorem 2.2, we have 

TCEP(i?, K, A) > -±=BK log[l + y/EA]     ' (38) 
VJK 

Since the right hand side of (32) is monotonically increasing in T]ß(K,A), we have (34) when 

compared to (38). | 

The TC is obtained by optimizing the balance between the "symbol rate" factor, B/f, and 

the "information sent per symbol" factor, log[- • •]. As the average signal-to-noise ratio tends 

to infinity, the "symbol rate" factor dominates and the optimal users' signature waveforms are 

asymptotically identical. Then, the product term of the signal-to-noise ratios inside the log 

function in the TC becomes relatively small, and the asymptotic power efficiency is equal to 

zero. The bandwidth efficiency indicates the increase in bandwidth needed to maintain the 

same user rate when a single-user channel is shared by K users. 

In Figure 3 and 4, we plot the Power and Bandwidth efficiency for different values of K 

and A. Also, in the same graphs, we show the lower bound to the efficiencies for the equal- 

power constrained channel. It shows that regardless of the signal-to-noise ratios, increasing the 

bandwidth by a factor of 10, we can accommodate about 50 users on the multi-user channel. 

This indicates a 80 percent reduction in the bandwidth required by Frequency Division Mul- 

tiple Access (FDMA). Clearly, the tradeoff is a more complicated demodulating and decoding 

process in the Synchronous Code Division Multiple Access (CDMA) channel, which is a special 

case of the current model. 
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