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ABSTRACT

The goal of this thesis is to design and implement a Motorola 68020-based
Educational Computer Board (ECB), including the Motorola 68881 coprocessor. The
ECB has two communication channels, one for an external I/O device and the other for
a Macintosh personal computer. A stored program can be installed in 8K bytes
Programmable Read Only Memory (PROM) to initialize the ECB and to handle
communication, as well as to perform user commands via a Macintosh personal
computer.

The ECB operates at a clock frequency of 16 MHz. It includes four Static
Random Access Memory (SRAM) chips which provide a storage of 32K bytes. Two
Programmable Array Logic (PAL) chips generate the required decoding, enabling and
timing signals. No special 1/O chip is used in Macintosh interface, except for a RS-232
line driver/level changer, as the communication on this channel is intended to be under
software control in order to keep the hardware as simple as possible. The channel for
an external device has not been implemented and tested, but all the required pads and

holes are available to install 74244 and 74245 TTL line driver IC’s for this chapnel.
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I. INTRODUCTION

Microprocessors continue to be an integral part of many complex digital systems.
Through improvements in manufacturing techniques, they have become more powerful
and more complex. This power and flexibility is accompanied by increased complexity
and difficulty in hardware and software design. The hardware designer must consider
more control and data signals. Similarly software design entails more detailed
considerations. The complexity of a microprocessor-based system also increases the
difficulty of maintenance and troubleshooting. The operation of such a system should
be throughly understood before attempting any troubleshooting action.

The manufacturers of microprocessors have introduced new products so often that
the number of people who know and use these products is somewhat limited. The best
way of learning a system is through using it. This idea forms the basis for the thesis
presented here. Within the scope of the thesis, an Educational Computer Board (ECB)
has been designed and implemented to be used

e as a tool for teaching a state-of-the-art microprocessor and coprocessor design,
and

e as an experimental, test, or control device for scientific applications.

In the design of ECB, the main consideration was to use the minimum number of
external components to achieve simplicity, low-cost and reliability.

In the chapter "An overview of MC68020 and MC68881", the basic operations of
main processor and co-processor are reviewed. The chapter "Design and Implementation
of the ECB" discusses several design alternatives and explains why a particular design
has been selected. The chapter "Hardware verification" includes the outputs of a series
tests to verify the operation of the ECB. A comparison is made, in the last chapter
"Conclusions”, between the ECB developed in this thesis and the ECB previously
designed by Motorola and still in use in microprocessor-based courses at the Naval
Postgraduate School. Also suggested future improvements are given in this last chapter.




II. AN OVERVIEW OF MC68020 AND MC68881

This chapter introduces the architecture and features of the MC68020 and its
associated coprocessor MC68881. Also given is a brief description of the signals and
the interface between two processors. Detailed information on the signal description,
timing and instruction set is given in Appendix A, B and D.

A. MC68020 Architecture and Features

Implemented in VLSI technology, the MC68020 is upwardly compatible with its
predecessors, the M68000 and M68010. That is, in addition to the new instructions, all
the instructions that run on the old M68000 family members, can be run on MC68020.
All 1/O devices that can be connected to the M68000 and M68010 can also be
connected to MC68020. A table of MC68020 instructions and new instructions which
are extensions to old M68000 family members are given in Appendix D.

The MC68020 has an 128 word on-chip cache memory (compared to 3-word
cache memory in M68010 and no cache memory in M68000). The advantage of cache
memory is to reduce both the total execution time of a program and the external bus
activity of the processor without degrading the performance. The basic idea is to store
the instruction stream prefetched from main memory into the faster on-chip cache
memory so that the processor does not have to access main memory to fetch the next
instruction in most cases. This on-chip cache memory can be enabled or disabled by
applying an external signal to the chip. The ECB has been implemented with this
feature disabled. . o

The MC68020 contains 32-bit data/address registers and 32-bit data/address buses.
Thus, it can directly address a memory range of 4 Gigabytes. In each bus cycle, the
microprocessor can determine the port size of the external device to or from which an
operand is to be transferred. This feature is called "Dynamic bus sizing". The MC68020
can be connected to external devices having port sizes of 8, 16 or 32-bits, so all data
alignment restrictions are eliminated. On the ECB, 32K byte ROM is connected as an
8-bit port and 32K byte RAM is connected as a 32-bit port. An input signal can inform
the microprocessor, if an external device does not respond to a command within a
specified period of time, so that the microprocessor can initiate a new bus cycle. This




signal (BERR) which is to be generated by an external circuit has not been used on the
ECB, as the purpose in the design is to use minimum bardware to the degree that
guarantees the proper operation of the ECB, as well as to make it easy for the
programmer to write the software that will handle the operation of the ECB, during this
development phase. Appendix C includes the information on "Bus Operation” and
focuses on dynamic bus sizing and multiplexing of the data onto the external bus.

The MC68020 has three processing states, and it is always in one of these states:
normal, exception and halt. In the normal state, the processor executes instructions
(fetching instructions and operands, storing results and communicating with the
co-processor). If an unusual condition (exception) occurs during normal instruction
execution, the processor enters the exception state to handle this condition easily. An
exception can be generated internally by an instruction or externally by an interrupt,
reset, etc. The processor enters the halt state whenever it detects a system failure. In
halt state, there will be no processor activity, until an external reset (the only means to
regain the processor activity) is applied to restart the processor. The halt state is not the
same state as the stopped state which is caused by STOP instruction. The instruction
execution on a stopped processor resumes after a trace, interrupt or reset exception.

Within each of the three processing states, there are two privilege levels, user and
supervisor. The supervisor state has higher privilege than the user state, so that all
processor instructions are available to execute in this state. In the user state, programs
are allowed to access only their code and data areas, and they cannot execute some
processor instructions related to systern functions. This provides security in the
microprocessor system.

The MC68020 behaves slightly differently in the supervisor state than the old
M68000 family members. It allows the separation of supervisor stack space for user
tasks and for interrupt associated tasks in order to increase the efficiency in a
multi-tasking operaing system. This separation is enabled by setting the M bit in the
status register. The M bit is cleared, whenever an exception occurs for interrupts. The
processor can be switched from the user state to the supervisor state only through
exception processing. Switching from the supervisor state to the user state is
accomplished by executing an instruction that can modify the status register. Figure 1
shows the positions of the status and control bits in the status register.
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Figure 1 Status Register

The MC68020 has three defined types of address space, encoded by the function
code pins FCO-FC2. These address spaces are the user data/program space, the
supervisor data/program space and the CPU space, as shown in Table 1.

Table 1 MC68020 Address Spaces.

B ] ADDRESS SPACE
] UNDEF INED

| USER DATA SPACE

9 USER PROGRAM SPACE
1 UNDEFINED

] UNDEF INED
1

]

1

fe2 b f

SUPERVISOR DATA SPACE
SUPERVISOR PROGRAM SPACE
CPU SPACE

c c
9 )
1] []
L] 1
[} 1
1 ‘
i [
1 1
1 |

The user and supervisor address spaces bave no predefined memory locations,
except for the addresses of the initial interrupt stack pointer and program counter values
that are held in the first two longwords of the supervisor program space. The MC68020
fetches these two longwords and loads them into the interrupt stack pointer and the
program counter, respectively, by reading from supervisor program space. CPU space
accesses are made when the processor communicates with the external devices for data
movements other than those associated with instructions, like interrupt
acknowledgements and coprocessor operation. During CPU' space accesses, address
lines A19 through A16 specify the type of CPU space, as shown in Figure 2.
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FUNCTION ADDRESS BYUS
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Figure 2 CPU Space Encoding

On the ECB, the address lines A18, A17 and Al5 are used to generate the chip
enable signal for the MC68881 coprocessor. The function code lines FCO-FC2 are not
incorporated in the co-processor chip select generation circuit.

In the processing of an exception, the MC68020 goes through four identifiable
steps.

1. An internal copy of the status register is saved temporarily and the status register
is set to process the exception.

2. The exception vector is generated. An exception vector is a pointer to the
memory location containing the address of the routine which handles the specified
exception. There are 254 exception vectors available in the supervisor data space, and 2
vectors for the reset exception in supervisor program space. A group of 64 vectors is
defined by the processor and the remaining 192 vectors are left for user to define.
Exception vectors can be generated externally or internally. On the ECB, all the

interrupts are auto-vectored, that is, the exception vectors are generated internally by
the processor upon the recognition of the interrupt.

3. The current processor context is saved on the exception stack frame created on the
active supervisor stack. This context always includes the status register, the program
counter and the vector offset for the exception vector. Another field on the exception
stack frame called “format field" is used to specify what additional processor state
information has been put onto the stack frame, as there is more than one type of
exception stack frame created by different exceptions.

4. At the last step, the address of the exception handler is loaded into the prograin
counter, then the instruction at that address is fetched and the program execution is
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resumed.

For detailed explanation on exception processing, seec Appendix D.

B. MC68881 Architecture and Features

The MC68881 floating-point coprocessor is implemented in VLSI and HCMOS
technology which combines the HMOS (High Density NMOS) and CMOS
technologies to achieve low power, high speed and minimum silicon area. Although it
is primarily designed for use with MC68020 microprocessor, it can also be used with
the old M68000 family members with some degradation in the performance. This is
due to the fact that the MCG68881 is recognized as a coprocessor by the MC68020 and
as a peripheral processor by the other M68000 family members. The data bus on
which MC68881 operates can be 8, 16 or 32-bits wide. The MC68881 has eight 16-bit
and four 32-bit co-processor Interface Registers (CIR) which are memory-mapped to
the CPU address space of MC68020 in order to provide exchange of commands and
data.

From the programmer’s point of view, the pair MC68020/MC68881 can be
thought as one MC68020 processor implemented on the same chip, having additional
eight floating-point data registers. Each floating-point data register is 80-bit wide (1
sign bit, 64 bits for mantissa and 15 bits for exponent). The MC68881 fully conforms
to IEEE P754 Binary Floating Point Arithmetic Standard and supports seven data types:
byte, word, long integer, single, double, extended precision real and packed BCD real.
There are 22 scientific constants available on the chip.

Appendix E includes detailed information on the MC68881 registers and data
types. Appendix B contains the MC68881 signal description.

C. The Interface Between the MC68020 and MC68881

The interface between the MC68881 and the main processor is provided by the
M68000 Family coprocessor interface which allows connection of up to eight
co-processors. Each co-processor is addressed by driving its ID number on the address
lines A13 through A15. On the ECB, these lines are not decoded to generate the chip




select signal, as there is only one co-processor which is always addresssed for any ID
number.

The main processor MC68020 communicates with the floating point coprocessor
MC68881 over a 32-bit data bus, and accesses the coprocessor interface registers
through bus cycles. Each interface register (CIR) has a specific function and is used as
a communication port. The coprocessor connection diagram for 32-bit data bus is given
in Appendix F. On the ECB, function codes FCO-FC2 are not used for the generation
of chip select signal.

The interface tasks are divided between the MC68020 and MC68881 so that they
do not duplicate each other’s functions. For example, the main processor does not have
to decode the co-processor instructions; it is the responsibility of the co-processor to
decode these instructions. On the other hand, the coprocessor does not involve the
calculation of the effective address. It only instructs the main processor to transfer an
operand over the interface, then it is the responsibility of the main processor to

calculate the effective address and fetch the operand. Thus, the coprocessor never
becomes a bus master.




HI. DESIGN AND IMPLEMENTATION OF THE ECB

This chapter gives a brief description of how the ECB has been configured and
discusses the design of the external hardware, as well as the benefits of the particular
design selected. The description of external circuits are not given in detail in this
chapter. Appendix G can be referred to for detailed information.

A. Introduction to the Design

Before going into the details of the design, the configuration of the ECB had to
be determined, that is, what external devices would be connected to the main processor
and in which way they would be connected. The ECB was intended to communicate
with a smart terminal to download user programs and to issue commands for running
the downloaded programs and for manipulating the other ECB functions. Thus, the first
external device was a smart terminal, like a personal computer. Memory was the
second external device to exist on the ECB, since every processor needs some memory
for storing programs and data. The last external device was the MC68881 coprocessor.

Once the configuration of the ECB had been determined, the next step was to
design the external circuits which would provide the required interface between the
MC68020 and the three external devices. The main objective in the design of the
external circuits was to keep the hardware at the required minimum to allow proper
operation of the ECB in the simplest and primitive way.

All handshake signals for three external devices are generated by two
Programmable Array Logic IC’s PAL16R4 and PAL16L8. Another integrated circuit,
MAX232 converts the RS-232 line voltage levels to TTL-voltage levels and vice versa,
with a +5V power supply only. Except for the reset and software abort circuits, the
other main components on the ECB are the MC68020 prucessor, the MC68881
coprocessor and the memory chips (1 27C256 ROM chip, 4 6164 RAM chips).

In the following sections the interface with each external device will be discussed
separately.




B. Interfacing with the Memory

The memory to be implemented should be large enough to hold the initialization
and user programs/data, as well as the basic routines, but small enough to keep the
hardware simple and inexpensive. Small memory size also allows the high order
address bits to be used for other purposes, like RS-232 transmission and reception, as
explained later.

1. Non-volatile memory (ROM) is used to hold the initialization data and routine
during power-up. An 8K byte ROM is sufficient for that purpose.

2. Volatile memory (RAM) is required to hold the user programs and data to be
downloaded via the RS-232 interface. A 32K byte RAM was found to be
satisfactory for this.

An important design consideration is what kind of information is to be stored in
non-volatile and volatile memories. It was decided that low level routines for
initialization, I/O (input/output) and exception handlers would be kept in ROM in order
to provide security for basic routines which should not be destroyed by overwriting. A
requirement imposed by the system is that ROM must be accessed in the very first
addresses to allow for fetching the initial interrupt stack pointer and program counter
values (reset exception vector). On the other hand, it is very convenient for the user to
write his/her own exception routines and to change the contents of the exception vector
table located in low memory. This stipulates that both ROM and RAM must be
mapped into low addresses which is the case with the current implementation during
power-up or reset. In order to prevent collision on the data bus, all reads are made
from the ROM and all writes go to RAM when both memories are mapped into the
same space. This allows both to fetch the reset exception vector and to copy the
contents of ROM to RAM. After a copy of ROM is made to RAM, then the ROM is
detached from the low addresses and mapped into higher addresses. Only RAM is
accessible for reading and writing in the low addresses thereafter. By this scheme, the
user can change the exception vectors in low memory RAM and can access the basic
routines in high memory ROM.




The last step in the design process was the development of the external circuits in
order to generate the required interface signals with proper timing. These signals are
generated by two PAL (Programmable Array Logic) circuits. PAL A (PAL16R4)
generates the signal (PHANTOM) which detaches ROM from low addresses and maps
into higher addresses. PAL A also returns "Data size and acknowledge" signals
(DSACKO0, DSACK1) which tells MC68020 that an 8-bit port (or 32-bit port) has been
accessed when ROM (or RAM) was addressed. PAL B (PAL16L8) generates the chip
select signals for both ROM and RAM, and Read/Write signal for RAM, thus
performing the memory mapping. DSACK signals for ROM accesses are delayed to
make sure that correct data has been put on the data bus, since the ROM chip has a
longer access time than the RAM chips. The volatile memory has been chosen for
static RAM (SRAM) which eliminates the refresh hardware required for Dynamic
RAMs and provides faster access time.

As a summary of memory interfacing: the size of the memory (8K byte ROM
and 32K byte RAM) is sufficient for most programs and leaves high order address bits
to be used for other purposes. Static RAM helps the designer reduce the hardware. It
also provides fast access and reliability. The memory mapping scheme imposes access
of ROM in low addresses, during power-up or reset, and in high addresses after
initialization, in order to execute the basic routines. This technique enables the user to
modify the system data located in RAM in the low address region. Appendix G covers
more detailed information on memory interfacing.

C. Interfacing with a Smart Terminal

The ECB communicates with a smart terminal via a serial RS-232 interface. The
serial interface is simple; it requires only three wires, but it is slower when compared
to a parallel interface with the same clock rate. A voltage level converter chip matches
the signal levels on the ECB to the RS-232 Lne. No special I/O (input/output) chip has
been used. The reception and transmission on the RS-232 interface has been
" implemented in software to keep the hardware simple (see Reference 1). Input and
output signals for RS-232 are passed through PAL A and buffered by the level
converter chip. Setting the address lines A19 and Al5 to high causes a zero to be
transmitted on the RS-232 line. On the other hand, setting the address lines A19 and
A17 to high causes the RS-232 line to be strobed. If the line is found high (a zero bit)
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then an autovectored interrupt of level 4 is generated. The reception of the incoming
byte can be handled by the interrupt handler pointed by level four interrupt vector
entry. With this scheme, the communication with a smart terminal is only possible
when RS-232 line is monitored by the software on the ECB. For detailed explanation
and circuit diagrams of this interface see Appendix G, H, and 1.

D. Interfacing with MC68881 Coprocessor

The most efficient and fastest interface between the MC68020 and its dedicated
coprocessor MC68881 is via a 32-bit data bus. Both processors use the same clock,
although they can run on different clocks. The connection of most signals are
straightforward and direct. The only signal to be dealt with here is the chip select
(CopE) which is generated by PAL B out of the address lines A18, A17 and AlS5. The
chip select signal for the coprocessor is also used in the generation of another signal
(PHANTOM) which detaches ROM from low address region after initialization.
Appendix G, H and I include the detailed explanation of the interface and the
generation of the chip select signal.

E. Reset and Software Abort Circuits

The main processor and the coprocessor must be reset in order to set their states
and registers to predefined and known values. This arises in two cases, initial power-up
and reset after a catastrophic system failure in order to bring the system up. It is
guaranteed that both processors recognize the reset condition if their reset inputs are
held low at least 100 ms by the external circuit. The reset circuit which has been built
around Motorola’s low voltage detector is quite simple. An extemal resistor-capacitor
combination provides the required delay of at least 100 ms.

In case the user program runs out of control or enters an unintended loop for any
reason, the user must have a means to abort the program and return to a defined point
before re-running the program without resetting the processor. This is provided by the
software abort circuit consisting of all passive components. The circuit generates an
autovectored interrupt of level 6, upon pushing the software abort button. The level of
the interrupt is one less than the non-maskable highest level. The reason for choosing a
level 6 interrupt rather than a level seven interrupt is that the output of the abort circuit
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is not debounced. This causes more than one interrupt to occur sequentially, after the
software abort switch is released. If a level seven interrupt is generated by the software
abort circuit, all the successive interrupts (non-maskable) due to non-debounced output
will be recognized. This imposes a delay in the processing of the interrupt, and
unnecessary pushes onto the stack, until the bouncing of the switch stops. Assigning a
level 6 interrupt to the software abort function improves the response considerably. In
the interrupt handler for the software abort, the mask level in the status register is set
to 7, before beginning the exception processing so that further level 6 interrupts are not
recognized (sec Reference 1). This greatly reduces the number of spurious level 6
interrupts that are recognized after the first one.
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IV. HARDWARE VERIFICATION

After implementation, the hardware has been verified by running a series of short

routines to test the following:

e ROM read.

e Generation of the coprocessor chip enable CopE and PHANTOM signals.

¢ RAM read/write.

e Coprocessor communication.

o Interrupt 4 (RS-232 reception) operation.

¢ Interrupt 6 (Software Abort) operation.
All the tests have been conducted by using the debugger in Reference 1 and the Logic
Analyzer HP1650A.

A. ROM Read Test.

The routine for the ROM read test is the RS232 reception routine, itself, which
resides in the ROM (See Reference 1). A part of the state listing for this routine is
given in Figure 3, in which the MC68020 makes sequential reads from supervisor
program space. DSACK signals generated by the PAL B return an 8-bit port size for
the ROM. The timing waveforms are shown in Figure 4, where it can easily be seen
that function codes (FC2 through FCO0) are encoded for supervisor program address
space. !DSACKI signal stays high all the time and only !DASCKO is asserted, after
!DS and !AS are asserted, to indicate an 8-bit port size. The ROM chip enable signal
ROMCE is the only chip select signal that is active. Figure 6 shows the relation
between !IDSACKO and !AS, !DS in an expanded scale. The X marker is at the point
where !AS and !DS are asserted, and the O marker is at the point where !DSACKO is
asserted. The specification for the time between two markers is 80 ns maximum (See
Appendix A ). The measured time is 70 ns as seen in Figure 5.
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68020 - State Listing

Herkers orr

Label > | ADDR DATA STAT B DSACK

Base > | Hex Hex Sumbol Il symbo|
+0000 000404DA 4E000000 SUPR PGRM READ 8 BIT PORT
+0001 00040408 F9000000 SUPR PGRM READ 68 BIT PORT
+0002 000404DC 00000000 SUPR PGRM READ 8 BIT PORT
+0003 00040400 OE000000 SUPR PGRI READ 8 BIT PORT
+0004 000404DE 04000000 SUPR PGRM READ 8 BIT PORT
+0005 000404DF E0000000 SUPR PGRM READ 8 BIT PORT
40006 000EO04EQ 4E000000 SUPR PGRM READ 8 BIT PORT
000EO4E1 71000000 SUPR PGRM READ 8 BIT PORT
+0008 000EQO4E2 4E000000 SUPR PGRM READ 8 BIT PORT
+0009 000EO4E3 71000000 SUPR PGRM READ 8 BIT PORT
+0010 000EO4E4 4E000000 SUPR PGRM READ 8 BIT PORT
+0011 000EO4ES 71000000 SUPR PGRM READ 8 BIT PORT
+0012 O00EQ4E6 4E000000 SUPR PGRM READ 8 BIT PORT
+0013 000EO4E7 F9000000 SUPR PGRH READ 8 BIT PORT
+0014 O00EOQ4EB 00000000 SUPR PGRM READ 8 BIT PORT

Figure 3 State listing for the ROM read test
66020 |- Timing Waveforms -
Harkers X to Trig [ 10.73 us | [Time X to O | 70 ns

Accumulate 0 to Trig [_10.80 us At | X Narker] [ROMCE ]
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Figure 4 Timing waveforms for the ROM read test
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Figure 5 Timing between !DSACKO and !AS, !DS

B. Testing the Coprocessor Enable (CopE) and Phantom signals.

The test routine for these two signals is the initialization routine for the ECB
(See Reference 1). The state listing for part of the routine is shown in Figure 6. When
the PHANTOM signal is high (default state after a reset or power up), an image of the
ROM is mapped onto the RAM, and all reads are made from ROM, whereas all writes
go to the RAM. After the PHANTOM is driven low, the ROM image is removed from
RAM region and the RAM can be accessed for both reading and writing. The only way
to drive the PHANTOM low is to make a coprocessor access. In the initialization
routine, the coprocessor is accessed by MOVE.L instruction to read data from $20000,
which is shown as supervisor data space in Figure 6 (lines +0000 and +0001).
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68020 |- Stete Listing

Harkers
Labe! > [TADDR " 68020 Hnemonic “_—_
Bese > Hex decimal ($ = hex)
+0000 00020000  $0802xXxxX supr date read SUP
+0001 00020002  SFFFFxxxx supr date read suP
+0002 00000434 CHK2.L (A2),D00 . SuP
+0003 00040400 RTS SUP
+0004 00040401 $7ORAKRXK supr prgm read SUP
+0005 00040402 HOVEN.L rm=8EF00, -(A7) SUP
+0006 000404D3  SE7XKXXKX supr prgm read SUP
0001FFFB  $00000436 supr date write SupP
+0008 000404D4  SEF xxXxx¥ supr prgm read 5UP
+0009 000404DS  $OOXXXKXXX supr prgm reead supP
40010 000404D6 MOVE.B #$01,D1 SuP
+0011 000404D7  B3CXKXXXX supr prgm read SUP
+0012 00040408  B00XXXRXX supr prgm read Sup
+0013 000404D9 SO 1 RXX%XX supr prgm read sup
+0014 000404DA JHMP $000EO04EO suP

Figure 6 State listing of the routine for CopE and Phantom tests.
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Figure 7 Timing waveforms for CopE and Phantom signals.




Figure 7 shows the timing diagram for CopE and PHANTOM signals. The
PHANTOM signal goes low 110 ns after the CopE signal is asserted, and it is not
affected by the negation of CopE. The first read operation after the negation of CopE
is made from RAM, which is only possible when the PHANTOM is low. (See line
+0002 in Figure 7 and the point where both DSACK signals are driven low
simultaneously, to indicate 32 bit RAM port, in Figure 7).

C. RAM Read/Write Test

The routine for this test was downloaded by using the debugger in Reference 1.
Figure 8 shows the piece of the code.

00001000  21FC555555556000MOVE.L  #1431655765,$00006000
00001008 20384000 MOVE.L  $00006000,D0
0000160C  400OFFF?2 BRA.L  $001000

Figure 8 Test routine for RAM read/write test

The state listing for this routine is given in Figure 9. A 32-bit port size is
indicated by the DSACK signals. The routine runs in the supervisor state and repeats
itself with the sequence: three sequential program reads (lines +0004 through +0006),
one data write (line +0007), one program and data read (ﬁnes +0008 and +0009), and
another program read (line +0010). This sequence can also be seen in the timing
diagram given in Figure 10. The X cursor line corresponds to the line +0000
(SUPERVISOR DATA WRITE) in Figure 10. Function Code signals, FC2 through
FC0, either indicate supervisor data space (101) or supervisor program space (110).
DSACK signals always return a 32-bit port size and only the RAM chip enable signal
RAMCE is active. Figures 12 and 13 show the timing between the negation of !AS,
IDS signals and the negation of DSACK signals during a write and read operation,
respectively. The specification for this period is 80 ns maximum and it was measured
as 70 ns.
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[68020 |- state Listing
Herkers off
Labet > [ ADDR I DATA H STAT DSACK !
Base > Hex Hex Symbol Symbol :
+0000 00006000 55555555 SUPR DATA HWRITE 32 BIT PORT
+0001 0000100C 6000FFF2 SUPR PGRM READ 32 BIT PORT
+0002 00006000 55555555 SUPR DATA READ 32 BIT PORT
40003 00001010 OC41F0A2 SUPR PGRM RERD 32 BIT PORT
+0004 00001000 21FCS555 SUPR PGRH READ 32 BIT PORT
40005 00001004 55556000 SUPR PGRIM READ 32 BIT PORT
+0006 00001008 20386000 SUPR PGRM READ 32 BIT PORT
+0007| 00006000 55555555 SUPR DATA WRITE 32 BIT PORT
+0008 0000100C 6000FFF2 SUPR PGRM READ 32 BIT PORT
+0009 00006000 55555555 SUPR DATA READ 32 BIT PORT
40010 00001010 OC41FO0A2 SUPR PGRM READ 32 BIT PORT
40011 00001000 21FCSSSS SUPR PGRM READ 32 BIT PORT
+0012 00001004 55556000 SUPR PGRM READ 32 BIT PORT
+0013 00001008 20386000 SUPR PGRM READ 32 BIT PORT
+0014 00006000 55555555 SUPR DATA HWRITE 32 BIT PORT

Figure 9 State listing of the routine for RAM read/write test

[[68020 |- Timing Waveforms
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Figure 10 Timing diagram for RAM read/write test.
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Figure 12 Timing waveforms for !AS, !DS and !DSACK during read operation.
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D. Coprocessor communication test

The routine for this test consists of a loop of the instruction FPMOVE #7FP7
and given in Figure 13. The state listing obtained during the execution of this routine is

given in Figure 14, and Figure 15 shows the corresponding timing waveforms.

00001000 F23C WORD  $F23C
00001002 4380 CHK.W D0,D1
00001004 00000007 OR.B #7,D0
00001008 4000FFFé BRA.L $001000
0o000100C 6000FFF2 BRA.L $001000
Figure 13 Test routine for coprocessor communication
658020 -  STATE LISTING
Label > ADDR DATA STAT DSACK
Base > Hex Hex Symbol Symbol
+0000 00022000 @8S0OFFFE CPU SPACE 16 BIT PORT
+0001 0000100C BOROFFFZ SUPR PGRM READ 32 BIT PORT
+0002 P0001002 F23C438@ SUPR PGRM READ 32 BIT PORT
+0003 00001004 00020007 SUPR PGRM READ 32 BIT PORT
+0004 00022007 43804380 CPU SPACE 16 BIT PORT
+0005 00022000 95044380 CPU SPACE 16 BIT PORT
+0006 00022010 Q0000007 CPU SPACE 32 BIT PORT
+0007 00001008 EQ@QFFFE SUPR PGRM READ - 32 BIT PORT
+0008 00022000 Q900FFFE CPU SPACE 16 BIT PORT
+0009 0000100C 6QOAFFF2 SUPR PGRM READ 32 BIT PORT
10010 00001000 F23C4380 SUPR PERM READ 32 BIT PORY
+0011 00001004 00G000B7 SUPR PGRM READ 32 BIT PORT
+0012 0002200A 43804380 CPU SPACE 16 BIT PORT
+0013 00022000 35044380 CPU SPACE 16 BIT PORT
+0014 00022010 00000007 CPU SPACE - - 32 BIT PORT
+0015 20001028 GORRFFFE SUPR PGRM READ 32 BIT PORT

Figure 14 State listing for the routine to test the coprocessor communication.
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The execution of the instruction begins by a supervisor program read from the address
$1000 (lines +0002 and +0003 in Figure 14). Since this is an F-line instruction, the
MC68020 writes to the command CIR, which has an offset $0A (line +0004) and reads
the response CIR (line +0005). The response CIR contains the primitive "Evaluate
Effective Address and Transfer Data" (code 9504). Then, the MC68020 writes the
immediate data into the operand register which has an offset $10 (line +0006). The
next read from the response CIR returns a "Null primitive” (code $0900) which shows
that the MC68020 is not needed for the execution of the coprocessor instruction, so
that the MC68020 can continue to execute the next instruction. The routine loops after
executing the branch instruction (line +0007). As it can be seen both in the state listing
and the timing waveforms, the port size returned during coprocessor accesses depends
on the length of the CIR register being addressed by the MC68881. A 16-bit port size
is returned for the response and command CIRs, which are 16-bit wide (lines +0004
and +0005 in Figure 14), and 32-bit port size is returned for the 32-bit wide operand
register (line +0006 in Figure 14). As shown in Figure 15, the time between the
assertion of coprocessor chip select signal CopE and the assertion of !DS signal was
measured as 50 ns, for which the specification is 35 ns minimum.
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Figure 15 Timing waveforms for the coprocessor communication test
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E. Interrupt Level 4 (RS232 communication) test.

The interrupt routine used during this test is the one in Reference 1. The state
listing and the timing waveforms are giverrin Figures 16 and 17, respectively. A level
4 interrupt is generated, when !IPL2 line is driven low (X marker position in Figure
18). The MC68020 acknowledges the interrupt by setting all the function code lines
high (O marker position in Figure 17). During this interrupt acknowledge cycle, the
address lines A3 through Al contain the level of the interrupt being acknowledged, and
all the other address lines are driven high (line +0008 in Figure 16). Then, a four-word
stack frame (Format $0) is created and the current processor context is saved onto this
frame, as follows (refer to the line numbers in Figure 16):

e line +0009 : save the status register.
(writing a word operand to 32 bit port)

e line +0011 and +0012 : save the program counter.
(This is also an example of writing a misaligned longword to
32 bit port. Due to misalignment, the MC68020 makes two
successive accesses to the stack)

e line +0017 : save the format number and vector offset.
(writing a word operand to 32 bit port)

The address of the interrupt handler ($00040C08) is fetched from the exception vector
address ($00000070) for the level 4 interrupt (line +0010), and the MC68020 enters the
interrupt handler routine (line +0013). As it can be seen in the state listing, because of
the instruction prefetch, the order of the processor activity does not show the actual
order of the instructions executed. For example, the last program read, before the
interrupt acknowledge is from the address $000EO4E7 (line +0007), but the PC value
saved on the stack frame is $000EQ4E2 (lines +0011 and +0012). This indicates that
the MC68020 did not execute the instructions stored in memory locations $000EQ4E2
and higher, thus the instructions fetched in the lines +0003 through +0007 are only
prefetched instructions which were not executed yet.
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68020 - State Listing
Markers o1t '
Lebel > [TADDR DATA STAT [[__DSACK
Base > | Hex Hex Symbol I Symbol
+0003 000E0O4E3 71000000 SUPR PGRM READ 8 BIT PORT
+0004 000EO4E4 4E000000 SUPR PGRM READ 8 BIT PORT
+0005 000EO4ES 71000000 SUPR PGRM READ 8 BIT PORT
+0006 000EO4ES 4E000000 SUPR.PGRM READ 8 BIT PORT
+0007 0GOEO4E7 F9000000 SUPR PGRM READ 8 BIT PORT
+0008 FFFFFFF9 00000000 CPU SPACE WAIT STATE
+0009 0001BD54 20002000 SUPR DATA WRITE 32 BIT PORT
00000070 00040C08 SUPR DATA READ 32 BIT PORT
+0011 0001BD56 O0CEOOOE SUPR DATA WRITE 32 BIT PORT
+0012 00018D58 04E204E2 SUPR DATA WRITE 32 BIT PORT
+0013 00040C08 02E204E2 SUPR PGRM READ 8 BIT PORT
+0014 00040C09 AFE204E2 SUPR PGRM READ 8 BIT PORT
+0015 00040C0A FFE204A2 SUPR PGRM READ 8 BIT PORT
+0016 00040C0B F5000402 SUPR PGRM READ 8 BIT PORT
+0017 0001BDSA 00700070 SUPR DATA WRITE 32 BIT PORT
Figure 16 State listing for the interrupt level 4 test
68020 - Timing Waveforms
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Figure 17 Timing waveforms for interrupt level 4 operation.
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F. Interrupt Level 6 (Software Abort) test.

The interrupt routine used in this test is the one in Reference 1. The state listing
and timing waveforms are given in Figures 18 and 19, respectively. The interrupt is
handled in the same way as the level 4 interrupt. The only difference is the level of the
interrupt and the exception vector address ($00000078). The interrupt is generated by
driving both !IPL2 and !IPL1 lines low, simultaneously (See Figure 19). The
MC68020 does not ackowledge the interrupt, immediately. Instead, it drives the
IIPEND line low and completes the current instruction execution. When the current
instruction is completed, the MC68020 enters the interrupt acknowledge cycle and
negates the !IPEND line (X marker position in Figure 19). Address line A18 is shown
as a sample of the address bus, during this activity. It is asserted first during the
interrupt acknowledge cycle and second to access the routine in the ROM.

68020 - STATE LISTING
Label > ADDR DATA . STAT DSACK
Base >  Hex Hex Symbol Symbol
+0000 00022000 95044280 CPU SPACE 16 BIT PORT
+0001 00022010 Q0000007 CPU SPACE 32 BIT PORT
+0002 00001008 BOOOFFFE SUPR PGRM READ 32 BIT PORT
+0003 00022000 030QFFFE CPU SPACE 16 BIT PORT
+0004 0000102C BOQOFFF2 SUPR PGRM READ 32 BIT PORT
40005 FFFFFFFD QQQ@FFF2 CPU SPACE WAIT STATE
+00086 Q0Q1FFD4 20042004 SUPR DATA WRITE 32 BIT PORT
10007 00000078 Q0Q040CCC SUPR DATA REARD . 32 BIT PORT
+0008 QB01FFDE 00000000 SUPR DATA WRITE 32 BIT PORT
+0009 0001FFD8 10081008 SUPR DATA WRITE 32 BIT PORT
+09210 20040CCC 20081008 SUPR PGRM READ 8 BIT PORT
+0011 @0240CCD 7C081008 SUPR PGRM READ 8 BIT PORT
+00i2 0Q040CCE 07081008 SUPR PGRM READ 8 BIT PORT
+0013 Q00040CCF 00081008 SUPR PGRM READ 8 BIT PORT
40014 Q001FFDA 00760078 SUPR DATA WRITE : 32 BIT PORT

Figure 18 The state listing for interrupt level 6 test.
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Figure 19 Timing wéveforms for interrupt level 6 test.
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V. CONCLUSIONS

A. The current implementation of the ECB

The ECB designed and implemented in this thesis can be used as a
state-of-the-art tool for teaching and research. The ECB requires an easy-to-install
firmware for initializing and handling the communication with a control device (see
Reference 1). The result of this effort is a new and powerful microprocessor which is
simple. In comparison with the ECB previously designed by Motorola (using M68000
microprocessor), the new design has the following advantages;

e  The number of components on the board is less. (10 components - not
including the components for the external I/O device interface. The Motorola
ECB has 61 components).

¢  Availability of the coprocessor which provides a very fast computation
mechnism for floating point operations. It can also be used as a tool for
teaching.

e  Higher clock speed (quadrupled to 16 MHz).

¢  Only one intelligent terminal is required to run the board. (the Motorola
ECB requires two, one intelligent terminal to assemble and download user
programs and one dumb terminal to run the downloaded program).

It has the following disadvantages.

¢ Slow rate of response to user commands. (This is due to the fact that the user
commands and the result of these commands have to be passed back and forth
between the board and the intelligent terminal via the 9600 baud rate RS-232
interface. This is a trade-off between the number of components/terminals and
the speed. Transmission or reception of a byte takes 10.4 ms with a 9600
baud rate).
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e Cache memory has not been enabled. ( Disabling the cache memory allowed
us to monitor the external bus activity during development of the ECB and
helped troubleshoot the failures and leam the details of processor
operation during implementation).

B. Future Improvements

The ECB has a provision to install TTL series 74244 and 74245 line drivers/
receivers for an external I/O device (8 bit). All the pads and holes are available to
install the line drivers/receivers. The connection diagram is given in Appendix G.

The byte I/O feature has not been implemented and tested.
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APPENDIX A: MC68020 SIGNAL DESCRIPTION

This section describes the function of each individual signal or group of signals and
their utilization on the ECB.

1. Function Code Signals ( FC0 through FC2 )

e Three-state outputs.

o Identify the pro.essor and address space of the current bus cycle, as shown in
Table 2.

Table 2 Function Code Encodings

-
L)
~
-

| Fce ADDRESS SPACE
UNDEFINED

USER DATA SPACE

USER PROGRAN SPACE
UNDEFINED

UNDEF INED

SUPERVISOR DATA SPACE
SUPERYISOR PROGRAN SPACE
CPU SPACE

—~|~jojeo| -~ |o|ja|

e Not utilized on the ECB.
2. Address Bus Sigrals ( A0 through A3l )

¢ Three state outputs.

e Provide the address, up to 4 gigabytes, for a bus transfer in all address spaces
except for CPU space in which the bus specifies CPU related information.

e On the ECB;
Al8, A17, A15 generate chip enable signals for coprocessor and memory.

Al19, A15 are used to transmit RS-232 data.
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Al9, A17 are used to receive RS-232 data.

Al, AQ are used to generate read/write signals for RAM.
Al4 through AQ are used to address ROM.

Al4 through A2 are used to address RAM.

A31 through A20 are not used.

3. Data Bus Signals ( DO through D31 )

¢ Three state inputs/outputs.
* Provides exchange of data between MC68020 and external devices.
¢ On the ECB;

D31 through D24 are connected to ROM.

D31 through DO are connected to RAM and coprocessor.
4. Transfer Size Signals ( SIZ0, SIZ1 )

e Three state outputs.

¢ Indicate the remaining number of bytes of an operand to be transfered in a bus
cycle, as shown in Table 3.

Table 3 Transfer Size
Encodings

TRANSFER
SI1ZE S{211s120

BYTE ] 1
YORD '
3 BvIE |
LONG WORD| o

e On the ECB;

SIZ0, SIZ1 are used to generate read/write signals for RAM.

29

et oy et — 1 ¢ & a—




5. External Cycle Start ( !ECS )

¢ Output

e In case of a cache miss, indicates the start of an external bus cycle, if validated
by Address Strobe (!AS) later.

¢ Not utilized on the ECB.
6. Operand Cycle Start ( !0CS )

e Output

o Indicates the start of an instruction prefetch or an operand transfer with the same
restrictions as in !ECS.

e Not utilized on the ECB.

7. Read-Modify-Write Cycle ( !RMC )

e Three state output
o Indicates an indivisible read modify write cycle on the bus.
e Not utilized on the ECB.

8. Address Strobe ( !1AS )

e Three state output

e Indicates the availability of valid function code, address, size, and read/write
information on the bus.

e On the ECB;
Used as a synchronization pulse in the generation of DSACK(O, DSACKI1, and
PHANTOM 'signals.

9. Data Strobe ( !DS)

e Three state output

e In a write cycle, indicates that valid data is available on the data bus.
In a read cycle, signals the slave device to drive the data bus.

e On the ECB;
Used to generate chip select and read/write signals for memory.
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10. Read/Write ( R/IW )

¢ Three state output

e High level on this output indicates a read from an external device,
Low level indicates a write to an external device.

e On the ECB;
Used to generate chip select, read/write and output enable signals for memory.

11. Data Buffer Enable ( {DBEN )

¢ Three state output
e Provides an enable to external data buffers.
¢ Not utilized on the ECB.

12. Data Transfer and Size Acknowledge ( !DSACKO, !IDSACK1 )

e Inputs

¢ Indicates the port size of the external device and the completion of the data
transfer, as shown in Table 4.

Table 4 DSACK codes.

DSACKT | DSACKE BUS CYCLE STATUS

1 1 INSERT YAIT STATES
f [ 8 BIT PORT - CYCLE COMPLETED
’ 1 16 BIT PORT - CYCLE COMPLETED
] ) 32 81T PORT - CYCLE COMPLETED

e On the ECB;
Indicate an 8-bit port size for ROM, 32-bit port size for RAM, and coprocessor.

13. Cache Disable ( !CDIS )

¢ Input
¢ Allows to enable/disable the on-chip cache memory.

e On the ECB;
Pulled down to ground to disable the cache.
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14. Interrupt Priority Level Signals ( !IIPLO, !IPL1, !IPL2 )
e Inputs

¢ Indicate the level of the interrupt requested by an external device, as shown in
Table 5.

Table 5 Interrupt Priority and mask levels

LEVEL
REQUESTED]| mMASK
N/A

)

3
3
3

o|lo|@e]le@| =} =] -] -
v]le|~jl~]lo|a| -] -~
E N AR SN NN NN J
I B
~{wrn|mlwwra] —

wlo{luw|slwlw|—~| o

e On the ECB;
Interrupt level 4 ( !IPL2 ) is used for RS-232 communication.
Interrupt level 6 ( !IPL2, !IPL1 ) is used for software abort.

15. Interrupt Pending ( !IPEND )

¢ Output

¢ Indicates that the active interrupt priority level is higher than the level of the
interrupt mask in the status register or indicates the recognition of a non-
maskable interrupt.

¢ Not utilized on the ECB.
16. Autovector ( IAVEC )

¢ Input

e When asserted, interrupt vector is generated internally during an interrupt
acknowledge cycle.

e On the ECB;
All interrupts are autovectored.
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17. Bus Request ( !BR )

¢ Input

e Indicates that some device other than MC68020 has a request to become a bus
master.

¢ Not utilized on the ECB.

18. Bus Grant ( !BG )

¢ Output

¢ Indicates that MC68020 will release the bus upon the completion of the current
bus cycle for use by the device issuing a Bus Request.

¢ Not utilized on the ECB.

19. Bus Grant Acknowledge ( IBGACK )

¢ Input
¢ Indicates that some device other than MC68020 has become a bus master.
¢ Not utilized on the ECB.

20. Reset ( !RESET )

¢ Open drain input and output.

e When used as an input, MCG68020 enters reset exception processing;
when used as an output, external devices are reset, and no internal action is
taken.

e On the ECB;
Used as an input only to reset the processor during power up or reset by the user.

21. Halt ( {HALT )

¢ Open drain input and output.

¢ When used as an input, MC68020 halts;
previous bus cycle information is kept on read/write, function code, size
signals and on the address bus.
The data bus stays in high impedance state.
All control signals stay inactive.
When used as an output, signals the external devices that MC68020 has halted.
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¢ On the ECB;
Asserted at the same time as the reset input, during power up or reset.

22. Bus Error ( !BERR) o

e Input

¢ Indicates a problem with the current bus cycle.
e Not utilized on the ECB.

23.Clock ( CLK)

e TTL-compatible input

e On the ECB;
16 MHz clock is applied to this input.
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Table 6 MC68020 AC Electrical Characteristics. (Copied from Reference 2)

MCEB020RC12 | MC6B020RC1S ]
Num Characteristic Symbol Min Max Min Max Unit
6 | Clock High to Address/FC/Size/RMC Valid {CHAY 0 40 0 ) ns
6A | Clock High to ECS. OCS Asserted CHEY 0 20 0 20 s
7 Clock High 10 Address, Data, FC, AMC, Size
High impedance ICHAZx 0 80 0 60 ns
8 | Clock High to Address/FC/Size/ RMC Invalid “ICHAZn 0 - 0 - ns
9 Clock Low to AS, DS Asserted 1CLSA 3 40 3 2 ns
9AT | AS 10 DS Assartion (Read) (Skew) 1STSA -2 20 -15 15 ns
10 | ECS Width Asserted ECSA % = 20 = s
10A | OGS Width Asserted 10CSA % — 2 — ns
118 | Address/FC/Size/RMC Vaiid to AS (and DS Asserted .
Read) TAVSA 20 - - 15 - ns
12| Clock Low 10 A5, DS Negated 10) SN 0 0 0 2 s
12A__| Clock Low 10 ECS/OCS Negated CLEN 0 40 0 0 s
13 | AS, DS Negated 10 Address, FC, Size Invalic tgNac |2 - 15 - ns
14| AS land DS Read) Width Asserted tSWA 120 - 100 ns
14A_ | DS Widih Asserted Write ISWAW | 50 - a4 — ns
15 | AS, DS Widih Negated 1SN 50 - 40 - ns
16__| Clock High lo A5, DS, R/W, DBEN High impedance sz — ) . ) ns
175 | A5, DS Negated to R/W High - ¥ ISNAN 20 - 15 — ns
18 | Clock High to R/W High . CHRH 0 40 0 - 30 ns
20 | Clock High 1o R/W Low {CHRL 0 40 0" 0 ns
21% | R/W High to A5 Asserted RAAA 20 - 15 - ns
226 | RIW Low 1o D3 Assarted (Wirite) tRASA 20 - 70 - ns
3 Clock High to Data Out Valid {CHDO - 40 - 0 ns
255 | DS Negated 10 Data Out Invaiid SNDI 20 - 15 - ns
265 | Data Out Valid to DS Asserted (Write) DVSA 20 - 15 - ns
27 Date-In Velid to Clock Low (Data Setup) tDICL 10 - 5 - ns
27A_| Late BERR/HALY Asserted to Clock Low Setup Time | taeicy | 25 - 2 — ns
28 | AS, DS Negated to DSACKx, , HALT, AV
Negated _ISNDN' 0 110 0 80 ns
29 DS Negated to Data-In Invalid (Dats-In Hold Time) ISNDI 0 - 0 - ns
29A | DS Negated to Data-in (High Impedance} __ISNDJ - 80 - 60 ns
3 Eﬂ% Asserted to Data-In Valid 1DAD) - 60 -~ 50 s
31A7 | DSACKx Asserted 10 DSACKX Valid DADV - 20 p 15 ns
(DSATK Asserted Skew! )
32| RESET Input Transition Time HRH - 25 - 25 | Clk Per
33 | Clock Low 1o BG Asserted g | O 40 0 3] ns
34 | Clock Low to BG Negated 'CLBN 0 40 0 ) ns
35 | BA Asserted to BG Asserted (RMC Not Asserted) BRAGA | 15 | 35 | 15 | 35 |Ckper
37 | BGACK Asserted to BG Negated Y 15 35 15 35 | Clk Per
39 | BG Width Negated 1GN 120 - 20 - ns
39A | BG Widih Asserted 16A 120 = %0 - ns
40 | Clock High to DBEN Asserted (Read) \CHDAR 0 | @ 0 ) ns |
41 Clock Low to Negated (Read) tCLDNR 0 40 0 0 ns
42| Clock Low to DBEN Asserted (Write) \cLDAW | © 0 0 ) ns
43| Clock High to DBEN Negated (Write) ICHDNW | © ) 0 ) p
445 | R/W Low to DEEN Asserted (Writel tRADA | 20 = % . £
455 | DBEN Width Asserted 1+ - Resd | ipA % - 0 - ns
. ° Write 160 - 120 - ns
46 | R/W width Asserted (Write’or Read) 1AWA 180 - 150 - ns
478 * | Asynchronous Input Setup Time AIST 10 - 5 - ns
47b Asynchronous Input Hold Time tAIHT 20 - 15 - ns
484 X Asserted 1o BERR, HALT Asserted tDABA — 35 - 0 ns
53 Dats Out Hold from Clock High - tDOCH 0 - 0 - ns
55 | R/W Asserted to Data Bus Impedance Change 1RADC 40 ~ 40 - ns
56 HESET Pulse Width {Reset instruction) IHRPW 512 - 512 - Ciks
57 | BERR Negated to HALT Negated (Rerun) IBNHN 0 - 0 - ns
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Figure 20 MC68020 Read Cycle Timing Diagram. (Copied from Reference 2)
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Figure 21 MC68020 Write Cycle Timing Diagram. (Copied from Reference 2)
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APPENDIX B: MC68881 SIGNAL DESCRIPTION

This section describes the function of each individual signal and its
utilization on the ECB.

1. Address Bus Signals ( A0 through A4 )

¢ Inputs.

e Are used by the main processor to access any coprocessor interface register in the
CPU address space. A0 is used to configure the data bus size.

e On the ECB;
A0 is connected to high in order to configure a 32 bit bus connection.

Al through A4 are connected to corresponding address bus pins of MC68020.
2. Data Bus Signals ( DO through D31 )

o Three state inputs/outputs.
e Provides exchange of data between MC68881 and the main processor.
e On the ECB;

D31 through DO are connected to corresponding data bus pins of
the MC68020.

3. Address Strobe ( !AS)

e Input

¢ Indicates the availability of valid address, chip select and read/write signals.
e On the ECB; . . -

is directly connected to !AS pin of MC68020.
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4. Size Signal (I1SIZE)

e Input. :
e Used in conjunction with AQ configure the data bus size as follows:

Table 7 MC68881 Data Bus
Size Encoding.

AQ |SIZE| DATA BUS SIZE
X ] B BIT
[] 1 16 BIT
| 1 32 81T

e On the ECB;

is connected to high in order to configure a 32 bit bus connection.

5. Chip Select ( !CS )

e Input
¢ Enables the main processor access to the coprocessor interface registers.
¢ On the ECB;

is generated by the address bits A18, A17 and AlS.
6. Read/Write ( R/!'W )

e Input

¢ Indicates the direction of bus activity.
Low level: a read from MC68881.
High level: a write to MC68881.

e On the ECB;
is directly connected to R/I'W output of MC68020.
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7. Data Strobe ( !DS )

e Input
¢ Indicates a valid data on the data bus, during a write cycle.

e On the ECB;
is directly connected to !DS pin of MC68020.

8. Data Size And Acknowledge ( !DSACKO, !DSACKI1 )

¢ Three state output

¢ Indicates the port size of the coprocessor interface and the completion of the bus
cycle to the main processor.

e On the ECB,;
are directly connected to !DSACKO and !DSACK1 pins of MC68020.
They report a port size of 32 bits to the main processor.

9. Reset ( !RESET )

¢ Input.

¢ Initializes the floating point data registers and clears the floating point control,
status and instruction address registers.

e On the ECB;

is connected to the same reset circuit as MC68020.
10. Sense Device ( ISENSE )
¢ QOutput.
¢ Can be utilized as an indication to the presence of MC68881.
¢ Not utilized on the ECB.

11. Clock ( CLK ;

¢ TTL compatible input

¢ On the ECB,;
MC68020 clock is applied to this input.
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Table 8 MC68881 AC Electrical Characteristics. (Copied from Reference 3)

MCESSBIRC12| MCESBB1RC16
No. Characterlstic Symbo! Unit
Min Max Min Max
€ |Address Vaid 1o AS Asserted (Note 5) tavasL | 20 - 15 - |m
6a |Address Valid 1o DS Asserted (Read) (Note 5) | aymost| 20 - 15 - |m
€b | Address Valid 1o DS Asserted (Write) (Note 5) uwwos.| 65 - 50 — |
7 |AS Negated to Address Invalid (Note 6) asax | 15| — 10 ~ | ns
7s | DS Negaied 1o Address Invalid (Note 6) {DSHAX 15 - 10 e ns
] E_g—‘ ‘lOA=S‘ dor ASA dio {cVASL 0 - [} - ns
TS Assented (Note 8)
8a {CS A dio DS A d or DS Asserted 10 1CVROSL o ] — 0 - ns
TS Asserted (Read) (Note 9)
8b |CS Asserted 10 DS Asserted (Write) tcvwost| 45 - as - ns
9 |AS Negated to C5 Negated tasHex | 10 - 10 — Ins
9a |DS Negated 1o TS Negated pshox [ 10 - 10 — {ns
10 [RAW High to AS Asseried {Read) tavasL | 20 - 15 — ins
10a | RAW High to DS Asserted (Read) tavosL | 20 - 15 — | ns
10b | RAW Low to DS Asserted (Write) tasL | 45 - 35 — | ns
1 AS Negaled to AW Low (Read) or tasHrx | 15 - 10 -— ns
AS Negatad 1o RIW High (Write} -
11a | B3 Negated to RW Low (Read) or psuRx | 15 - 10 - ]
DS Negated 1o RW High (Write)
12 |DS Width Asserted (Write) 1psL 50 - 40 — | ns
13 | DS Width Negated : 1DSH 80 - 4 — | ns
13a | DS Negated 1o AS Asserted (Note 4) tpsHasL] 40 - 30 — | ns
14 [CS, DS Assented 10 Data-Out Valid (Read) (Note 2)| tpsLDO — 110 -— 80 ns
15 | DS Negated to Data-Out invalid (Read) ipshpo | © - 0 — | ne
16 | DS Negated to Data-Out High impedance (Read) | tpsppz | — 70 - 50 | ns
17 |Data-in Valid to DS Asseried (Write) tpipsL | 20 - 15 -~ |ns
18 |5S Negated to Data-in Invalid (Wrte) tpSHDI | 20 - 15 — ins
19 | START Trve to DSACKO and DSACKI Asserted | tgipa | — 70 - 50 | ns
{Notes 2,10)
19a | DSACKO A d o DSACK1 A d(Skew) | tpapas| -20 20 -15 15 | ne
{Note 7)
20 1DSACKO or DSACK1 Asserted 1o Data-Out Valid [ ipatpo | — 60 -— 50 ns
{Rsad) _ .
21 |START Faise to DSACKO and DSACKi Negated | tgupan | — 70 - 50 | ns
(Note 10)
22 |START False 1o DSACKO and DSACKT High - | 1gypaz | — 90 - 70 | ns
impedance {Note 10)
23 | START True to Clock High (Synchronous Read) | tpgicH| © - 0 —~ | ns
{Notes 3, 10)
24 |Clock Low to Data-Out Valid (Synchwonous Read) | tcypo - 140 -_— 10§ ns
(Noie 3)
25 |START True to Data-Out Vaiid tpsswpo| 1.5 140+ 1.5 105+ | ns
{Synchronous Read) (Notes 3, 10, and 11) Chke |25Cks| Clks |25Clks
26 [Clock Low to DSACKD and DSACKI Asserted AL | — 100 - 5 | s
{Synchronous Read) (Note 3)
27 ISTARAT True 1o DSACKO and DSACK! Asserted  {togioar] 15 | 1004 | 15 | 754 | ns
(Synchronous Read) (Notes 3, 10, and 11) Chks |25Cks]| Cike 25 Chkse
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Figure 22 MC68881 Read Cycle Timing Diagram. (Copied from Reference 3)
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Figure 23 MC68881 Write Cycle Timing Diagram (Copied from Reference 3)
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APPENDIX C: MC68020 BUS OPERATION

This section describes the basic bus operation of MC68020.

1. Operand Transfers

Unlike the old M68000 family members, there is no restriction on the alignment of
data in memory, but the instruction alignment on word boundaries is enforced in order
to obtain maximum efficiency. MC68020 can transfer byte, word, and longword
operands to/from 8, 16, and 32-bit data ports signalled by the data transfer and size
acknowlodge ( !DSACKO0, !IDSACKI1 ) inputs. A 32-bit port uses all data lines D31
through D0. Communication with a 16-bit port is provided over D31 through D16, and
with an 8-bit port over D31 through D24. It takes MC68020 one bus cycle to fetch a
long word from a 32-bit port, two bus cycles from a 16-bit port and four bus cycles
from an 8-bit port. The bytes of an operand of any size can be routed to any byte
position of 32-bit data bus, according to the size outputs and the address lines AQ and
Al. By the use of this scheme, the operand alignment restriction is eliminated. Table 9
shows how the bytes of an operand is multiplexed on the data bus.

Table 9 MC68020 External Data Bus Multiplexing.

TRANSFER | SIZE | ADDRESS OPERAND POSITION
SIZE  tsyzifsti * .t [ ae | 031:024 J023:Di6 [015:D8 | 07-D®

BYTE [} 1 0P} 0P} 0P (1]

X X

YORD ! ] X ] oP2 0P} oP2 or3
] ] X § oP2 oP2 0P} 0P2

| 1 ) ] 0PI oP2 Pl oPe

3 8rie | i [ | oP1 (1] P2 OP3
' i 1 ] oP1 (1] P13 P2

1 1 1 1 oP1 P P2 0Pt

(] ] ) J oPe or [ 1] [ 1]

LONG YORD [ L[] ] 1 oP e orPe [14] P2
[ ] 1 ] oP ¢ Pt oPe oP1

] () 1 1 oPY oPe [ 18] oPe

The operand representation and size/offset encodings for external data bus multiplexing
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are shown in Figure 24.

oP1

(141

oP3 |

[T |

OPERAND REPRESENTATION FOR EXTERNAL DATA BUS MULTIPLEXING

IR%@%E[R stzi|size OFFSET | At | Ao
S BYIL ' 1 BYTE o [0
YORD 1 * YORD ' 1
3-BYTE 1 1 3 BYTE 1 ]
LONG WORD| ¢ | @ LONG WORD] 1 )

SIZE AND OFFSET ENCODING FOR EXTERNAL DATA BUS MULTIPLEXING

Figure 24 Operand representation and size/offset encodings

The following are the examples of long word transfers to a 16-bit, and to an 8-bit data

bus.

BUS CYCLE| SIZ1 ] Size Al A ACK1 |DSATK® | D31 DATA BUS D16
1 [ ] L] [ [] [} 1 oPO [ 1)
2 ! ] 1 ) L} \ 0P2 oP3

Figure 25 Long word transfer to 16-bit data bus

BUS CYCLE] S1Z1 | SI29 Al At DSACKT |GSACK® | D31 DATA BUS D24
t [ ] . ] [ opPe
2 | i ] | ) (1)
3 1 ] 1 ] ) oP2
4 [} 1 1 i ¢ 1)

Figure 26 Long word transfer to 8-bit data bus

45




An address error exception occurs when an instruction fetch at an odd address is
attempted, although no restriction is imposed on data alignment. The next two figures
shows the misaligned longword/word transfess to 32/16 bit buses, respectively.

BUS CYCLE| SIZ1 [ S1Z0| A2

Al

Al ACKT {TSACK® | 031 OATA BUS

oe

1 ] [ XXX | XXX

XXX | OP¢

2 1 1 1

] ] [} oPs | OP2

OP3 | xxX

Figure 27 Misaligned longword transfer to 32-bit data bus

BUS CYCLE] Si2t | Spze | a2

Al

AS DSACKT {DSACKE® | D31 DATA ByUS

D16

1 | [} L

1 [ ] t Xxx

oP2

2 ] | [}

° [] 1 (1)

Xxx

Figure 28 Misaligned word transfer to 16-bit data bus

2. Bus Operation

¢ Read Cycle: Data is received from external device in accordance with the

following sequence of events:
MC68020

Sets Read/Write to Read

Puts Address onto address bus

Drives Size outputs

Asserts External Cycle Start/
Operand Cycle Start

Asserts Address Strobe

Asserts Data Strobe

Asserts Data Buffer Enable

Latches data

Negates Data Strobe
Negates Address Strobe
Negates Data Buffer Enable

External Device

Decodes address

Puts data onto data bus

Asserts Data Transfer and
Size Acknowledge
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Removes Data from the bus
Negates Data Transfer and
Size Acknowledge

Starts new bus cycle

Write Cycle: Data is sent to external device in accordance with the following
sequence of events:

MC68020 External Device

Sets Read/Write to Write

Drives Function Codes

Puts Address onto address bus

Drives Size outputs

Asserts External Cycle Start/
Operand Cycle Start

Asserts Address Strobe

Asserts Data Strobe

Asserts Data Buffer Enable

Decodes address

Latches data from data bus

Asserts Data Transfer and
Size Acknowledge

Negates Data Strobe

Negates Address Strobe
Removes Data from data bus
Negates Data Buffer Enable

Negates Data Transfer and
Size Acknowledge

Starts new bus cycle

Read-Modify-Write Cycle: During this cycle, data is read from memory, it is
modified in ALU and written back to the same address. This bus cycle is
indivisible, that is, MC68020 does not release the bus until the whole cycle is
completed. This feature is utilized in multi processesing by the instructions Test
And Set (TAS) and Compare And Swap (CAS, CAS2). For detailed explanation,
refer to Reference 2.
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3. Interrupt Operation

MC68020 has seven interrupt levels of which level seven is the highest. The level
of requested interrupt is signalled to the processor via interrupt priority level signals
IPL2-IPLO. Level zero (IPL2-IPLO = HHH) means no interrupt requested. If the level
of requested interrupt is between one and six, the interrupt level is compared against
the interrupt mask level in the status register. If the requested interrupt level is less
than or equal to the mask level, the interrupt is ignored. Otherwise the interrupt is
processed. The level seven interrupts are non-maskable; that is, they are immediately
processed regardless of the interrupt mask level in the status register.

The following two rules guarantee the processing of an interrupt:

e Except for the level seven interrupt, the interrupt level should be higher than the
interrupt mask level in the status register.

e IPLO through IPL2 should stay at the requested level, until the interrupt is
acknowledged by MC68020.

It is also possible that an interrupt request of a duration as short as two clock cycles
can be processed. A recognized interrupt is made pending and is processed at the next
instruction boundary, unless a higher level interrupt is valid. After the interrupt is
made pending, the processor first determines the starting location of the interrupt
handling routine pointed by the interrupt vector number. This vector number can be
generated internally or can be provided by the interrupt requesting device through the
data bus in the interrupt acknowledge cycle.

The following is the flowchart for Interrupt Acknowledge Sequence;

¢ Interrupt Acknowledge Sequence
MC68020 DEVICE

Requests interrupt

Compares the requested interrupt

level with the mask level.
Sets Read/Write output to Read
Sets Function Code to 7 (CPU Space)
Sets A1-A3 to the recognized level.
Sets Size outputs to Byte.
Asserts Address Strobe and Data Strobe

Either
Places vector number on data bus.
Asserts Data Transfer and
Size Acknowledge.
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T —

Or
Asserts |AVEC for internal generation
of interrupt vector number.

Gets the interrupt vector number.
Negates Address Strobe and Data Strobe.

Negates Data Transfer and
Size Acknowledge, if asserted.

Processes the interrupt.

In case of a spurious interrupt, that is, an interrupt request is recognized, but
IDSACKX or IAVEC signal is not asserted by the external device, then the extemnal
circuit should assert IBERR signal. This terminates the interrupt vector acqusition and
causes MC68020 to fetch spurious interrupt vector and to start exception processing.

4. Breakpoint Acknowledge Cycle

This cycle is initiated by the execution of a breakpoint instruction during which
MC68020 reads a word from CPU space. Upon the termination of the cycle by
IDSACKX, the processor replaces the breakpoint instruction by the data read from the
data bus and continue to execute that instruction. If the cycle is terminated by !BERR,
then the processor continues with processing an illegal instruction exception.

5. Coprocessor Operations

MC68020 communicates with the coprocessor by performing CPU space accesses.
During a CPU access, address bus contains the access information, instead of an
address. The lines A16 through A19 contain 0010 to specify coprocessor operation, and
the coprocessor ID number to be accessed is encoded on the lines Al13 through AlS.
The lines AOQ through A5 indicate the coprocessor interface register to be accessed.
The coprocessor ID number 0 is belong to MC68020 memory management unit.

6. Bus Error Operation

MC68020 is provided with a Bus Error input which is used to terminate the current
bus cycle, in case of a handshake failure. The signal for this input should be generated
externally, after the maximum time period between the assertion of !AS and IDSACKXx.
Bus error input is also used to suspend the execution of an instruction, if an invalid
memory access is detected.
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MC68020 may start to process the bus error exception immediately, in case of a data
space access, or may defer processing it, if the bus error occurs during an instruction
prefetch. In the second case, the bus error exception will occur, when the faulted data
is actually to be executed.

7. Retry Operation

If both !BERR and !HALT inputs are asserted externally, MC68020 will rerun the
previous bus cycle after the negation of these two signals. There is no restriction on the
type of bus cycle to be retried.

8. Halt Operation

MC68020 will stop all external bus activity when the 'HALT input is asserted. The
internal operation of the processor is not affected by the 'HALT input. For example, a
program stored in the cache memory will continue to run regardless of the 'HALT
input. Stepping through the processor operation one bus cycle at a time is also possible
by asserting the 'HALT input when the processor starts a bus cycle. As long as the
'HALT input remains asserted, the current bus cycle will be completed, but the next
cycle will not start. In order to step through the next bus cycle, the 'HALT input
should be negated and then asserted again after the bus cycle starts.

9. Double Bus Fault

Double bus fault is an address or bus error which occurs during the exception
processing for an address error, bus error, or reset exception. When a double bus fault
occurs, the processor halts and the !HALT line is asserted. Then the processor can only
be started by an external reset.

10. Reset Operation

The reset operation is bidirectional, the processor can reset the external devices, or
the external circuitry can reset the processor. In order to reset the processor, the
IRESET input should be asserted at least 100 ms. Then the processor loads the
interrupt stack pointer and the program counter from the long-word addresses
$00000000 and $00000004 respectively. Trace is disabled, privileged states is set to
supervisor-interrupt state by clearing/setting the relevant bits in the status register. The
vector base register is set to $00000000 and the cache is disabled by clearing the cache
enable bit in the cache control register. The other registers remain unaffected.
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The processor resets the external devices by executing a RESET instruction, which
asserts the IRESET line for 512 clock cycles. Nothing inside the processor is affected
by executing the RESET instruction.
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APPENDIX D: PROCESSING STATES OF MC68020

This section describes the operation of the processor in two subsections, the
privilege states and the exception processing.

1. Privilege States

MC68020 has two levels of privilege, the supervisor level and the user level. The
supervisor level has a higher privilege than the user level in that the user level is not
allowed to access all the program and data areas and to execute all the instructions.
This separation of privileges provides security in the system.

a. Supervisor States

The S bit in the status register determines the privilege level of the processor.
When the S bit is set, the processor runs in supervisor state and can execute all the
instructions. The M bit in the status register allows the separation of the supervisor
stack for user and interrupt-associated tasks. This separation increases efficiency in
multi-tasking environment. When the M bit is set, the system stack pointer references
the master stack pointer, otherwise the interrupt stack pointer is used as the system
stack pointer. Referencing the system stack pointer is the only operation affected by the
status of the M bit. After reset, the S bit is set and the M bit is cleared. If the M bit is
already set and an interrupt occurs, then the processor saves the status of the M bit and
clears it to process the exception for interrupt. When processor runs in the supervisor
state, the S and M bits can be manipulated by the instructions that modify the status
register. The supervisor state iz encoded as 5 (data) and 6 (program) on the function
code pins. By executing the instructions RTE, MOVE to SR, ANDI to SR and EORI to
SR, the processor can switch from the supervisor state to the user state.

b. User State
When the S bit in the status register is set to zero, MC68020 runs in the user state
in which the instructions that have an impact on the system are not allowed to execute.
In the user state, the system stack pointer references the user stack pointer. The user
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state is encoded as 1 (data) and 2 (program) on the function code pins. The exception
processing is the only way to switch from the user state to the supervisor state.

2. Exception Processing

a. General Information

An exception can be generated internally by instructions, address errors,
tracing or breakpoints; it can also be generated externally by interrupts, bus errors, reset
or errors detected by coprocessor. The following are the four steps to process an
exception as explained in the section "MC68020 Overview":

e Make an internal copy and set/clear the required bits of the status register for
exception processing.

e Determine the exception vector.
e Save the current processor context on the active supervisor stack.
e Get the new processor context and proceed with the instruction processing.

The internal copy of the status register is saved on the exception stack frame
created in order to save the current processor context. Depending on the type of the
exception, MC68020 can create exception stack frames in six different formats. All of
the six frames have at least four fields that contain

e Status Register

e Program Counter

e Format of the frame
e Vector Offset

Some exception stack frames have another field which contains additional processor
information. This information can be 2, 6, 12 or 42 words in length. Detailed
information on the exception stack frames can be found at the end of this appendix.

After saving the current content of status register, the processor is switched to the

supervisor state by setting the S bit. The trace bits are cleared in order to prevent the
exception handler from being hindered by tracing.
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In the second step, the MC68020 determines the exception vector number. The
vector number is obtained by a read from CPU space for interrupts (if the interrupt is
not autovectored). The coprocessor provides the vector number in exception primitive
response, if it detects an exception. The vector numbers for all other exceptions are
generated internally.

In the third step, if the exception is not reset, an exception stack frame is created
on the active supervisor stack and the current processor context is saved in this frame.
With the M bit set, if the exception is an interrupt, then the MC68020 clears the M bit
and creates another stack frame on the _.iterrupt stack.

In the last step, the exception vector offset is calculated by multiplying the
exception vector number by four (number of bytes in a long-word). The calculated
exception vector offset is then added to the contents of the vector base register (
default value after reset is 00000000 Hex) to locate the exception vector address. The
contents of the exception vector address is loaded into the program counter (for reset
exception, the interrupt stack pointer is also loaded from the exception vector address)
and the instruction at the address pointed by the program counter is fetched and the
instruction execution resumes. All the exceptions are grouped and are given priorities to
determine the order in which simultaneous exceptions will be handied. The exception
groups and the level of priorities are as follows;

e Group 0: Priority 0 Reset

e Group 1: Priority 1 Address Error
Priority 2 Bus Ermror

e Group 2: Priority 3 BKPT #n
CALLM
CHK
CHK2
cp Mid-Instruction
cp Protocol Violation
cp TRAPcc
Divide-By-Zero




e Group 3: Priority 4 Illegal instruction
Line A
Unimplemented Line F
Privilege violation
cp Pre-Instruction

e Group 4: Priority 5 cp Post-Instruction

Priority 6 Trace
‘ Priority 7 Interrupt

b. The sources of exceptions

(1) Reset
This is the highest priority exception which initializes the system and recovers the
system from a catastrophic failure. The current process can not be recovered after a
reset. When an external reset signal is applied to the 'RESET input, MC68020 takes
the following steps;

e The status register:
Trace bits TO, T1 are cleared (tracing disabled).
S bit is set, M bit is cleared (supervisor interrupt state).
Interrupt mask level is set to level seven. ‘

e The vector base register:
. is initialized to 00000000 Hex.

e The cache control register:
is initialized to 00000000 Hex.

¢ The vector number:
is internally generated to point the reset exception vector at zero offset in the
supervisor program space. The length of reset exception vector is two long words,
the first of which holds the initial value for interrupt stack pointer and the second
the initial value for the program counter.

e Program execution starts with the instruction fetched from the address pointed by
the program counter.

When a RESET instruction is executed, no internal registers of MC68020 are affected,
only the 'RESET line is asserted for 512 clock cycle to reset the external devices. The
program execution continues with the next instruction.

(2) Address Error
When an attempt is made to fetch an instruction from an odd address, then the
address error exception occurs, and the bus cycle is not executed. If the occurance of
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the address error coincides with the processing of a bus error, address error or reset
exception, then the processor halts.

(3) Bus Error

When the !BERR input is asserted by the external logic during a bus cycle, then
the current bus cycle is aborted. The exception processing begins immediately if the
aborted bus cycle is a data space access. The processor defers the exception processing
until the prefetched instruction is actually needed, if the aborted cycle is an instruction
prefetch. Depending on when the bus error occurs during a bus cycle, MC68020 creates
one of two exception stack frames for the bus error. If the bus error occurs in the
middle of instruction execution, then the larger stack frame (Format B Hex) is required,
otherwise exception stack frame in Format A Hex is created. As in the address error, if
the bus error takes place during the exception processing for an address error, bus error,
reset, or RTE instruction execution, the MC68020 halts.

(4) Instruction Trap
The detection of an abnormal condition during instruction execution or executing
some specific instructions cause a trap. The exception vector number is generated
internally for all instruction traps (the TRAP #n instruction has part of the vector
number in itself). The instructions that specifically generate a trap are as follows:

e TRAP #n : When executed, forces an exception. By using this instruction, user
programs can make system calls.

e TRAPcc, TRAPV, cpTRAPcc, CHK, CHK?2 : An exception is forced by these
instructions, if the user program detects a run-time error.

e DIVS, DIVU : If a division operation with a zero divisor is attempted, these
two instructions generate a exception.

(5) Breakpoint

Unlike the MC68000 and MC68008, inserting an illegal instruction into the
breakpoint address and looking for a fetch from an illegal instruction exception vector
address is not a reliable way to determine if the breakpoint has been reached, in a
MC68020 system. This is due to the allowance of multiple exception vector tables by
using the vector base register. Instead, the opcodes 4848 Hex through 484F Hex are
used as breakpoint instructions. By using breakpoints, MC68020 can be used in a
hardware emulator, and the execution of a program in the on-chip cache memory can
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be monitored by external hardware.

(6) Format Error

The MC68020 checks the format of control data, as well as the validity of the
prefetched instruction. The control data checked by the processor include the option and
type fields in the module descriptor for CALLM and RTM, the format of the stack for
RTE and RTM, the format of the coprocessor save area for coRESTORE. If the format
check of the control data fails, then the MC68020 generates a format error exception,
and creates a short format frame (Format 0 Hex). The program counter value saved on
the satck frame points to the address of the instruction that detected the format error.

(7) lllegal or Unimplemented Instruction

Any word bit pattern that does not match with the bit pattern of the first word of a
legal MC68020 instruction is called illegal instruction. Illegal instructions also include
the MOVEC instruction, if it has an undefined register specification in the first
extension word. There are two types of unimplemented instructions, A-line opcodes
and F-line opcodes, where A and F correspond to the numbers that bits 15 through 12
of the opcode represent in hexadecimal form. F-line opcodes are used for coprocessor
instructions. Illegal instructions and unimplemented instructions have distinct exception
vectors which allows the emulation of unimplemented instructions more efficiently.

(8) Privilege Violation
An attempt to execute one of the following instructions in the user privilege state
will cause an exception;

e ANDI to SR MOVE USP cpSAVE
EORI to SR MOVEC cpRESTORE
ORI to SR MOVES STOP
MOVE to SR RESET
MOVE from SR RTE

Also it is possible that an exception will occur when the coprocessor requests a
privilege check, while MC68020 is in the user state.
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Both the next instruction address and the address of the instruction that caused
privilege violation are saved on the exception stack frame.
(9) Tracing
By setting the trace bits in the status register, programs can be traced on
instruction-by-instruction basis. The MC68020 can also trace the instructions that
change the sequential flow of the program. The trace bits indicate the type of tracing as
shown in Table 10:

Table 10 Trace Bit
Encoding.

n T

] TRACE
[} NO TRACE
1
[}
1

TRACE BRANCH
TRACE ALL
UNDEF INED

Tracing allows a debugger program, like the one written in Reference 1, to monitor
the execution of a test program.

In no trace mode, the instructions are executed normally. When the trace bits are
set to trace branch mode, the instructions that change the sequential flow of the
program will be traced. These instructions include all branches, jumps, instruction traps,
returns and those that affect the status register contents. If trace bits are set to trace all
mode, every instruction will be traced. The exception processing for a trace starts after
the completion of the traced instruction and before the execution of next instruction.
For trace exception processing, MC68020 creates a stack frame in Format 2 Hex and
clears the trace bits. Both the address of the next instruction and the address of the
traced instruction are saved on the stack frame. If the STOP instruction begins the
execution, when T1 bit is set, then the stop instruction will not take effect.

(10) Interrupts
The interrupt mask level in the status register determines whether an interrupt will
be processed or ignored. If the requested interrupt has a higher priority level than the
interrupt mask level, then the interrupt is made pending and the processing begins at
the next instruction boundary, otherwise the interrupt is ignored. The level seven

58




interrupt is an exception to this case, it can not be inhibited by the interrupt mask
level.

During an interrupt acknowledge cycle, the level of the interrupt being acknowledged is
put on the address lines A1-A3, and if the interrupt is not autovectored, the vector
number is fetched from the external device. If the interrupt is autovectored, the
MC68020 internally generates a vector number which comresponds to the level of the
interrupt. If a bus error is detected, then the spurious interrupt vector is fetched.

(11) Return From Exception
The Return From Exception (RTE) instruction is used to return to the processor
context prior to the exception, whenever it is possible. The processor examines the
stack frame created for the exception in order to check the validity of the frame and to
determine the type of context restoration. In case of a format or bus emror during the
execution of the RTE instruction, another stack frame is created above the frame which
was going to be used.

¢. Exception Stack Frames

Depending on the type of the exception, the MC68020 creates one of six
stack frames which are described in this section.

(1) Normal Four Word Stack Frame (Format $0)
e Created by

Interrupts

Format Errors

TRAP #n Instructions

Illegal and Unimplemented Instructions
Privilege Violations

Coprocessor pre-instruction Exceptions

¢ The format of the frame (see Figure 29);
SP = Status Register

SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0000 Hex) + Vector Offset (12 Bits)
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15 12 11 L}
SP STATUS REGISIER
SPs2

PROGRAM COUNTER

spe [ 0 0 0 0| VECTOR OFFSET

Figure 29 Normal four-word stack frame

e The program counter value (SP+02 Hex) is the address of the instruction that
caused the exception or the address of the next instruction.

(2) Throwaway Four-Word Stack Frame (Format $1)

e Created if the supervisor state is changed to interrupt state from master state (M
bit is cleared) during exception processing for an interrupt.

e The format of the frame (see Figure 30):
Sp = Status Register

SP + 02 Hex = Program Counter
SP + 06 Hex = Format Number (0001 Hex) + Vector Offset (12 Bits)

15 12 1t ’ [}
114 STATUS REGISTER
$Pe2

PROGRAN COUNTER

sPes | 0 0 0 1 | VECTOR OFFSET

Figure 30 Throwaway four-word stack frame

¢ The program counter value (SP+02 Hex) might be the address of the instruction
that caused the exception, the address of the next instruction, or coprocessor mid-
instruction stack frame.

(3) Normal Six Word Stack Frame (Format $2)
e Created by
Coprocessor post-instruction exceptions
CHK and CHK2 instructions

c¢pTRAPcc, TRAPcc and TRAPV instructions
Trace
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Zero divide
The format of the frame (see Figure 31):

SP = Status Register

SP + 02 Hex = Program Counter

SP + 06 Hex = Format Number (0001 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Instruction Address (32 Bits)

15 12 U ]
SP STATUS RECISTER
SP2

PROCRAM COUNTER

SPe6 | 0 ¢ 1 ¢ l YECTOR OFFSET
SPe8

INSTRUCTION ADORESS

Figure 31 Normal six-word stack frame

The program counter value (SP+02 Hex) is the address of the next instruction, or
the address to be returned by RTE instruction.

The instruction address value is the address of the instruction that caused the
exception.

(4) Coprocessor Mid-instruction Exception Stack Frame (Format $9)
Created when

"Take mid-instruction exception" coprocessor primitive is read while the
MC68020 is processing a coprocessor instruction.

The MC68020 detects a protocol violation during a coprocessor instruction
processing.

"Null, come again with interrupts allowed" primitive is read, and the MC68020
detects a pending interrupt.

The format of the frame (see Figure 32):

Sp = Status Register

SP + 02 Hex = Program Counter

SP + 06 Hex = Format Number (0010 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Instruction Address (32 Bits)

SP + 0C Hex = Internal Registers (4 Words)
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15 12 1N . ’
SP STATUS RECISTER
sPefo2

PROCRAM COUNTER

spegos [ 1 0 0 1| VECTOR OFFSET
sPifos

INSTRUCTION ADDRESS

SPsfec

© INTERNAL REGISTERS -

T T
1

SPef12

Figure 32 Coprocessor mid-instruction exception
stack frame

The program counter value (SP+02 Hex) is the address of the next instruction.

The instruction address value is the address of the instruction that caused the
exception.

(5) Short Bus Cycle Stack Frame (Format $A)
Created when

the MC68020 detects a bus cycle fault, and recognizes it is at an instruction
boundary.

The format of the frame (see Figure 33): .

Sp = Status Register

SP + 02 Hex = Program Counter

SP + 06 Hex = Format Number (0101 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Internal Register

SP + QA Hex = Special Status Word

SP + 0C Hex = Instruction Pipe Stage C
SP + OE Hex = Instruction Pipe Stage B
SP + 10 Hex = Data Cycle Fault Address
SP + 14 Hex = Internal Register

SP + 16 Hex = Internal Register

SP + 18 Hex = Data Output Buffer

SP + 1C Hex = Internal Register

SP + 1E Hex = Internal Register

62




15 12 1 ]
P STATUS REGISTER
spete2 PROGRAN COUNTER
sPetes | 1 0 1 0] YECTOR OFFSET
SP3e8 INTERNAL REGISTER
SPeBOA SPLCIAL STATUS WORD
SPegec INSTRUCTION PIPE STAGE €
SPA§eE INSTRUCTION PIPE STAGE B
spedre OATA CYCLE FAULT ADDRESS — ]
SPef14 INTERNAL RECISTER
SPedi6 INTERNAL REGISTER
sPetie DATA OUTPUT BUFFER
SPefIC INTERNAL REGISTER
SP+§IE INTERNAL REGISTER

Figure 33 Short bus cycle fault stack frame

The program counter value (SP+02 Hex) is the address of the next instruction.

(6) Long Bus Cycle Stack Frame (Format B Hex)
Created when

the MC68020 detects a bus cycle fault, and recognizes it is not at an instruction
boundary.

The format of the frame (see Figure 34):

SpP = Stafus Register (Word)

SP + 02 Hex = Program Counter (2 Words) :
SP + 06 Hex = Format Number (0101 Hex) + Vector Offset (12 Bits)
SP + 08 Hex = Internal Register (Word)

SP + OA Hex = Special Status Word (Word)

SP + 0C Hex = Instruction Pipe Stage C (Word)

SP + OE Hex = Instruction Pipe Stage B (Word)

SP + 10 Hex = Data Cycle Fault Address (2 Words)
SP + 14 Hex = Internal Registers (2 Words)

SP + 18 Hex = Data Output Buffer (2 Words)

SP + 1C Hex = Intemal Registers (4 Words)

SP + 24 Hex = Stage B Address (2 Words)

SP + 28 Hex = Internal Registers (2 Words)

SP + 2C Hex = Data Input Buffer (2 Words)

SP + 30 Hex = Internal Registers (22 Words)
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, T 12 N ‘ '

<P STATUS REGISTER
P .-
SPese2 PROCRAM COUNTER
sPefos | 1 0 1 1 l VECTOR OFFSET
SPrfes INTERNAL REGISTER
SPe§ oA SPECIAL STATUS YORD
sPefoc INSTRUCTION PIPE STAGE ¢
SPe} Ol INSTRUCTION PIPE STAGE B
Pefi1e
sPed1e ] DATA CYCLE FAULT ADDRESS
SPefis INTERNAL REGISTER
SPe}i6 INTERNAL REGISTER
Pegi
sPed1s DATA OUTPUT BUFFER
SP«§1C
) " INTERNAL REGISTERS
Peg24
SPet2 STAGE B ADDRESS
SP+$28 . INTERNAL REGISTER
SPef2aA INTERNAL REGISTER
P
SPes2c DATA INPUT BUFFER
SPefse INTERNAL REGISTERS
; 22 YORDS
SPe§SA

Figure 34 Long bus cycle fault stack frame

¢ The program counter value (SP+02 Hex) is the address of the instruction that was
executing when the bus cycle fault occured (not necessarily the instruction that
caused the bus error).

d. Coprocessor-related exceptions

These exceptions can be divided in two groups, coprocessor-detected exceptions and
main processor-detected exceptions. The main difference between two groups is the
point at which the exception processing starts. Due to concurrent instruction execution,
the processing for many of the coprocessor-detected exceptions does not start until the
main processor completes the execution of the offending instruction and attempts to
execute the next instruction. The exception processing for all main processor detected
exceptions and some coprocessor-detected exception starts during the execution of the
offending instruction. ’




(1) The Coprocessor-Detected Exceptions.

The coprocessor-detected exceptions can be ecither related to the communication
with the main processor or to the execution of a floating-point instruction. The
exception vector numbers and address offsets for coprocessor-related exceptions are as

follows:

e Vector
Number

7
11
13

Vector
Offset (Hex) Assignment

FTRAPcc instruction

F-Line emulator

Coprocessor Protocol Violation
Branch or Set on Unordred Condition
Inexact Result

Floating-point divide by zero
Underflow

Operand Error

Overflow

Signalling Not-A-Number

The execution of a floating-point instruction can cause one or more of eight
exceptions. The exceptions caused by the instruction "move floating-point data register
to an external location” are called mid-instruction exceptions. All the other instruction
exceptions are pre-instruction exceptions.

e Signalling Not-A-Number: The data types defined by the user or non-IEEE

e Operand Error:

o Overflow:

¢ Underflow:

data types cause SNAN exception. This exception is
never caused as a result of an operation. The
instructions that do not modify the status bits must
be used in SNAN trap handler to hinder further
exceptions.

If the current operation has no mathematical
interpretation for the given operands, then an operand
eITor occurs.

When the exponent of the result is greater than or
equal to the maximum value for the specified format,
then overflow condition can be detected. But the
exception occurs if the destination is in one of the
floating-point formats. Overflows for destinations in
integer or packed decimal format, are included as

operand errors.

When the exponent of the result is less than or
equal to the minimum value for the specified format,
then overflow condition can be detected. But the
exception occurs if the destination is in one of the
floating-point formats. Overflows for destinations in
integer or packed decimal format, are included as
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operand errors.

¢ Divide-By-Zero: A division with zero divider or a transcendental
function which is asymptotic with infinity will cause
Divide-By Zero exception.

¢ Inexact Result (INEX2): This exception will occur, if the result of an
operation, except for an operation with packed decimal
operand, has a mantissa that can not be represented
in the specified rounding precision or the destination
precision.

o Inexact Result (INEX1): This exception will occur, if the result of an
operation with packed decimal operand, has a mantissa
that can not be represented in the specified rounding

‘ precision or the destination precision.

¢ Branch/Set on Unordered: The conditional instructions with the following
IEEE non-aware branch condition predicates can cause
BSUN exception.

’

Table 11 IEEE non-aware branch condition
predicates

3] CREATER THAN

L1 NOT GREATER THAN

13 GREATER THAN OR EQUAL

NGE NOT GCREATER THAN OR EQUAL
9] LESS THAN

| NLT NOT LESS THAN

LE LESS THAN OR EQUAL

NLE NOT LESS THAN OR EQUAL

cL CGREATER OR LESS THAN

NGL KOT GREATER OR LESS THAN
cLe GREATER OR LESS OR EQUAL
NGLE| NOT GREATER OR LESS OR EQUAL
SF SIGNALLING TRuE

12 SICNALLING FALSE

SEQ SIGNALLING EQUAL

SNE SICNALLING NOT EQUAL

(2) Coprocessor Detected Protocol Violations
A protocol violation occurs, when the command, condition, register select or
operand CIR is accessed unexpectedly as follows:

e When a write to the command or condition CIR is expected, but the register
select or operand CIR is accessed.

® When a read from the register select or operand CIR is expected, but a write to
the command, condition or operand CIR occurs.

¢ When a write to the operand CIR is expected, but either a write to the command
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or conditicn CIR or a read from the register select or operand CIR occurs.After
detecting a protocol violation, the MC68881 encodes the response CIR with the take
pre-instruction primitive so that the MC68020 will terminate the dialog.

Table 12 MC68020 Exception Vector Table.

\j
wouBER | orrser vEcToR
(DECINAL) (HEX) ASSICNNENT
[ ] " RESET : INITIAL 1SP
1 (1] RESET : INTTTAL PT
H] [11] BUS - ERROR
3 (L3 ADORESS tRROR
4 [3L] TULECAL INSTRUTTTON
5 LXK TR0 BTVIDE
6 8 1 CHK,UHKZ THSTRUCTTON
1 LALY cplRAPee, TRAFcc, TRAPY [NSTRUTTTON
[ [] LI PRIYILECE VIOUATION
9 €24 TRACE
L] 028 UTHE 1078 LWUTATOR
[} 02( LINE V111 ENOCATER
12 [} UNASSICNED
13 34 COPROCESSORPROTOTOL VIOLATTON
14 [}1) TORNAT TRROR
[E] [ UNTRTTTAUTIED TNTERRUPY
113 (11}
throwgh UNASSIGNED
i es¢
H (11} SPURTOUS "INTERRUPT
5 11T LLVEL T INTERRUPT AUTOVECTOR
13 [11] LEVEL 7 TRTERRUPT AUTOVECTOR
i 96C LEVEL 3 INTERRUPT AUTOVELTOR
a8 [24] LEVEL & INTERRUPT AUTOVIXTOR
H ] (2] LEVEL 5 INTERRUPT AUTOVECTOR
k1) [} ] LEYEL & INTERRUPT AUTOVECTOR
3 ¥ig LEVEL 7 INTTRRUPT AUTOVETTOR
3 11
throwgh TRAP ¢#% - 15 INSTRUCTION YECTORS
o {114
L1} (11} PP BSUN
49 L4} TPCP INLX
1) [J4) PP D2
L (114 TPCP UNTL
LY [1L) FtPCP OPERR
L2 ) s TPCP OViL
LK) [1]] FPCP SNAN
4 W[ TRASITERED
56 (14 PHUU CONFTCURATTON
57 L14] PUNU TLLECAT OPTRATION
11 ] [14] PUMU ACCESS TEVEC VIOUATTION
L1 (141
through UNASSIGNED
[} e
[ L) LLLJ
{hrovgh USER OLTINED
253 3¢
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Table 13 MC68020 Extensions To M68000
Family Instructions :

INSTRUCTION EXTENSTON
Bee 32 BIT DISPLACEMENT
BFxxxt BT FIELD INSTRUCTIONS
BKPT NE® INSTRUCTION
BRA 32 BIT DISPLACEMENT
BSR 32 BIT DISPLACEMENT
CALLE NEW INSTRUCTION
CAS,CAS2 NEW INSTRUCTION
CHK 32 BIT OPERANDS
CHK2Z NEW INSTRUCTION
Curl PC RELATIVE ADDRESSING MODE
f CuP2 NEY INSTRUCTION
B A COPROCESSOR INSTRUCTIONS
DIVS/DIVU | 32 BIT AND 64 BIT OPERANDS
EXTB 8 BIT EXTEND 10 32 DITS
L ENK 32 81T DISPLACEWENT
WOVEC NEY CONYROL REGISTERS
MULS/MULY | 32 BIT OPERANDS
PACK NEW INSTRUCTION
RTwW NE¥ INSTRUCTION
1T PC RELATIVE ADDRESSING MODE
TRAPce NEW INSTRUCTION
UNPK NEY INSTRUCTION

Table 14 MC68020’s Improved Features.

FEATURE I MPROVEWENT
DATA BUS 8., 16 OR 32 BITS (DYNAMIC SIZING)
ADDRESS BUS 32 BITS
INSTRUCTION CACHE 128 YOROS

COPROCESSOR [NTERFACE

TMPLEMENTED IN MICROCODE

DATA ALIGNUENT

ONLY INSTRUCTIONS WORD ALIGNED

CONTROL REGISTERS

SFC, OFC. YBR, CACR, CAAR

STACK POINTERS

USP, SSP ( ISP ond MSP )

STATUS REGISTER

TO/T1, S, M, 1 MASK, COND. CODE

ADDRESS SPACE

CPU SPACE = FUNCTION CODE 7

STACK FRAMES

$0. 41, 82, 49, $A, 8B
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Table 15 MC68020 Instruction Set.
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APPENDIX E: MC68881 REGISTERS AND DATA TYPES

1. MC68881 REGISTERS

The programming model of the MC68881 contains four groups of registers.

A. Floating Point Data Registers (FP0-FP7)

The eight 80-bit floating point data registers are used to storc external operands in
extended precision format. All external operands are converted to extended precision
numbers, regardless of their data format, before they are stored in the floating point
data registers. The higher order 16 bits are not used in the extended precision data

format.

e The bit field descriptions for extended precision data format;

0 through 51 : Fraction

52 throPgh 62 : Biased Exponent
63 : Sign

64 through 79 : Not used

B. Floating Point Control Register (FPCR)

This 32-bit register is used to enable/disable traps for floating point exceptions and
to set rounding mode (Figure 35). The high-order 16 bits are reserved for future use.
The low-order 16 bits contain exception enable byte and mode control byte. The user
can read frrrm and write to the control register (with high-order word zero for future
compatibility).

N 15 7 0
L ' Texcert. enan.] wooe contnoi|

Figure 35 Floating Point Control Register
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1. Exception Enable Byte
The exception enable byte contain eight enable bits for each class of floating point
exceptions as follows (see Figure 36):
¢ Exception enable byte bit description :

Bit iS5 : BSUN (Branch/Set on Unordered)
Bit 14 : SNAN (Signalling Not A Number)
Bit 13 : OPERR (Operand Error)
Bit 12 : OVFL (Overflow)
Bit 11 : UNFL (Underflow)
Bit 10 : DZ (Divide by Zero)
Bit 9 : INEX2 (Inexact Operation)
- Bit 8 : INEX1 (Inexact Decimal Input)

15 1 1320 1 ’ s
[(Bsun [ swan Jorerr] ovie Juwre T oz | wwexi] iwexa]

Figure 36 FPCR Exception Enable Byte

The bit numbers in Figure 36 refer to the bit numbers of low-order word of the
control register. The status of any bit position determines whether the corresponding
exception wilk be processed or not. To ensure that the exception will be processed, the
bit positions for this exception in both the control and status register should be set. The
enable byte in the control register should be set before an exception occurs. Setting any
enable bit in the control register after an exception occurs does not have any effect in
processing the exception, regardless of the corresponding bit value in the status register.
The following exceptions can be caused simultaneously by executing a single
instruction.

e SNAN and INEX1

e OPERR and INEX2

e OPERR and INEX1

e OVFL and INEX2 and/or INEX]|

e UNFL and INEX2 and/or INEX1

In case of multiple exceptions, only the higher priority exception will be processed
and the other(s) will be ignored. The bit position of an exception determines its

priority, BSUN (Bit 15) has the highest priority.
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2. Mode Control Byte
This byte controls the rounding mode and -precision. If all the bits are zero then

IEEE default is selected.

Bits 7 and 6 determine the rounding precision as follows:

e Bit7 Bit6 Precision
| 0 0 Extended (round to 64 bits)
0 1 Single (round to 24 bits)
i 0 Double (round to 53 bits)
1 1 Undefined

Bits 5 and 4 determine the rounding mode as follows:

e Bit5 Bit4 Mode
0 0 To nearest
0 1 Toward zero
1 0 Toward minus infinity
1 1 Toward plus infinity

;1 3 5 T 2 1 (]
\ [ Precision | roumoine ] " |

Figure 37 FPCR Mode Control byte

The bit numbers in Figure 37 refer to the bit numbers in the contrel register. The low
order nibble of the mode control byte is always zero.

C. Floating Point Status Register (FPSR)
This 32-bit register contains condition code byte, accrued condition code byte,

exception status byte and quotient byte (Figure 38). The user can read from and write
to the status register.

3 13 K 7 ’
{_cowo. cove | euoriemr  Texcee. star.[accrveo exc. |

Figure 38 FPCR Status Register
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In the following, the bit numbers refer to the bit numbers in the status register.

1. Condition Code Byte

All floating-point arithmetic instructions affect the four bits contained in the
status register (see Figure 39). The bits 31 through 28 are reserved and not used. They
should be set to zero. The bits 27 through 24 are encoded as follows:

e Condition Code Byte
Bit 27 : N (Negative)
Bit 26 : Z (Zero)

Bit 25 : I (Infinity)
Bit 24 : NAN (Not A Number or Unordered)

N R ) 29 28 27 25 25 U

L 0 [ v [z ] 7 Jwn]

Figure 39 FPSR Condition Code byte

2. Quotient Byte

The sign and the seven least significant bits of the quotient (unsigned) after
an FMOD or FREM instruction are stored in the quotient byte (Figure 40).
¢ Quotient Byte

Bit 23 : S (Sign)
Bits 22 through 16 : Q (Quotient)

23 2221 - 20 19 18 17 16
[sten | QUOTIERNT ]

Figure 40 FPSR Quotient byte

The quotient byte remains unaffected until another FMOD or FREM instruction
overwrites the byte or it is cleared by the user.
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3. Exception Status Byte

Each bit position in the exception status byte indicates the occurence of a floating-
point exception, during the last arithmetic or move instruction (Figure 41). This byte is
cleared before executing an instruction that can generate a floating point exception,
except for FMOVEM and FMOVE control register instructions. Setting a bit in the
exception status byte by a user write does not cause an exception.

e Exception status byte bit description:

Bit 15 : BSUN (Branch/Set on Unordered)
Bit 14 : SNAN (Signalling Not A Number)
Bit 13 : OPERR (Operand Error)

Bit 12 : OVFL (Overflow)

Bit 11 : UNFL (Underflow)

Bit 10 : DZ (Divide by Zero)

Bit 9 : INEX2 (Inexact Operation)

Bit 8 : INEX1 (Inexact Decimal Input)

‘s 1 1312 1" 10 9 s
A Bsun [ snan Torerr] ovee Junre T oz ovexi] inexe]

Figure 41 FPSR Exception Status byte

4. Accrued Exception Byte
)
This byte contains five exception status bits that are logical combinations of the bits
in the exception status byte (Figure 42). Unlike the exception status byte, this byte is
not cleared before every instruction that can generate an exception. It is cleared either
by the user via a write operation to the status register or by the MC68881 via a reset/ a
null state size restore operation. '

¢ Accrued exception byte bit description:

Bit 7 : IOP (Invalid Operation)
Bit 6 : OVFL (Overflow)

Bit 5 : UNFL (Underflow)

Bit 4 : DZ (Divide by Zero)
Bit 3 : INEX (Inexact)

-
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I I ) IR
[T1or Jovee Tunrc oz | iwex | ' ]

Figui'e 42 FPSR Accrued Exreption byte

Bits 0 through 2 are not used and should be set to zero. The logical combination of the
bits are as follows:

A(IOP) = A(IOP) + E(BSUN) + E(SNAN) + E(OPERR)

A(OVFL) = A(OVFL) + E(OVFL)

A(UNFL) = A(UNFL) + ( E(UNFL) ¢ E(INEX2) )

ADZ) =ADZ) +EDZ)

A(INEX) = A(INEX) + E(INEX1) + E(INEX2) + E(OVFL)
where A( ) = Accrued Exception Byte

E( ) = Exception Status Byte

"+" = Logical OR

"e" = Logical AND.

D. Floating Point Instruction Address Register (FPIAR)
!

This 32-bit address register is loaded with the address of the floating-point
instruction before it is executed. This is due to the non-sequential instruction execution
by the MC68020 and MC68881, in which the program counter value saved by the
MC68020 in response to a floating-point exception trap may not correspond to the
offending instruction. The content of instruction address register can be used by
floating-point exception handler to locate the instruction that caused the exception. The
instructions that do not modify FPIAR can be used in the exception handler to read the
FPIAR without changing the old value. These instructions are FMOVE to/from FPCR,
FPSR, FPIAR and FMOVEM. The FPIAR is cleared by a reset or null state size
restore operation.

0. MC68881 DATA FORMATS AND TYPES
The MC68881 supports the following data formats;
- Byte Integer ( 8 bits )

75




- Word Integer ( 16 bits )
- Long Word Integer ( 32 bits )
- Single Precision Real  ( 32 bits )
- Double Precision Real ( 64 bits )
- Extended Precision Real ( 96 bits )
- Packed Decimal Real ( 96 bits )

The integer data’ formats are straightforward and they are not described in this section.
The bit field descriptions for floating data formats are as follows (see Figures 43
through 46):

1. Single Real ( 32 bits )

e Bit Fields :
Bit 31 : Sign of Fraction
Bits 23 through 30 : Exponent
Bits O through 22 : Fraction

3130 22 "
[s]exe] 23 sir Fraction |

Figure 43 Single Real data
format

2. Double Real ( 64 bits )

¢ Bit Fields :
Bit 63 : Sign of Fraction
Bits 52 through 62 : Exponent
Bits 0 through 51 : Fraction

6362 5 ’
{s] exe. | 52 811 FRACTION |

Figure 44 Double Real data format

76




3. Extended Real ( 96 bits ) d

¢ Bit Fields :
Bit 95 : Sign of Mantissa
Bits 81 through 94  : Exponent

Bits 64 through 80  : Not used ( all zeros )
Bits O through 63  : Mantissa

95 94 ) 63 e '
[sT voetrexeonens [ o | 64 BIT NANTISSA |

Figure 45 Extended Real data format

4. Packed Decimal Real ( 96 bits )
¢ Bit Fields : '
Bit 95 : Sign of Mantissa '
Bit 94 : Sign of Exponeni

Bits 93 through 92  : Used only for infinity and NANSs, zero otherwise
Bits 81 through 91  : Exponent

Bits 64 through 80 : Zero ( if no overflow in BIN to DEC conversion )
Bits O through 63 : Mantissa

15 94 93 92 81 X 87 e
sls[o-]sorerven. f oo 17 DIGIT NANTISSA ]

Figure 46 Packed Decimal Real data format

The single, double and extended precision floating-point data formats can represent five

floating-point data types which have three parts: Sign of mantissa, Exponent and
Mantissa.
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e Normalized Numbers (Figure 47)

Sign of Mantissa : O or 1

Exponent : Greater Than MINIMUM, Less Than MAXIMUM
Mantissa : Any bit pattern '
[0 v Wi <Cexp < unx [ MANTISSA < ANY BIT PATIERN |

Figure 47 Normalized Number format

¢ Denormalized Numbers (Figure 48)
Sign of Mantissa : 0 or 1

Exponent : 0
Mantissa : Any non-zero bit pattern
o1} IXP « @ ] wANTISSA « ANY NON-ZERO BIT PATIERN |

Figure 48 Denormalized Number Format

e Zeros (Figure 49)

Sign of Mantissa :‘0 or 1

Exponent : 0
Mantissa )

[0.1] T | NANTISSA « ¢

Figure 49 Zero format
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o Infinities (Figure 50)

Sign of Mantissa : 0 or 1

Exponent : MAXIMUM
Mantissa : 0
[o.] o v wncinun | MARTISSA = 8 B

Figure 50 Infinity format

o Not-A-Number (Figure 51)

Sign of Mantissa : 0 or 1
Exponent : MAXIMUM
Mantissa : 0

[0 ] £xp «waxiuuw ] WANTISSA = ANY NON-ZERD BIT PATTERN ¢ |

Figure 51 Not-A-Number format
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APPENDIX F: MC68881 COPROCESSOR INTERFACE

A. SIGNAL CONNECTION AND COPROCESSOR ACCESS

The MC68881 is connected to the main processor via 32-bit data bus, as shown in
the Figure 52. The pins A0 and SIZE are both pulled-up to Vcc in order to configure
32-bit data bus connection. All the other signals, except for the chip select, are directly
connected to the corresponding pins of the main processor. The chip select signal (ICS)
is generated from A18, A17 and Al5 by the external logic given in Appendix G.

A18 AQ
A17 PAL S12¢
ALS 8 1CS

1AS
NC68020 10§ MC68881
R/IY
LDSACK®
1OSACKI
A - A4
B _- 031

Figure 52 MC68020/MC68881 32 bit data bus
connection

For coprocessor access, the address lines AO through A4 and A13 through A19 are
encoded as follows (see Figure 53): _

e AQ through A4 : Indicate the Coprocessor Interface Register to be accessed

e A13 through A1S : Indicate the ID number of the coprocessor to be accessed

e A16 through A19 : Indicate that CPU space transaction is coprocessor
communications. (0010)

FUNCT 10N _ ADORESS BUS
coor 3 20 19 16 15 13 12 5 4 .
[0 1 1j{veeooononnoefoorofcopiofonows oo [errrecisin]

-

Figure 53 CPU space encoding for coprocessor access.




B. COPROCESSOR INTERFACE REGISTERS

The main processor communicates with the MC68881 via a group of coprocessor
interface registers which are either 16-bit or 32-bit long. The 16-bit interface registers
are placed on the high order word of 32-bit data bus (D31-D16) by asserting IDSACK1
and negating IDSACKO, regardless of the value of Al. Figure 54 gives a list of
coprocessor interface registers with their address offsets, widths and read/write
attribptes. Write access to a read-only register is ignored, whereas read access to a
write-only register returns all ones. The registers Operation Word (Offset 08 Hex) and

Operand Address (Offset 1C Hex) are not used by the MC68881.

. R
A4 A3 A2 A1 A | OFFSET | m10TH | TYPE
RESPONSE L I I I 11 16 READ
CONTROL 6 0 0 1 X H{}] 16 WRITE
SAVE LI I I I ¢ 1 16 READ
RESTORE [ O IR T B 4 H 1) 16 R/Y
OPERATION YORD ¢ 1 6 0 X jo8 16 R/Y
COMMAND e 18 1 X 11} H RRITE
[RESERYED) & 11 e X $ec i3
CONDITION LI T T B ¢ 114 15 WRITE
\ OPLRAND e e X X fie 32 R/

RECISTER SELECT t 0 1 0 X pre 3 READ
[RESERYED) LI T T T ¢ $18 6
INSTRUCTION ADDRESS | 1 1 & X X 1] ] n WRITE
OPERAND ADDRESS LR T T G | fic 32 R/

Figure 54 Coprocessor Interface Register map

a. Response CIR ($00)

The response CIR is used to transfer service requests from

the MC68881 to the

main processor. The MC68881 does not start instruction execution until the main
processor reads the Response CIR for the first time after a write to the Command CIR.
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b. Control CIR ($02)

The control CIR is used by the main processor to issue an instruction abort or an
exception acknowledge to the MC68881. The high order 14 bits of the Control CIR are
not used. Although bits 0 and 1 are defined as abort and exception acknowledge,
respectively, it has the same effect on the MC68881 to set bit 0 or bit 1. After a
write to the Control CIR, the MC68881 takes the following steps;

¢ Terminates the instruction execution.

e Clears pending exceptions, if any.

¢ Resets the bus interface and gets ready to begin new instruction protocol.

¢. Save CIR (304)

The main processor uses the Save CIR to issue a context save command to the
MC68881 and to read the format word of the MC68881 state frame. A read from this
register suspends the operation currently being executed by the MC68881 and initiates
a state save operation. If the current operation is a state save or state restore, then it
will not be suspended by a read from the Save CIR.

d. Restore CIR ($06)

The Restore CIR is used by the main processor to transfer a context restore
command to the MC68881 and to validate the format word of a state frame. After a
write to this register, the MC68881 stops executing any operation and prepares to load
new internal state context from memory.

e. Operation Word CIR ($08)

This register is not used by the MC68881. A write to this register is ignored and it
does not cause a protocol violation.
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f. Command CIR ($0A)

The communication for executing a general coprocessor instruction (cpGEN) is
initiated by a write to the Command CIR by the main processor. When a write to this
register is detected, the MC68881 latches the data from the data bus, and, if not busy
executing a previous instruction, the response CIR is encoded with the first primitive of
the dialog for the execution of the new instruction. Otherwise, the latched data is saved
for future use and the response CIR is encoded with the null primitive.

g. Condition CIR ($0E)

The use of this register is the same as the Command CIR, except that the Condition
CIR is for conditional coprocessor instructions. The value of the conditional evaluation
is returned to the main processor with the first primitive of the dialog.

h. Operand CIR ($10)

The 32-bit Operand CIR is used to transfer data between the main processor and
the MC68881. An access to the Operand register by MC68881 is legal after reading the
following primitives:

¢ Evaluate effective address and transfer data

e Transfer multiple coprocessor registers

¢ Transfer single main processor register
and after a read/write of idle or busy format word from/to the save/restore CIR. An
access to this register in other cases causes a protocol violation.

i. Register Select CIR ($14)

The Register Select CIR is read by the main processor to get the register mask
during a move multiple floating-point data register operation. An access to this register
is legal only just after issuing a transfer multiple coprocessor registers primitive to the
main processor. An access at any other time causes a protocol violation. Only low-
order eight bits of this register are used.
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Jj- Instruction Address CIR ($18)

The main processor uses this 32-bit register to transfer the address of the MC68881
instruction already being executed when the PC bit of any primitive is set. An access
to the Instruction Address CIR at any time does not canse a protocol violation. FPIAR
register is updated, whenever a write to the Instruction Address CIR occurs. A read
from this register returns all ones.

k. Operand Address CIR ($1C)

This register is not used by the MC68881 and an access to this register does not
cause a protocol violation. Reads from this register always return all ones and writes
are ignored.

C. COPROCESSOR COMMUNICATION AND RESPONSE PRIMITIVES

1. Coprocessor Communication

The length of MC68881 instructions vary between one to eight words. The first two
words are called operation word and coprocessor command word. The words after the
coprocesor command word specify the operands. Bits 12 through 15 in the operation
word are always one, which specify F-line operation code. Bits 9 through 11 indicate
the coprocessor ID. The low order byte of the operation word is encoded according to
the type of the instruction.

The MC68020 and MC68881 follow the communication protocol, given below,
during the execution of a floating-point instruction:

e The MC68020 detects an F-line operation word and initiates the communication
by writing to the appropriate coprocessor interface register (or by a read for
MC68881 save instruction).

e The MC6888! gives a response to the previous write operation by writing, what
is called a primitive, to the response CIR. The MC68020 then reads the response
CIR and proceeds in accordance with one of the following indications by the
response primitive:

The MC68881 is busy: Process any pending interrupt,
query the MC68881 again.
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There is an exception condition and MC68020 is instructed to take an
exception:
Acknowledge the exception and initiate the
processing.

The MC68881 requests service:
Perform the service requested by
the MC68881 such as;
Evaluate the effective address.
Transfer data between effective address
and the MC68881.
Query MC68881 after performing the service.

The execution of the coprocessor instruction can start and MC68020 is
released:
Begin the execution of the next instruction.
If in trace mode, take the trace exception after
coprocessor instruction is processed.

2. Response Primitives.

The response primitive is the data read from the coprocessor interface response
CIR. There are 18 response primitives defined by the MC68000 family coprocessor
interface. The MC68881 uses six of these primitives. The response primitives are 16-bit
words and have the following general format;

e Bit 15 ( CA ). Come Again; if set, the MC68020 should return to read
the response CIR again, after performing the
service requested by MC68881.

e Bit 14 (PC): Program Counter; if set, the MC68020 should immediately
pass the current PC value to the instruction
address CIR.

e Bit 13 (DR ): Direction; if set, it indicates a main processor read,

otherwise indicates a main processor write.
e Bits 0 through 12: Contains data dependent on the individual primitive.
The following are the six primitives used by the MC68881:

a. Null Primitive
The null primitive provides synchronization and concurrent execution with the main

processor. Only five bits are used to encode the null response, the remaining bits,
except for bit 11, are all zeros (Figure 55):
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e Bit 15 ( CA ) : Come Again; as explained above.
e Bit 14 ( PC ) : Program Counter; as explained above.

e Bit 8 (IA) : Interrupt Acknowledge; when set, the main processor may
process any pending interrupt, otherwise interrupts are ignored.

e Bit 1 ( PF) : Indicates the status of the MC68881; when set, the MC68881 is
idle. It is cleared if the MC68881 is executing an instruction.

e Bit O ( TF ) : Indicates the result of a conditional evaluation.

WIPCI'I'L'ul°l“['l'J'I°l°l'J_"l"]

Figure 55 Null Format

b. Evaluate Effective Address and Transfer Data

The MC68881 uses this primitive to request the transfer of data between
its data or control registers and an external location, which can be either a memory
location or a register of the main processor. The bits 13 through 15 are DR, PC and
CA bits as explained in the general format. The bit 12 is set to one, and bit 11 to zero
(Figure 56).
¢ Bits 8 through 10 specifies one of the following addressing modes:
000 : Control Alterable
001 : Data Alterable
010 : Memory Alterable
011 : Alterable
100 : Control
101  : Data

110  : Memory
111  : Any Effective Address

If the class of effective address in the operation word does not match the specified
class, then the main processor should write an abort command to the control CIR.

[eafeclor] 1 s | vauoa | LENGTH ]

Figure 56 Evaluate Fffective Address and Transfer Data format
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c. TYransfer Single Main Processor Register

The MC68881 requests the transfer of one main processor register by using this
primitive. The MC68020 writes a long word to the operand CIR in response to this
primitve. The CA, PC and DR bits have the same functions as explained above. Bits 0
through 2 indicate the register number to be transferred, and bit 3 (D/A) specifies
whether it is a data (D/A=0) or address (D/A=1) register. Bits 10 and 11 are set to one;
all the other bits are zeros (Figure 57).

[eaTecJor o v T v oo o] o] o] e Jora] nesisien ]

Figure 57 Transfer Single Main Processor Register format

d. Transfer Multiple Coprocessor Register

The MC68881 uses this primitive to request the transfer of multiple floating-point
registers to or from memory. Bits 13 through 15 are DR, PC and CA bits. Bits 0
through 7 indicate the size, in bytes, of the registers to be transferred. The MC68881
registers are always 12 bytes long. Bit 8 is set to one and all the other bits are zeros
(Figure 58).

@[PC]DR].}H([.[J LENGTH ]

Figure 58 Transfer Multiple Coprocessor Register format

e. Take Pre-Instruction Exception

This primitive is used in the following cases:
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e When an arithmetic or conditional instruction is initiated, and there is a pending
. exception from a previously executed concurrent instruction.

e When an illegal command word is written to the command CIR, or a protocol
violation occurs.

¢ When a conditional instruction which utilizes one of the IEEE non-aware
conditional predicates is executed, and the NAN bit in FPSR is one.

The CA and DR bits are zero. The PC bit is zero, when the execution ¢ a new
instruction is preemptied by the exception. The PC bit is one, when the  exception is
generated by an illegal command word or when the exception is reported during a
conditional instruction execution. The bits O through 7 indicates the type of the
exception which is used by the main processor to calculate the address of the exception
handler. The bits 8 and 9 are zero, and all the other bits are set to one (Figure 59).

[}

lTIPﬂO‘ILllIlOI'L VECTOR NUNBER |

Figure 59 Take Pre-instruction Exception format

J. Take Mid-Instruction Exception

The MC68881 uses this primitive, if an exception occurs during the execution of
FMOVE FPm, <ea> instruction. In the format of this primitive, the CA, PC and DR
bits are set to zero. Bits 0 through 7 contain the vector number which identifies the
type of exception. Bit 9 is zero, and all the other bits are ones (Figure 60).

fofecJo ] v [ v T T ] ~VecTon WUNBER |

Figure 60 Take Mid-instruction Exception format
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APPENDIX G: DESIGN OF THE ECB

A. Memory Mapping

The mcmoi'y is divided into three segments:
- First segment  : $00000 - $1FFFF
- Second segment : $20000 - $3FFFF
- Third segment : $40000 - $7FFFF

There are two memory mapping schemes which differ from each other in how
the segments are accessed. The first scheme is defaulted after reset or power-up. The
only way to switch from the first scheme to the second is to make a coprocessor
access. An external reset should be applied in order to switch back to the first scheme.

The memory map in scheme 1 is shown in Table 16.

Table 16 ECB Memory Mapping Scheme
1.

ADDRESS RANGE READ | YRITE
SEGMENT 1| 306000 - SIFFFFF | ROM RAM
SEGMENT 2| $20430 - SIFFFFF | COP cop
SECMENT 3| $40000 - $IFFFFF | ROM

In scheme 1, both ROM and RAM are mapped to Segment 1. RAM is accessed for
writing only and all reads are from ROM. Segment 2 can be accessed for both writing
and reading. ROM can also be accessed in the higher addresses. The primary area for
ROM is Segment 3. The ROM in the low addresses can be thought as an image of the
ROM in the high addresses. This image is created and removed by the signal, called
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PHANTOM. Mapping the ROM to Segment 1 allows to access the initialization

routines after reset or power-up.

The memory map in scheme 2 is given in Table 17.

Table 17 ECB Memory Mapping
Scheme 2

ADORESS RANGE.
SECMENT 1] 00000 - §IFFFFF | RAM
SEGMENT 21 $20080 - $3FFFFF | COP
SECMENT 3| $40008 - $IFFFFF ROM

In the second scheme, the image of ROM is removed from Segment 1. RAM can be
accessed for both reading and writing. This is the condition in normal operation of the

ECB.

B. Programmable Array Logic circuit PAL B

Figure 61 shows how the chip select and other control signals are generated for
the memory mapping schemes. All the signals are the outputs of the PAL B
(PAL16L8). This PAL has been programmed by ABEL software. Appendix H includes
the programming files of the PAL B.
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A8 | A17 | AYS | R/Y {PHAN | Al As | st se | B%
Copk (] 1 (] X X X X X X X
ROMCE | X ) ] 1 ) X X X X [
1 X X 1 . X X X X ¢
RAMCE | X X X ’ 1 X X X X [
’ ’ 3 X ' X X X X ’
RAMDE [ 0 ] X 1 () X X X X X
Raniw | 0 ' X ] X [} . X X [
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[} ' X ¢ 3 1 X 1 X ¢
’ ' X ’ X X X 1} ’ []
’ ¢ X * X X 1 1 1 '

Figure 61 Generation of the memory mapping signals

C. Programmable Array Logic Circuit PAL A

The PAL A generates the signals required for intgrfacing the MC68020 with
memory and RS-232 port.

1. The PHANTOM Signal
The PHANTOM signal is used to create and remove an image of the ROM in

Segment 1. During power-up or reset, asserting the !RESET line sets the PHANTOM
output high. This output remains high after the !RESET input is negated, until a
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COprocessor access occurs, i.e., the !CopE input is asserted. It is the responsibility of
initalization routine to assert the !CopE input by making an access to Segment 2. (see

Reference 1). The !CopE input is synchronized with the !AS signal.

cLock
R}

CoPE

PHANTOM
o 0 "

b oLk O

RESET

-

-
~J

Figure 62 PHANTOM signal generation.

2. RS232 Transmit/Receive Circuit

The !INTERRUPT output, which is connected to the !IPL2 input of the
MC68020, indicates that data is being received on RS-232 line. The IINTERRUPT
output is not asserted, unless the address lines A19 and A17 are set high, even if there
is an incoming data on RS-232 line. It is the responsibility of the communication
routine to monitor the RS-232 line by setting the address lines A19 and A17. (see

Reference 1 ).
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The {RS2320UT output is used to transmit data on RS-232 line, by asserting and
neg'ating the address lines A19 and A15 under software control. (See Reference 1.)

RS232001
E))]

1 : \ INTERRUPT
) J {19)

— -
-~

oy |
~—d <

Al
{5

RS2321N
‘ .

. Figure 63 RS232 Transmit/Receive Circuit

{

3. Data Size And Transfer Acknowledge Signals

The DSACK signals return 8-bit port size for the ROM, and 32-bit port size for
the RAM. Arv access to the coprocessor does not cause the DSACK signals to be
asserted, as the MC68881 provides its own port size. If the ROM is accessed, only the
DSACKQO output is asserted to return an 8-bit port size. The outputs W0, W1 and W2
are used to provide a delay of eight clock cycles, before asserting the DSACKO, when
the ROM is accessed. This is because the ROM chip has a longer delay (150 ns for
AMD 27C256 chip) tian the RAM chips (55 ns for Motorola 6164 chip). Both
DSACK signals are asserted, without any forced delay, when the RAM is accessed.
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Figure 64 DSACK Signal Generation.
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D. Reset Circuit

The reset circuit was built around the Motorola’s undervoltage-sensing IC, the
MC34064. The output of the circuit is driven low for more than 100 ms, during power-

up or when the reset button is pressed, and provides an external reset signal for both

the MC68020 and MC68881.

120KQ

MC34864
RESET 1 ?

<}_‘_____)

Figure 65 Reset Circuit

E. Software Abort Circuit

The circuit for software abort consists of all passive components, as shown in the
following figure. When the switch S1 is pressed, IPL2, IPL1 and AVEC lines are held

low for a period of approximately 5 microsecond, which generates an autovectored

level 6 interrupt.
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Figure 66 Software Abort circuit

F. /O Interface for External Devices
{

All the pads and holes have been provided to install TTL series line drivers
74245 (bidirectional for 8-bit data) and 74244/74241 (unidirectional for address and
control lines). The connections for external J/O interface are given in Figure 67. This

interface has not been implemented and tested in this thesis. It is left as a future

improvement.
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Figure 67 /O interface for external devices

The complete circuit diagram and two layer PCB layout are given in figures 68

and 69, respectively. The I/O interface for external devices are not included in the

circuit diagram.
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Figure 68 ECB Circuit Diagram.
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APPENDIX H: PAL A PROGRAMMING FILES

A. PAL A LISTING FILE

0001 imodule palal ;

0002 flag '-f ;

0003 } PAL A DEVICE 'Pi6R4’;

0004 | CLK,COPE.RESBT,AIS),AU,AIS,AS,RSIN PN 1,7,2,35964 H

0005 | RAMCE,OE PHAN RSOUT, PIN 8,11,17,18, 19 H
0006 wWo,wi W2.DSACKO.DSACK1 PIN 16 15 14 13 12 H
0007 ! CKXz = .C X.,Z H

0008 |

0009 ! S0 = AB0OOO ;

00101 S1 = AB001 ;

00L! §2 = ABO10O ;

0012t $3 = ABO11 ;

00131 S4 = AB100 ;
0014 | S5 = AB101 ;

0015 | $6 = AB110;

0016 | S7 =ABl1ll;

0017 |

0018 |

0019 ITEST_VECTORS ( [CLK,OE.RAMCE,AS,COPE] -> [W0,W1,W2,DSACKO))
0020 | (CK.0.1.1,0} -> [0,0,0,1] ;
0021 | {CK.0.1,0,0] -> {1.L,1,1] ;
0022 | [CK.0.1,00] -> [0,1.1.1] ;
0023 | [CK.0,1.0.0] -> [1.0,1.1] ;
0024 | [CK.0.1,0,0] -> [0.0,1.1] ;
0025 | {CK.0,1,0,0] -> {1.1.0.1] ;
0026 | {CK.0.1,0,0} -> [0.1,0,1] ;
0027 | {CK.0.1,00] -> {1,00.1] ;
0028 | (CK.0,1,0,0] -> [1,0,0,1] ;
0029 | (CK.0.1,0,0] -> [1.0,0.1] ;
0030 | [CK.0,0,0,0] -> [1.0,0,1] ;
0031 | [CK.0,1,1,0] -> {0,0,0,1] ;
0032 | [CK.L11.10] -> [ZZ.Z1] ;
0033 |

0034 | CK.0,1,1.1] -> [00,0,1] ;
0035 | CK.0,1,0,1] -> [1.1,11] ;
0036 | CK.0,1.0,1] -> [0,1,1,1] ;
0037 | CK,0,1,0.1] -> [1.0,1,1] ;
0038 | CK,0,1.0,1] -> [0,0,1,1] ;
0039 | CK.0,1,0,1] -> [1,1,0.1] ;
0040 | CK.0,1.0,1] -> [0,1,0,1] ;
0041 | CK.0.1,0,1] -> [1.0,0,0] ;
0042 | CK.0,1.,0,1] -> [1.0,0,0] ;
0043 ! CX.0,1.0.1] -> [1.000] ;
0044 | - [CK.0,0,0,1] -> {1.00,0] ;
0045 | CK.0,1.,1.4] -> [0,0,0.1] ;
0046 | CK L LL,i} > [ZZZ,1);
0047 |

0048 |

0049 ITEST_VECTORS ( [CL ,OE,AS COPERESET,PHAN] -> [PHAN] )
0050 | CK.0.0,1,0,0] 1}
0051 | CK,00,1,0,1 S ;
0052 | CK.0.0,1,0,1 > [1];
0053 | CK.0,0,1,1,1 > 11
0054 | [CK.0,0.1.1.1 > [1];
0055 | CK.0,0,1,1,1 > [1];
0056 | CK.0,0,1,1,1 > [
0057 | CK.0,0,1,1.1 > [11;
0058 | CK.00,1.1,] > [1);
0039 | CK,0,0,1,1,4 > Ul
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0060 | CK00,1,1,1] -> [1];
0061 | CK.00.1.1,1] - [1];
0062 { CK.00.101] > {1];
0063 | CK.00,101] -> [1};
0064 | CK.00.10.4] > [1];
0065 | CK.00001] -> [0};
0066 | (CK00,100] -> [1];
0067 | [CKoo.L11]  -> {1);
0068 | [CKOo0.01,1] -> [1];
0069 | CK.0001,1] -> [0};
0070 | CK.0,00,1.0] -> [0];
0071 | CK.00,1,10] -> [0};
0072 | [CK00.1,1.0] -> [0];
0073 | [CK.00100] -> {1];
0074 | [CK0,0,104] -> [1];
0075 |

0076 | CKO0,1,100] - [1];
0077 | CK.0,1,1,01] -> [1];
0078 | CK.0,1.1,01] > [1];
0079 | cKOLLLY] > [1]:
0080 | CKO,LLLY] > [1];
0081 | CKO.LLLY] > [1];
0082 | CKO.LLLI] - (i];
0083 | cKoOLLLY] > [1];
0084 | [CK.0.1.1,1,1 > {1
0085 | [CKO.L1,1,1]  -> [1];
0086 | [cKo.LLLl) -> [1];
0087 | CKOLLLI] > [1};
0088 | CKO0,1,1,0.1] - {1];
0089 | [CK0.1,101] - [1];
0090 | CK0.1.101] - [1];
0091 | CK.0,100.1] - [1];
0092 | CK.0.1.100] - (1];
0093 | cKo.LLLL] > [1];
0094 | CKOLILI] > [1];
0095 | CcKO0.10.01]  -> [1];
0096 | :

0097 | CK0.10.L,1]  -> [1];
0098 | CK.0.0,0,10] -> [0];
0099 | CK.0,10,1,0] -> [0];
0100 | CKO,L1,1,0] -> [0];
0101 | [CK.0.1,100] -> [1};
0102 |

0103 | [CK.0,1,101]  -> [1];
0104 |

0105 ITEST_VECTORS ( [A19, A15] -> [RSOUT] )
0106 | 00] > 1];

0107 | 01 > [

0108 | (e} > Ql;

0109 | i1 - [l

0110 |

0111 [TEST_VECTORS ( [A19, A17, RSIN] -> [INT] )
o112 | 0001 -> (1};

0113 | 0o01] -> [1];

0114 | 0.10] -> [];

0115 | 0.0.1] > [1]:

0116 1 (to0] -> [1];

0117 | 101 -> (]

0118 | (1.10] -> [0];

0119 | (L1 > {];

0120

0121 ITEST_VECTORS ( [AS, WO,W1,W2,RAMCE,COPE] -> [DSACKO) )
01221 [00000,1] -> [0]; -
0123 1 [000X,1] -> [0];
0124 (XXXX.1] ->[1}:
0125 | NXXXX1] -> ;-
0126 | XXXXX0] - [1]:
0127 |

0128 |
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0129 ITEST_VECTORS ( [AS, Al15, COPE, RAMCE] -> [DSACKI])

0130 | [0000] -> [0];

0131 | 0001] -> [1]:

01321 00,10] -> [0]:

0133 | 0011 > [1};

0134 | [0.100] -> [0];

0135 | 0104 -> (0]

0136 | 0.1.10] -> [0];

0137 | oL > [1);

0138 | 1000] -> [];

0139 { 1001] -> (11:

0140 | 10,101 -> {1];

0141 1 o] > [l

01421 1,L00] > [1];

0143 | Lo > {1

0144 | LLLe] o> {1l

01451 Ly > [

0146 |

0147 |

0148 IEQUATIONS

0149 | RSOUT =1 (A19 & AlS) :

0150 | INT =1(AI9& Al7& !RSIN) ;

0151 | DSACKO = AS # (RAMCE & (I WO # W1 # W2)) # ICOPE ;
01521 IDSACK]1 = ( |AS & IRAMCE ) # (AS& COPE & A1S)  ;
0153 | IPHAN := (I(COPE # AS)) # (RESET & ! :
0154 | IW2 :=AS#( W0 & IWI & IW z)#(woalwxawz)#(muwz);
0155 | IW1 :=AS#(IWO & 1) (WO & 1W1) :
0156 | IWO :=AS#(WO0& W1)# ( WO & W2 ) ;
0157 |

0158 lend palal
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B. PAL A DOCUMENT FILE

Page 1
ABEL(tm) 3.00a - Document Generator 26-Jul-89 05:21 PM
Symbol list for Module palal
AlS Pin 9 pos, com
Al7 Pin 5§ pos, com
Al9 - Pin 3 pos, com
AS Pin 6 pos, com
CK (.C)
CLK Pin 1 pos, com
COPE Pin 7 s, com
DSACKO Pin 13 neg, com
DSACK1 Pin 12 neg. com
INT Pin 19 neg, com
OE Pin 11 pos, com
PAL_A device P16R4
PHAN Pin 17 neg, reg, D
RAMCE Pin 8 pos, com
RESET Pin 2 pos, com
RSIN Pin 4 pos, com
RSOUT Pin 18 neg, com
S0 )
S1 1)
S2 2)
s3 3)
S4 iy
S5 5)
S6 (6)
s7 )
wo Pin 16 neg, reg, D
w1 Pin 1S neg, reg. D
w2 Pin 14 neg, reg, D
X (X.) .
YA (Z.)
_PHAN_QN Node 24 pos, com
_WO_QN Node 23 pos, com
_WI_QN Node 22 pos, com
_W2_QN Node 21 pos, com
palal Module Name
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Page 2
ABEL(tm) 3.00a - Document Generator 26-Jul-89 05:21 PM
Equations for Module palal

Device PAL_A

- Reduced Equations:
RSOUT = I(A15 & Al9);
INT = I(A17 & A19 & IRSIN);
DSACKO = KIAS & COPE & W0 & W1 & IW2 # 1AS & COPE & IRAMCE);
DSACKL = {(Al5 & IAS & ICOPE # 1AS & IRAMCE);
PHAN := {(IPHAN & RESET # 1AS & ICOPE);
W2 = (W]l & IW2 #1W0 & IW] & W2 # WO & IW1 & IW2 # AS);
W1 := (W0 & IW1 # IW0 & W] # AS);
WO = (W0 & W2 # WO & W1 # AS);

104




ABEL(tm) 3.00a - Document Generator

Chip diagram for Module palal

Device PAL_A
P16R4
\ /
| N |
| —— I
CLKI 1 20 | Vee
RESE|T| 2 |l9 | INT
Al9'| 3 18I | RSOUT
RSII!H 4 1!7 IPHANl
A17|I 5 lé | WO
AS'I 6 lSl | W1
COP'BI 7 l|4 I W2
RAM|CF.I 8 I13 | DSACKO
Al.‘:l 9 12l | DSACK1
GN;) 1 10 'll | OE

Page 3
26-Jul-89 a()8.‘:’:21 PM
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ABEL(im) 3.00a - Document Generator
Fuse Map for Module palal

Device PAL_A
0 10 20 30

0: -
[y TR, SN, QN G

256: -
288: —-X-moee - e X~

512: X -X -
544: X- -X. -

P [, " S, S
800; —--mmee —m XX o
L T, ' S

) 17 P . -
1056; —-omeemee ceeee X e X oo -
1088: ——eoe e X e -

1280; —eeeeme —mmeere X e Xomen
1312 oo e XX = Xommm ==
1344; —omeneme —-- XX - Xommemm -
[t 77, * S

1536: -
1568; ——meeee XXX Xo-Xoommem -
1600; ——eremee mmcem X Xome X -

1792: - -
1824; —-ee eene-X— XX -
1856; c—reemmmm =X coeXooee -

Page 4
26-Jul-89 05:21 PM
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Page 5

ABEL(tm) 3.00a - Document Generator 26-Jul-89 05:21 PM

for Module palal
Device PAL_A

Device Type: P16R4

Terms Used: 22 out of 64

Terms

Pin #1 Name | Usedl Max | Term Type | Pin Type
1 I1ICLK I =1 =1 - 1Clock

2 | RESET I -1 =1 - |Input

3 1A19 I -1 -~ 1 —  |Input

4 |RSIN I -1 -~ -~ |Input

5 1A17 I -1 — 1 -— |Input

6 |AS I =1 -1 -=  |Input

7 1 COPE I =1 — 1 - \|lnput

8 | RAMCE I -1 -1 -— |Input

9 |1AIlS Il -1 — 1 - | Input

10 | GND t -1 -1 - I(guND

11 I OE I -- 1 -1 -—- | Enable

iz | DSACK1 1 21 7 INoma 11O

13 | DSACKO I 2t 7 INormal |J1/O

14 | W2 I 41 8 |Nomal | Qutput

15 1wl I 31 8 |Nomal | Qutput

16 |'WO 1 31 8 |Nomal | OQutput

17 1 PHAN I 21 8 |Nomal | Output

18 1 RSOUT I 1t 7 INomal 1|10

19 | INT I 1t 7 I Nomal |J/O

20 | Vee I -1 -1 - 1VCC

21 (_W2_ QN 4 =1 —~ 1 = |Input (node)
22 1 _WI1 QN I -1 =1 = |lnput (node)
23 | _WO_QN I -1 -} —=- |Ioput (node)
249 || _QN Il -1 - - | Input (node)
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Page 6

g
ABEL(tm) 3.00a - Document Generator 26-Jul-89 05:2f PM

Test Vectors for Module palal
Device PAL_A

C—- -10] <0~ e omee ——
Ce- 001 --0- e coem e
[C—- 001 --0- ~—m v
(O I, -
(I T S ——
Cmn 00 -0 e woee e
Coee 001 =0 e come —oe
Cr “00] ~-0- e woee wmme
9 [C- 00] -0~ ~eme wmee ——
10 [C—n 00} -0 e rem —ome
11 [Cn 000 -0 —— womm e
12 {C—- -101 -0 e <o ——
[E I} (S 1\ T S —
14 [C—- -111 <0- —mme weee oeev
15 [C—- 011 -0 ——en wene wome
16 [C— 011 -0 e ene e
17 [C- 011 --0- —er oeee e
TR (SR YT, M—
19 [C- 011 «0- e ceme =t
20 [C--- 011 0= ome wee oo
21 [C-+ 011 0= e eeee =
22 [C—~ 011 ~0- come womn —oee
23 [C-- 011 ~-0- —orm wmoe v
24 {C--- 010 ~-0- —ome ween weme
25 [Cv 111 +0 e mme oee

WAL WN -

26 {C-- -11] ~-fe o ooe e

-

> [omn mm wmem HLLL —— —-;

> [--+n = - HHHH - —};
> [-mn = e HHHL -—- —=};
-> [oren wem wmem HHLH wee ——J;

o> [rmn wom =oee HHLL ~ome —=];
> feen e = HLHH - ]
> frn weme < HLHL = —J;
-> [rmes mem =mm HLLH weme w==);
-> [ —e weee HLLH -— —=};
> o —m wome HLLH e —-;
o> [rome e weme HLLH oome =}
R S HLLL —- -—-;
o> [roen meme wene HZZZ, e -—-];
> freen wemm wmee HLLL == -—-];
o> frrer meem wme HHHH -—s —J;
> [rmen = weme HHHL wmn —=];
-> [roem =on woem HHLH een ==}
o> e o wmme HHLL omm —];
«> [reer ~eem wmee HLHH =een —=J;
> [-=- == =mee HLHL == —-J;
> e ~m wme LLLH = mes];
o> freen mom wmee LLLH e omee;
«> [ren wmme weee LLLH = -—-;
B S LLLH —— ——J;
o> freme wme weme HLLL = -—];
> [roer wemm wmee HZZZ oo ]

27 {C0~ 01 -0 = 0 =] > [omn coe oo e Heee m};
28 [C0~ -0 ~-0 wo s ——] > [=on e ooe s Hee —};

29 [CO-- -0l- -0 = foun —omn
30 [Cl~ -01- ~-0- o ]-- —-
31 [Cl-- -01- =-0- weme Jon —mv
32 [Cl— -01- «-0- = l-er =
33 [Cl-- -01- -0~ —o 1eer —oe-
34 [Ci- -01- -0- o |—n —
35 [Cl-- -01- «-0- e Jour —o-
36 [Cl-- -01- --0- e Jooe =
37 [Cl-- -01- =-0- e foue ——
38 [Cl-- -01- =-0- wome [me
39 [CO— 01~ -0~ weme ]oen —--
40 [C0-- -01- --0- —— 1-- —m
41 [C0~ -01- -0 —=we lop- ——
42 [C0— -00- --0- —— ]-- —--
43 {00~ 01- -0 —m - ——
44 [Ci— Ol- -0~ —me [- e
45 [Cl= -01- «-0- e ]oee ——
46 [Cle -00- --0- —en ]-en e
47 [Cl- -00- --0= —=me Oeer wmm
48 [Cl-- -01- -0« — O-- -
49 [Cl-- -01- --0- —= Omex o
50 [CO— -01- -0~ —m Oer v
51 [C0-- -01- -0~ = 1-e ~—

O . |
> [on e e e B o]
S (SR - W |
> [oen eome oom oene B )
S (S N,
e

> frors amn e o Hore =]

> femm e e o Hem
> [on e e e Home o
> [rem emmr om weme Home oo
) S S
) IR S
> [ oo e e Hoe
B S
> fror o e == Hem 1,

) MURURPPOY | S

> T o e e He
R PR ¢
> [ wmmm e o Lo e}
> [ v oer o Lome o]
o S VA

> [ o e oo B

> [on oo e e Hom )
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Test Vectors for Module palal

Device PAL_A

§2 [C0— ~11- ~-0- ~m Omme —=] > [« == —- < Hm —-
53 [00= -11- ~-0- ~or lome ==] > [ --— - = Homr e
54 00— <11- -0~ == leme =] > [o—= = v = Homr —-
85 [Cl—- ~11- ~-0- ~m loee =] > [—= - - —= Hm —-
56 [Cl— ~11= <-0- = lem =] > [— <= = == Hom —-
57 [Cl— ~11- 0= e Joom =] > [ oo o —oe Ko ]
58 [Cl—- ~11- «-0- ~m lem =] > [—= == == — Heer —.]
59 [Cl—- -1l =0~ ~= bomn =] > [o=e o —on == Heme —-
60 [Cl= ~11- =0 —— 1 =] => [rmem oo =mm e Home
61 [Cl—- -11- <-0- — emm =] > [~ «— —= == H— —-
62 [Cl—- 11+ =-0- —— lee =] > [m =om —on e Home -
63 [Cl—- -11- «-0- e 1ee ==} > [—= = = = Hom —-
64 Q0 11 -0~ —cr lome =] => [rmm =om e e Heem —-
65 [CO— -11- <-0- o 1eme =] > [rmn = o e Home —-
66 [C0— <11 <-0- —— looe mome] > [rmme 2o o oo Heme -
67 [C0- -10- -0~ —m Leem —w] => [—= = —- = H-— —
68 [CO—- -11- <0 = Oune ==nc] =5 frmmm =om —oe = Home —-
69 [Cl- -11= <-0- —e Loum —=ma] > [rome = o e Home o
70 [Cl- <11 =-0- e Jomm =] > [rome <om —en — Hoee -
71 [Cl—- -10- <-0- womm Jomm =] => [me wom e e Home
72 [C1= -10- -0~ —ms loem =] -> [r === woon —e Hoem -
73 [Cl= <00~ <-0- voe Ocee wn] => [rmm m woem wome Lom ooee
74 [Cl= -10- -0~ e Ommn ] => [om <o e ome Lo v
75 [Cle- -11- --0- —cn Oeee —ome] > [rmmm =mn ome = ke =]
76 [CO- -11+ =0~ e Oeee ==na] <> [=os == oo oo Hom o]
77 {C0- -11- 0= —em Lmm o==] > fem o e o Home —];
78 [~0- —— Qe woem woes o] 2> [rome wonm moee e He o]

79 [-0- wom Joom —oom wmn ] 2> [ oo oo e He ]

80 [-1- = Oeen —mm <men wem] > [ ceom woee = “He ];

81 [-1- o fere mmem moee o] 2> [rome oo se o L ]

82 [--00 O—n —on =me —mme pmmn] =3 [onme womm wom e —H- —-];

83 [<01 Oms cmm weem ene o] > [romm wee o o —H- ]

84 [00 loor ~amm wemm —oae ma] D> [roem wome e e H- ]

85 [0l I wmr =oe e onme] > [oomm o o e —H- —-];

86 [—10 O wome wamm —mme o] > [mom <o wme e =He —];

87 [~11 O e sem one o] > [ommm =omm womm o =He —-J;

88 [~10 1 e mome mmne =] = [romm wom e <= =L —;

89 f~11 Lon womm womm moee o] > [ e o o =He ]

90 [—— 010 —= 000 «ex =] => [-=- <= ==ox Lm- == «—];
91 [~— -01X —mm -001 o <] => [-=m =ooe == L= —— «—];
92 [~ -11X - XXX wor -] > [=r == = Home e o]
93 [~ 11X e ~XKX eror =] => [rmn wore === Hee == -—];
94 [~ -XO0X -mv -XXX weme =n] =3 [== o= == Hem oo ==];
95 [~— 000 0-— mn =mm =] =3 [ === =L = = =]

96 [~ -001 0-n ~me e -] -> [ <= —H o ~me —-];
97 [~— -010 O-n e = =] => e =me ook o wee ——f;

98 {~— -011 O oem moem =] -> [omm =me —-H e o ==
99 [~ -000 l-mm rmr wamm weac] => [ < =L = me —};
100 = “001 Lo wmme emm =mnc] =3 [ooem woom ok o o s
101 [~ 010 1-m wmee come 2] => [oom = =L omm coe mee];
102 [ <011 Lo cmem moee o] > [ ome = H e =)
103 f— 100 O-— wmen mee =men] > [ommm wome —e-H e e =

e T T T T T T T I T S e ST aT i s et e -
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Test Vectors for Module palal

Device PAL_A

104 [~ -101 Ocm =e = <] > [ wmom = H = e —=);
105 {~— -110 O v = ——c] -> [rrmm =eoe =-H = - —];
106 {—— 111 O ~=e == e] -> [ - —-H == —- —=];
107 [ =100 1-m wome —— <] > [ e = H = oo —];
108 [~ -101 1w =me == wc] > [omm =ooe =cH == e ]
109 [~ -110 3o —r o= o] > [ =me —H oo o ==
10 [== 11} Lo mmm o o) > [oom 2o woH o o

end of module palal
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APPENDIX I : PAL B PROGRAMMING FILES

A. PAL B LISTING FILE

0001 imodule palb ;
0002 Iflag '-f* ;

0003 {

0004 " MONOLITHIC MEMORIES INC. PAL 16L8A-4 FAMILY/PINOUT CODE : 22/17
0005 " NATIONAL SEMICONDUCTOR  PAL 16L8A2 FAMILY/PINOUT CODE : 95/17

0006 |
0007 {
0008 |
0009 {
00101
0011 §
00121
0013 |
0014 |
0015 i
0016 |
0017 1
0018 |
0019 {
0020 !
00211
0022 |
0023 1
0024 |
0025}
0026 !
0027 1
0028 |
0029 !
0030 |
0031 1
0032 )
00331
0034 |
0035 |
0036 1
0037 |
0038 )

PAL_B DEVICE 'P16L8";

RW.DS,S1,50,A0ALP,A18,A17,GND PIN 1,23.4,5,6,7,89,10 ;
A15,ROMCE,.RAMIW RAM2W ,RAM3W,RAMCE ~  PIN 11,12,13,14,1516 ;
RAM4W COPE,RAMOE, VCC PIN 17,18,19,20 :

HLX = 10X :

EQUATIONS

IRAMCE=(RW& P& IDS)#(lAI8S & IA17T & IP& IDS ) ;
IRAMIW = ( 1A18 & IAI7 & IRW & IAl & A0 & IDS );

IRAM2W = ( IAI8 & 'AI7 & IRW & 1Al & 1S0 & IDS )
# ('Al8 & 'A17 & IRW & 1Al & A0 & IDS )
#(I1AIB & IAIT& IRW & 1Al & S1 & IDS );

IRAM3W = ( 1A18 & IA17 & IRW & Al & IA0 & IDS )
(1A18 & 1A17 & IRW & 1A] & 1S]1 & 1S0 & DS )
(JAIB & IAIT & IRW & IAl &£S1 &S0 & IDS)
(1A18 & 1A17 & IRW & 1A] & A0 & 1SO & IDS );

(1A18 & 1A17 & IRW & SO & S1 & A0 & IDS )
Al8 & 1A17 & IRW & I1S1 & 1SO & IDS )
A

18 & 1A17 & IRW & Al & A0 & !DS)

#

#

#
IRAM4W =

#

#

# (1A18 & |A17 & IRW & Al & S1 & IDS );

(!
(!
(!
IROMCE = (IA17 & RW & P& IDS)#(AIB&ERW & P& IDS)

IRAMOE = (1A18 & 1A17 & RW & IP) H
ICOPE = (IA18 & Al7 & 1ALS) 3

0039 ltest_vectors ( [A18,A17,A15RW P,A1,A0,5],S0,DS] ->

0040 | [RAMCE,RAM1W ,RAM2W , RAM3W,RAM4W ROMCE,RAMOE,COPE])
0041 |

0042 I"RAMCE

0043 | XXXLHXXXXL] > LXXXXXXX] ;
0044 | (LLXXLXXXXL]-> [LXXXXXXX] ;
0045 ["RAMIW

0046 | LLXLXLLXXL]->XLXXXXXX] :
0047 I"RAM2W

0048 | {LLXLXLXXLL]->[XXLXXXXX) :
0049 | LLXLXLHXXL]->XXLXXXXX] ;
0050 | LLXLXLXHXL]-> [XXLXXXXX] ;
0051 I"RAM3IW

0052 | LLXLXHLXXL]->[XXXLXXXX] ;
0053 | LLXLXLXLLL]-> (XXXLXXXX] ;
0054 1 (LLXLXLXHHL]-> [XXXLXXXX] :
0055 | LLXLXLHXLL]-> [XXXLXXX,X] :
0056 I"'RAM4W

0057 | LLXLXXHHHL] -> XXXXLXXX] ;
0058 | LLXLXXXLLL]-> [XXXXLXXX] H
0039 | [LLXLXHHXXL] -> [XXXXLXXX] ;
0060 | [LLXLXHXHXL]-> (XXXXLXXX] ;
0064 I"'ROMCE

0062 | XLXHHXXXXL] > (XXXXXLXX] ;
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0063 | MXXHLXXXXL] > XXXXXLXX]

% :"RAM(I)EL.XHLJQXX.XX] XXX XXLX]
>

0066 I"COPE & AX

m : [LHLXXXXXXX] > XXXXXXXL]

0069 |

0070 |

0071 lend
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B. PAL B DOCUMENT FILE

Page 1
ABEL(tm) Version 2.00b - Document Generator 03-May-89 11:11 AM
Equations for Module palb
Device PAL_B
Reduced Equations:

RAMCE = (IDS & P & IRW # IA17 & !A18 & IDS & IP);
RAMIW = (A0 & 1Al & IA17 & 1A18 & IDS & IRW),
RAM2W = A0 & IA} & 1A17 & JAl18 & IDS & IRW

#1A]1 & 1A17 & 1A18 & DS & IRW & 1SO
# 1Al & |A17 & 1A18 & IDS & IRW & Sl);

RAM3W = (IA0 & Al & 1A17 & !A18 & IDS & IRW
# A0 & 1A]1 & |AL17 & 1A18 & IDS & IRW & IS0
# 1A1 & 1A17 & !A18 & IDS & IRW & 150 & 1S]
# 1Al & 1A17 & |A18 & IDS & IRW & SO & S1);

RAM4W = |(A0 & Al & 1A17 & 1AI8 & IDS & IRW

# Al & 1A17 & 1A18 & IDS & IRW & S1

# IA17 & IAI8 & IDS & IRW & IS0 & 1S1

# A0 & 1A17 & 1A18 & IDS & IRW & SO & Sl);
ROMCE = |(1A17 & IDS & P & RW # Al18 & IDS & IP & RW);
RAMOE = {(1A17 & 1A18 & IP & RW);

COPE = I(1A15 & Al7 & 1A18);
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ABEL(tm) Version 2.00b - Document Generator

Chip diagram for Module palb
Device PAL_B
P16L8
\ /
| N/ !
| ———— |
RW1 1 20 { VCC
DS|I 2 l9|_ | RAMOE
Sl'l 3 18' | COPE
SOll 4 17I | RAM4W
AOIJ 5 lﬁl | RAMCE
Alll 6 15I | RAM3W
Pll 7 14' | RAM2W
Als,l 8 l; | RAMIW
Al7ll 9 12I | ROMCE
GN;)I 10 ;l 1 A1S

Page 2 )
03-May-89 11:11 AM

-
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. Page 3 )
ABEL(tm) Version 2.00b - Document Generator 03-May-89 11:11 AM
Fuse Map for Module palb
Device PAL_B
0 10 20 30
0:

32! X e -x_.x..-.x -

544: X-Xmr ~X—Xer — X=X —

576: -X-XX-wrm - Xmr e X=X
608: -X-X-X--X wmrmmeee ~oe-X—-X -

640: -X-XX-—-X- —X-omemr XX -

800: -X-X-—- —reeoee Xmoeee -
832: -X——eome e XXX -

1056: -X-X-—ere XX ~e-X=-X
1088: -X-X-—nX ~Xorm X~ oo X X -
1120: -X-X-X—-X ~—eX— XX -
1152: -X-XX-~-X- ——me X - XX -

1312; -X-Xemo =XoroKer meXeeX =
1344; -X-X-mreX e Kow XX
1376: -X-XK-rme -eeeeXom wemeeX—-X

1568; XX —X—Xow XX —
1600: JOXOO00TK J0OCONKK. KOTKHKKK XX
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Page 4 :
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Fuse Map for Module palb
Device PAL_B

1632: 20000OXXX. X000 XOOOXXXXX XX
1664: XXXXOCOOOX XOOO00OKKX XXXXXXXXXX XX
1696: XOOOOOXXXX JOXOOXXXXAX. XXXXXXXXXX XX
1728: X000000KX. XXX X XXOXXXXXXX XX
1760: X000 XXX X XXXXXXXXXX XX
1792; -

1824: -XX-—m— e XoororX —
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for Module palb
Device PAL_B

Device Type: P16L8

Page § '
03-May-89 11:11 AM

Terms Used: 26 out of 64

Terms

Pin#| Name | Used| Max | Term Type | Pin Type
1 IRW t -1 -1 —  Alnput

2 IDS 1 -1 -1 - Ilg;)gn

3 18t I -1 -1 —  |Input

4 150 =1 -1 -~ |Input

5 1A0 { - -1 —  |Input

6 1Al I -1 -1 — |Input

7 1P I =1 -1 — |lnput

8 |AIl8 I -t -1 -— |Input

9 1A17 Il -1 - - {Input

10 IGND =1 - - lg“ND
11 1 A15 Il -1 -t —  {lnput

12 | ROMCE I 21t 7 I Nommal | Output
13 | RAMIW I 11 7 Nomal |10
14 | RAM2W 1 31 7 INomal 11O
15 1| RAM3W I 41 7 INomal |(JO
16 | RAMCE 1 21 7 {Noma |[VO
i; | RAM4W I 41 7 INomal 1O
19

20

end of module palb
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