DTIE FILE CoPY o @

NCS TIB 87-8

NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN
87-8

TRANSFORM CODING AND DIFFERENTIAL
PULSE CODE MODULATION :
FOR GROUP 4 FACSIMILE

DTIC
ELECTE R

SJuust i
B

AUGUST 1987

90 07 ‘12 051

—— AD-A223 954

4. TITLE AN sUsTE

H

for Group 4 Facsimile
6. AUTROR(S)

T P TRF GRS DR oA oM TATAT AT R AT T T
¢ Delta Information Systems, Inc.

: Horsham Business Center, Bldg. 3

300 Welsh Road

Horsham, PA 19044

4

{ Transform Coding and Differential Pulse Code Modulation

1 AGENCY USE ONLY - - ?M 1_7":'” R 'T S I A TU T
i August 1987 : Final

_'C—DCA100—83-C—0047

[S SPONSORING MONITORING AGENCY NARME
National Communications System
Office of Technology & Standards

Washington, DC 20305-2010

p =
(NEOARD ALDHYSWES)

fGOSPORSTRING ADA TORING
1 AGENLY REPCRT NUMBER

NCS TIB 87-8

11 SUPPLEMIENTARY NGTLS

-

123 ISTRIBUTION AVALARILITY STETEMENT

Approved for Public Release; Distribution is unlimited.

126 DISTRIBUTION CODE

o st

hEJEIPIrst

13, ABSTRACT A PR IR RN S

transmission of black-white imagery only.

distorted by basic Group 4 machines.

This document comparies Transform Coding with Differential Pulse Code Modulation
i (DPCM) in order to determine the relative effectiveness of each technique as
applied to the compression of gray scale images for Group 4 facsimile.
present time, the CCITT Recommendations for Group 4 facsimile permits the
Consequently, any input page
containing gray scale information, such as a photograph, will be severely
However, there are plans by the CCITT

At the

{ to add a Gray Scale option to the Group 4 facsimile standard for transmitting
{ pictorial data.
% f,(«. vy v:;“f
! v '
14, SUBJECT TERMS T : TSR
-Differy ial Pulse Code Modulation (DPCM)I ~Facsimile, 165
Group 4 Transform PRy POt QD!
Gray Scale Coding,/ﬁi}f R
17 SECURITY ClACerICaTiON 110 SICURNY CrACsiCaTii e i iiiTRTe G m i RT TN 120 oRm A Cr i Ao Te AT
OF REPORT OF THIS PAGH ! ST T P
Unclassified Unclassified ; Unclassified j uL
- et s , N

R,

NCS TECHNICAL INFORMATION BULLETIN 87-8

TRANSFORM CODING AND DIFFERENTIAL PULSE CODE
MODULATION FOR GROUP 4 FACSIMILE

PROJECT OFFICER APPROVED FOR PUBLICATION:

ﬁw}b, " Boctiesin Q@MM Qe.e(’;t(/—;

DENNIS BODSON DENNIS BODSON
Senior Electronics Engineer Assistant Manager
Office of NCS Technology Office of NCS Technology
and Standards and Standards
FOREWORD

Among the responsibilities assigned to the Office of the Manager, National
Communications System, is the management of the Federal Telecommunication
Standards Program. Under this program, the NCS, with the assistance of the
Federal Telecommunication Standards Committee identifies, develops, and
coordinates proposed Federal Standards which either contribute to the
interoperability of functionally similar Federal telecommunication systems or
to the achievement of a compatible and efficient interface between computer and
telecommunication systems. In developing and coordinating these standards, a
considerable amount of effort is expended in initiating and pursuing joint
standards development efforts with appropriate technical committees of the
Electronics Industries Association, the American National Standards Institute,
the International Organization for Standardization, and the International
Telegraph and Telephone Consultative Committee of the International
Telecommunication Union. This Technical Information Bulletin presents an
overview of an effort which is contributing to the development of compatible
Federal, national, and international standards in the area of facsimile. It
has been prepared to inform interested Federal activities of the progress of
these efforts. Any comments, inputs or statements of requirements which could
assist in the advancement of this work are welcome and should be addressed to:

Office of the Manager

National Communications System
ATIN: NCS-TS

Washington, DC 20305-2010

COMPUTER SIMULATION OF
TRANSFORM CODING FOR

GROUP 4 FACSIMILE

August, 1987

Final Report
Submitted to:
NATIONAL COMMUNICATIONS SYSTEM
Office of Technology and Standards

Washington, DC 20305

Contracting Agency:
DEFENSE COMMUNICATIONS AGENCY
Contract Mumber - DCA100-83-C-0047

Modification/Task Number - P00009/2

DELTA INFORMATION SYSTEMS, INTC.
Horsham Business Center, Bldg. 3
300 Welsh Road

Horsham PA 19044

Table of Contents

Section
1.0 Introduction+
1.1 Synopsis. « « ¢ ¢ . o < . .
2.0 Technical Approach
2.1 Transform Coding Techniques
2.1.1 Transformation Techniques. . .
2.1.2 Sub-block Coding Techniques .
2.2 Algorithm Descriptions
2.2.1 Discrete Cosine Transform.
2.2.2 Conditional Zonal Coding .
2.2.3 Adaptive Zonal Coding. . . .
2.2.4 Chen-Smith Coding. I
2.2.5 Image Dependent Chen-Smith Coding.
2.3 Selection of Test Images
3.0 Results. . . . ¢ ¢« ¢ v o v o 4 o 4 4 e e e e
3.1 Compression Statistics.
3.2 Output Images . . + « o o o o o « o o o
3.3 Algorithm Complexity. « . . .
3.4 DPCM Comparison
4.0 Conclusions and Recommendations. . .
4.1 Conclusions« « « . .
4.2 Recommendations for Further Study
APPENDIX A - SOFTWARE DOCUMENTATION

REFERENCES

ii

.

) 4
4- 1 or)
&IT
4- 4
ad 0
Llon___________

—_—]

By .
Qig}riyution/
AY§}{abili;;‘E;;;s
jAvall and/op
Dist ‘ Spectal

M |

1.0 INTRODUCTION

This document summarizes work performed by Delta Information
Systems, Inc., for the Office of Technology and Standards of the
National Communications System, an organization of the U. S.
Government, headed by National Communications System Assistant
Manager for the Office of Technology and Standards, Dennis
Bodson. Mr. Bodson is responsible for the management of the
Federal Telecommunications Standards Program, which develops
telecommunications standards, the use of which is mandatory for
all Federal agencies. The purpose of this study, performed under
Task 2 of Modification Number P00009 of contract number
DCA100-83-C-0047, was to compare Transform Coding with
Differential Pulse Code Modulation‘(DPCM) in order to determine
the relative effectiveness of each technique as applied to the
compression of gray scale images for Group 4 facsimile.

At the present time, the CCITT Recommendations for Group 4
facsimile permit the transmission of black~white imagery only.
Consequently, any input page containing gray scale information,
such as a photograph, will be severely distorted by basic Group 4
machines. However, there are plans by the CCITT to add a gray
scale option to the Group 4 facsimile standard for transmitting
pictorial data.

Both Differential Pulse Code Modulation (DPCM) and transform
coding techniques have been used with some success to compress

pictorial (gray scale) data. Each of these techniques has some

attractive characteristics and some limitations. Transform

coding systems achieve superior performance at high compression,
and show less sensitivity to picture data statistics compared to
DPCM systems. On the other hand, DPCM systems achieve better
performance at lower compression and are less complex to
implement, as compared to transform coding systems.

This report is comprised of four sections. Section 1.0
provides a brief description of the objectives of the study and
contains a synopsis that outlines the results obtained and
conclusions made. Section 2.0 presents the technical approach
employed in the study and includes a discussion of gray scale
compression techniques, detailed descriptions of the transform
coding algorithms simulated, and a discussion of the test image
selection process. The results of the simulation study are
presented in Section 3.0, and the conclusions and recommendations

made based on these results are contained in Section 4.0.

1.1 Synopsis

Transform coding algorithms generally consist of two basic
steps, the transformation step and the sub-block coding step. 1In
the transformation step, the image is first divided into sub-
blocks of (NxN) pixels each (in this study N=16); each sub-block
is then transformed from a set of gray level values into a set of
coefficients by applying to it a linear transformation such as
the Fourier transform. In this study, it was determined that the

type of transform employed had less of an impact on image

compression than the sub-block coding technique employed. An
analysis of the available transforms, based on complexity of
implementation and overall performance, was performed; the
Discrete Cosine transform (DCT) was selected as the transform to
be employed in simulating four transform coding algorithms, each
of which employs a different sub-block coding technique.

Four sub-block coding techniques were then selected from
among the many available algorithms of this type. The
conditional zonal coding technique compresses an image by
discarding all but a pre-determined number of coefficients within
each sub-block (i.e. those in a specified "zone" of the
sub-block) and then further quantizing the retained coefficients.
The adaptive 2zonal coding technique is a variation of the
conditional zonal coding technique; it adds the element of image
dependency in that it determines the number of coefficients
retained in each sub-block based on the local image statistics.

The basic Chen-Smith coding technique is more complex than
the two zonal coding techniques in that it requires two passes
over an image in order to compress it. In the first pass,
statistical information is gathered in order to characterize the
image; in the second pass, these statistics are employed in order
to assign code bits to the coefficients in each sub-block. The
image dependent Chen-Smith coding technique is a variation of the
basic Chen-Smith coding technique that adds image dependency to
the compression process. The effect of this image dependency is

that more coding bits are assigned to the more active regions of

the image and fewer coding bits are assigned to the less active
regions of the image. At a given target compression, the image
dependency improves the image quality with images containing a
significant amount of activity and improves the achieved
compression with less active images.

Two DPCM compression algorithms were simulated in a
previous study performed by Delta Information Systems: the first,
conditional DPCM, employs a three-neighbor gray level value
predictor, a non-linear three-bit quantizer, Huffman entropy
coding, and an optional staggered horizontal subsampler and
corresponding interpolator; the second, adaptive DPCM, employs a
three neighbor gray level value predictor, an extended non-linear
five-bit quantizer, adaptive arithmetic coding, and optional
horizontal and vertical spatial filters.

The image dependent Chen-Smith coding algorithm produced the
best overall image quality of the four transform coding
algorithms, followed by the basic Chen-Smith, adaptive zonal, and
conditional zonal coding algorithms. The DPCM algorithms

produced image quality comparable to the transform coding

" algorithms at bit rates above 1 bit/pixel, and performed slightly

better than the transform coding algorithms at bit rates as low
as 0.63 bits/pixel. However, the DPCM algorithms could not
achieve compression below 0.63 bits/pixel; the transform coding
algorithms offer the advantage of selectable compression, and
thus can reach much lower bit rates (0.10 bits/pixel in this

study) .

The DPCM algorithms are much less complex than the transform
coding algorithms in terms of implementation, and produce
very good image gquality at relatively low bit rates. DPCM
algorithms should be considered in applications where ease of
implementation, moderate compression, and good image quality are
required. The transform coding algorithms are much more flexible
than the DPCM algorithms parametrically; they can be modified
easily to suit changing performance requirements. Transform
coding algorithms should be considered in applications where the

tradeoff between image quality and compression is variable, and

ease of implementation is not critical.

2.0 TECHNICAL APPROACH

2.1 Compression Techniques

Figure 2.1 illustrates the wide range of gray scale coding
techniques which could be employed in implementing a gray scale
option for Group 4 facsimile. Two of these techniques,
differential pulse code modulation (DPCM) and transform coding,
were compared in this study. Simulations of several DPCM
algorithms were performed by Delta Information Systems in a
previous study (Ref. 4); the results of those simulations were
used in this study for comparison purposes. The simulation
effort in this study was therefore centered on the transform
coding algorithms to be discussed shortly.

Transform coding algorithms, generally speaking, operate as
two step processes. The first step involves performing linear
transformations on the original signal (separated into sub-blocks
of N x N pixels each), in which signal space is mapped into
transform space. In the second step, the transformed signal is
compressed by encoding each sub-block through quantization. The
reconstruction operation involves performing an inverse
transformation of each decoded transformed sub-block. The
function of the transformation operation is to make the
transformed samples more independent than the original samples,
so that the subsequent operation of quantization may be done more

efficiently.

SANDINHDAL ONIAOD JTVOS AVYOD 1°C IYNOIA

_ Wod
!
_
_

_] 1 _

000§ __
DUYNVYLS |
_
ll_ QYVWVAYH _ YOLVTOJYILNI _ ATIVIIVA 'd3IXId L
YIHLIA | -HSTVM | J3aquo | HLONAT dA00 |
! _ IS¥Id | |
| | _ az ‘at __| ~
NJidd SLy3god | LNYTS | YOILVTIOJYIALNI __ | NOILOIAddd] '
| | ¥g3qiao | |
I | oyaz | (v ‘e ‘z) __| ~
dNVId-LIdg | (1D0d) IANISOD | | mdm2<m\m&Hm ILTINKW |
{ d1390sIa | JorLoIaE¥d | _
_ _ yaaquo | (*aow viTaa) |
NOILVZILINVND _ | (ITM) IAZOT __| o¥dz | dTdWYS/LIg T |
JorLodA | NANOHYYNY ~ | | _
_ _ _
| | NOILVTOdYHALNI WOd
dJHLO WIOJASNYY.L \ZOHBUHQNMQ TYILNIYIIAIA
_
_

ONIJOD JOVHWI
dTVOS-AVYD

The transformation operation itself does not provide
compression; rather, it is a re-mapping of the signal into
another domain in which compression can be achieved more easily.
It is for this reason that the specific type of transform used
will have less of an impact on image quality and compression than
the efficient selection of coefficients to be retained and the
number of bits allocated to them (i.e., quantization).

Therefore, somewhat greater emphasis was put on evaluating sub-
block coding techniques, which have more of an impact on image
quality and data compression, than the transformation techniques

themselves.

2.1.1 Transformation Techniques

Transforms that have proven useful include the Karhunen-
Loeve, Discrete Fourier, Discrete Cosine, and Walsh-Hadamard
transforms. These transformation techniques were investigated in
this study in order to select one particular transform technique
to be used in the simulation effort. The selection was based on
the overall performance and relative complexity of each candidate

technique.

Karhunen-Loeve Transform

The Karhunen-Loeve transform (KLT) is considered to be an

optimum transformation, and for this reason many other

transformations have been compared to it in terms of performance.
However, the KLT has certain characteristics that make it less
than ideal for image processing. These include the necessity to
estimate the covariance matrix before processing in both row and
column processing operations. Also, the actual eigenvector
determination must be carried out to generate the basis matrix.
These drawbacks would not be significant if the efficiency of the
KLT was much greater those that of other transforms. However,
for data having high inter-element correlation, the performance
of other transforms (such as the Discrete Cosine transform) is
virtually indistinguishable from that of the KLT, and thus does
not warrant its added complexity. Therefore, the KLT was not

chosen for investigation in this study.

Discrete Fourier Transform

The Discrete Fourier transform is one of the few complex
transforms used in data coding schemes. There are disadvantages
in using a complex transform for data coding, the most obvious of
which is the storage and manipulation of complex numbers. Again,
as in the case of the KLT, this complexity issue would not be a
factor if the performance of the DFT was significantly greater
than that of other transforms. However, other transforms which
are less complex perform better than the DFT. For this reason,

the DFT was not investigated in this study.

Discrete Cosine Transform

The discrete cosine transform (DCT) is one of an extensive
family of sinusoidal transforms. In their discrete form, the
basis vectors consist of sampled values of sinusoidal or
cosinusoidal functions that, unlike those of the DFT, are real
number quantities. The DCT has been singled out for special
attention by workers in the image processing field, principally
because, for conventional image data having reasonably high
inter-element correlation, the DCT's performance is virtually
indistinguishable from that of other transforms which are much
more complex to implement. Because of its excellent performance
and comparatively simple implementation, the Discrete Cosine

Transform was chosen for evaluation in this study.

Walsh-Hadamard Transform

The three transforms mentioned previously have basic
functions which are either cosinusoidal, i.e. the Fourier and
Discrete Cosine, or are a good approximation of a sinusoidal
function, such as the Karhunen-Loeve Transform. The Walsh-
Hadamard Transform is an approximation of a rectangular
orthonormal function. The actual transform consists of a matrix
of +1 and -1 values, which eliminates multiplications from the
transform process. The elimination of multiplications is a

significant property, since the aforementioned transforms require

real or complex multiplications. However, the Walsh~Hadamard
transform does not provide the excellent performance that the
Discrete Cosine Transform provides. Therefore, the Walsh-

Hadamard transform was not chosen for evaluation in this study.

2.1.2 Sub-Block Coding Techniques

Perhaps more important than choosing a specific transform
method for image processing is choosing a method for coding the
matrix coefficients after transformation. Of the many
coefficient coding schemes discussed in the literature, four were
selected for evaluation in this study. The first is a simple,
non-adaptive, conditional zonal coding technique which uses a
fixed number of bits to encode an image. The second is an
adaptive, one-pass, image dependent zonal method which uses as
many bits as necessary to code a particular image.

The third and fourth sub-block coding algorithms selected
are variations of an algorithm developed by Chen and Smith (Ref.
1), which are significantly more complex than the two zonal
methods. The basic Chen-Smith technique is adaptive, as is the
adaptive zonal technique; however, two passes over the image are
necessary. In the first pass, statistics are gathered and bit
maps are produced. 1In the second pass the image is actually
coded for transmission. The second variation of the basic Chen-
Smith algorithm adds image dependency to the coding scheme. All

of the coding techniques evaluated in this report use a (16x16)

Discrete Cosine transform. The following paragraphs describe the

coding techniques in more detail.

Conditional Zonal Technique

In conditional zonal coding, all coefficients in a sub-block
that are outside a specified zone (usually the upper left hand
corner of the sub-block) are discarded prior to the quantization
step. The number of coefficients retained per sub-block is
selected based on the compression desired; this number remains
constant for all sub-blocks in the image. After the significant
coefficients have been extracted from the sub-block, they are
normalized and quantized to a fixed number of bits through
various arithmetic operations based on general image statistics. -
At the receiver, arithmetic operations to reverse the
normalization process are performed to produce reconstructed
transform coefficients (with quantization error) in the specified
zone of the sub-block:; all of the coefficients discarded in the
encoding process are set to zero, and the reconstructed sub-block
is ready to be inversely transformed.

This technique is extremely simple and requires a minimal
amount of overhead as compared to the Chen-Smith techniques to be
discussed shortly. The conditional zonal technique can be
thought of as being on the simple end of the complexity spectrun,

while the Chen-Smith techniques are on the complex end. This

technique was investigated in this study for that reason; that

is, to compare a simple and a complex coefficient coding

technique in terms of compression and image quality.

Adaptive Zonal Technique

The adaptive zonal coding technique is a combination of
threshold coding and conditional zonal coding. In straight
threshold coding, a specific energy amplitude is selected, and
only those transform coefficients in a sub-block that are above
this threshold value are retained; the other coefficients are
discarded. A major disadvantage to threshold coding is the
overhead required to store information regarding the location
within the sub-block of the coefficients which are retained.
Zonal coding, as described above, quantizes only those’
coefficients in a specified area, or zone; because the positions
of the retained coefficients are known, the information
concerning their locations need not be stored.

The adaptive zonal technique is a hybrid scheme providing
the benefits of both zonal and threshold coding. Coefficients in
a specified zone are compared to a selected threshold value in an
ordered pattern until a coefficient value below the threshold is
encountered. When a coefficient below the selected threshold is
encountered, the remaining coefficients in the specified zone are
discarded, and the retained coefficients are normalized and
quantized as in the conditional zonal coding technique; The only

additional overhead required by the adaptive zonal coding

technique is to store the number of coefficients retained in each
sub-block. The adaptive zonal coding technique achieves superior
performance in terms of compression over the conditional zonal
coding technique by eliminating some of the trivial coefficients

that would be unnecessarily encoded by the conditional technique.

Basic Chen-Smith Technique

The basic Chen-Smith coding technique (Ref. 1) is very
popular for coding both monochrome and color images. This
technique uses Max's method of optimum quantizer design (Ref. 3),
assuming Gaussian DC and AC coefficient probability density
functions. Transform sub-blocks of the original image are
assigned to one of four classes on the basis of sub-block AC
energy. The variance of each coefficient is calculated and used
in a bit allocation technique in order to determine a bit
assignment map for each class. The transform coefficients are
normalized by their corresponding variances to achieve unit
variance prior to quantization. The basic Chen-Smith approach is
designed to achieve a given compression no matter what image is
to be compressed. This means that, for a given compression, the
image qualitv of more complex images is poorer than that of less

complex images.

Image Dependent Chen-Smith Technique

In addition to the standard Chen-Smith technique described

above, a variation of this technique was evaluated in this study.

This variation adds image dependency to the technique by
analyzing all of the AC energies of sub-blocks in the image in

order to allocate more bits to busy sub-blocks. More bits are

allocated per sub-block to images with a high amount of activity,

and fewer bits per sub-block are allocated to images with a low
amount of activity in order to achieve higher compression for
images with low activity, and better image quality for images

with high activity.

2.2 Algorithm Descriptions

The algorithms for the Discrete Cosine Transform (DCT) and
the four sub-block coding techniques are described in this
section. The DCT algorithm which was used in each of the four
sub-block coding techniques is described first, followed by the
descriptions of the four sub-block coding techniques. The
software documentation for all simulation software is presented.

in Appendix A.

2 - 10

2.2.1 Discrete Cosine Transform

The implementation of the Discrete Cosine Transform
algorithm requires the division An image into 2 series of (NxN)
sub-blocks of pixels. Each sub-block is transformed by a two
dimensional (NxXN) Discrete Cosine Transform process as follows:

(T] = [c]l-([D]-[C]T .
where [T] is the transformed sub-block, ([C] is the DCT basis
matrix, and (D] is the input data sub-block ([C]T is the
transpose of the DCT basis matrix). The DCT basis matrix
coefficients were determined from the following relation:

Ci.j3 = Co*¥(2/N)+(cos(i-(j + 0.5):(nn/N))) '
where Co = 1/v2 for i = 0, Co = 1 otherwise, and i=j=0 to N-1.
This transformation converts each (NxN) sub-block of pixels into
an (NxN) matrix of transform coefficients, which consists of one
DC coefficient and (NxN - 1) AC coefficients. The sum of the
squares of all of the AC coefficients in a given transform matrix
is known as the AC energy of that transform matrix, and will be
referred to as such throughout this report.

The size of the (NxN) transform chosen for use in the
simulations was (16x16). The (16x16) transform size was chosen
primarily because it has been used frequently in past
applications in the image processing field. It is also a
compromise between an (8x8) transform, which would increase
overhead due to the greater number of sub-blocks in an image, and

a (32x32) transform, which would increase the complexity of the

2 - 11

R_B

system. This (16x16) Discrete Cosine Transform was used in the

four coding techniques discussed below.

2.2.2 Conditional Zonal Coding

The conditional zonal coding technique encodes transform
coefficients of a particular zone of each image sub-block. The
size of the zone used in the algorithm is determined by an input
parameter that designates the desired number of coefficients to
be retained for quantization. The number of coefficients
retained in each sub-block remains constant throughout the
encoding of the image, which makes this technique non-adaptive.

When simulations were performed on training images,
statistics were gathered on transform coefficients over the
entire set of training images. These statistics included the
variances of the coefficients, which were employed in order to
determine the processing order of the coefficients within the
selected zone of the sub-block, and the minimum-maximum values of
the coefficients, which were used to normalize and quantize the
coefficients for compression purposes. The variances were
computed assuming an AC coefficient mean of zero.

The coefficient processing order was determined based on
decreasing coefficient variances. This order is much like the
classical zig-zag technique (Figure 2.2) with minor variations
(Figure 2.3). The reason for the change in order from the zig-

zag ordering was that the zig-zag ordering did not exactly match

2 - 12

3 4 10 11 21 22 36 37 55 56
5 9 12 20 23 35 38 54 57

13 19 24 34 39 53 58

14 18 25 33 40 52 59

15 17 26 32 41 51 60

~N OB
o

28 30 43 49 62
29 44 48 63

45 47 64 70

46 65 69

66 68

67

Figure 2.2 - Zigzag Order Technique

1 3 6 10 16 25 35 45 56
2 5 9 14 19 24 34 44 60
4 8 12 20 26 32 43 53 62

11 18 21 30 39 49 63
15 23 29 36 48 59 70
22 31 38 47 57 68

27 37 42 55 66

40 46 50 61

Figure 2.3 - Ordering Matrix Employed in Zonal Coding

16 13 13 12 10 8 8 5 4
1313109 9 7 6 5 4
13109 9 8 7 4 5 3
13109 8 8 7 6 4
12109 7 7 7 6

108 7 8 7 5 3

108 6 7 6 5

107 6 5 4

5 6 5 3

5 5 5

7

3

2

Figure 2.4 - Dividing Factors Employed in Zonal Coding
2 - 13

the order of variances of the DCT. Therefore, in order to
optimize the quantization of coefficients, this wvariation of the
zig-zag technique was implemented.

When a number of coefficients is specified for retention in
the zonal technique, the zone is determined by starting with the
DC coefficient and then proceeding in the order of decreasing
variance until the specified number of coefficients is reached.
For simulation purposes, the maximum number of coefficients which
can be kept in this ordering technique is 70 (It was
experimentally determined that all coefficients beyond the 70!t
were relatively insignificant.). All coefficients which are not
quantized are assumed to be zero at the decoder for inverse
transform purposes.

The quantization technique used is a uniform 8-bit
quantizer. When statistics were gathered on the training images,
a minimum-maximum matrix of coefficients was produced showing
minimum and maximum coefficient values. Once the minimum and
maximum values were known, dividing factors were assigned to =ach
coefficient position (Figure 2.4). When a division is performed
for quantization on the coefficients, the results are placed in
8-bit values for transmission (7 bits for data and 1 sign bit).
The coefficient reconstruction is performed by multiplying the 8-
bit quantized value by the dividing factor for that specific

coefficient position.

2 - 14

2.2.3 Adaptive Zonal Coding

The adaptive zonal coding technique employs the same
coefficient ordering and coefficient quantization methods used in
the zonal technique. Adaptivity is achieved by proceeding in the
order shown in Figure 2.3 until a coefficient is encountered
which is less than a user-specified AC energy threshold. The
ordering system used (by order of variance) is the actual
decreasing order of the coefficients in most cases; however,
depending on the image data, the actual order may vary from the
preset ordering sequence. For this reason, a look-ahead method
was devised in order to prevent reaching the threshold (which
would terminate the encoding of that sub-block) prematurely if
subsequent coefficients were significantly greater in magnitude
than the current coefficient being evaluated.

When the AC coefficient threshold is reached, the next two
coefficients in the specified order are examined. If both of
these coefficients are 50 times greater than the AC coefficient
threshold, the processing of the sub-block continues. This type
of look-ahead processing was implemented in order to decrease the
probability of terminating sub-block encoding before significant

transform coefficients are encountered.

2 - 15

2.2.4 Chen-Smith Coding

The Chen-Smith coding technique is a two-pass image coding
technique. 1In the first pass, transform matrix statistics are
gathered over the entire image. The statistics-gathering process
involves the storage of the AC energies of all sub-blocks in the
image, and the variances (the sum of the squares of the
coefficients in each position of the transform matrix over the
entire image) of the transform coefficients. Once the statistics
are gathered, a map of the image is produced (Figure 2.5) using
four sub-block classification levels. The map is produced using
the AC energies cf the sub-blocks, assigning high classification
levels (4 or 3) to sub-blocks with high AC energies (i.e. high
activity sub-blocksf, and low classification levels (1 or 2) to
sub-blocks with low AC energies (low activity sub-blocks). The
map has (M / 4) entries of each classification level, where M is
equal to the number of sub-blocks in the image.

After the classification map is produced, bit allocation
maps (Figure 2.6) are generated for each class. The bit
allocation maps are produced using a bit allocation function
which generates each bit map based upon a specified average
amount. of bits/coefficient to be used for quantization; a higher
number of average bits are allocated to the higher classification
levels and a lower number of bits to the. lower levels. Since
there are an equal number of sub-blocks of each class and esach

bit allocation map has a fixed number of average bits, the

2 - 16

AN NN AANTANN
LA NN NN NN A NON A At A
NLPFALSOITOONNNANNNAAAANNAA
HAAONNLTONOONON A Neted A A A A
HAANN AN LA AN A AT A A
HNAHNNONNDANAEONONANAANOA
NeA A AN AAAANTONTNANNAAANA
LPANANNAATNNANAN AN A A
NN ANNAATNANANANANONNNANAN
NN ANNAND A OON AN AN AN
NOONO NN HNNOAON AN N A
Nt NN AN AN ANNANON AT
NN NNOANNNANANNANANOAAO
PSS NNLANA AT AN O
PLLSONONLSLTINNANNTNANNNANT N
PLPLONNDLSILONLLS LS eAAAND VA AP
NLPLDLIOANNLNONONNANNON Q<P
NNLFONNONNNNNDPLDPIONONNS
NANNNANNNPILSLSP IS AN AN
MO SLS LIPSO DIITANAANAN

sub-block image

(20 x 20)

Figure 2.5 - Classification map of a

Each value represents a (16 x 16) pixel sub-

a

-
r

A 1 specifies a low activity sub-block

4 specifies a high activity sub-block.

block.

Note:

2 - 17

8765433221110000
7665433221110000
6554433221110000
5544433322111000
4443333222111000
3333322222111100
3333322221111100
2223222111111000
2222322111111100
2222221111111000
1111111111100000
1111111111100000
1111111111100000
1111111111000000
1111111111000000
1111111111000000

Class 4

Figure 2

8654432221110000
6554432221110000
5544433221110000
4443333222110000
3333333222111000
3333222222111100
2222222221111000
2223321111111100
2223432111110000
1212321111101000
1111111111000000
1111111111000000
1111111111000000
1111111111000000
1111111111000000
1111111122100000

Class 3

8543322111100000
5544332211000000
4433332211100000
3333322211100000
3332222111100000
2222221111100000
2222211111100000
2111211110000000
1112221110000000
1111111100000000
1111111000000000
1110111100000000
1000001000000000
0000001100000000
0000000100000000
1000000011000000

Class 2

8332110000000000
3322111100000000
2221111100000000
1111111000000000
1111100000000000
1110000000000000
1000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

Class 1

.6 - Bit Allocation Maps of the Chen-Smith Algorithm

8765555500000000
7765555000000000
6555555000000000
6655550000000000
6655550000000000
6555500000000000
5555500000000000
5555000000000000
5555000000000000
5550000000000000
5500000000000000
5500000000000000
5500000000000000
5500000000000000
5500000000000000
5500000000000000

Class 4

8765555000000000
7765550000000000
5555550000000000
5555500000000000
5555500000000000
5555500000000000
5555000000000000
5555000000000000
5550000000000000
5550000000000000
5500000000000000
5500000000000000
5500000000000000
5500000000000000
5500000000000000
5500000000000000

Class 3

8655550000000000
6655550000000000
5555500000000000
5555000000000000
5555000000000000
5550000000000000
5550000000000000
5500000000000000
5500000000000000
5500000000000000
5000000000000000
5000000000000000
5000000000000000
5000000000000000
0000000000000000
0000000000000000

Class 2

8555550000000000
5555500000000000
5555500000000000
5555000000000000
5550000000000000
5550000000000000
5500000000000000
5500000000000000
5500000000000000
5000000000000000
5000000000000000
5000000000000000
0000000000000000
000000600C00000C00
0000000000000000
0000000000000000

Class 1

Figure 2.7 - Variation of the Bit Allocation Maps Emploved
in the Chen-Smith Simulation

2 - 18

compression to be achieved using this technique can be a preset
run-time parameter. For example, if a 1 bit per pixel
compression ratio was desired, the number of average bits for
classes 1, 2, 3, and 4 would be .67, .83, 1.17, and 1.33,
respectively. In the second pass, the sub-block classification
and bit allocation maps are used to encode the image for
transmission.

The quantization method used in the Chen-sSmith technique is
the classical Lloyd-Max quantization technique (Refs. 2,3). This
technique is a non-uniform quantization scheme which uses a
probability density function (pdf) specific to the distribution
of the data to be quantized. In the basic Chen-Smith coding
technique, the distribution of transform coefficients is assumed
to be Gaussian. Therefore, a Gaussian pdf was used for
quantization in the simulations.

A variation of the basic Chen-Smith algorithm involving the
generation of bit allocation maps was implemented for the
following reason. After preliminary simulations were performed,
statistics demonstrated that the quantization of bits/pixel
values below 5 in the bit allocation maps would have no positive
effect on image quality, and in some cases would degrade image
quality. A method was devised which would achieve the same
number of bits for the bit allocation map, but would not assign
bits/pixel values of less than 5 to any coefficient position. An

example of this method is shown in Figure 2.7, which illustrates

2 - 19

the same bit allocation maps shown in Figure 2.6 with the

variation implemented.
2.2.5 Image Dependent Chen-Smith Coding

The image dependent Chen-Smith technique is implemented in
the same way as the basic Chen-Smith technique, with one
variation. The basic Chen-Smith technique is an image
independent technique; that is, a preset number of bits is used
to encode an image, with an equal number of sub-blocks assigned
to each class in the classification map., independent of image
characteristics. The image dependent approach is implemented at
the time that the image classification map is produced. The AC
energies are examined, and, depending on their comparative
values, an appropriate number of sub-blocks are assigned each
class.

For example, if an active image is processed, the majority
of class assignments would be 3's and 4's; if an inactive image
is processed, the majority of class assignments would be 1's and
2's. This variation of the Chen~-Smith technique is dependent on
image characteristics for class assignments (and, thus, the
number of total bits for image encoding) and does not necessarily
encode a fixed number of bits independent of image

characteristics.

2 - 20

2.3 Selection of Test Documents

The test documents employed in the computer simulation were
sélected based on several factors, including image quality,
availability, and feature content. As specified in the statement
of work, three gray scale images were chosen. These images are
the same three test documents employed in a gray scale study
previously performed by Delta Information Systems for the NCS
(Ref. 4), in which Differential Pulse Code Modulation (DPCM) and
Bit Plane Coding (BPC) were evaluated.

Beyond the advantages these images provide in terms of image
quality and availability, each image was selected because it
contained several distinctive features that would aid in the
subjective evaluation of the output images. The IEEE face image’
was selected because it contains large areas of relatively smooth
tonal range, where artifacts resulting from compression usually
manifest themselves. The aerial photo image was chosen because
it contains low contrast, high detail regions suitable for visual
evaluation of the output images. The crowd scene image contains
well-defined structures, such as facial characteristics, which

facilitate visual determination of the quality of reproduction.

2 - 21

3.0 RESULTS

3.1 Compression Statistics

The results achieved in the simulations performed to
determine the effects of the parametric variations of each of the
four transform coding algorithms are summarized in Tables 3.1
through 3.3. Table 3.1, which contains the results of the
simulations performed using the IEEE test face image, includes
the results of 18 simulation runs, whereas Tables 3.2 and 3.3
include the results for 12 simulation runs each. The IEEE face
image was selected to illustrate the visual effects of the
compression algorithms; thus, additional simulations were
performed with this test image in order to mo}e fully evaluate
the effects of the compression techniques on output image
quality.

For each simulation run, four statistical measures of
performance of the employed algorithm are presented. The first
three, the number of compressed bits (the number of bits output
by the quantization process), the compression ratio (the number
of compressed bits as a function of the number of bits in the
input image), and the compressed number of bits per pixel (the
effective number of bits per pixel required to transmit the
image), provide a measure with which the algorithms can be
compared in terms of compression. The fourth measure, the root-

mean-square (RMS) error (a weighted-average difference between

TABLE 3.1 - COMPRESSION RESULTS ON THE IEEE FACE

COMPRESSION PIXELS LINES ADJUSTABLE CONPRESSED COMPRESSION COMPRESSED RNS
INAGE TECHNIQUE PER LINE PER IMAGE PARAMETERS BITS RATIO BITS/PIXEL ERROR
K5 225280 51.20 0.16 9.01
Conditional
L LY 763952 15.06 0.33 .10
lonal 1024 1408
K 33 1486848 7.76 1.03 3.37
Coding
K70 3153920 3.66 2.19 2,06
€0 3.00 325032 35.49 0.23 5,92
Adaptive
1 €0 1.50 465548 24.77 0.32 4.42
lonal 1024 1408
E €0 0.50 849568 13.58 0.59 3.19
Coding
E C0 0.04 2345776 4.92 1.63 2.12
E BN 0.08 148915 77.46 0.10 8.86
BN 0.15 299217 38.54 0.21 6.23
Basic
F 1024 1408 BN 0.50 777410 14.84 0,54 4.06
Chen-Smith
A BM 1.00 1475685 7.82 1.02 2.87
C BN 2.00 3332747 3.46 2.1 1.83
E BN 0.15 202774 56.88 0.14 7.14
Chen-Smith BN 0.30 320570 35.98 0.22 s.78
Image 1024 1408 BN 1.00 997840 11.56 0.69 3.32
Dependent BM 1.40 1412863 8.16 0.98 .72
BN 2.50 2583861 4.46 1.79 1.96
3 -2

TABLE 3.2 - CONPRESSION RESULTS ON THE CROND SCENE

CONPRESSION PIXELS LINES ADJUSTABLE CONPRESSED COMPRESSION COMPRESSED RNS
IMAGE TECHNIQUE PER LINE PER IMAGE PARAMETERS BITS RATID BITS/PIXEL ERROR
K 16 720896 16.00 0.50 3.67
Conditional
lonal 1024 1408 K 32 1441792 8.00 1.00 2.56
¢ Coding
#K 65 2928640 3.9 2,03 1.89
R
0 €0 1.00 137672 15.64 0.51 3.39
Adaptive
W
Ional 1024 1408 €0 0.25 1462680 7.89 1.01 2.9
D
Coding
c0 0.05 2626904 4.39 1.82 1.96
]
BN 0.50 768595 15.01 0.53 2.72
c
Basic
E 1024 1408 BN 1.00 1485091 1.77 1.03 1.92
Chen-Saith
N
BN 2.00 2982828 3.87 2.07 1.29
E
BN 0.70 867764 13.29 0.60 2.54
Chen-Snith
Image 1024 1408 BM 1.00 1177471 9.80 0.81 2.17
Dependent
BN 2.30 2902867 3.97 2.01 1.49
3 ~3

TABLE 3.3 - COMPRESSION STATISTICS ON THE AERIAL PHOTO

COMPRESSION PIXELS LINES ADJUSTABLE COMPRESSED COMPRESSION COMPRESSED RMS
INAGE TECHNIQUE PER LINE PER IMAGE PARAMETERS BITS RATIO BITS/PIXEL ERROR
1K 15 675840 17.07 0.47 6.27
Conditional
lonal 1024 1408 K 33 1486848 1.76 .03 3.17
A Coding
K70 3153920 3.66 2.19 2,05
E
R co 1.00 1073856 10.74 0.74 3.16
Adaptive
1
lonal 1024 1408 €0 0.45 1557064 1.41 1.08 3.73
A
Coding
L c0 0.20 2138528 .39 1.48 2.80
BN 0.50 747479 15.43 0.51 4,32
P
Basic
H 1024 1408 M 1,00 1552633 1.43 1.08 2,58
Chen-Saith
0
BN 2,00 3334688 3.46 2.3 1.62
T
] BM 0.55 119764 16.03 0.50 4.60
Chen-Saith
Image 1024 1408 BN 1.10 1614243 7.14 1.12 2.58
Dependent
BM 2.20 2866510 4.02 1.99 1.81
3 -4

the gray level value of an original input pixel and the
corresponding pixel in the decoded output image), provides a
basis upon which the algorithms can be compared quantitatively in
terms of image quality.

The RMS error is a quantitative measure of the image quality

of the output image and is calculated as follows:

e12 + e2? + , . . + ext?
RMS =

N

where e; is the 8-bit difference, or error, between the i!d pixel
in the input image and the corresponding ittt pixel in the decoded
output image, and N is the total number of pixels in the
processed image. The RMS error can also be expressed as a
percentage of the dynamic range (2", where n = number of
bits/input pixel) of the gray scale of the image.

Each transform coding algorithm has an adjustable parameter
that can be varied in order to select a target compression;
listed below are the abbreviations used in Tables 3.1 through 3.3

to distinguish these parameters:

Abbreviation Description
#K Used in the one-pass conditional

zonal algorithm to select the

number of coefficients to be kept in
the quantization zone of each
sub-block.

co Used in the one-pass adaptive zonal
algorithm as a cutoff threshold for
the elimination of insignificant

3 - 5

coefficients prior to quantization.
BM Both the basic and the image
dependent Chen-Smith algorithms
assign bits to each class for
quantization. BM is used to select
the average number of bits per pixel

over the four bit map
classifications.

The simulations performed to evaluate the conditional zonal
coding algorithm were designed so that the effects of the
parametric variations were clearly illustrated; the parameter
chosen for evaluation in the conditional zonal coding simulations
was the number of retained coefficients, or zone size (#K). The
effect of the zone size parameter on compression is
straightforward; as it is decreased, the number of compressed
bits/pixel is decreased. 1Image content has no effect on the
compression achieved by the zonal coding technique; the same
number of bits is used to encode each sub-block regardless of the
statistics of the sub-block. Simulations in which the zone size
was varied were performed in order to determine the parameter's
effect on output image quality; the compressions achieved were
selected so as to be comparable to the compressions achieved in
the DPCM simulations performed in a previous study (Ref. 4).

The simulations performed to evaluate the adaptive zonal
coding algorithm were designed so that the effects of the
parametric variations were clearly illustrated; the parameter

chosen for evaluation in the adaptive zonal coding simulations

was the coefficient cutoff threshold (CO). The cutoff thresholds

employed in the simulations were selected in order to achieve
compressions comparable to those achieved for the DPCM and
conditional zonal coding simulations. While the target
compressions for the conditional zonal coding simulations could
be precisely selected with the zone size parameter (#K), the
target compressions for the adaptive zonal coding simulations
were more difficult to select because of the statistical
dependency of the technique.

The simulations performed to evaluate the basic Chen-Smith
coding algorithm were designed so that the effects of the
parametric variations wer2 clearly illustrated; the parameter
chosen for evaluation in the basic Chen-Smith coding simulations
was the average number of bits/pixel over the four bit map
classifications (BM). The average bits/pixel values employed in
the basic Chen-Smith simulations were selected so as to produce
compression results comparable to those of the other coding
techniques evaluated in this study.

The simulations performed to evaluate the image dependent
Chen~Smith coding algorithm were designed so that the effects of
the parametric variations were clearly illustrated; the parameter
chosen for evaluation in the image dependent Chen-Smith coding
simulations was the same as that employed in evaluating the basic
Chen-Smith coding algorithm, namely the average number of
bits/pixel over the four bit map classifications (BM). The
average bits/pixel values employed in the image dependent Chen-

Smith simulations were selected so as to produce compression

results comparable to those of the other coding techniques
evaluated in this study; however, the adaptive nature of this
coding technique made it difficult select target compressions as
precisely as was possible with the basic Chen-Smith coding

technique.

3.2 Qutput Images

Before the image quality of the transform coding algorithms
can be evaluated, an understanding of the type of distortion
caused by transform coding is required. The image distortion
caused by these algorithms manifests itself in "blocking"., in
which the edges of the individual sub-blocks become visually
apparent. Transform coding algorithms break the image into sub-
blocks and process the image one sub-block at a time. Blocking
occurs mainly in the busy sections of the images. A large amount
of AC energy exists in a busy sub-block, meaning that the
transform coefficients of the sub-block contain a large amount of
information. Blocking occurs when, through quantization, a
significant part of this information is lost, and the
reconstructed sub-block in the output image is markedly
dissimilar from those sub-blocks surrounding it.

Table 3.4 is a list of the output images presented in
Figures 3.2 through 3.18; Figure 3.1 is an illustration of an
original input image, the IEEE face. Each image is a

photographic reproduction of a windowed portion of the output

TABLE 3.4 - LIST OF OUTPUT IMAGES

FIGURE
NUMBER IMAGE DESCRIPTION
3.1 Windowed portion of Original IEEE Face Image
3.2 Conditional Zonal IEEE Face Image at 0.16 bpp
3.3 Conditional Zonal IEEE Face Image at 0.53 bpp
3.4 Conditional Zonal IEEE Face Image at 1.03 bpp
3.5 Adaptive Zonal IEEE Face Image at 0.32 bpp
3.6 Adaptive Zonal IEEE Face Image at 0.59 bpp
3.7 Adaptive Zonal IEEE Face Image at 1.63 bpp
3.8 Basic Chen~Smith IEEE Face Image at 0.10 bpp
3.9 Basic Chen-Smith IEEE Face Image at 0.54 bpp
3.10 |{Basic Chen~-Smith IEEE Face Image at 1.02 bpp
3.11 |Image Dependent Chen-Smith IEEE Face Image at 0.22 bpp
3.12 [Image Dependent Chen-Smith IEEE Face Image at 0.69 bpp
3.13 {Image Dependent Chen-Smith IEEE Face Image at 0.98 bpp
3.14 |[Original Circular Test Image
3.15 |Conditional Zonal Circular Test Image
3.16 |[Adaptive Zonal Circular Test Image
3.17 |Basic Chen-Smith Circular Test Image
3.18 |[Image Dependent Chen-Smith Circular Test Image

i
i

Figure 3.1 - Windowed portion of Original IEEE Face Image

Figure 3.2 - Conditional Zonal IEEE Face Image at 0.16 bpp

3 -10

e

Figure 3.4 - Conditional Zonal IEEE Face Image at 1.03 bpp

3

11

Face Image at 0.32 bpp

Figure 3.6 - Adaptive Zonal IEEE

3 - 12

[Figure 3.7 - Adaptive Zonal IEEE Face Image at 1.63 bpp

ﬁ Figure 3.8 - Basic Chen-Smith IEEE Face Image at 0.10 bpp

3 - 13

Figure 3.9 - Basic Chen-Smith IEEE Face Image at 0.54 bpp

Figure 3.10 - Basic Chen-Smith IEEE Face Image at 1.02 bpp

3 - 14

Figure 3.11 - Image Dependent Chen-Smith

IEEE Face Image at 0.22 bpp

Figure 3.12 - Image Dependent Chen-Smith IEEE Face Image

3

15

g

)

)

|

i

W Vi
VUL
ARSI

Figure 3.14 - Original Circular Test Image

3 - 16

42’,'-

7

A\

4

\\\\“» Vi
%

|

AN

o

l? =
e
- -
= R

3

i

ey

P

|

A\

Figure 3.15 - Conditional Zonal Circular Test Image

|
|

I

|

7/

//77?

= 3

.,

N

Y A

/

3 -17

/
i IS

/

¥

L i S
1N . s
PR\ S
RGN Pt
SN s
T . . i

R .
~

.

N
+

it “‘..,",::,v;_, i ‘t'r/”‘ PP

11773
A LSS /
RS G -
e /',,./
g

fivitigs

Figure 3.18 Image Dependent Chen-Smith Circular Test Image

3 - 18

image of one simulation. The full image size was not reproduced
photographically because of the limitations of the image storage
and display system used to evaluate the output images.

Note that, as in the earlier study (Ref. 4), only the
simulations run on the IEEE face image are represented. The
effects of the algorithms were similar for all three test images;
the IEEE face image was selected as the illustrative example of
the output image quality of the algorithms in order to facilitate
direct comparisons with the results of the DPCM simulations
performed in the earlier study. The evaluation of the image
quality of each of the four transform coding algorithms, however,
was performed considering the output images from the simulations
run on all three test images. In addition, a circular test
image, extracted from the IEEE test chart from which the TEEE
face image was obtained, was compressed with each transform
coding algorithm in order to evaluate the effects of sharp
transitions on the image quality produced by the algorithms.

The image quality produced by the transform coding
algorithms was generally good above 0.5 bits/pixel and fair at
bit rates as low as 0.16 bits/pixel. Quantitatively, the highest
RMS error value obtained in the simulations employing the IEEE
face image was 9.01, obtained in the conditional zonal simulation
run in which 0.16 bits/pixel compression was achieved. This
value, measured in gray levels, represents a maximum error of
only 3.5 percent of the dynamic range (256 gray levels) of the

images. The RMS error, while a good relative measure of the

3 - 19

image quality produced by the algorithms on a particular image,
should not be regarded as an absolute measure of image quality.
The RMS error is only an average measure of image quality and
does not reflect the fact that the algorithms perform well on
image regions that are relatively inactive in terms of gray scale
activity and not as well on image regions that contain a
significant number of gray scale transitions.

The conditional zonal coding algorithm produced images which
were very good in terms of image quality for bit rates above 1
bit/pixel. In Figure 3.4, only a minimal amount of blocking can
be detected in the high detail regions of the image (e.g. the
eyes, the teeth); the overall effect of the blocking is a slight
blurring of the image. At lower bit rates, the indiscriminate
quantization employed by this coding technique caused significant
distortion in the output images. At bit rates on the order of
0.5 bits/pixel, the loss of detail in all areas of the image is
evident, and the blocking is much more pronounced (see Figure
3.3). At bits rates below 0.5 bits/pixel, the blocking is
severe, and the high detail regions of the image are almost
completely degraded (see Figure 3.2).

The adaptive zonal coding algorithm produced images which
were excellent in terms of image quality for bit rates above 1
bit/pixel. The image in Figure 3.7 illustrates this level of
image quality; no blocking is evident, and only a slight loss of
sharpness is detectable in the high detail regions of the image

(e.g. the pupils of the eyes). At lower bit rates, blocking

3 - 20

begins to occur in image areas in which moderate gray level
transitions are present. Blocking in these areas is caused by
excessive quantization; optimization of the look-ahead algorithm
would minimize this distortion. At bit rates on the order of 0.5
bits/pixel, some blocking is evident in image regions containing
moderate detail (e.g. the nose, the lips); the overall sharpness
of the image, however, is only slightly degraded (see Figure
3.6). At bit rates below 0.5 bits/pixel, blocking is evident in
areas of moderate to high detail, but the overall image quality
is still quite good.

The basic Chen-Smith coding algorithm produced images which
were excellent in terms of image quality for bit rates above 1
bit/pixel. The image in Figure 3.10 illustrates this level of
image quality; no blocking is evident, and only a slight loss of
sharpness is detectable in the high detail regions of the image
(e.g. the pupils of the eyes).' At bit rates on the order of 0.5
bits/pixel, the image quality is still very good; blocking is
only slightly perceptible in the high detail regions of the
image, and the overall sharpness of the image is still good (see
Figure 3.9). At bit rates below 0.5 bits/pixel, the image
quality becomes progressively worse; at 0.1 bits/pixel, the
blocking is severe, and the high detail regions of the image are
almost completely degraded (see Figure 3.8).

The image dependent Chen-Smith coding algorithm produced
images which were excellent in terms of image quality for bit

rates above 0.5 bits/pixel. Figure 3.13, in which the image was

3 - 21

compressed to less than 1 bit/pixel, is virtually
indistinguishable from the uncompressed image (see Figure 3.1).
At bit rates approaching 0.5 bits/pixel, the image quality is
still excellent; as Figure 3.12 shows, no blocking is evident,
and the overall sharpness of the image is only slightly degraded.
At bit rates below 0.5 bits/pixel, the image quality produced by
the image dependent Chen-Smith algorithm is still quite good;
blocking is evident around the high detail regions of the image,
but the overall image quality is still good (see Figure 3.11).

A circular test image, presented in Figure 3.14, was
employed to evaluate the performances of the transform coding
algorithms; the black-white coloring of the circular test image
provided a good test of the quantization functions of the sub-
block coding algorithms. In comparing Figures 3.15 through 3.18,
it is evident that the image dependent Chen-Smith coding
technique pfoduced the best output image; the 100's are still
legible in the image dependent Chen-Smith output image, but are
quite blurred in the output images of the other compression
techniques. This is due to the design of the image dependent
Chen-Smith algorithm, which allocates additional coding bits to
those image regions which require more information to encode

them.

3 -~ 22

3.3 Algorithm Complexity

In Sections 3.1 and 3.2, the four transform coding
algorithms were compared on the basis of compression and image
quality. It is also important to compare the coding techniques
on the basis of their relative implementation complexities. All
four algorithms employ the Discrete Cosine Transform (DCT) in the
transformation step; as such, the differences in algorithm
complexity occur in the sub-block coding steps of the algorithms.

Of the four techniques, the conditional zonal coding
algorithm is the least complex. In the transformation step, the
image is divided into sub-blocks, and each sub-block of gray
level values is transformed into a matrix of coefficients. 1In
the sub-block coding'step, the transform coefficients in a
selected zone of the sub-block are normalized and quantized to a
selected number of bits, and the remaining coefficients in the
sub-block are discaried. Every sub-block within an image is
encoded with the same number of bits, and every image is encoded
with the same number of bits.

The adaptive zonal coding technique is a hybridization of
threshold coding and conditional zonal coding. Threshold coding
is a sub-block coding technique in which each coefficient in the
sub-block is compared to a specified threshold value in order to
determine whether the coefficient is to be kept or discarded.
One major drawback t§ threshold coding is the overhead requirad

to store the locations within the sub-block of each retained

3 - 23

coefficient; adaptive zonal coding eliminates the need for this
overhead by performing the threshold comparison in a specific
order in a pre—~determined zone of the sub-block, thus eliminating
the need for the storage of coefficient locations. The only
overhead required for adaptive zonal coding is an additional byte
of information for each sub-block that indicates the number of
coefficients retained in that sub-block; other than that, the
encoding proceeds exactly as in the conditional zonal coding
technique.

The Chen-Smith coding algorithms are relatively more complex
than the zonal coding algorithms; the basic Chen-Smith algorithm
processes an image in two passes. The first pass over the image
calculates statistics which characterize the image. The
séatistics are used to determine the number of bits assigned to
each coefficient of each sub-block of the image. The AC energies
of the sub-blocks are used to produce a sub-block classification
map of the image, in which each sub-block is assigned to one of
four classes, such that there are an equal number of sub-blocks
assigned to each class. A bit allocation map is then produced
for each classification, in which the variances of the transform
coefficients are used to determine the number of bits to be
employed to encode the coefficients. In the second pass, the
sub-block classification and bit allocation maps are employed to
encode the image.

The image dependent Chen-Smith coding technique is the most

complex of the four algorithms simulated. In this wvariation of

3 - 24

the basic Chen-Smith algorithm, the AC energies of the sub-blocks
are used to assign classifications to the sub-blocks based on
image content rather than on a pre-specified number of sub-blocks
per class. Thus, images containing a high amount of activity are
compressed with better output image quality., and images
containing a low amount of activity achieve better compression

without a significant loss of output image quality.

3.4 DPCM Comparison

Two DPCM compression algorithms were simulated in a study
previously performed by Delta Information Systems (Ref. 4). The
first, conditional DPCM, employs a three-neighbor gray level
value predictor, a non-linear three-~bit quantizer, Huffman
entropy coding, and an optional staggered horizontal sub-sampler
and corresponding interpolator. The second, adaptive DPCM,
employs a three neighbor gray level predictor, an extended non-
linear five-bit quantizer, adaptive arithmetic coding, and
optional horizontal and vertical spatial filters. Quantization
in DPCM coding refers to the quantization of the difference
between the predicted value of the gray level of a pixel and the
actual value.

Table 3.5 summarizes the results of the DPCM simulations
which were performed in a previous study (Ref. 4); as can be
seen, the same test images employed previously were used in this

study in order to make the results directly comparable.

3 - 25

COMPRESSION PIXELS LINES ADJUSTABLE CONPRESSED COMPRESSION COMPRESSED RNS
IMAGE TECHNIQUE PER LINE PER IMAGE PARAMETERS BITS RATIO BITS/PIXEL ERROR
BASE 1880568 6.13 1.30 3.9
1 Conditional
E 1024 1408 8s 1039426 11.10 0.72 3.86
E DPCH
E S5, HSN 912077 12,65 0.63 4,08
F BASE 1975109 9.84 1.37 1.20
A Adaptive
¢ 1024 1408 H5K 1414386 B,15 0.98 2,00
E DPCH
HSM, BELL 1444367 7.99 1.00 2,26
¢ BASE 1994002 3.78 1.38 9.32
R Conditional
0 1024 1408 SS 1112332 10,37 0.77 4.79
W DPCH
D S5, HSH 958462 11.91 0.67 4.9
S BASE 2406572 4.79 1.67 1.30
¢ Adaptive
3 1024 1408 HSH 1754491 6.57 1.22 2.04
N DPCH
E HSM, BELL 2296846 9.02 1.59 2.14
A BASE 2144089 5.38 1.49 3.34
E Conditional
R 1024 1408 S5 1251099 9.22 0.87 3.33
1 DPCH
A 58, HSN 1131161 10.20 0.78 .73
L
BASE 2943794 3.92 2.04 1.29
P Adaptive
H 1024 1408 HSH 2286903 5.04 1.9 2.36
0 DPCN
T
0 HSN, BELL 2902523 3.97 2.01 2.47
3 - 26

Table 3.6 lists the output images, presented in Figures 3.19
through 3.23, associated with five of the DPCM simulations
performed using the IEEE face image. Because the compression
achieved in the transform coding simulations was selectable, runs
were performed to closely match the compressions achieved by the
DPCM algorithms so that direct image quality comparisons could be
performed.

The image quality produced by both DPCM algorithms was
excellent; the highest RMS error value, obtained in the baseline
conditional DPCM simulation run on the crowd scene image, was
5.32. This value, measured in gray levels, represents a maximum
error of only 2 percent of the dynamic range (256 gray levels) of
the images. The two preprocessing steps employed in the DPCM
simulations, horizontal subsampling and horizontal filtering, had
the effect of significantly increasing compression while only
slightly degrading the output image quality.

The conditional DPCM algorithm without preprocessing
produced images which were excellent in terms of image quality;
Figure 3.19 illustrates this level of quality. With subsampling
(Figure 3.20), the quality of the output images produced by the
conditional DPCM algorithm were still quite good, with only a
slight blurring effect evident in the high-detaii regions of the
images (e.g. the hair and teeth regions of the IEEE face image).
When both subsampling and horizontal filtering were emploved in
conjunction with the conditional DPCM algorithm, the image

quality illustrated in Figure 3.21 was produced at an encoded bit

3 - 27

TABLE 3.6 - LIST OF DPCM OUTPUT IMAGES

FIGURE
NUMBER IMAGE DESCRIPTION
3.19 |Conditional DPCM Encoded IEEE Face Image at 1.30 bpp
3.20 |Conditional DPCM Encoded IEEE Face Image with
Subsampling at 0.72 bpp
3.21 |Conditional DPCM Encoded IEEE Face Image with
Filtering and Subsampling at 0.63 bpp
3.22 |Adaptive DPCM Encoded IEEE Image at 1.37 bpp
3.23 ([Adaptive DPCM Encoded IEEE Image with Filtering

at 0.98 bpp

3 - 28

Figure 3.20 - Conditional DPCM Encoded IEEE Face

Subsampling at 0.72 bpp
3 - 29

Image

w

it

h

Figure 3.21 - Conditional DPCM Encoded IEEE Face Image with
Subsampling and Filtering at 0.63 bpp

Figure 3.22 - Adaptive DPCM Encoded IEEE Image at 1.37

3 - 30

bpp

Figure 3.23 - Adaptive DPCM Encoded IEEE Face Image with
Filtering at 0.98 bpp

rate of 0.63 bits/pixel. Blurring can be seen in the high detail
regions of the hair, and a loss of edge detail is evident in the
eye and mouth regions, but the overall quality of this image
still quite good.

The adaptive DPCM algorithm without preprocessing produced
images which were nearly indistinguishable from the input images;
an example of this image quality is presented in‘Figure 3.22.

The adaptive DPCM simulations in which horizontal filtering was
employed produced output images which were only slightly less
impressive; in observing Figure 3.23, only slight blurring in the
hair and eye regions is evident.

The DPCM simulation output images were compared with those
produced in the transform coding simulations on the basis of
similar compression results. The conditional DPCM encoded images
in Figures 3.20 and 3.21 are comparable, in terms of compression,
to the conditional zonal coded image in Figure 3.3, the adaptive
zonal coded image in Figure 3.6, the basic Chen-Smith coded image
in Figure 3.9, and the image dependent Chen-Smith coded image in
Figure 3.12. In terms of image quality, the image dependent
Chen-Smith coding technique appears to have performed best
(Figure 3.12), followed closely by the two c~-nditional DPCM
variations (Figures 3.20 and 3.21), the basic Chen-Smith coding
technique (Figure 3.9), the adaptive zonal coding technique
(Figure 3.6), and the conditional zonal coding technique

(Figure 3.3).

3 - 32

At this level of compression (0.5-0.7 bits/pixel), the
differences between DPCM and transform coding, in terms of effect
on image quality, manifest themselves. The DPCM images appear
blurred in the high detail regions of the images, but are free of
any compression-induced artifacts. The transform coded images,
however, contain artifacts due to blocking (particularly evident
in Figure 3.3) in addition to the loss of sharpness in the high
detail regions.

At higher compression rates (1-1.3 bits/pixel), the image
quality of both the DPCM and the transform coding algorithms was
excellent. The conditional DPCM encoded image in Figure 3.19 and
the adaptive DPCM encoded images in Figures 2.22 and 2.23 are
comparable, in terms of compression, to the conditional zonal
coded image in Figure 3.4, the adaptive zonal coded image in
Figure 3.7, the basic Chen-Smith coded image in Figure 3.10, and
the image dependent Chen-Smith coded image in Figure 3.13. Only
the conditional zonal coding technique (Figure 3.4) shows any
visually significant image degradation in this compression range;
slight blocking is evident in the high detail regions of the
image.

Image comparisons could not be performed for bit rates below
0.6 bits/pixel because the lowest bit rate achieved in the DPCM
simulations was 0.63 bits/pixel. This is a primary drawback to
DPCM compression techniques; the compression achieved is governed
by image statistics. Transform coding algorithms employ a target

compression parameter that is independent of image statistics,

3 - 33

thus giving transform coding algorithms the flexibility of
sacrificing image quality to increase compression and vice versa.

DPCM compression algorithms are, in general, less complex to
implement than transform coding algorithms; they require less
data storage, are much less demanding computationally, and do not
require overhead data such as that associated with many transform
coding algorithms. Transform coding algorithms offer the
advantage of selectable compression, limited only by the output
image quality requirements; DPCM algorithms are generally less
flexible in terms of achievable compression.

DPCM compression algorithms employ predictive coding to
achieve compression; the gray level value of each pixel is
predicted based upon previously encoded pixel gray level wvalues,
and the difference between the predicted and actual value of the
pixel is then quantized and encoded. This encoding is done in
the direction of the scan, one pixel at a time; the effects of
the quantizer and prediction errors are thus minimal, generally
manifesting themselves as edge effects in image areas containing
sharp gray level transitions.

Transform coding algorithms use a method of encoding images
which is much different from that of the DPCM algorithms. When
an image is encoded using a transform coding algorithm, the image
is broken into small (NxN) (N is the size of the transform matrix
used) sub-blocks of pixels which are individually transformed and
quantized. The effects of the quantizer error can be seen as a
"blocking" effect; when the quantizer error is significant, all

of the pixels within the sub-block are affected.

3 - 34

4.0 CONCLUSIONS AND RECOMMENDATIONS

In analyzing the results presented in Section 3.0, several
conclusions were drawn concerning the performances of the four
transform coding algorithms simulated relative to each other and
to the performances of several DPCM algorithms simulated in an
earlier study. These conclusions, in turn, led to the
formulation of a number of recommendations as to which direction
future research into gray scale compression studies involving

transform coding should be directed.

4.1 Conclusions

1. The conditional zonal coding algorithm is the least
complex of the four transform algorithms which were
evaluated, but is more complex than the DPCM algorithms
discussed. The image quality it achieved was very good for
bit rates above 1 bit/pixel. At lower bit rates, however,
the indiscriminate quantization employed by this technique
caused significant distortion in the output images. The
advantages offered by conditional zonal coding include low
complexity, selectable compression, and reasonably good

image quality at moderately low bit rates.

2. The adaptive zonal coding algorithm was slightly more

complex than the conditional approach, but achieved much

better image quality. This was due to the algorithm's
ability to adapt to image content. Adaptive zonal coding
requires just one pass over the image to encode it, yet its
performance was comparable to that of the Chen-Smith
techniques, which require two passes. The advantages
offered by adaptive zonal coding include moderately low
complexity, selectable compression, and good image quality

at low bit rates.

3. The basic Chen-Smith coding algorithm achieved excellent

image quality at bit rates above 1 bit/pixel and very good

image quality at bit rates as low as 0.5 bits/pixel. This
algorithm, however, is very complex; it requires two passes
overy the image in order to encode it and requires a
significant amount of statistical computations. The basic
Chen-Smith coding technique offers the advantages of
selectable compression and excellent image quality, but is

relatively complex to implement.

4. The image dependent Chen Smith coding algorithm achieved
the best image quality of all of the algorithms evaluated in
this study, producing very good image quality at bit rates
as low as 0.22 bits/pixel. This approach is the most
complex of the four transform coding techniques simulated.
Applications in which the use of the image dependent Chen-

Smith coding technique would be advantageous include those

that require both high compression and excellent image

quality without regard to system complexity.

5. At bit rates of 1 b.:/pixel and above, the images
produced in the DPCM simulations were virtually
indistinguishable from the images produced in the transform
coding simulations. In applications that require bit rates
on the order of 1 to 1.5 bits/pixel, DPCM compression
techniques would be more advantageous than transform coding

techniques because they are less complex to implement.

6. The DPCM compression techniques did not produce bit
rates below 0.63 bits/pixel; therefore, comparisons between
the transform coding and DPCM algorithms could not be
performed at the lower bit rates achieved in several of the
transform ceding simulations (0.1-0.3 bits/pixel). In
applications where compression is more important than image
quality, transform coding technigues have a distinct

advantage over DPCM techniques.

7. Because the transform coding techniques offer the
advantage of selectable compression, transform coding
algorithms would be more favorable than DPCM algorithms in
applications in which variable compression rates are

required.

4.2 Recommendations for Further Study

1. A different image dependent variation of the Chen-Smith
algorithm should be investigated. This variation should
include an AC energy oriented sub-block classification
method where standard AC energy thresholds are calculated
and used to assign high or low classifications to sub-blocks

in an image.

2. Optimization of the look-ahead technique used in the
adaptive zonal coding technique should be performed in order
to improve the image quality produced by this algorithm. It
may be possible to improve the output image quality of this
algorithm to the point where it makes the added complexity
of the Chen-Smith algorithms unfavorable in some

applications.

References

Chen, W., and Smith, C. "Adaptive Coding of Monochrome
and Colour Images." IEEE Transactions on Communications,
volume COM-25, no. 11, November 1977,pp.1285-1292.

Lloyd, S. P. "Least Squares Quantization in PCM." IEEE
Transactions on Information Theory, volume IT-28, no. 2,
March 1982,pp. 129-137.

Max, J. "Quantizing for Minimum Distortion." IRE Transactions
on Information Theory, volume IT-6, no. 1, March 1960,
pp. 7-12.

Delta Information Systems, "Computer Simulation of Gray Scale
Compression Technique for Group 4 Facsimile.",Contract no.
DCA100-83-C-0047, Task Order no. 84-002, May 1986.

APPENDIX A

SOFTWARE MANUAL

Table of Contents

Section
A.1 Operating Instructions
A.2 Software Documentation

A.2.1 Chen-Smith Coding Techniques
A.2.1.1 Statistics Generating Modules .
A.2.1.1.1 Module GNSTIN.
-~ Structure Chart
- Nassi-Schneiderman Charts
- Program Documentation .
A.2.1.1.2 Module GNSTDP. . . .
- Structure Chart
- Nassi-Schneiderman Charts
- Program Documentation . .
A.2.1.2 Bit Allocating Program: BITALL.
- Structure Chart.
- Nassi-Schneiderman Charts.
- Program Documentation.
A.2.1.3 Coding Program: MAXTRN.
- Structure Chart.
- Nassi-Schneiderman Charts.

- Program Documentation.

kg
|

LR S A
! | ‘]

e

43

44

46

U v T U T —
BN B B BN B BE B B B B e BN B B B O B e e

Section

Table of Contents (con't)

A.2.2 Zonal Coding Techniques. . . .

A.2.2.1 Coding Program: ZNLTRN

Structure Chart.
Nassi-Schneiderman Charts.
Program Documentation.

.2 Coding Program: THRTRN .
Structure Chart.
Nassi-Schneiderman Charts.

Program Documentation.

>

o

¥

Page
- 70

A.l Operating Instructions

The Chen-Smith programs are run in three parts as diagrammed
in figures A.l1 and A.2. First, either GNSTIN or GNSTDP is run on
an image file to gather statistics. These programs genefate the
variance matrix, which is used in program BITALL to allocate
coding bits to the individual transform elements and in program
MAXTRN to allow for the individual transform elements to have
unit variance. The statistics generating programs also generate
the class map which shows the activity level of each transformed
sub-block, and the mean of the DC coefficients which is used in
program MAXTRN for quantization. Second, program BITALL is run
with an adjustable parameter to achieve the desired bit rate.
BITALL allocates bits for each of the four classes created in the
statistics generating program. Third, program MAXTRN is run with
the variance matrix, the class map, the four bit maps and the
Lloyd-Max (ref. 2,3) quantization levels as inputs. MAXTRN
compresses, decompresses and writes the output image to file.

The conditional zonal program, ZNLTRN, is run with a
statistics file as one of two inputs. The statistics file
consists of an ordering sequence and corresponding dividing
factors which are used in quantization., The second input is an
adjustable parameter for the number of coefficients kept in
quantization. ZNLTRN compresses, decompresses and writes the
output image to file. The adaptive zonal program, THRTRN is run
with the same statistics file mentioned above as one of two

inputs. The second input is a adjustable threshold value used in

FIGURE A.1l

START

GNSTIN

BITALL

MAXTRN

END

DCT Independent Chen-Smith Data Flow Diagram

FIGURE A.2

START

GNSTDP

BITALL

MAXTRN

o

DCT Dependent Chen-Smith Data Flow Diagram

quantization. THRTRN compresses, decompresses and writes the

output image to file.

A.2 Software Documentation

The software documentation for the Discrete Cosine Transform
programs is presented in this section, including structure
charts, Nassi-Scneiderman flow charts for the software modules,
and descriptions of the functions associated with the DCT

programs.

A.2.1 Chen-Smith Coding Techniques

A.2.1.1 Statistics Generating Modules

A.2.1.1.1 Module GNSTIN

COSMTX

ERDBUFF I¢

MTXMUL TRNSPS GETFIL

R /A

SORT2D

FIGURE A.3

» GNSTIN [« ’i EGETBLK

PN

VARNCE ACNRGY

Structure Chart for Module: GNSTIN

GNSTIN.FTN - Discrete Cosine Transform Image
Independent Statistics Generator Program

Open files and read input parameters

Calculate Cosine Matrix

Calculate Transpose of Cosine Matrix

Define the boundaries of the image file

Initialize count array

Do for the number of vertical sub-blocks

Get row of horizontal sub-blocks

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image file to real numbers

Perform matrix multiplications to transform sub-
block matrix

Calculate AC energy in sub-block

Sum up the squares of the AC coefficients for
calculation of the varliance matrix and sum up the
DC coefficient for the calculation of its mean

Calculate the number of sub-blocks and the DC coefficient mean

Calculate the DC coefficlent variance

GNSTIN.FTN -~ Discrete Cosine Transform Image
Independent Statistics Generator Program

Do for the number of vertical sub-blocks

Do for the number of horizontal sub-blocks

Put the AC energies of the image into an array

Do for the number of vertical pixels

Do for the number of horizontal pixels

Calculate the AC coefficlients variance to complete
the variance matrix

Sort energies of each sub-block

Calculate the sub-block classifications

Do for number of vertical sub-blocks

Do for number of horizontal sub-blocks

Classify each sub-block according to non-uniform bounds

Do for number of vertical pixels

Do for number of horizontal pixels

Write the variance matrix to file

Do for number of vertical sub-blocks

Do for number of horizontal sub-blocks

Write the class map matrix to file

A - 10

GNSTIN.FTN - Discrete Cosine Transform Image
Independent Statistics Generator Program

Write to file the mean of the DC coefficlent

Close fliles

END

A - 11

ERDBUFF.FTN - Buffer Reading Subroutine

Move down to proper spot reading point of Image file

Do for the number of vertical dimension of sub-blocks

Read horizontal block of pixels

Return

END

A - 12

|

COSMTX.FTN - Cosine Matrix Subroutine

Do for the number of vertical rows of pixels

YES

Is this the first vertical
row of pixels?

NO

Make the multiplying coeff-
icient equal to "1l/sqrt(2)"

Make the multiplying coeff-
icient equal to "1"

Do for number of horizontal pixels

Calculate the cosine coefficient

Return

END

A - 13

R
HE N B A B BN BN S BN B Oy O BN AN B EE .

TRNSPS.FTN - Transpose Subroutine

Do for the number of vertical row of pixels

Do for the number of horizontal pixels

The transform matrix 1s equal to the

computed cosine matrix

Return

END

A - 14

EGETBLK.FTN - Sub-block Retrieving Subrxoutine

Move across to proper spot in buffer

Do for the number of vertical dimension of sub-blocks

Do for half the horizontal dimension of sub-blocks

Do two times

Take half a word which is one plixel from the buffer

Return

END

A - 15

l

SORT2D.FTN - Sorting Subroutine

Do for I equals one to dimension minus one of array

Do for dimension of array down to (I + 1) in steps of (-1)

Is the adjacent pair of array elements
out of order?
YES NO
Exchange the pair of Leave the array elements
array elements as they are
Return
END
A - 16

MTXMUL.FTN - Matrix Multiplication Subroutine

Do for the number of vertical dimension of sub-blocks

Do for the number of horizontal dimension of sub-blocks

Do multiplication of pixels from MATRIX"1" & MATRIX"2"

Should the result of the matrix multiplication
be put in MATRIX"1" ?

YES NO
Do for vertical dimension Do for vertical dimension
of sub-blocks of sub-blocks
Do for horizontal dimension Do for horizontal dimension
of sub-blocks of sub-blocks
Put result in MATRIX"1" Put result in MATRIX"2"

Return

END

A - 17

ACNRGY.FTN -~ AC Enerqgy Calculation Function

Do for number of vertical pixels

Do for number of horizontal pixels

Sum up the AC energlies of each pixel position

ACNRGY equals the total of all AC energies

Return

END

A - 18

VARNCE.FTN - Variance Subroutine

Do for number of vertical pixels

Do for number of horizontal pixels

Sum up the squares of the AC coefficients

Return

END

A - 19

PROGRAM:

DESCRIPTION:

RUNSTRING:
INPUT NAME

OUTPUT NAME

ORDER OF
INPUT PARAMETERS:

MODULES CALLED:
ERDBUFF

COSMTX

Program Documentation for module: GNSTIN

GNSTIN

This program uses an adaptive coding technique
known as the Discrete Cosine Transform (DCT)
and follows the Chen-Smith (ref. 1) coding
algorithm. Transformed blocks are sorted

into classes by the level of image activity.
Within each activity level, coding bits are
allocated to individual transform elements
according to the variance matrix of the
transformed data. An equal amount of blocks
will be distributed in each class independent
of excessively high or image activity. This
program generates the variance matrix which is
used in module BITALL to allocate coding bits
to individual transform elements and module
MAXTRN to make the individual transform
elements have unit variance. This program also
generates, the class map which shows the
activity level of each transformed sub-block
and the mean of the DC coefficient which is
used in module MAXTRN in quantization.

GNSTIN,<INPUT NAME>, <OUTPUT NAME>
Input image file name

Output statistics file

1) Dimension of sub-blocks

2) Number of sub-block classification levels

Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

Subroutine to put in memory the cosine matrix.

Program Documentation for module: GNSTIN

TRNSPS Subroutine to put in memory the transpose of
the cosine matrix.

EGETBLK Subroutine to retrieve a block of data from the
FTN77 buffer.

SORT2D Subroutine to sort an array of AC energies.

MTXMUL Subroutine to do matrix multiplications of real
numbers.

GETFIL Subroutine to open input image an file for
processing.

ACNRGY Subroutine to calculate AC energy of sub-blocks

VARNCE Subroutine to add the squares of the AC
coefficients for calculation of the variance
matrix.

NAMED COMMON

DESCRIPTIONS:
Block Name: GFMBLK
Module Common to: RDBUVF

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
file

RECRDS Number of records in primary
file

"FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag

Program Documentation for module: GNSTIN

Block Name:

Module Common to:

Descriptions:
OUTBUF

ACSORT

ACMTX

A ~ 22

GTBLK
RDBUFF,GETBLK, SORT2D

Output buffer

Array holding sorted AC
energles

Matrix holding AC energies

SUBROUTINE:

MODULES
CALLED FROM:

PURPOSE:

MODULES CALLED:

LGBUF
CALLING FORMAT:
ARGUMENT
DESCRIPTIONS:

YDIM

YVAL

INLU

NAMED COMMON
DESCRIPTIONS:

s — ———— e S

ERDBUFF

GNSTIN, GNSTDP

This subroutine reads a horizontal sub-block of

data from the image file into the FTN77 buffer.

Subroutine to make the buffer size larger.

CALL ERDBUFF(YDIM,YVAL,INLU)

Y dimension of the buffer in words
Y coordinate of file for reading

LU for the input image file

Block Name: GFMBLK
Module Common to: GNSTIN, GNSTDP
Descriptions:
IMGFIL Input image file name
EXISTS File exists flag
ISTAT File status variable
RECLEN Record length in bytes
NUMREC Number of records in input

file

A - 23

Subroutine Documentation for module: ERDBUFF

RECRDS Number of records in primary
file
FTNT77 Fortran read buffer
TEMBUF Temporary read buffer
ACCTYP File access flag
Block Name: GTBLK
Module Common to: GNSTIN, GNSTDP, EGETBLK,
SORT2D
Description:
OUTBUF OQutput buffer
ACSORT Array holding sorted AC
energies
ACMTX Matrix holding AC energies

A - 24

SUBROUTINE :

MODULES
CALLED FROM:

PURPQOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:
XFORM

MTXDIM

Subroutine Documentation for module: COSMTX

COSMTX

MAXTRN, THRTRN, ZNLTRN, GNSTIN, GNSTDP

This subroutine creates the cosine matrix

CALL COSMTX(XFORM,MTXDIM)

Transform matrix to be computed

Dimension of transform matrix

I
R S BN N Bn By b N BE BN B B BN B B B B B

SUBROUTINE:

MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT

DESCRIPTIONS:
XFORM
TRXFORM

MTXDIM

Subroutine Documentatlion for module: TRNSPS

TRNSPS
MAXTRN, THRTRN, ZNLTRN, GNSTIN, GNSTDP

This subroutine puts the transpose of the
cosine matrix in TRXFORM

CALL TRNSPS(XFORM, TRXFORM,MTXDIM)

Transform matrix COSMTX
Transpose of the transform matrix

Matrix dimension

A - 26

SUBROUTINE :

MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:
ARGUMENT
DESCRIPTIONS:
XVAL
YVAL
X512
YSIZ
BLKNAM

NAMED COMMON
DESCRIPTIONS:

Subroutine Documentatlion for module: EGETBLK

EGETBLK

GNSTIN, GNSTDP

This subroutine retrieves a block of data from
the block buffer and places it in the transform
data buffer for transformation.

CALL EGETBLK(XVAL,YVAL,XSIZ,YSIZ,BLKNAM)

Upper left X file coordinate
Upper left Y flle coordinate
X Block dimension
Y Block dimension

Memory to hold a block of data to be retrieved

Block Name: GTBLK
Module Common to: GNSTIN, GNSTDP, ERDBUFF,
SORT2D
Description:
OUTBUF Output buffer
ACSORT Array holding sorted AC
energles
ACMTX Matrix holding AC energies

A - 27

l

Subroutine Documentation for module: S50ORT2D

SUBROUTINE: SORT2D

MODULE

CALLED FROM: GNSTIN, GNSTDP

PURPOSE: This subroutine sorts an array of AC energles

to get appropriate class bounds for the class

map.

CALLING FORMAT: CALL SORT2D(DIMNSN)

ARGUMENT
DESCRIPTIONS:

DIMNSN Dimension of the array to be sorted

NAMED COMMON
DESCRIPTIONS:

Block Name:

GTBLK

Module Common to: ERDBUFF, EGETBLK, GNSTIN,

GNSTDP

Description:

OUTBUF

ACSORT

ACMTX

Output buffer

Array holding sorted AC
energies

Matrix holding AC energies

A - 28

SUBROUTINE :
MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:
ARGUMENT
DESCRIPTIONS:

MTX1

MTX2

SIZE

DEST

Subroutine Documentation for module: MTXMUL

MTXMUL

MAXTRN, THRTRN, ZNLTRN, GNSTIN, GNSTDP

This subroutine will do matrix multiplications
of real numbers on two matrices.

CALL MTXMUL(MTX1,MTX2,SIZE,DEST)

Matrix one, ordering is .important
Matrix two, again ordering is important
Size of matrices

Destination of the result of (MTX1 * MTX2)
(1 Result places in MTX1l, 2 Result in MTX2)

A - 29

Function Documentation for module: ACNRGY

Function: ACNRGY

MODULES

CALLED FROM: GNSTIN, GNSTDP

PURPOSE: This function calculates the AC energy of a

sub-block. The AC energies are then used for
block classification.

CALLING FORMAT: X = ACNRGY(MTX,XDIM,YDIM)

ARGUMENT

DESCRIPTIONS:
MTX Data matrix
XDIM X dimension of data matrix
YDIM Y dimension of data matrix

A - 30

SUBROUTINE:

MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

TRMTX
VARMTX
XDIM

YDIM

Subroutine Documentation for module: VARNCE

VARNCE

GNSTIN, GNSTDP

This subroutine adds the squares of the AC
coefficients within the sub-block over the
entire image. The sums of the squares will
be later used to calculate the variance matrix.

CALL VARNCE(TRMTX, VARMTX,XDIM,YDIM)

Input transformed matrix
Output variance matrix
X dimension of the transformed matrix

Y dinmension of the transformed matrix

A - 31

A.2.1.1.2 Module GNSTDP

A ~ 32

COSMTX MTXMUL TRNSPS GETFIL

ERDBUFF |« GNSTDP [« EGETBLK

SORT2ZD VARNCE ACNRGY GTMEAN
FIGURE A.4 Structure Chart for Module: GNSTDP

A - 33

GNSTDP.FTN - Discrete Cosine Transform Image
Dependent Statistics Generator Program

Oopen files and read input parameters

Calculate Cosine Matrix

Calculate Transpose of Cosine Matrix

Define the boundaries of the image flile

Initialize count array

Do for the number of vertical sub-blocks

Get row of horizontal sub-blocks

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image f£lle to real numbers

Perform matrix multiplications to transform sub-
block matrix

Calculate AC energy in sub-block

Sum up the squares of the AC coefficlients for
calculation of the variance matrix and sum up the
DC coefficients for the calculation of its mean

Calculate the number of sub-blocks and the DC coefficient mean

Calculate the DC coefficient variance

A - 34

GNSTDP.FTN -~ Discrete Cosine Transform Image
Dependent Statistics Generator Program

Do for number the of vertical sub-blocks

Do for the number of horizontal sub-blocks

Put the AC energies of the image into a array

Do for the number of vertical pixels

Do for the number of horizontal pixels

Calculate the AC coefficients variance to complete
the variance matrix

Sort energies of each sub-block

Calculate the mean of the sorted array

Let class bound two equal the mean of the sorted array

Calculate the mean of the sorted array up to class bound two
and let that mean equal class bound one

Calculate the mean of the sorted array
after class bound two

Let the mean of the sorted array after class bound two equal
class bound three

Calculate the sub-block classifications

Do for number of vertical sub-blocks

Do for number of horizontal sub-blocks

Classify each sub-block according to non-uniform bounds

A - 35

GNSTDP.FTN - Discrete Cosine Transform Image
Dependent Statistics Generator Program

Do for number of vertical pixels

Do for number of horizontal pixels

Write the varlance matrix to file

Do for number of vertical sub-blocks

Do for number of hhrizontal sub-blocks

Write the class map matrix to file

Write to f£ile the mean of the DC coefficient

Close flles

END

A - 36

—— ——

GTMEAN.FTN - Mean Calculation Function

Do for the number in the array

Sum up the coefficients in the array

Calculate the mean of the array and set it equal to GTMEAN

Return

END

A - 37

PROGRAM:

DESCRIPTION:

RUNSTRING:
INPUT NAME

OUTPUT NAME

ORDER OF
INPUT PARAMETERS:

MODULES CALLED:
ERDBUFF

COSMTX

Program Documentation f£or module: GNSTDP

GNSTDP

This program uses an adaptive coding technique
known as the Discrete Cosine Transform (DCT)
and follows the Chen~Smith (ref. 1} coding
algorithm. Transformed blocks are sorted into
classes by the level of image activity. Within
each activity level, coding bits are allocated
to individual transform elements according to
the variance matrix of the transformed data.
This program is image dependent unlike module
GNSTIN. The amount of blocks in each class
will depend upon the image activity. This
program generates the variance matrix which is
used in module BITALL to allocate coding bits
to individual transform elements and module
MAXTRN to make the individual transform
elements have unit variance. This program
also generates, the class map which shows the
activity level of each transformed sub-block
and the mean of the DC coefficient which is
used in module MAXTRN in quantization.

GNSTDP, <INPUT NAME>, <OUTPUT NAME>
Input image file name

Output statistics file

1) Dimension of sub-blocks

2) Number of sub-~block classification levels

Subroutine to read a horizontal line of t'ie
input image into the FTN77 buffer.

Subroutine to put in memory the cosine matrix.

A - 38

TRNSPS

EGETBLK

SORT2D

MTXMUL

GTMEAN

ACNRGY

VARNCE

GETFIL

NAMED COMMON
DESCRIPTIONS:

Program Documentation for module: GNSTDP

Subroutine to put in memory the transpose of
the cosine matrix.

Subroutine to retrieve a block of data from the
FTN77 buffer.

Subroutine to sort an array of ac energies.

Subroutine to do matrix multiplications of real
numbers.

Functlon to calculate the mean of an array.
Used to determine class bounds.

Functlion to calculate AC energy of sub-blocks.
Subroutine to add the squares of the AC
coefficients for calculation of the variance
matrix.

Subroutine to open input an image file for
processing.

Block Name: GFMBLK
Module Common to: RDBUFF

Descriptlons:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT Flle status variable

RECLEN Record length in bytes

NUMREC Number of records in input
file

RECRDS Number of records in primary
file

FTN77 Fortran read buffer

A - 39

Program Documentation for module: GNSTDP

TEMBUF

ACCTYP ~

Block Name:

Module Common to:

Descriptions:

CUTBUF

ACSORT

ACMTX

A - 40

Temporary read buffer
File access flag

GTBLK
RDBUFF, GETBLK, SORT2D

Output buffer

Array holding sorted AC
energies

Matrix holding AC energies

\

Function:
MODULE

CALLED FROM:
PURPOSE:
CALLING FORMAT:
ARGUMENT
DESCRIPTIONS :

FIRST

LAST

Functlion Documentation for module: GTMEAN

GTMEAN
CGNSTDP
This function calculates mean of an array.

X = GTMEAN(FIRST,LAST)

The starting point of the calculation.

The ending point of the calculation.

A - 41

A.2.1.2

BIT ALLOCATING PROGRAM:

A - 42

BITALL

BITALL

|

ALLOCT

FIGURE A.5 Structure Chart for Module: BITALL

A - 43

BITALL.FTN - Discrete Cosine Transform
Bit Allocation Program

open files and read input parameters

Do for number of vertical pixels

Do for number of horizontal pixels

Read in the current pixel of the variance matrix

Calculate the desired bit targets used in determining the bit maps

Do for number of classes

Do while current bit is less than target

Allocate bits for current bit map

Do for number of vertical pixels

Do for number of horizontal pixels

Write to £ile the current bit map

Write the average number of bits per pixel

Close files

END

A - 44

ALLOCT.FTN - Bit Allocating Function

Do for dimension of matrix

Do for dimension of matrix

Is this an AC coefficient?
YES NO

Calculate bits to allocate Allocate eight bits for
for the AC coefficient the DC coefficient

Return the average bits per pixel

END

A - 45

N\

PROGRAM:

DESCRIPTION:

RUNSTRING:
INPUT NAME

OUTPUT NAME

ORDER OF

INPUT PARAMETERS:

MODULES CALLED:

ALLOCT

Program Documentation for module: BITALL

BITALL

This program will allocate bits for each of the
four classes created In the statistics
generating program. The coding bits are
allocated to individual transform elements
according to the variance matrix of of the
transformed data. Bits are then distributed
between "busy" and "quiet" image areas to
provide the desired adaptivity; more bits
asslgned to the areas of high image activity
and fewer bits assigned to those of low
activity.

BITALL, <INPUT NAME>, <OUTPUT NAME>
Input variance matrix

Ooutput bit allocation maps

1) Dimension of sub-blocks

2) Desired number of coded bits per pixel

Function that creates the bit allocation
matrices for the different classes of the
classification map.

A - 46

.

Function:
MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

BAMTX

VARMTX

PARM

XDIM

Function Documentation for module: ALLOCT

ALLOCT

BITALL

This function calculates the bit allocation
matrices for the different classes of the
classification map.

X = ALLOCT(BAMTX, VARMTX,PARM,XDIM)

Output bit allocation matrix

Input variance matrix

Input parameter to the bit allocation function

Matrix dimension

A - 47

A.2.1.3 CODING PROGRAM: MAXTRN

A - 48 |

COSMTX MTXMUL TRNSPS GETFIL

I SLENZ

MRDBUFF MAXTRN > MGETBLK
MAXQNT MAXDQT FLTBLK MIFTBK

FIGURE A.6 Structure Cha~t for Module: MAXTRN

A -~ 49

MAXTRN.FTN - Discrete Cosine Transform Program
using the Lloyd-Max Quantizing Method

open files and read input parameters

Do for the number of vertical pixels

Do for the number of horizontal pixels

Read in the current pixel of the variance matrix
that was created in the Statistlics Generator

Do for the number of vertical sub-blocks

Do for the number of horizontal sub-blocks

Read the class map that was created in the
Statistics Generator

Read the mean of the DC coefficient created in the
Statistics Generator

Do for the number of vertical pixels

Do for the number of horizontal pixels

Read in bit maps that were created in module BITALL

Do for the current number of levels

Read in the current Lloyd-Max quantization levels

Calculate Cosine Matrix

Calculate Transpose of Cosine Matrix

Define the boundaries of the image file

Initialize total number of bits

A - 50

I— -
G B B N B D B BN BN B D B BT B B B B EE e

MAXTRN.FTN - Discrete Cosine Transform Program
using the Lloyd-Max Quantizing Method

Do for the number of vertical sub-blocks

Get row of horizontal sub-blocks

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image flle to real numbers

Perform matrix multinlications to transform sub-
block matrix

Quantize transformed sub-block

Perform an integer filtering process that puts
back in range out of range coefficients due to
guantization error

Dequantize transformed quantized sub-block

Perform matrix multiplications to transform the

sub-block back to original form. (The sub-block
will not be exactly the same due to quantization
error)

Perform filtering process that puts back in range
the out of range pixels that were due to guanti-
zation error

A - 51

-

MAXTRN.FTN - Discrete Cosine Transform Program
using the Lloyd-Max Quantizing Method

Do for the number of vertical pixels

Do for the number of horizontal pixels

Do for the number of bits per word

Pack bits into word

Increment total pixels being processed

Write a row of horizontal sub-blocks to output file

Calculate and print out compression statlistics

END

A - 52

MRDBUFF.FTN - Buffer Reading Subroutine

Move down to proper spot reading point of Image file

Do for the number of vertical dimension of sub-blocks

Read horizontal block of pixels

Return

END

A - 53

MGETBLK.FTN - Sub-block Retrieving Subroutine

Move across to proper spot in buffer

Do for the number of vertical dimension of sub-blocks

Do for half the horizontal dimension of sub-blocks

Do two times

Take half a word which is one pixel from the buffer

Return

END

A - 54

MAXQNT.FTN - Lloyd-Max Quantizing Subroutine

Initialize quantizing sub-block

Do for number of vertical pixels

Do for number of horizontal pixels

Determine how many levels to use according to the position
MAXTRN is at on the image map and keep track of bits that
are used

Divide the current coefficient by the standard deviation
to make the coefficient have unit variance

Put the gquantization levels in an array

Is this the DC coefficient?

YES NO

Let the mean of the DC Let zero be the center of
coefficient divided by its the quantization levels
standard deviation be the
center of the quantization
levels

Determine the correct quantlization level

Put the correct quantization level in the output matrix

Return

END

A - 55

MAXDQT.FTN - Lloyd-Max Dequantizing Subroutine

Initialize dequantizing sub-block

Do for number of vertical pixels

Do for number of horizontal pixels

Determine how many levels to use according to the position
MAXTRN is at on the image map

Put the dequantization levels in an array

Is this the DC coefficient?

YES

Let the mean of the DC Let zero be the center of
coefficient divided by its the dequantization levels
standard deviation be the
center of the dequantization
levels

Determine the correct dequantization level

Put the correct dequantization level in the output matrix

Return

END

A - 56

FLTBLK.FTN - Filtering Subroutine

Do for vertical dimension of sub-block

Do for horizontal dimension of sub-block
———

— Is current pixel of sub-block less

than "0"2
YES \\\

Make the current pixel of sub-block equal to "O"
e—

Is current pixel of sub-block greater
than "255"2

YES

—)

Make the current pixel of sub-block equal to "255"

Return

END

A - 57

MIFTBK.FTN - Filtering Subroutine

Do for vertical dimension of sub-block

Do for horizontal dimension of sub-block
————

Is current pixel of sub-block less
than "O"?

YES

———

Make the current pixel of sub-block equal to "GQ"

e —

Is current pixel of sub-block greater
than "255"?

\

Make the current pixel of sub-block equal to "255"

YES

Return

END

A - 58

PROGRAM:

DESCRIPTION:

RUNSTRING:

INPUT NAME
OUTPUT NAME

STAT FILE

BIT MAPS
256 LEVELS
128 LEVELS
64 LEVELS

32 LEVELS

MODULES CALLED:

MRDBUFF

COSMTX

Proqram Documentatlion for module: MAXTRN

MAXTRN

This program uses an adaptive coding technique
known as the Discrete Cosine Transform (DCT)
and follows the Chen-Smith (ref. 1) algorithm.
The program interactively inquires for, then
accepts input parameters for the dimensions of
the sub-blocks. The quantization method used
in this program is the Lloyd-Max optimal
quantization scheme (ref. 2,3) with the
probability density and transform sample
modeled as equation 3.1. This coding method
will be applied to three images, a face photo,
an aerial photo and a crowd scene. A summary of
each run is printed including compression
statistics and RMS values.

MAXTRN, <INPUT NAME>, <OUTPUT NAME>,<STAT FILE>,
<BIT MAPS>,<256 LEVELS>,<128 LEVELS>,
<64 LEVELS>,<32 LEVELS>

Input image file name

Output reconstructed image file name

The variance matrix and image map from the
statistics generating program

The four bit maps created in BITALL

256 of the Lloyd-Max quantization levels
128 of the Lloyd-Max quantization level:
64 of the Lloyd-Max quantization levels

32 of the Lloyd-Max quantizatlion levels

Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

Subroutine to put in memory the cosine matrix.

A - 59

TRNSPS

MTXMUL

MGETBLK

MAXQNT
MAXDQT

FLTBLK

MIFTBK

GETFIL

NAMED COMMON

DESCRIPTIONS:

Progqgram Documentation for module:

MAXTRN

Subroutine to

put in memory the transpose of

the cosine matrix.

Subroutine to
real numbers

Subroutine to
FTN77 buffer.

Subroutine to
Subroutine to

Subroutine to
pixels.

Subroutine to
coefficients.

Subroutine to
processing.

Block Name:
Module Common

Descriptions:
IMGFIL
EXTISTS
ISTAT
RECLEN

NUMREC

RECRDS

FTN77

TEMBUF

do matrix multiplications of

retrieve a block of data from the

quantize blocks of data.
dequantize blocks of data.

filter out, out of range real

filter out, out of range integer

cpen input image an file for

GFMBLK
to: MRDBUFF

Input image file name
File exists flag

File status varlable
Record length in bytes

Number of records in input
file

Number of records in primary
file

Fortran read buffer

Temporary read buffer

A - 60

l Program Documentation for module: MAXTRN
' ACCTYP File access flag
I Block Name: GTBLK
Module Common to: MRDBUFF,MGETBLK
l Descriptions:
l OUTBUF Output buffer
| A- 61

SUBROUTINE:

MODULE
CALLED FROM:

PURPOQOSE:

MODULES CALLED:

LGBUF
CALLING FORMAT:
ARGUMENT
DESCRIPTIONS:

YDIM

YVAL

INLU

NAMED COMMON
DESCRIPTIONS:

Subroutline Documentatlion for module: MRDBUFF

MRDBUFF

MAXTRN

Thls subroutine reads a horizontal sub-block of

data from the Image file into the FTN77 buffer.

Subroutine to make the buffer size larger.

CALL MRDBUFF(YDIM,YVAL, INLU)

Y dimension of the buffer in words
Y coordinate of file for reading

LU for the input image file

Block Name: GFMBLK
Module Common to: MAXTRN

Descriptions:
IMGFIL Input image file name
EXISTS File exists flag
ISTAT File status variable
RECLEN Record length in bytes
NUMREC Number of records in input
file
A - 62

Subroutine Documentation for module: MRDBUFF

RECRDS

FTNT7
TEMBUF

ACCTYP

Block Name:

Module Common to:

Description:

OUTBUF

A - 63

Number of records in primary
file

Fortran read buffer
Temporary read buffer

File access flag

GTBLK
MGETBLK, MAXTRN

Output buffer

SUBROUTINE:

MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

XVAL
YVAL
XSIZ
YSIZ
BLKNAM

NAMED COMMON
DESCRIPTIONS:

Subroutline Documentation for module: MGETBLK

MGETBLK

MAXTRN

This subroutine retrieves a block of data from
the block buffer and places it in the transform
data buffer for transformation.

CALL MGETBLK(XVAL,YVAL,XSIZ,YSIZ,BLKNAM)

Upper left X file coordinate
Upper left Y file coordinate
X Block dimension
Y Block dimension

Memory to hold a block of data to be retrieved

Block Name: GTBLK
Module Common to: MGETBLK,MAXTRN
Description:

OUTBUF Qutput buffer

A - 64

SUBROQUTINE:
MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

QNTMTX
BLKBUF
IMGMAP
VARRY
TTLBTS
V1MAP
V2MAP
V3IMAP
V4MAP
XDIM

YDIM

Subroutine Documentation for module: MAXQNT

MAXQNT
MAXTRN

This subroutine uses the Lloyd-Max optimal
quantization scheme (ref. 2,3). The
quantization process takes the current
coefficient and determines the correct
gquantization interval and represents the
coefficient by the input level that corresponds
to that intexrval. The guantization levels used
are the ones that are described in the Lloyd-
Max algorithm.

CALL MAXQNT(QNTMTX,BLKBUF, IMGMAP , VARRY, TTLBTS,
V1MAP, V2MAP, V3MAP , VAMAP, XDIM, YDIM,
I,J3,X256,X128,X64,X32)

Output quantized matrix

Input matrix to be quantized
The total image energy map

The variance matrix

Total actual bits sent
Variance map one

Variance map two

Variance map three

Variance map four

X Dimension of inputted matrix

Y Dimension of inputted matrix

A - 65

I,J
X256
X128
X64
X32

Subroutine Documentation for module: MAXQNT

The current position of IMGMAP sent from MAXTRN
256 Input levels
128 Input levels
64 Input levels

32 Input levels

A - 66

SUBRQUTINE:

MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

QNTMTX
BLKBUF
IMGMAP
VARRY
ViMAP
V2MAP
V3MAP
V4MAP
XDIM
YDIM
I,Jg
Y256
Y128
Y64
Y32

Subroutine Documentation for module: MAXDQT

MAXDQT

MAXTRN

This subroutine will dequantize a transformed
guantized sub-block of pixels. The dequanti-
zation process takes the quantized pixel and

dequantizes it by giving the pixel its corre-
sponding output level.

CALL MAXDQT(QNTMTX, BLKBUF, IMGMAP, VARRY,

V1MAP,V2MAP, V3MAP, VAMAP , XDIM, YDIM,
I,J,Y256,Y128,Y64,Y32)

Input quantized matrix

Output matrix to be dequantized
The total image energy map

The variance matrix

Variance map one

Variance map two

Variance map three

Varlance map four

X Dimension of inputted matrix
Y Dimension of inputted matrix
The current position of IMGMAP sent from MAXTRN
256 Output levels

128 Output levels

64 Output levels

32 Output levels

A - 67

SUBROUTINE:
MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT

DESCRIPTIONS:
MATRIX

DIM

Subroutine Documentation for module: FLTBLK

FLTBLK

MAXTRN, THRTRN, ZNLTRN

This subroutine will filter out reconstructed
real pixels that are out of range.
(eg. Larger than 255, or smaller than 0)

CALL FLTBLK(MATRIX,DIM)

Matrix to be filtered

Dimension of matrix to be filtered

A - 68

SUBROUTINE:

MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT

DESCRIPTIONS:
MATRIX

DIM

Subroutine Documentation for module: MIFTBK

MIFTBK

MAXTRN

This subroutine will filter out reconstructed
integer coefficients that are out of range.
(eg. Larger than 255, or smaller than Q)

CALL MIFTBK(MATRIX,DIM)

Matrix to be filtered

Dimension of matrix to be filtered

A - 69

A.2.2.1 CODING PROGRAM: ZNLTRN

A - 170

COSMTX

MTXMUL

/

\

TRNSPS

RDBUFF -

ZNLQNT

ZNLTRN [*

GETFIL

/f/

v/

\

FIGURE A.7

DQUANT

Structure Chart for Module:

A -171

WA

FLTBLK

GETBLK

;

INFTBK

ZNLTRN

ZNLTRN.FTN - Discrete Cosine Transform Program
using the Zonal Quantizing Method

OPEN files and read input parameters

Do 70 times

Read in the ordering in which the coefficents will be checked
in the quantizing routine and their dividing factors

Calculate Cosine Matrix

Calculate Transpose of Cosine Matrix

Define the boundaries of the image file

Initialize the total pixel beling processed to zero

Do for the number of vertical sub-blocks

Get row of horlizontal sub-blocks

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image flile to real numbers

Perform matrix multiplications to transform sub-
block matrix

Quantize the transformed sub-block using the Zonal
Quantization Method

Perform an integer filtering routine that puts
back in range out of range coefficlents that were
due to quantization error

A - 72

ZNLTRN.FTN - Discrete Cosine Transform Program
using the Zonal Quantizing Method

Dequantize the transformed sub-block

Perform matrix multiplications to transform the
sub-block back to original form. (The sub-block
will not be exactly the same due to quantization

error)

Perform filtering process that puts back in range
the out of range pixels that were due to quanti-
zation error

Do for the number of vertical pixels

Do for the number of horizontal pixels

Do for the number of bits per word

Pack blits into word

Increment total pixels being processed

Write a row of horizontal sub-blocks to output file

Calculate and print out compression statistics

END

A - 73

RDBUFF.FTN - Buffer Reading Subroutine

Move down to proper spot reading point of Image file

Do for the number of vertical dimension of sub-blocks

Read horizontal block of pixels

Return

END

A - 74

GETBLK.FTN - Sub-block Retrieving Subroutine

Move across to proper spot in buffer

Do for the number of vertical dimension of sub-blocks

Do for half the horizontal dimension of sub-blocks

Do two times

Take half a word which is one pixel from the buffer

Return

END

A - 75

ZNLONT.FPTN - Quantizing Subroutine

Initialize Quantizing sub-block

Initialize current coefficients being processed

Do WHILE current coefficient count of the sub-block is less than
the user inputted number of coefficients kept and that this ic less
than 70. (The reason the current coefficient must be less than the
seventieth coefficient is that the image distorts keeping more than
70 coefficients.)

Divide the current coefficient to send it in eight bits

Increment PP to keep track of coefficients being processed

Since the PP count is always one ahead subtract one to
keep precise count

Return

END

A - 76

DQUANT.FTN - Dequantizing Subroutine

Initialize sub-block

Do for the number of pixels processed in the Quantizing Matrix

Multiply current pixel by what it was divided by in the
Quantizing Subroutine

Return

END

A - 77

INFTBK.FTN - Filtering Subroutine

Do for vertical dimension of sub-block

Do for horizontal dimension of sub-block

Is this the DC coefficient and is
it greater than "255"?
YES

Make the DC coefficient equal to "255"

Is this an AC coefficlent and is
it greater than "127"?
YES

Make the current AC coefficient equal to "127"

Is this an AC coefficient and is
it less than "-127%"?
YEBS .

———

Make the current AC coefficient egqual to "-127"

Return

END

A - 78

PROGRAM:

DESCRIPTION:

RUNSTRING:
INPUT NAME
OUTPUT NAME

STAT FILE

INPUT PARAMETER:

MODULES CALLED:

RDBUFF

ZOSMTX

TRNSPS

Program Documentation for module: ZNLTRN

ZNLTRN

This program uses a conditional zonal coding
technique which employs the Discrete Cosine
Transform (DCT). The program will divide an
image into sub-block matrices, then transform
each sub-block. The transformation process
packs the energy into the upper left portion of
the matrix. The program interactively inquires
for, then accepts an input parameter used in
runs quantizing a different amount of
coefficients from each sub-block. The
quantization process used is the conditional
zonal guantizing method. The ord~r in which
the coefficients are checked is based upon the
highest variances from a cross section of
images. After the quantization process the
program dequantizes, transforms the sub-blocks
back and writes the reconstructed image to an
output £file. A summary of each run is printed
including; names, ending values and compression
statistics.

ZNLTRN, <INPUT NAME>, <QUTPUT NAME>, {STAT FILE>
Input image file name

Output reconstructed image file name
Statistics file ordered to check sub-block

matrices

Ending value

Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

Subroutine to put in the cosine matrix.

Subroutine to put in the transpose of the
cosine matrix.

A - 79

MTXMUL

GETBLK

ZNLQNT
DQUANT

FLTBLK

INFTBK

GETFIL

NAMED COMMON
DESCRIPTIONS:

Program Documentation for module:

Subroutine to
real numbers.

Subroutine to
FTN77 buffer.

Subroutine to
Subroutine to

Subroutine to
pixels.

Subroutine to
coefficients.

Subrovtine to
processing.

Block Name:
Module Common

Descriptions:
IMGFIL
EXISTS
ISTAT
RECLEN

NUMREC

RECRDS

FTN77
TEMBUF

ACCTYP

ZNLTRN

do matrix multiplications of

retrieve a block of data from the

quantize blocks of data.
dequantlize blocks of data.

filter out, out of range real

filter out, out of range integer

open input image an file for

SFMBLK
to: RDBUFF

Input image f£ile name
File exists flag

File status variable
Record length 1in bytes

Number of records in input
file

Number of records in priitary
file

Fortran read buffer
Temporary read buffer

File access flag

A - 80

Program Documentatlon for module:

Block Name: GTBLK
Module Common to: RDBUFF,GETBLK

Descriptions:

OUTBUF Output buffer

A - 81

ZNLTRN

SUBROUTINE:

MODULES
CALLED FROM:

PURPOSE:

MODULES CALLED:

LGBUF
CALLING FORMAT:
ARGUMENT
DESCRIPTIONS:

YDIM

YVAL

INLU

NAMED COMMON
DESCRIPTIONS:

Subroutine Documentatlion for module: RDBUFF

RDBUFF

ZNLTRN, THRTRN

This subroutine reads a horizontal sub-block of
data from the image file into the FTN77 buffer.

Subroutine to make the buffer size larger.

CALL RDBUFF(YDIM,YVAL,INLU)

Y dimension of the buffer in words

Y coordinate of file for reading

LU for the input image file

Block Name:
Module Common to:

Descriptions:
IMGFIL
EXISTS
ISTAT
RECLEN

NUMREC

A - 82

GFMBLK
ZNLTRN, THRTRN

Input image file name
File exists flag

File status variable
Record length in bytes

Number of records in input
file

Subroutine Documentation for module: RDBUFF

RECRDS Number of records in primary
file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag
Block Name: GTBLK
Module Common to: GETBLK, ZNLTRN, THRTRN
Description:

OUTBUF Output buffer

A - 83

SUBROUTINE:

MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

XVAL
YVAL
XS81Z
YSIZ
BLKNAM

NAMED COMMON
DESCRIPTIONS:

Subroutine Documentation for module: GETBLK

GETBLK

ZNLTRN, THRTRN

This subroutine retrieves a block of data from
the block buffer and places it in the transform
data buffer for transformation.

CALL GETBLK(XVAL,YVAL,XSIZ,YSIZ,BLKNAM)

Upper left X file coordinate
Upper left Y file coordinate
X Block dimension
Y Block dimensio..

Memory to hold a block of data to be retrieved

Block Name: GTBLK
Module Common to: GETBLK, ZNLTRN, THRTRN
Description:

OUTBUF Output buffer

A - 84

SUBROUTINE:

MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

QNTMTX
BLKBUF

F,S

XDIM

YDIM

i
!
|

Subroutine Documentatlion for module: ZNLONT

ZNLQNT

ZNLTRN

This subroutine will quantize a sub-block of
pixels. The quantization process takes a 22 bit
real coefficient from the buffer and transforms
it into an 8 bit integer coefficient. The
subroutine quantizes from the upper left
portion of the sub-block keeping an inputted
number of pixels from each sub-block.

CALL ZNLQNT(QNTMTX,BLKBUF,F,S,D,LAST,DP,
XDIM, YDIM)

Output quantized matrix

Input matrix to be quantized

The ordering in which a sub-block of data will
be checked

(e.g. IF BLKBUF(F,S) .LE. LAST)

An array to hold division numbers thal convert
the 32 bit real numbers into 8 bit integers
The inputted number of coefficients kept in
each sub-block

Keeps count of the pixels being processed in
each call to ZNLQNT and sends it to the
dequantizing subroutine

X Dimension of inputted matrix

Y Dimension of inputted matrix

A - 85

SUBROUTINE:

MODULES
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT

DESCRIPTIONS:
QNTMTX
BLKBUF

F,S

D

PP

XDIM

YDIM

Subroutine Documentation for module: DQUANT

DQUANT

ZNLTRN, THRTRN

This subroutine will dequantize a transformed
quantized sub-block of pixels. The dequant-
ization process takes an 8 bit integer pixel
from the quantizing routine and dequantizes it
into a 32 bit real pixel. The subroutine
dequantizes in the same way the quantization
process was done either adaptively or
conditionally and using the ordering that was
used in the gquantizing routine.

CALL DQUANT(QNTMTX, BLKBUF,F,S,D,PP,XDIM, YDIM)

Output quantized matrix
Input matrix to be dequantized

The ordering in which a sub-block of data will
be checked

An array to hold division numbers that convert
the 8 bit integer numbers back into 32 bit
real numbers

Pixels to be processed that was determined in
the quantizing routine

X Dimension of inputted matrix

Y Dimension of inputted matrix

A - 86

SUBROUTINE:

MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT

DESCRIPTIONS:
MATRIX

DIM

Subroutine Documentation for module: INFTBK

INFTBK
ZNLTRN, THRTRN

This subroutine will filter out reconstructed
integer coefficients that are nut of range.
(e.g. If the coefficient is the DC coefficient
it can be no larger than 255. Any other
coefficient can be no larger than 127 or
smaller than -127.)

CALL INFTBK(MATRIX,DIM)

Matrix to be filtered

Dimension of matrix to be filtered

A - 87

A.2,2.2 CODING PROGRAM:

A - 88

THRTRN

COSMTX MTXMUL TRNSPS GETFIL
RDBUFF THRTRN GETBLK
THRQNT DQUANT FLTBLK INFTBK

FIGURE A.S8 Structure Chart for Module: THRTRN

A - 89

THRTRN.FTN - Discrete Cosine Transform Program
using the Adaptive Zonal Quantizing Method

OPEN files and read input parameters

Do 70 times

Read in the ordering in which the coefficents will be checked
in the quantizing routine and their dividing factors

Calculate Cosine Matrix

Calculate Transpose of Cosine Matrix

Define the boundaries of the image file

Initialize the total pixel being processed to zero

Do for the number of vertical sub-blocks

Get row of horizontal sub-blocks

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image file to real numbers

Perform matrix multiplications to transform sub-
block matrix

Quantize the transformed sub-block using the
Adaptive Zonal Quantizing Method

Perform an integer flltering routine that puts
back in range out of range coefficlents that were
due to quantization error

A - 90

THRTRN.FTN - Discrete Cosine Transform Program
using the Adaptive Zonal Quantizing Method

Dequantize the transformed sub-block

Perform matrix multiplications to transform the
sub-block back to original form. (The sub-block
will not be exactly the same due to quantization
error)

Perform flltering process that puts back in range
the out of range pixels that were due to quanti-
zatlion error

Do for the number of vertical pixels

Do for the number of horlzontal pixels

Do for the number of bits per worxd

Pack bits into word

Increment total pixels being proceséed

Write a row of horizontal sub-blocks to output £file

Calculate and print out compression statistics

END

A - 91

THRGNT.FTN - Quantizing Subroutine

Initialize Quantizing sub-block

Initialize current coefficients being processed and FLAG to true

Do WHILE the flag condition is true

Do WHILE current coefficient of the sub-block is greater than
or equal to the cutoff number and that the coefficient is less
than 70. (The reason the current coefficient must be less than
the seventieth pixel is that the image distorts keeping more
than 70 coefficients.)

Divide the current coefficient to send it in eight bits

Increment PP to keep track of coefficients being processed

Are the next two coefficients greater than or
equal to 50 times the cutoff number and

is the last coefficient

less than 70 ?

YES NO

Divide the current coefficient Set flag to false to get out
to send it in eight bits of while loop

Increment PP to keep track of
coefficients being processed

Since the PP count is always one ahead subtract one to
keep precise count

Return

END

A - 92

PROGRAM:

DESCRIPTION:

RUNSTRING:
INPUT NAME
OUTPUT NAME

STAT FILE

INPUT PARAMETER:

MODULES CALLED:

RDBUFF

COSMTX

TRNSPS

MTXMUL

Program Documentation f£or module: THRTRN

THRTRN

This program uses an adaptive zonal coding
method which employs the Discrete Cosine
Transform (DCT). The program will divide an
image into sub-block matrices, then transform
each sub-block. The transformation process
packs the energy into the upper left portion of
the matrix. The program interactively inquires
for, then accepts an input parameter used in
runs having different quantization cutoff
points. The quantization process quantizes
coefficients greater than these cutoff points.
The order in which the coefficients are checked
is based upon the highest variarccs from a
cross section of images. After the
quantization process the program dequantizes,
transforms the sub-blocks back and writes the
reconstructed image to an output file. A
summary of each run is printed including;
names, cutoff polnts and compression
statistics.

THRTRN, <INPUT NAME>, <OUTPUT NAMEX>, <STAT FILE
Input image f£lle name

Output reconstructed image file name
Statistics file ordered to check sub-block

matrices

Cutoff point

Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

Subroutine to put in the cosine matrix.

Subroutine to put in the transpose of the
cosine matrix.

Subroutine to do matrix multiplications of
real numbers.

A - 93

GETBLK

THRQNT
DQUANT

FLTBLK

INFTBK

GETFIL

NAMED COMMON
DESCRIPTIONS:

Program Documentation for module:

Subroutine to
FTN77 buffer.

Subroutine to
Subroutine to

Subroutine to
pixels.

Subroutine to
coefficients.

Subroutine to
processing.

Block Name:
Module Common

Descriptions:
IMGFIL
EXISTS
ISTAT
RECLEN

NUMREC

RECRDS

FTN77
TEMBUF
ACCTYP

Block Name:
Module Common

Descriptions:

OUTBUF

THRTRN

r-trieve a block of data from the

guantize blocks of data.
dequantize blocks of data.

filter out, out of range real

Eilter out, out of range integer

open input image an file for

GFMBLK
to: RDBUFF

Input image file name
File exists flag

File status variable
Record length in bytes

Number of records in inpat
file

Number of records in primary
file

Fortran read buffer
Temporary read buffer
File access flag

GTBLK
to: RDBUFF, _STBLK

Output buffer

A - 94

SUBROUTINE:
MODULE
CALLED FROM:

PURPOSE:

CALLING FORMAT:

ARGUMENT
DESCRIPTIONS:

QNTMTX
BLKBUF

F,S

CUTOFF

Subroutine Documentation for module: THRQNT

THRQONT

THRTRN

This subroutine will quantize a sub-block of
pixels. The quantization process takes a 32 bit
real coefficient from the buffer and transforms
it into an 8 bit integer coefficlent. The
subroutine quantizes from the upper left
portion of the sub-block quantizing
coefficients greater than a cutoff point. The
gquantization process ends when a coefficient is
less than the cutoff point as long as it was
not an extrinsic coefficient. An extrinsic
coefficient 1s a coefficient that is less than
the cutoff point, but the next two coefficlients
after the extrinsic coefficient are both
greater than 50 times the cutoff point. If an
extrinsic coefficlent was encountered then the
quantization process would continue until it
fell out of the quantizing routine normally,
meeting a coeffliclent less than the cutoff
point that was not an extrinsic coefficient.

CALL THRQNT(QNTMTX, BLKBUF,F,S,D,CUTOFF,PP,
XDIM, YDIM)

Output quantized matrix

Input matrix to be gquantized

The ordering in which a sub-block of data will
be checked

(e.g. IF BLKBUF(F,S) .LT. CUTOFF)

An array to hold division numbers that convert
the 32 bit real numbers into 8 bit integers

The inputted cutoff point

A - 95

Subroutine Documentation for module: THRQNT

PP Keeps count of the pixels being processed in
each call to THRQNT and sends it to the
dequantizing subroutine

XDIM X Dimension of inputted matrix

YDIM Y Dimension of inputted matrix

A - 96

