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stability Properties of Slotted Aloha with
Multipacket Reception Capability

TYLVIE GHEZ, STUDENT MEMBER, 1Egg, SERGIO VERDU, MEMBER, 16EE, AND'STUART C. SCHWARTZ, SENIOR MEMBER, 1EEE

~bstract—=The stability of the Aloha random access algorithm in an
afinite-user slotted channel with multipacket reception capability is
vonsidered. This channel is a generalization of :he usual collision channel,
in that it allows the correct reception of one or more packets involved in a
voilision. The number of successfully received packets In each slot Is
ioaeled as 4 random variable which-depends exclusively on the number
of simultaneous attempted transmissions: This general model includes as
speciai cases channels with eapture, noise, and code division multlplexmg.
itis shown by nieans of dnifc analysis that the channel backlog Markov
«<nain is ergodic if the packet arrival rate is léss than the expected number
ot packets successfully recejved in a collision of n2 as n goes to infinity.
Finally, the propertics of .the backlog in the nonergodlcity region are
examined.

1. INTRODUCTION

)NE of:the main problems in random access communications
isithe’ determmauon of the :maximum stable throughput. In
saricular, an important. result is .that the Aloha .protocol is
unstable .[1]-[3])’ in- an. infinite-user slotted collision'-channel
where a transmission is successful only if no other users attempt
Jansmussions simuitaneously. Several strategies have been de-
signed to stabilize this channel, such as collision resolution
aigorithms  (see [4); for example) where transmissions are
aeferred until the current conflict is solved, and more recently,
«lohatype strategies using decentralized control, where -the
_etransmission probability is updated accordmg to prevxous
‘nariniel -outcomes. It has been shown [5]-[7] that the maximum
stable throughput achievable by such Aloha:type strategies with
decentralized control is e~!.

Jowever, the collision' channel model does not hold in many
.mportant . practical multiuser communication systems (8]-[21]
secause sxmultaneous transmxssxon of several.packets does not
necessarily resuli in the destruction of all the transmitted
information. For instance, the capture phenonenon is common in
:ocal area radio networks [12)-(15]; if the power of one of the
seceived packets is sufﬁcxently large compared to the power of the
other packets inivolved in a collision, then the strongest packet can
be correctly decoded, while the other packets are lost. Other
examples are multlple~access channels where several users
transmit simultaneously . in the same frequency band, and a
muitiuser detector demodulates the information transmitted by all
active users (e. g ., [81-[11)). Although those systems do not
necessarily require a random access' protocol, it is sometimes
useful to exercise some flow control through such a protocol s0 as
to limit the maximum number of simultaneous transmitters, in
order to bound the multiuser receiver complexity. and guarantee
jower bit-error rates.

Manuscript received July 23, 1987; revised January 8, 1988. Paper
recommended by Past Associate Editor A. Ephremides, This work was
supported in part by the Office of Naval Research under Contract NOOO14-87-
50-%054 and by 1he Army Research Office under Conlract DAALO3-87-k-

The authors are with the Department of Electrical Engincering, Princeton
University, Princelon, NJ 08544,
IEEE Log Number 8821359.

Previous studies of some of the aforeméntioned systems 9,
[12}-[18] where some of the packets involved in a collision may
be correctly received have shown that the performances arc
noticeably improved with respect to lotted Aloha. However, even
in those spec1al cases, no precise stability result is availablé; either
-because finite populauon networks with no buffer space were
considered, or because the Poisson approximation of channel
traffic was used for infinite-population networks. In [19] (see also
[201),. upper and lower- bounds are derived for the capacity of a
multiple access channel where all packets are correctly received if
the collision size does not exceed a fixed threshold and otherwise
all packets are destroyed.

In this paper, we-consider a generalization of the collision
channel, where the receiver can demodulate several packets
simultaneously. 1t is assumed that the number of correctly
demiodulated packets is a random variable, which, given the
number of packets simultaneously transmmed is mdependent of
the backlog and of the number of previous retransmission
attempts. This random variable can take any integer value
between zero and the collision size. Thus, the channel is described
by a matrix of conditional probabilities (e,;) where ¢ is the
probability that k. packets are correctly demodulated given that
there were n simultaneous transmissions. We analyze the usual
Aloha algorithm with the multipacket recepuon capability just
described. Users are synchronized so that transmissions take place
within one slot, and at the end of each slot, stations that did
transmit a packet learn whether or not their transmission was
successful. Unsuccessful or backlogged packets are retransmitted
in each subsequent slot with probability p,0 < p < 1. It turns out
that multipacket reception capability can stabilize Aloha. Our
main result states that the maximum stable throughput is equal to
the limit of the average number of packets correctly received in
collisions of size n when n goes to infinity. To show this, we
model the channel backlog as a Markov chain, and then study its
propetties by using some simple drift analysis techniques

The'last part of this paper is a study of the properties of the
backlog in the nonergodicity reglon Unlike the backlog Markov
chain for slotted Aloha which is always transient [1], the backlog
for our model does in general have a null recurrence region of
positive length, which depends on the matrix (em) and on the
retransmission probability p. However, transience in the nonergo-
dicity region can be ensured for a large class of systems, and in
particular for channels where the number of successful simultane-
ous transmissions is bounded.

II. MuLTIPACKET RECEPTION MODEL

Let A, be the number of new packcts arriving duringtime slot
k. Assume that' (A )=0 are i.i.d. random variables with
prooability distribution:

PlAx=n]=N, (n=0)
such-that the' mean arrival rate N = =2 n\, is finite. New:
packets are-transmitted with probability one at the beginning of

the first slot following their arrival.
Given that n packets are being transmitted in one slot, we define

0018-9286/88/0700-0640$01.00 ‘© ‘1988 IEEE

A AR T R a

NPCTN



DT -

GHEZ et al.: STABILITY PROPERTIES OF SLOTTED ALOHA-

fornz1,0sk=<n
-ene= Pk packets are correctly received|n are transmitted}.

The multipacket reception properties of the channe) are sufma-
rized by the stochastic matrix

€@ en

€ € e O
E= ) :

€0 €nl €nn

which we refer to-as the reception matrix of the-channel. For
instance, the réception matrix for.the usual collision channel is

1
o 0
0

o et R O

-while for a system with capture it has the ‘form

0 1
-5 x» O

J 1=x Xn

where x, is the probablhty of capture given that the collision size
is n. The model studied ‘in [19], [20] can be described by a
reception matrix of the form

01
oot o
00 1
10

10 0

Note that by letting €, # 0 our mode) allows not only collisions
but also background noise to be a source of errors.

Denote by X, the number of backlogged packets in the system
at the beginning of slot n, The discrete-time process (X,)azo0 is
easily seen to be a homogeneous Markov chain. We define the
system to be stable if (X n)nz0 is ergodic and unstable otherwise,
The average number of packets correctly received in collisions of
size nis denoted by C,,, = £}, Ken. We can now state the main
result.

Theorem 1: 1f Cp has a limit C = lim,..s C,, then! the system
is stable for all arrival distributions such that A < C and is
unstable for A > C. This also holds.if Cis infinite: if limy-c C,
= +0o, then the system’is always stable,

The proof is given in Section IIf. In the-remainder of this
section, we use Theorem 1 to analyze several simple random
access channels that fall within the scope of the multipacket
reception channel.

1) Mobile Users with Pairwise Transmissions: Consider an
infinite number of transmmers T\, Ty +-+, and .an infinite
number of receivers Rj, Ry, -, whose posmons in the planc are
i.i.d. random variables. Suppose that transmissions are pairwise

'This result holds under the assumption that the Markov chain of the
number of backlogged packets is irreducible and aperiodic (for details and
sufficient condilions, see Section HI).

\\‘® A
[\ : TRANSMITTER

O': RECEIVER

Fig. 1. Pairwise lransmissions with only one success (3-3).

in the sense that transmitter T, sends packets only to receiver R,
and R, is only interested in the packets sent by T, (see Fig. 1).
Assume also that each receiver can only detect correctly- the
packet sent by the closest transmitter (in particular, this is the case
if there is Pperfect capture, see Example 3 below). The successes of
transmissions occurring at the same time are independent, so that
forn =2

= (;’) P (1-p()"*

where p(n) is the probability that any given transmitter is
successful in a collision of size n, which is equal to 1/n if we
assume that all locations are memoryless, i.e., independent from
slot to slot. It follows that

Cy=np(n)=1

and the maximum throughput is 1. More generally, if because of
channel noise, the message of the closest transmitter is received
correctly with probability « (in other words €;; = «), then the
thloughput is equal to «. The assumption that the locations of the
stations are memoryless is equivalent to assummg that they move
infinitely fast. If this simplifying assumption is dropped, then the
number of successes depends not only on the current number of
retransmlssnons, but also on the previous history of retransmis-
sions, and thus.the problem is no longer encompassed by our
multipacket reception model. In Fig. 2, the result of a simulation
shows that for moderate speeds, the actual throughput is well
approxxmated by the foregoing analysis.

2) Frequency Hopping Random Access Channel: Consider a
finite population of N users transmitting by frequency hopping, as
in (11}, [22]. For each packet he wants to transmlt, a user selects
with equal probablhty one frequency in a fixed sct of q
frequencies. A packet is correctly received iff no other packet i
teansmitted on-the same frequency during the same slot. We
compute-(éni)isesa and C = limy-e Cy. If the users have
infinite buffer space, then Ccan be taken as a good approximation
for; largc N of the maximum stable throughput of the system,
whichi is unknown. If the users Kave no buffer space, as is often
assumed, the backlog Markov chain is always ergodic, but evén
then, one should expect reasonable’ delays- in-large population
problems only for arrival rates below C. The computation of the
reception matrix of this channel is a simple combinatorial problem
of random assignment of objects to cells (e.g., see 23, App. Al).
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Fig. 2. Throughpul as a function of velocity. for mobile users with pairwise
transmissions. Stations moving in a square region; velocity units: percent-
ggle of square side iraveled in one slot. Retransmission probability set to

Denote by T, T, * - -, Ty the users, all involved in the collision,
and also denote by S the set of users whose pacKets are correctly
received. Two cases need to be considered.

d2=<Nsx<qg Wehave,forl <j< N

N
fhﬁ:(j)P[s:{Tb Ty -0, T} )
and the following decomposition:

P[{Tlr TZr °t T]} c S]=P[S={T|, TZr Sty T]}]

N
P [ U ‘{{Tl). *

T, Ti} S S}]
kmj1
easily yields the desired expression
N-]

3= (- 1*

k=0

) (Nl:j)‘P[{Tb TZ) B

where only one term is left-to.compute

P[S={T,, TZ) Tt

Tees} €51 )

P{Ty, Ty, *++, Thaj} & S)

_a(g=1) - (g=j=k+1)(g=j-k)N-I*

- ®

forl =j=< N,0=< k=< N ~ j. Putting (1), (2), and (3) together
gives the result

(e ()

(g=j~-k+1)g—j-k)NI-*
qN

.alg=1) .-

@

for | < j = N. Notice in particular that yy-; = 0. Let us now
compute. the average number of packets correctly received in

collisions of size N, C = Ef. jen;. By using (4) and summing at,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 33; NO. 7, JULY 1988

J -+ *k constant, we get

N
gNCy=3 a(g-1) - (g-i+1)g-DN-

im]

1N N!
' ”2_;0 b i=rrrupney Ty
which can be simplified as
! Ni
N = P —
79 C”“,._El —DUN=-1)!
- g(g=-1) -+~ (g-i+1)(g-)N-i(1—1)-!

to get the final result .

! 1 \~-1
Cy=N{1--}. .
q.

b) N > q:In this case, there can be at best ¢ — 1 successes
in a collision of size N. The same method applies to get the
following probabilities:

a-j-1
(1) E (%) er
k=0
(g—j—k+1)g—j-k)N-I-*
qN
=0 (gsj<N)

La(g—d) .-

(1=j=g-1)

resulting in the same expected number of successes as before

1 \~-1
L,.=N{1l-- .
q

Now we let the population size N go to infinity and we apply
our result. JIf we let N grow to infinity while keeping g constant,
we have limy-... Cy = 0, so the system is always unstable. On the
other hand,’if we let N go to. mﬁmty while keeping ¢ equal to a
fixed percentage of the population size, i.e., N/q constant, then
limy.e Cy = +o, and the system is always stable. It is easily
shown that to get a "finite maximum stable throughput, g has to
grow as°N/In'N.

3) Mobile Radio Network with Capture: Consider an infinite
number of users independently and uniformly distributed in a
circle of radius R, whose positions are independent from slot to
slot. Users transmit packets to a common receiver located at ¢ »
center of the network. Denote by P, and P, the received powers
of the strongest and the next to strongest packets involved in a
collision. Assume, as in [12]-[14), that the strongest packet is
correctly received iff P//P; > K (K being-a system dependem
constant), and that all the other packets anOlVed in the collision
are not received sucéessfully. Assume, moreover, that the
received power of a packet only depends on the distance r between
the sender and the receiver

constant

P= = (az2).
Then there will be capture iff
r>fr

where B = KV is the capture parameter, and ry, r, are the
distances of the closest and the next to closest senders from the
receiver.
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Denote by D -the distarice between a given ‘user .and the
receiver. It is easily shown that the pdf of D is given by

r
pp(l‘)=2ﬁ ((.)SI'SR).

Given NV users, denote by. Uy the closest from the receiver, and by
Dy.its distance froni the receiver. Computing the cdf of Dy and
taking its derivative, we obtain

Pou(n=2N L2 [1— (1—2)2] " osrsr). ©

Given Dy = r, the other N — 1 users are uniformly distributed in
the annular region (r, R). So if N users collide and Dy = r, Ux
will be correctly received iff all the other users are in the annular
region (8r, R), which isempty if 8r > R. Therefore, if we denote

by

Pn(r)=Plcapture|N collide, Dy=r]  (N22)
we have
2822 | N-1
(B if rsx
R*-rt B
Pu(r)= : &
0 if re—
nr B

Thus, the probability of capture in a collision of N (N = 2) is

R/8
=, Pur)poN(r)

Using (5) and (6), and with the change of variable x = /R, this
is easily computed

8 1
N1 = s‘o 2Nx(1 ~62X2)N-l dx=§ 3

It follows that C = 1/8?% is the maximum stable throughput.
Notice, in particular, that for 8 = 1 (perfect capture), we have C
= 1 and for 8 — oo (no capture), we have C = 0.

Under certain conditions, the performances of Aloha in the
multipacket channel can be improved by varying the retransmis-
sion probability as a function of the channel history, and a
maximum stable throughnut of sup,,o ¢=*Z7,, C,/nlx" can be
reached (see [31]).

II1. ErcobiciTy REGION

The number of backlogged packets in the system at time n,
(Xn)azo, is a homogeneous Markov chain whose one-step
transition probability matrix can be computed as a function of p,
(M=o and E. Denoting by B;(j) the probability of having j
retransmissions out of i backlogged packets

B(j)= ( j') pl1=p)I @

ve get

=2t Z Natnn

(kz1)

%
Jop= 2; xknlfkwl.ﬂ
nmy
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and fori = 1
Piicg= E Ay E Bi(j)fn+].n+k (I1=k=i)
n=( jnk
i @ i
Pi=X [B.(0)+E B.-(J')é,-o] + E M E Bi(i)entjn
j=l A" j=0
@ ) i
Piiex= 3 Man O BilD)axann  (K21). ®

nno j=0

Sufficient conditions for (X,),=0 to be irreducible and aperi-
odic are as follows:

*if0<p< It
Mo#0 (9a)
Mot E M€na<l (%b)
n=l
E|o¢l (90)
*ifp=1
M0 (9a)
hot 2 M€mn<1 . (9b)
nml
forall iz 1, eo#1. (9d)

These are only sufficient conditions, but they hold for almost all
nontrivial systems. For example, if (9b) does not hold, then zero
is an absorbing state, since the Icfi-hand side of (9b) is equal to
Ppy. Also, (9¢) simply means that the successful rcception of a
single packet in the absence of other active uscrs is possible.
Assume, for instance, that 0 < p < 1 and that the arrivals are
Poisson distributed. Then we only have to assume (9c), and (9b) is
true unless there is perfect reception, that isé,, = 1 foralln = 1,
in which case the system would of course always be stable. The
case p = | gives rise to a number of pathological situations,
hence, the much stronger condition (9d). It generally turns out
that eitlier (9d) is not nccessary or the stability region of the
system is obvious. For instance, it is clear from the transition
probabilities that slotted Aloha with p = 1 is always unstable. In
any case, it is assumed in what follows that (X )a20 is irreducible
and aperiodic,

Proof of Theorem I: The proof is based on drift analysis.
Recall that in general, the drift at state { (i = 0) is defined by

di=£[X1+1—X1|X1=i]-

If we denote by %, the number of successful transmissions in slot
t, we have

Xi—X=A,-%,
and therefore
a=\—=E[L| X,=il. (10)
Now if R, is the number of retransmissions in slot 7, we get
PIE=k|Xy=i, Ai=n, Ri=j1=€nejn

tor0 <j <i,0 < k=< n+ jand with the convention that g =

b main B A i iy

£ Oty -~
LA
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C, = 0. Thus,

E{Z|X=i, Ar=n, Ri=j1=Chs;
and

EZ)X=112 3, M Y, Bi(J)Caay-

n=0 j=0-

an
The value of the drifts for our model follows from(10) and .(11)

® i
di=N=Y, Ay Y, Bi(j)Casjr (12)

nw=0 im0

The idea of the proof is to compute lim;-.o d; which will turn out
to be a very simple expression, and then apply the results of [3]
and [24] to determine the ergodicity reglon of (X )n=o. Let us first
recall the two results that will be used in the sequel.

Lemma A (Pakes [24]): Let (Xp)azo be an irreducible and
aperlodlc Markov chain having as state space the nonnegauve
integers, denote by (Py) its.transition probability matrix, and by
d,its drift at state /. Then if for all i |d;} < oo, and if lim sup;~ d;
< 0, (Xn)axo is ergodic.

Lemma B (Kaplan [3]): Under the assumptions of Lemma A,
if for some integer N = 0 and some constants B = 0, ¢ € [0, 1]
the following two conditions hold, then (X;,),»¢ is not ergodlc

iyforalli= N,d; > 0

ii) forall i = N, all 0 €[c1),0 - EPUGI = -B(1 - 0.

From (12), it can be seen that |d} is finite since

) i
[dilsh+ D) M Y, Bii)CaejS2N+ip.

n=0 j=0

Next, the drift limit is given by the followmg lemma.

Lemma 1: If C, has a limit C, finite or not, then limj~e £,
A 2}-0 l(-, )Cln-j =C.

Proof of Lemma 1: We consider two separate cases

depending on whether C'is finite.

1)C = +o»,

Fix A > 0 and pick r = 0 such that A, # 0. There exists an
integer M such that foralln = M, C, > A Fix such an M. Then
we have fori = M

o0 i i i
3 MY BlCa>N Y, B()Cier>MA Y, Bi)

nwl J=0 i=0 inM

which terminates the proof, since for any fixed M = 0

m Y B(j)=1.
=M

(13)

VC < +oo,
Ve have fori > M

M

2 M 2 B(j)Csj=C|s Y, Bi()) E MlCaej=C|

nal J=0 =0 n=0

i [
+ 3 B Y MlCay=Cl. (14)

‘mbM+] n=0

‘ix € > 0. There exists M such that foralln > M. |C, — C| <
/2. Fix such an M. Then

i

2 Bi(j) 2 . ICn+1—C|<—

wMal n=0

1EEE TRANSACTIONS ON AUTOMATIC CONTROL;, VOL. 33, NO. 7, JULY-1988

Also, if L is.an upper-bound for. C,.

2 Bi(j) 2 M|Caij=Cls2L 2 Bii)<s

j-O w0 J=0

fori bng enough because (13) holds, .which-takes-care of theé first

-term in’(14) and: ends the proof of Lemma.l.

Putting together.(12) and Lemmas A and ‘1, we get that 1)'if
limg-ee Cn = +0, then limjy di = —'o0, and (Xp)nzo i
ergodic;-and 2), 1f11m,...°.C =C < +, then hm,..o. di=\~-

.C, and (X'n)p=0 is-ergodic for A < C. If A->'C, we can apply
.Lemma-B.and conclude that (X’ ,,),,zo is not ergodic provided that
,Kaplan s condition i) holds. This is the .purpose’ of Letama 2,
-which is the.last-step in the proof.of Theorem 1.

. Lemma2 Ifforall n = 1, C, < L for some L € (0, o), then
Kaplan’s condition holds: there exists a constant B, am'integer N,
and a real ¢ € [0, 1] such that

/-3 Poi=-B(1-0) allizN, 8 € {c, 1.

]

Proof of Lemma 2: According to [25], it is enough to show
that the downward part of the drift, defined as

i
D(i)= = kPyj-x
km].

is'bounded below. From the transition probabilities (8), we get

i L i
D(i)= - 2 k 2 )\n 2 Bi(j)en+/.n+k

k=l n=0 J=k

which can also be put in the form

i 0 7
D(f)= "2 Bi(j) E )\n 2 ken+j.n+k

I=1 nm0 kwl

from which it follows that

i o
D(i)z - 3, Bi(J) 3 M Crajz ~L.
/=1 n=0

O

Notice that in the proof of Theorem 1 (and this also holds for
“heorem 2 below), the exact expression (7) for B(j) is never
usea. The only requirements are that (B{J ))o<;<: is a probability
distribution, and that (13) holds. Therefore, our results are valid
for a larger class of retransmission policies than was first
issumed. For example, there could be X priority groups, each
with a different retransmission probability.

Although Theorem | is quite general, in many practical cases,
the reception matrix has a very simple structure and the stability
region can be obtained with' virtually no computations. This
happens for instance in radio networks with capture where all is
needed is the limit of the second column of the matrix, or also in
the simple case where above a certain collision size N, the
transmission is too garbled for the receiver to be able to decode
anything correctly, so that C, = 0 for n > N.

This last example is a particular case of a noteworthy feature of
rheorem 1, namely that the stability region does not depend on
any finite number of rows of the reception matrix. In fact, any
aumber of modifications of the matrix that leaves limy—.o Chn
uncnanged does not affect the stability region. Although this may
be surprising at first sight, it can be intuitively explained by the
fundamental instability of the collision channel: unless the

¥ . - i . - 1oogat
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~eceiver is perfect (all €,, equal to 1), thé backlog will eventually
:xceed any prefixed value with probabnhty one, thus it is the limit
3t C; that determines the stabiility region,

“he stability region is also unchange if the first transmission of
mackets i$ -delayed. :If new packets are backlogged that is,
-ransmutted for the first time with Drobablllty p in each slot
ollowing ‘their-arrival. (this, transtission rule appears in the
iterature as controlled-access or delayed first transmnssnon), the
Trifts become-d; = N = Zi. B{j)C; for-i = 1, .and ’from
.emmas | and 2 the ergodicity region remains thesame.

f C, does not have a limit, Theorem 1.does not give the stable
hrouzhput of the system. Everi‘though. in-almost.all. practlcal
:ases..and indeed in all the examples of Section'II, C; does: have a
imit. it is conceptually: interesting to.examine:the case when lim

Mipeee Cp % 1iM SUP,-. - C,.: It is:worth pointing out that addmg-
-onstraints as strong as the following on the reception matrix still
10es.not-imply that C,, has a limit:

) (€n0)n=1 is NOndecreasing

D (€ )n= is NONincreasing forall k=1

i €= e€npatl @rnZZLISkgn—l
athough the counterexamples we have been able to build are
:omewnat contrived. Notice that conditions 1) and ii) above.imply
hat each column has a limit ot = lim,—. ex(k = 0), which is
erv ukely to happen in practice. In any case, Theorem 2 below
uil gives some information on the stability region, although the
*xact result requires in general ‘the complete knowledge of the
-equence {Cn)n=1- In fact, given any nonnegative numbers a <
3, one can construct a.reception matrix with nth row average
2, such that:

) liminf Cy=a

-

i limsup C,=8

:na such that the maximum stable throughput is ¥.

“heorem 2: The system is stable for A < lim inf,~. C, and
mstable for A > lim sup,-ee Cp.

roof:

D If N < lim inf,-.e Cp, then (X )axo is ergodic.

f lim infyme Cr = + o, then limp—ee C, = +, and the
esuit has already been proved, so assume that lim inf,—.. C, is
inite. From Lemma A, it is enough to prove that for all ¢ > 0,
here exists N such that

n<A=liminf C,+¢ alli=N.

imon

zecall from (12) that we have

=\~ ; An E B[(J)CM»]- (15)

=0 i=0

‘0 it is only needed to prove that for all € > 0 there exists NV such
hat

; M E Bi(j))Crej> li'?lei.nf Cy,—¢ allizN,

im0 =0
Jow by definition there exists M such that for all k = M:

2>'lim inf Cy—e

Chad 4
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and.therefore for-all i > M:

E M E B(j)C,,+J>(llm inf C,—¢) E Bi(j)

nw=0 =0 J=M

which completes the proof since {13) holds.

b) If A > 1lim supywe C,, then (X,),»0 is not ergodic.

Since A is finite, in this case lim sup,-.. C, is necessarily finite.
Thereforé; (Caz1 is bounded-and from-Lemma 2, Kaplan’s
condition holds. Thus, it is enough to show that for all ¢ > 0,
there exists N such that

di>A—limsup C,—e  alli=N.

From (15), we only need to show

2‘ M E Bi(j)Crsj< llm nsup C,+e

=U =0

“ince there exists M such thatfof all k = M

all i=N.

O, < limsup Cy+¢

then if L is an upper bound for C,, we have for i = M

M=1
21 x,,E Bi(j)Cpsj<L 3, B(j)+ lim sup Cy+¢

n=0  j=0 j=0

from which the result follows, using (13). O

V. BEHAVIOR OF THE BACKLOG MARKOV CHAIN IN THE
NONERGODICITY REGION .

n this section. we further investigate the properties of (X ,)x=0
in the case A > C, assuming of course that (C,),» has a finite
‘imit. It has been proved in (1] that the backlog Markov chain for
e usual slotted Aloha algorithm is transient, but this result
cannot be generalized to our model when A > C. We give below
an examplc showing that (X ,).=0 can be null recurrent when the
mean arrival rate \ belongs to an interval of positive length. The
boundary between the null recurrence and the transience regions
generally depends in a rather complicated manner on both the
reception matrix and the retransmission probability p, We give a
sufficient condition for (X ;).=0 to be transient when A > C, as
well as bounds on the recurrence region.

Consider the reception matrix defined by

1

k=13 (1sksn)
no=1 —.l-

it

forn = 1. ThenC, = £2_ k/n* = (n + 1)/2n, and C = 1/2.

"Ising Lemmas C and D below, we show in [26]) that X, is

securrent for A < R(p) and transient for A > R(p), where R(p):

is a function of the retransmission probability p and is given by

(1-p)
In(1-

T (1-p)

"(P)——+ (O<p<l)

R(I)=1.

1t is easily seen that R(p) is an increasing function of p for p €
*0, 1[ with extrema lim,.o R(p) = 1/2 and lim,.; R(p) = 1.
Jig. 3 summarizes the behavior of X, for this example.

It is somehow surprising to see that in this case, as well as in all

e
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“he- other ‘examples we have.computed, thé recurrence ‘fégion
secomes larger as-pincréases. Intuitively, the recurrence.of X,
ynen A > C seems to be due to the fact that transitions from*any
1ate 1 to 0 (or t6 some fixed integer ko) are possible and that the
wovability of such an event, P,y (or Py,), goes to zero slowly
vith i. It can be checked that these probabilities are increasing
unctions of p-when i is large- enough

“ransience is ensured for A > C if the supremum of the
siements of the kth-column goes to zero faster than k2. This
-onaition holds for all the examples in Section II, as well as for
nanv reai life cases, due to the practical limitations on the
eceiver capabilities. In particular, it is always verified if the
eception matrix has only a finite number of nonzero columns (or
-quivaiently, if the backlog Markov chain has uniformly bounded
iownwards transitions. as defined in {3]) which happens, for
nstance. if there is capture. Note that the proof of Theorem 3
elow is of course valid for the conventional collision channel,
ina in this case becomes somewhat simpler than the proof in [l]

“heorem 3: If limy—c k% SUDpak €nx = 0, then (Xp)nzo0 is
ransient for A > C,

Recause of the comolexity and lack of structure of the one-step
ransition probabilities (8), few results on the recurrence and
ransience of Markov chains can be applied to our model. Before
wroving Theorem 3, let us introduce the following two criteria
rom 1271,

-emma C: Let’ (X )420 be an irreducible and aperiodic
vlarkov chain. having as state space the set of nonnegative
niegers, and with one-step transition probablllty matrix P =
Pp). (Xp)azo is recurrent if and only if there exists a sequence
Ymnxzo such that

) lim y,=

) for some integer N>0 2 YPysy allizN.

w0
Ve will onlv use the sufficiency, part, which has also been proved
.n i24).
~emma D: With the same assumptions as in Lemma C,
i X n)n=o is transient if and only if there exists a sequence ( ¥n)n=0
sucn that

1) (¥n)nzo is bounded

2) for some integer N>0 ) y,Pysy,  allizN

j=0

3) for some k=N y,<ys, ***, Yn-1.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL.33,-NO. 7, JULY- 1988

Sufficiency- -under the additional constraints y; 5> 034nd limjww Pi
= 0 has also been proved in.[28]. Also, the sufficiency parts of
both lemmas are an immediate’ ‘consequence of (29, Theorems 5
and 6] together with- the results in {30)

Proof of Theorem 3: We use Lemma D with y, = 1/(n +
1% 6 € 10, I We have

EPJ)’/<)’{“ E (Yi-x=Y) Pii~k
i k=1

+E()’:+k yI)P;,n-k—o (1€;
k=1

and

i
(i+ DY Gick= ) Pigat (41140

tm]

=3 Urex=Y) Pipx=D'()+ U’ (D) (1T
k=1

where we have defined

e e . 11
D(y=(i+ 1 ;_;, [(i+1—k)‘ (i+ 1)9]

7 M EBI(J)€n+j.n+k
0 Jmk

INALS

n

e 11
Vi=(+n? e;_;l [(i+1+k)e (i+1)e]

S i
. E Mean E Bl(j)5n+k+/.n'

n=0 J=0

(18)

The drift of X, at state { can be computed from the transition
probabilities (8)

di= - E kP j-x+ E kP 1. x=D(i)+ U (i) (19)
kwl k=]
where we have defined
i o i
(i)=- 2; k E An E Bl(j)5n+j.n+k
tm] nw0 ink
o o i g
U(1)= E k E )\n+k E Bl(j)5/+k+n.n- (20)
.=l  n=0 J=0
The idea of the proof is to show that
iim (D*(i)+ U (= ~0 lim d; @
and since it has been proved in Section U that limyae d; = A\ =

C, we will be able to conclude that (X,).=0 is transient for A >
C.

1) lim {D()+6D())=0.

s i pm b ! i Bl

P

e
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From (18)-and (20)
ety S [\
D'(D+8D(i) (1+1)"§‘:~[< iz _k> 1 1+l].

* E A E Bi(j)ensjinsk

nm0  jmk

which is more conveniently written as

®© i i
D'()+8D()=(i+1) M\ 3 B() Y

=0 jml k=l

e Yoo ek
Tk Fa1 | Svhmeke

This expression is nonnegative since

i1\ ok
<i+1—k> e

Define yx = Supnzx €. Then

(I1=k=i).

™ H . J
0sD’()+6D()=(i+1) 3} M 3, Bi()) Y

n=( jml k=l

_ i+1 \e_ Ok
irl=k ). Tien | Tk

e d iv1 e . k1
5("*'1) 2 >‘n E I—<i+1—k> _l—m] Yn+ ke

imy k=l L

“hat is
2D+ 0D)sx (i) +x,(i) 22)
vith. assuming for instance that / is odd

= sy | i+1 8 0k
x(D=30+1) Y N\, (-—) =l=— Ynsx
M % |L Yy el Rl

imy kul

= 1 I g
N/ - i+1 ! 0k
ad)=(i+1) )4 A E | <i+l—k> "l"m] Yn+ke

ne0  k=(i+32 L
(23)

We show that x(i) and x3(/) go to zero independently. Fix ¢ > 0.
Define for 0 < x =< i the function

i+1 i+1 \¢ 9
Pix)==7 [(i+1—x> —l] X

It is easily proved that for each i = 1, p(x) is a positive
nondecreasing function of x. Also

i+1 A
P<T>‘—'[4(2'—1) -20]= ey

where A is a positive constant depending only on 8.-From (23)

o {i+1)/2 A o av{i+l)2
STOEDIR VIO LT OTSVET L SR W S v
a=0 kul nm0 k=1
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Iflnmk..c.° k*yx = 0, then lim,., 1/nZ2_, k%, = 0. So we can
choose '/ large enough so that for n. > fz + 1)/2, 27, Ky <

ne. Then
i+l A1
o £ — ——— - — p—
xy(i)= e 2; M (n > ) €A <i+1+2)'

Now if we choose i big enough so that for k > (i + 3)/2, we have
e < e/k?, then,

i

ase R M Y i+

Am0  k=(i+3)2

i Y ek 1
i+1-k i+l (n+k)2
de < [( i+l )0 ! ok]
s 9 ) -]
':*'3k-(i+3)/2 i+1-k i+1

By bounding the sum in the last equation by integrals, it can be
seen that it is upper. bounded by a linear function of /.

2) limjo [U' (D) + BU(I)] = 0.
From (18) and (20)

\ 1 8
Uy +0UG) = i+ 1) [( -:-T-i-k) 1+%]

k=l

) i
. E Nevn E Bi(j)5j+k+n.n'

nm0 j=0
With a change of variable

IO +UG =3+ Y B T MY

1u0 el k=l

i+1
i+1+k 1+1 €nsfin=k:

By using the following inequalities:

w2
Os——-1+0xs6(1+0) S (x20,0<0< D)}

(1+x)

we get

(1+ )

0sU'(D+0U()sf-—— (1+I)E Bi(j)

j=0

2 E (1+ 1)2 €n+jin=k

+0(’+1)EB|(/) E A 2}.*.16"*]""‘

=0 neN+1
o
s— E n*n+ 2 n\,.
Lo neN+1

Fix € > 0. Choose N such that £ ..n\, < ¢/2, and then, N
being fixed, choose i large enough so d\at 1/( + 1)2” N D é
€/2.

It should be clear at this point that unlike the ergodicity region,

R
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he recurrence region depends in general on the elements of the
_eception, matrix- (instéad of :nly- the row.averages) .and.on the
“etransmission probability p. For this reason,.an exact expression

or the recurrence region seems. rather -difficult to- obtain;

<onetheless. the'.method (see [26]) that we used to-study the
:xambie in Fig. 3 can be generalized

:nd lower.bounds.on.the recurrence region.

“heorein4: (X,)i2o s recurfent-for X < L and transient-for A
:Us with L = max {4, SUPo<o<i /o,:SUPocs<i f5}-and U = min

Wy, infoze<) Upy infocpe 4y } Where

i+n—k+1.

to obtain the following upper

& i n+j [/ \
v=lim (1) 3 M S B E.m-b’i'ﬁi'—) o

im0 . fm) k=l

s=3 lim (DY MY B

Y Y M

itf

S En+ D) —~(i+n=-k+1))e;
4 Jik

f=5 lim G+1) [ln G+ DI YN 3 Bi()

g

ind jml

it f

i (i+n+ D) -{In(i+n-k+ DI®)ene i
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Ve are assuming that the limiis above exist, which indeed

iappens in most practical cases. The theorem is valid if any of

hese limits is infinite. In particular, if L = +oo, then X, is
:#wavs recurrent. Note that usually, it is not necessary to carry out
il the computations, because one of the three terms in the
reftnition of L s equal to one of the terms in the definition of U,
n fact. in most cases, we have supocy<) i = infocqct 4y if0 < p

l.and u, = I if p = 1. The proof of Theorem 4 can be found

n i26].
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Zerformance Analysis of an Asymptotically
“Juantum-Limited Optical DPSK Receiver

JAVID BRADY,as'rum'gmw-:mEn, ieeg, anp SERGIO VERDU, SENIOR MEMBER, IEEE

abstract—1g this paper; we enlyu an optical; direct-detection DPSK
“eceiver.whose error probebillty is. qmtum—llmited as:the; mnsmitdng
‘aser iinéwidth: vanishes.. The: receiver :design is. based.on. & binary
-auiprobable llypotheds test with donbly stochastic point process obser-
ations. the conditionsl Tandom: rates of- wldch depend o tbe treasmit-
ine. laser-phase: noise which_is: modeled as s Browniu motion. The

veceiver structure colsim of.a simple, delay-ud-snm opdul preproces--

-or;tollowed ‘by - ‘photoelectric. convérter-and ‘an integnte-ud-dump
ircuit, Upper ud lower. bonnds on the receiver bit error rate. nre derived
-ysdcvdopin; bounds oi the; eonditioul rates of the point process, ind it
-s shown that the error. mlnbility bouads ¢ comverge to the'true value as
“hé transmitting laser limewidth decreases; Bonnds oz the power penalty
re computed. for: panmeters cofmponding to. existing -semiconductor.

niection luep, and are seen to he less than the limiting power penalty for,

-he balanced DPSK receiver.

. INTRODUCTION

N differential phase shift keymg (DPSK), information is
_conveved by the carrier: phase in the currént symbol interval
elative to that in the previous interval. While less efficient

han phase shift keying (PSK), DPSK 'is less sensitive to large.
nase noise amplitudes by utilizing phase noise correlation in-

:aiacent symbol intervals. Demodulation in conventional
radio frequency) DPSK systems can be achieved by multiply-
ng the total received scalar field by a deleyed version of itself,
ollowed bv integration over a symbol period [1]. However,
1ue to the lack of efficient optical multipliers and sharp filters,

his receiver structure is not yet feasible at optical frequencies.
an' alternative soiution is*to heterodvne the received optical
agnai to the microwave frequency range, and employ a
:onventional demodulation scheme. This heterodyne DPSK
eceiver has been analyzed previously [2). While incurring a 3
iB loss inherent to the heterodyning operation, this receiver
:voids the need to count photons, which may introduce an

:ppreciable loss in some existing avalanche photodiodes [3].
n this paper, we assume an ideal, photon-couating device
:nd concentrate on the design and analysis of a direct-detection
IPSK receiver. Performance is measured by the power
senaity, which is the ratio of the transmitted optical power
cauired to achieve a gnven Yig error rate to that required by a
ccelver. witose power requirement is detenmned solely by the
xatistical nature of the photodetection process. Thus, the
~ower penaity is a measure of demodulation efficiency, and a
‘ecever with 0 dB power penalty is described as quantum
imited. In 2], a balanced, dxrect-detecuon DPSK receiver
vas round to have a power pemlty ofat least 3 dB. We analyze
n this paper a DPSK receiver whose pov.cr penalty is O dB for
: ransmitting laser with no phase noise, and less.than 3 dB at

'anenpprovedbythe}:dmrforSynchmuooume;(wdDmcuonof
he IEEE Communications Society. Manuscript received September 17, 1987;
evised April 25, 1988. This work was supporied by the U.S. Office of Naval
sesesrch under Gramt NOOO14-87-K-0054. This paper was presented at the
988 Imernational Symposium on Information Theory, Kobe, Japan.

“he authors are with the Department of Electrical Engineering, Princeton
Iniversity, Princeton, NJ 08544,

EEE Log Number 882490i .

10~ bit error:rate (BER) for existing semiconductor.injection
lasers.
The' remainder of this paper is oi-gam ed as follows: In
‘Section. I, we formulate 2. DPSK: receiver from:a. binary
hypothesls test with pomt process observations. The random-
ness of the rates of the point process. .under each hypothesis is
due to the transmitting laser phase noise, which is modeled as
a:Brownian motion. It is shown why the optimum receiver is
not fcasxble and then attention is restricted to simple strategxcs
that use. photon countmg .only. The proposed DPSK .recéiver
'1mplements 2 subopumum bmary hypothcsxs test préceded by
a. dclay-and-sum opucal preproccssor In Section I, we
ana!yze the receiver performance as a function of system
'parameters The exact error probabxlxty expressxon depends on
aser phase noise samplc path Since this mgf appears to be
intfdctable, the receiver error probabllxty is bounded by using
n alternauve functional whose mgf is computable.

1I.-OpPTICAL DPSK RECEIVER

In binary DPSK modulation, the transmitted scalar field is
amplitqde‘-modulated by a-bit stream derived from the infor-
matwn sequencé. Denoting the information sequence as {- - -

-15,bo, by * <+ } where b, € {~ 1, 1} is the information bit in
the time interval nT st<(n+ l)T we compose a sequence
{ *G.1, 0, a "}, @y € {—~1, 1} from the relation a,-a,

2 by to amphtudc-modulate the transmitted scalar electric
field. Under the assumptions of spatial homogeneity and
distortionless transmission, the transmitted (and received)
scalar electric fields may be described as

nTsti<(n+1)T (1)

where the Brownian motion {6, ¢ € [R} models the
transmitted laser phase noise and » is the carrier frequency.
Note that in the absence of laser phase noise the transmitted
optical energy is & & A772 photons per bit.

The decoding from {a;} to {b;} is performed in the same
operation that compares the received signal in [n7, (n + 1)T)
to the reference signal, This suggests the demodulation
-scheme shown in Fig. 1..The optlcal signal described in (1) is
divided by a half-silvered . mirror into two signals of equal
power, one of which is delayed by the symbol period T, and
then added to the other. The resultant optwal signal is incideat
on the photodetector in Fig. 1 and is given by

s(f)=a,A cos (vt+0,)=V2 Re [ g

r(t)=-\/l-§ {asA cos (v1+6,)+a,.A
* cos (vt +6,]—[»T+A6,])}

=v2 Re [E,e’"] )]

1090-677£/89/0100-0046801.00 © 1988 IEEE
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delay
by T

-Proposed optical DPSK receiver:.

g, lgl

vnere-E, &
=nveiope: of the- electric field incident on the photodetector,
zna-Ad; is an-increment of Brownian motion given by

‘01 — 0, 0‘.. (3)

hc temammg receiver structure will be based on the
~1ectron ‘point’ process observanons at the output of the
nnotodetector Thns process may be. modeled as-a doubly
tochasnc point process wnh count N,, occurrence times' {W.
¥, - WN,} and rate )\, = ol B + dwhcn: a and d are
-warameters of the photodetector [4). It should be pomted out
nat it is equivalent to express ¢ the rate as A= ar¥t) + d, and
o ignote the double frcquency terms, Although the followmg
esuits may easily'be extendéd for arbntrary values of wand d,
ve assume in the following that the photoelectnc convcrsnon is
.deal.i.e., @ = 1and d = 0. Under these assumptions the rate
if the elcctron departure process for0 < ¢t < T'is

\._— [l+bo cos AG], O0=st<T )
vnere we have assumed'»T = 0 mod 2x. The hypothesis pair
or the interval [0, T) may be described'as

Y is a doubly stochastic counting process with intensity:

It N=A® & 2 (1-cos AB) 0st<T

=AW é»i (1+cos A8) 0st<T ()

where ¢ is the transmitted optical energy in photons per bit as
defined earlier. If we define &) & EM\O|{N,; 0 s o < t}],
then the test which minimizes ‘the probabmty of error is [S]

Nf X(')

T f
Z 108 T |, ™ AW-RO dr 2= 0. ©6)

In W’ s0

o

The formulation of this log-likelihood ratio has an interesting,
two part structure. First derive the minimum mean: squared
error causal estimates of the intensities given the observation
under each hypothesis, and then solve a binary hypothesis
testing problem with observations from a nonhomogcneous
Poisson process whose conditional rates are these estimates.
This fact has commonly been referred to as the separation
theorem of detection, and motivates the use of subopmml
estimates in hypothesis testing with doubly stochastic point
process observations [4], [5].

Unfortunately, the explicit structure of (6) is unknown due
to the difficulty in evaluating the conditional estimates A(".
One approach to this problem is to-replace the opumum
estimates 8 with suboptimum estimates. In this paper, we
propose the suboptimum estimates E\D). A justification of
this approach is the following. Denotmg By as the laser

" A/2e"{a, + .a,_1e~/T+M)}. is-the complex:

mcw1dth in Hertz, v & 1/B,T, andchoosmgxosuch that 1 —
VL xp-< =7, iye have -

-?[a,t e [0. T] :-]c'(‘)s AQ(‘-E [COS AO,]]}xo]
| _Ze-/an (et e= T =52, (7)

“his upper.bound follows from Lemma 1 in Section III. Fory

- 1000, and X, = 20 pércent of E [cos AG,], the left-hand side
:r (7) is less than 0.03. Forvy = 1500 and X, = 20 percent of
' [cos Af,), the probability is less than 0.003. So the
nrooablhty that a sample path of the mtcnslty ‘deviates from the
mean in a symbolinterval by more than'20 percent is bounded
sbove by.a small-number for- reasonable values of . Based on
this.argument, we employ.the (constant) mean E [cos ‘A§,] to

-estimate the process {cos Af,, ¢ ‘€' [0,.T']}, and the suboptimal

esumatcs of.the.conditional rates follow directly. The-advan-
‘age to assuming:a constant: estimate is_that the test-assumes

~homogeneous Poisson point .process. observations,. and: the

decision strategy is very simple: compare the photon'count to a
threshold.-By (7) we can expect this strategy to'be optimum for
largc ~-although it may be. far. from optimum-for low .

A subopumal receiver.design is specified below. Since {8,, ¢
€ R} is-a Brownian.motion with zero:drift and diffusion
coefficient- V2xB;, {A§,, t € R} .is a stationary Gaussian
-random process with zero mean and autocorrelation function

2
—: [1—'1%1'] K ]TI<T

L

Y
R(n= (8)
lo otherwise
The means of A are easily computed

¢
SINP)=2 (1-em")

t:i[)\}"]=-E (1+e~*). )]

Employing these suboptimal estimates in (6), a suboptimal
hypothesis test is

L 2te-*/1
Ny |t (10)
= “L+e~Tr
o 1log T=e=h

where | * | indicates the greatest integer function. Due to the
stationarity of the laser phase noise increment, the suboptimal
test is not a function of the photon arrival times, and the
remaining portion of the DPSK receiver need only count the
number of reccnved photons in the interval [0, 7). The entire
suboptimal receiver structure is shown in Fig. 1. Note that the
threshold obtained in (10) is not the threshold that minimizes
the error Pl’Oblblllty of a test which uses the statistic N7. The
opumum threshold is also a function of the optical power and
v, and is closely approximated as a by-product of the error
probablhty analysis of Section III.

. It is worthwhile to compare this DPSK receiver to the
balanced receiver analyzed in [2] The balanced receiver
divides the received optical signal into four streams of equal
intensity, two of which are delayed by the symbol penod T.A
dclayed stream is added to a nondelayed stream in the same
way as in the proposed receiver, except at one-half the power.
The remaining pair of optical streams are subtracted. The
outputs of the summer and subtractor are each input to
photoelectric converters, and-the resulung counts, are sub-
tracted. The resulting hypothesis test requires no-threshold
setting, That is, the difference of the electron counts is
compared to zero, and the receiver is independent of -y.
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.Howcver, m using, this mformauon about the-laser phase
noise; the proposed DPSK -réceiver requires one-half the
:tnnsmmed opncal power of ‘the: bilinced DPSK receiver fo
* achiéve the same erfor rate. This claim Will: be vcrxﬁed in
Section III. This companson assumes t=at the threé threé-port beam
combmers used in both receivers. are: lossless B3 should be
noted that if a Mach~Zehnder- interferometer is -used as the
beam combiner (6], then the proposed DPSK detector uses
only one of the two output port beams, and the. .energy of the
signal incident on the photodetector is onc-halt' of that assumed
in the analysls of this paper. In this case, the perfonnancc of:
our receiver is asymptoucally ¢qu|valent to that of the
balanced detector in {2}, implemented using both output ports
*of 'a Mach-Zehnder- mterfcromcter 7.
As suggested above, the paramcter v is central in the
analysis of optical communication systems employing coher-
ent light with nonzero linewidth. It characterizes the perform-
ance degradation ‘die to the ‘transmitting. laser phasé jitter
‘relative to the symbol rate. For fixed laser lmcw;dth sthe effect
of the phase noise on system performarice-is less pronounced
as the symbol rate increases, as reflected by an increase of y.
Typlcally, v €[50, 1600], which follows from B; € [6 MHz,
20 MH3) for-semiconductor injection lasers*[8},-dnd.symbol.
rates from 1 to 10 Gbits/s.

JI1.- PERFORMANCE ANALYSIS

In this section, we characterize the performance of the
proposed DPSK receiver. We show that as y — oo the
probability of error is the quantum limit of optical communica-
tions, We then ‘derive upper .and .lower bounds on the
probability of error for arbitrary -y and show that these bounds
converge to the true value as y — oo. Finally, we present
Monte Carlo simulation results of the receiver performance:
and compare them to the error probability bounds.

We begin by showing that the performance of the proposed
DPSK recciver is quantum limited as y —* co. In this case, the
transmitting’ laser is ideal and it is easy to see that (10)
becomes

H
Nr>=0

5 11
= a1

As y ~* oo, the rates under each hypothesis are deterministic
and N is an unconditionally Poisson random variable under
cach hypothesis. If we define A; & [T NO'dt, i € {0, 1} then
the probability of crror is .

Pferror]= P[NT—OIHI]—— e, (12)

2¢{ for.an ldcal transmxmng laser, (12) becomes
1

P[crror1=§,e‘2f (13)

which is known as the quantum limit. Thus, the receiver
performance is quantum limited as the transmitting laser
linewidth goes to zero,

Next, we consider the error probability for finite values of
+. It is convenient to define the moment generating function
M(v) & E[e**] and to let N(A) denote a Poisson random
variable ‘with mean ‘A. Conditioned on. the rate and the
hypothesis, the observation process is a Poisson point process,
Therefore, the probability of error under 4, may be found by
first conditioning on {A8,, 0 < ¢ < T}

Plercor| Hy)= E{P[N(A)) s1]{A8,, 0st<T}))

=E [2 s "“1]
k=0

[ | k
_v d

bldk

Since A =

= Mi@)lv= -1 (14)
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where / is an arbitrary f noancgative integer threshold, -and the

‘last: line follows from an apphcauon of the:bounded: conver-

gCncc theorem. By a sumlar argument we have under H,

N -1 dr
P[cuorlHQ];l—z A

k=0

It .appears ‘that there ‘is ‘no closed-form expression’ for the
forcgomg moment generating functions, when {40, 0 s t =
T} s a Tincrement of Brownian motion. In theremainder of
this section, we consider upper and lower bounds to (14) and
(15). Based on the fact that the mgf of 1/2T 3 (A8,)* dt is
computable (see the Appendix),,our approach i is to find upper
and lower.bounds on the.error. probablhty based: on quadratic
bounds of cos x:

— My(V)|y= -i- (15)

x2

x? ,
1—-2—scos xsfy(x) &

) (16)

1 otherwise

where 0 < 2 < 1 and x, is the smallest positive real number
such that 1 - ax§/2 = cos x,. If each cosine in the
expressions for A is replaced by the upper bounding function,
the corresponding rates are further apart, hence it is easier to
discriminate between them and a lower bound on the error
probability is obtained.. Analogously, an upper ‘bound is
obtairied .if each cosine is replaced by the lower bounding
function. More precisely, the cumulative distribution function
(cdf) of a Poisson. random variable is-a strxctly dccrcasmg
function of its mean, that is, P[N(A) < /] is decrcasmg in A,
If the’error probability under each hypothesis is found by first
conditioning on {A6;, 0 < ¢ =T}, then the conditional
probabilities are .Poisson cdf’s, and substituting the bounds
.from (16) in the expressions for A; will yield upper and lower
bounds for the conditional probabilities as well as the
unconditioned probabilities. Denoting A as the bound on A,
which yields an upper bound to'the crror probability on H,
and Al as the-bound on A; which yields a lower bound to the
error probabdnty under H,;, we have

AV= 2§ S (A6,)% dt
AU=2¢—AY

A{,-:%, [, 1-7.00) ar

Ab=2¢{-AL. a7)

As seen by (14), (15), and (17) computation of these bounds

requires the moment generating functions of Aband AJ. The
following two lemmas loosenutwo of the bounds S0 that we
require only ®(v) & E[e'*0), which is derived in the
Appendix. Lemma 1 quantifies the fact that the probability that
a T length sample path of A6 deviates far from the ongm
decreases with increasing . Lemma 2 uses this fact in
deriving;a lower bound on the error-probability under Hy,
which does not depend on the mgf of AL.

Lemma 1:! Let x € R,. Then

P[at € [0, T] |a0,|>x]s4Q [;\/‘;] .

LQlx] 4 1V2x fr e s,

i
1
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Proof Let {W, t € RL.} bea Wienetr process, and x 2
x72v2xB;. Forv'€ IR+, we define thé stopping times 7, £ inf
{t: W, >-v}and T, &.inf {£iW, < -v} Then,

P{3r € [0, T) : [A8,|>x)
=P[3t-€(0, T) : |6,=6;_7|Sx]

5P te [0 2T] |0 T+t"0 T|>x-l

=P [at € [0,2T)" | oo|>§]‘ (18)
=P |31€00,2T] : | Wi]>: x|
L ’. ’ f 2\/21‘3{

=P [min (T, T-)<2T]
<P[T.<2T)+P[T..<2T] 19),
=2P[T.<2T] _ (20)
=2{P[T,<2T, Wyr2x)+P[T.<2T, Wyr<k]} -
=4P[T.<2T, Wyrz«] @n

=4P[War=k])

—4g [x ‘ﬁ ]

-Equation .(18)  follows from the Markov property -of the

Brownian. motion,. (19)" -from the union bound, (20) from the
fact that — W .has. thé-same -probability law as W; and (21)
from the reflection principle of the'Wiener process. -

It should be pointed. out that a tighter upper - ‘bound is
possible by using the first passage times for the process {Af;, ¢
€ [0, T1}, whose distributions are known. [9], or by
strengthening the mcquahty in (19) using the first passage time
of Brownian. motion out of a symmetric interval:-about the
origin.[10], [11]. However, the easy upper bound used in the
proof suffices for our needs.

Lemma 2: Let [ be an arbitrary, nonnegative integer. Lower
bounds on the conditional error probabilities are

1-4Q [J—;: \/E ] -E[P[N(aA{,’)sH{AB,, 0<:<T}
x
<E[P[N(Ag)>1|{a6,, 0st=<T}])
where 1 — ax¥/2 = cos x Y|x| € [0, x,], and

i @ (ZD*e-zfsE[P[N(A,)sl|{A0,, 0=<t<T}]).

kw0

Proof: Let 1, be the indicator function of event A.
Then

E[P[N(Ao)>1|{A8;, 0st=<T})) ~
=1-E[P[N(A)=!|{A8,, 0s:<T}}
=1~ E[P[N(Ao)=<!|{A6;, 0st<T}]
* {jassxpvicto. 1) FAare0. THANI > xg) })
=1-E[P[N(aA])=!|{A8,, 0st<T})
* 1jaa sxgveco.mi]
~P[3r€ [0, T]: |A8,|>x,]
_1-EIP[N(aAY)s1|{a8,, 0st=T}])
-3¢t € [0, T) : |A8,|>x,)
vnere 1 ~ ax¥/2 — ¢os x = 0 vix| € (0, %}

ey wat v

49 |

Applying Lemma 1, .we have proved the ﬁrst bound of this
claim. To prove the, second bound; we recogmze the fact that
A1 < 2{; .and that the cdf. of N(A) is a nonotomcally
decl‘easmg function of A -
‘As a-direct: result of I_cmma 2 4 lower bound "on thé total
probabxllty “of. error is

- 49‘[%\[ ];+§, a e

a* .d*

_2 T — «p(u) sge[ehor] (22)

where ®(v):is as defined- earlier, and./.is an arbitrary non-
negative mtcger From (17) as.well the fact that the Poisson
cdf.is-a decreasmg funcuon of the mean,.an upper bound on

-the total error probablhty is

dk
2Plerror] s 1+ g) F — [P (- v) =3 W))m-1- (23)

Both (22) and (23).depend on ®(v), which is computed in the
Appendix.

In the next lemma, we show that the bounds in (22) and (23)
converge as y — o,

Lemma 3: Let I be an arbitrary, nonnegative integer.

! k
1‘". 2 E- ——k' 829’@(— v)- Q(v)]

=lim 1-4Q [ \/_ ] +2 o (zg)ke-zr
yo- k=0

L gk
i k' dv dok
Proof: We rewrite (22) as

e[ ]S
k-o

—-E[P[N(aAy)s!|{Ab,, 0st=T}])<2Plerror].
Taking limits of both sides as y — o0, we have

PIN@Ds1}+1~lim E[P[N(@Ag)=1l{48,, 0=t<T}))

‘I’(v)

ym =g

<2 Pferror].

The last two terms cancel by an application of the bounded
convergence theorem, and the continuity of the Poisson cdf

-with the mean. The same result follows from the limit of (23)

by similar arguments. .

Since the upper-and lower bounds result by replacing the
mgfofl/TITcos AG,dt by thatof 1/T{T (1 ~ A8%/2) dt, itis
of interest to explore the difference between the mgf 's of the
two random variables. In Fig. 2, we compare the mgf of 1/T
{T cos Ag, dt via Monte Carlo simulation to the theoretical mgf
of 1/T {7 (1 — A9%/2) dt for.y = 30, which is conservative
«na well below the range of values of interest in the analysis of
the oroposed detector. The-theoretical mgf of 1/7 fra -
«8%/2) dt begins to differ from the mgf of 1/7 |7 cos Af, dt
~btained by Monte Carlo simulation atv = — 6. As seen in the
Appendix, this sharp rise of the mgf is due to a branch point in
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the infinite product expression of the mgf. As vy increases, this
branch point occurs for smaller values of v. Fortunately, we
are concerned with the region v € [~ 1, 1] where we evaluate
the mgf for the error probability bounds.

Fig. 3 presents the upper and lower bounds on the error
probability of the test in (10) for an optical power of 6 photons
per bit. Also shown are results of Monte-Carlo.simulations of
the hypothesis test. It appears from the simulation results that
the upper bound is tighter than the lower bound. This is
because the lower bound on E(P[N(Ay) = /[{A6,,0 st =
T}]] obtained in Lemma 2 is derived by trivially upper
»ounding cos (x) by unity for |x] > x,. In Fig. 3, it can also be
:een that the error probability bounds are discontinuous
.unctions of . These discontinujties occur for values of ({, v)
vnere the suboptimal threshold, given by the RHS of (10),
:nanges value. Indeed, these discontinuities result from the
15¢ of a suboptimal threshold. As the LHS of.(10) is integer-
sajued. it is straightforward to optimize the threshold SO as to
ninimize either the upper or lower bounds. Because of the
ightness exhibited by the upper . -bound, we choose the
hreshold function which minimizes (23). Addmonally, since
ne process {A", t € {0, T} is close to the mean E[A] for
noderate v, the suboptimum threshold function in (10) is
-auat to the optimized threshold function except in very small
mtervals in the range of interest of 4. In Fig. 4, we have
dlsplayed the lower envelope of the upper bounds correspond-
ing to all integer thresholds, (which is, obviously, an upper
sound to the error probability of the test obtained with the
spumum threshold) together with the lower bound computed
it the threshold that minimizes the upper bound for several
ratues of {. Thatis, Fig. 4 displays (22) and (23) replacing /by
ihe ontimized threshold function.

[EEE TRANSACTIONS ON COMMUNICATIONS, VOL- 37, NO. 1, JANUARY 198
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Fig. 4. (8) Error probability bounds with optimized threshold. (b) Error

probability bounds with optimized threshold.
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Fig. 5. Bounds on the power penalty of proposed DPSK receiver.
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The power penalty is an alternative way to characterize the
receiver performance. Fig. 5 shows bounds on the power
penalty of the proposed DPSK receiver at 10~ BER. These
curves were obtained by recording the values of v, for fixed
optical energy, at which the lower bound (22) and upper bound
(23) were equal to 10-?, The optimized threshold was
employed for these curves as well. It should be noted that the
lower bounding curve in Fig. 5 is a smooth lower bounding
envelope to the power penalty data. By comparison, the power
penalty for the balanced DPSK receiver as described in (2] is
always greater than 3 dB, and attains this value only as y —
oo, As Fig. 5 illustrates, the power penalty for the quantum-
limited DPSK receiver is below 3 dB for y > 700.

IV. SUMMARY

In this paper, we have analyzed the error probability of an
asymptoﬁcally quantum-limitcd direct-detection DPSK re-
ceiver. The receiver consists of a delay-and-sum optical
preprocessor in tandem with a photoelectnc converter and an
integrate-and-dump circuit. The output is initially comparcd to
a suboptimal threshold that was derived under the assumption
that the conditional rates are constants. We tightly bounded the
error probability for arbitrary thresholds by deveIOpmg upper
and lower bounds on the conditional intensities of the photon
point process at the photodetector. Prompted by the tightness
of the upper bound, we then improved the receiver perform-
ance by minimizing the upper bound over all integer threshold
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levels. “This. opumlzed threshold coincides with the RHS of close to, but not exactly {2x/(v[2nx]?) ,n = 1,2 *--}. Now

10) except-in very small® ‘intérvals in the. range of vy. The
power -penalty bourids were computed using the optimized
threshold function,. ‘and appear in Fig. 5. While the. balariced
:DPSK receiver analyzed in 2} had a power pcnalty greater
thani 3 dB, the receiver.presented here had a power penalty less
than 3 dB for. reasonable values of .

APPENDIX

MOMENT- GENERATING FUNCTION OF 1/2T [T A6? dt

In this section, we find an expression for the moment
generating function of the random variable 1727 (T A% dt. A
more gcncral problem has been solved prevnously [12].
Consider thé fandom process: {z; & [{ x2h(t, ) dr, t € R, }
where {x,, ¢ € R.} is a zero mean, wide-sense stationary
Gaussian random process with autocorrelation function R(r)
Then the -moment generating function M, (v) is given in
infinite product form as

= 1
M 0)=T] — Al
(U) l:‘lI v 1- ZUA; ( )

where {N;, § = 1, 2 :--} are obtained by solving the
homogeneous integral equation

Noil0)= |, Re-o)h(t, Do dr. (A2)

For our particular case, we have
t=T
W(T, ==
) T) =
2T

and R(7) as in (8). By substituting these equations into (A.2),
wefindfor0 <o < T

T 7
Aidi(a)=— S (T-|o—-1])¢i(7) d. (A.3)
'y 0

Similar equations result for other values of o. Taking the first-
and second-partial derivatives of (A.3) with respect to g we get

, T
)\;¢,(a)=$ jo sgn (r—a)dy(r) dr 0<a<T  (A.d)
and
. 2r
¢1(0’)= ——— (o) 0<o<T. (A.S)
N
Equation (A.5) suggests the general solution
di(0)=A;cos wo+B;sinwo 0<a<T. (A.6)

If we substitute (A.6) into (A.3) and (A.4) to solve for the
unknowns A;, w;, and B;, we find that {\;,, i = 1,2 ---} are
the solutions to

1 f f F
- '%l%sin Ef.l=1+cos -1_1.
!

Includcd among these clgcnvalues are {21r/(-y[2n + 11%x%), n
=0, 1,2 --+}. The remaining portion of the eigenvalues are

that the eigenvalues are known, the mofment generating
function of 12T |7 407 dt miy.be found by (A. 1).
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Multiple-Access Channels with Memory
with and without Frame Synchronism

SERGIO VERDU, SENIOR MEMBER, IEEE

Abstract —The capacity region of frame-synchronous and asynchronous
discme two-us#r inultiple-access clmmels with finite memory is obtsined.
Frame synchronism reférs to the tbility of the transmitters to send their
codewords in unimmmufmsyndlommmmemoqkss
multiple-access channels is known 1o result in the removal of the convex
hull operation from the expression of the capacity region. We show that
when the channel has memory, frame asynchronism rules out nonstation-

.ary inputs to achieve any point in the capacity region, thereby allowing
only coding strategies that involve cooperation in the frequency doatain but
not in the time domain. This restriction drastically reduces the capacity
npono‘sommulﬁple—msschnmlswithmemory and in particular the
totsl capacity of the channel, which is invariant to frame asynchronism for
memoryless channels.

[. INTRODUCTION

HE CENTRAL result in multiuser information theory

states that the capacity region of a two-user discrete
multiple-access channel is equal to the convex closure of
the set of rate pairs (R;, R,) satisfying

0sR sI(X;2|Y),
0sR,sI(Y; Z]X),
R+ R, sI(X,Y;Z) (1)

for some independent input distributions X and Y and
output distribution Z. This result was obtained by
Ahlswede (1] in 1971 under the key assumptions that the
channel is memoryless and frame (or block)-synchronous,
i.e., the beginnings of the codewords sent by the transmit-
ters coincide. In the absence of frame synchronism, an
unpredictable offset exists between the epochs at which the
codewords of each user are received at the decoder. Even
though the receiver can easily acquire timing synchromsm
with each user and hence know the value of the offset prior
to decoding, the fransmitters must encode their messages
without knowing the offset between their codewords. As-
suming that the offset can be guaranteed to be negligible
with respect to the codeword length (e.g., if an upper
bound on the offset is known by the transmitters), Cover
et al. (5] and Narayan and Snyder (15] proved that the
capacity region and the cutoff rate region, respectively, of

Manuscript received November 23, 1987; revised
work was sup| mpmbytheomcc of N Research under
contract NOOO14-87.K-0054. The material in this  .r was partially
presented at the 1988 IEEE International Symposiu.: un Information
Theory, Kobe, Japan, Juoe 1988,

“ne author is with the Devartment of Electrical Engineering, Princetoa

Iniversity, Princeton, NJ 08544,

EEE Loz Number 8928188,

aust 25, 1988, This

the discrete memoryless multiple-access channel are the
same as in the frame-synchronous case. Poltyrev (18] and.
independently, Hui and Humblet {12] have shown that if
no information on the actual value of the offset is available
to the transmitters (i.e., if the channel is “completely”
frame-synchronous), then the capacity region of the dis-
crete memoryless multiple-access channel is as stated above
but without the convex hull operation. This implies that in
most:memoryless channels of interest, frame asynchronism
does.not change the capacity region, the most well-known
exceptions being, perhaps, the Massey-Mathys collision
chan ¢l without feedback (13] and the counterexamples in
(6, p. 287] and (3]. Futthermore, the Poltyrev-Hui-
Humblet result implies that the maximum achievable rate
sum (R; + R,) (or total capacity) of the memoryless mulii-
ple-access channel is never decreased by the lack of frame
synchronism, because the rate sum of any convex combi-
nation of rate pairs is equal to the convex combination of
the respective rate sums. As we shall see, these conclusions
are no longer true when the multiple-access channel has
memory.

Even though the study of the capacity of single-user
channels with memory has occupied a prominent position
i1 the development of the Shannon theory, multiple-access
channels with memory have received scant attention in the
literature (seec van der Meulen [14, open problem 12)).
Aside from their inherent conceptual and practical inter-
< &st, multiple-access channels with memory play a key role
in the modeling of symbol-asynchronous channels. ! These
are continuous-time channels where each codeword sym-
bol modulates a finite-duration signal waveform and the
transmitters do not cooperate so that the symbol epochs
are aligned at the receiver. Since each symbol overlaps
with two consecutive symbols transmitted by the other
user, the equivalent discrete-time multiple-access channels
required to model symbol-asynchronous channels have
memory [21]. Therefore, the study of multiple-access chan-
nels where the transmitters are completely asynchronous
leads to frame-asynchronous discrete-time multiple-access
channels with memory.

10ne more type of channel “asynchronism™ is that which allows
deletions and insertions of symbols at locations unknown 10 the decoder.
This has been studied by Dobrushin (7] and by Ahlswede and Gacs (2] in
the context of single-user and multiple-access memoryless channels, re-
spectively.

1018-9448/89,/0500-0605501.00 ©1989 IEEE
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The multiple-access channel with memory studied in this
paper has finite input.alphabets 4, and A, and finite
output alphabet B: Except for the general converse theo-
rem for synchronous channels proved in Séection II, our
results are obtained under the assumption that the multi-
ple-access channel is stationary and has finite (input)
memory, in the sense that ¢ach channel output depends on
up to m consecutive inputs of each user, and the outputs
are conditionally independent given the inputs.? The mul-
tiple-access channel with finite memory encompasses many
cases of practical interest such as the symbol-asynchronous
channel and channels with finite-length intersymbol inter-
ference; its capacity has been solved in the single-user
case in the works of Tsaregradsky {20], Feinstein {8), and
Wolfowitz [22)].

As usual when dealing with sources or channels with
memory, the capacity region of the multiple-access channel
with memory does not admit single-letter characterizations
and, rather, is given in terms of a limit of regions. This fact
does not curtail the applicability or interest of these results
because those limits are computable, as we show in several
examples where they result in explicit closed-form expres-
<ions. Moreover, we provide a theorem (which generalizes
‘Volfowitz's result {22, theorem 5.5.1] on the speed of
-onvergence ol single-user capacity) that allows the com-
>utation of the capacity region of the channel with mem.
MY up to any desired. degree of approximation via the
-omputation of achievable regions for memoryless chan-
1818,

As in the case of the memoryless multiple-access chan-
nel, the frame-synchronous channel with memory is shown
1o satisfy the time-shanag principle, i.e., its capacity region
is convex. As a form of cooperation in the time domain,
time-sharing requires nonstationary input distributions.
Note that, while stationary inputs always achieve capacity
in time-invariant single-user channels, there are time-.
invariant multiple-access channels (e.g., the aforemen-
tioned channels whose capacity region is decreased with-
out frame-synchronism) that require nonstationary inputs
to achieve all points in the capacity region. In this paper
we show that only stationary inputs are allowed for
frame-asynchronous multiple-access channels with mem-
ory. Hence cooperation between the users is beneficial in
the frequency domain. (dependent inputs are necessary to
achieve capacity because the channel has memory) but not
in the time domain due to the lack of a common time
eterence. The opposite situation is encountered in the
rame-synchronous memoryless multiple-access chanzel,
vnere it is enough 10 restrict attention to independent
nout sequences and time-sharing (hence nonstationary)
‘nputs may be required to achieve capacity. In the light of
wur resuits. the Poltyrey-Hui-Humblet result for memory-
ess channels is a consequence of the nonstationarity of
ime-sharing strategies.

The results and proof 1echniques of this paper easily generalize 10 the
-ase when 1he oulputs are conditionally m-dependent givén the inputs,
i.e,, when all pairs of subsets of random variables whose indices differ by
more than »t are independent.

1EEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 3, May 1959

The-actual impact.that: the lack of frame synchronism
(i.e., the restriction to stationary inputs) has on the capac-
ity region-of the-multiple-access channel with memory is
quite diverse. On one hand, there are many frame-synchro-
nous channels (e.g., the symbol-asynchronous multiple-
access channel considered in {21]) whose capacity regions
are achieved by stationary inputs, and therefore, they do
not decrease if the users are not guaranteed to transmit
their codewords in unison. On the other hand, we show in
this paper the existence of channels with memory where
not only the capacity region but the total capacity is
drastically reduced by the lack of frame synchronism.

II. FRAME-SYNCHRONOUS CAPACITY REGION

We give first a general converse coding theorem for the
discrete frame-synchronous multiple-access channél that
puts no restrictions on its transition probabilities.

Theorem 1: The capacity region of the discrete frame-
synchronous multiple-access channel satisfies®

1
C Cclosure/| liminf — C,,) (2)

A~ N

where

c=U ((Rl,R,): 0 <R, < I(X" Z"Y")

ey

ISR, s I(Y"; 2MX")
Ry+ Ry I(X%, Y% 2} (3)

and the union is over independent n-dimensional input
distributions. Note that the convex closure of C, is the
capacity region of the discrete memoryless multiple-access
channel whose input and output alphabets are 4], A3, and
B”, respectively, and whose transition probabilities are

Pzeixs. v

Proof: We need to show that, for all 0 <e <1, every
¢-achievable rate pair (R,, R;) belongs to the right side of
(2). If (Ry, R;) is e-achievable, then for all y> 0 and for
all sufficiently large n there exists an (n, M), M, ¢) code
(i.e., 2 code with block length n, M; codewords for user i,
angd average probability that both messages are correctly
decoded greater or equal than 1 ¢) such that

log M,
08 '2R;"Y’

i=1,2. )

Fix one such code and let S, and §, denote independent
random variables uniformly distributed on (1,---, M,},
and (1,++, M,}. The message transmitted by user i is a
realization of §. Let Z* denote the output of the channel,
when S, and S, are transmitted using the above
J, My, My, ¢) code, and let (S, S;) be the messages se-

JAll the logarithms, exponentials, entropies and muual informations in
this paper have 2 commona arbitrary base.
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lected by the decoder. The Fano inequality states that
H(S,, 5;12") slog2+ B[(S8,, &)+ (S, $)]
. log MiM, (5a)
H(S,Z") slog2+ P[S;#§]iog M,  (5b)
H(S;|Z") slog2+ P[S, % S)iog M;.  (5¢)

Since the average probability of error of the code does
not exceed ¢, the probabilities in the upper bounds of (5)
can be replaced by ¢,"and because S, and S, are uniformly
distributed, we can write

I(S;; Z") = (1-¢)log M, —log2 (6a)
I(S;; Z2") 2 (1—¢)log M, —log2 (6b)
1(5,5,;2") 2 (1- <) log M,M; —log2.  (6c)

If £ {1,---, M;} = A} denotes the code book of user i,
then since S, and S, are independent,

I(£(80); Z1£(8)) = I(/i($1); £(S))
+ l(fl(sl); FATACY))
=I{£1(8)); 2", ,(S2))
2 I{£,(5)); Z")
21(5;2") (M

where the last inequality follows from the data-processing
lemma. In a similar way, we obtain

I(£,(8); ZMA(S) 2 1(Sy; 27)
I(£i($)), /2(S,); Z2") 2 1(S,, 8, 2%).
Now, putting (4) together with (6)-(8), we get
log2 1 :
(1= (R =)~ == < ~I(A(S): Z'1A(S,))

| 1
(1- ‘)(Rz -Y)- 353 s ;I(fz(sz). Z"!fx(sl))

log2 1
(1= (Ry*+ Ry =21) = = < =1(£(S)), (S)i 2")

which implies that

(8a)
(8b)

n ' n n
for all sufficiently large n, and consequently,

. [log2 log2\ 1
(- )R Ry=1)= (2, e o,

1
(l = ‘)(Rl -27’ R}_27) € ;Cu
or all sufficient large n, or in other words
1
1-¢)(R,-2y,R,~2y) €liminf-C,.  (9)
.o N

Jowever, since ¢ and y are arbitrarily small, (9) implies
hat (R,, R,) must be the limit of a sequence of. points
<longing to limiaf,  (1/n)C,, and therefore it belongs
o the right side of (2) (as was to be shown).

1s in the case of the single-user channel with memory,
no unuversai direct coding theorem is known to hold with
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the same generality as Theorem 1. We will henceforth
focus our attention on the following class of multiple-access
channels with memory.

Definition: A multiple-access channel with finite mem-
ory m is one whose channel transition probability satisfies

Pz (Wi oo wilay,e o a,, by o0, b,)
F P e Z Ko Koy Yyio Yoy

(Wyye o W gl@yye ey By By oo by ly)

n
: l—.!."pc( wila:-nﬂ-l’. ‘e Qg bt—nﬂ-lt' Tt b:) (10)
for all n> 0.

This implies that the outputs Z,,,-- -, Z, are condition-
ally independent given the inputs, and each of them de-
pends on m consecutive inputs of each user, thus encom.
passing intersymbol interfererice of finite duration. This
definition allows us to handle the boundary outputs
Z,---,2,_, (which depend on fewer than m input sym-
bols from each user) in any arbitrary way, and it i
therefore preferable to the single-user definition of (8} and
(22] where the boundary outputs are not available to the
decoder. As we shall see, the capacity region of the multi-
ple-access channel with memory depends only on the tran-
sition probability p. and not on the conditional distribu.
tion of the first m —1 outputs.

In what follows it is convenient to refer to a memoryless
multiple-access channel derived from the channel with
memory in the following way.

Definition: Let | > m. The I-block multiple-access chan-
nel derived from a multiple-access channel with finite
memory m is a2 memoryless channel characterized by input
alphabets A} and A!, output alphabet B~™*!, and transi-
tion probability

P((Wm' cowlay e, a),(by, 0, 8y))

!
- H PWlG i3 @1y By i 2 By). (11)
t=m
It follows from (1) that the capacity region of the /block
memoryless multiple-access channel is equal to the convex
closure of

2= U {(R,R,):0s Ry H(X'5 Z4iY")
x.v

0sR,<I(Y;Zx")

R+ R, < I{ XY Z,‘,,)} (12)

where the union is over independent distributions on the
sets A and A}, respectively, and Z!, =(Z,,---,Z)). The
direct coding theorem for the multiple-access channel with
finite memory gives the following achievable region as a
function of the achievable region in (12) for the l-block
multiple-access channel.

Theorem 2: The capacity region of the frame-synchro-
nous multiple-access channel with finite memory m satis-




b closure | J Q, (13)
Iz:n
roof: We need to show that, for all />m and
R\, R,)€(1/1)Q, and for every0 <¢ <1 and y >0, there
xist (n, My, M,, €) codes for all sufficiently large n such
nat
oz M,

=R.—-v, i=1,2,
“hen U,, ,(1/1)@, will be an achievable region and so
»1il its closure since the capacity region is a closed set.
~irst, we will fix / and show the existence of said codes
or sufficientlv large multiples of /: n = kl. Since @, is an
:cnievable regxon of the l-block memoryless multiple-access
shannel. if (R}, R) €Q,, then for every y,> 0 and all k
-uificientlv large, there exist (k, M), M,,¢) codes for the
-block channel such that
og M,-
N RI
Now. we fix one such code and view the symbols in each
Jf its codewords sequentially. In this way, we have a code
or the multiple-access channel with memory with block.
ength kI and M, codewords for user /. Its probability of
:[rOr 1s not greater than ¢ because if we were to constrain
ne decoder not to use the outputs

Taye ..‘Zm_l,z“p...,

- i=1,2. (14)

;j’-Hn-l" " Z(k-mﬂv‘ ) Z(k-l)l+m-1v

nen the situation would be entirelv equivalent to decoding
n the l-block memorvless channel where there is no :nter-
erence between the /-blocks. Clearl, if those output: ire
10t aiscarded. the probability of error cannot incrzase.
Now letting

-Y
RL,R}) =1(R,,R;) €Q n==
14) results in
o M, Y
4 SRy (15)

:5 we wanted to show. However. this only proves the
:xistence of reliable codes with the desired rates for block
engths that are multiples of /. To find codes whose block
engthis n=kl+¢t, t=1,--,1~1, we append ¢ arbitrary
nout symbols to each of the codewords of the foregoing
kl, M,, M, ¢) codes, and let the decoder discard the last ¢
wtouts. Then, it is clear that the probability of <rror
emains unchanged and the rates of the new codes sausfy
via (15))

oM, _ t kl v

a2t an
For sufficiently large k, however, (R,/(lk +1)<y/2 in
vnich case the right side of (16) can be further lower-
ounded bv R, —y. Thus even though the new code has

i=1,2, (16)
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lower rates than the original code with block length &/, the
decrease is inappreciable for large k.

The following result proves that the inner and outer
ounds shown in Theorems 1 and 2 coincide.

Theorem 3: The capacity region of the frame-synchro-
nous muitiple-access channel with finite memory m is
given by

C= closure‘ U Q,,) - closure( hmmf -0, )

RZM

1 1
= ciosure ( limsup — C,) = closure ( liminf --C,,). (17)
\ n—axm N n—xo N

Proof: The essence of the proof is the following in-
equaiity which holds for all (> m:

Doy Z)=1(X, YL Z) + (X, Y 27 ZL)
sI(X,Y52.)+(m-1)log|B] (18a)
and simuiarly,
1 x'; 2\y')y s 1( x*;
Iy, zhx') s (v
which imply that
C,cQ+(m~1)log|BU (19)

wiere U is the unit square {(x, x;):0< x; 51,05 x, <1).
Ve now have the following chain of inclusions:

ZLY')+(m-1)log|B) (18b)
ZI1X") +(m—1)log)B] (18c)

closure | limsup ~ - C ) Cclosure(hmsup Q.)

y A—® R—m

= closure{ {J Q,)

RZM

zC

LAad- -]

c closure( hmmf C )

c closure | hmmf Q

)

| @

where the first and last inclusions follow easily from (19)
and the third and fourth inclusions are Theorems 2 and 1,
respectively. Finally, since the liminf is a subset of the
simsup all the inclusions in (20) are in fact equalities.

The closure operation in (17) is indeed necessary be-
cause even if lim, _, ,(Q,/n) exists, it may not be a closed
set (c.g., if the first m —1 boundary outputs are indepen-
dent of the inputs). At first sight it may seem surprising
that the capacity region of Theorem 3 does not involve an
explicit convex hull operation, especially in light of the fact
«hat the particular case of the frame-synchronous memory-
less muluple-accm channel is known to require the convex
hull operation. In fact the capacny region of Theorem 3 is
already convex because it is given as a limit of achievable
regions for n-block channels whose input distributions are
allowed to time-share among several distributions as a
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result of the assumption' that the users are frame-syuchro-
nous. This is formalized in:the following result.

Corollary (Time-Sharing Principle): The capacity region
of the frame-synchronous multiple-access channel with
finite memory-is a convex set.

Proof: It follows from Theorem 3 that the capacity
region is independent of the conditional probability of the
(m—1) boundary outputs; therefore, we can prove the
corollary for any arbitrary choice of this probability; in
particular, we shall assume that Z,,-- -, Z,, _, are indepen-
dent of the inputs. Then we can follow the same approach
as in the proof of the time-sharing principle for memory-
less channels [6) which juxtaposes two codes. If we impose
the restriction that the decoder must discard the leading
(m—1) output symbols of each of the two blocks, then the
decoding of the new code is decoupled and equivalent to
the case when the codewords are sent individually. There-
fore, the error probability of the new code is better than
the sum of the probabilities of error of the two component
codes, the rate pair is a convex combination of the rate
pairs of both codes, and the proof proceeds as in the
memoryless case [6, p. 272].

Theorem 3 can easily be generalized in several direc-
tions. For example, the proof of both the converse and the
direct theorems remain essentially unchanged for continu-
ous-alphabet channels with input constraints. Another
generalization which is of interest in the symbol-asynchro-
nous channel [21] is that of a compound multiple-access
channel where the transmitters only know that the channel
belongs to an uncertainty set T' (cf. (6, p. 288) for the
corresponding memoryless result). In that problem, the
proof of the direct theorem requires very little modifica-
tion since the construction of codebooks therein is inde-
pendent of the channel, and the proof of the converse only
needs to take care of the fact that a good code must be so
for any possible channel in the uncertainty set. Then
Theorem 3 holds by replacing C, by

C'= xL-J ﬂr{(Rl,R,):OsR,SI(X"; Z"(w)|Y")
YYue&
0<R,s (Y™ 2"(w)|X")
Ri+ R, S I( X", Y"; Z"(w))}

where Z"(w) is connected to X” and Y”" through channel
we&T,

For the purposes of illustration we will show several
xamples where the limits of Theorem 3 are explicitly
-omputable. However, in cases without much structure an
:ternative to the analytical computation of those limits is
heir numerical approximation. This can be done using the
ollowing theorem, which allows the computanon of the
capacity region as accurately as desired via the computa-
tion of achievable regions for memoryless channels. Theo-
rem 4 is 2 generalization of the single-user result obtained
by Wolfowitz {22, theorem 5.5.1}.*

*Added in proof: Theocem 4 gives a solution to Problem 1 in (23).

- g —r s ce o
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Theorem 4: The capacity region of the frame-synchro-

nous multiple-access channel with finite memory satisfies
foreveryizm

1 .
closure (convex 7 Q,)

) 1 -1
c C Cclosure (convexYQ,) + 7 log|BIU (21)

where U is the unit square {(x), x,): 0 < x, 1.0 x, <1).
Proof: The inner bound is a consequence of Theorem
2 and the corollary to Theorem 3. To show the upper
bound, fix /> m and notice that for any n =&/, X", and
Y,
(X", Y" 2"
= 1(X" Y ZhZ2, 2, )
+I{( X"y ZpzZie
X 2R,
<k(m~1)log|B|
+I( X" Y20 2K )
= k(m—=1)log|B|+ H(ZL - Z¥, . _,)

‘H(ZI ZH- 1)1+.|X Y")

m*(k l)l)

< k(m—1)log| B+ ): H(zi2)
j=0

—H(ZI Zk l)“,,,lx Y")
= k(m—1)log|B|

k=1
+ L (#(zig) - H(zrgaxiz. i)
J=0

= k(m—1)log|B|
k-1
+ T I( X, izt (22)

m+4l
j=0

where the next-to-last identity follows from the definition
of the channel with finite memory. Similarly, we can
upper-bound

(X" Z']Y")sk(m—l)log|8|
+ ): 1( Xz i) (23a)
1(Y";Z"|X")sk(m-1)log|8|

+T (vt Ztaxteg). (23b)
1=0
However, we saw in the proof of Theorem 1 that if
(R,, R;) is c-achievable, then for all y>0 and for all
sufficiently large a, there exist (n, M, M;, €) codes such
that

log M,
LRy, =12 (24)
N

e
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and for some input distributions X” and Y*,

(1- ) log My =log2 < (X" Z7Y")  (253)
(1-¢)log My —log2 < I{Y"; 2"|X")  (25b)
(1-¢€)log MM, —log2 < I( X", Y™ Z"). (25)

Now, combining (22)-(25), we obtain for all sufficiently
large &

1
;[(1 _ ()108 Ml _1082] —(m -l)lOZIB'
14-1
sy L (X Zim)

1 .
s [(1~¢)log M, —log2] - (m — 1) log|B]
1 k=1
s L 1K Zesxis)
=0

1
7 (1= €)log M, M; ~log2] - (m - 1) logB|

1 k=1
Tgl, ol )l
Y Z Z 1( X{:ﬂ' b6 :flr zmt{/l)
1=0

which implies that

1
7 (1= O (log My log M;)

€ convex { Q;} +(-IP:—2 +(m—1)log|Bl)U

for all sufficiently large k. This together with (24) implies
that any c-achievable pair (R,, R,) satisfies

(1= €)(Ry, R,)
m-1

!

Thus if (R,, R,) is an achievable pair, then it must belong
to the closed set in the right side of (26). :

The following examples serve to illustrate the analytical
evaluation of the capacity region of the frame-synchronous
multiple-access channel with memory. In Section III, we
derive the capacity of these channels in the absence of
synchronism. .

Example 1: Consider the following multiple-access
channel with finite (m =2) memory which is a simple
discrete-time noiseless model of two-user duobinary trans-
mission: 4, = A4,= (0,1}, B={0,1,2,3,4)

log|BU. (26)

1
€ closure (convex -I-Q,) +

=xtxi gty tya (27)

where, according to Theorem 3, it it not necessary to
specify the initial conditions as far as computing the
capacity region is concerned. To evaluate C, first we
compute the mutual informations in the definition of @,
(12). Since the outputs are deterministic given the inputs,

1EER TRANSACTIONS ON INFORMATION THEORY, VOL- 35, NO. 3, sAY 198?

we have
(X, X, Yy, Y3250 Z,)
. ~H(Z,2) (282)
(X, X352y, Z\, 0, T,)
"H(Zv"'rznlylr""yn) (28b)
I(Y‘,- Y2y, Z )X, Xn)
=H(Z,, -, Z ) X, -+, X,). (28¢)

Moreover, the properties of conditional entropy result in
H(Z,,--,Z| X+ 1)
SH(Z,,--,2,)
SH(Z, -, Z )X+ )+ H(X,+Y,) (29)
and
H(Zz" Ty ZnIXl+ Yl)
= H(Z)| X, + 1))+ H(Z)| X, + 1, Z,)
+ o+ H(Z X+, 2, 2,_)
=H(X+ X + 1))
+H(X;+ 1| X+Y, X, +Y,)
+ -+ H(ZIX +Y, -, X, +Y, )
=H(X,+Y,, -+, X,+Y,)- H{(X,+Y,). (30)
Also, using the definition of the channel and the fact that
(X -+, X,) and (Y}, - -, Y,) are mutually independent, we
can write
H(22'° "y znlylr' ** Yn)
=H(X+ X, -, X, + X1, T,)
=H(X,+ X3, -, X, + X,)
and, similarly,
H(zz" "ty anxl" ) Xn)
= H(Y,+Y,,---,Y,_,+Y,). (31b)

Now, putting together (28)-(31), we obtain

(31a)

C-closure(liminl-l-q,)

R— N
-closurc(liminf U {(R,,R,):
LAnd ] rr
1
OSR‘S';H(X‘+x2)"'1xn—l+xn)
1
OSRgS";H(Yg+Y29""Yn-l+Yn)
1
Ri+RzS‘;.H(X‘+Yg)""x.+Yn)})
-closurc(liminf U {(R‘,Rz):
. L Smd ] Xy,
1
0§R15;H(X‘,-o-,x,)
1
Osts;H(Y,."'.Y,)

1
Rl+RzS;H(xl‘*‘Yl,“',X,‘*‘Y.)}) (32)

e et Pt W i
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and since each of the.three entropies in (32) is maximized
by independent cquiprobable. inputs (maxy, H(X+Y)
over independent binary X and Y is equal to 1.5 bit and is
achieved by equiprobable distributions), the right-side of
(32) is equal to the pentagon C= (0 < R, <1, 0 S R, <1,
R, +R,$15).

Example 2: Let A;= A, ={0,1,2} and B = {1,2)

X, ifx;#0and y,=0and. y,_,#0
;= {p" if y#0and x;,=0and x;_,#0
(1/2,1/2), otherwise
(33)

where (1/2,1/2) indicates that z, is equally likely to be 1
or2. )

In this channel it is necessary for the encoders to use
some sort of time-sharing to achieve optimum rates be-
cause simultaneous zeros or nonzeros and consecutive ze-
ros result in equally likely outputs. We take the following
initial conditional distribution (this choice does not affect
the capacity region but simplifies the proof):

=Va/2,172),  ify#0.

We will now investigate the maximum achievable rates
when transmitter 1 (respectively, 2) sends nonzeros at
odd-numbered (respectively, even-numbered) times (with

no restrictions otherwise). Then, it follows from (33) and
(34) that

(34)

. - Xag+10 if Yypur =0 (35a)
%11(1/2,172), if Yogar®0
Y2k if x5, =0
Z2k {(1/2,1/2), if X % 0 &h)

which means that the channel is actually decoupled into
two identical memoryless channels whose capacity region
is obtained as follows.

If (Xyx Yars Z,;) are connected by (35b), then their
mutual informations are easily shown to be given (in bits)
hy )

( Xops ZoglYar) = hy( P[ Xy = 0]/2) = P[ X, = 0]
(Va3 szlxzk)“hb(P[sz -.-1])P[Xu+0]
( Xoi Yais Zag) = hy(1/2+ P[ Xy, % 0](1/2

1Y =1])) = P[ Xy, = 0]

vnere hy(x)=—xlogx—=(1=x)log(l1-x). All these
nutual informations are maximized simultaneously by
Yoy =1] = P[Y,, = 2] =1/2, and so the capacity region
ot the channel in (35b) is

J (OsRlsh,,(-;)—p- U

1£ps1\ 0gpsl1

i+ Rysl-p) (36)

——— & o o

TeT e s v = S

mn e p— ——————— o e o a—
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and the capacity region of (352) is obtained by interchang.
ing R, and R, in (36). The sum of these two regions
divided by 2 (since each channel is only used half the time)
is found.in Fig. 1. Another example where the capacity
region of the multipie-access channel is explicitly com-
puted is the symbol-asynchronous energy-constrained
Gaussian channel*([21] is devoted to the evaluation of the
limit characterizing the capacity region).

I |

or L

o

03

o«

o3

0.2

SYNCHRONOUS

o r
ASTNCHRONOUS
ol 02 a3 ot 03 os or  m
Fig. 1. Achievable regions with and withou1 frame-synchronism of mul-
tiple-acoess channel in Example 2.

III. FRAME-ASYNCHRONOUS CAPACITY REGION

Unlike frame-synchronous channels where it is enough
to consider “one-shot” models in which each user trans-
mits only one codeword, the (completely) frame-asynch-
sgonous multiple-access channel cannot be decoupled into
independent blocks due to the overlap between consecutive
codewords, and the optimum decoder needs to decode all
messages simultaneously, i.e, all outputs are uscful in
naking decisions about any particular codeword. [deally,
the goal would be to analyze a model with doubly infinite
streams of codewords subject to an arbitrary shift. How-
cver, 10 tormulate a well-posed problem, it is necessary (at
least within the realm of channel block coding) to work
with a finite number N, of transmitted codewords per user
and then analyze the limiting behavior of the capacity as
N — c0. Since the offset between both strings is arbitrary.,
the approach we take is to arrange the N codewords of
cacn user in-a ring (codeword N is followed by codeword
1) and to model the offset by an arbitrary relative rotation
of both rings (Fig. 2). As N -0, the radius of the ring
vecomes infinite, and the ring models the dasired infinite
codeword streams offset by an arbitrary shift because, for
«ach output symbol, the.boundary condition at infinity is
irrelevant, As we will see and should expect (because of the
finite memory the codeword boundaries become irrelevant

.
H
? - i AL I ey
.
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Fig. 2. Four-nng with codeword length equal 10 12 and memory length
m=2,

as the codeword length goes to infinity), the capacity
region (per channel use) of the N-ring does not depend on
N, and therefore, it is not necessary to investigate its
limiting behavior. The main disadvantage of an alternative
linzar arrangement of the N codewords is that, due to the
lack of synchronism. not all the codewords overlap with
the other user’s stream, and those that do overlap have
different decoding error probabilities depending on the
offset and their relative location to the boundaries, Note
that this problem can be partiaily avoided by restricting
the shift not to exceed the length of a codeword, but since
the total number of codewords is assumed finite, it can be
argued that such an approach would assume a certain
degree of cooperation between the transmitters.

Each transmitter encodes its N messages independently
(each message is drawn independently from (1,---, M;})
and is not restricted to use the same code book for each
message. While the receiver acquires the location of each
codeword prior to decoding (this can be easily accom-
plished using synchronization prefixes), the messages are
encoded -without knowledge of the relative rotation. There-
fore, the channel is a decoder-informed compound chans
nel, which is equivalent, from the viewpoint of finding the
capacity region, to a bank of parallel multiple-access chan-
nels (one per rotation value) sharing the same inputs,

Theorem 5: If (R, R,) is an achievable rate pair for the
N-ring, then .

' 1
(R,, R,) Eclosure (liminf —QfN)
a=w n¥

1
C closure ( limsup - Qs )

Lad ]

1

= closure ( limsup - CS ) (37)
LAad- -] n

where Q@5 and C? are defined as in (12) and (3), except

that the union therein is taken only over n-dimensional

distributions induced by stationary probability measures.

Proof: There are N (n, M;) code books for the ith
user and each of the ¥ messages are encoded indepen-
dently. Thus-the (nN, M}¥) juxtaposition code book of the
1th user for the N-ring consists of the Cartesian product of
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the N (n, M;) code books. If (R,, R,) is achievable, then
forall € >0, >0 and all n sufficiently large, there exists
a (nN, M. M7, ¢) juxtaposition code for-the N-ring such
that.

log M,

R; < +38,

i.e., there exist N (n, M,) code books for user 1 and ¥
(n, M;) codebooks for user 2 (which are independent of
the offset) and a decoding strategy (which depends on the
offset) such that the average (over the set of equiprobable
messages) probability of error does not exceed ¢ regardless
of the offset. Select one such code and denote the indepen-
dent messages of both users by (S,.---,Sy) and
(T, - -, Ty), respectively. Then, the Fano inequality im-
plies that

H(S\+, Sy1Z) selog M +1og2 (38a)
H(T,,-++,Ty|Z) s elog MY +1og2 (38b)

H(Sp S Tye o TWIZ ) < elog MMM
+log2 (38¢)

where Z is the distribution of the totality of the outputs of
the N-ring. If X and Y are the distributions of the A7V
and Aj" valued random variables resulting from the en-
coding of the messages by the selected code books, the lack
of frame synchronism is modeled by assuming that the
inputs to the N-ring are rotated versions of X and Y. If x
is an M-vector, then r,(x) denotes an M-vector whose
components coincide with those of x rotated by r posi-
tions, where 7€ {0,---, M ~1}, i.e,,

’f(al,. . .’aM) - (au-f+l'. . -’aM' al'- . .’aM-')‘

Even though it is enough to consider a relative rotation of
both rings, it is more convenient in the proof of the
converse to allow a rotation of both input rings with
respect to an arbitrary reference. Denoting the rotations by
7, and 7, the data-processing lemma implies that

Hr(X); Z,r,(Y)) 2 I(Sy, -+, Sx3 Z)
= H(S)," ~,Sy)—H(S," - Sy|Z)
> (1-¢)log MY —log2 (39)

where the last inequality follows from (38a) and with a
slight abuse of notation we have denoted by r,(X) the
probability measure that assigns the same mass to
r(ay,+c ay) as X assigns to (ay,*+-,a,). From the
independence of X and Y and (39), we have that

1(r,(X); ZIr,(Y)) 2 (1= ¢)log M}’ ~log2.

However, since this is true regardless of the actual value of
the offsets 7, and 7, we can write

aN-=1
(l—c)logM{v—log2s;% Yy I(r,\(X)‘,er,z(Y))
n~0
= I(r,(X); Z|e(Y)) (40)

where the probability measure ¢(Y ) is equal to the follow-

© e ——_ o n o i
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ing. mixture .of the probability meisures 7,(¥), 7, =
0'...'nN—l: .t
aN-1

o(¥) =~ E(-)_ r(Y), (41)
and the second equation in (40) follows from the fact that
the distribution of the conditioning random variable enters
linearly in the definition of conditional mutual informa-
tion.

An M-dimensional probability measure p will be re-
ferred to as circulantif 7,( p) = p for all r, and we will say
that p is stationary if, for any subset {i -«-i }cC
{1, .-, M} and shift s >0 such that (i;+s,---,i,+5)C
(1,-+-, M},

p(ayy-1a,) = play,pa,,)

For any probability measure p, ¢( p) (defined in (41)) is a
circulant probability measure. To see this note that, for
any Ae {0,---, M)}

1 M-t 1 M-t
n(e(p)) =+ Zor(,m,(p)‘-g Zor,(p)-c(p)-

Furthermore, it is easy to check that an M-dimensional
circulant probability measure is an M-dimensional station-
ary probability measure. Now, since (40) holds for all
n€ (0, -, nN~1},

aN-1
(1- log M/ ~log2< = T 1{1,(X): ZIe(¥))
=0
SH(XBZE() (@)

where the second inequality follows from the concavity of
mutual information. Proceeding in a similar way we obtain
from (38)

(1-¢)log My ~log2 < I{c(Y); Z[c(X))  (43)
and
(1-¢€)log MMy -log2 s I(c(X),c(Y); Z). (44)

If m —1 consecutive components of Z are discarded, then
we have a channel analogous to an nN-block channel
whose B*¥=m*! valued output random variable is denoted
by Z2¥. Then, the following upper bounds follow in a way
similar to (18)

I{c(X); Z1c(Y))

<I(c(X); Z2¥1c(Y)) +(m~1)log|B] (45a)
I{(c(¥); Zle(X))

<I(c(Y): Z2Me( X)) +(m~1)log|B] (45b)
I(c(X),c(Y); Z)

<I(c(X),c(¥); Z2¥) +(m~1)log|B]. (45c)
Finally, it follows from (38), (42)-(45) and the stationarity

’(i)ui(lv".H} is equal to the remainder i~ gM where ¢ is an
inleger.
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of c(Xjand c(¥) that
[1 e (](Rl.- 8, Rz e 6)

-

—fiog—= + 2Bl (1) € Los
g vl Lt DA

Thus if-n-> {log2 + (=1 - 1)log | B[} /18(1 - ¢)]. then
1
—¢lR, ~ = —03
[1-€](R,~28, R;~28) € —05,
which implies that
' 1
[1-¢J(R,-28, R, ~28) € liminf — Q5,,.
n—w NN

However, since ¢ and § are arbitrarily small. (R,. R,) has
to be a limit point of a sequence of points belonging to
liminf, _ (1/2N)@3y, and (37) follows.

Theorem 6: The following set is an achievable region
for'the N-ring:

closure | U {(R,R;): 0 R S U(nyinzlpy)
Mx by
stationary
0<SRy<I(pyinzluy)
Ri+Rysl(pypyinzg))
(46)
where

1
‘ I(}‘x;l‘zb‘r)'nll":o ;I(X"; Z7NY")  (47a)
) 1
I(py; nzlpx) = "liﬂ:o ;I(Y"i Z"X")  (47b)

o1
I(l‘x:l‘v;l‘z)"";‘{‘; ;1(/\’", YnzY)  (4%)

and X™ Y* are the n-dimensional distributions induced by
the stationary probability measures g, gy, and Z”" is the
output of the frame-synchronous multiple-access channel
with memory when the inputs are independent with distri-
butions X* and Y*.

Proof: The existence of the limits in (47) is an easy
consequence of the stationarity of the inputs, the time-
invariance of the channel, and the existence of entropy rate
for any discrete stationary process (e.g., [9]). The symbols
transmitted by each user will be denoted by

x={x,(i), k=1,"-+, N, i=1,:-,n)

p= {5n(i), k=1, N, i=1, . n)
where n is the codeword length and N is the number of
codewords in the ring. Similarly, the output symbols are
labeled by

-~ {zk("), k-l."',N, i-l'....n}.
If the users were frame-synchronous, then (i) woug
depend on {x, (i~ j) (of xx_yy (i~ j.+ n) 1{ is_j‘)}j-".o
and (i = j) (or Yy, (i=J+n) if i< Mo The
lack of frame synchronism introduces a relative rotation of

o ———————— A 3 o
. & B i
e .- - . e
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the rings which can be quanuﬁed by s€{0;---,N—-1},
the number of codewords shiited, and € {0,---,n—1},

the rotation modulo the codeword length. More precisely,
the input x,(i) is aligned with 7,(i), defined by

. Yee-snJ = 1), r<jsn
y'(J)z{y(,-,;l)N(j—r+n), 1sjsr

or, equivalently,
Y(s*k),(" i), i+rsn
yili) = {y(,+“l)~(r+: -n), i+r>n.

We will now fix an integer'/ > 0 independent of all other
parameters and force the decoder to discard the following
output values:

(i), i€l I={l+m---r}u{l+m+r, - n}

which corresponds to discarding. the /+ m —1 symbols
following the beginning of each received.codeword. Note
that if / is large enough, / =J; however, we will eventu-
ally be interested only in the asymptotic behavior as n —» oo,
in which case 7 is practically identical to {1,---, n}. Note
further that the relative shift # is allowed to be any integer

{0,--,n—1}, and so the cazdinality of each of the two.

components of / may grow linearly in n. We may rear-
range the codewords of Fig. 2 in the matrix form shown in
Fig. 3. In this figure, each codeword of user 1 occupies a
single row, whereas each codeword of user 2 occupies two
consecutive rows. The blacked-out outputs correspond to
the /+m—1 symbols following the beginning of each
codeword which are discarded by the decoder. In connec-
tion with this figure, it is useful to introduce the following
notation

L {x, (i), i=1+1,. }
x (i), iml+r+1,---,n}
(i), iml 41, }
(i), i=l+r+1,--,n)

{
{
{
{
(#:(i), i=l4+m,- ,r]
{
{
{

(i) iml+r+m, - ,n)

{ = k(:) k-l N.lEI}
= {(zF,2}), k=1, --,N}.
[ !
2 2
3 § usem
. 4
3 4
4 1
| o UsER2
2 3
‘ ouTAUT
4

Fig. 3. Rearrangemeni of codewords i Fig. 2 showing discarded out-
puts(/=2and m=2).
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Then, the definition of the multiple-access channel with
finite memory (10) implies that

N
Pimi’(ﬂxo J)= kl:Il l_l:I’pc(zk(i)ka(i -m+1),---,
X,‘(i), y-k(!'— m +1)0° Ty y-k(‘))
N
= kﬂl Pzuxeie(ziixE, 9E)

-Pzﬁx,,‘)"f(zlﬂxfo }715) . (48)

which implies that the output subblocks {zf,z% k=

-, N} are conditionally independent given the inputs

and only depend on their corresponding input subblocks.

Notice also that the inputs with indices i € (1,---,/}uU{r

+1,-+-,7+!} do not affect any outputs used by the
decoder.

We now proceed to show that for any pair (u y, py) of
stationary /-dependent measures defined on the infinite
sequences drawn from A, and A,, respectively, the follow-
ing pentagon is achievable

{(Rv Ry): OSSR SI(pyipzlpy)
0sR;s I(#yiﬂéli‘z)

Ri+RysI{py pyinz)}).

C(“X’ “Y) -

To this end, we must show that for any fixed (R}, R;) €
C(py,By)e>0, and y>0, and all sufficiently large n
there exist (nN, M, MY, ¢) juxtaposition codes for the
N-ring such that

1., there exist N (n, M,) code books for user i (indepen-
dent of the relative rotation), and a decoding rule (possibly
dependent of the relative rotation) such that the probabil-
ity that any of the N messages transmitted by each user
are decoded incorrectly is not higher than ¢. The codes are
chosen as follows. .

Random Coding: The N code books of user i are de-
noted by { f;: (1,-++, M;} = 47}/, and are the outcomes
of random selection where each codeword in each code
book is independently selected with probability

Prm(81 s @) = pya(ay, -+, a,)
me (1,---, M,}
Pryym (b1 01 8) = pya(by,e -, b,)

me {10"‘.["2)

where X* and Y” are the independent n-dimensional
distributions induced by (u, py). The overall code book

R —
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of user i resulting from the-juxtaposition of the foregoing 1,---,N}) are ind6pbndcq{. Then we obtain via (48) that

N code books is denoted by £ (1,---; M;}¥ — A7V,

Decoding: The decoder performs simultaneous decoding
of the N messages transmitted by. both users, upon observ-
ing £ and the rotation (r, s), in the knowledge of the code
books f, and f,. The decoder selects the messages
(mymy) € (1, -+, M} X (1, -, My )Y if (my, m,) is the
unique pair that satisfies

(fi(my), f(imy),2) € J(n,8) (49)

where 0 <8 <y, and it outputs a decoding error if there
are zero or more than one such pairs. The set J(n,8) in
(49) is the set of jointly typical sequences according to
three criteria:

J(n,8) =Jy(n,8)N 1 (n,8)N J5(n,8)

1 1 - -
J,(n.s)-{(x.y'.z'): =i(x, .2)= ~1(X; Z|¥) ss}

(50a)
1 1 . .
Jz(n,S)-'{(x,j".f): ;iz(x,ﬁ,f)—;I(Y;Z|X) 58}
(50b)
1 1 o =
J,(n,&) - {(x. yZ): ;i,(x, j,i’)-;I(X, Y;Z) 58}
(50c)
where
. o pilX?(i]xv j")
ix. §.2) =1og p2p(817) (1a)
. paix ()%, 7)
[ 4] = — - N 5 o
iy(x, §,2) =log ED) (51b)
(. 5,8) mlog 2R D)

p3(2)

" Note that the expected valué of the functions in (51)

evaluated with the distribution (X, ¥, Z) are equal to the
mutual informations appearing in (50). We can decompose
the functions in (51) taking advantage of the assumed
l-dependence of the inputs, which implies that the random
variables (X', X}, k=1,.-,N} (and (Y&, VR, k=

N L, v ZL va ).;L
i(x, 5,8)= Y log?z"xtyts f,,l_ f,_ )
k=l P2{-|f.'-(zk | i )
Panserr(ZR1xE, 7E)

panee(ZNFE)

+ (52a)

N sli L =L
. pavxeve(ZHxE, 5E)
iy(x, §oE) = ¥ log =t

k=] P2,"|XI'(ZI¢ Jxi )

pamxzsa( ERxE, 58)

+ =
panr(E0xE)

(52b)

Pauxee(ZHxE, 7E)

p2:(2F)
pansrna(ZRxR, 50)
par(2l)

Taking expected values of (52) with respect to (X, ¥, Z)
and recalling that the inputs are stationary we obtain that

N
iy(x, y.8) = X log
k=1

+

(52¢)

I(X; Z\¥) = NI( X"; Z"|7™) (53a)
I(Y; Z\X) = NI(Y"; 211 X7) (53b)
I(X,Y;Z)=NI(X", Y Z") (53¢)

where Z" and Y” denote {Z,(i), i€ ) and {¥,(i), i =
1,+--,n}, respectively. Furthermore, since {Z,(i), i€/}
depends on the inputs only through X, X, Y, and ¥,
and since p, is stationary and /-dependent, { Y%, Y} has
the same distribution as { Y, Y} and therefore (53) can
be written as

I(X; Z\¥) = NI( X", Z"Y") (54a)
I(Y; Z)X) =NI(Y™, 2" X") (54b)
I(X,Y;Z)=NI(X"Y" Z"). (54¢)

The probability that the transmitted messages (S;, S,) =
(m,, m,) are not decoded correctly given that ( f,, f,) are
the chosen code books is

Emm(f1s 12) = P{(Fi(m,), Fy(m;), Z) & J(n.8) or
3(m}, m4) » (my, m,) such that
(Fi(m{), Fy(m3),Z) € I(n.8)(F,, F;)
=(f1 fz)’(svsz) - ("‘n"‘z)]-

Averaging over the random selection of code books and
invoking the union bound, we obtain

E[emlmx(FI'FZ)] 5”[(51('"1)”2('"2)'2-) & J(n,8)(S,,S;) = ("‘h’":)]
+ ¥ T Pl(R(m). EB(m;).Z) € 1y(n.8)((S), ) = (my, my)]

mf*m, Mi‘ml

+ T P[(F(m)), Fi(my), Z) € 1(n,8)((S), &) = (my,my))]

m{ wmy

+ Z P[(Fl(m,).Fz(mﬁ),Z.')EJ;(n,«S)l(S,,Sz)-(m,,mz)]. (55)

mivm,
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The first term in the right side of (55) is smaller than ¢ /2
for sufﬁcxently large n because

”lLi‘r:nP[ Fl(h‘ll),iz(mz)rz.’).EJI((”’8)|(S1’ 5,)

= (.ml, mz)] =1, k=1,2,3. (56)

This holds because the inputs and output are jointly sta-
tionary and ergodic (4] (the output is (/+m+1)-
dependent) and therefore the Shannon-McMillan theorem
(see e.g., [9]) implies that each of the 2N terms in the right
sides of (52) converges in probability (when scaled by n) to
its expected value (which may be zero if, for example; 7
remains finite as n— o). (Notice that this holds even
though each output subblock z£ (or zX) has m~1 fewet
elements than the correcpondmg input subblocks x% and
FE (or x} and 7l}), since convergence is not affected by
any fixed .number of elements.)

To investigate the behavior of the second term on the
right side of (55), we will introduce the mdependent ran-
dom vectors U and ¥ defined on A7¥ and A3}", respec-
tively, whose distributions are py and Py, but which,
unlike X and ¥, are independent of Z, i.e.,

Puvz(x, 5,2) = px(x) py( 7) p2(2)
= Pxﬂ(-': i’z)exP(_ i,(x, y-vf))' (57)
If (x, 7,7) € J;(n, 8), however, then (50c) implies that
exp(—is(x, 5.£)) sexp(~ I(X,¥; Z) + n8)
and, consequently,
P|(Fi(m{), F(m3), Z) € Jy(n, 8)I(S,, S,) = (my, my)]
=1 z
(x. 7.2) & S(».8)

sexp(-I(X,¥; Z)+ns). (58)

Puri(" 5':5)

Proceeding similarly with the third and fourth terms on
the right side of (55) we obtain that, for sufficiently large
n, 0

E[emm(Fi )] < MY exp(= I(X; Z|F) + n8)
+MYexp(= I(Y; Z1X)+ n8)
+ MMM exp( - I(X,}’;Z')+n8)+%.

(59)

Thus if M, and M, grow sufficiently slowly with # we will
be able to show that for large » the right side of (59) does
not exceed ¢. Specifically, we choose M, and M, to satisfy

log M, S+vy
R—— -
"N n sk 2N’

i=1,2. (60)

(This choice is possible for all sufficiently large a.) Then,

-, Db — 3 o W Py e e e e n o=
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(59) is further upper-bounded by
E[‘m.m,( Fl' FZ)]

1 - -
Sexp(nN['R,-ﬁI(X;ZW)]-n >

7-8)
1 . . k.
+ R,-—1Y,; =
exp(nN[ 2 nNI(Y Z|X)] n=3 )
1 - - €
+ - . = =
exp(nl&l[kl-%-k2 nNI(X'Y'z)] n7)+2.

(61)
Using (54) and recalling that 8 <y, it is seen that if

1 .
05 R, < liminf ~1(X* 277" (622)
R =0
1 i .
0.< R, < liminf ~I(¥"; 27 X") (62b)

1 -
R, + R, < liminf - I( X", Y*; Z"), (62c)
n—a N

then the right side of (61) does not exceed ¢ for sufficiently
large n. Therefore, at least one -realization of the code
books must exist that resuits in probability of error better
than ¢, and so the pentagon in (62) is achievable. Actually,
that region coincides with C(uy,py) because Z* was
obtained by discarding 2(/ + i —1) elements from Z"=
{Z,(i), i=1, - -,n}) (which is the output of the frame-syn-
chronous channel with inputs X" and Y*) and therefore

(cf. (18))
I(x~ ZnY*) < 1( X" Z"|Y*)

<SI(X* ZMY*)+2(1+m—1)log|B| (63a)
I(Y" ZnX") s 1(Y™ 271 X")

s I(Y* 27 X")+2(1+m—-1)log|B| (63b)
(XY 2% s 1(X",Y" 2")

SI(X*,Y* Z)+2(1+ m—1)log|B|. (63c)

Hence we may replace Z* by Z” in (62), obtaining the
limits of (47). Thus we have shown that the region

cosure | U U

120 BBy
statiooary Fdep

0< R < I(py; Bzlpy)
0 Ry <I(ny;Bzlux)

Rl+Rz$1Ser#r;#z)}) (64)

{(Ry, Ry):

is achievable.

It remains to show that the restriction to /-dependent
input distributions can be dropped without changing the
region in (64). We will do so in three steps where we show
that the union can be written over 1) B-processes, 2)
ergodic stationary processes, and finally, 3) stationary pro-
cesses,
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Step 1: The B-processes.are an important class of sta-
tionary ergodic discrete-timé random processes (intro-
duced by. Ornstein [16]) that can be defined as the outputs
of :the time:invariant systems driven by independent iden-
tically distributed (i.i.d.) inputs. This is, in effect, a mixing
condition requiring that the influence of the sufficiently
distant'past becomes negligible. It was shown by Omstein
(16} that the closure in the d-metric of the stationary
l-dependent processes is equal to-the set of B-processes.
The d-metric between two stationary, ergodic measures p
and @ is equal to the minimum percentage of time samples
we need to change a representative realization of g to
make it look like a representative realization of g. Due to
the finite memory of the channel, it is easy to show that if
2 sequence of stationary ergodic input measures g4, p{®
converges in the d-metfic 10 g, and gy, then the corre-
sponding output measures also converge in the d-metric,
because one way to generate a representative sequence of
#, is by modifying representative strings of g%’ and p{P
to get representative strings of g 4 and gy without chang-
ing the output samples unaffected by those modifications.
Therefore,. d(p, p2) S m{d(g'®, g 4 )+ (g, py)] since
each input value affects at most m output values. Now,
since the entropy rate is a continuous function of the
stationary measure under the d-metric {19] and the three
constraints in (64) can be written as

Hpxspzlpy) =H(py, pz)+ H(py) = H(py, gy, 82)
: (65a)

I(pysnzlpy) = H(py,nz)+ H(py) = H(py, py, b 2)
(65b)

617

on the n+ m—1-dimensional distributions of p¥’ and
{*). Furthermore, si i i

sy’ E ¢, since the entropy rate is a lower semi-

continuous function in the weak topology, we can write

liminf H(() = H(sz)
and (cf. [17])
liminf H(pP|u§") = H(pzlny),
and
Jim H(WP1P, w0) = Hwzln g y).

since the latter expression is linear in the conditioning
measures. This implies that the union appearing in the
achievable region can indeed be extended to the stationary
ergodic measures,

Step 3: This step has a well-known counterpart in the
solution of the capacity of single-user channels with mem-
ory (cf. {11, sec. III]). There, the ergodic assumption is
needed to invoke the Shannon-McMillan theorem in the
proof of the direct theorem, whereas the usual converse
techniques upper-bound capacity by the minimum of mu-
tual information rates over all stationary inputs. A proof
that the lower and upper bounds thus obtained coincide
was given by Parthasarathy [17] using the ergodic decom-
position theorem. Even though in the multiuser case capac-
ity is not given as the maximization of a scalar function,
we can use Parthasarathy’s result by noticing that all we
need to show is that for every 0 s a <1 (cf. [21))

sup G.(P'xol"v)" sup Ga(”xv”)’) (66)

Hpy pysnz) =H(py)+ H(p, )+ H(pz) suatonsry statonary
) ergodic
- H(“x’ By, l‘z)o (65C) where
- max aR,+{1-a)R
G.(PX’FY) 0 Ry < I(pyinzivy) ‘K )R,
0< Ry</(n,imziny)
R+ RS I(pxipyinz)
Qa~1)I{py;plpy)+ (1= ) (pxnyinz),  1/25asl (67)
(1"2“)1(#Y§F2|Fx)+“I(Fx,l*v;#z). 0<asxl/2

the region (64) is unchanged if we enlarge the set of
stationary /-dependent processes to its closure, the set of
B-processes.

Step 2: The stationary mixing multistep Markov pro-
cesses are B-processes (the mixing condition essentially
rules out processes with periodicities), whose closure in the
weak topology is the set of stationary ergodic processes
(10, p. 360], where we say that u'*) converges weakly to
if, for all n > 0, the n-dimensiona! distribution induced by

u®) converges to that of p. Again, due to the finite .

memory of the channel it is easy to show that if p(f, p{¥
converge weakly to gy and gy, then the corresponding
output measures also converge weakly, because the a-
dimensional distribution induced by p!¥’ depends linearly

where the second equality holds becauss the maximization
on the left side is attained at one of the two (Pareto)
optimum vertices of the feasible pentagon (note that

I(pyr Bys B2) S I(p s BZliy) + I(iy; p2lBy)). We may
now fix a € [0,1/2], the other case being entirely parallel.

We then obtain that for all stationary pairs g y, gy
G.(P'xo py) =(1- a) (B y Bys Fz)"(l"za)f(l—lx; B2)

=(1- “)f’(l‘x,a}*v,; Bz) dPy(x)dPy(y)
~(1-20) [H(y,; b7) dPy(x)

=[Gy by dPr(x)dPy(y)  (68)

e
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where the second equation follows from Parthasarathy’s
representation theorem (17], and {4y, x €A} and { By, ¥
€ A,} are the stationary ergodic measures in the ergodic
decompositions of gy and p,:

px(E)= [ ur(E) dPy(x) (698)

br(F)= [ mr(F)dPy() (69b)

for all measurable sets E and F. Notice that the only
restriction of Parthasarathy’s result is that the channel
connecting input and output be stationary, and this is the
case for the channel that connects (uy, ) With uz, as
well as the channel seen by the first user, which connects
By and p, because both p, and the multiple-access chan-
nel are stationary.

Finally, for a stationary pair g y, gty to achieve a value of
G,(i x» By) close to the supremum, there must exist (x, y)
€A XA, such that G(py,ny) is close to the supre-
mum, because the average with respect to Py X P, in (68)
cannot be larger than each of its sample values, This fact
shows (66) and completes the proof of the theorem.

We will now use Theorems S and 6 to find the frame-
asynchronous capacity region of the examples we studied
at the end of Section II.

Example 1: Since the frame-synchronous capacity re-
gion is achieved by stationary (i.i.d.) inputs, it remains the
same if the users are frame-asynchronous. The same is true
for the symbol-asynchronous Gaussian multiple-access
channel {21} where the capacity region is achieved by
stationary colored Gaussian processes. (In that case, the
capacity region does depend, in general, on whether the
transmitters are symbol-synchronous.)

Example 2: We will show first that the triangle {0 < R,,
0 <R, R+ R,50.5 bit) (Fig. 1) is an outer bound to
the frame-synchronous capacity region. In the second part
of the proof we will show that it is achievable. From the
definition of this channel (33), it is easy to compute the
conditional entropy (in bits):

H(Z|X,_1, X, Y 1Y) =1-B,—Bivy (70)
with o,
yy=P[X(i)#0]  Bym=P[X(i)=0, X(i—1) %0]
v, = P[Y(i)#0] By~ P{Y(i)=0, Y(i-1)»0}
where the foregoing probabilities are independent of the

time i because X" and Y* are stationary. Since the out-
puts are independent conditioned on the inputs, we have

~
(x~r~2n) s ¥ X-, X, Y,,Y;Z)

{mm

‘s ¥ [1-H(Z)X_,, X, Y., V)]

lwm

= (r=m+1)[v,8+ 78] (1)
and since y, + B, €[0,1] and v, - B, € (0,1}, we have B, €
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(0,1/2] and

max + ™™
mMnﬁz T281m1/2
which, together with (71), implies that the total capacity of
the frame-asynchronous channel is bounded from above
by

1
0 - R YA, A
"an:o - t;_ay:s H{X"Y" 28)s1/2,
stationary

in contrast to the total capacity of the frame-synchronous
channel, which is equal to 1 bit.

To show achievability of the triangle, we choose both
input processes to be stationary and Markov with

P[X,#0]X,_,=0] =1
PY,#0)Y,_, = 0] =1
(. Yx™=1—= 8, k=1,2). Then, as there are no consecu-

tive input zeros, the channel is equivalent to the memory-
less channel

X ifx,#0and y,=0
Z'— y’, ify‘*omd x,=0 (72)
(1/2,172), otherwise.

Furthermore, we will only consider inputs whose nonzero
values are independent and equally likely to. be 1 or 2.
Then the outputs are independent both unconditionally
and conditioned on either input sequence:

H(Z2)=n-m+1 (73)

lom

H(ZaY") = T, H(Z)Y")

- T H(ZY)

- ‘(;"-‘-m+l)[l—12 + y,h,(%)] (74)

where the second equation follows from (72) and the
independence of X* and Y* Then (70), (73), and (74)
imply that

I(X" Z3)Y") = (a=m 1)

utespenfufZ)-r]

I(Y™ Z5)X") = (n=m+1)

0 :12(1-11)+n(hb(?) - 72)

(X" Y% 28) = (n-m+1)
In(1-n)+r-)].

However, hy(v,/2) 2 v, and thus the [.Jowing region is
achievable:

U {(Rb R,):0<R sy (1-12),
g

1

J

OSR2572(1-71)} (75)

BT
.
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vnich can be shown to coincide with the triangle {( R,, R,):
1SR, 0<R,, Ri+Ry81/2). -

t can be seen that in this example full frame-synchro-
wous capacity would be achieved if the encoders were
niormed of the relative shift modulo 2, and without this
niormation. they cannot do better than the frame-
:syncnronous region. This points out that, in contrast to
ne memorvless channel, even 2 mild form of asynchro-
usm where the shift may be only 0 or 1 reduces the
-apacity region. The reason is that in the memoryless
-nannel. a large time-scale type of cooperation (time-shar-
ng) is enough to achieve capacity, whereas in a channel
vith memory, the encoders may need to cooperate in a
‘mai] time-scale. Mild frame-asynchronism only precludes

-ooperauon in the small time-scale.
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The Capacity Region of the
Symbol-Asynchronous
Gaussian Multiple-Access Channel

SERGIO VERDU, SENIOR MEMBER, IEEE

Abstract —In the information theory of the muitiple-access channel, two
types of synchronism are usually assumed among the transmitters, namely,
frame and symbol synchronism. Frame synchronism refers lo the sbility of
the users 10 start the transmission of their codewords in unison. The issoe
of symbol synchronism arises in continuous-time channels in which each
codeword symbol modulstes a fixed assigned waveform; the channel is
symbol synclironous if the users cooperate so that their symbol epochs
coincide st the receiver. In practice symbol synchronicm is harder to
achieve, yet the only reported progress so far has been in the removal of
the assumption of frame synchronisz. It is shown that if the transmitters
are sssigned the seme waveform, symdol asynchronism has no effect on
the two-user capacity region of the white Gaussian channel which is equal
to the Cover-Wyner pentsgon, wheress if the assigned waveforms sre
different (e.g., code divison multiple access), the symbol-asynchronous
caperity region is no longer 2 pentagos.

I. INTRODUCTION

HE MAIN GOAL of the information-theoretic study

of the multiple-access channel is to find its capacity
region, i.c., the set of information rates at which simuitane-
ous reliable communication of the messages of each user is
possible. This problem was solved in the pioneering work
of Ahlswede [1], [2] on the two-user discrete memoryless
channel; later, an explicit expression for the. capacity re-
gion of the Gaussian memoryless discrete-time multiple-
access channel was given by Cover [3] and Wyner [4].
These and most of the subsequent results on the subject
assumed so-called frame (or block) synchronism among
the users in the sense that the beginnings of the codewords
of each user were guaranteed to coincide at the receiver. It
has been shown by Poltyrev (5] and, independently, by Hui
and Humblet [6] that the only effect of frame asynchro-
nism on the discrete memoryless multiple-access channel is
the remova!l of the convex hull operation from the expres-
sion for the capacity region. It was recently shown {7} that
if the multiple-access channel has memory, frame asyn-
chronism may drastically reduce the capacity region and,
in particular, the maximum achievable rate sum. At any

Manuscnpl received June 6, 1987; revised Oclober 10, 1988, This work
was supported in part by the Office of Naval Research under Contract
N00014-87.K-0054. This paper was presented in part at the [EEE Inter-
national Symposium on Information Theory, Ann Arboe, MI, Oclober
1986, and in part a1 the IEEE Workshop on Information Theory, Bella-
gio, Italy, June, 1987.

The author is with the Depantment of Elecirical Engineering, Princelon
University, Princelon, NJ 08544,

IEEE Log iNumber 8929032,

(b)

Fig. 1. (a) Frame-asynchronous symbol-synchronous two-user channel,
(b) Frame-synchrouous symbol-asynchrooous two-user channel.

rate, in many practical situations it is perfectly reasonable
to assume that this type of synchronism is achievable with
a modicum of channel feedback or cooperation among
transmitters.

The type of synchronism that is difficult to achieve in
many practical situations (owing to the much smaller time
scale involved) is symbol synchronism. This issue arises in
continuous-time channels where each codeword symbol
modulates a signal waveform of finite duration, as is the
case in most conventional digital communication sys-

‘tems. In these systems, user k transmits a codeword
(be(1),: - -, by(n)) € A} by sending the signal
n
’El-’k(“‘"TC by(i))
where the waveforms {5, (¢, b), b € 4, } vanish outside the
interval [0,T] and constitute the fixed signaling alphabet
of user k, which is known to all transmitters and to the
receiver. If the symbol epochs of the signals transmitted by
the users are not aligned at the receiver, then the channel is
symbol asynchronous (Fig. 1). For a channel with two
senders and one recziver, assuming frame synchronism and
an additive white Gaussian noise channel model, we can
write the channel output as
n
y(8) = L syt =iT=7; by (1))
=l
+ ESz(t"iT"fz; bz(!))'*" l) (1.1)

1=
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where the delays or offsets 7, €(0,T), -, €(0, T) account
for the symbol asynchronism between the users and are
known to the receiver (because it acquires the timing of
each of the received signals to decode reliably each of the
transmitted messages) and unknown to the transmitters.

While the derivation of coding strategies for symbol-
asynchronous channels has been addressed before (8], it
appears that no results on the capacity region of the
multiple-access channel are available when symbol syn-
chronism is not assumed. In this paper we find the capac-
ity region of a fairly general symbol-asynchronous Gauss-
ian multiple-access channel in which user & modulates
linearly a fixed signature waveform s, (t), i.e., s.(¢;b) =
bs,(t). This encompasses many interesting channels in
applications, such as direct-sequence spread-spectrum
code-division multiple-access channels (CDMA) wherein
each transmitter is assigned a distinct signature waveform
which is used to modulate information simultaneously and
independently of the other transmitters.! We focus our
attention on energy-limited channels where 4, =R, and
each codeword of user k is constrained to satisfy

(1.2)

The methods employed in this paper can be used to solve
the case where the A4, are finite alphabets, however, in this
case, as in the single-user discrete-time Gaussian channel
with finite alphabets or amplitude constraints, no explicit
expressions for capacity can be obtained.

If the transmitters are assigned identical signature wave-
forms and are symbol synchronous, i.e., ;= 7, then it is
easy to see that the channel is equivalent to the standard
one-dimensional discrete-time Gaussian multiple-access
channel, and therefore, its capacity region is given by the
Cover-Wyner pentagon: each individual rate is con-
strained not to exceed single-user capacity and the sum of
the rates cannot exceed the capacity of a single-user chan-
nel whose signal-to-noise ratio is the sum of the signal-to-
noise ratios of both users. In this paper it is shown that the
same result holds even if the users are not symbol syn-
chronous. However, that is no longer true when the trans-
mitters are assigned different signature waveforms. Then
the symbol-asynchronous capacity region is no longer a
pentagon and depends not only on the respective signal-
to-noise ratios, but also on the similarity between the
agnature waveforms quantified by their cross correlations.
n some applications it may be of interest to use the
apaaty region found in this paper for any arbitrary
noice of signature waveforms as a basis for optimum
agnai design (i.c, to find the elements that achieve the
roundary of the union of capacity regions over a certain
set of signature waveforms) under a variety of specific
constraints on the set of feasible signals, such as direct-

1 n
;Eb,f(i)sm, k=1,2.

=1

'Most capacity analyses of the CDMA channel have focused on
single-user receivers and approximated the multiple-access interference
by a white Gaussian process {9]-[11). thereby providing limited insigh1
into the fundamental limits of thai channel.

LN Seprey T S =) i
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sequence waveforms with a maximum number of chips-
per-symbol or signals approximately bandlimited to a
specified bandwidth. However, it is worth noting that in
many practical applications the choice of signature wave-
forms is dictated by considerations such as jamming resis-
tance and the use of specific waveforms selected from
families of pseudonoise sequences with favorable cross-
correlation properties (such as Gold sequences or maxi-
mal-length shift-register sequences).

The first step in the derivation of the capacity of the
symbol-asynchronous Gaussian channel is to obtain an
equivalent channel model with discrete-time outputs. This
is the purpose of Section II, where an equivalent discrete-
time Gaussian channel parametrized by the signal cross
correlations is derived. The main feature introduced by the
lack of symbol synchronism is that the channel has mem-
ory. This is due to the overlap of each symbol transmutted
by a user with two consecutive symbols transmitted by the
other ussr. The capacity of discrete-time multiple-access
channels with finite memory was obtained in [7] with and
without frame synchronization. Those results are used in
Section III to obtain the capacity region of the symbol-
asynchronous Gaussian multiple-access channel, which
turns out to be independent of whether or not the channel
is frame synchronous. Since the relative offset 7, — 7, be-
tween the received signals is not known to the transmitters,
we must deal with a compound multiple-access channel
where the encoders only know that the actual channel
belongs to an uncertainty set parametrized by the relative
offset. For the sake of clarity of exposition we deal first
with the case where the relative offset is known to all
parties (i.e., the uncertainty set is a singleton), and then we
use those resuits to find the sought-after capacity region of
the compound channel. Finally, in Section IV we consider
an alternative representation of the capacity region which
results in a particularly compact characterization of the
fundamental limits of the multiple-access channel in the
region of high signal-to-noise ratios.

II. CHANNEL MODEL

The goal of this saction is to obtain a channel with
discrete-time outputs whose capacity is the same as that of
the channel with continuous-time output

(&)= & by(i)s(t=iT=m)

i=l

+ ) by(i)sy(¢t = iT=1)+n(r) (2.1)
t=1
where n(t) is white Gaussian noise with power spectral
density equal to o2 This goal is achieved by considering
the projection of the observation process ( y(¢)} along the
direction of the unit energy signals {s;(¢)} and (s,(¢)}
and their T-shifts:

1+ )T+, .
i) = [ () g (¢=iT = m) dr,

T+

k=1,2.
(22)
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Py P

b, li+)

i

by (i-1)

I _ ]

Fig. 2. Symbol periods and cross correlations.

X1

It is possible to obtain an expression for { y,(i)};., and
{»(i)}}.; in terms of the transmitted codewords
{b,(i)}1.; and {b,y(i)}], by substituting (2.1) into (2.2)
and by defining the cross correlations between the as-
signed signature waveforms {5,(¢)} and (s,(¢)} as (assum-
ing without loss of generality that =, < r, (Fig. 2))

r
Plz=_[) si(t)sy(t+ 1 —m) dt (2.3a)

p2l=£rsl(t)sz(t+r+fl—fz) dr. (2.3b)

It follows easily that
[}’l(i)]s[o le]{bl(i—l)]+[ 1 Plz]{bl(")]
ya(i) 0 0 }5(i-1) P2 1 ]15,(i)

b,(i +1) n (i)
{le ]lbz(l"l-l)] { z(i)] (24)
for 1Si<n (with b,(0)=b,(n+1)=0, k =1,2); the dis-

crete-time random process {{n,(i) n,(i)}7} is Caussian
with zero mean and covariance matrix:

H"l( . }[nl(/) "2(!)]] =oH(i - j)

where H(i) =0 if }ij>1, and H(1), H(0), and H(—1) are
the matrices appearing in (2.4), i.c.,

1 py 0 py
-1, 1] 11(1)-117(»-*1)-[0 0].

12

1(0)

‘ince the receiver knows the assigned waveforms {5;(¢)}
ma {sy(r)} as well as the symbol epochs {iT+ 1} and
(T +m}, it can compute { y(i)}f., and (yy(i)}.; bY
passing the observations through two matched filters for
signals (s5)(#)} and {s,(1)}, respectively. The key observa-
tion is that this operation does not destroy any informa-
tion that is valuable in deciding which messages were
transmitted. This is because the likelihood fuxction (i.e.,
the conditional expectation of the Radon-Nikodym
ierivative between the measure induced bv the observa-
ions and Wiener measure given that {b,(i)}/., and

by(i)}7., are the transmitted codewords) is equal to a
-onstant times (e.g., {12])

k=li=l

xm—f{y(!)— >z Zbk( )si(t =iT—1) d‘]

738

which can be factored into

h({¥(O)Dh({21()}, {8:(0)}, { (D} {n(D)});

hence because of the factorization theorem {13}, { y,(i)}".,
and { y,(§)}/; are sufficient statistics for the transmitted
messages. This implies that the channel output { y(¢)}
enters in the computation of the posterior probability of
each message only through {y;(i)}/.; and {y(i)}r..
Thus, no matter which codebyoks are chosen by the trans-
mitters, the probability that the maximum a posteriori
decoder selects the true transmitted message remains the
same if instead of working with the original continuous-
time observations { y(¢)} the decoder is constrained to
work with the discrete-time sequences { y;(i)}., and
{ y2(i)}7-,. Therefore, if a rate pair is e-achievable for the
multiple-access channel (2.1), it is also ¢-achievable for the
multiple-access channel (2.4), and hence the capacity re-
gions of both channels coincide. In this respect, notice for
future use that if ¢(W) is a sufficient statistic for Z, then
the data-processing inequality is satisfied with equality
because Z and W are conditionally independent given
t(W). Therefore,

K(Z;6(W)) = I(Z; W, t(W)) - I(Z; Wit(W))
=1(Z, W)+ I1(Z;t(W)|W)
=I(Z;W). 2.5)

Note that even though channel (2.4) has two output
sequences, it is a multiple-access channel rather than an
interference channel because both outputs are available to
the multiuser receiver. Channel (2.4) is pararuetrized by the
cross correlations p,, and p,,, which depend on the rela-
tive offset =, — r, and, therefore, in general, are unknown
to the transmitters. Consequently, it is necessary to analyze
a compound multiple-access channel where the transmit-
ters only know that (p,,, p;) belongs to an uncertainty set
determined by {s5,(¢)} and {s,(2)}.

The main characteristic of the discrete-time multiple-
access channel in (2.4) is that it has memory because the
noise sequence is correlated and each output value de-
pends on three input symbols, while each of these symbols
:tfects two consecutive output vectors (cf. Fig. 2). It is
possible to obtain an equivalent multiple-access channel
(Appendix I) whose noise process is independent at the
expense of an enlarged set of observables. The advantage
of the latter discrete-time model is that it is possible to
invoke coding theorems for channels where the outputs are
conditionally independent given the inputs {7].

If either p;; =0 or p, =0, then the channel becomes
memoryless because in that case the users are in effect
symbol synchronous. For example, if the users are assigned
the same signal and the channel is symbol synchronous,
both outputs in (2.4) coincide and are equal to

y(i) = by (i) + by(é) + n(i) (2.6)

where (n(i)} is a Gaussian independent sequence. Then
the channel is the conventional scalar discrete-time Gauss-
ian channel, whose capacity region, subject to the energy
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-onstraints in (1.2), is the Cover~Wyner region:

1 wi

1 w,
0<R,x< flog[H -‘-’7]
1 Wy W,
R+R, 5 Elog[1+? + '0—2]}
2.7)
If the assigned signals are not equal but the users remain

symbol synchronous, then (2.4) reduces to the memoryless
multiple-access channel

[)’1( )] [ [bl( i) [
y2(i) by (i)

where {[n,(i)n,(i)]7} is an independent Gaussian process
with E[n(i)] = o? and E[n,(i)n,(i)) = o, and

p=[sl(t)s2(t)dt.

m(i)

0

In this case, the Cover-Wyner region can be easily g ner-
alized (Section IIT) thanks to the lack of memory when the
users are symbol synchronous.

IL

Before we obtain the capacity region of the symbol-
asynchronous Gaussian multiple-access channel, we will
generalize the Cover~Wyner region (2.7) to the symbol-
synchronous channel where both users are not necessarily
assigned the same waveform. To this end, according to
(2.8) we need to find the convex closure over independeént
random variables X, and X, such that E[X?]<w, and
E[X}]sw, of the union of the pentagons {0 <R, <

CaracITY REGION

(X YX3),0< R, s I(X;;Y]Xy), Ri+R;<
I(X,, Xy Y))}, with the output Y given by

3]

i RS

where N, and N, are jointly Gaussian with zero mean,
E[N,,2]=-a and E[N,N,]=pa% The case |p| =1 results
in the region (2.7); we will therefore assume |p} <1. Since
X, and X, are independent random variables, the covari-
ance of Y is equal to?

q S AP |

3.2)

1
:OV(Y =
)=1,

*. denotes the n X n identity matrix.
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and we can upper-bound the mutual informations

I(X, X, Y)
1

s—logdet{cov(}’)]—ilogdct a2 e
2 2 p 1

1
=—logdct[lz+—["“(()xn) VM?XZ)][‘I) ;17”
1 (X (X,
=510g[1+var02.1) Varaz)
X, X,
+var‘fz )W:Z )(1—p2)] (3.3)
I(Xl;Yle)s%logdct 1,+;1;["a’(0“'1) g”; ‘1’”
1 X,
=Elog(1+var:2 )) (3.4)
and similarly,
I(Xz,Yle)s—log(1+ ar( 2)) (3.5)

with equality in (3.3), (3.4), and (3.5) if X| and X, are
Gaussian. Furthermore, all three rate constraints are si-
multancously maximized by letting X; and X, attain the
maximum allowable variances, i.e, w, and w,, respec-
tively. Hence the capacity region is equal to the pentagon

1 wy
C=-{(R1,R2):05Rlsilog(1+;5)
1 Wy

Oskzs—log(1+—2)

wlwz )]
(3.6)

which differs from (2.7) in that the maximum rate sum is
no longer the capacity of a single-user channel whose
signal-to-noise ratio is equal to (w, + w,)/a2 Notice that
when {s,(¢)} and {s,(¢)} are orthogonal (p =0), then,
effectively, both users transmit in separate noninterfering
channels and can send information at single-user rates.
The K-user capacity region of the symbol-synchronous
Gaussian channel can be fourd in [14].

3efore we state and prove the formula for the capacity
of the symbol-asynchronous Gaussian multiple-access
channel, we will motivate the expression of the capacity
.egion by finding the mutual information rates in channel
(2.4) when the inputs are stationary Gaussian processes
nth power spectral densities {S,(w), w€[— =, 7]} and
{Sy(w), w €[~ =, ]). Channel (2.4) is a two-input two-
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wutout dynamic linear time-jnvariant system whose out-
suts are embedded in colored stationary Gaussian noise. If
he inputs are stationary Gaussian processes, then the
nutual information rates czan be.written as the difference
setween the differential entropy rates of the output with
:ng without each of the input processes. Consequently, all
s needed is an expression for the differential entropy rate
i a stationary vector Gaussian discrete-time process. In
he scalar case the differential entropy rate of a Gaussian
iiscrete-time process whose power spectral density is S(w)
s equai to [15, p. 542}

i(§) =~log(2meL(S)) 3.7
vhere L(S) is the geometric mean of S(w), i.e.,
AS) = exp ;;j' 108 S(w) do. (3.8)

“his follows because the differential entropy of a Gaussian
i-vector with covariance matrix L, is
n/2)log(2ne(detL,)/") and according to the Toeplitz
iistribution theorem [16}, lim,_ , (detT,)/" coincides
with the geometric mean of the Fourier transform of the
-ovanance sequence. What we need for our purposes is a
-eneratization of this result to vector random processes,
.£.. we need to find lim,_  (detL,)”” when T, is an
i-plock Toeplitz matrix whose elements are 2X2 covar-
:nce matnices R(i— j)2 ¥, (i, j). A solution to this prob-
em can be found in [17] where it is shown that if the
sower spectral density matrix M(w) Lo € “"R(n) 15
-onunuous and positive definite in [—m, 7]’ then the
oregoing limit is equal to the geometric mean of the
seterminant of M(w).

vJow the output of channel (2.4) is a zero-mean vector
faussian process with power spectral densxty matrix given

)

a(w)zlwe(~-m, w]\

"(Ry, R 2)051%,5-[ log(

1
2 5 -.S;(u)du - wy
4

w12

P e

+ Sl(“)sz("’)
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Therefore, the mutual information rate between the output
and the inputs is equal to

1
lim —I( X7, X2 Y")

A=00 n

=h('—")—h(ozT)

= Si(w)
/ Iogdet[l+ [ " Sz(w)]T(w)]dw |
Si(w) S (w) ‘
__j“ ( 2)+ 20 |
S w)S;(w '
L ) S@HE e )1) (3.9)
where
p(@) =|py; + pyye’”* = ply + p3 +2p5 P2 c0s 0. (3.10)
Similarly, setting S;(w) =0 and Sy(w) = 0, respectively, in
3.9) we get
. Si(w)
"an;—I(X{',lez =-—j ( ‘02 )dw
(3.11)
R 1 " " 0 1 v Sz(w)
lim ~1(X5¥71X; =E/-'Iog(1+ — )dw.
(3.12)

As mentioned in Section I, we will find the capacity
region of the asynchronous channel first in the case where
the transmitters know the offset, and hence the cross
correlations between their signals, and then in the case
where they do not.

Theorem 1: The capacity region of the energy-con-
strained asynchronous Gaussian multiple-access channel
when the transmitters know their mutual offset 1s given by

‘i ))dw Osts——/ ( Sz:f))dw

, o Site) | Se)
\|+ RzS;j_']og(l"' 02 + 02
W
S (w) 0
Hw)=T(w)]™ ]Tw +0T(w
“(w) = | 1 Puy +pye™ .
Pyt pye’” 1

n the preseni case the power spectral densily of the outpul vector
»rocess s indeed continuous, but in problems with heavily correlaied
¥avetorms it may fail 10 be nonsingular at particular frequencies. How-

2r. the capacity region 13 denved later in this section wathout imposing
:ny ot those assumptions,

e [1 Pla— Pl 2P12921°°5“’])d‘°} (3.13)

Proof: 1t is shown in {7, Theorem 3] that the capacity
region of the frame-synchronous discrete-time muitiple-
access channel with finite memory where the outputs de-
pend on several consecutive input symbols and are condi-
tionally independent given the inputs is equal to

1
f‘=closure(hmmf C) (3.149)

n-s

where C, is the following achievable region for the n-block ,
memoryless multiple-access channel whose input symbols .
correspond to n consecutive channel uses of the original
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channel with memory:
Co= J {(RIR}):0< Ry <I(XnY"IXD)
q.q

0<SRy<I(X1YMXY)
RI+RI<I(X], X7, Y")} (3.15)

where the union is over the independent random variables
X' and X7 satisfying in the present case E[ XTX]] < w,,
k=12

The aforementioned class of multiple-access channels
with finite memory includes as a special case the discrete-
time channel in (1.3) whose noise sequence is independent.
It does not encompass channel (2.4) directly because the
noise sequence therzin is dependent. However, since the
observables of (2.4) are sufficient statistics for the inputs
and are deterministic transformations of the redundant
observables in (I.3), not only their capacities coincide but,
according to (2.5), the mutual informations arising in the
achievable regions, C,, of the respective induced n-block
memoryless channels are also equal. Therefore, it is enough
to show that the closed set in (3.13) is equal to
lim, . (1/n)C,, where C, is the achievable region in
(3.15) for the n-block memoryless multiple-access channel
induced by (2.4). To this end it is easy to check using (2.4)
that the n-block multiple-access channel can be written as

RAVE NS )

Y(l) 12

},2(2) Pz 1 py
yr=| ' = Pn 1 pp

Yl(")

_Yz(")‘ )

which is depicted in Fig. 3 and where according to (2.4),
the noise vector is Gaussian with zero mean and covasi-
ance matrix o2R, where R is the block diagonal 2n X 2n
cross correlation matrix multiplying the input vector in
(3.15). This is a positive-definite matrix because x"Rx is
equal to the energy of I}.., X2 x,(i)s,(t = 7, — iT) which
is guaranteed to be nonzero if x %0, p;, * 0, and p, » 0.
Throughout this proof we assume that p,, # 0 and p,, » 0;
otherwise, the channel is equivalent to a symbol-synchro-
nous channel and the capacity region is given by (3.6)
(which coincides with (3.13) because if p,;p5, = 0, then the
three rate constraints therein are maximized by white
spectra),
The output covariance matrix is equal to

cov(Y") = R[o2L, + E[X"X"T|R]  (317)
where*
X" =[X,(1), X,(1), X,(2). -+ X(n), Xp(m)] "
- X{'@[(IJ]+ x;e[‘l’]. (3.18)

19 B denotes the Kronecker product of the matrices 4 and B,
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vi{1)

B
|
by (n) 2e’a ¥,(n)
P
ny(n)
by(n) : ? y2n)
ﬂz(ﬂ)
Fig. 3. n-block memoryless two-user channel,

As in (3.3), (3.4), and (3.5) we can upper-bound the mutual
informations by

1 1
(X X5Y") < o logdet [cov(Y")] - o logdet[o?R]

=-%logdct[lz,,-fo'zE[X"X"T]R] (3.19)
XM [m)]
X,(1) Ny(1)
| @ ]| %) (3.16)
pu 1 P : :
N RAC) Ny(n)
“LXa(n) | [ Ma(n) ]
and

1
I(X{3 Y"1 X}) < 5 logdet 1, +0772,]  (3.20a)

! -2
I(Xi';Y"IX{')silogdct[l,,+o 2,] (3.200)

where 2, = cov( X)), k =1,2, and equality holds in (3.19)

and (3.20) if X' and X7 are Gaussian. The following

identity whose proof is in Appendix II gives an explicit

expression of (3.19) as a function of Z,, 2,, py,, and py;.
Lemma 1: The following identity holds

det{I, + s E[X"X"T|R]

112, olir, ST

= dct[l,,, + ;—2[ 0 22][5 I, ” (3.21)
where
010 1
0 01
00 0
S’Puln'*'Pn 1 0 (322)
01
L 0 0]
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Therefore, (3.15) reduces to the following union over all
trace-constrained nonnegative-definite » X # matrices:

1
2,20

1

—urZ

Fusrswy
k=12

1
0<R,<3 logdet [ I, + 0723,]

1 12 o][r, s7

(3.23)

Region C, is a convex set because cach of the three rate
constraints in (3.21) is a concave function of (Z,, 2;). This
is a consequence of the fact that logdet{ 4] is concave in A
if A is a positive-definite matrix [18, p. 125]. Note that
even though the determinant appearing in the rate-sum
constraint is not that of a symmetric mairix, it is equal to
the determinant of the positive-definite matrix

1[5, 0
+?Q[o zz]QT

There is no covariance pair (2, Z,) that maximizes ail
three rate constraints in (3.23) simultaneously. This is in
contrast to the symbol-synchronous channel where we saw
that the mutual informations in (3.3)-(3.5) are maximized
simultaneously by a pair of input distributions, thus result-
ing in a capacity region which is equal to a pentagon.
Nevertheless, we will be able to show that there is a set of
optimum eigenvectors for each user in the sense that it is
enough to take the union in (3.23) only over the subset of
covariance matrices having those eigenvectors, thereby ef-
fectively reducing the union to one over diagonal matrices.
To prove this, the first step is to apply the singular-value
decomposition theorem to the matrix § defined in (3.22).
According to this result [19, p. 192}, we can write

1, ST]

where Q0= [ !

S=UDV*

where U and ¥ are orthogonal matrices (of the eigenvec-
tors of SS7 and S7S, respectively) ané D is a diagonal
matrix of the singular values {d,}., of S, ie., the non-
negative square roots of the eigenvalues of the nonnega-

(3.24) |

— e = e e

139

(YR ] p—— . y(1)
4 > w1}
byl : - “O—=nl1)
, A1)
by(2)——ex n(2)
> 7(2)
by(2) o ()
2 | T b} |
2)
N1} ——— —=nn)
baln) 2% F?_’,(n)
n
? " yhn)
Ryl n)

Fig. 4. Decoupled n-block memoryless two-user channel,

Now, using the orthogonality of U and ¥, we can
express the determinant in the rate-sum constraint in (3.23)

as

wl?” &]det[lz. o 22 [1 % lels o
=det[iz,+;[,;:;2§;> VI;‘EEle ”
=det[lz.+%[%l 1(\)2][2 f]] 320

V*2¥ and A,=UTZU. Since
tr(2,), 2, 20if and only if A, 20, and
det{I,+07%A,] = det[[, +0723,],
the region in (3.23) is equal to

U

Ay20
trAy < nw,
k=1,2

where we have set A=
(A=

(3.27)
1 -2
C"= {(Rl,Rz),OSRlsilogdetlln"‘o Al]

1
‘0 < Rz < Elogdet[’n + O-ZAZ]

A, O

N

1 1
'Rl+ sti'logdct[lzn"‘o_z'[

tive-definite Jacobi matrix (328)
P%z P12P2
PPy Pt Ph PPy
ST5 = PPy Pht Pl (3.25)
P12P2
2 402
P12 TP PP
! PPu  PhtPh |
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Thus in effect the singular-value decomposition theorem
has allowed us to substitute the matrix S in (3.23) by the
diagonal matrix D. This is advantageous because the set in
(3.28) is actually the capacity region of the two-user Gauss-
ian memoryless channel shown in Fig. 4. This channel
differs from the one in Fig. 3 in that the inputs corre-
sponding to different coordinates do not interfere, and the
noise covariance matrix is

ﬁl(’) - f ) > . 2 1 di
E[[ﬁz(j)][nl(t)HZ(‘])]]:a slj[d‘ 1]‘ (3‘29)

Therefore, the singular-value decomposition of § effec-
tively decouples the original channel in (3.16) into inde-
pendent 2X2 multiple-access subchannels. The capacity
region of this decoupled channel is achieved by input
distributions whose coordinates are independent. To prove
this, we will show that the rate constraints in (3.28) are
maximized by diagonal matrices A, and A,, and there-
fore, the matrices of optimum cigenvectors for %, and Z,
are ¥ and U, respectively. First we apply the Hadamard
inequality (the determinant of a nonnegative-definite ma-
trix is upper-bounded by the product of its diagonal ele-
ments) to the individual rate constraints in (3.28):

1 12 A
-2-logdct[l,,+o'zA,,] SE > log(1+ a_k;)’ k=12

t=]

(3.30)

where A, is the ith diagonal entry of A,, and equality
holds in (3.30) when A, is diagonal. Second, to upper-
bound the rate-sum constraint in (3.28) in terms of the
diagonal elements of A, and A,, we will invoke the
following result proved in Appendix I11.

Lemma 2. Let A and B be n X n nonnegative-definitc
matrices, and let A =diag{$,,---,4,}, where §, is a com-
plex scalar such that |8, <1 for i =1,-+-, n. Then

det [Iz,+[8 g][f\" L;:”

n

< T {1+ a,+ by + a,5,(1-18))*} (3.31)

1=1

with equality if 4 and B are diagonal. i

We apply Lemma 2 to the case A=0"%A,, B=0"%A,
and A = D, where the singular values of S (i.e., the diago-
nal elements of D) ar~ real numbers belonging to the
interval (0, 1) since R is positive-definite. (See [19, p. 382,
and (11.7).) It then follows from (3.30) and Lemma 2 that
the three constraints in (3.28) are maximized by diagonal
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matrices; hence we can now write

1 1
;C,,=' U {OSRIS'Z;

Ay2z0,i=l,---n

= Al:
Z log l+—2
iwl 4
1 . 3
LA

k=12

O<R;< -~ Y log(1+-o—2)

=1

1 - }‘ll' }‘21 AIIAZ:
RI+RZSZZIOS 1+;—2-+F+ pr (l—-d,z))},

i=l

(3.32)

It remains to show that the limit as n — co of the set
(3.32) is equal to (3.13). The approach we follow is to show
that the Pareto-optimal® rate pairs of (3.13) coincide with
those of lim,, _, ., (1/n)C,.

The integrand in the rate-sum constraint of the region C
in (3.13) is equal to (cf.(3.9))

logdet[lz+%[sl(ow) SZ?Q)}T(w)]

which is a concave function of (S)(w),S,(w)) for all
@ €[—m, 7). Then C can be shown to be a convex set by
following the reasoning we used to show the convexity of
C,. However, if the closed set C is convex, then each of its
Pareto-optimal rate pairs has the property that it attains
the maximum

max aR,+(1—-a)R 3.33
(R,.R,)cca 1 ( )R, ( )

for some 0 < a <51 (see {20]).
For each spectral pair, denote the rate-sum constraint in
(3.13) by

1 S(w) Sw)
F(S,,Sz)-z;f_"log(l+ ':z)+ ‘(2

g

+ —-_a‘_—_(l - pz(w))) dw. (3.34)

Notice that the individual rate constraints in (3.13) are
F(S,,0) and F(0,S,). respectively. Furthermore, to sim-
plify the notation, the L[~ =, 7] subset of power spectra
satisfying (1/27)f%.S(w)dw <w. will be denoted by

’An achievable rate pair (R,. R,) is Parcto-optimal if no other pair
(Ry+ 8, Ry + &) with 8, 20 and &, > 0 iy achirable, For example, in
the pentagons (2.7) and (3.6) enly the punts on the boundary of the
capacity region belonging to the 135¢ segmwnt are Parcto opumal
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P(w). Then for every 0 < a <1, (3.33) is equal to

max » max
S € P(w) O0<R <F(S5.0
$H€P(wy) 05 R <F(0.5)
R+ R < F(5. %)

aR1+(I—a)R2

741

If a=1, then (3.38) follows immediately because the maxi-

= max max{aF(§,,0)+(1-a)[F(S,, &) — F(5,,0)], a| F(S1, S;) - F(0, 5,)] + (1- a) F(0, S,))

S1 € P(w)
5 € P(wy)

max (2a—1)F{5,,0)+(1-a)F(S, $,),
SleP(\ﬁ
52 € P(wy)

max (1 ZQ)F(O Sz)+ aF(Sl'Sz)
S, € P(w)
S, € P(w)

where (3.35) follows from

F(S,,S,) < F(8,,0)+ F(0, S,). (3.36)

Following the same approach with the convex set (3.32),
we obtain that every Pareto-optimal pair in (1/n)C, at-
tains

max aR,+(1-a)R,

(Rl. Rz)e;C.

A
max « — z (2a- 1)log(1+—)+(l
Ay 2000 =1, -n 2n it
1
;Er-lkhs“’l
k=12

B max —2(1 Za)log(

x‘, 20.1=1.- Y
_EAHSWI(

1=1

k=12

for some 0 < a5 1. To show that, for every 0 S a1, the
limit as n — o0 of the right side of (3.37) coincides with
(3.35), we will fix 1/2 <a <1 (the proof for 0 Sa<1/2 s
identical) and we will prove that

1 e 2
o, ?PT%) Z;f_,f("’l(“’)"’z(w).p (0)) dw
e

= i s By 3.38
HEI:O ¢.,z0":1§’1‘ . 2n lglf(¢u ¢2l ) ( )
Wi
; :-IM:S"‘
cwi,2
vhere
(21,23, 0%) = (2a~1)log(1+ z,)

Al1=a)log(l+z,+ z, + 2,2,(1 —pz)).
3.39)

A Ay Ay Ay
22')+alog(1 T+

1
ifa‘SaSI

(3.35)

1
£ o
1 OSasz

mizing arguments in the left and right sides therein are
easily shown to be the constant functions ®,(w) = ¢,, =
w, /0% wE[—ma}, i=1,n k=12 If1/2<a<],
we invoke the following result (proved in Appendix IV)
regarding the optimization problem in (3.38).

Ay Ay A
a)log( a:+;_2_+ 1y

1
ifESaSl

(1-a),

+—+

(1-d? if 0 -
5 5 5 - ,)), 1 Sasz

. (3.37)

Lemma 3: If 1/2<a<], then

=/ 1(9(0),8,(0), () do

4 ( Hw), 01-02)‘1(0 (3.40)

where 8,, 8, are positive scalars such that

——f' v (p*(w), Ol,ﬂz)dwa— k=1,2 (3.41)

o’(pzv 01’ 02) a[(?l(pzval'OZ)’ Yz(szapaz)v pz) (3-42)

ana y;(-,0,,6,), k =1,2 are continuous functions.
Proceeding as in the proof of Lemma 3, it follows that
the same result holds for the finite-dimensional optimiza-
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tion problem in the night side of (3.38), i.e.,

1 2 1 2
max - Zf(¢1,-,¢2,,d,2) =3 g(dlz'al'OZ)
n 2n 1=l

¢, 201 t,c-- 0 1=l
1 o
",zfq‘h,S?
A=1,2
(3.43)
with §,, 8, such that
) W,
-2 v(d6,.0,)=—, k=12 (349)

tel]

Since for any pair of signal-to-noise ratios (w, /a2, w; /%)
there exist solutions 8, and 6, to (3.41) and to (3.44), the
identity in (3.38) will follow if we can show that for every
fixed positive pair (8, 6,)

1 1
lim — ¥ g(d%.6,,6,)= :{;/' g(6*(),6,,6,) dw
-l -

n—x &N,
(3.45)
and
fim = 3 (47,6 9)"-1-['7 (P(),6,,6,) de
"“°°”i-1k ) =50 ) Y 0y .
(3.46)

To prove this, we need to examine the behavior as
n—o of (d--+,d?), the eigenvalues of the Jscobi ma-
trix $7S in (3.25). It can be shown that

dl=pl+ on+2pnB;,  i=1,---,n (347)
where {B,, i=1,---,n} are the roots of the nth degree
polynomial 7, ,(x) obtained through the recursion®

Tir(x) = 2xT (x) = T,y (x)
p
Ty(x)=1; To(x)=—-=.
P12

In special cases it is indeed possible to obtain closed-form
expressions for the eigenvalues of S7S, for example, if
P12 = Py, then [22]

2wi

-z—m), i=1,-++,n.

(3.48)

At any rate, it is easy to show that the eigenvalucs of the
Toeplitz matrix T obtained by substituting the entry
(S7S)y, = o}, bY P12 + p3; are equal to [22)

72 2 2 ir 7

d’ =pn+pu+2pupncos(m), "l,"',n.

(3.49)

Thus if d? were replaced by d? in the left sides of (3.45)
and (3.46), these equations would follow immediately be-

cause of the continuity of the Riemann integrands therein.
It is indeed valid to carry out this replacement because T

d}=ph+oh +2P12P21¢95(

$Excepi for the imtial conditions, this is the recursive definition of the
Chebyshev polynomials, whose zeros are trigonometric (21},
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Fig 5. Symbol-asynchronous Gaussian capacity region for rectangular
signals and identical signal-to-noise ratios, when transmitters know
offset between their signals.

and S7S differ in only one entry and are uniformly
bounded in operator norm; thus they are asymptotically
(as their dimension grows) equivalent [23], ie., SS is
asymptotically Toeplitz, and since g(-,¥8,,6,) and
Y,("+ 8,,8,) are continuous functions, their averages evalu-
ated at {d2}7., and {d?}".1 coincide as n - [23,
Theorem 2.3]. Hence (3.45) and (3.46) hold and the proof
of (3.38) is complete.

Finally, note that Theorem 1 was proved under the
assumption that the transmitters are frame synchronous.
However, it follows from the results in [7] that the same
capacity region holds even if the transmitters are frame-
asynchronous because the capacity region is achieved by
stationary distributions.

Fig. 5 shows the capacity region of the simplest possible
symbol-asynchronous Gaussian multiple-access channel:
the transmitters are assigned the same rectangular wave-
form and know the offset between their signals. The nu-
merical computation of the capacity region is carried out
using the results (IV.5-IV.13) of the functional optimiza-
tion problem solved in the proof of Lemma 3. The worst-
case offset between the signals is zero—in which case the
channel is symbol synchronous and admits the scalar dis-
crete-time model (2.6) resulting in the Cover-Wyner ca-
pacity region (2.7). The most favorable case occurs when
the symbol offset is equal to half of the symbol period, 1n
which case the outer region in Fig. § is the capacity region

C in (3.13) computed with p,; = p,, = 0.5. This capacity -

region, which is representative of that of any strictly asyn-
chronous channel (i.e., when p,; and p,; are both nonzero),

PR L



VERDG: THE CAPACITY REGION OF THE SYMBOL-ASYNCHRONOUS GAUSSIAN MULTIPLE-ACCESS CHANNEL 743

resembles a pentagon with smooth corners. As we saw, the
reason the region C is not a pentagon is that there is no
urique pair of spectral densities in (3.13) that maximizes
all rate constraints simultaneously. Consider the pentagon
defined by points B and B’ in Fig. 5. This is the subset
of (3.13)

{(R,,R;): 0< R, < F(S?,0),0< R, < F(0,S3),

R + R, < F(S#,57)}
achievable with the unique spectral pair (S,*, S;*) that
maximizes the rate-sum constraint, i.e.,

F(S#,S*)= F(S,.S. 3.50
(S¢*.5) slg‘f(xm(lz) (3.50)
$; @ P(wy)
and the rate-pairs B and B’ correspond to (R,, R;)=

(F(S*,0), F(S,*, S,*)— F(S,*,0)) and (R, Ry) =
(F(Sy%, 8)— F(0, S), F(0, S*)), respectively.

Note that according to the optimality conditions in
(IV.3), (IV.4) (particularized to a=1/2), the spectral pair
(5%, 85*) is the solution to

S (@) =02(w)

1 1+ 92 (w) 0}
) ‘“"{z’m‘ 1487 (o) (1)) " |’

(J,k) =(1,2),(2,1)

where (8,, 8,) is chosen so that (IV.2) is satisfied. Since p,,
and p,, are nonzero, p*(w) is not a constant function of w,
and hence neither are S*(w) and S;*(w). However, the
individual rate constraints

1 Sk(w)
E—;f'log(1+ pe )dw

are maximized over the set P(w,) by the constant func-
tions S,(w)=w, and thus {S;*, S;*) fails to achieve the
largest possible individual rates!

1 Wy
Ck=-2-log(1+';5'), k=12,

These rates are achieved (by one user at a time) at the
points A and A’ in Fig. 5. Point A is achicved by the

spectal pair (w,, S3), where
F(w,S7) = s,max F(w, ;)

& P(wy)
1 wy  5(w)
= — + =+ —
Szglg(xw) de --103(1 o? o2
-[1+ ;—;(l-p (w))]) dw (3.51)

ie, §7 is the best spectrum for user 2 when user 1
transmits at full single-user speed (1/2)log(1 +(w,; /02)).
The solution to (3.51) is

W
1+—§'
§5(w) = o® max{ B~ —- -2 ,0} (3.52)
1+ =(1-p%(w))

where B is chosen so that 1/2# [S§(w) dw = w,. Note that
(3.52) admits the classical water-filling interpretation [24),
[25] arising in the study of colored Gaussian single-user
channel capacity.

The segment uniting A and B does not belong to the
boundary of the capacity region, and therefore, € is not a
heptagon. This property which is illustrated by the capac-
ity region in Fig. 5 can be proved as follows. Choose
1/2 <a®* <1 such that the rate pairs 4 and B (and their
convex combinations) achieve the same value of the func-
tion a®R, +(1 - a*)R,, ie. (cf. (3.35)),

(2a* = 1) F(w,,0) + (1 - a®) F(w,, SF)
= (2a®~1)F(S*,0)+(1- a*) F(S#, S*).

If the segment between 4 and B belonged to the
boundary of the capacity region, then both 4 and B
would attain max a p)ec@*R;+(1—a*)R,. However,
this is not possible due to the strict concavity of the
function (2a—1)F(S,,0)+(1-a)F(S,, S;): any convex
combination of the spectral pairs (wy, S5) and (S,*, S5*)
will achieve strictly higher values of a*R,+(1—a*)R,
than 4 and B. In fact, the same argument can be em-
ployed to show that the transition from A4 to B contains
no straight lines,

We are now ready to state and prove our main result

«concerning the capacity region of the asynchronous Gauss-
ian multiple-access channe] wherein the transmitters ignore
their mutual offset 7, — 7. The transmitters only know
that the crosscorrelations (p,,, p;;) that parametrize the
channel belong to an uncertainty set T, which is deter-
mined by the choice of the signature waveforms. For
example, if both users are assigned a rectangular waveform
then the uncertainty set is equal to the segment I'=
{05 p13 51, 0<py <1, pyy + pyy =1). Note that in practi-
cal applications it may be of interest to model channels
where the offset is not the only source of uncertainty for
the crosscorrelations; for example, if the signature wave-
forms are sinusoidally modulated, the crosscorrelations
depend on the relative phase between the carriers (e.g., for
rectangular signals modulated by sinusoids whose fre-
quency is a large multiple of the inverse of the symbol
period T, we get I'=+{0<p), 51, 05 py <1, ppy+py
<1}). The following result puts no restrictions on the
source of the uncertainty of the set of cross correlations I'.

Theorem 2: The capacity region of the energy-con-
strained asynchronous Gaussian multiple-access channel
-where the transmitters do not know their mutual offset is
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given by true, and we need to follow an alternative ronte, suggested

by the following resuit.
( 1 L 4 Sz(w)

Ccr= U {(R,, ), OsR,s-—— log(1+ - de, 0SR,s— | logll+—= )dw
S(w)20.0E(-7.7] f 4n /-' o
%/!.S‘(u)du-m

R =1.2
1 Si(w)  S)(w) St(“’)Sz(“’) ) }
+ — 1+ + + - -2 €os d 3.53
R+R, < o l::,f)el‘ P f_”log( o2 ] [ Pl — le P12Pn “’] w (3.53)

Proof: Having shown the result for the special case of a
singleton uncertainty set I' = {(p,5, py)}, we will be able
to proceed at a faster tempo by invoking several lemmas
used in the proof of Theorem 1. The capacity of the
compound decoder-informed multiple-access channel with
memory can be shown to satisfy ({7], see also {25, p. 288])

! 1
C‘-closure(hmmf C‘) (3.54)
n=+o0
with
[(R}, R}):
U n {
XX (pepy) €T

where Y"(p,,, p;) denotes the output of channel (2.4) with
crosscorrelations (9,4, pyy), and X{' and X7} are indepen-
dent random variables satisfying the same input con-
straints as in (3.15). This follows simply because the direct
coding theorem can be proved using codebooks that do
not depend on the actual channel (via random selection)
while the fact that for reliable communication a code has
to be good no matter which actual channel is in effect
establishes the converse theorem. Using Lemma 1 and
proceeding as in Theorem 1, we obtain that

= U

1
{(R,, R,),0< R, < = logdet[, + 0723
T, 20 2

1
;!rz‘Sw‘
k=12
1 -2
Oskzs-z-logdct[l,+o ]
R, +R,
1[2, ojlr, sTIi
inf t - "
s (Pn-‘::)er 2 lOSdc [Ih o? { Y 22][3 i, ]]}

(3.56)

where the only difference with respect to (3.23) is the
minimization of the rate-sum constraint with respect to the
cross-correlation-dependent matrix §.

In Theorem 1, we showed using the singular-value de-
composition theorem that a set of eigenvectors exists that
maximizes the three constraints in (3.23) no matter which
cigenvalues arc used, thus reducing the union thetein to
ne over diagonal matrices. Here this property is no longer

Lemma 4: Define the circulant matrix

0 1 0 1
0 0 1 |
- 00 : 0
S=p,l,+
P2 (21} 1 0
0 1
1 00

which differs from § only in the (n,1) entry (cf. (3.22)).
Then for every >0, and n>n, (independent of 3,

0<RY< (X7 Y™ (prys )1 X7)

OSR;SI(XZ"; Y"(p12: P01 XT) (3.55)
RY+ Ry <I( X7, X3, Y*(0y3,02))
2,, £, and py)
1 12, ojfr, §7
;logdCt[lz:l'l';i[O Ez][s. Iu ]}
1 112, o \jr, ST
— ~logdet [Iz, + F[ 0 E;][S 3 ” <é. (3.57)

Therefore, as far as computing hm,,,m(l /n)C}r is con-
cerned, we can substitute S by S in (3.56). The effect of
this substitution ic to introduce an artificial interference
term between symbol 1 of user 1 and symbol n of user 2
(Fig. 6). resulting in a channel which can be thought of as
a wrapped-around version of channel (2.1). By the circular
symmetry of this new channel, we can intuitively expect
the covariances achieving capacity to be circulant, and
consequently, the exisience of a set of optimum cigenvec-
tors (whose components are powers of the complex roots
of untity) which do not depend on the crosscorrelations.
To show this, it suffices to write

S =0DU* (3.58)

where D is a diagonal matrix of the eigenvalues of S,
which coincide with the DFT of the first row of the
circulant matrix § [23]

dy=py+pue/*-V/r gal.oon (3.59)

and U is the orthonormal matrix of cigenvectors of §
given by

1'...'n'k=l'...'n

g, = J_C-JZv(k-lxl-l)/n’ [
! (3.60)
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Fig. 6. Circular n-block memoryless two-user channel.

bg(n)

Using the decomposition (3.58) in lieu of (3.24) and
Lemma 2 with 4 = D, and proceeding in a way similar to
the proof of Theorem 1, we obtain

I, 20 2n

1
:lr!,sw,
k=12

1 1|2, o1, s7
+ — logdet "
R st(p,, l,:Lf)e:r' 2n 8% [12" 2[0 22][3 I ”}

= U

Ap20, 11,0000

1 =n
{(Rlsz)vOSRlS— 2 log (1+
2n /35

1
:E:-IAM Swy
c=-1,2

SRS

vhere

dll = P%z +p} +2py3py COS. .

3.62)

xs we saw in the oroof of Theorem 1, the convergence
i the right side of (3.61} to (3.53) reduces to

.i.tr(i-l) npz(Zw(i-l) )

i f . d
G‘;:x ) (m12 l5{111)Gl" 417] f 1(0) Qz(w) 2 (w)) ©
<n3)

= 1im max inf —
) o.,zO:-l g, p")el"zn
= -|0n$1"
T lel2
ot 2a(i—1)
&y, f| 1 Pair Pz(—'T_))- (3'63)
-\

inf
‘pnen)el 2

745

However, note that the right side of (3.63) can be written
as

lim max inf —
n-'cooiep(%) (pyz.py) €l 4
¢,ep(3z)
[ 1(91(0).9,(0), p2(0)) dw (3.68)
where
p 2n{i-=1) 2=i
Pi(w)ﬂ)( ﬂ(; )), forwe{—-z(—;—)-,—;

and P(w, /0?) is the subset of P(w,/a?) of piecewise
constant functions on the partition [0,27/n,- - -, 27). Since
p3(w) is piecewise constant on that partition, it is easy to
show that we can replace P, (w;/0%) by P(w,/0?) in
(3.64) without changing the maximum value for any n.
Finally, (3.63) follows from the fact that for every ¢ >0,

2n

1 1
U {(Rl, R;),0s R, s —logdet[I, +072%,],0< R, s —logdet [ I, + 0723;]

n

A u Ay
}—2')’ OSR,sz— Y log(1+7)

iwl

xl;Az,( 1-|d] ))} (3.61)

ind n > n, (independent of ®,, &,, p,,y, and py,)

M Ay
—Llog(1+ ?+

te]

U_ ,I(Ql(“’)"’z(“),p,z.(w)) dw

=17 £(9,(), 93(0), p*(w)) do

Wy W.
SZﬂlog(1+ -;—A) (3.65)
Again notice that since the capacity region is achieved with
stationary inputs, Theorem 2 holds regardless of whether
or not the transmitters are frame synchronous.

Corollary: 1f both users are assigned identical wave-
orms (and they do not know their mutual offset), then the
capacity region is invariant to symbol (and frame) asyn-
chronism.
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Fig. 7. Symbol-asynchronous Gaussian capacity region when transmil-
ters do not know offsel between their signals.

Proof: Because 1-p}, —p3 —=2p12pycosw 20, it is
easy to see that the asynchronous capacity region (3.53)
reduces to the Cover-Wyner region (2.7) if the uncertainty
set T includes either (0,1) or (1,0). This occurs when both
users are assigned the same waveform.

In Fig. 7 we can see the asynchronous capacity regions
corresponding to two different assignments of the signa-
ture waveform: a) identical signals, resulting in the
Cover-Wyner pentagon, and b) signals that are orthogonal
when symbol synchronous, resulting in a pentagon with
smooth corners.

1V. EFFICIENCY REGION .

A fruitful way to represent the multiple-access capacity
region is to consider the effective signal-to-noise ratio of a
user who transmits at rate R, which we define as the
signal-to-noise ratio, v, required to achieve capacity R in a
single-user channel, i.c,,

y=exp[2R]~1. 4.1)

Since the mapping in (4.1} is one-to-one, the rate and
the effective signal-to-noisc ratio give the same informa-
tion. It is convenient to normalize the effective signal-to-
noise ratio with respect to the actual signal-to-noise ratio,
This results in the performance measure we refer to as
efficiency’ v, which is a parameter ranging from 0 to 1
that quantifies the performance degradation suffered by
each user because of the presence of other users in the
channel. Once the capacity region of a multiple-access
:nannel is known it is immediate to obtain the efficiency

":n analogous performance measure was defined in the analysis of the
ainimum uncoded error probability of Gaussian multiple-access channels
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0~
[s] 7 !

Fig. 8. Efficiency region as [unction of background noise level.

regicn, by substituting each of the individual rates in terms
of the respective efficiencies, i.e.,
1 W,
R,= E log(l + ni?)'

For example, it follows from the capacity region in (3.6)
that the efficiency region of the symbol-synchronous chan-
nel is equal to

(4.2)

{(’71,172): 05"151’0517251,

ol a?
nm,—(1- ’71);"2‘ -(1- Th);l' <l- Pz} (4.3)

where recall that p is the crosscorrelation between the
assigned waveforms.

This efficiency region is illustrated in Fig. 8, as a func-
tion of the background noise level. For low signal-to-noise
ratios the efficiency region occupies nearly all of the unit
square because the main mechanism limiting performance
is the background Gaussian noise, rather than the multi-
ple-access interference. Conversely, it is apparent from
Fig. 8 that for moderate-to-large signal-to-noise ratios the
efficiency region converges to an asymptotic region which
quantifies the underlying limitation of the multiple-access
channel due to the cross correlation between the assigned
signal waveforms. The region in (4.3) admits a particularly
simple asymptotic expression as the noise spectral density
goes to zero:

E= {(n,,nz): 0s9<1,0<9,51, nm, sl—pz}.
(4.9)
The usefulness of the asymptotic efficiency region is
threefold: it provides a simple way to characterize multi-
ple-access capacity in high signal-to-noise ratio situations;
it gives a lower bound® to the efficiency region achievable
at any background roise level, which depends only on the
assigned signal waveforms and not on the signal-to-noise
ratios, and it gives an intuitive characterization of the
serrormance degradation in a multiuser channel in terms

*11is shown in [14] tha1 the efficiency region is monotonucally increas-
ing in a2 (c!. Fig. 8).

— v — T ——————
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U

S(w)20
1
;]&(u)do-l
1=1,2

1 1 .«
MmNy S exp -2-;]_ log S;(w) dw exp 5—;/ log S,(w) dw

of the additional power required to achieve single-user
capacity.

For example, suppose that the users’ objective is to
transmit at rates R, and R,, respectively. If they were
operating in a single-user channel, these rates could be
achieved with powers: w, =o%(exp[2R,]-1), k=1,2.
However, when they share the same channel, these powers
are no longer sufficient to guarantee reliable communica-
tion at rates R, and R,. The asymptotic cfﬁcnency region
(4.4) indicates that the sum of their powers in dB has to
increase by — 10log(1~ p?) dB and that the way the users
split the burden of increasing their powers is immaterial as
long as the total power increases by the prescribed amount.

In the conventional scalar multiple-access channel, which
con‘mponds to the users being assigned the same wave-
forms, ie., p =1, the asymptotic efﬁcnency region is {via
(44)):

{(0sn,51,7,=0}U{9,=0,0<9,<1}.

Thus when the signal-to-noise ratio is high, the best strat-
egy is to let one of the users transmit at practically full
single-user speed, while the other user’s rate is kept at a
very low level. This is considerably more efficient than
time-division multiple-access (TDMA) signaling whose
asymptotic efficiency is equal to zero for both users—
although if both rates are required to be the same, then
TDMA is indeed almost as good as the best coding for low
background noise (see [28]).

These conclusions do not hold in the case where the
assigned waveforms are different (jp} <1). For example,
suppose that p = 0.1 and two equal-rate equal-energy users
with signal-to-noise ratio equal to 20 dB transmit at the
maximum possible rates, Had the users eraployed TDMA,
each of them would have required approximately 40 dB to
attain the same rate. Even in the case where there is heavy
cross correlation between the signals, TDMA is not near-
optimum, e.g., if p =0.9, then TDMA would still require
33 dB to attain the same rate.

The efficiency region of the asynchronous Gaussian
multiple-access channel is (via (3.53) and (4.2)) equal to

) {{(ny,m,):
)20 |
l' 1S(w)dw=1
-1.2

a? g2
B = o= inf
.Th wl)(ﬂz W, s

147

Letting 02 — 0, the asymptotic efficiency region results:

- 1 ,» 1 .«
(mam):m, s exp E;f_"logS,(w) dw, 7, S exp ?;f_’logsz(w)dw

) 1 ,» )
(m_lg;r)erexp 5= f_”log(l p (w))dw} (4.6)
The constraints in (4.6) depend on the spectral densities
only through their geometric mean; therefore, all three
constraints are maximized simultaneously by a single pair
of spectral densities because the function that maximizes
the geometric mean subject to a constraint on its arith-
metic mean is constant. Therefore, (4.6) is equal to the
efficiency region achievable with white spectral densities
Si(w)=1, w €[—m, x}, which implies that white inputs,
while not optimum in general, achieve capacity asymptoti-
cally as the background noise level goes to zero. Then the
asymptotic efficiency region is the intersection of the unit
square with the hyperbolic region

1

inf  exp o

MM s
1 (prz.pm €T

"f' 108[1"(Piz"”P%l)"anszlCOS“] dw
-

) ‘/1"(1312'*”1321)2 +\/1‘(P12“P21)2
inf
(P12.03) 6T 2

2

=

(4.7)

where the definite integral is found in (29, p. 560] (see also
(30, p. 384)). Note that this result generalizes the constraint

. 1= p? obtained for the product of the asymptotic efficien-

cies in (4.4) when the users are synchronous. Equation
(4.7) indicates that contrary to what is sometimes assumed
in pseudonoise sequence design, it is as important to
minimize the difference between the cross correlations as
to minimize their sum (the so-called periodic cross correla-
ticn). The function on the right side of (4.7) is ughtly
approximated by 1-p%,—p} for low cross-correlation
values such as those in Fig. 9, where we can see the
uncertainty set of cross correlations between two carrier-
modulated spread spectrum waveforms used in CDMA
[31]. In this case, the minimization in (4.7) is atiained by
the rightmost point in Fig. 9.

0? 1 o?
— — > dw,
(1 2) sow e [ |0 a0

o’ 1 " o? S 4
172+;v-2' Scxp?;f-'og -;2-4- 2(w)| dw

‘ 1 . ¥ 02 02
o exp E—;f_ 'log l(Sx(w)+ ;—;)(Sz(e.\)+ ;2) - pz(w)Sl(w)Sz(w)] dw (4.5)
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Fig. 9. Locus of cross correlations for maximal-length pseudonoise
sequences with 31 chips per symbol.
APPENDIX |

To simplify the coding theorems for muitiple-access channels
with memory invoked to find the capacity region of the asyn-
chronous Gaussian channel, it is convenient to obtain a discrete-
time channel equivalent to (24) and whose noise process is
independent. The idea is to obtain a set of sufficient statistics
that are independent given the transmitted symbols, but that
unlike those in (2.4) are not a minimal set. We define (cf. Fig, 2):

i+ 1)T+ 1

yr (i) = . y(t)s,(t-iT-n)dt  (L1a)
w (i) -_(‘T':::’* W) e(t-iT-7)d.  (L1b)
It is clear from (2.2) and (L1) that
w(i) =y (i) + 1 (i)

Thus the set of quantities { y,(i)}1, { 34" (i)}fw1s 30d { 35°())]
are sufficient statistics for the transmitted messages. To obtain
the explicit dependence of »f(i) and pf(i) on the transmitted
~vmbols, it is convenient to define the partial energies of {5,()}:

=T B0 (120),
Ten-~ 5]
- ]q"*""‘:g(z) dt. (1.20)

“hus ef + ef =1, and it follows from (2.1}, (24), (L1), and (1.2)
hat we can write

n(i) L AT RO m (i)

w(i) |=|,m2 e O &) [+] LD

w(i-1)] Len 0 efllB(i-1)] |af(i-1)
1.3)

~here
iv(i) = I(‘H)r”'n(t)sz(t-iT-fz) dt  (lL4a)
T+0)T+1n

(@) = 0 () (- Ton)de (140)

“he channel in (1.3) kas m2mory because of the dependence on
revious inpuis; however, since the random process (z(f)} is
vnite. the noise sequence in (1.3) in independent. Because of the
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sufficiency of the respective Joutputs, the channels in 24) and
(1.3) have the same capacity regiors.

APPENDIX 1]
Proof of Lemma 1: To prove the identity

det[ £, + e 2E[ X"X"T| R]

118 oHlr s7
dct[12,+-°—2—[0 22][8 I,”' (1L1)

we wiil first decompose the crosscorrelation matrices E[ X" X*7T]
and R using the Kronecksr product:

strexryel (o) o)
sef{reo [ xe 2]

- 10 00
z_,e[o 0]+Eze 0 1] (11.2)
and
a0 1
R I@[O 0]+I@[0 1 +SQ[l 0 +8 e[o ol
(1.3)

It is straightforward to check that if 4, B, C, D are nXn
matrices, then

1 0 6 0
“[o o]*”[o +C°[o 1

+DO

..p[

where P is the permutation (orthogonal) matrix whose only
30nZero entries are

g]PT (11.4)

Pyyoyy=l, j=l.e,n (11.52)

'J21—2n1"1' j-n+l,"',2ﬂ. (II.Sb)

“hercfore, (I1.2) and (IL3) can be written, respectively, as

"rx-x-T]-rI - ]rr (1L6)
1, s,
2= ’[s ,]r (1)

and (IL1) follows from (IL6), (IL7), and the orthogonality of P
1von using the identity det{f + 4 B] = det{[ + BA}.

APPENDIX III

Proof of Lemma 2: Define the following diagonal matrices:
F=diag{cosb,, --,co88,}, G=diag{e™ sinf,, -, e sind,)
where 8, = (1/2)arcsin(3,) €{0, #/4) and & =|3le/*, i=
“.e+v, n It is straightforward to check that

|r G‘][F G‘] [r r;°] [

A.
|y
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“herefore. we can write

¥ A

F G* r[A o]r[r
P[ PPOBPPG

‘Ctl Iz"

= net} IZn G}..] PT]
111.2)

»nere P is the orthogonal matrix introduced in Appendix II. It
ollows from (I1.4) that

P[ F G.] PT
is a block diagonal matrix whose 1th diagonal block is the 2X2
matrix
cosd, e "*sind,
e’*sinf,  cosé,
whereas
0] pr
H

is a block matrix whose ith diagonal block is
a, 0]

0 &)

Because of the assumption on the magnitude of the elements of

A, the hermitian matrix

[, A*]

A I

s nonnegative definite and, therefore, so is the matrix in the right

1ae of (I11.2). This allows us to apply the generalized Hadamard

neauaiity {18)° (the determinant of a positive-definite matrix is

ipper-pounded by the product of the determinants of its diago-
1at blocks) to the matrix in the right side of (II1.2); the result is

he ineauzlity
I, A‘
1C‘|Iz" 0 ]
J cos, e ™sinf
[ {det|h + )
-[x(l ¢ [ : [ Mising,  cosé, ]
a, 0] cos, e *siné,
0 bll 76”‘$in0, 0030,

P {140, +8,+a,5,(1-18D%). (111.3)
-y

‘inallv, it is immediate to check that (3.31) is satisfied with
quaiity if 4 and B are diagonal matrices.

iPPENDIX IV

*roof of Lemma 3: The proof involves the solution of the
naxumization in (3.40), thus yielding an explicit way to compute
he capacity region in (3.13). The maximum on the left side of
3.40) is achieved by the pair of nonnegative functions (®*, ®;)

‘smong the many existing proofs of the Hadamard inequality, Cover
:na El Gamal [32] have given a simple information- theoretic proof. One
1 the nice features of that proof 18 that 1t can be immediately exiended to
»rove the generalized Hadamard inequality.

that maximizes the strictlv concave Lagrangian (if o2 <1, then
J(2), 2,,p") is strictly concave in (z;, 23))

L(9,,9)) = [ [(®1(w).8,(0).5(w)) do

-4, [f_'_:»,(«») du-—%] _oz[j_"oz(u) du--:-";] (v.1)

“or some pair of positive Lagrange multipliers (9,,9,) selected so
that

-2—"j_’¢ (u)du-— k=1,2.  (IV2)

The optimum pair (®#,d;*) is the unique element in the cone of
nonnegative function pairs that satisfies'® (e.g. {33, p. 227))

8,2 fi(df (), 92 (), (w))
2a—1
T 1vor(w)
. (1-a)[1+ 07 (0)(1- ()]
1+ O (w)+ 0 (w) + BF (w)DF (w)(1-p2(w))
(Iv.3)

6, Zfl(q’l.(“’) o (w), Pz(“))
(1-a)[1+ 07 (0)(1- #(w))]
T+07(a) 707 (a) + 07 (@) 37 (@)1 F(a) Y
with equality if ®*(w)> 0 and 97 (w) > 0, respectively; here f,

and f; are the partial derivatives of f with respect to its first two
arguments. It follows from the second condition that

. {1-a 1+ 9f(w)
o (w) = m""i 8  1+07(w)(1-pH(w))’

o} (1v.5)
which implies that

i—a>8, (Iv.6)
tor otherwise @ (w)=0 for all w €[~ m, ), which does not
satisfy (IV.2). Let us now see what conditions force each of the
<olutions to be zero at a particular frequency.

On the one hand, if O (wy) =0, then (IV.5) and (IV.6) imply
that

1-a
v (w) =— -1 (Iv.7)
which when substituted in (IV.3) results in
a—9d,
(1V.8)

P(w) 2 —-——(l )

One conclusion that can be drawn from condition (IV 8) is that

a> 8, (Iv.9)

vecause otherwise, @F(w) =0 for all w € [— =, 7).
2n the other hand, if ® (wy) =0, then (IV.3) and (IV.9) imply
that

@8 (wy) -;:-1 (Iv.10)

107f |pyq0+ ey =1, then p*(wy) =1 for cither wp =0 or wy ==, and
uniqueness of (9;°, ®) is guaranteed, except in the set {wy ) of measure
zer0, because f(2).25,1) is pot strictly concave.
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which upon substitutior: in (IV.5) results in the condition
a (1 - a) - 02

a-— al :
Note that since 1/2 < a<1, (IV.8) and (IV.10) cannot be true
simultaneously if p?(wy) <1. However, they can indeed be false
simultaneously, in which case (IV.3) and (IV.4) are satisfied with

equality and (9 (w), P7(w)) are the positive solutions to the
system of the following equations:

A ap) = — (Iv.11)

1-a

. l-a 1+ 9% (w)
9 (w) = TR e (a) =) (Iv.12)
2a-1
140 (w)
(1= a)[1+ 07 (w)(1-F(0))] "y
.

1+ 08 (0) + 05 () + 9 (@) 7 (w)(1r - 6(w))
(Iv.13)

It follows that for each fixed pair of Lagrange multipliers, the
maximizing spectra (9*(w), P7(w)) depend on w only through

PA(w)ie, D2 (w) =y, (A (w),8,,6,), which is a continuous func-
tion of p*(w).

APPENDIX V

Proof of Lemma 4: Let E be the 2n X2n matrix whose only
nonzero elements are E;,, = E,, =1, and let Z, be the nonneg-
ative-definite square root of X,. Then we can write

2 als 7]

% o]y,
logdct[lz, l.o N

logdet [12,

|

= logdet{ I, + p;, ME] (V1)
where
[z, o 1{x, oifr, s7|1"
S 3 [N O |
zZ, 0
'[ol zz]' v2)

The determinant in the right side of (V.1) is easily computed:
det[ L, + pyME] =1+ g5, M, + 25 Myz,, — oy My My,
S1+2p, M5,
sl+ zlhxlfMuMz.z.

5=

2n (v.3)
wnere the first two inequalities follow from the nonnegative
wefiniteness of M. and the third inequality is a consequence of
he fact that. according to (V.2), the largest eigenvalue of M is
ipper-oounded by that of

L3 0
0 3,

vnich is in turn upper-bounded by (&%, +1rZ,)/0? < (W +
x.}/a*. Interchanging the roles of S and S, the same bound can
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be shown for the reverse difference in (V.1), i.c.,

1
l - logdct [’zn
n

; zz][’ i
g HH|

wzZn)

1
== logdct[lz,

= log(l + (v4)

completing the proof of Lemma 4.
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Communication Network Problems

ANTHONY EPHREMIDES, reLLow, tegg, AND SERGIO VERDU, SENtOR MEMBER, IEEE

Abstract—In 1his paper we focus on two aress of communicalion
network design in which methods of control and optimization theory have
proven useful. These are the area of multlple access communicatlon (for
nelworks with shared links such as radio networks and local area
neiworks) and the area of network routing (for networks with point-lo-
poinl inlerconneclions). We review a few selected problems in each ares
10 show the role of the control concepts involved and we then proceed to
identify other areas of communication network deslgn in which the same
control theoretic and optimizalics methodology may be applicable and
useful. We do no! survey the work done in this area, nor do we review
work in contro} areas whose methods are applicable in other communica-
tion network problems. Instead, we attempt to hring to the attention of
the control systems community the numecrous instances of problems
arising in the pure communication network design process 1bat can
benefit from ihe attention and the capabilities of this community.

1. INTRODUCTION

OMMUNICATION networks are designed and built in order

to share resources If interconnecting systems and bandwidths
were available at no cost, then the solution to the problem of
communication would be to assign dedicated communication links
(channels) of sufficient capacity to every pair of conceivable users
to meet their needs. This not being the case, it is necessary to
multiplex the sources of communication traffic in order to
optimize various cost criteria. Frequently, this optimization is
dynamic and done on the basis of feedback that monitors the
evolution of the degree of utilization of the network resources.
Thus, we should expect a number of problems arising in
communication network design to fit naturally in the framework
of control systems design In this paper we wish to demonstrate
that indeed this is the case and to show how various control and
optimization methodologies have beer used in the study of
communication networks. ,

In the beginning there was a single communication network, the
telephone network It represented a multibillion dollar investment
and seemed to serve reasonably adequately the voice communica-
tion nceds The explosive growth in data communication needs
during the last 30 years built up the pressure for additional and
alternative networking options. As a result, the notion of store-
and-forward switching (known also as message switching) was
introduced in the early 1960’s. This notion represented a
breakthrough since it constituted a radical reversal of thinking
with respect to the circuit-switching process, namely, instead of
securing an open, dedicated ‘‘pipe’ for the transmission of
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messages by means of hardware switches, it allowed a step-by-
step (node-by-node) forwarding of messages, thereby permitting
each node to switch messages by deciding when and where to
transmit the messages in its buffer. In the last 20 years we have
seen an avalanche of technologies (fast switching, time division
multiplexing, local area networks, fiber optical networks, inte-
grated services digital networks, etc.) and a proliferation of
operational public and private networks that put these technolo-
gies to test and challenged communication engineers. In addition,
they should challerge control engineers as well.

Without attempting a survey of this vast application area we
wish to promulgate the viewpoint that many (if not most) specific
sub-problems in the network design process are natural control
preblems. In support of this thesis, we choose, first, to demon-
strate how two major areas in communication networks (routing
and multiple access) have benefitted from the use of techniques
borrowed from what is traditionally perceived as control systems
mcthodology and, second, to mention additional areas that are
likely to benefit from the control systems community. As
illustrated in this paper, the techniques that have proved useful in
communication networks include. dynamic programmung (e.g.,
programming (e.g., [50], {51]); constramned and iterative optimi-
zation (e.g., [S}, [14], [16], [42]); Markov decision theory tools
(e.g., [2], [26], 129], [38]); control of Markov chains (e.g., [11],
(17}, (18], {20}, [40], [45]); stability analysis of stochastic
systems via Lyapunov methods (e.g., [31], [43]); sample path
dominance (e.g., [2], [52]); and convergence of distributed and
asynchronous algorithms (e.g., [6], [16], [42]).

The problem of routing is encountered in all and every network
that does not permit the source to reach the destination 1n a single
transmission hop, but instead it must traverse a path of intermed-
ate links, By contrast, the problem of multiple access is
encountered primarily in those networks that permit the nodes to
reach their destination directly in one hop by having to share the
same link with other transmitting nodes. In addition, the two
problems are fundamentally different in nature and, jointly, cover
considerable ground in the networking area. Finally, together they
facilitate the tdentification of additional design 1ssues and the
extension of the applicability of suitable control methods. Thus,
they represent *‘cornerstone’ areas of network design.

Routing can be studied either macroscopically or microscopi-
cally. The macroscopic viewpoint considers basically a flow
model and determines the splitting of the flow 1n order to reach the
destination in minimum time with efficient use of the network
resources. It is traditionally referred to as static routing. The
microscopic viewpoint dissects the flow process down to the
atomic level of the individual transmission unit, the message (a
string of bits commonly referred to as packet), and determines the
path each message must follow at each of its hops through the
network. It is traditionally referred to as dynamic routing. Both
vicwpoints are explored in Section II.

Multiple access is a collective term that refers to numerous
problems that deal with the dynamic allocation of a single
resource among users who can coordinate their use of that
resource only by making use of that resource. These problems
arise primarily in the context of radio channels but also in the
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Uy Uy Us Ug Us

Fig 1 Layered network showing link lengths. Source 15 node 1 1n U} and
destination is node S in Us.

context of shared cable resources in local area networks. In
Section III, we explore the main multiple access problems where
control methods have been successfully applied.

Both in the case of routing as well as in the case of multiple
access we place the emphasis on the control techniques that have
been used. We then show how these techniques, sometimes with
slight modification, can be naturally transported to other problem
areas such as voice-data integration, flow control, and the
scheduling of messages and links. This is done n Section IV,

II. NETWORK ROUTING

The problem of routing in communication networks is one that
has received early attention and has experienced significant
breakthroughs in the brief history of the field of communication
networks. It is one of the first problems that gained prominence as
a result of the emergence of store-and-forward switching. It is also
one in which analytical tools and available theories applied nicely
from the beginning.

A. Static Routing

Given a network (a set of nodes connected by directed links) a
path connecting the source node to the destination node has to be
selected from the set of all possible such paths.' In the simplest
ormulation. the problem is one of finding the shortest path, i.e., a
ength is assigned to each link and the optimization criterion is the
otai path length. This problem is one of the archetypical
-ombinatorial optimization problems (the solution can be found by
:xnaustive enumeration of a finite set of possibilities—all possible
aths from source to destination). Among the many existing
‘nortest path algorithms (see, e.g., [41]), the Bellman-Ford
algorithm (1956) is of particular interest to our exposition, both
because it is based on dynamic programming and because, as we
will see below, it easily lends itself to distributed asynchronous
implementation A natural choice to find the shortest path from
source to destination in a layered network (i.e., one in which the
nodes can be grouped in subsets U, - -+ Uy such that the source
and destination nodes belong to Uy and Uy, respectively, and
there are links only between nodes in adjacent layers U,_, and
Uy) such as the one in Fig. 1, is the dynamic programming
algorithm, where the shortest paths and distances (costs-to-go) of
the nodes in layer Uy to the destination are computed based on the
shortest paths and distances of the nodes in layer Uy,,. If the

! All the algorithms and results discussed 1n this section can be exiended 10
the case where there are several source-destination pairs in the network.

931

Fig. 2. Arbitrary neiwork showing link lengths. Source is node 1 and
destination is node S.

network is not layered (such as that in Fig. 2), its shortest path can
be obtained by finding the shortest path in a layered network
derived from the original one as specified in the Bellman-Ford
algorithm: the number of layers is equal to the number of nodes in
the original network, say IV, each layer contains a copy of each of
the N nodes, and there is a link connecting two nodes 1n
consecutive layers if such a link exists in the original network, in
addition, copies of the same node in consecutive stages are
connected by a zero-length link. (Fig. 1 was actually derived from
Fig 2 using this rule ) It is easy to see by induction that D,(i ), the
cost-to-go of node 7 in layer N - &, is the minimum length of any
path from i to the destination that uses at most £ links (in the
original network). Since no shortest path uses more than N — 1|
links (link lengths are assumed nonnegative and, therefore, no
path containing loops need be considered), the cost-to-go of node i
at layer 1, Dy_y(i) will indeed be the length of the shortest path
from node i to the destination. Thus, the Bellman-Ford algorithm
can be formulated as the iteration

Di(i)= min [Dgo1(j)+d,) fork=1, -+ N=1 (2.))
JEN()

where dy is the length of the link from i to j, N(i) is the set of
nodes for which such a link exists and it is assumed that Do(i) =
vo if [ is not the destination node, which corresponds to the
rernoval of all the nodes but the destination in the final layer (Fig.
1).

Contrary to what may appear at first glance there is a lot more
to network routing than finding shortest paths. After all, the
shortest path may not be the best path. The reason is that the real
goal is to minimize the delay experienced in going from source to
destination, and the delay encountered in each link is usually a
function of the amount of traffic carried by the link (as the link
becomes congested, it takes longer to go through ), which s
referred to as the link flow and 1s quantified in packets (or
messages) per second. Then, assuming a given destred flow level
from source to destination, the problem is how to distribute 1t
among all the possible paths so as to minimize the total delay. In
contrast to the previous more elementary formulation of the
routing problem which led to thc shortest path combinatorial
optimization problem and which corresponds to the special case in
which the link delays are independent of the flows, we now face a
continuous optimization problem which can be written as

minimize F(x)=Y, D, < h x(n)>

()] a€P(1y)

subjecttox € X= {(x(l), -ox(J)) € R/,

J
> x(n)=X\, x(n)zo} 2.2)

nmt
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Fig 3 Charactenizanon of the solution to the minimum-delay rouung
problem.

where the set of all paths from source to destination is labeled {1,
<o, b x = (x(1), ---, x(J)) is the vector of unknown
nonnegative path flows which sum up to A, the desired flow from
source to destination; P(i,j) C {1, * - -, J} is the subset of paths
that traverse link (7, j ); and Dy(x) is the portion of the overall
delay contributed by the link from node i to node 7 when the flow
it carries is equal to x. In order to characterize a glouai solution to
the optimization over a convex set in (2.2), it is natural to restrict
attention to convex penalty functions. In practice, it is common
that the incremental delay in a link grows with the amount of
traffic it carries and, therefore, it can be assumed that the
functions D, are convex without affecting significantly the
practical applicability of the results.

Now, the characterization of the solution to (2.2), x*, is
straightforward. Since the feasible set X and the penalty function
F are convex, it is necessary and sufficient that the directional
derivative of the penalty function be nonnegative when evaluated
at x* in the direction of any of the elements of X (e.g., {37])

Osljwé[F((l —a)x*+ax) - F(x¥)} vx € X (2.3)

which translates into

sy D;( > x*(m)>

(ty) mEP(1)

> x(m)-x¥m)

n€P(ny)

J
= E [x(n) = x*(n)] deu(n) forallx € X

. =l

where di(n) = I ye1m D (Eme . X*(m)) is the length of path
n when the length of each link is equal to the derivative of its delay
evaluated at the set of flows x, and L (n) is the set of links nsed by
path n. The solution to (2.4), x*, is the vector in X that minimizes
its inner product with the vector of distances d,,. Thus, x* puts
all its weight on the smallest component(s} of d;, The conclusion
is that the optimum flow uses only shortest paths computed
according to the derivative of the link delays.

This solution to the minimum-delay routing problem allows us
to check whether a given set of flows is optimum. Unfortunately,
it does not tell us how to find the optimum flows. Indeed, we face
the chicken-and-egg situation depicted in Fig. 3. The optimum
flows are obtained by solving a shortest path problem; but in order
to compute the link lengths it is necessary to know the optimum
flows. Nevertheless, the foregeing characterization of the optimal
solution does suggest a possible iterative procedure to find the
optimum set of flows. Starting with a given set of flows x one can
compute the minimum derivative shortest paths for that flow, and
hence, a new fiow, x*(x) that is positive only along those shortest
paths. The process can then be repeated, until there is no
appreciable cost decrease. The region of convergence of such a
procedure can be improved by letung the new flow be a convex
combination of x and x*(x), i.e.,

2.4)

Xeo 1= (1= o) Xy + arX*(xy).

This is the so-called flow deviation method of Fratta, Gerla, and
Kleinrock {14], where 0 < a; < 1 is chosen to minimize

F((1 - ag)xy + axx*(xy))

1IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 9, SEPTEMBER 1989

which is a special case of the feasible-direction nonlinear
programming algorithm due to Frank and Wolfe [13]. The
convergence of the flow deviation method to the optimum routing
is rather slow because unfavorable paths tend to carry considera-
ble flow during many iterations unless the initial routing guess is
particularly fortuitous. Such a behavior can be improved by
reducing the flow along each nonminimum derivative path in
accordance to the delay experienced in that path. This is the idea
of iterative routing algorithms based on gradient projection
nonlinear optimization methods (e.g., [4]) in which the flow
decrease along a nonminimum derivative path is proportional to
the difference between its length and that of the shortest path
(according to the first derivative of the delay function). If such a
decrease would restlt in a negative flow, then the flow along that
path is set to zero (henice, the projection to the set of feasible
flows).

We have seen that the problem of static network routing can be
formulated as a conceptually straightforward optimization prob-
lem that admits well-known solutions in nonlinear programming.
What sets optimum routing in communication networks apart
from other multicommodity flow problems arising 1n operations
research is the fact that the optimization 15 carried out 1n real
time, and often, in distributed fashion, where each node makes its
own routing decisions based on local information. The review of
centralized routing has revealed that the shortest path problem
plays a central role in solving for the optimum routing regardless
of whether the link congestion measures depend on the link flow
or not. Hence, we will start the exposition of distributed routng
algorithms by discussing the distributed version of the Bellman-
Ford shortest path algorithm.

The Bellman-Ford updating equation in (2.1) suggests that the
algorithm is suited for decentralized operation because each node
can update its own estimate of distance to the destination (cost-to-
go) provided it receives from its neighbors their own estimates
{appearing on the right-hand side of (2.1)]. The feature that makes
the study of the distributed Bellman-Ford algorithm interesting is
that it can run completely asynchronously, in the sense that the
updating and communication times need not be coordinated and
convergence can be guaranteed by simply assuming that updating
and communication between nodes never cease, without any
requirements whatsoever on the rate of communication. The proof
of convergence is a nice illustration of the analysis of decentral-
ized algorithms where the processors are allowed to perform their
computations and to communicate the corresponding results
completely independently of one another {5}, {6]. The 1dea 1s to
show that the estimates computed in the distributed asynchronous
algonthm are always sandwiched by the estimates computed by
the centralized version of the algorithin when started at two
different initial conditions, and that both centralized estimates
converge to the true distances to the destination node.

Those centralized estimates are denoted by D, = (Dy(1), - -,
Di(N)) and Dy = (Di(1), -+, Di(N)), and are the result of
the centralized Bellman-Ford iteration (2.1) when 1t 1s started
with initial conditions Dy = (e, --+, ©, 0) and Do = (0, ** -,
0), respectively. (The destination node 15 assumed to be the Nth
node.) Define the operator [see (2.1)]

Bi[Di}= min [Dy(j)+dy)
JEN)

=Dy 41 (i) (2.6)
if1 < i< N,and By[D;] = Dy(N). This operator is monotone
in the sense that if D < D* (i.e., if D(i) <= D¥i),i=1, ++-
N), then

B,|D)<B,(D*. 2.7
The monotonicity of B; implies that
DysDys1SDy, sDy (2.8)
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and, moreover, it is easy to show that for sufficiently large k

Dy=Dy_,=D; 29
which is the vector of distances from each node to destination as
we saw in the discussion of the centralized algorithm.

In the asynchronous distributed version of the algorithm, it is
assumed that each node i keeps at time t = 0 an estimate of its
distance to destination A4,(i), and an estimate of the distance from
each of its neighbors j € N(i) to destination A}(/), which is
simply the latest estimate received from node j. In view of (2.8)
and (2.9), convergence of the algorithm will follow if we show
that for every index &, there exists a time £, > 0 such that for all ¢
=

Dy<A,;sDy (2.10)
andfori=1,---,N-1
D()=AiU)YsD(UJ)  J € N(i). 2.11)

Thus 1s shown by induction. If & = 0, then (2.10) and (2.11) hold
as long as the initial estimates of the decentralized algorithm are
nonnegative. Assuming that the induction hypothesis is true for &,
the monotonicity of B; implies that if ¢ = f;, then

D+ 1(1)=B,[D)SB[A])SBI[Dy] = Dai(i).  (2.12)

But 4,(1) 1s a piecewise constant function of time which only
jumps at the updating times of node i, at which times it takes the
value

A (1)=B|[Al].
Therefore, we can write

D (DS A()SDear () for t124,(i) (2.13)

where £(i ) 1s the smallest updating ime of node { which is greater
than ;. Moreover, 1f we wait long enough aftei max; £(i), not
only all the nodes will have carried out their first updates after #;
but the result of those computations will have been communicated
to their neighbors because of the assumption that updating and
communication occur infinitely often. Hence, there exists #;,, =
max; £(i) such that for all # = #;,, and for all { and j

AjU)=A:)

for some s = £(s) (which depends on ¢, i, and j). Thus, it
follows from (2.13) that

Dii1()s AN )Ys D ()

completing the inauction proof and, therefore, the proof of
convergence of the distnibuted asynchronous Bellman-Ford al-
gorithm.

When the link delays depend on the traffic flows, it is also
possible to obtain the optimal routing that solves (2.2) in a
distnibuted asynchronous fashion. Gradient projection algorithms
are better suited for this task than the flow deviation method
because 1n the latter method a higher degree of synchronization is
required 1n order for the nodes to use the same step size at each
teraion. In the distnbuted asynchronous implementation of
gradient projection optimum routing algorithms, each node
bruadcasts from time to ume the values of its outgoing flows to its
upstream neighbors, who 1n turn pass that information on to their
upstream neighbors. In this way, the source keeps estimates at all
tmes of the link flows and can carry out the gradient projection
teration autonomously based on those estimates. The first
algonthm based on this 1dea was due to Gallager [16], who posed
an alternauve formulation to (2.2), where the unknowns are the
fractions of flow routed to each outgoing link at each node, rather

JEN@) i=1, -, N=-I

i
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Fig. 4. Queucing model of a node with one sncoming link and 1wo outgoing
links.

than the path flows. Tsitsiklis and Bertsekas [42] showed the
convergence of the distributed asynchronous implementation of
gradient projection optimal routing algorithms provided the time
between consecutive broadcasts is small enough relative to the
speed at which the flows generated by the algorithm change. The
approach for showing the stability of this algorithm is very
different from the proof of convergence of the distributed
Bellman~Ford algorithm where the monotonicity of the dynamic
programming mapping implied that the est. ates are closer and
closer to the solution regardless of the actual sequence of
communication and computation times. The idea here is that if the
step size of the algorithm is small enough, then the flows change
so slowly with respect to the periods between communication
times that their evolution is very close to that of the centralized
algorithm which uses the unique, true value of each link flow

B. Dynamic Routing

As mentioned earlier, there are two fundamentally different

philosophies to network routing: either viewing it as a “‘flow”’
problem in which the traffic of messages is modeled as a
*‘macro’’-commodity entering the network as a single entity
(static or quasi-static routing), or as an individualized-message
path-finding problem in which the traffic is broken down to its
constituent elementary units (dynamic routing)—a dichotomy akin
to that of statistical/quantum mechanics in physics. Whereas the
first approach leads to optimization problems where time plays no
role, the essential ingredient of the second approach is the
randomness of the time-evolution of the buffers in the network,
thus placing dynamic routing within the sphere of stochastic
control,
* The most elementary instance of dynamic routing is the simple
queueing system shown in Fig. 4 which models a node with one
incoming link and two outgoing links. It simplifies considerably
the dynamics of the message arrival process and of the service
time characteristics and ignores processing delay. Thus, the
arrival instants of messages over the incoming link are assumed to
constitute a Poisson process of constant rate X. Upon arrival each
message is put in the buffer of one of the two outgoing links This
action represents the “‘control.”* The buffers are assumed to have
unlimited (infinite) capacity and the message lengths are assumed
to be random with exponential distribution (an obvious additional
simplification) with parameter p. The two outgoing links have
equal capacity of C bits/s. Thus, each link is modeled as a
queucing system with exponential service time distribution with
parameter pC. It is desired to characterize the optimal control
policy that minimizes the average total delay per message based
on the observations of the ‘‘state’ of the system, namely the
number of messages g, and ¢q; in the two buffers. The model, of
course, assumes that the head -of-the -line message is dropped from
the buffer as soon as the transmission of its last bit is completed

This model, despite its simplicity, proved to be rather difficult
to analyze. For details, see [10], it is not important to repeat them
here. It should suffice to state that the main result, which simply
requires that upon arrival a message should join the shortest queue
(with arbitrary decision in cas¢ the twe jueues have equal
numbers of messages), was hardly surprising Yet an intricate
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irgument on the dynamic programming equation (DPE) was
weeded and there were some counter-intuitive side-results includ-
ng the relaxation of the Poisson assumption on the arrivals, and
he fact that in the incomplete state information case, the
-ertainty-equivalent control (i.e., send the message to the
«xpected shortest queue) need not be optimum unless both queues
1ave the same number of customers initiallv.

“he optimality of the send-to-shortest-queue (SS) policy in the
:omplete state information case can be proved in a rather strong
ense. At all times. the sum (g; + g;) and maximum (max {q,,
13) of the number of messages in both buffers are stochastically
nnimized bv the SS policy in the sense of the partial order
etween random variables acco:  ng to which the random variable
x is stochastically smaller than . of P{X < a} 2 P[Y = 4] for
#l a. The proof of optimality can be obtained by the method of
_orward induction [53}], whereby the desired stochastic ordering
setween the aueue sizes under the optimum and an arbitrary
olicy is shown to be preserved at each transition.

“he problem formulation of {10] is one of many related ones
see [8], {91, {22], {24}, {33}, [38}], {54], {55]) which are slightly
nore complicated but share some fundamental characteristics
rnich. in fact, extend beyond the confines of the routing problem
nto the areas of priority assignment, resource allocation, and flow
-ontrol. Thev are all Markovian decision process (MDP) prob-
ems. In the seauel we will describe a fairly general MDP that
nciudes the dvnamic routing problem as a special case. In fact, it
nciudes almost all of the aueueing control problems that have
seen studied in connection with communication network issues.
¥Ye will then outline the solution methodologies that have been
1sed, These include basicallv: 1) the derivation of optimality
-onditions fiom the DPE associated with the corresponding MDP;
2) the use of sample path stochastic dominance arguments, and
inally; 3) the reformulation of the MDP as a linear program, We
:nould emphasize, lest the reader be unduly encouraged, that the
roolems in this area are sufficiently complex, so that only modest
esults can be generally obtained despite involved arguments and
ontrivial machinerv. Typically, these results characterize some
aructural oroperties of the optimal policy. However, knowledge
it such structure is often sufficient to permit close approximation
of the actual ootimal policy by well-founded heuristics.

et us recall brieflv what an MDP is (for details, see [30]). We
ieed a state description of the process to be controlled. Let S be its
ztate space. When in state s € S, a set 4, of admissible control
setions is specified. When action a € A, is applied, there is a
ransition from state s to s’ tha. is governed by the probability
ristribution p(s’|s, a), and which occurs after a random time 7
vnich is exponentially distributed with distribution denoted by
(7]s, a, s’). Clearly, p and ¢ together describe the stochastic
wvnamics of the process to be controlled. Finally, each transition
s accompanied by a cost penalty that we denote by ¢(7, s, a,5').

“he dvn2mic routing problem we considered before fits in this
ormulation eas‘lv. In that case, the state space is S = {0, 1, 2, 3,

*+*2, Anelement s = (g, g2) € S is simply the pair of values
it the respective queue sizes. The set of actions A, is the same for
inv state and consists of a; and a, where g; is the action that
i8s1gns an arriving message to the buffer of link i, The
sistribution p is of trivial form, in that the transitions are
reterministic Assignment of an arrival to queue i augments g, by
me Note. now, that in addition to the arrival instants, the
ieparture (or service completion) instants are important because
hev induce state transitions as well. A departure from queue /
eauces @, by one When a departure occurs there is no
neanmmngful control action that can be applied in this particular
rroblem The exponential distribution ¢ corresponds to times
setween arrivals and/or departures.? Finally, the cost rate ¢ must

A shghi modificanon of the modzl of iransions, called unitformuzanon, 1s
iserul (n thal 1 iniroduces dummy iransdions from a state 1ato atself, 1hus,
ome siuanons which ruduce nonessennial cumplicatiuns can be handled
vithour departure from this discrele 1ransition time formufanon,
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reflect the delay. By Little’s result in queueing theory, we know
that the average delay is proportional to the average number of
customers in the queuve. Thus, c(r, 4, 5, $') can be taken to be
simply equalto (g, + g,). This MDP formulation can be extended
to encompass mare complicated queueing control problems,

Let us return now to the general MDP. We need to specify the
notion of a control policy and the optimization criterion. Let us
denote by ), &,, - - -, the state transitions that occur at instants ¢,,
t;, **-. A policy « is a sequence of decision rules x), x3, -*-,
where x, determines the choice of action at the transition time ¢,.
It can be viewed as a conditional distribution on the set of actions
parametrized by the past history of the process.

The optimization criterion that corresponds to the practical case
of expected total delay is the long-run average expected cost;
namely, if we denote by V(=, i, t) the expected cost incurred
under policy =, with initial state /, until time ¢ we consider as the
optimization criterion the value function

V&,
Y(x, i) & lim inf@.

I~

For technical reasons, however, that are well known to optimiza-
tion specialists, it is easier to establish optimality conditions if we
consider, instead, the so-called a-discounted cost, i.e.,

Va(x, i)= S’ e dV(m, i 1),

The latter converges to the former as a —* 1 under a variety of
stationarity conditions. For technical reasons that will become
apparent in the sequel, we will also consider the fimte-horizon
costs. These are defined in a similar fashion except that we let
time extend only to #,, the instant of the nth transition. If we
denote by V(i) and¥V (/) (and also V2(i), V,(1) for the finite
horizon cases) the values of these cost functions when = 1s chosen
optimally, we are led to the following DPE:

va(i)= il 33 [eiv a, i)+ B0, a, YV Np(i|a, i)
or

va, ()= inf 3 [c(i, a, i) +BG, a, i)V Np(i’ |a, §)

ag 4, '

where

B(s, a, s’) & }o e~ di(1]s, a, s')
and

-]
(s, a,s’) & S c(r, s, a,5’) dt (1|, a,5°)
0

are the discount factor and cost values per transition, respectively.

The DPE is of fundamental importance in the study of MDP’s
because the value function V= has the usually convenient
properties of convexity, supermodularity, and other forms of
monotonicity that lead readily to sufficient conditions for optimat-
ity. The difficulty with the analysis of the DPE is that the
optimality conditions are heavily problem-dependent and often
lead to explosively large numbers of cases to be venfied
:eparately. This is especially true for MDP's that arise from
jueueing models. For this reason, and because of additional
difficulties that arise when the state is on the boundaries (see
[22)), it became evident that alternative methods of solution were
needed.
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One alternative method that has received attention recently and
which produced successful results in problems of queueing control
(akin to the routing problem) is a probabilistic method called
sample-path or stochastic dominance. This method bypasses
completely dealing with the value function. Instead, it focuses
directly on seeking the optimal policy. Let G be the class of
admussible policies. If we suspect that the optimal policy = has 3
property p, then we can proceed as follows 1n order to prove that
1t actually does have that property. Let S be a subset of G, to
which we know the optimal policy belongs. We consider a subset
of policies S, C S, all elements of which have the property p. For
every x* & S,, we attempt to construct a policy # which
outperforms . If we succeed, we must conclude that the optimal
policy belongs to S,. In constructing % we often need to engage in
a caretul reorgamzation of the underlying probability space in
order to align the sample paths properly, so that the comparison of
the two policies can be made for every sample path. This
procedure 1s full of rsks and extreme care is required to avoid
faulty arguments. Note, also, that to apply this method usefully,
we must have ‘‘guessed’ the properties nf the optimal policy
correctly. Thus, at best, 1t 1s a method to * «rify the validity of our
conclusions, rather than a method tha le.ds us to the right
conclusions.

Successtul use of the stochastic dominance approach was made
n [52] and {50] where a problem that is dual to the problem of
dynamic routing was studied. Specifically, in a two-server
queueing system 1n which the two servers have unequal service
rates, we wish to determine whether and when the slower server
needs to be activated if we are interested 1n minimizing the usual
total expected delay function. That the optimal policy has a
threshold form (namely that the slower server must be activated
when the queue size exceeds a crucial value) was proven in [29]
via the DPE method. However, the alternative proof via the
arguments of stochastic dJominance was much simpler and led to a
generalizauon of the result to cases of nonexponential arrivals
and/or service, that could not have been easily accomplished by
means of the DPE method.

Another successful use of the stovhastic dominance method has
been noted 1n [2]. In this case the problem of optmally choosing
whicl. customer to serve next in a single queucing system was
considered under the constraint that each customer must begin (or
terminate) service by an individually assigned random deadline or
else 1t 1s dropped from the system. The cost criterion is then to
mummize the expected number of lost customers. It was proven
that scheduling the customer with shortest time to extinction
minimizes this cost.

Although these problems differ from routing, the model
structures are quite similar, and it has been observed that, usually,
queucing control problems with such structural similarities can be
studied equally successfully.

The third method, which was first used in {38] in the study of a
specific queueing control problem. and which has been broadly
extended recently in [51], is the lincar programming approach
Almost any queueing coatrol problem that can be formulated as a
MDP (therefore the problem of dynamic routing, as well) can be
converted to an equivalent linear program (LP). The advantages
of this conversion are that it is problem-independent and it leads
occasionally to successful study of semi-Markov decision prob-
lems as well. Furthermore, it facilitates considerably the charac-
terization of optiinal solution properties. Here is how this
equivalence can be demonstrated.

Let us concentrate on an MDP under a finite-horizon, dis-
counted cost formulation.> We shall consider a queueing model
with state dynamics given by

X1 =Xkt k1200,

3 The reason thal we cannol work direcaly with infinue honzons is the
ssibility of so-cailed duality gaps in linear programming theory with
infinite-dimensional variables.

935

Here, x; denotes the state at £, (the instant of the & th transition), £,
represents that transition, and z, represents the control action at
that transition. The transition £, can represent an arrival or a
departure as an increment of the state. The control gz, is
conveniently defined to enable {z, = 1) or disable (z; = 0) a
transition. For example, in the routing model discussed at the
beginning of the section, the stae is equal to a two-dimensional
vector of queue sizes, and the transition corresponding to sending
an arriving message to the first queue would be represented by £,
= [1 0]7. Indeed, a variety of queueing control problems (in fact,
the vast majority of those that have been considered in connection
with communication network problems) can be so represented

Note that the crucial aspect of this state equation is the linear
dependence on the controls. Note also that usually the cost
function is linear in the state (since the usual cost criterion is the
expected delay which is coupled to the queue sizes, and hence the
state, by Little’s result). Consequently, the cost is linear in the
controls. The minimization of the cost over the set of control
trajectories is constrained since the state equation must be satisfied
and the state must always belong to an admissible set (typically, a
set of vectors with integer-valued coordinates belonging to given
ranges). Thus, the constraints are also linear in the centrols, and
the problem is easily formulated as an LP. There are, however,
two points that require attention. First, the controls are integer-
valued, i.e., z, € {0, 1}. Second, in the MDP the vectors &, are
random and depend on past history.

The first problem is taken care of in onc of two ways' by
construction or by use of a property of the constraint matrix of the
lincar program, called unimodularity The construction method
involves using a noninteger optimum control whose quantized
version satisfies the MDP optimality conditions (see [38], [51] for
details). The use of unimodularity involves a well-known result in
the theory of integer linear programming (e g., [34])" if the
constraint matrix of an LP is integer-valued and totally unimodu
lar (i.e., each of its sub-determinants is + 1, — 1, or 0), then all
the vertices of the feasible polytope are integer-valued Therefore,
no further restrictions are needed to guarantee that the solution of
a conventional LP will result in the integer-valued optimal
control. Fortunately, in many queueing problems of interest
(including the dynamic routing problem), the constraint matrix is
indeed totally unimodular.

The second problem is easily taken care of by thinking of the
Z,"s as functions from the sample space Q to the action space
Thus, the cost criterion can be written as a functional on the
underlying probability space.

Let zy(w,) represent the control action at the kth transition,
wiere w, denotes the random *‘histery®” until the kth transition
We have

Xk 4 1(Wk o 1) = X (k) + Ze o 1 (r o1 ) Eg o 1 (e 1)

Let S and Z be the set of admussible states and controls,
respectively. The @-discounted, n-step, expected cost under
policy z and initial condition x is given by

n=-1
J8(x, 2)=E; Y, B*L(z)

k=0
where
L(Zk) =CTXk+dT4.’.‘-

(¢ and d denote constant column vectors). This is a cost function
that 15 adequately general. For example, in a pure resource
allocation problem without blocking or rejection of messages we
have d = 0, while in pure blocking problems we take ¢ = 0. The
state equation, after repeated iterations, yields

k
Xk(wk)=X+E (W) (w), k>0,
=1
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Therefore,
n~1
J(x, 2)=E; Y, B*
k=0

1-p"
1-8

x
{crx+cr > z,E,+dek}

=1

c’x+E, i B*

k=1

k
{E cTy b+ dek} .

J=1
But
Ex(ze)= Y, 2e(we) Pr(w).
v

Hence

ll—_BB" cTx+ 3y 3 velwe)ze(we)

k=l wp

JE(x, 2)=

where y,(wy) 1s a known function that depends on Pr(w,), ¢, &,
and B*. Consequently, the MDP 1s equivalent to

min Y > velwe) ze(w)

Sk k=1 wi

subject to

k
<x+2 z,(w,)E,(w,}) €S

J=1

which is a conventional LP where the initial condition plays the
role of a parameter, the sensitivity with respect to which can be
studied by the well-developed theory of sensitivity analysis of
Yinear programming [15].

In conclusivn, we see that the MDP is converted to an
equivalent LP under very mild conditions that are usually satisfied
by dynamic routing and other queueing control problems. Thus, a
third alternative methodology becomes generally available for the
study of these problems. Whether to choos= irom the arsenal the
DPE approach, or the LP method, or stochus ic dominance tools,
depends on the problem and on the, as yet undeveloped, intuition
that the investigator should possess.

1. MULTIPLE-ACCESS COMMUNICATIONS

“he communication networks considered in the discussion of
outng problems in Section 1 consist typically of a set of nodes
onnected by point to point communication links. Each of these
inks viewed in isolation can be modeled as a classical communi
anon channel with one sender and one receiver. In this section,
e conswier multipuint to point communication links where sev

eral transmitters share a comnon channel. Multiple access
channels are the basic building blocks of radio networks, satellite
communication, and local area networks, and during the last 15
years have attracted the attention of many communication,
information, and control theorists.

There is a wide variety of strategies to divide the *‘resou.
of a communication channel among several geographically ...
serseu transmitters. The simplest methods are those that assign a
sermanent independent sub .harnel to each transmitter (e.g., in
requency division multiple ac.ess and time division multiple
sccess); these strategies are easy to analyze and are widely used in
sracuce in situations where the users need to transmit at fairly
:teady rates. If the transmitters are bursty (i.e., the radio of peak-
o average rate at which the need to transmit is high) those static
niethods are inefficient since most of the time the channel 15
arcerutilized while demand (and induced delay) accumulates at
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busy terminal locations. Dynamic channel sharing strategies
overcome this problem by allocating channel resources on an on-
demand basis. Consistent with the overall spirit of this paper, our
goal here is not to review this vast topic, but rather to demonstrate
how contro! theory can play a useful role in its study. Here we
wish to single out two multiple access strategies: random access
and simultaneous transmission, which are broadly representative
of dynamic channel sharing systems and in which control theoretic
concepts have played a pivotal role.

In random access communication, the conceptual allocation
model is addressed without an effort to exploit the signaling
degrees of freedom and the micro-structure of the transmitted
messages. For this purpose, a crude channel model is considered,
that achieves this separation of the “*macro’’ from the '‘micro’’
problem. In simultaneous transmission systems, however, a more
refined viewpoint is adopted, by taking the realities of the medium
into account, modeling them, and exploiting them.

A. Random-Access

The object of interest here is the so-called collision channel
model, in which messages (called packets) require one time unit
(called slot) for transmission and are sent by a population of users
who are synchronized so that their slots coincide at the receiver,
but are otherwise uncoordinated and unaware of which and how
many users have packets to transmit. If two or more packets are
simultaneously transmitted, it is assumed that the receiver is
unable to recover any of the messages, and they have to be
retransmitted in a future slot. In the ALOHA algorithm, which
was developed in the early 1970’s [1] at the University of Hawaii
and marked the beginning of the area of random-access communi-
cation, each packet that has been unsuccessfully transmitted
before is transmitted with probability p in the next slot. New
packets which have not attempted transmission before are
transmitted with probability esther 1 or p depending on which
version of the ALOHA algorithm is used. In our discussion, we
will assume the latter choice.

Under these conditions, and assuming that the number of newly
generated packets in each slot is a random vanable (with mean A)
independent from slot to slot, the number of packets awaiting
transmission (called backlog) is a Markov chain taking vatues in
{0, 1,2, }. The central problem is to investigate under what
conditions the backlog Markov chain 1s ergodic, 1.c., it 15 stable in
the sense that it reaches a steady state in which the penods
between the times when there are no packets to transmt are not
too infrequent (they have finite expected value). The transition
probabilitics of the Markov chain are parametrized by the rate of
wnival of new packets A and the retransmission probability p.
Whereas A is fixed and given, p is chosen by the transmutters.
Hence, we are dealing with a fairly simple controlled Markov
chain whose control space 1s the mterval (0, 1]. In the unigmnal
ALOHA algorithm, the control p remained constant and cummon
to all transmitters regardless of the information acquired by
listening to the channel, thereby resulting in the upen-loup cunirul
of the Markov chain. Depite several “*proofs’” of the stabiitiy ot
ALOHA published duning the 1970's, neither the actual system
built in Hawaii nor the 1deal Markov chain mudel were stable. The
reason why the open loop system is unstable can be easily
understood by considering the backlog drift, d(n), which is
defined as the expected increase in the backlog over the neat slut
when the current value of the backlog is equal to 1, It 15 casy tosee
that the backlog drift is given simply by the expected number of
new packets per stot minus the expected number of suceesstully
transmitted packets in the next slot, i.c.,

d(n)=A=[np(1-p)"~'}. G.1
The drift quantifies the expected evolution of the Markov chain
from each state, and therefore 1t is a valuable tool n analyzing the
stability of the chain. For any p € (0, 1] the term in brackets 1n
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(3.1) goesto O as n ~ oo, and hence, the drift is positive and close
to A for sufficiently large backlogs. This implies that when the
backlog is large it tends to grow, thereby eliminating any hope for
stability. Using standard results, this reasoning can be formalized
straightforwardly to prove not only the instability of the open-loop
system [11] for all values of A and p, but the fact that the backlog
goes to infinity with probability one [25], [35], [40].
Fortunately, the system can be stabilized by closed-loop
control. Let us examine first the case of complete-state informa-
tion, i.e., each station is informed at the end of each slot of the
current value of the backlog and chooses the retransmission
probability on the basis of that information. As far as stability is
concerned, the best choice of the retransmission probability p is
the value that minimizes the drift because that results in the
maximum possible arrival rate that guarantees stability (called the
throughput). it follows from (3.1) that the optimum value of p is

p=s, =12, (32

and the resulting drift is
1 |~-1
d¥my=A-~11 e (3.3

which is negative for n > 1 when A < e~!, and is positive for
large backlogs when A > e~ . Therefore, the throughput of the
closed-loop system with complete state information is e~! =
0.368. However, the relevance of complete state information
feedback is rather limited in practice. This is because the
instantaneous value of the backlog is available to each station only
if there exists so large a degree of communication among the
transmitters that much more efficient algorithms than ALOHA
can be used.

The case of partial state information is the problem of interest in
practice, since the only feedback available to each station is the
outcome (collision, success, empty) of the transmission in each
slot. The analysis of the controlled system with partial state
information was pioncered by Hajek and Van Loon [20] who
proposed a recursive updating law of the retransmission probabili-
ties as a function of the channel outcomes. This feedback policy
was shown in [21] to attain the throughput achievable with
complete-state information, namely e-!. Those papers and subse-
quent works have referred to the problem as decentralized
control of ALOHA, motivated by the fact that each station
chooses the retransmission probability autonomously based on the
channel feedback. However, it is useful to recognize that the
problem boils down to (centralized) stochastic control with one
decision maker and incomplete state information because all
stations are constrained to use the same retransmission probabili-
ties.

We will review here the proof of stability of the following
certainty-equivalerice closed-loop control:

n=l
p(A)= Fi 3.4

where 4 is an estimate of the backlog updated according to

Ao ) Max (L, Ae+a}  kihslotis idle
T A+ 8 kth slot is success or collision.

(3.5)

The throughput attainable with this feedback law depends on the
constants « < Oand 8 > 0. As we will see, there exists a set of
choices for those constants that results in throughput equal to !

Unlike the case of complete-state information, the proof of
stability is not straightforward because now it is the two-
dimensional process formed by the backlog and its estimate {(7,,
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Fig. 5. Drift of (backlog, backlog estimaie) Markov process for decentral-
ized control witha = ~1.48, 8 = 0.8, and A = 0.33.

fix)}« (rather than the backlog itself) which is a Markov process.
According to (3.4) and (3.5) the drift of this Markov process is
given by

E[(nee1, Axer) = (e, Ae)l(ng, Ag)=(n, )

- (x-g [1-%] " B+(max {a, 1~5}-6) [1-§] ">

& (d(n, s), c(n, 5)). (3.6)

Contrary tc what we saw in the case when the state is known, it is
not true that the backlog dnft 1s negative for sufficiently large
backlogs. As we can see 1n Fig. 5, if the estimate is far from the
true value, then the backlog may actually t. 1 to increase.

However, at every point in the state space the tendency of the
process 1s to approach the diagonal where the estimate is equal to
the true value of the backlog. Furthermore, as Fig. 5 or the
analysis of the perfect-state information case shows, the drift
along the diagonal 1s negative. Such a behavior is a strong
indication of the stability of the controlled Markov process.

Thus can be proved using a powerful sufficient condition found
by Mikhailov (31] for the stability of a Markov proccss taking
values in R* x R*. In essence, Mikhailov’s condition states that
1t 1s enough to restrict attention to those points of the state space
where either the backlog or its esmate are large and at which the
drift is radial, i.e.,

d(n, s)_ﬁ'
cn,s) s’

then, it is sufficient for stability that the drift point towards the
origin at those states. To see that this condition is indeed satisfied
for our system, we compute first the asymptotic drifts along the
radius {(n, 5): n/s = ¢} for ¢ € [0, o)

d(¥)=lim d(¥s, s)=A-ye"? (3.73)
c(¥)=lim c(¥s, $)=B+(a=B)e . (3.7b)

1t can be checked using (3.7) that if the constants « and 8 in (3 5)
are chosen such that § > 0.23\and\ —= e~1 = 8 + (a - B)e"’,
then the drift is radial only at ¢ = 1 (cf. Fig. 5), where it points
towards the origin as longas d(1) = \ - e~! < 0.
Mikhailov’s sufficient condition can be justified constructing a
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stochastic Lyapunov function to prove the stability of a Markov
process {xg}, with state space * x (*. To that end, it is
advantageous to switch to polar coordinates (r, ¢) and to define
the radial drift 6(r, ¢) as the projection of the drift along the
direction of the point (r, ¢) and the tangential drift p(r, ¢} as the
projection of the drift along the direction perpendicular to (r, ¢).
Denote the asymptotic drifts 6(¢) = lim, .., 8(r, ¢) and p(¢) =
lim, .., 1 (r, ¢) and define the function

V(r, $)=re($)

where

4 T
d(d)=exp (—C So w(v) dv) ¢ E [0, E] .

Note that V(r, ¢) is a candidate Lyapunov function because it is
positive outside the origin and V(r, ¢) —* ® as r = oo,
Furthermore, it can be shown {31} that the asymptotic drift of the
candidate Lyapunov function is equal to

lim E{V(xe41) = V(xe)lxe=(r, &N =2(A)N3(#) - Cu*(#)]. (3.8)

Now, under Mikhailov's condition, the asymptotic drifts are
assumed continuous on [0, x/2] and 6(¢) < e for any phase such
that g(¢) = 0 (i.e., whenever the drift is radial it points towards
the origin), therefore, the constant C can be chosen large enough
so that the left side of (3.8) is upper bounded by a negative
constant. This implies that V(r, ¢) is indeed a stochastic
Lyapunov function and therefore standard results on the stability
of stochastic systems [27}, [45] can be applied to show the
stability of the system. ¢

In some multiaccess environments, the receiver can indeed
demodulate reliably one or more packets even in the presence of
other interfering packets and the collision channel model no
longer applics to those cases. The results reviewed in this section
can be gencralized to a gencral channel with mudtipackes
reception capability, to show that: 1) the thronghput of open-loop
ALOHA is cqual to the limit of the expected number of
successfully received packets per slot as the backlog goes to
infinity {17]; and 2) the throughput of closed-loop ALOHA (with
cither complete or partial state information) is egeal to the
maximum over v of the expected number of successfully received,
packets per slot when the number of attempted transmissioos is 2
Poisson random variable with mean v [18].

Returning to the case of the collisioa channel, the next patural
step is to drop the main restriction in the ALOHA algorithm,
namely, that all stations usc the same retransmission probability.
This is done in a class of random-access algorithms referred to as
collision resolution algorithms which are characterized by the fact
that not only are all blocked packets eventually retransmitted
successfully, but all users eventually become aware that these
packets have been successfully retransmitted. Contrary to the
ALOHA algorithm, the decision whether or not to transmit a
packet takes into account the previous history of attempted
retransmissions of that particular packet. The introduction of this
new dimension into the problem renders Markov chain tools
considerably less useful than in the foregoing analysis and
converts it into a very difficult decentralized stochastic control
problem, for which the optimum throughput remains unknown?
despite many efforts.

* Another choice of stochastic Lyapunov function for the specific case of
decentralized control of ALOHA can be found in (43).

$ The best known algorithm has been shown 1o achieve a throughput of
0.488 using Howard’s policy 1teration fot sequential infinite-honizon problems
(32] or by reduction to a simple opunuunon problem {48). On the othet hand,
i1 is known that the optimum throughput is upper bounded by 0.568 {44].

1EEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL 34, NO 9, SEPTEMBER 1989

B. Simultaneous Transmission

In contrast to random-access commumication systems, in
simultaneous transmission multiple-avcess systems, the transmt-
ters send their messages simultanevusly, independently, and
without monitoring the channel in any way. The must common
type of simultaneous transmission system is code-division multi-
plexing, where each user modulates a preassigned signature
waveform known by the receiver.

Specifically, we will assume that in order to send the message
{be(i) € A} (e 2 string of M symbols drawn from a finite
set A), the kth user transmits

M-1
Y beldsi(t=iT)

1=0

where {s:(¢), 0 < ¢ < T} is the waveform assigned to the kth
user, and T is the symbol period. Then the demodulator receives
the sum of the signals transmitted by the K active users embedded
in noise

K M-1

=3 Y beD)se(t—iT—7) +n(t)

kn] in0

(3.8)

where the offsets 7. < 74 € [0, T') model the fact that the users
do not synchronize their transmissions. Then the task of the
receiver is to recover the transmitted information strings
{be(i) M1X . Following [47] we will show how to obtain an
muﬁuser demodulator via dynamic programmung. First,
denotc the MK -vector

d={dr,. x=b:li), k=1, ---, K, i=0, ---, M- 1}
and the multiuser signal in (3.8)
K M-1
St d)=3 Y bli)silt~iT-7)= 2 dz (1) (3.9)
knl iw0 iw]

wbuvcz“‘(f) = 5t - iT - 7).

A rcasonable criterion for dcmodn!xmg the information carried
in S(¢, d) upor observation of r{¢) is to select the MK-vector d
that best cxpliins the reccived waveform in the sense of
minimizing the encrgy of the corresponding noise realization,

lc.,

min 1S(¢, d)-r())>

4€A

3.10)

lflhcnoxscn(t) is white and Gaussizn, then this criterion results
in maximurz likelihood decisions. Equivalently, the objective 1s to
find the vector that solves

max_Q(d) (3.1n
MK

4SA
where

ar=2 |" se.arwa-| seada iy

Since the maximization in (3.11) is over a finite set, we could solve
it by the brute-force method of evaluating Q(d) for each possible
argument. However, it is possible to decompose ((d) n a
sequential fashion that lends itself to efficient opimization. From



EPHREMIDES AND VERDU: COMMUNICATION NETWORK PROBLEMS

40}, b1}, b2}, b3}, b4},
-7 ' ' )

q 7 10

.:(0). bz(l)_ bz(Z). béS)L bi'%)_‘
— 5 8 TH r

=0} ball)  b3(2) b3(3) a4}
S 6 9 12 15
dg, 6. Symbol epochs for K = 3and M = 5.

3.9) it is immediate to write the first integral in (3.12)
:equenually

o ofK
~ S(nd)r(nydt=, dyy, (3.13)

vhere

b= J:, 2,(0)r(t) dt. (3.14)

This implies that the objective function (3.12) depends on r(f)
only through the quantities {y,}MX, which are obtained by
correlating (¢) with each of the signature waveforms during each
symbol epoch. In order to find an explicit expression for the
second integral on the right-hand side of (3 12), which is the
energy of the multiuser signal, we will denote

RU, )= S: 2,(0)z(h) dt. (3.15)

It follows immediately from the definition that these coefficients
satisfy the following properties.

1) R(k + iK, k + iK) = §753(1) & w,.

2) R(k + iK,n + iK) = R(k, n) for all i.

3) R(j, 1) = Ounless {j — /| < K.

The first property indicates that each of the diagonal elements
of R(i, j) is equal to the energy of one of the K assigned
waveforms. The second and third properties can be illustrated by
referring to Fig. 6 which represents the symbol epochs of three
isvnenronous users sending strings of M = 5 symbols Each
-vmool period in Fig. 6 is labeled with the index of the
-orresponaing component of the vector d. The second property
naicates that the cross-correlations between two signals depend
niv on their relative location (e.g., R(4, 6) = R(13, 15) inFig
» and the third property states that each symbol only interferes
vyith 2K ~ 2 symbols of the other users [e.g., in Fig. 6, dy =
b3(2) only overlaps with d7 e bl(Z), da = b2(2), dm = b1(3), and
dy; = 6,(3)]. It follows from these properties that the coefficients
in (3.15) can be obtained from the K x K matrix {R(%,
m)}X, X, whose diagonal clements correspond to the energy per
symbol of cach user and whose off-diagonal elements correspond
to the cross-correlations between the signature waveforms of each
pair of users. Using (3.15), the foregoing properties, and letting
k(y) € {1, -+, K} be the modulo-K remainder of J (i.e., for
some i, j = x(j) + iK), we can write

. MK MK
| saa=3 3 dari,

Jwliwl

MK s-1
:‘Sdl[w.mz Y dIR(j,l)]

=) [ tup=K+1

7 { K-1
s d | w42 Y dagup(K-n)
1

wl awl

3.16)
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where ge(m) = R(k + K, k + ). Putting together (3.12),
(3.13), and (3.16) we see that we can express §}(d) as a sum of
vIK terms. each of which depends on K components of d and such
that consecutive terms depend on the same components but one.
Soecifically, we can write

MK

Ud)=; M(x;, d)) (3.17
J=1
where
(X, W)= U2y, uw, - 2x78,,) (3.18)

and x, is the state of a shift-register X' ~ 1 dimensional system

-:7;|=[xj+l(l): Y xj#l(K_ l)]::[xj(z), Y xj(K_ l): d/];
xg=0. (3.19)

It 1s now apparent that the solution to (3.11) entails solving a
Sfinite-horizon deterministic optimal control problem with
additive costs per stage for the linear system 1n (3.19), and with 4
finite admissible control set 4. Therefore, optimum multiuser
demodulation is equivalent to a shortest path problem in an M-
stage layered directed graph, where at each stage there are AX-!
states. This optimization problem can be solved by dynamic
programming (e.g., {7}) in backward or forward fashion. In
practice, it is necessary to demodulate the transmitted symbols in
real-time, and since M is usually a very large integer, it is not
feasible to wait unul all the observables {y,} /| have been

obtained before starting to make decisions. Therefore, a subopti-
mum version of the forward dynamic programming algorithin is
adopted in practice whereby each decision is based on the paths
corresponding to the cost-to-arrive function computed a fixed
number of steps ahead, This real-time version of forward dynamic
programming is known 1n communication theory as the Viterbi
algonithm [12], and was ongmally devised (without resorting to
the dynamic programmung framework) fur decoding convolu-
tional codes. The maximum-likelihood criterion used in (3 10) is
aot the only possible optimality criterion. For example, if the
objective 1s to mimimize the probability of error for each user,
then the multiuser demodulator uses a backward-forward
dynamic programming algorithm [49] whercby optimum deci
sions are based on the independent computation of a cost to go
and a cost-to-arrive function.

IV. OTHER PROBLEM AREAS

Routing and multiple access are not the only problem areas in
the field of communication networks which control theory can
help formulate, study, and solve We have deliberately chosen to
confine our attention to these two areas in order to get across in a
concise manner our belief that the field of communication
networks offers a rich selection of applications for control theory.
We would feel remiss, however, if we did not even make an
attempt to provide a taste of some of the numerous other design
and operation issues that, again, bring forth control systems
concepts ard techniques. For this purpose, and with a conscious
effect not to expand in depth but only to describe, we will mention
two areas from point-to-point networks and one from radio
networks. The first two concern flow control and integrated
swiching, respectively, while the third concerns the problem of
scheduling transmission in multihop networks. Unlike the cases of
routing and multiple access, these areas have not yet fully
“enefitted from the use of control theoretic approaches although
such approaches would be very well suited to them indeed.
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A. Flow Control

A stark reality in the design of networks is that despite the
reduction of the cost of memory, storage at each node is going to
be finite. Coupled with another reality, namely that data transmis-
sions on the whole continue to be bursty, it implies that buffer
overflow may occur and, along with it, congestion and deadlocks.
Flow control is the name we usc to describe the collection of
measures taken to avoid buffer overflow and highly congested
nodes in the network. Congestion and saturation are often the
consequences of diverging, unstable behavior. Thus, it is of
interest not only to optimize over possible flow control strategies,
but to determine their robustness against disturbances or modeling
inaccuracies that may lead to unstable behavior.

The control variables in flow control problems are admission
(or blocking) probabilities for messages or sessions at the source
node In practice these are often implemented in terms of a bang-
bang control strategy known as window flow control whereby
input ports are allowed to continuously inject messages into the
network at the full desired input rate until the number of
unacknowledged® messages exceeds the value of the ‘‘window
size” w. A simple, yet unanswered question is, what should the
value of w be?

Previous efforts to use control theory tools to analyz: optimal
flow control problems include [28] and [46) where the optimality
of window flow control is proved within the domain of a
simplified model, and [39] where dynamic programming value
iteration techniques are used to characterize optimal flow control
performance An alternative approach to the flow control problemn
is to subsume it into the static routing preblem considered in
Scction II-A [19]: suppose that for every source-destination pair a
fictitious direct link is added between them. We can then interpret
the blocking action of a flow control procedure as a diversion of
the blocked portion of the traffic through this fictitious link to the
destination. Thus, we can consider that no traffic is blocked. Of
course, in order to discourage the use of this fictitious link we
must augment the overall delay cost function with a term that
penalizes appropriately the use of this link:.

B. Integrated Switching

A revolutionary development in the field of networks whose
implementation is currently under way is the combination of the
capabilities of what have been scparately developed in the past and
called voice networks and data networks. Voice is a commodity
that must meet different requirements than data. For example,
speech signals have inherent redundancy that make them quite
robust with rcspect to occasional errors or deliberate compres-
sion At tlic same time, except in applications of voice messaging,
specch signals occur in the context of real-time conversations and,
as such, must encounter short and, more importantly, constant
delay On the other hand, data must preserve their integrity and
cannot tolerate crrors; however, long and variable delays can be
oftcn tolcrated.

How does one design a single network that can handle such
dissimilar commodities with automated procedures? The natural
course of events in the last decade or two was to attempt to force
data on primarily voice networks or to let voice ride on what were
mainly data networks. The literature is full of ideas for baseline
integration that are mostly heuristic and difficult to analyze. An
attempt to formulate the problem of integrated switching as an
optimization problem was presented in {50]. In it simplest form
the model is as follows: consider a singlc node in the network with
a singlc outgoing link on which incoming voice calls and data
packets must be multiplexed. Let W be the bandwidth of the
outgoing link. Let ¥ be the bandwidth required for the continu-
ous, uninterrupted accommodation of a single voice call. Let,

“ Nute the smplivit assumptiun uf Jdelayed Ieedbavk infurmativn irum the
deslination 10 1he source node.
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Fig. 7. Swatching-1ype ophmum policy for inlegrated swilching.

therefore, N = W/ V be the maximum number of calls that can be
assigned dedicated circuits simultaneously 1f no data packets are
transmitted. A voice call can either be accepted (and assigned the
aecessary bandwidth V') or blocked. Data packets can be stored n
a buffer facility. If, at a given time, there are i calls in the system,
the data packets can be served at the full rate corresponding to the
remaining bandwidth W — V. Such a switching architecture
represents what has been called the movable boundary idea in
integration. A natural MDP can be simply furmulated as follows:
choose the control action of blocking or accepting a call upon
arrival in order to mimimize the weighted sum of the average data
packet delay and the call-blocking probability. If we assume that
both arrival streams (voice calls and data) are independent Poisson
processes, that the call holding time 1s exponentially distributed,
and that the message lengths are likewise exponential, we can
apply the techmque described in Section 11 of converting the MDP
to an LP and show that the optimal policy has the useful
switching-type form. Namely, 1f 11s the number of ongoing calls
and j the total number of data messages at the nodc, the optimal
control action should be to block the call in region B of the state
space as shown in Fig. 7 and to accept it in region A.

C. Link Scheduling

Let us now turn our attention back te the radio network
environment. In Section III the multiple access channel was
considered and a number of difficult but interesting control
problems were 1dentified. Throughout that discussion, 1t was
assumed that all terminals are within a single transmission hop
from the destination. In many radio networks, however, this 1s not
the case. Messages nced to be relayed via intermediate nodcs to
their final dcstinations. Thus, the famihar problem of routing
arises again, except that this time there 15 a new twist to tt. In
point-to-point nctworks, transmussions betwecn different nodc
pairs can take place simultaneously because there are dedicated,
**hard-wired’” links between the corresponding nodes. In a radio
(or, more generally, 1n a multiaccess/broadcast) environment, 1f
the nodes are densely connected, not all transmissions can take
place simultaneously (unless separate dedicated channels or
simultaneous transmission signaling techmques (Section HI-B) are
used). They must be scheduled 1n time to avoid the interfercnce
that would occur otherwise.

It becomes evident that the mere fact that the transmission
among a group of nodes must take place one at a time raiscs the
question whether the intended transmissions are routing-wise
optimal any more. Several versions of this problem have been
studied [3], [23], {36]. In every case and even if the routing
problem 1s sidestepped, we are led to hard combinatonal
optimization problenis where questions of computational com-
plexny and distributed implementation are of primary importance.

V. CONCLUSION

It should be clear by now that the theory of linear and nonlinear
nptimization, dynamic programming, stochastic control, stability

e e L
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analysis, and distributed control have found interesting applica-
tions arising in the analysis and design of communication
networks. Unlike other complex systems that have been success-
fully studied by control system theorists in the past (such as
chemical plants, flexible aircraft, robot systems, etc.), communi-
cation networks stand out in that the commodity to be controlled is
information (including its transmission, storage, processing, etc.).
This feature, perhaps, misleads and intimidates those who do not
feel suffictently inter-disciplinarian to tackle these problems. We
hope that by having selected to present a few examples in which
concrete, purely control-theoretic problems can be formulated and
have been (or can be) studied successfully, we may encourage
attention by the control community to this application area that is
espectally rich in new challenges.

As stated from the outset, we did not attempt to survey or
completely cover the multiple control facets of communication
networks. The collection in this paper merely represents an effort
to illuminate a few selected problem areas and to show how
control techniques apply to them.

REFERENCES

[1] N. Abramson, ‘‘Development of the ALOHANET," [EEE Trans.
Inform. Theory, vol. IT-31, pp. 119-123, Mar. 1985.

[2] P. O. Bhattacharya er al. A (not vcry) simple dynamic routing
problem,” in Proc. 25th Allerton Conf. Contr. Commun. Com-
put., Urbana, 1L, 1987, pp. 998-1006.

[3] D. 1. Baker, J. Wicselthier, and A. Ephrcmidcs, “"A distribured
algorithm for scheduling the activation of links n a self-organizing
mobile radio network,”” in Proc. IEEE Int. Conf. Commun.,
Philadeiphia, PA, June 1982, pp. 2F.6.1-5.

[4] M. Bazaraa and C. Shctty, Nonlinear Programming: Theory and
Algorithms. New York: Wilcy, 1979.

5] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs,
NJ: Prentice-Hall, 1987.

6] D. P. Bertsekas, *'Distnbuted dynamic programmung,’’ /EEE Trans.
Automat. Contr., vol. AC-27, pp. 610-616, June 1982.

[7) D. P. Bertsckas, Dynamic Programming: Deterministic and Sto-
chastic Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[8) C. Buyukkoc, P. Varaiya, and J. Walrand, **The uc rule revisited,**
Advances Appl. Probability, vol. 17, pp. 237-238, 1985.

[9] C. A. Courcoubetis, *‘Optimal control of a queueing system with
simultaneous service requirements,” IEEE Trans. Automat. Contr.,
vol. AC-32, pp. 717-727, 1987.

[10] A. Ephremides, P. Varaiya, and J. Walrand, ''A simple dynamic
routing problem,'* IEEE Trans. Automat. Contr., vol. AC-25, pp.
690-693, Aug. 1980.

[11] G. Faynlle, E. Gelenbe, and L. Labetoulle, **Stability and cptimal
control of the packet switching broadcast channel,”* JACM, vol. 24,
pp. 375-386, 1977.

[12) G. D. Forney, **The Viterbi algorithm,’’ Proc. IEEE, vol. 61, pp.
268-278, Mar. 1973.

[13] M. Frank and P. Wolfe, "’ An algorithm for quadratic programming,”’
Naval Res, Logist. Quat., vol. 3, pp. 149-154, 1956,

[14] L. Fratta, M. Ge:la, and L. Kleinrock, **The flow deviation method:
An approach to store-and-forward communication network design,’”
Networks, vol. 3, pp. 97-133, 1973.

[15) T. Gal, Postoptimal Analyses, Parametric Programming, and
Related Topics, Englewood Cliffs, NJ: McGraw-Hill, 1979.

[16] R. Gallager, "'A minimum delay routing algorithm using distributed
computation,”” /EEE Trans. Commun., vol. COM-23, pp. 73-85,
1977

[17] S. Ghez, S. Verdu, and S. Schwartz, **Stability properties of slotted
Aloha with multipacket reception capability,”” IEEE Trans. Automat.
Conir., vol. 33, pp. 640-649, July 1988.

(18] S.Ghez, S. Verdu, and S. Schwartz, **Optimal decentralized control in
the multipacket channel,”” IEEE Trans. Automat. Contr., to be
published.

(19) S.J Golestaani, **A unified theory of flow control and routing on data
communication networks,”” Ph.D. dissertation, Mass. Inst. Technol.,
Cambridge, 1980.

(20] B. Hajek and T van Loon, ’*Decentralized dynamic control of a
multiaccess broadcast channel,’* /EEE Trans. Automat. Contr., vol.
AC-27, pp. 559-569. Junc 1982.

[21] B Hajek, “*Hitting-time and occupation-lime bounds implied by dnft
agasgrsis with applications,”* Adv. Appl. Prob., vol. 14, pp. 502-525,
1982.

122] . “*Optimal control of two tnteracting service stations,”” JEEE
Trans. Automat. Contr., vol AC-29, pp 491-499, Junc 1984.

[23] B Hajekand G Sasaki, "Link scheduling in polynomual ttme,”” JEEE
Trans. Inform. Theory, vol. 34, pp. 910-917, Sept  1988.

1241
125]
126)

127)
(28]

(29]

130]

(31

132]

133]

134)

135)

(36)

137)

138)

139]

[40)

141]

142]

143]
44]

145]

146)

147]

148]

1491

(50

(5]
152)

1531
i34
(551

941

J. M. Harrison, *'Dynamic scheduling of a mutliclass queue: Discount
optimality,”” Oper. Res., vol. 23, pp. 270-282, 1975.

F P Kelly, "Stochastic modcls of computer commwuntcations sys-
tems,** J. R. Statist. Soc. B, vol. 47, pp. 379-395. 1985.

G. P. Klimov, ""Time sharing service systems,”* Theory Probability
Appl., vol. 19, pp. 532-551, Sept. 1974; sce also vol. 23, pp. 314-
321, Juae 1978.

H Kushner, Introduction to Stochastic Control. New York. Holt.
Rinchart, and Winston, 1971.

A. Lazar, *'Optimum flow control of a class of queueing nctworks tn
equilibrium,”” IEEE Trans. Automat. Contr., vol. AC-28. pp. 1001-
1007, Nov. 1983,

W Linand P R Kumar, “*Optimal control of a queucing system with
two heterogeneous servers,”” /[EEE Trans. Automat. Contr.. vol.
AC-29, pp. 696-703, Aug. 1984.

S. A. Lippman, **Semi-Markov decision processes with unbounded
rewards,”” Management Sci., vol. 19, pp. 717-731. 1973.

V A. Mikhailov, "*Geometrical analysis of the stability of Markov
chains in R% and its application 10 throughput evaluation of the
adaptive random multiple access algorithm,*” Problems of Inform
Transmission, vol. 24, pp. 47-56, Jan.-Mar. 1988.

J. Mosely and P. Humblet, **A class of efficient contention resolution
algorithms for multiple access channels,' IEEE Trans. Commun.,
vol. COM-33, pp.145-151, Feb. 1985.

P. Nain and K. W. Ross. **Optimal priority assignment with hard
constraint,”” JEEE Trans. Automat. Contr., vol. AC-31. pp. 883-
888, 1986.

C. H. Papadimitrou and K Steiglitz, Combinatorial Optimization.
Algri{hms and Complexity. Englewood Chffs. NJ. Prenticc-Hall,
1982.

S. Parekh, F. Schoute, and J. Walrand, *‘Instability and geometric
transience of thc Aloha protocol.’” in Proc. 26th Conf. Decision
Contr., Los Angeles, CA, Dcc. 1987, pp. 1073-1077.

M. J. Post, P. E. Sarachik. and A. S. Kcrshenbaum, °*A biased grcedy
algorithm for schcduling multi-hop radio networks.”” in Proc. Conf.
Ig{orm. Sci. Syst., Johns Hopkins Univ., Balumorc, MD. 1585. pp
564-672.

R. T. Rockafellar, Convex Analysis. Princeton. NJ: Prnnceton
University Press, 1970.

Z. Rosberg, P. Varaya, andJ. Walrand, **Optimal control of service in
tandem queues,” IEEE Trans. Automat. Contr., vol. AC-27. pp.
600-610, Junc 1982.

Z. Rosberg and 1. Gopal, '*Opuimal hop-by-hop flow control mn
computer networks,”’ JEEE Trans. Automat. Contr., vol AC-31,
pp. 813-822, Sept. 1986.

W. Rosberg and D Towsley, **On the instability of slottcd-ALOHA
multiaccess algorithm,” /EEE Trans. Automat. Contr., vol AC-28,
pp. 994-996, Oct. 1983.

R. E. Tarjan, Data Structures and Network Algorithms (CBMS-NSF
Reg. Conf. Scries in Appl. Math. no. 7). Phuladelphia, PA. SIAM.
1983.

J. N. Tsitsiklis and D. P. Bertsekas, ''Distributcd asynchronous
optimal routing in data networks,”* [EEE Trans. Automat. Contr.,
vol. AC-31, pp. 325-332, Apr. 1986.

J. N. Tsitsiklis, **Analysis of a multiacess control scheme,'” IEEE
Trans. Automat. Contr., vol. AC-32, pp. 1017-1020, Nov 1987
B. S. Tsybakov and N. B. Likhanov, **An improved upper bound on
capacity of the random multiple-access channel,'* Problemi Pederacht
Informatsii, vol. 23, pp. 64-78, 1987.

R. Tweedie, **Sufficient conditions for ergodicity and recurrcnce of
Markov chains on a general state space,”’ Stoch. Proc. Appl.. vol. 3,
pp. 385-403, 1975.

F. Vakil and A. Lazar, "‘Flow control protocols for intcgratred
networks with partially observed voice traffic,”” IEEE Trans. Auto-
mat. Contr., vol. AC-32, pp. 2-14, Jan. 1987.

S. Verdu, **Mimmum probability of error for asynchronous Gaussian
multiple-access channels,*” IEEE Trans. Inform. Theory, vol. IT-32,
pp. 85-96, Jan. 1986.

—— “*Computztion of the cfficiency of the Moslcy-Humblct conten-
tion resolution algorithm. A simple method," Proc. IEEE, vol 74,
gp. 613-614, Apr. 1986,

Verdu and H. V. Poor, **Abstract dynamic programmung models
under commutativity conditions,”” SIAM J. Contr. Optimiz., vol. 4,
July 1987.

1. Viniotis and A. Ephremudes, **Optimal switching of voice and data at
a network node,"* Proc. 26th CDC, Los Angeles, CA, Dcc. 1987, pp.
1504-1507.

J. Vimotis, Ph,D. disscrtation, Umiv. Maryland, Collcge Park, MD.
1988.

J. Walrand, **A noic on optimal control of a qucuetng system with 1wo
heterogeneous servers,”” Syst. Contr. Lett., vol. 4, pp. 131-134,
1984.

——, An Introduction to Queueing Networks. Englewood Cliffs,
NJ: Prentice-Hall, 1988,

R. Weber, **On the opumal assignment of customcrs 10 parallel
servers,” J. Appl. Prog.. vol. 15, pp. 406-413, 1978.

Z. Wu, P. B. Luh, S. Chang, and D, A. Castanon, ‘'Optimal control of



42

= gqueueing sysiem wilh two interacting serviee stationy and three
1asses of tmpatient tasks,”” J[EEE Trans. Automat. Contr., vol. 33,
p. 42-49, 1988.

suthony Ephremides (S'68-M'71-SM*77-F'84)
vas pormn in Athens. Greece, in 1943, He received
he Ph.D. degree n clectrical engineenng from
“rinceton University, Prinecton, NJ, in 1971.

ic has been with the Umiversity of Maryland,
ollege Park, since 1971, He has also spent
=mesiers on leave at M.LT.. the Umiversity of
“aliformia. Berkeley, and ETH, Zunich, He is acive
n proiessional consulting as President of Pontos,
inc. Currently, his research interests lie 1n the areas
»I’ commumication systems. performance analysis,
woaeling; opumization, simulation, and design.

r. Ephremdes is Director of Division X of the IEEE and has served as

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 34, NO. 9. SEPTEMBER 1989

President of the Information Theory Society and on the Board of Governors of

the Control Systems Society. He has been Associate Editor of the |EEE

TRANSACTIONS ON AUTOMATIC CONTROL and General Chairman of major
EEE Conferences.

lergio Verdi (S'80-M'84-SM'8 s bomn in
sarcelona. Catalonia, Spain, in 1958. He received
he Telecommunication Eng. degree from the
*olvtechnic University of Barcelona in 1980 and the
*h.D. degree in clectrical engincering from the
University of tllinois at Urbana-Champaign in
1984.

Upon completion of his doctorate he joined the
faculty of Princeton University, Princeton, NI,
where he is currently an Associate Professor of
Electrical Engineering. His current research
interests are 1n the areas of multiuser communication and information theory.

Dr. Verdi is a recipient of the National University Prize of Spain, the
Rheinstein Outstanding Junior Faculty Award of the School of Engineering
and Applied Science at Princeton University, and the NSF Presidential Young
Investigator Award. He 1s currently serving as Associate Editor of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, and as a member of the Board
of Governors of the 1EEE Information Theory Society.




T-AC/34/11//30788

Optimal Decentralized Control in the Random Access
Multipacket Channel

Sylvie Ghez
Sergio Verdu
Stuart C, Schwartz

Reprinted from
IEEE TRANSACTIONS ON AUTOMATIC CONTROL :
Vol. 34, No. 11, November 1909 :



TRANSACTIONS ON AUTOMATIC CONTROL. YOL. 34, NO. 11, NOVEMBER 1939

1153

Optimal Decentralized Control in the Random
" Access Multipacket Channel
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Abstract—A decentralized conirol algorithm is sought 1thal maximizes
the stabillly region of 1he Inflnile-user slolled multipackel channel and is
esslly Implemenishle. To 1his end, the perfeci stale Information case
where 1he stations can use 1he Instanisneous vaiue of 1he hacklog to
compule 1he relransmission prohabillty Is siudled firsi. The besi through-
pul possihle for a deceniralized conirol prolocol is obialned, as well as an
algoriitm 1ha1 achieves 1l. Those results are 1hen 2ppiicd 10 derive a
conirol scheme when 1he hacklog is unknown, which is the case of
practical relevance, This scheme, based on = binary feedback, Is shown to
be opilmsl given some resiriclions on the channel multlpackel recepilon
cspahility.

1. INTRODUCTION

OST studies on random access communications rely on the

assumption that when two or more packets overlap, all the
information that was sent is irremediably lost, hence the need to
repeat all transmissions at some later time. This is actually a
pessimistic point of view, since there are many examples of
random access systems where one or more packets may be
successful in the presence of other simultaneous transmissions, In
order to represent such random access systems, a model for a
channel with multipacket reception capability has been developed
in [6]-[8). We consider a slotted channel with an infinite
population of users, and we assume that the probability of having
k successes in a slot where there are n transmissions depends only
on the collision size n

€= Pk packets are correctly received|n are transmitted)
(nz1,0ssk=n).

We define the reception matrix as

€19 €
€0 € €3 0

€n0 €nl €nn

This model can be applied to channels with capture [1]-{3), [10),
(16], (18], [20], [23]), [26), (28], [34] and to systems using
CDMA [22], [24), (29]. 1t is also relevant for many other
applications, such as systems with multiuser detectors {33] or, for
instance, the channel studied in [17], [31]. For more details about
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this model, the «eader is referred to (6] and [8). Denoting by C, =
I3 .1 Keax the average number of packets correctly received m
collisions of size n, we assume that the limit C = lim,.» C,
exists, as is usually the case with models of practical interest. It
has been proved in (8] that the Aloha random access algonthm has
a maximum stable throughput 76 = C in the multipacke channel.

Decentralized control strategies have been showr [11], [12],
[19], [25], [30] to stabilize the slotted Aloha algorithm 1n the case

of the usual collision channel, hence, it is reasonable to expect that
when those strategies are used in the multipacket channel, the
resulting throughput will be higher than 5,. We consider schemes
of the form

pn:F(Sn)

Sps1=G(S,, Zn) 4)]
where p, is the retransmission probability in slot n, S, 1s an
estimate of the backlog X, at the beginning of slot n, and Z,, 1s the
feedback at the end of slot 7. The number of new packets arriving
during slot.# A, is assumd to form a sequence of 1.1.d. random
variables with probability distribution P{4, = k] = \N(k = 0),
such that the mean arrival rate N = 2> | 1\, 1s fimte. Each of the
A, new packets that arrived during slot n - | is transmitted 1n
slot n with probability p,.

As in the case of conventional channels, 1t 15 useful to study first
the case of control with perfect state information where the value
of the backlog is given to the users prior to the selection of the
retransmission probability. To keep track of the exact value of the
backlog, a central controller is usually necessary, which is an
unreasonable requirement for most practical random access
channels. However, the study of the perfect state information case
allows us to determine an upper bound to the best throughput 7,
achievable by any decentralized control of the form (1), and
suggests a simple implemcntation. Thosc results are in turn helpful
to derive control protocols in the case where the backlog is
unknown. This is done in Section [Tl where we consider a backlog
estimate which is recursively updated using the binary feedback
empty/nonempty. In addition, it is assumed throughout the paper
that each station is informed when its packet i3 successfully
received. It is proved that provided a certain condition on the
reception matrix holds, the throughput achievable with this type of
feedback is the same as the perfect state information throughput.
“This condition is verifiad for most multipoint-to-point channels of
practical interest.

In a paper whose translation appeared only very recently [19)
(after our work [7]), Mikhailov has derived sufficient conditions
for stability and instability of two-dimensional Markov chains.
Although this was meant to be used for decentralized control
schemes in the usual collision channel, this approach 15 powerful
enough to be applied to the multipacket channel. In Section 1V we
show by using Mikhailov’s result that the scheme presented in
Section II is stable under weaker assumptions. However, only a
weaker form of stability can be proved in this way.

0018-9286/89/1100-1153501.00 © 1989 IEEE
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[. CoNTROL OF THE MULTIPACKET CHANNEL WITH PERFECT
STATE INFORMATION

In this section we assume that all the users know the value of X,
at the beginning of slot n, and we let the retransmission
probability be a function of the exact value of the backlog, i.e., P,
= F(X,). In this ideal case, the system is much simpler to
analyze than in the general case (1) since (X,)n=0 is 2 homogene-
ous Markov chain. Our goal is to determine the optimal control
function F* that yields the largest ergodicity region, and the
corresponding throughput, denoted by n.. For instance, it is well
known [4] that for the usual collision channel with the access rule
in effect here, F¥(X,) = 1/X, is the retransmission probability
that minimizes the drift at each step, resulting in an ideal
throughput of 5. = e~".

First note that all the results herein are valid provided that the
backlog Markov chain (X, S,)a20 corresponding to a control (1)
is irreducible and aperiodic. It can be easily checked that for both
access rules considered in this paper (see below), as well as all the
algorithms, a simple set of sufficient conditions for irreducibility
and aperiodicity is

a) N#0

b) Ao+ E A<

nw=l|
c) €o#0

which are analogous to the conditions for the open-loop system
studied in [6]. The theorem below gives the best throughput
possible for a control protocol ().

Theorem 1: There exists a retransmission probability p* that
minimizes the expected backlog increase when the backlog is
equal to n.

With such a retransmission probability, the system is stable for
A < 1. and unstable for X > 7., with

Ne=sup e =% 2 CaZ- =i

xz0Q nel

Proof of Theorem 1: The proof is based on standard drift
analysis techniques. (X,)20 is a homogeneous Markov chain
which evolves according to

X=X+ A-%, 2)
where Z, is the number of packets successfully transmitted in slot
t. e system is defined to be stable if (X)),y0 is ergodic and
un ible otherwise. Let d, be the drift of X, at state n: d,
HX[..[ X,IX' = "] We hﬂVcO s El s Xh and if we dcnote
by p the retransmission probability used in slot ¢, then forn = 1,
the probability of having k successes is given by

1=kl X,=n]= S:

)p’(l -p)"ley  (Isksn). (3)

t then follows from (2) that the backlog drift at state n = 1 is
nven by

) plL=p)y~ieu

La

I

.-l e 4 \

;’) p(1-p)-iC, @
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which becomes d,(p) = \ - a( p) if we define £,(p) to be the
average number of sucemsa given the backlog n and the
retransmission probability p

)

ta(p)= 2( )p/(l-p)""JC

Since £,( p) is a polynomiat on the compact [0,1}, 1t actueves 1its
maximum and we can define

*=arg max f,(p)=arg min d,(p).
pELO.N} pE[O.I}

We now proceed to compute the limit of the drift when the
retransmission probability p¥ is used. We show that

llm t(p*H)= =sup e~ 2 C, —-=sup ). )
x20 n=l n!
Let us first assume that C < + co.
Properiy 1.
lim ¢(x)=C.
We have forn > M
M xn ol
11(x)=Clse-*C+e™* ) — |Co-Cl+ 2 IC cl.
nw| n-M#I
)

Picke > 0and fix Msuch that |C, - C| < efor n > M. Theniif
B, is an upper bound on the sequence (C,)pz1, (7) yields

M X"
[t(x)-Clse-*C+2B.e™* 3, gt

nel

and the right-hand side of this last equation goes to zero as x goes
to infinity.

Property 2: For all ¢ > 0, there exists 4 > 0 such that for all
np > A, [t.(p) - C| < e. We have

l’n(p) CISE

=1

(/) P(t-p)"|C=Ci+(l-p)"C.

Choosing M as for Property | we get

n
(n) pll=p)i+e
=0 J

l(p}-Cls28. 3

Let us denote by R, the random variable corresponding to the
number of retransmis.ions in a slot given that the backlog is equal
to n. We have
p
2]

a4
?K
D >

)p'(l—p)""=P[R,.lesP [‘-I-;—"—p

2M. Then from the Chebyshev inequality
4

P[R,.sM]s;; ®

and Property 2 follows.
Property 3: t,(x/n) converges uniformly to f(x) on any
compact [0, A].
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iix € > 0and choose M such that 2%,  A/C/j* < e. Then for
i>M + land x € 10, A] :

iy (E)—I(X)

M
1
SEAIT{ e~x

=l

+2e.

cun=1) e (a-j+1) '/l—f n-y
v -\ n

incelimpegn(n = 1) (n-j+ 1Y/ =l1forl sjs M,
tis enough to show that (1 — x/n1)*~/ converges uniformly to e~
orl s /< M. Wehave

x\"-J
l—;) —e*ge (e - ||serMn~ |, )]

n the other hand, for n > A4,

1—£>"—/—e"a (1 _f)n_e-xze-x[eA+nlog(l-A/n)_ 1
n n

L
e | l—-A-> -1
n

:ng uniform convergence follows from (9) and (10).
’roperty 4. t,(x/n) converges uniformly to ¢(x) for x = 0.
‘ix € > 0. From Properties | and 2 we can fix A such that:
Vforallnp > A4, [t.(p) - Cl < ¢,
forallx > A4, t(x) - C| < e.
“hen we distinguish two cases. If x € [0, 4], then from
*roperty 3 there exists NV such that for all n = N, |t,(x/n) -
{x){ < e. If on the other hand x € (A4, + ), we have

t (:) ~1(x)

rom i) and 1i).

“hus. we have shown that when C is finite, £,(x/n) converges
mformly to £(x) forx = 0. It follows that lim, e SUP; 20 L2 (X/11)

sUDg»o £(X) and so (6) is proved.

‘inallv, we show that (6) holds when C = + o, Choose A
sroitrarilv large and M such that C, > A for n > M. Then for n

M
) "MEY(1-2Y 280 -PIR
il\n ; zA(1 - P[R,sM)).

‘rom (8) P[R, s M] is arbitrarily small for nx/n = x large
-nougn. Therefore, sup,z0 fx(x/n) = + o and limy—w fH(PY) =
- oo, Since it is clear that if C = + oo, then sup,zq #(X) = + o,
6) holds.

‘rom the equality lim,—c d( p;) = A ~ SUPeaq £(X) and Pakes
_emma in {21], it follows that if lim,~., C, = + o, then lim,.o,
i,(p*)= — o, and the system 15 always stable, whereas if lim, .
Zx < + oo, then (X, )axg is ergadic for A < 7, = SUpezo £(X).
slso. it is shown in the Appendix that Kaplan’s condition holds
or this svstem when the sequence (C,)q2; is bounded, thus from
{aplan’s result [13], the backlog Markov chain is nonergodic
vnen A > 1.,

t is intuitivelv obvious that no decentraiied control algorithm
»f the form (1) can have a maximum stable throughput larger than
ic. 1he theorem below gives a rigorous proof of this fact and also
:nows that this throughput can be achieved with a control which is
nucn simpler than p¥.

“heorem 2: The best throughput achievable by a decentralized
-ontrol algorithm (1) is 7 = sUprzo€ 3., X*/nl Co. lf 9. > C

1My~ Ca, then there exists a constant A > 0 such that the
-ontrol b, = A/ X, for X, > A yields the optimal throughput 7.

(10)

s

tn <§>—C!+|z(x)—clsze (1)

n
za Y

wMe)

Iix

11
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Proof of Theorem 2: To prove the first part of the theorem
we use a result of {27] which is a generalization of Kaplan's
“heorem. If b, = F(S,) and S,,; = G(S;, Z,), consider the
Markov chain (X;, $;) and the Lyapunov function ¥(n, s) = n.
Assume that A > 5., Then

eV (X1, Sie1) - V(X,, S)IX=n, §;=5]

?'\—El <";) F(s)y/(1=-F(s)"~'C,
J=
A—=1,

b L 3
~da(p¥)2 3

(12)

for all 71 Jarge enough and all 5. Therefore, the drift of ¥is stricily
Jositive outside a finite subset of the state space. Since it is shown
in the Appendix that the generalized Kaplan's condition is
veniiied, it is enough to conclude that (X,, S,) is nonergodic.
Hence, 7. is indeed the best throughput achievable by any
decentralized control algorithm of the form (1).

I'o prove the second part of the theorem, we need the following
property.

Property 5: If for all x = 0, t(x) < SUPzq £(X), then sup,zo
x} = C.

I sUPeao £(X) = + oo, itis easily seen that C = + 0. If sup,ao
t(x) < +o, then C < + . Consider a sequence (X,)nz; of
nonnegative reals such that limy—.a £(Xz) = SUPzo #(X). If (Xa)n21
was bounded above by X' < + o, we would have forall n = 1,
.'(X,,) s SUPxe 0. I(X), and in the limit SUDx>0 [(X) = SUpxefo.x)
£(x). Then there would exist x; € [0, K] such that £(xg) = sup,zo
£(x), which is a contradiction. Therefore, (x,),=; is unbounded,
nd one can build a subseauence (Xne)ez) such that limg—q X,, =
+ 0. We still have, of course, limg. £(Xs,) = SUp,a0 £(X), but
on the other hand, we have limg~a #(Xs,) = lim,.a (x). From
Property | in the proof of Theorem |1, lim,..., £(x) = C and
sroperty S follows.

Thus, if n. > C, then £(x) achieves its supremum at some finite
positive real 4. Let us consider the control p, = A/ X, for X, =
A. (Note that" the value of the retransmission probability is left
unspecified for X, < A because it does not affect the throughput.)
Then from (4) d, = N = t,(A/n), and from Property 3 in the
proof of Theorem | limy—, d, = A = #(A). Then it follows from
“21) that (X,),50 is ergodic if A < ¢(A4) and from {13] and the
sppendix that (X,);z0 is nonergodic if A > ¢(A4). Thus, the
maximum stable throughput of the system is £(A) = sup,zo I(E])
= e

Note that the closed-looo throughput obtained in Theorems 1
:nd 2 can be interpreted as 0. = SUpy. x>0 E[Cw], that 1s as the
supremum over x of the expected value of Cy if NV is a Poisson
distributed random variable with mean x. Note that if we were to
follow the popular approximation (1], {2], (10}, {16}, (18], {24],
{26] that assumes that the number of transmissions in each slot, V,
is Poisson distributed, and if we could choose any positive number
as the mean of /V by regulating the retransmission probability, the
throughput would be equal to the average number of successes per
slot, E[Cy], maximized over the mean of N. As in the usual
collision channel, a wrong analysis leads to a correct conclusion.
Several examples are gathered in Table I (see (8] for details).

Probably the most important conclusion of this section is that in
general it is not necessary to compute the exact value of p#, which
would require a large amount of on-line computations, and
seriously hinder any application of Theorem 1 to the case where
the backlog is unknown. Two cases may occur. If £(x) does not
atiain its supremum, from Property 5 in the proof of Theorem 2,
we have 1, = 7o = C (e.g., this happens in the model developed
in {6) for mobile users with pairwise transmissions). In this case
no throughput improvement can be achieved by varying the
retransmission probability, and therefore it is enough to restrict
attention to the open-loop strategy studied in [8]. On the other



156

“ABLE |
JPEN-LOOP AND CLOSED-LOOP THROUGHPUTS FOR SEVERAL
AULTIPACKET CHANNELS

-A § c A
- ¢ LS
=gt §od

c, = tim C,
 angh

conventioaal
collinos chaswel 1 n
n

)

-l 0 ¢!
>1

qlrequency

Trequency n(‘ __‘_r—l 0
9

with purvue 1 1 1
traasmimon §)

aprere T i
= power diknmize

L Loyl a2
Lok Lo = - et

capure - |
= g cnmes

i D {(AQ=1) ¢=4 4 4~40}
we

iand. if there exists 4,0 < A < +, such that #(A) = sup,zo
(x), then we have shown in the proof of Theorem 2 that the
omtrol o, = A/X, for X, = A yields a maximum stable
nroughput #(4) = 7., meaning that the system is optimal. Hence,
miv A has to be computed, and this can be done before starting
he operation of the system.

;Jthough in most practical applications (C,), = 1 does have a
imit, it is worth noticing that Theorem 1 can be generalized to the
-ase wnere C does not exist. It can be shown [9] thst if the drift is
unimized at each step, then the system is stable for A < supyzo
(x) and unstable for A > Sup,»¢ $(x) + liMy—~w sup C, — limy-ca
nf C,. As in the open-loop system when (C,)q2, does not have a
imit, nothing more can be said about the throughput without
urther information on the seauence (C,).»;. But the main
irawback in such a case is that there may not exist any control p,

~/X, that yields the optimal throughput.

“he access rule for new packets that we have been considering
-0 1ar is usuailv referred to as delayed first transmission (DFT).
Vith this access rule. newly arrived packets are treated exactly in
ne same wav as backlogged packets. Let us now examine what
1aopens when on the contrary an immediate first transmission
IFT) rule is used, that is when new packets arc transmitted with
»rovability one in the slot immediately following their arrival. It
1as been oroved in [8) that the open-loop throughput is the same
or both first transmission rules. The closed-loop throughput on
ne other hand depends on the access rule. For instance, it is well
cnown [4] that for the usual collision channel in the IFT case, the
oumal retransmission probability is p* = Ay ~ M/t ~ )y,
‘1eiding an optimal throughput A,e*1/e~!, in contrast to the
hroughput 5, = e~! for the DFT case. In the multipacket channe!
vith the IFT rule. the optimal throughput depends not only on the
nean put on the whole distribution of new packet arrivals.
nterestingly enough, it can be proved that both throughputs
-omncide when the new dacket arrivals are Poisson distributed.
till with the same method as in the proof of Theorem 1, it can be
asiv shown that there exists a retransmission probability that
minimizes the drift d, at state . With such a retransmission
rropability, the system with IFT rule is stable for A < sup¢
“(x) and unstable for A > supezq T(x), with T(x) = ¢~* T,
~/nt 2%, NCh. » Where we have defined Cy = 0 for notational
:onvenuénce It can also be proved that a control of the form p, =
1/ X, yields a maximum stable throughput T(A4). Since sup,zq
“(x) deperds on the whole new packet arrival distribution
Ao)nzo, this result is not as conclusive as inthe DFT case. This is
secause the stability region N < sup,zo T(x) is actually given in
he form of an implicit equation in A, which cannot be solved in
reneral without further specifications on the distribution (Ay)xz0.
“or instance. this stability region could be empty. Consider, for
-xample, the usual collision channel with possibly some added
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noise0 < C; s 1and G, = Ofor 1 = 2. Then T(x) = C,e~*(),
+ Aox) and T'(x) = Cie=*(\g ~ A — Rox). Therefore, for any
distribution such that \» < N, T(x) is maximum at T(0) + C,,
ana the stability region is empty since C;\; < A; < A. Note that
in this sense, the immediate first transmission does not perform as
well as the delayed first transmission with which the system can
always be stabilized.

If there are solutions to N < supyzo 7T°(x), then the best
throughput achievable by the class of algorithms in (1) is ». = sup
{\:\ < supszo T(x)}. This is what happens, for iistance, when
the new packet arrivals are Poisson distributed.

Theorem 3: If the new packet arrivals are Poisson distributed,
the best throughput achievable with an IFT rule is the same as in
the DFT case, v, = suprzo 2(X).

Proof of Theorem 3: If limy~, C, = +,theny, = », =
+ . Assume now that C < + . We get

o on a\t
T(x)=e=®N 3 = % 3 Cae
=0 k=0 k!

D> .S.'z(x-.»m ()
R=l

Thus, in this case, T(x) depends only on A, and to clarify the
proof below, we denote it by 7h.(x)
Th(x)=1{(x+}). (14)
Assume that #(x) does not achieve its supremum. Then from
Property S in the proof of Theorem 2, we have 9 = C = lim,_.,,
£(x). It follows from (14) that for any A > 0, lim,—. T)(x) = C.
Therefore, forall A > 0, sup,,o TW(X) = C. Hence, for all A >
0, suprzo T0(X) = supyao #(x), and by definition of v, we finally
get ¥, = SuPyaxo £(X). Note that T, does not achieve its supremum,
in the sense that if there existed A € (0, ».) and x, = 0 such that
% = Ti(x), we would have sup,.o 1(x) = t(A + Xy).
Assume now that #(x) does achieve its supremum. there exists
Xo & 0 such that sup,o 2(x) = #(xy). Then for all X in [0, xo]:
(o = N) = SuPrzo £(X) = suprzo Ta(x). Thus, forall A € {C,

%o}

~0

sup T(x)=sup 1(x)=Th(%~M\). (15)
x20 xz0

We have for all x 2 0 #(x) < x, therefore supe.o 1(X) S X.
Together with (15), it follows that for all A € (0, SuP.z0 £(x)), A
< SUDyzg T0(X), and therefore v, = sup,20 1(x) = 7. Since from
(14) supr2q T5(X) S SUPya0 2(x) = 7 forall A, we get v < 7. and
finally ».=n, =sup,zo #(x). Note that from (14), 75 reaches its
sjuprcmum too, since for all A < »,, there exists x, 2 0 such that
) = v

Note that we have also shown in this proof that 7(x) reaches its
supremum iff #(x) does, which means that 5. can be achieved with
a coatrol of the form p, = A/X, iff v, can.

M. OpriMAL CONTROL FOR THE MULTIPACKET CHANNEL

It is assumed from now on that the users do not have access to
the value of the backlog, so the problem becomes one of control of
the Markov chain with partial state information provided by the
channel feedback, We build a backlog estimate S; with feedback
which is such that Z, = 0 if slot ¢ was empty, and Z, =0
otherwise. The results of the previous section strongly suggest
that we should use as a retransmission probability p; = A/S,,
where A is a point at which #(x) achieves its supremum (according
to Property 5, A is assumed to be finite). We show that the
resulting control algorithm achieves the optirnal maximum stable
throughput 7. This holds provided that the following assumption
on the reception matrix is verified.
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-0: There exists 6 > Oand Bsuch thatforall n = 1, T7_, e**
5 B.

“he ourpose of conditior CO is to bound the probability of
aving large numbers of simultaneous successes. Unbounded
wmoers of successes per slat are difficult to deal with because
hev may result in very large instantaneous errors in the backlog
-sumate. Note that condition CO is likely to hold in most
uuitivoint-to-point channels because of practical limitations on
he receiver capabilities, and that it is verified for all the examples
n Table I.

“heorem 4: Assume that there exists 4 € (0, + ) such that
{A) = sup,qo {(x), that the new packet arrivals (4,),20 are
-xponenuai type’, and that condition CO holds. If < 0and 8 <
) verifv the following two conditions®:

I B> A

2:8(1l -e N+ -h+a =0
hen the contro! algorithm (cf. the contro! Jaws proposed in {15],
19], and [25))

4

=

‘;I
Sa=max {4, S;+al(Z,=0)+81(Z,=0)}

1as maximum stable throughput equal to 7..

2roof of Theorem 4: The proof is based on the method
ieveloped in [30]. The idea is to use the properties of the
iomogeneous two-dimensional vector Markov chain of the
sacklog and its estimate M, = (X,, §;) to build a Lyapunov
unction whose drift is negative in the first quadrant of the (n, s)
slane when A < 7. It turns out that this fails to hold in two cones
it the state space, but it can be proved thar the J-step drift of the
.vapunov function is negative for some integer J, and that this is
z:nougn to ensure that M, is geometrically ergodic. It follows from
“heorem 2 that M, is nonergodic if A > #.. For substantial
»oruons of the proof, the reader is referred to [9] because of space
imitations.

Jenote bv X, = S, — X, the error in the backlog estimate. The
irst part of the proof mainly consists of computing and
spproximating the drifts of X, and X, which are the basic building
slocks for the Lvapunov function.

denote bv c(n, s) = E{X,,, — X,|M; = (n, 5)] the backlog
wift at state (n, s), and by d(n, s) = E[X,,, = XM, = (n, 5)]
he drift of the backlog error. For technicai reasons, what we most
»iten use in the proof are the truncated drifts, which correspond to
he value of the drifis restricted to those paths where the variatiea
n the backlog is bounded by some integer J, that is c(n, s, J) =
Xy = X:)I/QXM - Xi| SJ)IM; = (n,s)] and d(n, s, J)
= Al Xy = XWXy = Xi| STNM; = (n, 5)]. Clearly,
nese truncated drifts will be good approximations of ¢(n, s) and
i(n, §), respectively, when J is farge. It will turn out that the
:nfts depend pnmanly on the ratio x = n/s for large values of n
ir 5. Thus. 1t 1s convenient to define the following two regions in
ne (n, s) plane:

g, M)={(n, 5) : 120, 520, 1+ AeS =S 14N}

Iy={(n,s): n2M or s=2M}

vnere Apand A; are such that — o < Ay s A\ s + . The aim
it the first part of the proof is to show Proposition | below which
:ummarizes ail the properties of the drifts that are needed for our

surposes (see Fig. 1).

4. 18 exponentzal ?pc if there exisis d > 0 such that E{e“* ] s finute. For
nsance. this is lrue if A, is Poisson disinbuted. .

“ondilions C1 and C2 define half a siraighi line in the plane, and thercfore
:n wmnnne number of possible esumanion schemes, all of them yiclding the
-ame throughpul.
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x=l+y

M s

Fig. 1. Drift properties (Proposition 1).

Proposition ]: There existy € (0, 1/5), 6 > 0, and an integer
‘a > 0such that for all J = Jp:

1) forall (n, s) € C(- 5y, 5y) N Uy, c(n, s) < -5 and c(n,
s J) = =8+ v(J);

if) for all {(n,s) € C( -0, —4) N Uy, d(n, s) = -6 and
din, s, J)s -6+ HJ),

1ii) for all (1, s) € C(y, +®) N Uy, d(n,s) = dand d(n, s,
JYy=8~»(J)
where »(J ) is a nonnegative function which goes to zero a J goes
to infinity,

The detailed proof of Proposition 1 can be found in {9). After
computing the value of the drifts

c(0, s)=A (16a)

n Ay Ay
foIE

d(0, s)=max {4 -5, a}—A

c(n $)=x-Y,

J~1

(17a)

/ A n
d(n, s)=p—-A+(max {A -5, a}-B) \1 —;)

n A>J< A)"‘!
. - == C, (nz1) (17b)
;-l<‘l><s s !

+3

we work out upper and lower beunds by truncating the sums (16}
and (17) to a fixed number of terms, and then we approximate
those bounds as a function of the sole variable n.‘s. The main 1dea
1s that the dynamic behavior of the Markov vector M, = (X, S,)
depends essentially on the ratio X,/S,. For instance, if x is nearly
-auat to |, the backlog estimate is close to its ideal value, and we
snould have ¢(n, s) < 0 since the backlog drift is negative in the
perfect state information case. Also, a well-behaved estimate
thould be such that if x < 1. then the error 5§ — 7 is positive, and
herefore should have a negative drift d(n, s) < 0 (see [15]). In
the same wav, we expect to have d(n, §) > 0 forx > 1.
£t us define the following Lyapunov function:

-3y
-5), v (s-n)}

(
V(n, s)=max {n, 13y (n
3

vnere the constants have been chosen so that ¥ is continuous.
V(n, s) is equal to the first, second, and third term inside the
bracket when (n, s) isin C (- 3v, 3y}, C(Jy, + =), and C (- s,
- 3¥), respectuvely. Notice that V is defined so as to take the best
advantage of the driit properties listed in Proposition 1. For
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instance, when ¥(n, s) is equal to n, then the Markov chain M,
belongs to C (- 3y, 3v) which is included in C (- 5v, 5y) where
the backlog drift is negative provided that either # or s is
sufficiently large. Similar comments can be made about the other
two regions. Unfortunately, this does not enable us to conclude
that the drift of the Lyapunov function is negative in Uy, because
M,., may well be 1n a different region than M,. However, this
change of region becomes unlikely if we exclude a small zone
around the lines x = | + 3y where V changes definition and
indeed the second part of this proof consists of showing that the
Lyapunov function has a negative drift in the remainder of the
state space.

Proposition 2: There exist My, = 0and &y > 0 such that for all
Nz Myandforall(n,s) € Uv N [C(-», —4y) U C(~2y,
27) U Cldy, »)),

E[V(M,.1)- V(M) M, =(1, 5)] < = &.

Proof of Propasition 2: We consider separately likely and
unlikely events

E[V(M. )= V(MM =(n, s)
=E[(V(M.)= VM) (A= 2| s D) M= (n, 3))
+E((V(M )= V(M)A =2 > DIM=(n, 5)}.  (18)

We start by showing that the first term, which corresponds to
likely events, is negative when J is large by using the properties of
the truncated drifts from Proposition | and a simple geometric
result. The lemma below, whose proof is in (9], gives a measure
of how much a cone C(Ng, A\y) expands if each of its points is
allowed to move of some distance that cannot exceed B in absolute
value along each axi.

Lemma: Considery > 0, B> 0,andy — 1 < M. < A\ <
+o;and assume that {n — n’| s B,|s - 5’| s B,and Q = B/
v (1 + [IND + 2 + ). Then:

1) (n,5) € C(ho, @) N Ug

= (n',5) € C(N—1v, @) N Ug-p
2) (1, 5) € C(=o, \) N Uy

= (n',s') € C(—-o, M+v) N Ug.»
3) (n, 5) € COw A1) N Ug

= (n',5') € C(ho—v, M+7) N Ug-p.

Set B(J) = max {J, |a] + B}. and define Q(J) to be any real
suchthat Q(J) =2 max {B(J) + M, B(J)/v (1 + 4v) 2 +
37)}. Wehave |S,., - Sif s |la| + B s B(J), andif |4, - Z,]
s J.then | X;,, - X,| s J s B(J). From the lemma, Q(J) is
such that

M € C(-2v,29) N Ugy = My € C(-37,37) N Uy
(19)
M, € C(4‘Y, ) n UQ(” » M,.l € C(3‘Y, m) N UM (20)
M, € C(-,-4y) N Ugsy » My € C(-, ~37) N Uy
20
where M has been defined in Proposition | Assume, for instance
that M, belongs to C(-2y, 2y) N Ugy,. From (19), M,,, €
C(~3y,3y) N Uy N C(=5v, 57) N Us. Hence, if J 2 Jo, we
can apply Proposition | i):
E[(V(M,1)= VMDA =Z)sT) M, =(n, 5)]
~in, s, Jys =8 + v(J).
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If M, belongs to the other two regions, C(4y, ®) N Uy, or
C(==, —4y) N Upy), a similar argument holds, using
Proposition | iii) and ii), respectively, along with (20) and (21). It
follows that for all J = Jp and for all (1, 5) € Ugy, N (C(- =,
-47) U C(_zyv 27) v C(Mv w)]

E[(V(Min) = V(M) I(|A-Z| s D Mi=(n, )]s -8 +n ()
(22)

with 8, = min {1, 1-3y/3y}6 and »(J) = v(J) 1 +3y/ 3v.
To deal with the second term on the right-hand side of (18), we
consider the further decomposition

E[(V (M) = VM) I(|A= 2| > D) M, =(n, s)]
=E((V(M)) - VIM)I(|A> 2+ )| M =(n, 5))

+E(V(M )= VIMDVI(E>A+ )| M= (n,5)]. (23)
Let us denote by Ty(n, s, J) and Ty(n, s, J) the two terms on the
right-hand side of (23). The first term Ty(n, s, J ) corresponds to
a case where the variation in the backlog is bounded below, and
can be shown to vanish as J increases by using the sole fact that
the mean arrival rate \ is finite. Consider now Ty(n, s, J ). If M,
= (n, 5) belongs to a region such that x = n/s > x,, then Xy can
be chosen large enough so that if M,, , belongs to C(- =, - 3y),
then the error in the backlog estimate which results from the large
number of successes just compensates the inital errorn - s » 0.
On the other hand, when M, belongs to any region such that x 1s
bounded above, then EYZI(Z, > J)|\M, = (n, 5)] goes to zero
uniformly in (n, 5) and T,(n, s, J) can be dealt with by using the
following rather crude bound for the variation of V:

143y 1-3y
3y 7 3y
: (|0:|+B+|A,—2,|)SR(I +|4=Z) 4

| V(Mi.1) - V(M) S max {l,

where R is some positive constant. 1t is shown in (9] that
E[(V(M))= V(M) I(|A=Z(|> )M =(n, s5)]
sn(Jd)+e(n, s) (25)

where limy-o 2(J) = 0, and ¢;(n, 5) is a nonnegative function
* that depends on J, and goes to zero as either i1 or s goes to infinity.
By using (22), (25), and the decomposition (18), we get the
desired result that the drift of ¥ is negative in this part of the state
space: fix an integer J,, such that J,,, &= Jp and that for all J =
Joas 1) + (V) s 6,43, Then from (22) and (25), we have
for all (n, 5) € Ugupm N [C(—0=, =4y) U C{-2y, 2y) U
C 4y, )],

2

E[V(M.)- V(M) M, =(n, 5)]s -3

01+ €40, (71 45).

Then we can choose an My > Q(J,) which is large enough so
that ¢;.(n, §) < 6;/3 for all (n, 5) in Uy, (m]

This concludes the ;econd part of the proof. Unfortunately, 1t is
not always true that the dnift of ¥ 'is negative outside a fimite subset
of the state space. For instance, we have proved that in the case of
the usual collision channel with Poisson new packet arrivals, there
exist constants B,, > 0 and M,, such that for all (n, s) € Uy, for
which x = | = 3y, and for all a and 8 venfying Cl c2,
E\V(M,.)) - V(M)|M, = {n, s)] > B,,. However, discontinui-
ties around the lines x = | t 3+ cancel out when one waits long
snough, and in the last part of this proof we show that the J-step
deift of ¥, E{V(M,.;) = V(M)|M, = (n, s)] is negative for
some integer J.

Froposition 3: There exist Jr > 0, p > 0, and M; > 0 such
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that for all (n, 5s) € U,,,/
E(V(Miis) - V(M) M,=(n, 5)]s -p.

) Proof of Proposition: One of the main problems in dealing
with the J-step drift of ¥ is to control the changes of regions
between M, and M, . ;. To this end, we define the stopping time

>J’} .

fr, =2 J thenforl s k < J,| X, — X)) < Sand |S,,1 - S
s J(la] + B). Thus, if we define B’(J) = max {/(|a] + B8),
J?}, and Q’(/) to b= any integer such that Q’(J) = B'(J) +
max {M,, M} and Q'(V) = 2B'(J )/y(1 + 972v)(5y + 2),

then, still assuming that 7; = J, we gt from the lemma for 0 < &
sJ

E (Au-k‘ Eu-k)

k=0

77=min {s_>.0.

M, € c(—oo. -4-,-%) N Uguny

= My € C(- =, =47) N Uy, (26)

M, € c(—27+%. 27—%) N Ugreny

= Mk € C(-27,29) N Uy, (27)
MEC <4-y +:2y- , w) N Ugin

= M,,x € C(dy, ®) N Uy, (28)

M € C<—4-y—%. —21-&%) N Ugun

= M € C(=5v, =v) N Un (29)

M, € C(Z‘y—%.&y«»%) N Ugeny

= M.y € Cly, 5y) N Up. (30)

In other words, we have partitioned the plane into two zores

Y Y Y
Zu=C| -, —4y=-1 v+l 242
N C< o, -4y 2)UC< 2‘y+2.2‘y 2)
uc<47+;—.m>.

zp=c<-4-,-%. —2-,+%) U C<2-y—%.4-y+%> .

Then we have chosen Q’(J/) such that if M, belongs to Zy which
is slightly smaller than the region in which the diift of the
Lyapunov function is negative, and if 7, 2 J, then the Markov
chain remains in the region in which Proposition 2 applies up to
time ¢ + J (see (26)-(28) and Fig. 2). Q°(J) is also such that 1f
M,isinZpandifr, = J, thenup to time ¢ + Jthe chsin staysin a
region such that two out of the three properiies of Proposition 1
hold at each step (see (29), (30), and Fig. 3).

We start by showing that the J-step drift of ¥ is negative at (n,
s5) when (n, 5) belongs to Zy. We decompose the J-step drift of V

and
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Fig. 2. If M, € Zy N Ug yandif 7, 2 J, then M, , belongs to the region
where the dnft of ¥ is negative.

Y

Fig. 3. UM, € Zp N Ugy andif r, 2 J, then M, ., belongs to a region
where two properues of Proposition 1 hold.

as faollows:
E{V(M.,)- V(Ml)|M1=("v s))

J-1
=3 E(E(V(Mir0) = V(Mo ) Miad]
k=0

J=-1

e\ Mi=(n, N+ S ELEWV (Miexor)
ka0

- V(Mlok)lMlu]I(fl<J)lMl=("o 5. (3D

Denote by U, (J, 7, $) and Uy (4, n, ) the two sums on the right-
hand side of (31). If , = J, then (26)-(28) hold, and therefore we
czn apply Proposition 2

Ui(J, n, 5)s - J8Plrs2 J| My =(n, 5)). (32)

Let us now show that 7, < J is indeed an unlikely event, the
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rooability of which goes to zero as 1/J uniformly in (n, s)
Ar,<JIM,=(n, 5))

k

2 (Anl‘ Elol)

=0

A

,)JPI

-=Q L

> M,=(n, S)]

-1 1 &
SI3D> A,+,>ﬂ]
=0 Li=0
-1 1k
): PI E E,¢I>J3!M=(H,S)] .
=0 L [=0
‘rom Markov

s inequality we have

. =1
I <JIMi=(n, $))s =35 Y, (k+ DA
B

=1 k
=2 2 ElZmdM =, 9]
T L=01i=0
Jenoting by B, an upper bound on the sequence {,( p?), it follows
tom Section II that E1Z, . |M, = (n, 5)] = EIE[Z:. M, )IM,
:n, 5)} < B,, so we get
~+8, J+1 B,

TR G3)

vnere B. is some positive constant. From (24), it is easy to check
nat the drift of V is bounded by some positive constant By, so that

5(J, n, s)sJBy Plr;<J\M,=(n, 5)]. 34
‘onsidering (31), (32), (33), and (34), we get
V(M) = V(M) M, =(n, 5))s - 6J +(By+69)B,.

“herefore. there exist constants gy, > 0 and J; > 0 such that for
M J = Jy and for all (n, S) € UO'(J) n ZN,

V(M) = VIM)IM, = (n, sNs - Jps. (35)

Ve now oroceed to show that the J-step dnift of the Lyapunov
unction is negative in the remaining part of the state space Zp
-onsisting of the two cones around x = 1 £ 3y. This is done in
wo sieps. We first show that the J-step drift of ¥ restricted to
ikelv gvents {7, = J} goes to — o2 as J increases, and then we
rove that the J-step drift of ¥ restricted to unlikely events {7, <
. } is bounded above independent of J.

~ssume, for instance, that(n,5) € C(y — v/2, 4y + v/2) N
%o v, Thedifficulty here is that ¥ can iake two possible values,
ina therefore Proposition 1 cannot be used directly. If v, 2 J,
hen from (30) M, ., € C(y, 5y) N Uy for 0 s & < J, so that
M) = max {Xwe (1 + 37)/3v(Xiax = Siia)}. There-
ore,

Ir<t|M,=(n, 5))=s

AV (M )= V(M) (1,2 0)| M, =(n, 5))

& 143
= 1 max {X,.;. -—57—1 (Xlol"sn.l)}

-
(r,20)| M= (n, S)J

= l max {X,, l+_31 (IYI—S[)}
3y

[ 9 ~

(r2))|M,=(n, 5) |
J

1+
_E 1 max {X,.J—X,. 31("/?“1*'/?1)}

3y

(r,2)|M=(n, 5) |
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since max {a, b} — max {c, d} < max {a ~ ¢, b - d}. Then
1sing the fact that max {a, b} < max {0, @ + f} + max {0, b +
f} = florf = 0, we get

E[( V(M+J)" V(Ml))I(TjZJ)lM:=(”v S)]
r J
SE l-max {0, XH’J—XI+6I i—}

A2 )M =(n, s)]

a5 1+3y J
+E {max {0, —— (=R, ,+ X)+6, =

. 3y 2
c Hr2 N\ M=(n, s)]

J
-£ [6| 3 I(z;2 )M, =(n, S)] (36)

viere §,=min 11, (1-3v)/3y} has been defined in (22). We
show that the first two terms on the right-hand side of (36) are
bounded. Since (33) limj~a — §,J/2P[r; = J} = ~ oo, this will
be sufficient to prove that lim;.. E{(V(M,.,) - Y(M)I(1; =
J_)IMI = (Il. S)] = — o, Define Wk = X“,k - X, + k‘yl/Z and
oy = Fioyy where F, is the sigma-field generated by {A4,,5s < ¢ -
11 X,, s < t}, representing the history of the process (M,),z¢ up to
time £. To prove that the first term in (36) is bounded, we show
Jhat there exists ¢ > 0 such that (Y,, F}) is a supermartingale,
with Y, = e*¥"tl(1, = k). We need to show that E[Y,.,|F] <
Y., which is equivalent to

_?[e“xli-ki-l’xl"'(k"' 1/2)61)1(7.12/(_*_ | Frex)
_,eW(XH-k‘XI+(k/2)61)I(7lak)

sincel(y,zk+ )=Kr,2 (T, 2k + 1),and (7, = k)15
measurable with respect to F, .,

I(r,2 k) E[e¥Xis ke 1= X1 k¥ 8D F, 1 s I(1j2k). (37)

Now if 7, = k, then from (30), M., € C(y, 57) N Uy. Lemma
2.2 in [11] states that if X is a random varable such that |X]| 1s
stochastically dominated by an exponential type random variable

, and if the expectation of X is strictly negative, E|X| < —e¢,
ther, therc exist two constants 9 > 0and p < 1 such that E{e*¥]
< p < 1. Hence, there exists ¢ > 0 such that

orall (n,5s) € C(~-5v, 5v) N Uy,
S[eRAX 1= Xir 8D M = (n, 5)]< 1 (382)
for all (n, 5) € C(-00, =) N Uy,
E[e# X1+ 1= X+ 4D M, = (n, 5)]<1 (38b)
oral(n, s) € C(y, @) N Uy,
Efedt- X1+ R+ 4Dy Af,= (n, 5)1< 1. (38¢)

it follows from (37) and (38a) that (Y}, £3) is a supermartingale.
Therefore,

ELY| Rl =EYi(r,2 N FsE[ Yol Fol=1. (39

Finally, considering that max {0, x} s 1/¢ e**, it follows from
(39) that the first term in (36) is bounded. Using (30) and (38¢). 1t
can be shown with the same method that the second term in (36) is
also bounded. Thus, threre exists a constant By independent of J
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uen that
V(M = VMDY (1,20)| M, =(n, s)]sBr—'; 5,P{r;= 1.

“hecase (n,s) € C(-4y = v/2, =2y + v/2) N Uy (s canbe
sealt with in a similar way, using (38a) and (38b). Therefore, we
1ave shown that there exist u; > 0 and J; > 0 such that for ali J
4> and for all {n, 5) € Yo'u) N2z
V(M )= V(M) (1,2 0)| Mi=(n, $)]< ~Jua.  (40)
t is shown in [9] that there exist a constant B > 0, a function
n(J) with lims~e »(J), and a nonnegative function v, (M)
sepending on J verifying limy~., v, (M) = 0, such that for all (n,
2 € Upgyemy N Zp,

BV (Mo )= VM) (1,< D) M, =(n, 5)}

B+ vi(J)+v (). (41)

Ve are now ready to conclude the proof of Proposition 3. From
40) and (41), we have for all (n, 5) € Up oay N 25,
TV(My ) - VIM)IM, = (0, 8)] S B - Juy + »(J) +
AM,). Fix an integer J; = max {Jy, 2} such that for all J 2 J,,
3= Juy + vn(J) < —p,. Then for all (n, 5) € UQ-(;/,,,MI N
‘s, we have ETV(M,,,) — VIM)IM, = (n, s)] < =py +
+\M;). On the other hand, we also have from (44), for all (n, 5)
= UI)'(J,)¢M| N Zp

TV (Mya gy - VM) M=, s)S -y

Yow fix M, large enough so that »,(M,) < u,/2. Then define M,
')_'(J/) + M|, aﬂdp = min {ﬂ»z/z, J/}h). Df
Ve can now conclude that (M), is geometrically ergodic for

« < n. by invoking the following resuit.

“heorem (Hajek [11]): Let {W,} be a sequence of random
'aniables adanted to an increasing family of o-fields {F}.
-uppose that W, is deterministic, that {¥,, F,} is exponential
vpe, and that for some ¢ > 0 and @ > 0 we have E[(W,,, - W,

-) (W, > a) |F,) s Oforallt = 0. Then for each value of
¥a the stopping time 7 = min {¢ = 0; W, < a} is exponential

vpe.

define W, = V(M) anda = Mymax {1, (1 + 3v)/3y,(1 -
)3y}, Iif V(M) > a, then M, € Uy, From (24) and CO
V(M,), F,) is exponential type since A, is. From Propositioa 3,
ve can apply Hajek’s result to our system to conclude that r =»
mn it = 0, V(M,,) < a} is exponential type for any initial
zate. Since V(M,) < aimplies that X, s aand S, < a/(1 -
“v), it follows that 7’ = min {¢ 2 0, Xy, < a, and S,,/ s a/(l

*v)} is also exponential type for any initial state, as well as 7*

mn it 20, X, < a,and §; < a/(1 = 3v)}. Hence, it follows
rom [14] that (X, §;) is geometrically ergodic, concluding the
U

V. STABLLITY PROOP VIA MIKHAILOV'S THEOREM

Jikhailov 119, Theorem 3] has recently found a powerful
-urficient condition to guarantee the stability of a Markov process
aking values on R* X R*. This result can be used to weaken che
-urficient conditions we imposed in Section Il and obtain a much
nore sumpie ptuof of stability. However, the form of stability
1sea by Mikhailov is weaker than the geometnic ergodicity used in
‘ection 111,

_2t M, be a discrete-time Markov process taking velussin Y §
1 U() = {x € R|)x| < r}, and 7,(S) = min {s =2 O:M, €
SIMy = x}, i.e., 7x(S) is the time it takes to reach the set S from
-, Ihen we say that the process M, is stable if there exist constants
- and ¢ such that E[r (U(r))] < ¢, lix] + c;forallx € Y.

Ising this definition of stability we show the following result
vnich is analogous to Theorem 4.

1161

Theorem 5: Suppose that:

1 the number of new packet arrivals per slot has finite second
moment £l4}] < +;

ii) there exists A € (0, + o) such that {(A) = sup,zo {(x);

iiy CO”: there exists B < + oo such that for all n 2 1,
E:_) kzé,,k < B.
~ Fix A < ncand £ > Osuch that A < ¢{(A%). Cheose @ < 0 and
B8 > 0 such that

04 I B(e"‘-l)=:‘—-'£(LE) ett— o

A=t(Ax)—xe~A-8 A-HAY)
C:l: B>m£(>‘)=x>s(::lxpss x—xe=4x=¢) :
hen the control algorithm
A
),:U-E;

S(¢|=max {A, S(+Q1(Z(=0)+BI(ZI=0)}

is stable.
Proof of Theorem 5: Let us state first Mikhailov's Theorem
(cf. [35] for an exposition of this result and its application in the
decentralized control of the conventional collision channel).
Theorem (Mikhailov [19]): Let M, = (X,, ;) be a homogene-
ws Markov process on R* X Ry, with drifts

c(n, s), e(n, sH=E[M,,,-M,|M,=(n, s)).

Suppose that:
i) there exists B < + oo such that for all (7, s) € R* % R;,
E{|\M,s, - Mi|’IM, = (n, 5)) < B;
i) for all ¥ € (0, + ), the drifts {c(n, n/¥), e(n, n/Y))
converge uniformly in ¥ as n1 goes to infinity to (c(¥), e(¥));
iii) the Limit drifts (c(y), e(y)) are differentiable on [0, + ),
with (¢(0), e(0)) = lim,~q (c(0, 5), €(0, 5));
iv) there exists ¢ > 0 such that if c(¥o) = ¥y e(Yo), then c(Yo)
-6
Then M, is stable.
Since both the new packet arrivals and the rows of the reception
matrix have finite variance, it is casy to check that condition i) in
Mikhailov's Theorem holds

ElliMe - MM =(n, 5)]
=E[( X1 =X+ (Sie -Sl)lel:‘ (n, $)].

<

Now EU(S;.1 — SD3M, = (1, 5)) < o + 8%, and from (2)

E(Xi1— XM= (n, ) SE[A}]+EE} M= (n, 9.

“rom CQ’ the variarce of the number of successes is also bounded

TS M,=(n, 5))
B ()Y () ume
1=k

-3 &
~wl

It follows directly from (16) and (17) that the limit drifts are

given by

c(W)=A-1(AY)
e(y)=B+(a—Fe-1Y,

respectively, for ¢ € [0, + ). Uniformn convergence to the imit
drifts follows immediately from the results given for the perfect
state information case (Property 4). Also it is clear the ¢(x) is



1162

differentiable (see (8), where 0 < C, < 7). Therefore, properties
ii) and iti) in Mikhailov’s Theorem are satisfied.

In order to check property iv) note that if Y, = £, then it
follows from C1’ that

(o) = Yoe (o).

But, at that point, c{¥o) < 0 because of the choice of . There is
no other root of the equation c(y) = ye(y), and, therefore,
property v) follows. To see this, note that because of C17, c(¥) =
ve(y) for ¢ # £ is equivalent to

A HAY) -0 A2 HAD)

-V §
b= 1—etlE-9

whick, is impossible if ¢ # ¥ because of C2’. 0

It can be shown [9] that () is finite for all nonnegative A and
£, and therefore the set of control laws defined by C1” and C2’ is
nonempty. Actually, the set of control laws 1n Theorem 4 1s a
subset of those in Theorem 5 because in Theorem 5 we can choose
£ = 1, in which case C2 is equivalent to C1’ and C1 is more
restrictive than C2’ because A = m,(\) [9]. (]

V. CoNCLUSION

In this paper we have investigated the properties of decentral-
ized control algorithms for a random access channel with
multipacket reception capability. By using the working hypothesis
that the users are aware of the valve of the backlog, we have
determined the best throughput achievable by any such protocol,
as well as a simple way to achieve it. The optimum throughput has
been shown to be given by the maximum average number of
successes per slot when the number of transmissions, per slot is
Poisson distributed. In the imperfect state information case, we
have shown that the same throughput achieved in the perfect state
information case can be achieved by using in lieu of the true
backlog, an estimate of the backing computed at each station using
binary feedback, and we have used this estimate to derive a
control scheme which is optimal in the sense that it achieves the
optimai throughput determined earlier. This is true provided the
reception matrix verifies condition CO, which puts some restric-
tions on the number of successes per slot. By using Mikhailov’s
result, CO can be replaced by the weaker condition CO’. In this
case however, geometric ergodicity was not ensured. Note that
the feedback empty/nonempty used in Sections OI and IV may be
less than the available feedback in many practical situations, but
no further information is reeded: a ternary feedback would not
shorten the proof or achieve better throughput.

Finally, let us mention that one can easily modify the proof of
Theorem 4 to show that a similar result holds with the IFT access
rule. More precisely, under a hypothesis paralleling those of
Theorem 4, one can build a control scheme based on a binary
feedback empty/nonempty such thut the Markov vector (X, S;) is
geometrically ergodic for A < sup,»¢ T(x). Using Theorem 3, it
can be seen that the maximum stable throughput is the same for
both access rules when the new packet arrivals are Poisson
distributed.

APPENDIX
KarLAN's CONDITION

Consider a Markov chain with denumzerable state-space D, and
one-step transition probability matrix (Py,)i,ep. Let Vix) by a
Lyapunov function on D. Then the generalized Kaplan's condition
holds if there exists a positive constant B such that for all z € [0,
lfandallx € D

'0- 3 PzY2 - B(1-2).
YE€D
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1) One-Dimensional Kaplan’s Condition: Consider the
model of Section II with a control scheme p, = F(X,), and the
Lyapunov functicn ¥(x) = x. To check Kaplan’s condition, it is
enough from {27] to show that the downward part of the drift
-D(i) = T._, kP,,_. is bounded below. Fori = 1and | < k
< i we have

Pu=Zh 3

n=0 I=k+n

(J’) F(i)y(1=F())' e kan-

After a change of variable, it follows that
D(i)=Y (’)
PN

If (C,)a = is bounded, then Kaplan's condition holds independent
of the retransmission policy. Denoting by B. an upper bound for
(Cadnz1s (A-1) becomes

( J’) Feiy(1=F()~

-1 7
FUya-Fy= S0 3 (k-nes.

a=0 k=n+l

(A-D

J=1

T MG,

a=0

D)z -3

=1

-3 (;) F(i)/(1 -F(i))~'C,;z - B.. (A-2)
J=1

2) Two-Dimensional Kaplan’s Condition: Consider now the
multipacket channel with a general control algonthm (1). Then
(X, S;) is the Markov chain of interest, and the relevant Lyapunov
function is ¥(n, s) = n. We prove again that Kaplan's condition
holds provided that (C,),», is bounded. From {27], it 15 enough
also in this case to show that the downward part T(x) of the
generalized drift is bounded below, with T(x) = Z,/v(,<vinPsr
(V(y) - V(x)). Given a state x = (i, s), we have

T(X)==3rY PlXy1=i=r, Spey=k| Xa=i, Sp=s5]

r=1 k

i
== 3 IP{Xpe1=i=r|X,=i, S,=5)
r=1
®which is, in the same way as before

-k -
T(x)= - Z rY M

ral a=0

-4()

=1
this expression is similar tu (A-1), and the end of the proof 1s the
same as in (A-2).

i

)

Jmr+en

(;) (F(S))/(l"F(S»"JtI.,‘,,

=1 J
FEYA-FEY 3 M Y (r-ne

A=

r=a+l
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An Exact Analysis of the Optical COMA Noncoherent Receiver
David Brady, Sergio Verdi {
Department of Electrical Engincering
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Princeton, NJ 08544

Abstract

This work studies optical Code Division Multiple Access
(CDMA) systems, and presents the exact error expression for
the noncoherent, single-user matched-filter receiver based on the
electron count in & symbol period. This analysis is valid for arb1-
trary photomultipliers, adheres fully to the semi-classical model
of light, and does not depend on approximations for large user
groups or strong received optical fields

The gencral error ratc cxpression 1s spcciahized ta the case
of unity gain photodetectors and prime sequences, and the exast
mimmum probability of error and optimal threshold are com-
pared to those obtained with simplifying assumptions on uscr
transmission coordination or multiple-access-interfecence (MAI)
distribution. We find that the approximation of chip synchro-
nism yields a weak upper bound on the true error rate, and
we demonstrate that the approxnnatious of perfect optical-to-
electrical conversion and Gaussian MAl yield an optimal hypoth-
esis test whose error rate overestimates the true minimum error
rate and underestimates the optimal threshold for modzrate and
large received optical energies.

Optical CDMA Model

The digital modulation format studied in this paper
is optical Direct Sequence Spread Spectrum, i.e., during
each symbol intcrval of duration T, the j¢b transmitting
laser is amplitude- modulated by the product of the data,
which takes on values in {0,1}, and an assigned, signa-
ture sequence of relatively short rectangular pulses. This
scheme divides the symbol interval into N equal length
subintervals, called chips, on which tne signature sequence
1s constant and takes on valuesin {0,1}. Further, we define
Py = P as the number of non-zero clups in cach wignature
sequence, b, as the transmitted symbol of the ;™ nser 1
the interval [nT,(n 4 1)T), and c,(¢) as a penodic rep.
cation of the signature sequence of the 7** user such that

¢,(1), t € [nT,(n+1)T)} is the j** signavure sequence for
inv nixed integer n. Tl.en the transmitted complex scalar
icld from the ** laser 1aay be expressed as

Tlus work was partially supported by the U'S Ay {tesearch

n() = \/f-Tﬁc,-(z)b,-,‘ef(vtﬂ,W,(t)+e,),
nTSt-7 <(n+ 1T

(1

where s is proportional to the optical energy per bit of the
transmitting laser, v denotes the optical carrier frequency
(assumed to be identical for all users), and 4, is the phase
offset of the j'® laser from the first laser. In this expression
W,(t) is a standard Brownian motion, and a; is related to
the 5** transmitting laser linewidth, Bj, by a; = ‘f27rBJ.
The relative delays {r;} are defined on {0,T) with refer-
<ace to the receiver of the first user. With dispersion-free
transmission (1) also represents the complex scalar field at
the first receiver due to user j.

We shall assume that the symbol rate of each user is
the same, the optical fields of the J{ users add in a nonco-
herent fashion, and that each single-user receiver acquires
the timing of its transmitter’s symbol epochs. As there
is no cooperation between the users, it is appropriate to
model the remaining relative delays, {r,}’-{=2, as indepen-
dent, identically distributed, random variables that are uni-
formly distributed on the interval {0, 7). It follows that the
intensity of the optical field at the receiver of the first user
is

K
N
IMOP = 5 3 bym1ey(t = )pi(0,7) + b0, (¢ = )pi(r, T)
)=l

Where p(a.b) a rectangular pulse of unit height with
support [8,8). Due to the modulation shown in (1), the
resulting photon point process depends on the data &9
only on the set {t|e;(t) =1, 0 £ ¢ < T'}. A commonly used
receiver for this channel is the noncoherent matched-filter,
which sunis the photon counts in each of the nonzero chip
subintervals of the user of interest. Given that the function
¢1(t) takes valueson {0,1}, the correlation operation would
lic rasily achieved at extremely low chip rates by an electro-
uptic modulator, which would allow received light to pass
only when ¢j(t) = 1. A more effective device to achieve
the matched-filtering operation at higher chip rates is the

Liber optic tap delav line, which uses the finite
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irapagation velocity of light ta achiove the proper ael
stive delay of two optical signals by passing them through
ibers of different lengths. The matched-filter direct-
1etection receiver has been studied in several experiments
1,2} and will be the CDMA receiver analyzed in this work

Pul
beam
oupler

N
‘es | secondary
N electron

count, fntegrate on
>Tne? DT/ DT/N] photocetector )

Mol |
4,
Agwre 1, Opllesl Noncoherent Matched-Flller CDMA Recelver
1s shown in Figure 1, the total received optical signal
tt) is coupled to a 1 X P beam splitter. Bach of thie ontputs
n the solitter are identical copies of the input signal, only
sttenuated in intensity by P. These signals are input to the
an delay line. The function of the i** tap is to delay the
ecerved field so that the ontical signal in the 1*# non-zcro
niv of the first signature sequence overlaps in time with
ne last { P*®) non-zero chip of the same bit interval in the
maclaved signal. Thus, the first tap requires more fihet
avle than the second. The tanped signals are noucoher-
ntlv recombined, and the ontput optical signal is incident
»n tne photodetector. To decide on the value of 49, we
15e the secondary electron count during the last non-zero
‘mo 1aterval of the first signature sequence Fer the re:
namaer of thus work we denote this secondary clectron
ount by A~ We shall employ a common photomnltipher
nodael. in which the intensity of primary electrons 1« piven
w oalr(t)l® + . where a 1s proportional to 1he quantum
etficiency of the photodetector, and g denotes the rate of
primary electrons due to an independent dark current  the
nth prnmary electron yields a random number of secondary
{output) electrons g, and the collection {5} is assmmued to
be mutually independent, identically aistributed, and m-
dependent of the photon or primary electron point process
{3]. The common probability generating function of {y, }
15 denoted as G{z) = ¥ %24 pez*. In this case, .V 1s vondi
nonally compound Poisson given the integrated mtensly,
which we define as A, and the distribution of \" depends
ouly on G(z) and the integrated mtensity A, given

h
2 avbio4 ll-pﬁpf Sob, Ry bk, e (2)

)=2

\

where R,1f7) and R,,(r) are the normahzed (partial)

aoss coerelations

ne~

£;1(7) -I;Y- /Or (L = T)cy(t)at

T
y ¢, (L= T)er(t)dt
,,

np

fl.,l(r)

T

nat represent the contributions to the conditional mean .\
1ue to the i*® signature sequence for the duration of by,-1
ana b_.,o, respectively. Also, d represents the portion of the
onimary eiectron count mean due to thermoelectrons. In
hie remainder of this work we set the auantum efficiency of
Lhe photodetector to unity, as this effects the distribution
of N only through an attenuation of intensity. Further, we

setz £ asbyp = 0 under hypothesis Hp and z = s under

i

"n this section we obtain the general expressioa for the
MF of the secondary electron count A/, at the integra.
or output for an arbitrary photomultiplier and for sya.

iypothesis H;.

r
Jerivation ofPlN: n

chronous or asynchronous transmission. We will use this
-esuit in a later section to compare the error rates under
arious simplifying approximations to the exact error rate.
\lso, tae form of the general expression will be used in the
108t section to develop arbitrarily tight, computationally
~fficient bounds on the cumulative distribution function of

V.

11 the following, we define M as the upper bound on
the set of total cross-correlations R, i + th, and as the
signatiure sequences are from {O,l}N, these bounds hold
ior the partial cross-correlations as well. Since the rela.
vve delays are uniformly distributed and the chip wave-
ot s rectangelar, it is straightiorward to show that each
c10ss-correlation 1s a mixed random variable whose mea-
sures have point masses on the integers {0,1,...,Af} and
continuous portions that are constant betweer these inte-
gers We shall employ the following notation

’P[RJ_1=1] =d,(1) i€ {0.1,...,M)}

P[R,_l € v, v+ dv)] = ¢,(1) dv [v,v+dv) € (1,i+ 1)

and we denote the distribution of R,y as {d,(8),d,(1),...,
dy(M),c,(0),...,¢;(M - 1)}. Thus the marginal distri-
bution of each cross-correlation is completely specified by
2\l parameters. Further, the superscript-T notation wili
be used to distinguish the distribution of the total cross.
correlation R,y p + RJJ from that of R, |, and the hat uo.
tation will be used for the distribution of R, ;.




Our approach to finding the PMF of A is the folfow
ing: we will derive the z-transform of A from its condi-
tional compound Poisson nature, and then show that tlns
z-transform has a particularly straightforward and exnlicit
Maclaurin series expansion. The PMF is the collection of
coeflicients of this series, and may be expliatly represented.

By conditioning on (z, {11, ¢, 1}, 7 = 2,... k). 1he
count A has 2 compound Poisson distribution, whose 2
transform is given by

E[s ]2 {RuBa) =2 K] = )

FHANG()-1) H:p{b;-xnu‘i’b;ok;l)(c( 2)-1)
=2

Due to the mutual independence of the pairs {R),;. R,,1}
we need o determine only the expectation of cach fac.
tor in (3), as the 7% factor depends only on the randoin
mixture b, 1R, + b,.oflh;. It is clear that the random
mixture has the same kind of distribution as R,,. and
we denole this mixed distribntion by (0,(0). 2,(1),
Dy(M),C,(0),...,C,(M - 1)). With this notation, the
closed form expression of the power series of interest 15

E [:N l .z] = o(Glz)=1)x+d) (H

Z D,(@) exp(g5(G(z) - )=

=0

1=2 | polGla)-nf _y Mol '
?c - G(2) Z ((')cxl’("(c(:)-l)l_(’)
r=0

Ve are interested in finding PV = n I x], wliuch is

he coefficient of z" in the power series of (4) about the
ngin. This power series is strughtforward but unueces.
aniy general for most signature sequence sets of inleress
“or examvle, the number of parameters mn the power se.
1es 15 reduced bv a factor of &' = 1 by assuming that the
nargnals of 18, 1, 1,y and Ry, +I}M are independent of §,
e . the contribution of user 7 to the M Al s statishically -
asunguishable from the other interferers. We have verified
hat this s an excellent approximation when the signatire
equences come Irom the prime codes, and will drop the
subscript from the distribution of the random nmuxtures 1a
the sequel. Also, the power serics of this expression s cou-
cisely written if we define C(=1) = C(M) =0 Wik these
simplifications, (4) becomies

E [_.Jv I z] = (G~ (x4d) )

M
z D(q)e#(G@-1) _

q=0

p oy oM s
ST1-G(O) ag;[c(q -1 -l F

‘There are 2M+2 terius inside of the braces, Letting
n, index the number of occurrences of D(g), and my the
number of occurences of {C(g~ 1) — C(g)] in 2 multinomial
expansion, we rewrite (5) as

e[:]:) = Z (K’” HD(q)"' [};’{C(q—l)—c(q)) -

, xplGa) - l){= +d+ 5 Eq_o glng + mq))]

(8)
(1~ GlpZemo™

where the outer summation is over all the indices such
that Zé‘io mg+ ng =3 K — 1. We find the PMF of A in
the following way. Suppose that we knew explicitly the
cocflicients of the following power series

o0 a(G(z)-1)
Z Res(n, a, B)z" e —EITW , aeley (7)

n=0 (

Using (7) in (6) we express the PMF for M as

R e S G Pict-n-cinl
plv=n|d = Lo rened | Hu (216t~ - ctn]
M
(n {z4d+ = Zq[nq+mq]) qu) 8)
q-o 9=0

All that remains to be determined is an explicit expres.
ston for the coefficients Res/ of the power series in (7). In
the following we show that Res may be calculated by a
tmear recursion on the integers n and .

“he recursion for Res is most easily seen by subsutut-
ing the identity
ea{G(2)-1)
=GP+ =~ 7

ea(G(2)-1)
Y =GP

a(G(5)-1)
=P

wiere 3 € {0,1,2,...}, into the definition for Res (7)
This yields

a4l
‘t-po)Res(n+ L, a,8+1) = Y pRes(n+1-La,B+1)
=]
v Res(n+ t,0,8), 7,8€{0,1,2,...} (9)

where G(2) = L2 P12 For most photomultiplier niodels
ro = 6, wlhich we will assume in the sequel. The miual
conditions of this recursion are also easily extracted from

the defimtion of Res,

Res(0,a,8)=e"", € {0,1,2,...} (10)

k
Res(n,a,0) = L e e~ 'P[Zglz n] , n€{0,1,...}.
l=l

k=0
T'he linear recursion for Res on n and B permits fast, ef-
fiaent computation for any arguments n, > 1. Note



that the second mutial coudition lor tlps recuision de
pends on P }:leg, = nf, which mnst be knowu for
nk € {0,1,2,...}. These probabilities require iterated
convolutions of the PMF of the randomn gain g. inay be
precomputed and stored for small n and k, and mav he
accurately approximated online for large n, k. We are nat-

urally interested in special cases where 'PIZ{‘___, g = n]
L3

las an explicit forin - it is casy to show that this is the
case for random gains that are shifted Poisson-distributed,

|

Computationally efficient bounds must reduce the com
plexaty of (8) 1n both the multinomial summation and the
computation of Res, while controlling the loss of accuracy

as well as for the unity gain case.

Arbitrarily Tight Bounds on P[NS n

by a parameter of our selection. ln this section we show
that by qnautizing the randomn nuaxtures, we arliese all
thiree objectives.

The complexity of the PMF is due to the smoothing
over the joint distribution of the random nuxtures we
ong:nally conditioned on these random variables to take
advantage of the conditional compound Poisson nature of
.\, We could have also conditioned according to the cou-
ditional mean, A, for which A is also componud Poissou
However, the exact disturbution of the conditional niean A
is not easily obtained, as it 1s formed by the convolution
of I — 1 mxed distributions. It 1s obvious that if the con.
volved distributions weie discrete, say, with QM 4 I points,
then the exact distnbution of A” wonld be straightforwaid
to compute. More importantly, the distribution of A would
take on (K = 1)QM + 1 pomts, rather than a number that
i~ exponential in the number of imterferers.

But how do we obtaun boundson PV < nle| that use

o discrete distribution on .\, and are arbitranily tight? Sup.
pose we quantize the random mixtures{b, ., R, 1 +b, h,_, }
witha 6 quantization step size, Q@ € {1,2,...}, and round.
up or round-down to forin bounds on the randon wntures
That s, we form Ay, A, given by

K
5 I !

M=rrds 530 b gl +bagii,
=2 *
s & 1 I

N=zrdt g Sob ,-|5fQR,,.1 = (';oan”: !

=2
where [R] ([R]) 1s the greatest (least) mteper funetion
of IL. Then 1t 15 obvions that A; € A € Ay, bul cau we
use Ay, \g to form bounds on the sccoudary election comnt
('D'.‘I

A subtle point is raised by considering the fo.in of N

Hi(A)
NA)Y= 5 g
p=1

where TI(A) is the conditionally Poisson number of pri-
mary electrons with conditional mean A. Since gp are
non-negative, we have that N is an increasing function
of the primary electron count, Hl. It is not clear that
{(a.s.) bounds on A produce similar bounds on il(A), as

'P[H(Az) > H{A) ' z] > 0, and this representation of

does not guarantee bounds on 'P[N < njz]. In thelemma
below we usc a statistically equivalent representation of NV
to show that we may achieve bounds on 'P[N <n l :c] by
using the distributions of A, Ay.

Lemma. Let TI(A) be a conditional Poisson random
vanable with mean A given A, and let M(A) = EB_(;I;) Ly
whete {g;} are independent, identically distributed, non.
negative integer-valued random variables. Let A’ < A, a.s.

Then
'P[N(A) < n] S“P[N(A’) < n] , n2>0

Proof. We recall that pp = 'P[g, 53 k], and de-

fine {My(A'pg), (Apg)} to he a set of conditionally
mutually-independent, Poisson random variables with the
indicated meansgiven (A,A’) sothat TI(A) = T72; Me(Ap:)
Uunder this conditioning, A(A) has the same distribution
as []

oo

NA)= z kM (Apy)

k=1
{t is straightforward to show that if {Xy,X,,Y],Y2} are
conditionally mutually-independent random variables given
A\ and

P{:\’, <n A.A'] _<_1>[}" <n A,A'] , 1=1,2

then the same is true lor the sum

A,A’} < ‘P[Y, +Yy<n A,A'].

'P[X, +X,¢&n

Since the Poisson CDF is a decreasing function of the uiean.
wo liave for [ = |
l '
P[Zl‘”k(‘\pk)g n A..\]
A=l

‘I'he same is trve for the unconditioned CDFs by smooth-
mg. The same holds for finite { by induction on the above
fact. and for I — oo by monotone sequential continuity of
the probability measureg

/
a] s P[ L paniaim < n
k=1

“w .
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Fxawmple: Prime Seqnences and PIN Photodiades

A necessary prerequisite Lo the comparison between er-
ror rates of the CDMA matched-filier receiver is the com-
putation of the random mixture distribution (D(0),...,
D(M), C(0),...,C(M ~1)), as seen in (8). These are coin-
puted by a knowledge of the signature sequences, as wull
as the distribution of the relative delay. Since the cioss-
correlations of prime sequences are bounded above by (5]
M = 2, we must computie (D(0), D(1), D(2),C(0),C(1))
for the chip-synchronous, and asynchronous cases. For the
prine sequences from GF(21), we have found that the av.
erage distributions for the random mixtures are

(D(0), D(1), D(2), C(0), C°(1))
chip synchronous = (.57,.36,.07,.00,.00)
asynchronous = ( 44,,22,.01, 24,.09)

As noted earlier, we have verified that the MA] for prime
sequences is well-modeled by a sum of independent, identically
distributed (IID) random variables in the s use that the
mean, variance, and third central moment ol ilie MAJ us-
ng the IID assumption and the average distiibutton were
lentical to the exact MAT monents, while the fourth cen-
rral monients differed by less than .004% for 29 interferers.
Further, these distributions did not differ sigmficantly for
the prime sequences from GF(IY and GF(IT), and sy use

these distnibutions for all calenjations

In Figure 2 we have plotied the nunbnum error prob
abihty of the icaiched. filter CDMA recewver for the cup.
sy uclironons assumption and for completely asynchrouons
transmission. We liave used the weight 17 and length 2x49
pume sequences from GF(17), a recerved oplical euergy of
+=1000 photons per bit, and a dark current contribunior
w d=50 thermoelectrons per bit. For a bit rate of R buts
rer second, Lthese numbers correspond to a peah received
wwer ot  10~"mW and a photodetector dath curnicut
w arproximately B 10~8n4 From Figure 2 we sce that
1 thus particular case the chip synchronous approsimation
1oper bounds the error rate in the asynchronous case by
-t least one order of magnitnde

“he error rates are ordered in this way dne exdlusively
o the differences of the distaibntions of the nadom i
11es shown above. Note that the means of U 1andom
.\tures are jdentical in both cases. wlule the urderng of
he variances coincides with that of the error rates. Thus
e MAT has identical ineans under these distnbutiuns. and
«cona maments wlose ordenng coincudes with that of the
rror rates it 1s easy to show that ¢[AN |z} = A, and
‘arfV]z)y = L = (1)? +F. wiich unplies hiat under vach

hypothesis on z the mean of A is unchianged by the approx-
imation of chip synchronism, yet the variance of N given
x increases as we proceed from complete asynchronisin to
chip-synchronism. From the ordering of the minimum er-
ror rate curves in Figure 2, we see that an increase in the
variance of A under each hypothesis results in an increased
eiror rate as the conditional ineans of A are fixed.

Dark Curreni Mean ¢ 50 elactrons per bll
41 Optleal Energy : 1000 photors per bit
Signature Sequences From CH(17)

7 [ 9 Numberof Usrs 12 13 14

S
Direct detection systems often require large received
optical energies to achieve an acceptable error rate when a
PIN photodiode is used, s0 we are interested in the asymp-
totic distribution of (a scaled version of) M. The question
1s more formally worded as: if A is a conditionally-Po1.sor
random variable with mean A given A, and -A‘,;AA teng
m distribution to a random variable ¢ as some paramnete
grows without bound, what does the distribution of Af,j'f/
tend 107 In the simple case when A is deterministic, it is

well known that the normalized count converges in distri-
bution 10 a standard Gaussian random variable. Is this the
~ase n general?

Tle answer was solved independently by Serfozo [6)
and Grandell [7] for the special case when A — o0, and
depends on the limit p defined as limag‘/ﬁ. Ifp =0,
then the normalized count converges in distribution 10 a
standard Gaussian. If p = o0, then the normalized count
converges in distribution 10 ¢. Finally, if 0 < p < o,
then the normalized count converges in distribution 10 an
independant mixture of a standard Gaussian and ¢,

In on case. the parameter is the received signal en.
crgy per bit, s, and the condition A — oo is satisfied as
\ 15 proportional to s. i is this fact that also sets p to
~, and we have from the result above that for large signal
rueigies the normalized count converges n distribution to
tlie scaled conditional mean é. This asymptotic result 1s a
weahe, form of what is more coramonly known as “perfect
uplical-to-electrical conversion”, 1n which the integrated
photocurrent is equal (a.s.) Lo the integrated optical m-
teusity 1t will be seen in the numerical results presented



uext that the asymptotic statistic is far from being 4 de
terministic signal in Gaussian noise, as the MAI is far from
Gaussian even for a moderate number of users.
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Fgure 3. Exncot Errer Rates va.
EZrror Rates for Varlsus Apprexisastions

In Figure 3 we have compared the minimum error
rates of the CDMA matched-filter receiver based on per.
fect optical-to-electrical conversion (the high energy limit)
to those for the true distribution of A7 at various finite op-
tical energies, In this example we have used the prime se-
quence frem GF(11). Also, we have plotted the minimum
error rate under the additional assumption of Gaussian-
distributed MAI. We note that even for modest received
optical energies of 10,000 photons per bit the error rate
exceeds that predicted by the asymptotic distribution by
at least an order of magnitude. Figure 3 shows that the
minimum error rate is a decreasing function of the received
optical energy, as expected. Further, we note that a Gans-
1an assumption on the MAI, together with the perfect
ipucal-to-electrical assumptions is a poor estimate of the
‘fue minimum error rate curve. except for user group sizes
:nceeding, say, 10 users. [In particular, this assumption
werestunates the error rate for moderate to large inudent
wruical energies.,

s aresult of the nerfect optical-to-electrical-conversion
:pproxymation, the boundedness of the MAI leads to an
‘>rror-free” condition for sufficiently small numbers of in.
erferers. This occurs since the supports of the conditional
istributions of the test statistic are disioint under these as-

sumptions. Since prime sequences have cross-correlations
that are bounded above by 2, the necessary rondition for
prime sequences is  — 1 < Pf2. This assumption pre-
dicts zero error rate for /€ < 6 in Figure 3, which indicates
that the perfect optical-to-electrical assumption accurately
predicts the “error-free condition” only for incident optical
mnergies exceeding 10,000 photons per bit - the error rate
or K=6 at this energy is roughl+ 10—11,

n Figure 4 we have plotted the optim:l thresholds,
ormaized by the signal energy, s, for those erio rate

At S® 1 4 e m——————— e

vurves plotted in Figure 3. As tho incidout optical en-
ergy per bit increases, the normalized optimal threshold
increases to unity, which is the curve corresponding to
the asymptotically optimal test. Note that the Gaussian
MALI, perfect optical-to-electrical approximation predicts a
threshold that significantly underestimates the true opti-
mal threshold for those incident optical energies needed to
dominate the dark current.

,r-uo-smm-
(Clarge slgnal Lmit)

A 10,000 phatoas per bit*

2 1000 phatsas pas bit

O 100 phatons perhit

# Parfect O-F Convenlon,
Cansalan LIATL

£

£

Opthsal Threshold/Signal Taergy Per Bit
-

3 . 5 WembatolUsers 8§ IO

Figure 4, Optimal Threaholds For The Matched-Filter
guxe 4. O CDMA Recalvar

Observe that the asymptotic test yields a more accu-
rate estimate of the optimal threshold for moderate signal
energies. Optimal thresholds for large incident optical en-
ergies are not plotted for the “error-free” region because
they could not be reliably determined due to the vanishing
error rate.
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Abstract

The optimal signal design problem for a band-limited
PAM symbol-synchronous Gaussian two-user multiple-access
channel is investigated. Using the root-mean-square and the
fractional out-of-band energy bandwidth definitions, we find
the capacity region of the channel and the signature waveforms
to achieve each point inside the capacity region. The optimal
pair of signature waveforms are mirror images of each other,
and are obtained by minimizing their cross-correlation sub-
ject to a fixed finite duration and the bandwidth constraint.
The two-user capacity region, in the rms case, is found to con-
tain the capacity region of the two-user strictly band-limited
Gaussian channel. This demonstrates the fact that by relaxing
constramts 1n the frequency domain, we can introduce struc-
ture (PAM) in the time domain and obtain a larger capacity
region.

1. Introduction

The capacity region of the two-user discrete-time Gaus-
sian multiple-access channel

Yy =2y + 22 + 0§

where n, is an i.i.d. Gaussian sequence with variance equal to
o2 and the energy of each codeword is constrained to satisfy

is equal to the Cover-Wyner pentagon (1], {2}:

0< Ry < dlogt + &
Cp ={ (R, R2): 0< hy < jlog(l+ 23] (1)
R1+R'z$%|:g[1+ wo—“%gi]

in information units per channel use. Analogously, the capac-
ity region of the continuous-time band-limited channel with
noise power spectral density, bandwidth and &*® user signal
power equal to 02, B, and S} respectively, is given by (2], as
(in units per second)

0< Ry < Blogll + 5345]
Cc = { (R R2): 0< Ry < Blogll + 45 ()
Ry+ Ry < Blogll + 35532

This capacity regioa is achieved by approximately band-
lsmited and approximately time limited waveforms which have
no particular structure. In order to deal with modulation and
demodula..on schemes with manageable complexity, it is cus-
tomary .u <ugital communications to introduce structure on
the transmutted waveforms by slotting the time domain into
intervals of length T and sending a symbol in each slot by
means of a digital modulation format such as PAM, PSK,

This work was partially supported by the office of Naval
Research under Contract N00014-87-K-0054

FSK, etc. In the case of PAM (Pulse Amplitude Modulation),

the k't user is assigned a fixed deterministic waveform, s(t).
which 18 time-limited to (0, T] and 1s modulated by the in-
formation stream. Then, assuming that the transmitters are
symbol-synchronous, the PAM two-user multiple-access chan-
nel becomes

y(t) =3 bi(s)ai(t =1T) + ba(i)sa(t - :T) + n(t)  (3)

1=1
where n(t) is white Gaussian noise with spectral density o2

and {bx(i)} is the symbol stream transmitted by the k*® user
Assuming that, without loss of generality, the signature wave-
forms have unit energy, the energy constraints on the trans-
mitted waveforms become

1 & A
—2 b0 S w S TS k=12 (4)
1=1

It is e2sy to show that if s)(t) = s2(¢), then the capac-
ity of (3) under constrainis (4) is equal to the Cover-Wyner
pentagon (1) (thia result remains true even if the users are
completely asynchronous [3].) If the signature waveforms are
not necessarily identical, then the Cover-Wyner pentagon gen-
eralizes to {4]
( 0< Ry < jlogll + %]
0< Ry < logll + 3]
Cy =S (R,R): .= .~ <

v =\ (RiR) Ry+ Ry < }logll + 2ateay
\ w,u’I (1-o%]
in information units per channel use or
( 0< Ry < Jrloglt + T8
0 Ry < Frloglt + L)
Ry+ Ry < grloglt + 124752,
2

k 21— %)

(5a)

Cv = (&, Ry):

(5b)
in informatior units per second, where p = f(;r $1(t)s2(t)dt is
the cross-correlation between the signature waveforms.

A natural question to address is the choice of the unit-
energy waveforms 8;(t) and s2(t) to maximize the capacity
region Cy. It is clear that the unconstrained solution is to
choose orthogonal signature waveforms. Then, p = 0, and the
multiple-access chaanel is decoupled into independent single-
user channels, and each transmitter can transmit at single-user
capacity. However, in practice, there are coustraints on the
choice of the signals (e.g. in Spread Spectrum CDMA systems,
the waveforms may be constrained to be Pseudo Noise shift
register sequences of given period,) and it is not always possi
ble to assign orthogonal waveforms for all users. In this paper,
we will address the optimization of the signature waveforms
and their duration T under bandwidth constraints. Since the
sigaature waveforms are strictly time-limited, they cannot be
strictly band-limited, and the need arises to quantify the band-
width of these signals. There are several established ways to
accomplish this {5]. In this paper, we will consider the two
bandwidth measures of baseband signals that have received
most attention from the information theoretic community: the



root mean square (rms) bandwidth and the fractional out-of-
band energy (fobe) bandwidth.

The rms bandwidth was popularized by Gabor [6] (it is
sometimes referred to as Gabor bandwidth) and studied sub-
sequently in {5], (7], and (8]. A finite-energy signal s(¢) has
rms bandwidth B if its Fourier transform S(f) satisfies

52 PISORY
=soey -8 ®

i.e. the rms bandwidth is the square root of the “second mo-
ment” of the energy spectral density (|S(f)}?) of the normal-
ized signal or, proportional to the square root of the energy
of its derivative,

1 f-?oca(g?"(‘)]zd‘_ 2
(272 [, s2(t)dt == @

-

The fobe bandwidth has been used in e.g.(5], (8] and is
defined as the bandwidth necessary to encompass a given frac.
tion (say a) of the signal energy, i.e. the a-fobe bandwidth is
Bif

B B
L s0rd = o[ sty ®

Notice that the bandwidth constraints imposzed on the
signature waveforms will be inherited by the transmitted sig-
nals because, as is well known [9], the power spectral density
of ¥, 84(i)s(t — 1T — r) where r is uniformly distributed in
(0,T] and {b4(i)} is an i.i.d. sequence, is a scaled version of
the energy spectral density |Sx(f)J>.

2. Single-user Channel

Before solving for the capacity region of the PAM
multiple-access channel under bandwidth constraints, it is en-
lightening to examine the PAM single-user channel with con-
s rained rms bandwidth. This channel differs from the classi-
cal band-limited Gaussian channel in that the allowable trans-
mitted signals 1) have much more structure (PAM) and 2) are
rms band-limited but not strictly band-limited. It turns out
that the effect of the laxer bandwidth measure cancels the ef-
fect of the additional structure imposed on the transmitted
signals in the time domain, and the capacity of the channel is
given by the celebrated Shannon formula [(10].

Theorem 2.1.

The capacity of the single-user PAM white Gaussian chan-
nel with noise power spectral density, rms bandindth and sig-
nal power equal to 0, B, and S respectively is given by (in
units per second)

S
Cs = Blog[l-{-m] (9)

Proof.
The single-user PAM white Gaussian channel is a special
case of (3):

W) = )fjb(i)a(z- iT) +n(1) (10)
i=]

Assuming that, without loss of generality, s(¢) has unit energy,
the power constraint becomes

1 ,,.
;257(.) < TS

(11)

and the T-shifts of s(t), {s(t - iT)}™,, form an orthonormal
set. The projections of y(t) on this orthonormal set are equal
0o

(+1)T
y(i) = / Y(s(t=iT)t i=1,..,n  (12)

T
or, substituting y(¢) from (10),

y(i) = ¥(i) + n(i) (13)
where {n(7)} is an i.i.d. Gaussian sequence with var:ance equal

2
to a2,

The important point to note is that {y(i}}7, are suffi-
cient statistics for the transmitted messages; therefore, the
capacity of the PAM channel (10) for a fix T coincides with
the capacity of the discrete time memoryless channel (13) with
constraint (11), which is given by (e.g. {11]) (in units per sec-
ond)

1 ST
Cs(T) = gploglt + —7] (14)

Since Cg(T) is monotonically decreasing in T, the ca-
pacity is maximized by minimizing T. However, due to the
rms bandwidth coastraint, the value of T cannot be arbitrar-

ily small. Using the fact that the set {\/;sin(!—f-’-)};?gl is a

complete orthonormal set in the space of all rms band-limited
signals in [0, T} (7], we can express s(t), as

s(t) = Z d,\/—;—-sin(l%t)

s=1

(15)

Then, the unit energy assumption and t!e constraint in the
rms bandwidth (7) translate into

[+
Zd?:l

(16)

and

x
3" i%d? < (2BT)? (17)
=]
respectively.
The minimum T consistent with (16) and (17) is chosen
by taking equality in (17) and minimizing che ieft hand side
of (17) subject to (16). Since

[ x
1=y a2 <y i%d?

(18)

with equality if and only ifdy = 1 and d; = 0if 1 < 4, it follows
that the optimum T is equal to 5}y which upon substitution
in (14) results in the desired result. g

3. Two-user Channel

We turn our attention to the main results of the paper,
namely the optimization of the capacity region of the syn-
chronous PAM channel (5b) with respect to the choice of the
signature waveforms, including their duration T'. In both the
rms and the fobe bandwidth coustrained problems, we will
solve the problem in two stages:

T —



1. Fix 7, and find p*(TB), the minimurn absolute cross-
correlation, |p|, achievahle under the time-bandwidth con-
straint (and the optimal waveforms which achieve that p.)
Then, the capacity region for fixed T is given by Cy in
(5b) evaluated at p = p*(TB). This is because Cy de-
pends on the signature waveforms only through the rate-
sum constraint which is monotonic decreasing in p.

2. Take the union of the capacity regions found in the first
stage over all T. Note that there is a minimum value of T
below which the time-bandwidth product is so small that
po waveform can be found to satisfy the bandwidth con-
straint and therefore, the capacity region is an empty set.
Also, there is 2 maximum value of T above which the al-
lowed time-bandwidth product is so large that orthogonal
signals can be assigned to hoth users, and therefore the
capacity region decreases with T beyond that maximum
value of T'.

Theorem 3.1.

If TB > 0.5, then the minimum cross-correlation,
p5(TB), between any two unit-¢nergy signals of duration T
and rms bandwidth less than or equcl to B is

p&(TB) = max{0,3[5 - (T}

and is achieved by the signature waveforms

_ /1+p‘(TB), xt /1-p‘(TB). 2xt
fn(t)= ——G—-—T sin == + —J_-T sin =%

_ [ieep @B . mt  [1-p5(TB) . 2mt
s(t) = 7 sin 7= = sin =%

IfTB < 0.5, then there ezists no signal of duration T and
rma bandwidth less than or equal to B.

Proof.

If TB < 0.5, we have seen in the proof of Theorem 2.1,
that there is no signal of duration T and rms bandwidth less
than or equal to B.

If TB = 0.5, we have seen that there is only one signal of
duration T and rms bandwidth B and is /% sin ¥, t € [0,T].
Therefore, the theorem follows immediately when 7B = 0.5.

K TB > 0.5, let 5)(¢), s2(¢) he any two unit-energy sig-
nals with duration T and rms handwidth B. Using the same
complete orthonormal set in the last theorem, we denote the

vector M(t) = [\/ sin(§), \/Fsin(3E),..IT, t € [0,7),

and express 3)(t) and s;(¢) as

x
x

si(f) = afM(t) k=1,2 (19)
Then, the rms handwidth constraint can be expressed, via (7),
as

1 % d 1
(2r)? /_m(d—t's(t))Zd: = W,’{nak < B k=12 (20)

where IT = diag(12,22,3%,..). Denoting p as the cross-
correlation, we can assume that, without loss of generality,
0 < p. From the unit energy assumption, we have the cross-
correlation matrix, H, as

H = aaT & [:%:] {a1a2]= [:’ ’;]

2y

Since the mapping between s;(t) and ay is an one-to-one map-
Ping, the problem is equivalent to finding the minimum p such
that there exists A satisfying (20) and (21).

We solve this problem by first giving a lower bound on
the cross.correlation and then showing that the lower bound
is achievable, Let 5, be the minimum of the sum of the
rius bandwidth of Af equal energy signals of duration T and
correlation matrix, H. B, is found hy Nuttall [7), as

2__1 1 o
Bc = (2T)2 M Eﬂll (22)

vyhex:e each g is the positive eigenvalue of H with g, < u;j for
J <£1,and ris the rank of .

_ Appling this result with M =2, r = 2 (since 3,(¢) # ()
implies p # 1) and the correlation matrix H in (21), we get
from (20) and (22) that

5@%.?1(1 +p)+4(1~p)] £ B? (23)

where it can be easily verified that 1+ p and 1 ~ p are eigen-
values of H in (21). #

After rearrangement, (23) hecomes

ds- 8By <5 (29

Since 31(t) and s3(¢) are arhitrarily chosen, and p helongs to
(0,1}, we have the lower hound,

max {0, 35~ §(TB))} < p(5)

We now show a signal pair that achieves this lower bound.
Stimulated by tite fact that the functions f(¢t) and f(T - ¢)
have the same magnitude spectrum, we consider signature
waveforms which are mirror images of each other about T/2.
Also, we note that sin 7 is even about T/2 while sin 2 is

odd about T'/2. Therefore, we assume that the matrix A has
the form

R

forsome 0 < a < 1.
From (20), the rms bandwidth constraint becomes

\/2—7“‘7 (B} <a Hwelta= \/ﬂ%QL and substi-

2
tute (25) into (21), we have p = 22?2 ~ 1 = $=8(TB)’

$=8(T8) 0, ,/‘_‘_‘.(;EL’ < } and we can let a = } which

gives p = 202 ~ 1 = 0. Therefore, we have shown that the
lower bound is achievahle hy signature waveforms character-

ized by the matrix A in (25), with a = \/12E{T8) They,

(19) results in the optimal signature waveforms stated in the
theorem. s

Theorem 3.2.

The capacity region of the two-user PAM white Gaussian
multiple-access channal with noise power spectral density, rms
bandwidth and signal powers equal to 02, B, 8 and Sy, re-
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spectively, is given by

0< Ry < Zlogt + 2]

0< Ry < Blog(1 + 3%

Ry + Ry < Bloglr + S,:,:S; LS
2

(26)

Proof.

Recall that the capacity region, Cg, is the union of Cy
in (5b) evaluated at p*(TB) over T. We proceed to find the
range of T of interest. From the last theorem, if T'B < 0.5, no
signature waveforms can be found to satisfy the constraints

and the capacity region is an empty set. Also, if TB > \/g,

p*(TB) = 0, and the capacity region for fixed T is a pentagon
which is monotonic decreasing in T. Therefore, the range of

T in interest is the interval {5, ﬂg\/g_-] Denoting 2T B by 1,

and substituting ¥ into Cy in (5b), we have, after taking the
union, Cg in the theorem. g

At a first glance, it seems that there is a conlict with
Theorem 2.1 since the total capacity of Cg is larger than
the single-user capacity of an rms band-limited channel with
power constraint S; + S2. However, the signal transmitted
over the channel in the two-user case is a sum of two PAM
signals and, in general, it is no longer a PAM signal since the
signals in different time slots need not have the same shape,

Figure 1 shows the capacity region of the rms band-limited
PAM two-user channel, Cg and the strictly band-limited two-
user channel, Cc. In contrast to the single-user case where
they coincide, Cc is a subset of Cg. It can also be seen
from (28) and (2) that C¢ is the pentagon inside the union
in (26) when 4 = 1. However, by increasing v, we trade off
the decrease in the single-user rate by the increase in the rate
sum, such that the union gives a larger capacity region, Cg.
This indicates that, in the two-user case, the laxer bandwidth
constraint more than offsets the additional structure (PAM)
in the time domain.

Figure 2 and 3 show the signature waveforms which
achieve the boundary points of the capacity region for two
different time-bandwidth products. The signature waveforms
are mirror images of each other and as + increases, they be-
come more asymmetric 8o as to decrease the cross-correlation
while maintaining the same rms bandwidth.

Finally, although the union in Theorem 3.2 is taken over

4 in the interval [1, \/%—], not every v in that interval achieves
some boundary points of Cg. The set of values of 4 that
achieves boundary points of Cg is a function of the signal
to-noise ratios, E%E' k = 1,2. According to Figure 1, the
boundary points in the segments AB and EF are achieved by
4 = 1, while those in the segment CD are achieved by some
Ymax in {1, ‘/g] depending on the signal-to-noise ratios, The

boundary points in BC and DE are achieved by 1 < v € Ymax.

We now proceed to the optimal signal design problem
under a-fobe bandwidth constraint. Denote the prolate
spheroidal wave functions ( [12], [13], and [14]) as ¥,(TB, t)
and the associated eigenvalues as A, (T B), i.e.

MTBYTB.) = [ i o5,y TEC =),

for i = 0,1,2,... and A(TB) > A(TB) > M(TB) >

++~ It is known (8] that ¥o(TB,p — %) and 9y(TB, 4 —

%) ate even and odd about g respectively and the set

{7—-4\,:7‘3) (TB, ,}. = %)} forms a complete orthonormal set

in {0, T). Also, Ao(TB) and Ao(T B) + Ay(T B) are continuous
and monotonic increasing in T B ( Figure 4).

Theorem 3.3.

Forany0<a<l,

IfTB > /\(Tl(a), then the minimum cross-correlation,
p}(TB), between any two unit-energy signals of duration T,
and a-fobe bandwidth less than or equal to B is

P¥(T B) = max {0, 2a = Xo(TB) - /\n(TB)}

Ao(TB) - A(TB)

and is achieved by the signature waveforms

Ta(t) =
3(t) =

14p%(TB —o3(TB
VST TCLIING N VY (=0 CTING J S

IfTB < /\gl(a), then there ezists no signal of duration
T and a-fobe bandwidth less than or equal to B.

Proof.

As in Theorem 3.1, we would like to find a suitable com-
plete orthonormal set in [0,T]. To that end, we rewnte the
definition of a-fobe bandwidth as

B
ag [ ISty
T T B
= 20f(t-r)
_'/0 '/0 a(t)a(r)'/_ae’ (¢=")gf dt dr

1 1 : _r
- ./o ./o ’(%) m(?—:(l;lj(—:)——)l s(z)dtdr (21)

Since the prolate spheroidal wave functions are eigenfunctions
of the kernel 2T Bsinc(t — r), a good choice for the complete
orthonormal set will be the set of all prolate spheroidal wave
functions.

For notational convenience, we will drop the explicit de-
pendence on T B of the eigenvalues of the prolate spheroidal

wave {unctions. If TB > /\El(a), we can express any $;(t) and
s2(¢) in terms of ¥(t) = {7};%(1‘3,; - 7'&.1.41,(1‘3, +-
1)), t€(0,T], a0
se(t) = af ¥(t) k=1,2 (28)
Using (27) and (28), we have

B 2 46— TAn < T _
ag R ISCHIP3f = aj Aay = tr(Aagay) k=1,2

(29)
where A = diag[Ag,A1,A2,..]. Also, the cross-correlation
matrix, H, is

H=AAT= [:ﬂ[amh ) 7] (30)

o .
et

’



Similar to the rms case, we find the lower bound by maximiz.
ing the average over k = 1,2 of the right hand side of (29).
Rewriting the average, we have

2
1 3 afATay = 1 T
-2'k=l akA e = -2-tr(AA A)

1 =
= SUAPAS APL)

[t}

N

tr(ZAPLAP,) (31)

where AT A is diagonalized by the orthonormal matrix, PA,
and =, = diag[&; & 0 ...J. Since the eigenvalues of
AAT and ATA are the same, we have §; = 14 p and &2 =
1-p.

Now, let’s denote P as the 2xco matrix formed by taking

only the first two rows of PL and Z as diag[£; & ]. Then,
the maximum of the average is

max t(EPAPT 32
pPFE { ) (32)

We will solve the maximization problem using the Lagrange
multiplier method. We form the Lagrangian,

2 2 &
> £xPE APk + 33 znk(PEPa — 851) (33)
k=1 k=1n=1

where pg is the k' row of P. Taking derivative with respect
to pk, we have

§1Ap1 + z11p1 +2212p2 =0 (34)
and

§2Ap2 + 222P3 + 2212P1 = 0 (35)
If we pre-multiply (34) by pg and (35) by pT, we have zj2 =
0 since § # £2; therefore, from (34) and (35), p1 and pa
are eigenvectors of A. Since A is diagonal and the diagonal

elements are distinct and decreasing down the diagonal axis,
we have

P=(Izx2 0] (36)
Substituting back into (31), we show that the maximum value
of (31)is ,\ol—';ﬁ + ,\11—}2. Comparing to (29), we bave

ag ';‘[("0 + A1)+ o(do = Ap))

or, together with 0 < p < 1,

Ao =N

The achievability of the lower bound can be verified, as
in the rms case, by letting

g g e

which corresponds to the optimal set of signals stated in the
theorem.

The proof of the second part of the theorem (TB <
A51(a)) can be found in (13, p-54)- 1

Theorem 3.4.

The capacity region of the two-user PAM white Gaussian
multiple-access channel with noise power spectral density, -
fobe bandwidth and signal powers equal to 02, B, Sy, and S»,
respectively, is given by )

Cr =

0< Ry < 2logf1 4 ;4]
U S s T+ ]
1,442} ¢ B S1+S:

" R+ Ry < Blogl1+ Bty

Yorrn 7 Ymax g

S5 _ (22=dolp=-M13) 2
Wl - o !

where & = Ao(1yR) = %[f\o(l'“zg') +A(13%)].
Proof.

The proof is very similar to that in Theorem 3.2 where
v = 2T B. The lower limit of 7 is carried over from Theorem
3.3, while ymax is the smallest v such that p}(F) =0. g

Notice that the range of v in taking the union is only a
function of . In Figure 4, we show Xo(T'B) and }{Ao(T B) +
AL(T'B)] vs the time-bandwidth product, and ymi and Ymax
can be obtained directly from the figure. Also, Figure 5
shows the capacity region, Cr, with the capacity region of
the strictly band-limited channel, Cc. Similar comments to
those we made in the rms case apply to the values of v that
achjeve the boundary points in the capacity region. However,
we see that for sufficiently high @, Cr does not contain C¢ in
contrast to the rms case.

Finally, in Figure 6, we show the signature waveforms
which are, as expected, mirror images of each other. However,
in contrast to the rms case where the signature waveforms
must be zero at the end points to have finite rms bandwidth,
the transmitted signal waveform in the a-fobe case may have
jumps at t = iT,
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“OTAL CAPACITY OF THE RMS BANDLIMITED K-USER PAM SYN-
"HRONOUS CHANNEL

{0OGER S. CHENG & SERGIO VERDU t
Jepartment of Electrical Engineering

’rinceton University, Princeton, NJ 08544
1BSTRACT

‘ontinuous-time additive white Gaussian noise channels with strictly time-limited and
root mean square (RMS) bandlimited inputs are studied. RMS bandwidth is equal to the
normalized second moment of the spectrum, which has proved to be a useful and analytically
tractable measure of the bandwidth of strictly time-limited waveforms.

We “ad the Total Capacity (TC) of the K-user channel under total power and power-
weig.: .. average RMS bandwidth constraints. A lower bound to the TC under equal-power
constraint is obtained. Total Capacity Ratio (TCR) is defined as the ratio of the K-user TC
to K times the single-user capacity. Power (Bandwidth) efficiency is defined as the ratio of the
effective power (bandwidth) to the actual power (bandwidth). The effective power (bandwidth):
is the corresponding power (bandwidth) needed for a single user channel to achieve the same
capacity. We find lower bounds to the TCR and efficiencies which indicate that savings in
bandwidth compared to the FDMA scheme can be achieved by the CDMA scheme at the
expense of more complicated decoding hardware.

1. INTRODUCTION

In this paper, we deal with the continuous-time Pulse Amplitude Modulation (PAM) Gaus-
sian multiple-access channel (MAC). Each user is assigned a fixed deterministic continuous-time
signature waveform, si(t), which is time-limited to [0,T] and is modulated linearly by the in-
formation stream. Assuming that the transmitters are symbol-synch-onous, the channel can
be expressed as

n K
y(t) = Z Z be(8)sk(t - iT) + n(t) (1)

where n(t) is white Gaussian noise with spectral density, —Igﬂ and {b(7)} is the symbol stream
transmitted by the k2 user.

The capacity region of this channel has been found by Verdd (1] [2]. Denoting W and H
as the diagona! matrix with the users’ powers as its diagonal entries, and the cross-correlation

matrix of the normalized signature waveforms, respectively, the capacity region is expressed as

2T

Cy = {(Rl,Rg,.. Z R < = 3T log[det(I”l + —WJHJ)] VJ C {1 ,K}}
jeJ

9)
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vnere A7 is the |J|x]J| matrix formed by the j*® row and column of A for all j € T i
-1ear that. without other constraints, the capacity region is maximized by orthogonal signature
~avetorms. However. under bandwidth constraints, orthogonal signature waveforms are not

1ecessaniv optimal since orthogonality can only be achieved by lowering the symbol rate, 1/T.

“here are manv different bandwidth definitions |3]. In this paper, we concentrate on the
root mean square (RMS) bandwidth because it is analytically tractable and-can be applied to
strictly time-limited signals. The RMS bandwidth was introduced by Gabor [4] and studied
subsequently in [3], [5] and [6]. It is the square root of the second moment of the energy
spectral density (}Sk(f)I?) of the normalized signal which is proportional to the square root of
the energy of its derivative.

In the two-user case, the capacity region of the RMS bandlimited PAM channel has been
found in [7] and the total capacity (the maximum rate sum over the capacity region) is larger
than the single-user capacity with the power equal to the sum of the users’ powers. The gain
in the total capacity from the single-user to the two-user case can be explained by the increase
in the dimensionality of the signal set. We can consider the transmitted signal in a symbol
interval as 2 signal drawn from a signal set. Then, the signal set-in the single-user and the
two-user case are one-dimensional and two-dimensional, respectively. From this viewpoint, it
is easy to see that the total capacity increases as the number of users increases while the total
power remaing constant.

In this paper, we find the total capacity (TC} of the K-user channel under the total power

constraint

(W) < W (3)

and the power-weighted averaged RMS bandwidth constraiant

tr(W) 2 Wi [ PISUNPY < B (4)

The power constraint is placed on the total power instead of the individual power since the later
requires finding all possible sets of eigenvalues of a positive definite matrix with fixed diagonal
entries which is, in general, in‘ractzble. The bandwidth constraint is justified because the
power-weighted average RMS bandwidth is the RMS bandwidth of the power spectral density
of the transmitted signal.

Several performance measures, Total Capacity Ratio, Power efficiency and Bandwidth
efficiency, are defined and analyzed. Bounds and limiting values of these measures are also

obtained.

2. TOTAL CAPACITY

Theorem 2.1.
The Total Capacity of the K-user RMS bandlimited PAM Gaussian MAC with total power

ina power-weighted average RMS bandwidth constraints is

N
“C(B, K,A) = max { -g- Z log[l + hn()\)]} loge (5)

n=l
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where the mazzmxzatzon tsoverl< N< K, 1%5 < A and 1<y < /fx such that v = / f

ffA= 77¢-, and

N
> k(M) = vKA (6).
n=1
where - a2
A NXfy +7KAMy2-1)=1] - n}(NX—yKA)
() = TNt KA+ A= 7EKA " ()
- .
Al ) 1
= — n° = = 1
i nz=:1 n (N +1)(2N +1) (8)
and the average signal-to-noise ratio is denoted by
A W
A = XWoB ©)
Proof.
Since the signature waveforms are RMS bandlimited, and the set {¢;(¢,T)}$2; where
#i(t,T) £ { JEsin(F) ifteo,T; (10)
0 otherwise.
forms a complete orthonormal basis for all RMS bandlimited signals, we can write
s1(t)
Sa(t
2(t) | _ AT®(t,T) (11)
sk(t)

where 8(t,T) 2 [1(t,T) #2(t,T) .. JT. Then, the power-weighted average RMS bandwidth
constraint can be written, via the Parsaval’s theorem, as

i
tr(w) Z " / (a0 dt = Ty HOVATIIA)
1
= (@T)n(W)
< B

tr(MAWAT) (12)

From the capacity region in (2), it is clear that the total capacity is maximized when
ti(W) = W. We denote the time-bandwidth product by ¥ s 2BT, the average signal-to-
noiseratioby A = = m and the eigenvalues of 2 WH by Ag such that A; < A;, Vi< j < K.

Then, the total capacity becomes

B K
TCy = — ) log[1+ At (13)
7 k=1
and the power constrzint becomes
K
S A =vKA (14)
k=1

ad e,
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Since the e:igenvalues of %TEWH are also the eigenvalues of %’Wf, and on-czq{_A—;}l{{:l i
fixed, the left hand side of (12) is minimized when AWAT i diagonal with decreasing diagonal
entries, we can rewrite (12) as
§ KA < 7P KA (15)
k=1
For fixed T, the total capacity is found by maximizing (13) overall Ay > 0,k =1,..., K
under the constraints (14) and (15). Using the Kuhn-Tucker Theorem, we form the Lagrangian

K K K
- > log[l+ M} + 2(3 A —vEA) +9( Y B Ar - v°KA) (16)
k=1 k=1 k=1

and obtain the necessary conditions:

1
= - 0 =1,...,N.
o= 1> n=1,...,N (17)
and A\, =0foralln >N, .
v
y(3on®hm—-7°KA) =0 (18)
n=1

and 0 < y.
Rewriting (17) as (z + yn%)(1+ As) = 1, and summing over all n, we have, from (14) and
(18),
(N+yKAz+(Nfy +7vKA)y=N (19)
Particularizing (17) to n = 1, and substituting in (19), we have

_ N\ -9KA
VSO M)V (Jx - D) +1KA(Y - 1)

(20)

and
.= N(fN—l—Al)-i-‘YsKA (21)
L+ M)V (fx - 1)+ 7KA(y? - 1))
Substituting (20) and (21) into (17), and denoting A by A and A, by hn(), we have (7), and
the power constraint in (14) becomes (6).
When y = 0, A = hp(d) = 7—%‘1 forall n = 1,...,N. Upon substituting into (15), we
have /fy < 7. Since the total capacity becomes %Illog[l + 7%5] which is monotonically
decreasing in v, the optimal v is equal to /fy and (15) is satisfied with equality. If we rewrite

(7) and sum up over all n, we have

N
(N2 —vEA)( Y n*ha(X) =¥ KA) = 0 (22)
n=]
When 0 < v, %‘l < A, and from (22), (15) is agein satisfied with equality. Therefore, if we
require v = /fy iff A = 7%5, (15) is superfluous. Finally, specifying the range of vy and A
and the condition that v = /fy if A = 77;'{5, we have the desired result. g

This theorem gives the exact calculation needed for the TC. The main reason why we can-

not obtain a simpler solution is the lack of a closed form expression of Eﬁ’:l a_+18§7 However,
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despite the complicated expression, the TC can be computed once the averalgé signal-to-noise,

ratio, A, and X is given. In Figure 1, we show the TC with different values of XK and A.

For a given W, we show that any set of signature waveforms, with A such that AWAT
is a diagonal matrix with the n*2 diagonal entry equal to An(])), is optimal. However, such an
A does not always exist for any arbitarily given W. For fixed total power, W, finding the set
of W where A exists is equivalent to finding the possible set of diagonal entries of a positive
definite matrix with fixed eigenvalues, which seems intractable. Reversing the problem, ore
may want to fix the W and find the total capacity. In general, this is equivalent to finding
the possible set of eigenvalues of a positive definite matrix with fixed diagonal entries, which
is again intractable.

In the following theorem, we give a lower bound to the TC in the equal-power case where
W= 7“;1. Clearly, this is also a lower bound to the capacity of the original channel with the
total power constraint in Theorem 2.1.

Theorem 2.2.

The lower bound to the Total Capacity when the users’ powers are the same is

B (* - 1)+ K(fx - 1) v -1.x
TCgp(B,K,A) > <‘ryn<a.\);71? log {[1 + A ) 1+ '7Af ] }

(23)

Proof.

The lower bound is found by exhibiting a symmetric positive definite matrix H, such that
the total capacity for that particular signature waveform set is easy to find. We let H be

1 p o p

H= P 1 (24)
P e
p p 1

the eigenvalues of H with 0 < p < 1 to be be specified in the sequel are 1+ (K ~1)p and 1—p
with multiplicity K — 1. Then, the total capacity under the equal-power constraint becomes

TCy = -?—log[det(l;{ +7AH)]
- glog {[L+vAQL+ (K = 1)p)][1+ 741 - )51} (25)

while the bandwidth constraint (15) becomes

ik —7*
> (26)
P=F-1
Since (25) is menotonically decreasing in p when 0 < p < 1, the TC is maximized when p
achieves equality in (26). Substituting p from (26) with equality into (25), and maximizing

over all v, we have (23). g

.._,
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" In Figure 1, we plot the lower bound to the TCgp for different values of X and A. Since
tke TC under the total power constraint serves as an upper bound to the TCgp, Figure 1 gives
a tight upper and lower bound to the Total Capacity of a equal-power constrained channel, for
‘moderate niimber of users.

As a performance measure, we define the Total Capacity Ratio {TCR) as the ratio of the
K-user TC to K times the single-user capacity with the same RMS bandwidth and average
signal-to-noise ratio constraints. Since the single-user capacity of a RMS bandlimited PAM
channel is equal to Blog[l + A] (see [7]), the TCR can be written as

s TC(B,K,A)
TCR(K,A) = K Blogii + 4] @7)

The TCR gives the ratio of the capacity available to an average user (when the channel is
shared by K users) to the single-user capacity. In other words, it measures, from the user’s
viewpoint, the ratio of the average user capacity in a multi-user channel to the capacity in a
single-user channel. Notice that the TCR depends only on K and A, and is independent of
B. Using the lower bound in Theorem 2.2, we obtain a lower bound to the TCR under the

equal-power constraint for all signal-to-noise ratios.

Corollary 2.1.

A lower bound to the TCR under the equal-power constraint for all signal-to-noise ratio is

TCR(K, A) 2 % (28)

where vy is the positive real root of the equation

P -1)= fx -1 (29)

Proof.

In order to obtain (28), we simply substitute 4 from (29) into (23) and (27). Since there
is one and only one real positive solution in (29), there is no ambiguity in the value of v. g

In Figure 2, we show the TCR under the total power constraint and the lower bound to
the TCR under the equal-power constraint for different number of users and different average
signal-to-noise ratios.

3. EFFICIENCIES

The TCR gives the performance degradation, from the user’s viewpoint, when a bandlim-
ited channel is shared by K users instead of a single user. A natural question to be asked is
“How to maintain the same rate in the presence of other users?” If we want to maintain the
same information rate, we have to modify some of the parameters. In the following, we will
analyze two alternatives. First, we increase the signal-to-noise ratio by increasing the power
while the bandwidth remains constant. Second, we increase the bandwidth of the channel

while the power of each user remains the same.



— "The power efficiency, denoted by 7p(K,A), is defined as ~

eTC!B.K.A! -1

A
np(K,A) = n (30)
or, equivalently, implicitly as
- TC(B, K, ) = BK log[1 + np(K, A)A] (31)
The bandwidth efficiency, denoted by ng( K, A), is defined implicitly as
A
TC(B,K,A) =ng(¥,A)BKlog[l + ——— 32
( )=18(%,A) gl TIB(K:A)] (32)

The power efficiency, np(K, A) (bandwidth efficiency, ng(K,A)) gives the ratio of the
effective power (bandwidth) to the actual power (bandwidth) when the actual signal-to-noise
ratio is A. The actual power (bandwidth) is the power (bandwidth) used in transmission while
the effective power (bandwidth) is the corresponding power (bandwidth) needed for a single
user channel to achieve the same capacity. In other words, —10logf{np(K, A)] gives the power
in db that we have to add to each user in order to maintain the single-user capacity. Similarly,

1/np(K, A) gives the ratio that we have to increase the bandwidth in order to maintain the’

same information rate.

Theorem 8.1.

The power efficiency satisfies,
Jim 7p(K,A)=0 (33)

A lower bound to the bandwidth efficiency, ng(K,A), for all signal-to-noise ratio under the

equal-power constraint i3

1
K,A)> — 34
UB( y ) = \/7}7 ( )
where fy is defined in (8).
>roof.
‘rom the definition of np( K, A), we have,
o
2L (1 Aa(3)) = (1 4+ np(K, A) AT (35)
n=1

where N, hqa(}) and 7 are all optimally selected for that A. Subtracting (14) from (15), it is
easy to get
ha(A) < 7KA(y1-1) n=1,..,N. (36)

‘ubstituting (36) into (35), and dividing both side by AX?, we have, in the limit as A — oo,

v .
im AYKTTT {3 49K = 0} 2 7p(, A)F7 (37)
i=1

L= 00

arh TS



vy — 1as A— oo, the second factor on the left hand side of (37) tends to 0, while the first
factor tends either to 0 (N < K)orto 1 (N = K). On the other hand, if y = a > 1 as
A — oo, the first factor on the left hand side of (37) tends to 0 for any N < K, while the
second factor is bounded. Therefore, in both cases, the left hand side tends to 0 and since
1< < VFxk, we have np(K,A) — 0 as A — co.

Substituting ¥ = +/fx in Theorem 2.2, we have

TCgp(B, K, A) 2 %Kmogu VRN (38)

Since the right hand side of (32) is monotonically increasing in ng( K, A), we have (34) when
compared to (38). g

The TC is obtained by optimizing the balance between the “symbol rate” factor, B/, and
the “information sent per symbol” factor, log{--]. As the average signal-to-noise ratio tends
to infinity, the “symbol rate” factor dominates and the optimal users’ signature waveforms are
asymptotically identical. Then, the product term of the signal-to-noise ratios inside the log
function in the TC becomes relatively small, and the asymptotic power efficiency is equal to
zero. The bandwidth efficiency indicates the increase in bandwidth needed to maintain the
same user rate when a single-user channel is shared by K users.

In Figure 3 and 4, we plot the Power and Bandwidth efficiency for different values of X
and A. Also, in {he same graphs, we show the lower bound to the efficiencies for the equal-
power constrained channel. It shows that regarcless of the signal-to-noise ratios, increasing the
bandwidth by a factor of 10, we can accommodate about 50 users on the multi-user channel.
This indicates a 80 percent reduction in the bandwidth required by Frequency Divisicz Mul-
tiple Access (FDMA). Clearly, the tradeoff is a more complicated demodulating and decoding
process in the Synchronous Code Division Multiple Access (CDMA) channel, which is a special

case of the current model.
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