
DTIC FILE COPY

NCS TIB 87-8

NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN
87-8

qi.
Inm

N
NTRANSFORM CODING AND DIFFERENTIAL

PULSE CODE MODULATION
Qz FOR GROUP 4 FACSIMILE

DTICELECTEiI
JUL 10]1! l

AUGUST 1987

Approrki kr pubi~c ntm"q

9o o7 12 051



REPOCU TD U :AYC:"h VA(-

August 1987 Final

4 TIT71E A N ;u U N

Transform Coding and Differential Pulse Code Modulation
for Group 4 Facsimile C-DCA100-83-C-O047

6' AUTH OF S)

Delta Information Systems, Inc. - , ".
Horsham Business Center, Bldg. 3
300 Welsh Road
Horsham, PA 19044

9 SPO.0NSOR!,,, G MON kiT HIN. AI.ENC NA'E. - , .N - - 0 " N- ' T

National Communications System r c -r_ m 9OR ?.,F

Office of Technology & Standards
Washington, DC 20305-2010 NCS TIB 87-8

12.a [C;ST IB O', 2',I, L,'B %.7v } .M i / :..
'  

h 2b DISTk23BUT'CN CODE

Approved for Public Release; Distribution is unlimited.

13. ABSTRACT S"

This document comparies Transform Coding with Differential Pulse Code Modulation
(DPCM) in order to determine the relative effectiveness of each technique as
applied to the compression of gray scale images for Group 4 facsimile. At the
present time, the CCITT Recommendations for Group 4 facsimile permits the
transmission of black-white imagery only. Consequently, any input page
containing gray scale information, such as a photograph, will be severely
distorted by basic Group 4 machines. However, there are plans by the CCITT
to add a Gray Scale option to the Group 4 facsimile standard for transmitting

pictorial data.

.. J

-D ff I 
I__ .1_

Diffe lial Pulse Code Modulation (DPCM), --Facsimile, 1 165
Group 4 Transform .

Gray Scale Coding,/fj
17. SECJR;T C.CTc F ~LlVCVC.V ~ ~ ,

O F RE PO R T 

T 
TH P _(2 '' .

Unclassified Unclassified Unclasgified L
4,



I
I

m NCS TECHNICAL INFORMATION BULLETIN 87-8

TRANSFORM CODING AND DIFFERENTIAL PULSE CODE

MODULATION FOR GROUP 4 FACSIMILE

PROJECT OFFICER APPROVED FOR PUBLICATION:

DENNIS BODSON DENNIS BODSON
Senior Electronics Engineer Assistant Manager
Office of NCS Technology Office of NCS Technology
and Standards and Standards

FOREWORD

Among the responsibilities assigned to the Office of the Manager, National
Communications System, is the management of the Federal Telecommunication
Standards Program. Under this program, the NCS, with the assistance of the
Federal Telecommunication Standards Committee identifies, develops, and
coordinates proposed Federal Standards which either contribute to the
interoperability of functionally similar Federal telecommunication systems or
to the achievement of a compatible and efficient interface between computer and
telecommunication system. In developing and coordinating these standards, a
considerable amount of effort is expended in initiating and pursuing joint
standards development efforts with appropriate technical committees of the
Electronics Industries Association, the American National Standards Institute,
the International Organization for Standardization, and the International
Telegraph and Telephone Consultative Committee of the International
Telecommunication Union. This Technical Information Bulletin presents an
overview of an effort which is contributing to the development of compatible
Federal, national, and international standards in the area of facsimile. It
has been prepared to inform interested Federal activities of the progress of
these efforts. Any comments, inputs or statements of requirements which could
assist in the advancement of this work are welcome and should be addressed to:

Office of the Manager
National Communications System
ATTN: NCS-TS
Washington, DC 20305-2010I
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- 1.0 INTRODUCTION

3 This document summarizes work performed by Delta Information

Systems, Inc., for the Office of Technology and Standards of the

I National Communications System, an organization of the U. S.

Government, headed by National Communications System Assistant

Manager for the Office of Technology and Standards, Dennis

Bodson. Mr. Bodson is responsible for the management of the

Federal Telecommunications Standards Program, which develops

telecommunications standards, the use of which is mandatory for

all Federal agencies. The purpose of this study, performed under

Task 2 of Modification Number P00009 of contract number

DCA100-83-C-0047, was to compare Transform Coding with

Differential Pulse Code Modulation (DPCM) in order to determine

3 the relative effectiveness of each technique as applied to the

compression of gray scale images for Group 4 facsimile.

I At the present time, the CCITT Recommendations for Group 4

facsimile permit the transmission of black-white imagery only.

Consequently, any input page containing gray scale information,

such as a photograph, will be severely distorted by basic Group 4

machines. However, there are plans by the CCITT to add a gray

I scale option to the Group 4 facsimile standard for transmitting

pictorial data.

Both Differential Pulse Code Modulation (DPCM) and transform

coding techniques have been used with some success to compress

pictorial (gray scale) data. Each of these techniques has some

attractive characteristics and some limitations. Transform
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coding systems achieve superior performance at high compression,

and show less sensitivity to picture data statistics compared to

DPCM systems. On the other hand, DPCM systems achieve better

performance at lower compression and are less complex to

implement, as compared to transform coding systems.

This report is comprised of four sections. Section 1.0

provides a brief description of the objectives of the study and

contains a synopsis that outlines the results obtained and

conclusions made. Section 2.0 presents the technical approach

employed in the study and includes a discussion of gray scale

compression techniques, detailed descriptions of the transform

coding algorithms simulated, and a discussion of the test image

selection process. The results of the simulation study are

presented in Section 3.0, and the conclugions and recommendations

made based on these results are contained in Section 4.0.

1.1 Synopsis

Transform coding algorithms generally consist of two basic

steps, the transformation step and the sub-block coding step. In

the transformation step, the image is first divided into sub-

blocks of (NxN) pixels each (in this study N=16); each sub-block

is then transformed from a set of gray level values into a set of

coefficients by applying to it a linear transformation such as

the Fourier transform. In this study, it was determined that the

type of transform employed had less of an impact on image

1 - 2



compression than the sub-block coding technique employed. An

analysis of the available transforms, based on complexity of

implementation and overall performance, was performed; the

Discrete Cosine transform (DCT) was selected as the transform to

be employed in simulating four transform coding algorithms, each

of which employs a different sub-block coding technique.

Four sub-block coding techniques were then selected from

among the many available algorithms of this type. The

conditional zonal coding technique compresses an image by

discarding all but a pre-determined number of coefficients within

each sub-block (i.e. those in a specified "zone" of the

sub-block) and then further quantizing the retained coefficients.

The adaptive zonal coding technique is a variation of the

conditional zonal coding technique; it adds the element of image

dependency in that it determines the number of coefficients

I retained in each sub-block based on the local image statistics.

The basic Chen-Smith coding technique is more complex than

the two zonal coding techniques in that it requires two passes

over an image in order to compress it. In the first pass,

statistical information is gathered in order to characterize the

I image; in the second pass, these statistics are employed in order

to assign code bits to the coefficients in each sub-block. The

image dependent Chen-Smith coding technique is a variation of the

basic Chen-Smith coding technique that adds image dependency to

the compression process. The effect of this image dependency is

* that more coding bits are assigned to the more active regions of
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the image and fewer coding bits are assigned to the less active

regions of the image. At a given target compression, the image

dependency improves the image quality with images containing a

I significant amount of activity and improves the achieved

compression with less active images.

Two DPCM compression algorithms were simulated in a

previous study performed by Delta Information Systems; the first,

conditional DPCM, employs a three-neighbor gray level value

predictor, a non-linear three-bit quantizer, Huffman entropy

coding, and an optional staggered horizontal subsampler and

corresponding interpolator; the second, adaptive DPCM, employs a

three neighbor gray level value predictor, an extended non-linear

five-bit quantizer, adaptive arithmetic coding, and optional

horizontal and vertical spatial filters.

The image dependent Chen-Smith coding algorithm produced the

best overall image quality of the four transform coding

algorithms, followed by the basic Chen-Smith, adaptive zonal, and

conditional zonal coding algorithms. The DPCM algorithms

* produced image quality comparable to the transform coding

algorithms at bit rates above 1 bit/pixel, and performed slightly

I better than the transform coding algorithms at bit rates as low

as 0.63 bits/pixel. However, the DPCM algorithms could not

achieve compression below 0.63 bits/pixel; the transform coding

algorithms offer the advantage of selectable compression, and

thus can reach much lower bit rates (0.10 bits/pixel in this

study).

1 - 4
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I The DPCM algorithms are much less complex than the transform

coding algorithms in terms of implementation, and produce

very good image quality at relatively low bit rates. DPCM

algorithms should be considered in applications where ease of

implementation, moderate compression, and good image quality are

required. The transform coding algorithms are much more flexible

than the DPCM algorithms parametrically; they can be modified

easily to suit changing performance requirements. Transform

* coding algorithms should be considered in applications where the

tradeoff between image quality and compression is variable, and

I ease of implementation is not critical.

I
I
I
I
I
I
I
I
I
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2.0 TECHNICAL APPROACH

2.1 Compression TechniquesI
Figure 2.1 illustrates the wide range of gray scale coding

techniques which could be employed in implementing a gray scale

option for Group 4 facsimile. Two of these techniques,

differential pulse code modulation (DPCM) and transform coding,

were compared in this study. Simulations of several DPCM

algorithms were performed by Delta Information Systems in a

I previous study (Ref. 4); the results of those simulations were

used in this study for comparison purposes. The simulation

effort in this study was therefore centered on the transform

I coding algorithms to be discussed shortly.

Transform coding algorithms, generally speaking, operate as

I two step processes. The first step involves performing linear

i transformations on the original signal (separated into sub-blocks

of N x N pixels each), in which signal space is mapped into

transform space. In the second step, the transformed signal is

compressed by encoding each sub-block through quantization. The

I reconstruction operation involves performing an inverse

transformation of each decoded transformed sub-block. The

function of the transformation operation is to make the

transformed samples more independent than the original samples,

so that the subsequent operation of quantization may be done more

I efficiently.

S2- 1
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I The transformation operation itself does not provide

compression; rather, it is a re-mapping of the signal into

another domain in which compression can be achieved more easily.

I It is for this reason that the specific type of transform used

will have less of an impact on image quality and compression than

I the efficient selection of coefficients to be retained and the

number of bits allocated to them (i.e., quantization).

Therefore, somewhat greater emphasis was put on evaluating sub-

block coding techniques, which have more of an impact on image

quality and data compression, than the transformation techniques

I themselves.

2.1.1 Transformation TechniquesI
Transforms that have proven useful include the Karhunen-

I Loeve, Discrete Fourier, Discrete Cosine, and Walsh-Hadamard

transforms. These transformation techniques were investigated in

this study in order to select one particular transform technique

to be used in the simulation effort. The selection was based on

the overall performance and relative complexity of each candidate

I technique.

I Karhunen-Loeve Transform

I
The Karhunen-Loeve transform (KLT) is considered to be an

optimum transformation, and for this reason many other

2 - 3



transformations have been compared to it in terms of performance.

However, the KLT has certain characteristics that make it less

than ideal for image processing. These include the necessity to

estimate the covariance matrix before processing in both row and

column processing operations. Also, the actual eigenvector

I determination must be carried out to generate the basis matrix.

i These drawbacks would not be significant if the efficiency of the

KLT was much greater those that of other transforms. However,

for data having high inter-element correlation, the performance

of other transforms (such as the Discrete Cosine transform) is

I virtually indistinguishable from that of the KLT, and thus does

not warrant its added complexity. Therefore, the KLT was not

chosen for investigation in this study.I
Discrete Fourier Transformi

i The Discrete Fourier transform is one of the few complex

transforms used in data coding schemes. There are disadvantages

in using a complex transform for data coding, the most obvious of

which is the storage and manipulation of complex numbers. Again,

as in the case of the KLT, this complexity issue would not be a

factor if the performance of the DFT was significantly greater

than that of other transforms. However, other transforms which

are less complex perform better than the DFT. For this reason,

the DFT was not investigated in this study.

i
i 2- 4
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Discrete Cosine Transform

The discrete cosine transform (DCT) is one of an extensive

family of sinusoidal transforms. In their discrete form, the

basis vectors consist of sampled values of sinusoidal or

cosinusoidal functions that, unlike those of the DFT, are real

number quantities. The DCT has been singled out for special

attention by workers in the image processing field, principally

because, for conventional image data having reasonably high

inter-element correlation, the DCT's performance is virtually

indistinguishable from that of other transforms which are much

more complex to implement. Because of its excellent performance

and comparatively simple implementation, the Discrete Cosine

Transform was chosen for evaluation in this study.

Walsh-Hadamard Transform

I The three transforms mentioned previously have basic

functions which are either cosinusoidal, i.e. the Fourier and

Discrete Cosine, or are a good approximation of a sinusoidal

function, such as the Karhunen-Loeve Transform. The Walsh-

Hadamard Transform is an approximation of a rectangular

orthonormal function. The actual transform consists of a matrix

of +1 and -1 values, which eliminates multiplications from the

transform process. The elimination of multiplications is a

significant property, since the aforementioned transforms require

S2- 5



I
real or complex multiplications. However, the Walsh-Hadamard

I transform does not provide the excellent performance that the

Discrete Cosine Transform provides. Therefore, the Walsh-

Hadamard transform was not chosen for evaluation in this study.

2.1.2 Sub-Block Coding Techniques

Perhaps more important than choosing a specific transform

I method for image processing is choosing a method for coding the

matrix coefficients after transformation. Of the many

coefficient coding schemes discussed in the literature, four were

selected for evaluation in this study. The first is a simple,

non-adaptive, conditional zonal coding technique which uses a

fixed number of bits to encode an image. The second is an

adaptive, one-pass, image dependent zonal method which uses as

I many bits as necessary to code a particular image.

The third and fourth sub-block coding algorithms selected

are variations of an algorithm developed by Chen and Smith (Ref.

1), which are significantly more complex than the two zonal

methods. The basic Chen-Smith technique is adaptive, as is the

I adaptive zonal technique; however, two passes over the image are

necessary. In the first pass, statistics are gathered and bit

maps are produced. In the second pass the image is actually

coded for transmission. The second variation of the basic Chen-

Smith algorithm adds image dependency to the coding scheme. All

I of the coding techniques evaluated in this report use a (16x16)

2 - 6



Discrete Cosine transform. The following paragraphs describe the

coding techniques in more detail.

Conditional Zonal Technique

In conditional zonal coding, all coefficients in a sub-block

i that are outside a specified zone (usually the upper left hand

corner of the sub-block) are discarded prior to the quantization

step. The number of coefficients retained per sub-block is

selected based on the compression desired; this number remains

I constant for all sub-blocks in the image. After the significant

coefficients have been extracted from the sub-block, they are

normalized and quantized to a fixed number of bits through

I various arithmetic operations based on general image statistics.

At the receiver, arithmetic operations to reverse the

normalization process are performed to produce reconstructed

transform coefficients (with quantization error) in the specified

zone of the sub-block; all of the coefficients discarded in the

encoding process are set to zero, and the reconstructed sub-block

is ready to be inversely transformed.

This technique is extremely simple and requires a minimal

amount of overhead as compared to the Chen-Smith techniques to be

discussed shortly. The conditional zonal technique can be

thought of as being on the simple end of the complexity spectrum,

while the Chen-Smith techniques are on the complex end. This

technique was investigated in this study for that reason; that

2 - 7



is, to compare a simple and a complex coefficient coding

i technique in terms of compression and image quality.

Adaptive Zonal Technique

The adaptive zonal coding technique is a combination of

I threshold coding and conditional zonal coding. In straight

threshold coding, a specific energy amplitude is selected, and

I only those transform coefficients in a sub-block that are above

this threshold value are retained; the other coefficients are

I discarded. A major disadvantage to threshold coding is the

overhead required to store information regarding the location

within the sub-block of the coefficients which are retained.

Zonal coding, as described above, quantizes only those'

coefficients in a specified area, or zone; because the positions

I of the retained coefficients are known, the information

i concerning their locations need not be stored.

The adaptive zonal technique is a hybrid scheme providing

the benefits of both zonal and threshold coding. Coefficients in

a specified zone are compared to a selected threshold value in an

I ordered pattern until a coefficient value below the threshold is

encountered. When a coefficient below the selected threshold is

encountered, the remaining coefficients in the specified zone are

discarded, and the retained coefficients are normalized and

quantized as in the conditional zonal coding technique. The only

additional overhead required by the adaptive zonal coding

2 - 8
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technique is to store the number of coefficients retained in each

sub-block. The adaptive zonal coding technique achieves superior

performance in terms of compression over the conditional zonal

coding technique by eliminating some of the trivial coefficients

that would be unnecessarily encoded by the conditional technique.

Basic Chen-Smith Technique

The basic Chen-Smith coding technique (Ref. 1) is very

popular for coding both monochrome and color images. This

technique uses Max's method of optimum quantizer design (Ref. 3),

assuming Gaussian DC and AC coefficient probability density

functions. Transform sub-blocks of the original image are

assigned to one of four classes on the basis of sub-block AC

energy. The variance of each coefficient is calculated and used

in a bit allocation technique in order to determine a bit

assignment map for each class. The transform coefficients are

normalized by their corresponding variances to achieve unit

variance prior to quantization. The basic Chen-Smith approach is

designed to achieve a given compression no matter what image is

to be compressed. This means that, for a given compression, the

image quality of more complex images is poorer than that of less

complex images.

2- 9



Image Dependent Chen-Smith Technique

In addition to the standard Chen-Smith technique described

above, a variation of this technique was evaluated in this study.

This variation adds image dependency to the technique by

3I analyzing all of the AC energies of sub-blocks in the image in

order to allocate more bits to busy sub-blocks. More bits are

allocated per sub-block to images with a high amount of activity,

and fewer bits per sub-block are allocated to images with a low

amount of activity in order to achieve higher compression for

images with low activity, and better image quality for images

with high activity.I
2.2 Algorithm Descriptions

The algorithms for the Discrete Cosine Transform (DCT) and

the four sub-block coding techniques are described in this

section. The DCT algorithm which was used in each of the four

sub-block coding techniques is described first, followed by the

descriptions of the four sub-block coding techniques. The

software documentation for all simulation software is presented

in Appendix A.

I
I
I 2-i
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2.2.1 Discrete Cosine TransformI
The implementation of the Discrete Cosine Transform

I algorithm requires the division an image into e series of (NxN)

sub-blocks of pixels. Each sub-block is transformed by a two

dimensional (NxN) Discrete Cosine Transform process as follows:

(T] = EC].[D].[C]T

where [T] is the transformed sub-block, [C] is the DCT basis

I matrix, and (D] is the input data sub-block ((C]T is the

transpose of the DCT basis matrix). The DCT basis matrix

coefficients were determined from the following relation:

Ci.j = Co-1(2/ N).(cos(i.(j + 0.5).(r /N))) I

where Co = 1/12 for i = 0, Co = 1 otherwise, and i=j=0 to N-I.

This transformation converts each (NxN) sub-block of pixels into

an (NxN) matrix of transform coefficients, which consists of one

DC coefficient and (NxN - 1) AC coefficients. The sum of the

squares of all of the AC coefficients in a given transform matrix

is known as the AC energy of that transform matrix, and will be

* referred to as such throughout this report.

The size of the (NxN) transform chosen for use in the

I simulations was (16xl6). The (16x16) transform size was chosen

* primarily because it has been used frequently in past

applications in the image processing field. It is also a

compromise between an (8x8) transform, which would increase

overhead due to the greater number of sub-blocks in an image, and

I a (32x32) transform, which would increase the complexity of the

2 - 11

I



system. This (16x16) Discrete Cosine Transform was used in the

four coding techniques discussed below.

2.2.2 Conditional Zonal Coding

The conditional zonal coding technique encodes transform

coefficients of a particular zone of each image sub-block. The

size of the zone used in the algorithm is determined by an input

parameter that designates the desired number of coefficients to

be retained for quantization. The number of coefficients

retained in each sub-block remains constant throughout the

encoding of the image, which makes this technique non-adaptive.

When simulations were performed on training images,

statistics were gathered on transform coefficients over the

entire set of training images. These statistics included the

variances of the coefficients, which were employed in order to

determine the processing order of the coefficients within the

selected zone of the sub-block, and the minimum-maximum values of

the coefficients, which were used to normalize and quantize the

coefficients for compression purposes. The variances were

computed assuming an AC coefficient mean of zero.

The coefficient processing order was determined based on

decreasing coefficient variances. This order is much like the

classical zig-zag technique (Figure 2.2) with minor variations

(Figure 2.3). The reason for the change in order from the zig-

zag ordering was that the zig-zag ordering did not exactly match

2 - 12



1 3 4 10 11 21 22 36 37 55 56
2 5 9 12 20 23 35 38 54 57
6 8 13 19 24 34 39 53 58
7 14 18 25 33 40 52 59
15 17 26 32 41 51 60
16 27 31 42 50 61
28 30 43 49 62
29 44 48 63
45 47 64 70
46 65 69
66 68
67

Figure 2.2 - Zigzag Order Technique

I
1 3 6 10 16 25 35 45 56
2 5 9 14 19 24 34 44 60
4 8 12 20 26 32 43 53 62
7 13 17 28 33 41 52 64
11 18 21 30 39 49 63
15 23 29 36 48 59 70
22 31 38 47 57 68
27 37 42 55 66
40 46 50 61
51 58 67
54

Figure 2.3 - Ordering Matrix Employed in Zonal Coding

16 13 13 12 10 8 8 5 4
13 13 10 9 9 7 6 5 4
13 10 9 9 8 7 4 5 3
13 10 9 8 8 7 6 4
12 10 9 7 7 7 6
10 8 7 8 7 5 3
10 8 6 7 6 5
10 7 6 5 4
5 6 5 3
5 5 5

73
2

Figure 2.4 - Dividing Factors Employed in Zonal Coding

2 - 13

I



the order of variances of the DCT. Therefore, in order to

optimize the quantization of coefficients, this variation of the

zig-zag technique was implemented.

When a number of coefficients is specified for retention in

the zonal technique, the zone is determined by starting with the

DC coefficient and then proceeding in the order of decreasing

variance until the specified number of coefficients is reached.

For simulation purposes, the maximum number of coefficients which

* can be kept in this ordering technique is 70 (It was

experimentally determined that all coefficients beyond the 70tb

were relatively insignificant.). All coefficients which are not

quantized are assumed to be zero at the decoder for inverse

I transform purposes.

The quantization technique used is a uniform 8-bit

quantizer. When statistics were gathered on the training images,

a minimum-maximum matrix of coefficients was produced showing

minimum and maximum coefficient values. Once the minimum and

maximum values were known, dividing factors were assigned to each

coefficient position (Figure 2.4). When a division is performed

for quantization on the coefficients, the results are placed in

8-bit values for transmission (7 bits for data and 1 sign bit).

The coefficient reconstruction is performed by multiplying the 8-

bit quantized value by the dividing factor for that specific

coefficient position.

I
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2.2.3 Adaptive Zonal Coding

The adaptive zonal coding technique employs the same

coefficient ordering and coefficient quantization methods used in

the zonal technique. Adaptivity is achieved by proceeding in the

order shown in Figure 2.3 until a coefficient is encountered

which is less than a user-specified AC energy threshold. The

ordering system used (by order of variance) is the actual

decreasing order of the coefficients in most cases; however,

depending on the image data, the actual order may vary from the

preset ordering sequence. For this reason, a look-ahead method

was devised in order to prevent reaching the threshold (which

would terminate the encoding of that sub-block) prematurely if

subsequent coefficients were significantly greater in magnitude

than the current coefficient being evaluated.

When the AC coefficient threshold is reached, the next two

coefficients in the specified order are examined. If both of

these coefficients are 50 times greater than the AC coefficient

threshold, the processing of the sub-block continues. This type

of look-ahead processing was implemented in order to decrease the

probability of terminating sub-block encoding before significant

transform coefficients are encountered.

2 - 15
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2.2.4 Chen-Smith CodingI
The Chen-Smith coding technique is a two-pass image coding

I technique. In the first pass, transform matrix statistics are

gathered over the entire image. The statistics-gathering process

involves the storage of the AC energies of all sub-blocks in the

image, and the variances (the sum of the squares of the

coefficients in each position of the transform matrix over the

entire image) of the transform coefficients. Once the statistics

are gathered, a map of the image is produced (Figure 2.5) using

four sub-block classification levels. The map is produced using

the AC energies of the sub-blocks, assigning high classification

levels (4 or 3) to sub-blocks with high AC energies (i.e. highI
activity sub-blocks), and low classification levels (1 or 2) to

sub-blocks with low AC energies (low activity sub-blocks). The

map has (M / 4) entries of each classification level, where M is

* equal to the number of sub-blocks in the image.

After the classification map is produced, bit allocation

maps (Figure 2.6) are generated for each class. The bit

allocation maps are produced using a bit allocation function

I which generates each bit map based upon a specified average

amount of bits/coefficient to be used for quantization; a higher

number of average bits are allocated to the higher classification

levels and a lower number of bits to the lower levels. Since

there are an equal number of sub-blocks of each class and each

I bit allocation map has a fixed number of average bits, the
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12234443222342111244
32344443132321222444
42444443333321123411
41443343333221233133
42333343331212213433
42224443412111334333
43334423222121233333
44243432121321343333
44234341212311113333
44234312123132213232
44324121231313133312
34421212213233311222
44411212232313212133
44421222121231121123
44323231211222211114
24232212321222111111
31321123233131112211
13221221132211212213
21241431321112311112
22444333412212211112

Figure 2.5 - Classification map of a (20 x 20) sub-block image

Note: Each value represents a (16 x 16) pixel sub-
block. A 1 specifies a low activity sub-block; a
4 specifies a high activity sub-block.
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8765433221110000 8654432221110000 8543322111100000 8332110000000000
7665433221110000 6554432221110000 5544332211000000 3322111100000000
6554433221110000 5544433221110000 4433332211100000 2221111100000000
5544433322111000 4443333222110000 3333322211100000 1111111000000000I 4443333222111000 3333333222111000 3332222111100000 1111100000000000
3333322222111100 3333222222111100 2222221111100000 1110000000000000
3333322221111100 2222222221111000 2222211111100000 1000000000000000I 2223222111111000 2223321111111100 2111211110000000 0000000000000000
2222322111111100 2223432111110000 1112221110000000 0000000000000000
2222221111111000 1212321111101000 1111111100000000 0000000000000000
1111111111100000 1111111111000000 1111111000000000 0000000000000000
1111111111100000 1111111111000000 1110111100000000 0000000000000000
1111111111100000 1111111111000000 1000001000000000 0000000000000000
1111111111000000 1111111111000000 0000001100000000 0000000000000000
1111111111000000 1111111111000000 0000000100000000 0000000000000000
1111111111000000 1111111122100000 1000000011000000 0000000000000000

I Class 4 Class 3 Class 2 Class 1

Figure 2.6 - Bit Allocation Maps of the Chen-Smith Algorithm

I 8765555500000000 8765555000000000 8655550000000000 8555550000000000
7765555000000000 7765550000000000 6655550000000000 5555500000000000I 6555555000000000 5555550000000000 5555500000000000 5555500000000000
6655550000000000 5555500000000000 5555000000000000 5555000000000000
6655550000000000 5555500000000000 5555000000000000 5550000000000000
6555500000000000 5555500000000000 5550000000000000 5550000000000000
5555500000000000 5555000000000000 5550000000000000 5500000000000000
5555000000000000 5555000000000000 5500000000000000 5500000000000000
5555000000000000 5550000000000000 5500000000000000 5500000000000000
5550000000000000 5550000000000000 5500000000000000 5000000000000000
5500000000000000 5500000000000000 5000000000000000 5000000000000000
5500000000000000 5500000000000000 5000000000000000 5000000000000000
5500000000000000 5500000000000000 5000000000000000 0000000000000000
5500000000000000 5500000000000000 5000000000000000 0000000000000000
5500000000000000 5500000000000000 0000000000000000 0000000000000000
5500000000000000 5500000000000000 0000000000000000 0000000000000000

Class 4 Class 3 Class 2 Class 1

Figure 2.7 - Variation of the Bit Allocation Maps Employed
in the Chen-Smith Simulation
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U compression to be achieved using this technique can be a preset

run-time parameter. For example, if a 1 bit per pixel

compression ratio was desired, the number of average bits for

classes 1, 2, 3, and 4 would be .67, .83, 1.17, and 1.33,

respectively. In the second pass, the sub-block classification

and bit allocation maps are used to encode the image for

* transmission.

The quantization method used in the Chen-Smith technique is

the classical Lloyd-Max quantization technique (Refs. 2,3). This

technique is a non-uniform quantization scheme which uses a

I probability density function (pdf) specific to the distribution

of the data to be quantized. In the basic Chen-Smith coding

technique, the distribution of transform coefficients is assumed

to be Gaussian. Therefore, a Gaussian pdf was used for

quantization in the simulations.

I A variation of the basic Chen-Smith algorithm involving the

* generation of bit allocation maps was implemented for the

following reason. After preliminary simulations were performed,

statistics demonstrated that the quantization of bits/pixel

values below 5 in the bit allocation maps would have no positive

I effect on image quality, and in some cases would degrade image

quality. A method was devised which would achieve the same

number of bits for the bit allocation map, but would not assign

bits/pixel values of less than 5 to any coefficient position. An

example of this method is shown in Figure 2.7, which illustrates

I
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the same bit allocation maps shown in Figure 2.6 with the

variation implemented.

2.2.5 Image Dependent Chen-Smith CodingI
The image dependent Chen-Smith technique is implemented in

the same way as the basic Chen-Smith technique, with one

variation. The basic Chen-Smith technique is an image

I independent technique; that is, a preset number of bits is used

to encode an image, with an equal number of sub-blocks assigned

to each class in the classification map, independent of image

characteristics. The image dependent approach is implemented at

the time that the image classification map is produced. The AC

I energies are examined, and, depending on their comparative

values, an appropriate number of sub-blocks are assigned each

class.

For example, if an active image is processed, the majority

of class assignments would be 3's and 4's; if an inactive image

is processed, the majority of class assignments would be l's and

2's. This variation of the Chen-Smith technique is dependent on

image characteristics for class assignments (and, thus, the

m number of total bits for image encoding) and does not necessarily

encode a fixed number of bits independent of image

* characteristics.

I
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2.3 Selection of Test DocumentsI
The test documents employed in the computer simulation were

I selected based on several factors, including image quality,

availability, and feature content. As specified in the statement

of work, three gray scale images were chosen. These images are

I the same three test documents employed in a gray scale study

previously performed by Delta Information Systems for the NCS

I (Ref. 4), in which Differential Pulse Code Modulation (DPCM) and

Bit Plane Coding (BPC) were evaluated.

Beyond the advantages these images provide in terms of image

quality and availability, each image was selected because it

contained several distinctive features that would aid in the

subjective evaluation of the output images. The IEEE face image

was selected because it contains large areas of relatively smooth

tonal range, where artifacts resulting from compression usually

manifest themselves. The aerial photo image was chosen because

it contains low contrast, high detail regions suitable for visual

evaluation of the output images. The crowd scene image contains

well-defined structures, such as facial characteristics, which

facilitate visual determination of the quality of reproduction.

I
I
I
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3.0 RESULTSI
3.1 Compression Statistics

The results achieved in the simulations performed to

determine the effects of the parametric variations of each of the

i four transform coding algorithms are summarized in Tables 3.1

through 3.3. Table 3.1, which contains the results of the

I simulations performed using the IEEE test face image, includes

the results of 18 simulation runs, whereas Tables 3.2 and 3.3

include the results for 12 simulation runs each. The IEEE face

i image was selected to illustrate the visual effects of the

compression algorithms; thus, additional simulations were

I performed with this test image in order to more fully evaluate

the effects of the compression techniques on output image

quality.

For each simulation run, four statistical measures of

performance of the employed algorithm are presented. The first

i three, the number of compressed bits (the number of bits output

by the quantization process), the compression ratio (the number

of compressed bits as a function of the number of bits in the

* input image), and the compressed number of bits per pixel (the

effective number of bits per pixel required to transmit the

image), provide a measure with which the algorithms can be

compared in terms of compression. The fourth measure, the root-

mean-square (RMS) error (a weighted-average difference between

I3
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TABLE 3.1 - COMPRESSION RESULTS ON THE IEEE FACE

COMPRESSION PIXELS LINES ADJUSTABLE COMPRESSED COMPRESSION COMPRESSED RMS
IMAGE TECHNIQUE PER LINE PER IMAGE PARAMETERS BITS RATIO BITS/PIXEL ERROR

1K 5 225280 51.20 0.16 9.01
I Conditional

CK 17 765952 15.06 0.53 5.10
Zonal 1024 1408

#K 33 1486848 7.76 1.03 3.37

CK 70 3153920 3.66 2.19 2.06

I CO 3.00 325032 35.49 0.23 5.52
Adaptive

I Co 1.50 465648 24.77 0.32 4.42
Zonal 1024 1408

E CO 0.50 849569 13.58 0.59 3.19
Coding

E CO 0.04 2345776 4.92 1.63 2.12

E BM 0.08 148915 77.46 0.10 89.6

M B 0.15 299217 38.54 0.21 6.23
Basic

F 1024 1408 BM 0.50 777410 14.84 0.54 4.06
Chen-Smith

A B 1.00 1475685 7.92 1.02 2.97

C 3f 2.00 3332747 3.46 2.31 1.83

E BM 0.15 202774 56.88 0.14 7.14

Chen-Smith DM 0.30 320570 35.98 0.22 5.78

Image 1024 1408 B 1.00 997840 11.56 0.69 3.32

Dependent BM 1.40 1412863 8.16 0.98 2.72

BM 2.50 2585861 4.46 1.79 1.96

I~ ~~ - 2_ _ _ _

I
I
I

* 3-2



1

TABLE 3.2 - COMPRESSION RESULTS ON THE CROWD SCENEI
CONPRESSION PIXELS LINES ADJUSTABLE COMPRESSED COMPRESSION COMPRESSED RNSE INA6E TECHNIQUE PER LINE PER IBA6E PARAMETERS BITS RATIO BITS/PIXEL ERROR

mK 16 720896 16.00 0.50 3.67

Conditional

Zonal 1024 1408 1K 32 1441792 8.00 1.00 2.56

I C Coding
1K 65 2928640 3.94 2.03 1.89E R

0 CO 1.00 737672 15.64 0.51 3.55
Adaptive

Zonal 1024 1408 CO 0.25 1462680 7.89 1.01 2.49
DI Coding

CO 0.05 2626904 4.39 1.82 1.96

S
BM 0.50 768595 15.01 0.53 2.72

C

E 1024 1408 BM 1.00 1485091 7.77 1.03 1.92
Chen-Smi th

N
DM 2.00 2982828 3.87 2.07 1.39

E

BN 0.70 867764 13.29 0.60 2.54
Chen-Svith

Image 1024 1408 I" 1.00 1177471 9.90 0.81 2.17

I Dependent

BM 2.30 2902867 3.97 2.01 1.45

I
I
I
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I TABLE3.3- COMPRESSION STATISTICS ON THE AERIAL PHOTO

COMPRESSION PIXELS LINES ADJUSTABLE COMPRESSED COMPRESSION COMPRESSED RMS

IMAGE TECHNIQUE PER LINE PER IMAGE PARAMETERS BITS RATIO BITSIPIXEL ERROR

C UK 15 675840 17.07 0.47 6.27
Conditional_ _ _ _

Zonal 1024 1408 UK 33 1486848 7.76 1.03 3.17

A Coding
iK 70 3153920 3.66 2.19 2.05

R CO 1.00 1073856 10.74 0.74 5.16
Adaptive

Zonal 1024 1408 CO 0.45 1557064 7.41 1.08 3.73
i k Coding

L i CO 0.20 2138528 5.39 1.48 2.80

I BN 0.50 747479 15.43 0.51 4.32
P

Basic
H 1024 1408 BM 1.00 1552633 7.43 1.08 2.58

Chen-Smith

BM 2.00 3334688 3.46 2.31 1.62
T

I0 B" 0.55 719764 16.03 0.50 4.60I ~ ~~~Chen-Sui th________

Image 1024 1408 BM 1.10 1614243 7.14 1.12 2.58

Dependent
i BM 2.20 2866510 4.02 1.99 1.91

I
I
I
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the gray level value of an original input pixel and the

corresponding pixel in the decoded output image), provides a

basis upon which the algorithms can be compared quantitatively in

I terms of image quality.

The RMS error is a quantitative measure of the image quality

of the output image and is calculated as follows:

e, 2  + e2 2  + + eN 2

RMS =

where et is the 8-bit difference, or error, between the ith pixel

in the input image and the corresponding ith pixel in the decoded

I output image, and N is the total number of pixels in the

processed image. The RMS error can also be expressed as a

percentage of the dynamic range (20, where n = number of

S bits/input pixel) of the gray scale of the image.

Each transform coding algorithm has an adjustable parameter

I that can be varied in order to select a target compression;

listed below are the abbreviations used in Tables 3.1 through 3.3

to distinguish these parameters:

I
Abbreviation Description

I#K Used in the one-pass conditional
zonal algorithm to select the
number of coefficients to be kept in
the quantization zone of each
sub-block.

CO Used in the one-pass adaptive zonal
algorithm as a cutoff threshold for
the elimination of insignificant

I 3- 5
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I
coefficients prior to quantization.

BM Both the basic and the image
dependent Chen-Smith algorithms
assign bits to each class for
quantization. BM is used to select
the average number of bits per pixel
over the four bit map

i classifications.

The simulations performed to evaluate the conditional zonal

coding algorithm were designed so that the effects of the

I parametric variations were clearly illustrated; the parameter

chosen for evaluation in the conditional zonal coding simulations

was the number of retained coefficients, or zone size (#K). The

* effect of the zone size parameter on compression is

straightforward; as it is decreased, the number of compressed

bits/pixel is decreased. Image content has no effect on the

compression achieved by the zonal coding technique; the same

number of bits is used to encode each sub-block regardless of the

statistics of the sub-block. Simulations in which the zone size

was varied were performed in order to determine the parameter's

* effect on output image quality; the compressions achieved were

selected so as to be comparable to the compressions achieved in

the DPCM simulations performed in a previous study (Ref. 4).

The simulations performed to evaluate the adaptive zonal

coding algorithm were designed so that the effects of the

parametric variations were clearly illustrated; the parameter

chosen for evaluation in the adaptive zonal coding simulations

I was the coefficient cutoff threshold (CO). The cutoff thresholds

S3- 6
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employed in the simulations were selected in order to achieve

compressions comparable to those achieved for the DPCM and

conditional zonal coding simulations. While the target

I compressions for the conditional zonal coding simulations could

be precisely selected with the zone size parameter (#K), the

target compressions for the adaptive zonal coding simulations

S were more difficult to select because of the statistical

dependency of the technique.

I The simulations performed to evaluate the basic Chen-Smith

* coding algorithm were designed so that the effects of the

parametric variations were clearly illustrated; the parameter

chosen for evaluation in the basic Chen-Smith coding simulations

was the average number of bits/pixel over the four bit map

I classifications (BM). The average bits/pixel values employed in

the basic Chen-Smith simulations were selected so as to produce

compression results comparable to those of the other coding

* techniques evaluated in this study.

The simulations performed to evaluate the image dependent

Chen-Smith coding algorithm were designed so that the effects of

the parametric variations were clearly illustrated; the parameter

chosen for evaluation in the image dependent Chen-Smith coding

simulations was the same as that employed in evaluating the basic

Chen-Smith coding algorithm, namely the average number of

bits/pixel over the four bit map classifications (BM). The

average bits/pixel values employed in the image dependent Chen-

I Smith simulations were selected so as to produce compression

I 3- 7
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results comparable to those of the other coding techniques

evaluated in this study; however, the adaptive nature of this

coding technique made it difficult select target compressions as

precisely as was possible with the basic Chen-Smith coding

technique.

3.2 Output Images

* Before the image quality of the transform coding algorithms

can be evaluated, an understanding of the type of distortion

caused by transform coding is required. The image distortion

caused by these algorithms manifests itself in "blocking", in

which the edges of the individual sub-blocks become visually

apparent. Transform coding algorithms break the image into sub-

blocks and process the image one sub-block at a time. Blocking

occurs mainly in the busy sections of the images. A large amount

of AC energy exists in a busy sub-block, meaning that the

transform coefficients of the sub-block contain a large amount of

information. Blocking occurs when, through quantization, a

significant part of this information is lost, and the

I reconstructed sub-block in the output image is markedly

* dissimilar from those sub-blocks surrounding it.

Table 3.4 is a list of the output images presented in

Figures 3.2 through 3.18; Figure 3.1 is an illustration of an

original input image, the IEEE face. Each image is a

I photographic reproduction of a windowed portion of the output
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TABLE 3.4 - LIST OF OUTPUT IMAGES

FIGURE
NUMBER IMAGE DESCRIPTION

3.1 Windowed portion of Original IEEE Face Image

3.2 Conditional Zonal IEEE Face Image at 0.16 bpp

3.3 Conditional Zonal IEEE Face Image at 0.53 bpp

3.4 Conditional Zonal IEEE Face Image at 1.03 bpp

3.5 Adaptive Zonal IEEE Face Image at 0.32 bpp

3.6 Adaptive Zonal IEEE Face Image at 0.59 bpp

3.7 Adaptive Zonal IEEE Face Image at 1.63 bpp

I 3.8 Basic Chen-Smith IEEE Face Image at 0.10 bpp

3.9 Basic Chen-Smith IEEE Face Image at 0.54 bpp

3.10 Bpsic Chen-Smith IEEE Face Image at 1.02 bpp

3.11 Image Dependent Chen-Smith IEEE Face Image at 0.22 bpp

3.12 Image Dependent Chen-Smith IEEE Face Image at 0.69 bpp

3.13 Image Dependent Chen-Smith IEEE Face Image at 0.98 bpp

3.14 Original Circular Test Image

I 3.15 Conditional Zonal Circular Test Image

3.16 Adaptive Zonal Circular Test Image

3.17 Basic Chen-Smith Circular Test Image

3.18 Image Dependent Chen-Smith Circular Test Image

I
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Ficure 3.1 -Windowed portion of Original IEEE Face Imaae

Ficure 3.2 -Conditional Zonal IEEE Face Image at 0.16
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3.9 - Basic Chen Smith IEEE Face ~
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Fiaure 3.10 - Basic Chen-Smith IEEE Face Imaae at 1.02 k22
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Figure 3.112 Imaae Dependent Chen-Smith IEEE Face Image at 0.229P
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i Figure 3.13 - Image Dependent Chen-Smith IEEE Face Image at 0.98 bP2

i

I--
I
i

I Figure 3.14 - Original Circular Teat Image
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Fiaure 3.15 - Conditional Zonal Circular Test Image

I
I
I
I
I
I
I
I

Fiaure 3.16 - AdaDtive ~p~j Circular Test Image
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~i~re 3.17 - Basic Chen-Smith Circular Test ~

I
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I
I

Figure 3.18 - Image Deyendent Chen-Smith Circular Test Imaae
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image of one simulation. The full image size was not reproduced

photographically because of the limitations of the image storage

and display system used to evaluate the output images.

Note that, as in the earlier study (Ref. 4), only the

simulations run on the IEEE face image are represented. The

effects of the algorithms were similar for all three test images;

the IEEE face image was selected as the illustrative example of

the output image quality of the algorithms in order to facilitate

I direct comparisons with the results of the DPCM simulations

performed in the earlier study. The evaluation of the image

quality of each of the four transform coding algorithms, however,

* was performed considering the output images from the simulations

run on all three test images. In addition, a circular test

I image, extracted from the IEEE test chart from which the TEEE

face image was obtained, was compressed with each transform

coding algorithm in order to evaluate the effects of sharp

* transitions on the image quality produced by the algorithms.

The image quality produced by the transform coding

* algorithms was generally good above 0.5 bits/pixel and fair at

bit rates as low as 0.16 bits/pixel. Quantitatively, the highest

RMS error value obtained in the simulations employing the IEEE

face image was 9.01, obtained in the conditional zonal simulation

run in which 0.16 bits/pixel compression was achieved. This

value, measured in gray levels, represents a maximum error of

only 3.5 percent of the dynamic range (256 gray levels) of the

II images. The RMS error, while a good relative measure of the
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image quality produced by the algorithms on a particular image,

should not be regarded as an absolute measure of image quality.

The RMS error is only an average measure of image quality and

I does not reflect the fact that the algorithms perform well on

i image regions that are relatively inactive in terms of gray scale

activity and not as well on image regions that contain a

I significant number of gray scale transitions.

The conditional zonal coding algorithm produced images which

Iwere very good in terms of image quality for bit rates above 1

bit/pixel. In Figure 3.4, only a minimal amount of blocking can

be detected in the high detail regions of the image (e.g. the

eyes, the teeth); the overall effect of the blocking is a slight

blurring of the image. At lower bit rates, the indiscriminate

quantization employed by this coding technique caused significant

distortion in the output images. At bit rates on the order of

0.5 bits/pixel, the loss of detail in all areas of the image is

evident, and the blocking is much more pronounced (see Figure

3.3). At bits rates below 0.5 bits/pixel, the blocking is

severe, and the high detail regions of the image are almost

completely degraded (see Figure 3.2).

The adaptive zonal coding algorithm produced images which

Iwere excellent in terms of image quality for bit rates above 1

bit/pixel. The image in Figure 3.7 illustrates this level of

image quality; no blocking is evident, and only a slight loss of

sharpness is detectable in the high detail regions of the image

I (e.g. the pupils of the eyes). At lower bit rates, blocking
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begins to occur in image areas in which moderate gray level

transitions are present. Blocking in these areas is caused by

excessive quantization; optimization of the look-ahead algorithm

would minimize this distortion. At bit rates on the order of 0.5

bits/pixel, some blocking is evident in image regions containing

moderate detail (e.g. the nose, the lips); the overall sharpness

of the image, however, is only slightly degraded (see Figure

3.6). At bit rates below 0.5 bits/pixel, blocking is evident in

areas of moderate to high detail, but the overall image quality

is still quite good.

The basic Chen-Smith coding algorithm produced images which

were excellent in terms of image quality for bit rates above 1

bit/pixel. The image in Figure 3.10 illustrates this level of

image quality; no blocking is evident, and only a slight loss of

sharpness is detectable in the high detail regions of the image

(e.g. the pupils of the eyes). At bit rates on the order of 0.5

bits/pixel, the image quality is still very good; blocking is

only slightly perceptible in the high detail regions of the

image, and the overall sharpness of the image is still good (see

Figure 3.9). At bit rates below 0.5 bits/pixel, the image

quality becomes progressively worse; at 0.1 bits/pixel, the

blocking is severe, and the high detail regions of the image are

almost completely degraded (see Figure 3.8).

The image dependent Chen-Smith coding algorithm produced

images which were excellent in terms of image quality for bit

rates above 0.5 bits/pixel. Figure 3.13, in which the image was
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H compressed to less than 1 bit/pixel, is virtually

indistinguishable from the uncompressed image (see Figure 3.1).

At bit rates approaching 0.5 bits/pixel, the image quality is

still excellent; as Figure 3.12 shows, no blocking is evident,

and the overall sharpness of the image is only slightly degraded.

At bit rates below 0.5 bits/pixel, the image quality produced by

the image dependent Chen-Smith algorithm is still quite good;

blocking is evident around the high detail regions of the image,

but the overall image quality is still good (see Figure 3.11).

A circular test image, presented in Figure 3.14, was

employed to evaluate the performances of the transform coding

algorithms; the black-white coloring of the circular test image

provided a good test of the quantization functions of the sub-

block coding algorithms. In comparing Eigures 3.15 through 3.18,

it is evident that the image dependent Chen-Smith coding

technique produced the best output image; the 100's are still

legible in the image dependent Chen-Smith output image, but are

quite blurred in the output images of the other compression

techniques. This is due to the design of the image dependent

Chen-Smith algorithm, which allocates additional coding bits to

those image regions which require more information to encode

them.
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3.3 Algorithm Complexity

In Sections 3.1 and 3.2, the four transform coding

algorithms were compared on the basis of compression and image

quality. It is also important to compare the coding techniques

on the basis of their relative implementation complexities. All

four algorithms employ the Discrete Cosine Transform (DCT) in the

transformation step; as such, the differences in algorithm

complexity occur in the sub-block coding steps of the algorithms.

Of the four techniques, the conditional zonal coding

algorithm is the least complex. In the transformation step, the

image is divided into sub-blocks, and each sub-block of gray

level values is transformed into a matrix of coefficients. In

the sub-block coding step, the transform coefficients in a

selected zone of the sub-block are normalized and quantized to a

selected number of bits, and the remaining coefficients in the

sub-block are discaried. Every sub-block within an image is

encoded with the same number of bits, and every image is encoded

I with the same number of bits.

The adaptive zonal coding technique is a hybridization of

threshold coding and conditional zonal coding. Threshold coding

is a sub-block coding technique in which each coefficient in the

sub-block is compared to a specified threshold value in order to

determine whether the coeffioient is to be kept or discarded.

One major drawback to threshold coding is the overhead required

to store the locations within the sub-block of each retained
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coefficient; adaptive zonal coding eliminates the need for this

I overhead by performing the threshold comparison in a specific

order in a pre-determined zone of the sub-block, thus eliminating

the need for the storage of coefficient locations. The only

overhead required for adaptive zonal coding is an additional byte

of information for each sub-block that indicates the number of

coefficients retained in that sub-block; other than that, the

encoding proceeds exactly as in the conditional zonal coding

technique.

The Chen-Smith coding algorithms are relatively more complex

than the zonal coding algorithms; the basic Chen-Smith algorithm

processes an image in two passes. The first pass over the image

calculates statistics which characterize the image. The

statistics are used to determine the number of bits assigned to

each coefficient of each sub-block of the image. The AC energies

of the sub-blocks are used to produce a sub-block classification

map of the image, in which each sub-block is assigned to one of

four classes, such that there are an equal number of sub-blocks

assigned to each class. A bit allocation map is then produced

for each classification, in which the variances of the transform

coefficients are used to determine the number of bits to be

employed to encode the coefficients. In the second pass, the

sub-block classification and bit allocation maps are employed to

* encode the image.

The image dependent Chen-Smith coding technique is the most

complex of the four algorithms simulated. In this variation of
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the basic Chen-Smith algorithm, the AC energies of the sub-blocks

m are used to assign classifications to the sub-blocks based on

image content rather than on a pre-specified number of sub-blocks

I per class. Thus, images containing a high amount of activity are

compressed with better output image quality, and images

containing a low amount of activity achieve better compression

m without a significant loss of output image quality.

I 3.4 DPCM ComparisonI
Two DPCM compression algorithms were simulated in a study

previously performed by Delta Information Systems (Ref. 4). The

first, conditional DPCM, employs a three-neighbor gray level

I value predictor, a non-linear three-bit quantizer, Huffman

entropy coding, and an optional staggered horizontal sub-sampler

and corresponding interpolator. The second, adaptive DPCM,

employs a three neighbor gray level predictor, an extended non-

linear five-bit quantizer, adaptive arithmetic coding, and

I optional horizontal and vertical spatial filters. Quantization

in DPCM coding refers to the quantization of the difference

between the predicted value of the gray level of a pixel and the

* actual value.

Table 3.5 summarizes the results of the DPCM simulations

which were performed in a previous study (Ref. 4); as can be

seen, the same test images employed previously were used in this

I study in order to make the results directly comparable.
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TABLE 3.5 - DPCH COMPRESSION RESULTSI
COMPRESSION PIXELS LINES ADJUSTABLE COMPRESSED COMPRESSION COMPRESSED RHS

IKA6E TECHNIQUE PER LINE PER IMASE PARAMETERS BITS RATIO BITS/PIXEL ERROR

BASE 1890566 6.13 1.30 3.91
I Conditional
E 1024 1408 SS 1039426 11.10 0.72 3.96
E DPCN
E SS,HS" 912077 12.65 0.63 4.08

F BASE 1975109 5.84 1.37 1.20
A Adaptive_____
C 1024 1408 HSm 1414596 B.15 0.98 2.00
E DPC_

HS, BELL 1444367 7.99 1.00 2.26

C BASE 1994002 5.78 1.39 5.32
R Conditional
0 1024 1409 SS 1112332 10.37 0.77 4.79I DPCN
D SSHSN 968462 11.91 0.67 4.94

S BASE 2406572 4.79 1.67 1.30
C Adaptive
E 1024 1408 HSN 1754491 6.57 1.22 2.04
N DPCN
E HSNBELL 2296846 5.02 1.59 2.14

A BASE 2144099 5.38 1.49 3.34
E Conditional_______
R 1024 1408 SS 1251099 9.22 0.97 3.33
I DPCN

A SSHS" 1131161 10.20 0.78 3.75
L C

BASE 2943794 3.92 2.04 1.29
P Adaptive
H 1024 1408 HSH 2296903 5.04 1.59 2.36
0 BPCM
0 HSMDELL 2902523 3.97 2.01 2.47

I
I
I
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Table 3.6 lists the output images, presented in Figures 3.19

I through 3.23, associated with five of the DPCM simulations

performed using the IEEE face image. Because the compression

I achieved in the transform coding simulations was selectable, runs

* were performed to closely match the compressions achieved by the

DPCM algorithms so that direct image quality comparisons could be

* performed.

The image quality produced by both DPCM algorithms was

I excellent; the highest RMS error value, obtained in the baseline

conditional DPCM simulation run on the crowd scene image, was

5.32. This value, measured in gray levels, represents a maximum

error of only 2 percent of the dynamic range (256 gray levels) of

the images. The two preprocessing steps employed in the DPCM

I simulations, horizontal subsampling and horizontal filtering, had

the effect of significantly increasing compression while only

slightly degrading the output image quality.

The conditional DPCM algorithm without preprocessing

produced images which were excellent in terms of image quality;

I Figure 3.19 illustrates this level of quality. With subsampling

(Figure 3.20), the quality of the output images produced by the

conditional DPCM algorithm were still quite good, with only a

I slight blurring effect evident in the high-detail regions of the

images (e.g. the hair and teeth regions of the IEEE face image).

When both subsampling and horizontal filtering were employed in

conjunction with the conditional DPCM algorithm, the image

quality illustrated in Figure 3.21 was produced at an encoded bit
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I TABLE 3.6 - LIST OF DPCM OUTPUT IMAGES

I
FIGURE
NUMBER IMAGE DESCRIPTION

3.19 Conditional DPCM Encoded IEEE Face Image at 1.30 bpp

I 3.20 Conditional DPCM Encoded IEEE Face Image with
Subsampling at 0.72 bpp

3.21 Conditional DPCM Encoded IEEE Face Image with
Filtering and Subsampling at 0.63 bpp

3.22 Adaptive DPCM Encoded IEEE Image at 1.37 bpp

3.23 Adaptive DPCM Encoded IEEE Image with Filtering
at 0.98 bpp

I
I
I
I
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~g~ge 3.19 - Conditional DPCM Encoded IEEE Face ~ at 1.30 ~

U
I
I
I
I
I
I

Fiaure 3.20 - Conditional DPCM Encoded IEEE Face Image with
________ _ ___Sub5amvling at 0.72 ~pp

I 3-29

I



Iv97A

Iiue32 odtoa PMEcddIE aeIaewt
Iusmln n ileigI .3b

Figure 3.21 A odiptiona DPCM Encoded IEEE ae atg 1.37 ?2

Subam~3n an3 itei0at06



I
I
I
I
I
I
I
I
I
I
I
I _____ ___ ______ ___ _____ ___ ____ ___

Fipure 3.23 - Adaptive DPCR4 Encoded IEEE Face Image with
Filterina at 0.98 k22

I
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rate of 0.63 bits/pixel. Blurring can be seen in the high detail

I regions of the hair, and a loss of edge detail is evident in the

eye and mouth regions, but the overall quality of this image

still quite good.

The adaptive DPCM algorithm without preprocessing produced

images which were nearly indistinguishable from the input images;

I an example of this image quality is presented in Figure 3.22.

The adaptive DPCM simulations in which horizontal filtering was

employed produced output images which were only slightly less

impressive; in observing Figure 3.23, only slight blurring in the

hair and eye regions is evident.

The DPCM simulation output images were compared with those

produced in the transform coding simulations on the basis of

similar compression results. The conditional DPCM encoded images

in Figures 3.20 and 3.21 are comparable, in terms of compression,

to the conditional zonal coded image in Figure 3.3, the adaptive

3 zonal coded image in Figure 3.6, the basic Chen-Smith coded image

in Figure 3.9, and the image dependent Chen-Smith coded image in

Figure 3.12. In terms of image quality, the image dependent

Chen-Smith coding technique appears to have performed best

(Figure 3.12), followed closely by the two ('-ditional DPCM

variations (Figures 3.20 and 3.21), the basic Chen-Smith coding

technique (Figure 3.9), the adaptive zonal coding technique

I (Figure 3.6), and the conditional zonal coding technique

(Figure 3.3).
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At this level of compression (0.5-0.7 bits/pixel), the

differences between DPCM and transform coding, in terms of effect

on image quality, manifest themselves. The DPCM images appear

Iblurred in the high detail regions of the images, but are free of

any compression-induced artifacts. The transform coded images,

however, contain artifacts due to blocking (particularly evident

in Figure 3.3) in addition to the loss of sharpness in the high

detail regions.

I At higher compression rates (1-1.3 bits/pixel), the image

quality of both the DPCM and the transform coding algorithms was

excellent. The conditional DPCM encoded image in Figure 3.19 and

the adaptive DPCM encoded images in Figures 2.22 and 2.23 are

comparable, in terms of compression, to the conditional zonal

coded image in Figure 3.4, the adaptive zonal coded image in

Figure 3.7, the basic Chen-Smith coded image in Figure 3.10, and

Ithe image dependent Chen-Smith coded image in Figure 3.13. Only

the conditional zonal coding technique (Figure 3.4) shows any

visually significant image degradation in this compression range;

Islight blocking is evident in the high detail regions of the

image.

Image comparisons could not be performed for bit rates below

I 0.6 bits/pixel because the lowest bit rate achieved in the DPCM

simulations was 0.63 bits/pixel. This is a primary drawback to

DPCM compression techniques; the compression achieved is governed

by image statistics. Transform coding algorithms employ a target

Icompression parameter that is independent of image statistics,
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thus giving transform coding algorithms the flexibility of

sacrificing image quality to increase compression and vice versa.

DPCM compression algorithms are, in general, less complex to

implement than transform coding algorithms; they require less

data storage, are much less demanding computationally, and do not

require overhead data such as that associated with many transform

coding algorithms. Transform coding algorithms offer the

advantage of selectable compression, limited only by the output

I image quality requirements; DPCM algorithms are generally less

* flexible in terms of achievable compression.

DPCM compression algorithms employ predictive coding to

* achieve compression; the gray level value of each pixel is

predicted based upon previously encoded pixel gray level values,

I and the difference between the predicted and actual value of the

pixel is then quantized and encoded. This encoding is done in

the direction of the scan, one pixel at a time; the effects of

the quantizer and prediction errors are thus minimal, generally

manifesting themselves as edge effects in image areas containing

I sharp gray level transitions.

Transform coding algorithms use a method of encoding images

which is much different from that of the DPCM algorithms. When

an image is encoded using a transform coding algorithm, the image

is broken into small (NxN) (N is the size of the transform matrix

used) sub-blocks of pixels which are individually transformed and

quantized. The effects of the quantizer error can be seen as a

"blocking" effect; when the quantizer error is significant, all

of the pixels within the sub-block are affected.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

In analyzing the results presented in Section 3.0, several

conclusions were drawn concerning the performances of the four

transform coding algorithms simulated relative to each other and

to the performances of several DPCM algorithms simulated in an

I earlier study. These conclusions, in turn, led to the

formulation of a number of recommendations as to which direction

future research into gray scale compression studies involving

* transform coding should be directed.

4.1 Conclusions

1. The conditional zonal coding algorithm is the least

* complex of the four transform algorithms which were

evaluated, but is more complex than the DPCM algorithms

I discussed. The image quality it achieved was very good for

bit rates above 1 bit/pixel. At lower bit rates, however,

the indiscriminate quantization employed by this technique

caused significant distortion in the output images. The

advantages offered by conditional zonal coding include low

complexity, selectable compression, and reasonably good

image quality at moderately low bit rates.

2. The adaptive zonal coding algorithm was slightly more

complex than the conditional approach, but achieved much

S4- 1
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better image quality. This was due to the algorithm's

ability to adapt to image content. Adaptive zonal coding

requires just one pass over the image to encode it, yet its

performance was comparable to that of the Chen-Smith

I techniques, which require two passes. The advantages

offered by adaptive zonal coding include moderately low

complexity, selectable compression, and good image quality

* at low bit rates.

3. The basic Chen-Smith coding algorithm achieved excellent

image quality at bit rates above 1 bit/pixel and very good

image quality at bit rates as low as 0.5 bits/pixel. This

algorithm, however, is very complex; it requires two passes

over the image in order to encode it and requires a

significant amount of statistical computations. The basic

Chen-Smith coding technique offers the advantages of

selectable compression and excellent image quality, but is

relatively complex to implement.

4. The image dependent Chen Smith coding algorithm achieved

the best image quality of all of the algorithms evaluated in

I this study, producing very good image quality at bit rates

as low as 0.22 bits/pixel. This approach is the most

complex of the four transform coding techniques simulated.

Applications in which the use of the image dependent Chen-

Smith coding technique would be advantageous include those

I
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that require both high compression and excellent image

quality without regard to system complexity.I
5. At bit rates of 1 bi./pixel and above, the images

produced in the DPCM simulations were virtually

indistinguishable from the images produced in the transform

coding simulations. In applications that require bit rates

3 on the order of 1 to 1.5 bits/pixel, DPCM compression

techniques would be more advantageous than transform coding

* techniques because they are less complex to implement.

i 6. The DPCM compression techniques did not produce bit

rates below 0.63 bits/pixel; therefore, comparisons between

the transform coding and DPCM algorithms could not be

performed at the lower bit rates achieved in several of the

transform coding simulations (0.1-0.3 bits/pixel). In

I applications where compression is more important than image

3 quality, transform coding techniques have a distinct

advantage over DPCM techniques.I
7. Because the transform coding techniques offer the

l advantage of selectable compression, transform coding

algorithms would be more favorable than DPCM algorithms in

applications in which variable compression rates are

* required.

4 3



4.2 Recommendations for Further Study

1. A different image dependent variation of the Chen-Smith

algorithm should be investigated. This variation should

include an AC energy oriented sub-block classification

method where standard AC energy thresholds are calculated

and used to assign high or low classifications to sub-blocks

in an image.

2. Optimization of the look-ahead technique used in the

adaptive zonal coding technique should be performed in order

to improve the image quality produced by this algorithm. It

may be possible to improve the output image quality of this

algorithm to the point where it makes the added complexity

of the Chen-Smith algorithms unfavorable in some

applications.
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-- A.1 Operating Instructions

The Chen-Smith programs are run in three parts as diagrammed

in figures A.1 and A.2. First, either GNSTIN or GNSTDP is run on

I an image file to gather statistics. These programs generate the

variance matrix, which is used in program BITALL to allocate

coding bits to the individual transform elements and in program

MAXTRN to allow for the individual transform elements to have

unit variance. The statistics generating programs also generate

m the class map which shows the activity level of each transformed

sub-block, and the mean of the DC coefficients which is used in

program MAXTRN for quantization. Second, program BITALL is run

with an adjustable parameter to achieve the desired bit rate.

BITALL allocates bits for each of the four classes created in the

statistics generating program. Third, program MAXTRN is run with

the variance matrix, the class map, the four bit maps and the

Lloyd-Max (ref. 2,3) quantization levels as inputs. MAXTRN

compresses, decompresses and writes the output image to file.

The conditional zonal program, ZNLTRN, is run with a

statistics file as one of two inputs. The statistics file

consists of an ordering sequence and corresponding dividing

I factors which are used in quantization. The second input is an

* adjustable parameter for the number of coefficients kept in

quantization. ZNLTRN compresses, decompresses and writes the

output image to file. The adaptive zonal program, THRTRN is run

with the same statistics file mentioned above as one of two

I inputs. The second input is a adjustable threshold value used in

n A 4
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quantization. THRTRN compresses, decompresses and writes the

I output image to file.

A.2 Software Documentation

i The software documentation for the Discrete Cosine Transform

programs is presented in this section, including structure

I charts, Nassi-Scneiderman flow charts for the software modules,

and descriptions of the functions associated with the DCT

programs.i
A.2.1 Chen-Smith Coding TechniquesI
A.2.1.1 Statistics Generating Modules

A.2.1.1.1 Module GNSTIN

i
I
i
i
I
I
i A - 7
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GNSTIN.FTN - Discrete Cosine Transform Image
Independent Statistics Generator Program

Open files and read input parameters

ICalculate Cosine Matrix

Calculate Transpose of Cosine Matrix j

Define the boundaries of the image file

Initialize count array

Do for the number of vertical sub-blocks

Get row of horizontal sub-blocks I

Do for the number of horizontal sub-blocks

I et sub-block and transform the binary numbers of
a sub-block of the image file to real numbers

IPerform matrix multiplications to transform sub-

block matrix

SjCalculate AC energy in sub-block I

Sum up the squares of the AC coefficients for
calculation of the variance matrix and sum up the
DC coefficient for the calculation of its mean

I
Calculate the number of sub-blocks and the DC coefficient mean

Calculate the DC coefficient variance

A - 9



I GNSTIN.FTN - Discrete Cosine Transform Image
Independent Statistics Generator ProgramI

Do for the number of vertical sub-blocks
I Do for the number of horizontal sub-blocks

Put the AC energies of the image into an array

Do for the number of vertical pixels

Do for the number of horizontal pixels

Calculate the AC coefficients variance to complete
the variance matrix

Sort energies of each sub-block

Calculate the sub-block classifications

Do for number of vertical sub-blocks

I Do for number of horizontal sub-blocks

I Classify each sub-block according to non-uniform boundsI
Do for number of vertical pixels

Do for number of horizontal pixels

II Write the variance matrix to file

I Do for number of vertical sub-blocks

Do for number of horizontal sub-blocks

I I Write the class map matrix to file

I
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I GNSTIN.FTN - Discrete Cosine Transform Image
Independent Statistics Generator Program

Write to file the mean of the DC coefficient

I Close files

i END

Ii

I
I
I
I
I
I
I
I
I
I

II
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I ERDBUFF.FTN - Buffer Reading Subroutine

I Move down to proper spot reading point of Image file

Do for the number of vertical dimension of sub-blocks

I Read horizontal block of pixels

I Return

* END

I
I
I
I
I
I
I
I
I

I
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I COSMTX.FTN - Cosine Matrix Subroutine

i Do for the number of vertical rows of pixels
Is this the first vertical

row of pixels?

YES NO

I Make the multiplying coeff- Make the multiplying coeff-
icient equal to "1/sqrt(2)" icient equal to "1"

I Do for number of horizontal pixels

Calculate the cosine coefficient

i Return

END

i
i
I
I
i
I
i

I
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TRNSPS.FTN - Transpose SubroutineI
Do for the number of vertical row of pixels

Do for the number of horizontal pixels

The transform matrix is equal to the computed cosine matrix

i Return

END

i
I
i
i
i
i
i
i

I
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IEGETBLK.FTN - Sub-block Retrieving Subroutine

I Move across to proper spot in buffer

Do for the number of vertical dimension of sub-blocks

Do for half the horizontal dimension of sub-blocks

* Do two times

Take half a word which is one pixel from the bufferU
i ,Return

I END

I
U
I
I
I
I
I

I
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SORT2D.FTN - Sorting Subroutine

Do for I equals one to dimension minus one of array

Do for dimension of array down to (I + 1) in steps of (-1)

Is the adjacent pair of array elements
out of order?

YES NO

Exchange the pair of Leave the array elements
array elements as they are

I
ReturnI END

I
I
I
I
I
I
I

I
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mI MTXMUL.FTN - Matrix Multiplication Subroutine

Do for the number of vertical dimension of sub-blocks

Do for the number of horizontal dimension of sub-blocks

Do multiplication of pixels from MATRIX"I" & MATRIX"2"

Should the result of the matrix multiplication
be put in MATRIX"l" ?

i YES NO

Do for vertical dimension Do for vertical dimension
* of sub-blocks of sub-blocks

Do for horizontal dimension Do for horizontal dimension
i of sub-blocks of sub-blocks

Put result in MATRIX"l" Put result in MATRIX"2"

Return
I END

I
I
I
I
I

I
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I ACNRGY.FTN - AC Energy Calculation Function

Do for number of vertical pixels

Do for number of horizontal pixels

Sum up the AC energies of each pixel positionI
ACNRGY equals the total of all AC energies

* Return

I END

I
I
U
I
I
I
I
I
I
I
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VARNCE.FTN - Variance Subroutine

Do for number of vertical pixels

Do for number of horizontal pixels

ISum up the squares of the AC coefficients

I Return

* END

I
I
U
I
I
I
I
I

I
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Program Documentation for module: GNSTIN

I PROGRAM: GNSTIN

DESCRIPTION: This program uses an adaptive coding technique
known as the Discrete Cosine Transform (DCT)
and follows the Chen-Smith (ref. 1) coding
algorithm. Transformed blocks are sorted
into classes by the level of image activity.
Within each activity level, coding bits are
allocated to individual transform elements
according to the variance matrix of the
transformed data. An equal amount of blocks
will be distributed in each class independent
of excessively high or image activity. This
program generates the variance matrix which is
used in module BITALL to allocate coding bits
to individual transform elements and module
MAXTRN to make the individual transform
elements have unit variance. This program also
generates, the class map which shows the
activity level of each transformed sub-block
and the mean of the DC coefficient which is
used in module MAXTRN in quantization.

I RUNSTRING: GNSTIN,<INPUT NAME>,<OUTPUT NAME>

INPUT NAME Input image file name

OUTPUT NAME Output statistics file

U ORDER OF

INPUT PARAMETERS: 
1) Dimension of sub-blocks

* 2) Number of sub-block classification levels

MODULES CALLED:

ERDBUFF Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

I COSMTX Subroutine to put in memory the cosine matrix.

I
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Program Documentation for module: GNSTIN

TRNSPS Subroutine to put in memory the transpose of
the cosine matrix.

EGETBLK Subroutine to retrieve a block of data from the
FTN77 buffer.

SORT2D Subroutine to sort an array of AC energies.

MTXMUL Subroutine to do matrix multiplications of real
numbers.

GETFIL Subroutine to open input image an file for
processing.

I ACNRGY Subroutine to calculate AC energy of sub-blocks

VARNCE Subroutine to add the squares of the AC
coefficients for calculation of the variance
matrix.

U NAMED COMMON
DESCRIPTIONS:

Block Name: GFMBLK
Module Common to: RDBUWF

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
* file

RECRDS Number of records in primary
* file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag

I A -21
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ProQram Documentation for module: GNSTIN

Block Name: GTBLK

Module Common to: RDBUFF,GETBLK,SORT2D

* Descriptions:

OUTBUF Output buffer

ACSORT Array holding sorted AC
energies

ACMTX Matrix holding AC energies

i
i
I
i
i
i
i
i
i
I
i
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I Subroutine Documentation for module: ERDBUFF

SUBROUTINE: ERDBUFF

MODULES
CALLED FROM: GNSTIN, GNSTDP

I PURPOSE: This subroutine reads a horizontal sub-block of
data from the image file into the FTN77 buffer.

U IMODULES CALLED:

LGBUF Subroutine to make the buffer size larger.

CALLING FORMAT: CALL ERDBUFF(YDIM,YVAL,INLU)

ARGUMENT
DESCRIPTIONS:

YDIM Y dimension of the buffer in words

I YVAL Y coordinate of file for reading

INLU LU for the input image file

NAMED COMMON
* DESCRIPTIONS:

Block Name: GFMBLK
Module Common to: GNSTIN, GNSTDP

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

I ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
file
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Subroutine Documentation for module: ERDBUFF

RECRDS Number of records in primary
file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag

Block Name: GTBLK
Module Common to: GNSTIN, GNSTDP, EGETBLK,

SORT2D

Description:

OUTBUF Output buffer

ACSORT Array holding sorted AC
energies

ACMTX Matrix holding AC energies
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Subroutine Documentation for module: COSMTX

I SUBROUTINE: COSMTX

MODULES
CALLED FROM: MAXTRN, THRTRN, ZNLTRN, GNSTIN, GNSTDP

PURPOSE: This subroutine creates the cosine matrix

CALLING FORMAT: CALL COSMTX(XFORM,MTXDIM)

ARGUMENT
DESCRIPTIONS:

XFORM Transform matrix to be computed

MTXDIM Dimension of transform matrix

I
i
I
I
i
i
I
i
i

i A -25



I

Subroutine Documentation for module: TRNSPS

I SUBROUTINE: TRNSPS

MODULES
CALLED FROM: MAXTRN, THRTRN, ZNLTRN, GNSTIN, GNSTDP

PURPOSE: This subroutine puts the transpose of the
cosine matrix in TRXFORM

I CALLING FORMAT: CALL TRNSPS(XFORM,TRXFORM,MTXDIM)

ARGUMENT
DESCRIPTIONS:

XFORM Transform matrix COSMTX

TRXFORM Transpose of the transform matrix

MTXDIM Matrix dimension

I
I
I
I
I
I
I

I
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Subroutine Documentation for module: EGETBLK

I SUBROUTINE: EGETBLK

I MODULES
CALLED FROM: GNSTIN, GNSTDP

I PURPOSE: This subroutine retrieves a block of data from
the block buffer and places it in the transform
data buffer for transformation.

CALLING FORMAT: CALL EGETBLK(XVAL,YVAL,XSIZYSIZ,BLKNAM)

ARGUMENT
DESCRIPTIONS:

XVAL Upper left X file coordinate

I YVAL Upper left Y file coordinate

XSIZ X Block dimension

YSIZ Y Block dimension

BLKNAM Memory to hold a block of data to be retrieved

NAMED COMMON
DESCRIPTIONS:

Block Name: GTBLK
Module Common to: GNSTIN, GNSTDP, ERDBUFF,

SORT2D

* Description:

OUTBUF Output buffer

ACSORT Array holding sorted AC
energies

ACMTX Matrix holding AC energies

I
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Subroutine Documentation for module: SORT2D

I SUBROUTINE: SORT2D

3 MODULE
CALLED FROM: GNSTIN, GNSTDP

I PURPOSE: This subroutine sorts an array of AC energies
to get appropriate class bounds for the class
map.

CALLING FORMAT: CALL SORT2D(DIMNSN)

ARGUMENT
DESCRIPTIONS:

DIMNSN Dimension of the array to be sortedI
NAMED COMMON

i DESCRIPTIONS:

D Block Name: GTBLK
Module Common to: ERDBUFF, EGETBLK, GNSTIN,

GNSTDP

Description:

3 OUTBUF Output buffer

ACSORT Array holding sorted AC
energies

ACMTX Matrix holding AC energies

I
I
I
I
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Subroutine Documentation for module: MTXMUL

i SUBROUTINE: MTXMUL

MODULES
CALLED FROM: MAXTRN, THRTRN, ZNLTRN, GNSTIN, GNSTDP

PURPOSE: This subroutine will do matrix multiplications
of real numbers on two matrices.

CALLING FORMAT: CALL MTXMUL(MTX1,MTX2,SIZE,DEST)

ARGUMENT
DESCRIPTIONS:

MTX1 Matrix one, ordering is .important

MTX2 Matrix two, again ordering is important

* SIZE Size of matrices

DEST Destination of the result of (MTX1 * MTX2)
(1 Result places in MTXI, 2 Result in MTX2)

i
i
I
I
i
i
i
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Function Documentation for module: ACNRGY

Function: ACNRGY

MODULES
CALLED FROM: GNSTIN, GNSTDP

PURPOSE: This function calculates the AC energy of asub-block. The AC energies are then used for
block classification.

CALLING FORMAT: X = ACNRGY(MTXXDIM,YDIM)

I ARGUMENT

DESCRIPTIONS:

MTX Data matrix

XDIM X dimension of data matrix

YDIM Y dimension of data matrix
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Subroutine Documentation for module: VARNCE

SUBROUTINE: VARNCE

MODULES
CALLED FROM: GNSTIN, GNSTDP

PURPOSE: This subroutine adds the squares of the AC
coefficients within the sub-block over the
entire image. The sums of the squares will
be later used to calculate the variance matrix.

CALLING FORMAT: CALL VARNCE(TRMTX,VARMTX,XDIM,YDIM)

ARGUMENT
*I DESCRIPTIONS:

TRMTX Input transformed matrix

VARMTX Output variance matrix

XDIM X dimension of the transformed matrix

YDIM Y dimension of the transformed matrix

I
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I A.2.l.l.2 Module GNSTDP
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GNSTDP.FTN - Discrete Cosine Transform Image
Dependent Statistics Generator Program

Open files and read input parameters

ICalculate Cosine Matrix

Icalculate Transpose of Cosine Matrix
Define the boundaries of the image file

Initialize count array

Do for the number of vertical sub-blocks

Get row of horizontal sub-blcks ]

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image file to real numbers

ePerform matrix multiplications to transform sub-
block matrix

ICalculate AC energy in sub-block
Sum up the squares of the AC coefficients for
calculation of the variance matrix and sum up the
DC coefficients for the calculation of its mean

Calculate the number of sub-blocks and the DC coefficient mean

I 'Calculate the DC coefficient variance
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I GNSTDP.FTN - Discrete Cosine Transform Image
Dependent Statistics Generator Program

Do for number the of vertical sub-blocks

Do for the number of horizontal sub-blocks

I F Put the AC energies of the image into a array

Do for the number of vertical pixels

Do for the number of horizontal pixels
I I Calculate the AC coefficients variance to complete

the variance matrix

ISort energies of each sub-block

SI Calculate the mean of the sorted array

Let class bound two equal the mean of the sorted array

Calculate the mean of the sorted array up to class bound two
and let that mean equal class bound one

I Calculate the mean of the sorted array I
* after class bound two

Let the mean of the sorted array after class bound two equal
class bound three

Calculate the sub-block classifications

Do for number of vertical sub-blocks

Do for number of horizontal sub-blocks

assify each sub-block according to non-uniform bounds
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I GNSTDP.FTN - Discrete Cosine Transform Image
Dependent Statistics Generator ProgramI

Do for number of vertical pixels
I Do for number of horizontal pixels

I Write the variance matrix to file

Do for number of vertical sub-blocks

Do for number of hirizontal sub-blocks

IWrite the class map matrix to file

IWrite to file the mean of the DC coefficient
Close files

END

I
i
I
i
I
I

I
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GTMEAN.FTN - Mean Calculation Function

Do for the number in the array

I Sum up the coefficients in 
the array

Calculate the mean of the array and set it equal to GTMEAN

Return

* END

I

I
I
I
I
i
I
I

I
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Program Documentation for module: GNSTDP

I PROGRAM: GNSTDP

DESCRIPTION: This program uses an adaptive coding technique
known as the Discrete Cosine Transform (DCT)
and follows the Chen-Smith (ref. 1) coding
algorithm. Transformed blocks are sorted into
classes by the level of image activity. Within
each activity level, coding bits are allocated
to individual transform elements according to
the variance matrix of the transformed data.
This program is image dependent unlike module
GNSTIN. The amount of blocks in each class
will depend upon the image activity. This
program generates the variance matrix which is
used in module BITALL to allocate coding bits
to individual transform elements and module
MAXTRN to make the individual transform
elements have unit variance. This program
also generates, the class map which shows the
activity level of each transformed sub-block
and the mean of the DC coefficient which is
used in module MAXTRN in quantization.

I RUNSTRING: GNSTDP,<INPUT NAME>,<OUTPUT NAME>

INPUT NAME Input image file name

OUTPUT NAME Output statistics file

ORDER OF

INPUT PARAMETERS: 
1) Dimension of sub-blocks

I 2) Number of sub-block classification levels

MODULES CALLED:

ERDBUFF Subroutine to read a horizontal line of t'ie
input image into the FTN77 buffer.

I COSMTX Subroutine to put in memory the cosine matrix.

I
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Program Documentation for module: GNSTDP

TRNSPS Subroutine to put in memory the transpose of
the cosine matrix.

EGETBLK Subroutine to retrieve a block of data from the

FTN77 buffer.

SORT2D Subroutine to sort an array of ac energies.

MTXMUL Subroutine to do matrix multiplications of real
numbers.

GTMEAN Function to calculate the mean of an array.
Used to determine class bounds.

ACNRGY Function to calculate AC energy of sub-blocks.

VARNCE Subroutine to add the squares of the AC
coefficients for calculation of the variance
matrix.

GETFIL Subroutine to open Input an image file for
processing.

NAMED COMMON
DESCRIPTIONS:

Block Name: GFMBLK
Module Common to: RDBUFF

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
file

RECRDS Number of records in primary
file

FTN77 Fortran read buffer
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Proqram Documentation for module: GNSTDP

TEMBUF Temporary read buffer

ACCTYP - File access flag

Block Name: GTBLK

Module Common to: RDBUFF,GETBLK,SORT2D

Descriptions:

I OUTBUF Output buffer

ACSORT Array holding sorted AC
energies

ACMTX Matrix holding AC energies

I
I
I
I
I
I
I
I
I
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Function Documentation for module: GTMEAN

i Function: GTMEAN

MODULE
CALLED FROM: GNSTDP

i PURPOSE: This function calculates mean of an array.

i CALLING FORMAT: X = GTMEAN(FIRST,LAST)

ARGUMENT
DESCRIPTIONS:

FIRST The starting point of the calculation.

LAST The ending point of the calculation.

I
I
I
I
I
I
I
I

I
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1
I
I
I A.2.1.2 BIT ALLOCATING PROGRAM: BITALtJ

I
I
I
I
I
I
I
I
I
I
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FIGURE A.5 Structure Chart for Module: BITALL
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BITALL.FTN - Discrete Cosine Transform
Bit Allocation Program

Open files and read input parameters

Do for number of vertical pixels

Do for number of horizontal pixels

Read in the current pixel of the variance matrix

Calculate the desired bit targets used in determining the bit maps

Do for number of classes

Do while current bit is less than target

I Allocate bits for current bit p

Do for number of vertical pixels

Do for number of horizontal pixels

F -Wr ite to file the current bitma

Write the average number of bits per pixel

Close files

E N D
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I

ALLOCT.FTN - Bit Allocating Function

Do for dimension of matrix

Do for dimension of matrix

rs this an AC coefficient?I YE SNO

Calculate bits to allocate Allocate eight bits for
for the AC coefficient the DC coefficient

Return the average bits per pixel

I END

Ii

I
I
I
I
I
I

II
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Program Documentation for module: BITALL

PROGRAM: BITALL

DESCRIPTION: This program will allocate bits for each of the
four classes created in the statistics
generating program. The coding bits are
allocated to individual transform elements
according to the variance matrix of of the
transformed data. Bits are then distributed
between "busy" and "quiet" image areas to
provide the desired adaptivity; more bits
assigned to the areas of high image activity
and fewer bits assigned to those of low
activity.

RUNSTRING: BITALL,<INPUT NAME>,<OUTPUT NAME>

INPUT NAME Input variance matrix

OUTPUT NAME Output bit allocation maps

ORDER OF

INPUT PARAMETERS:

1) Dimension of sub-blocks

2) Desired number of coded bits per pixel

MODULES CALLED:

ALLOCT Function that creates the bit allocation
matrices for the different classes of the
classification map.
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Function Documentation for module: ALLOCT

I Function: ALLOCT

MODULE
CALLED FROM: BITALL

PURPOSE: This function calculates the bit allocation
matrices for the different classes of the
classification map.

CALLING FORMAT: X = ALLOCT(BAMTX,VARMTX,PARM,XDIM)

I ARGUMENT

DESCRIPTIONS:

I BAMTX Output bit allocation matrix

VARMTX Input variance matrix

PARM Input parameter to the bit allocation function

XDIM Matrix dimension

I
I
I
I
I
I
i
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I
I A.2.1.3 CODING PROGRAM: MAXTRN

I
I
I
I
I
I
I
I
I
I
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MAXTRN.FTN - Discrete Cosine Transform Program
using the Lloyd-Max Quantizing Method

Open files and read input parameters

i Do for the number of vertical pixels

Do for the number of horizontal pixels
Read In the current pixel of the variance matrix

Ithat was created in the Statistics Generator

* Do for the number of vertical sub-blocks

Do for the number of horizontal sub-blocks
l [ Read the class map that was created in the

[Statistics Generator

Read the mean of the DC coefficient created in the
* Statistics Generator

Do for the number of vertical pixels

j Do for the number of horizontal pixels
r Read in bit maps that were created in module BITALL

i Do for the current number of levels

F Read In the current Lloyd-Max quantization levelsI __ _ _ _ __ _ _ _ _ __ _ _ _ _

Calculate Cosine Matrix
I _ _ _ _ __.....__ _ _ _ _ _ _ _

I Calculate Transpose of Cosine Matrix
Define the boundaries of the image file

I Initialize total number of bits
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I MAXTRN.FTN - Discrete Cosine Transform Program
using the Lloyd-Max Quantizing Method

Do for the number of vertical sub-blocks

jGet row of horizontal sub-blocks

Do for the number of horizontal sub-blocks

Get sub-block and transform the binary numbers of
a sub-block of the image file to real numbers

I Perform matrix multi-'lications to transform sub- f
block matrixI iuoz oooo0I

I I Quantize transformed sub-block
I Perform an integer filterIng process that puts

back In range out of range coefficients due to
I quantization error

I Dequantize transformed quantized sub-block

I Perform matrix multiplications to transform the
sub-block back to original form. (The sub-block
will not be exactly the same due to quantization
error)

Perform filtering process that puts back in rangethe out of range pixels that were due to quanti-

I zation error

I
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UMAXTRN.FTN - Discrete Cosine Transform Program
using the Lloyd-Max Quantizing Method

Do for the number of vertical pixels

Do for the number of horizontal pixels

Do for the number of bits per word

Paclk bits Into word

Increment total pixels being processed

Write a row of horizontal sub-blocks to output file

ICalculate and print out compression statistics
~END

I
I
I
I

I
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MRDBUFF.FTN - Buffer Reading Subroutine

Move down to proper spot reading point of Image file

Do for the number of vertical dimension of sub-blocks

Read horizontal block of pixels

Return

END
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i MGETBLK.FTN - Sub-block Retrieving Subroutine

i Move across to proper spot in buffer

Do for the number of vertical dimension of sub-blocks

Do for half the horizontal dimension of sub-blocks

* Do two times
STake half a word which is one pixel from the buffer

I

i Return

i END

i
i
I
I
i
i
i
I
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MAXQNT.FTN - Lloyd-Max Quantizing Subroutine

Initialize quantizing sub-block

Do for number of vertical pixels

Do for number of horizontal pixels

Determine how many levels to use according to the position
MAXTRN is at on the image map and keep track of bits that

* are used

Divide the current coefficient by the standard deviation
to make the coefficient have unit variance

Put the quantization levels in an array

this the DC coefficient?
YES NO

Let the mean of the DC Let zero be the center of
coefficient divided by its the quantization levels
standard deviation be the
center of the quantization
levels

Determine the correct quantization level

Put the correct quantization level in the output matrixI
ReturnI END

I

Ii
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MAXDQT.FTN - Lloyd-Max Dequantizing Subroutine

Initialize dequantizing sub-block

Do for number of vertical pixels

Do for number of horizontal pixels

Determine how many levels to use according to the position
MAXTRN is at on the image map

Put the dequantization levels in an array

Is this the DC coefficient?

YE S O? NO

Let the mean of the DC Let zero be the center of
coefficient divided by its the dequantization levels
standard deviation be the

center of the dequantization
levels

Determine the correct dequantization level

Put the correct dequantization level in the output matrixI
* Return

END

I
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I FLTBLK.FTN - Filtering Subroutine

Do for vertical dimension of sub-block

Do for horizontal dimension of sub-block

..Is current pixel of sub-block less
than "0"?* YES ---

Make the current pixel of sub-block equal to "0"

Is current pixel of sub-block greater
than "255"?

YES

Make the current pixel of sub-block equal to "255"

I
Return

* END

I
I
I
I
I
I
I
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I MIFTBK.FTN - Filtering Subroutine

I Do for vertical dimension of sub-block

Do for horizontal dimension of sub-block

Is current pixel of sub-block less

than "0"?

Make the current pixel of sub-block equal to "0"

* Is current pixel of sub-block greater

: YES than "255 "?YES

r Make the current pixel of sub-block equal to "255"

I
Return

* END

I
I
i
i
I
I
I

I
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Program Documentation for module: MAXTRN

PROGRAM: MAXTRN

DESCRIPTION: This program uses an adaptive coding technique
known as the Discrete Cosine Transform (DCT)
and follows the Chen-Smith (ref. 1) algorithm.
The program interactively inquires for, then
accepts input parameters for the dimensions of
the sub-blocks. The quantization method used
in this program is the Lloyd-Max optimal
quantization scheme (ref. 2,3) with the
probability density and transform sample
modeled as equation 3.1. This coding method
will be applied to three images, a face photo,
an aerial photo and a crowd scene. A summary of
each run is printed including compression
statistics and RMS values.

RUNSTRING: MAXTRN,<INPUT NAME>,<OUTPUT NAME>,<STAT FILE>,
<BIT MAPS>,<256 LEVELS>,<128 LEVELS>,
<64 LEVELS>,<32 LEVELS>

INPUT NAME Input image file name

OUTPUT NAME Output reconstructed image file name

STAT FILE The variance matrix and image map from the
statistics generating program

BIT MAPS The four bit maps created in BITALL

256 LEVELS 256 of the Lloyd-Max quantization levels

128 LEVELS 128 of the Lloyd-Max quantization leveli

64 LEVELS 64 of the Lloyd-Max quantization levels

32 LEVELS 32 of the Lloyd-Max quantization levels

MODULES CALLED:

MRDBUFF Subroutine to read a horizontal line of th.
input image into the FTN77 buffer.

COSMTX Subroutine to put in memory the cosine matrix.
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Program Documentation for module: MAXTRN

TRNSPS Subroutine to put in memory the transpose of
the cosine matrix.

MTXMUL Subroutine to do matrix multiplications of
real numbers

MGETBLK Subroutine to retrieve a block of data from the
FTN77 buffer.

MAXQNT Subroutine to quantize blocks of data.

MAXDQT Subroutine to dequantize blocks of data.

FLTBLK Subroutine to filter out, out of range real
pixels.

MIFTBK Subroutine to filter out, out of range integer
coefficients.

GETFIL Subroutine to open Input image an file for
processing.

NAMED COMMON
DESCRIPTIONS:

Block Name: GFMBLK
Module Common to: MRDBUFF

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File statuis variable

RECLEN Record length in bytes

NUMREC Number of records in input
file

RECRDS Number of recorao in pLmai:-y
file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer
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i Program Documentation for module: MAXTRN

i ACCTYP File access flag

i Block Name: GTBLK

Module Common to: MRDBUFF,MGETBLK

i Descriptions:

OUTBUF Output buffer

I
I
I
I
I
I
I
I
I
I
I
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Subroutine Documentation for module: MRDBUFF

I SUBROUTINE: MRDBUFF

MODULE
CALLED FROM: MAXTRN

U PURPOSE: This subroutine reads a horizontal sub-block of
data from the image file into the FTN77 buffer.

MODULES CALLED:

LGBUF Subroutine to make the buffer size larger.

CALLING FORMAT: CALL MRDBUFF(YDIM,YVAL,INLU)

ARGUMENT
DESCRIPTIONS:

YDIM Y dimension of the buffer in words

YVAL Y coordinate of file for reading

INLU LU for the input image file

NAMED COMMON
DESCRIPTIONS:

Block Name: GFMBLK
Module Common to: MAXTRN

Descriptions:

I IMGFIL Input image file name

* EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
* file
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Subroutine Documentation for module: MRDBUFF

RECRDS Number of records in primary
file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag

Block Name: GTBLK

Module Common to: MGETBLK,MAXTRN

Description:

OUTBUF Output buffer
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Subroutine Documentation for module: MGETBLK

I SUBROUTINE: MGETBLK

* MODULE
CALLED FROM: MAXTRN

U PURPOSE: This subroutine retrieves a block of data from
the block buffer and places It in the transform
data buffer for transformation.

CALLING FORMAT: CALL MGETBLK(XVAL,YVAL,XSIZ,YSIZ,BLKNAM)

ARGUMENT
DESCRIPTIONS:

XVAL Upper left X file coordinate

I YVAL Upper left Y file coordinate

XSIZ X Block dimension

YSIZ Y Block dimension

BLKNAM Memory to hold a block of data to be retrieved

NAMED COMMON
DESCRIPTIONS:

Block Name: GTBLK
Module Common to: MGETBLK,MAXTRN

Description:

I OUTBUF Output buffer

I
I
I
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Subroutine Documentation for module: MAXQNT

SUBROUTINE: MAXONT

MODULE
CALLED FROM: MAXTRN

PURPOSE: This subroutine uses the Lloyd-Max optimal
quantization scheme (ref. 2,3). The
quantization process takes the current
coefficient and determines the correct
quantization interval and represents the
coefficient by the input level that corresponds
to that interval. The quantization levels used
are the ones that are described in the Lloyd-
Max algorithm.

CALLING FORMAT: CALL MAXQNT(QNTMTX,BLKBUF, IMGMAP,VARRY,TTLBTS,
V1MAP,V2MAP,V3MAP,V4MAP,XDIM, YDIM,
I,J,X256,X128,X64,X32)

ARGUMENT

DESCRIPTIONS:

QNTMTX Output quantized matrix

BLKBUF Input matrix to be quantized

IMGMAP The total image energy map

VARRY The variance matrix

TTLBTS Total actual bits sent

VIMAP Variance map one

V2MAP Variance map two

V3MAP Variance map three

V4MAP Variance map four

XDIM X Dimension of inputted matrix

YDIM Y Dimension of inputted matrix
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Subroutine Documentation for module: MAXQNT

I I,J The current position of IMGMAP sent from MAXTRN

X256 256 Input levels

X128 128 Input levels

X64 64 Input levels

X32 32 Input levels

I
I
I
U
I
I
I
I
I
I
I
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Subroutine Documentation for module: MAXDQT

I SUBROUTINE: MAXDQT

MODULE
CALLED FROM: MAXTRN

PURPOSE: This subroutine will dequantize a transformed
quantized sub-block of pixels. The dequanti-
zation process takes the quantized pixel and
dequantizes it by giving the pixel its corre-

* sponding output level.

CALLING FORMAT: CALL MAXDQT(QNTMTX,BLKBUF, IMGMAP,VARRY,
VIMAP,V2MAP,V3MAP,V4MAP,XDIM, YDIM,
I,J,Y256,Y128,Y64,Y32)

ARGUMENT
DESCRIPTIONS:

QNTMTX Input quantized matrix

I BLKBUF Output matrix to be dequantized

IMGMAP The total image energy map

VARRY The variance matrix

VIMAP Variance map one

V2MAP Variance map two

3 V3MAP Variance map three

V4MAP Variance map four

XDIM X Dimension of inputted matrix

3 YDIM Y Dimension of inputted matrix

I,J The current position of IMGMAP sent from MAXTRN

3 Y256 256 Output levels

Y128 128 Output levels

Y64 64 Output levels

3 Y32 32 Output levels
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I Subroutine Documentation for module: FLTBLK

I SUBROUTINE: FLTBLK

MODULES
CALLED FROM: MAXTRN, THRTRN, ZNLTRN

PURPOSE: This subroutine will filter out reconstructed
real pixels that are out of range.
(eg. Larger than 255, or smaller than 0)

CALLING FORMAT: CALL FLTBLK(MATRIX,DIM)I
ARGUMENT
DESCRIPTIONS:

MATRIX Matrix to be filtered

DIM Dimension of matrix to be filtered

I
I
I
I
I
I
I
I
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Subroutine Documentation for module: MIFTBK

I SUBROUTINE: MIFTBK

MODULE
CALLED FROM: MAXTRN

PURPOSE: This subroutine will filter out reconstructed
integer coefficients that are out of range.
(eg. Larger than 255, or smaller than 0)

CALLING FORMAT: CALL MIFTBK(MATRIX,DIM)

ARGUMENT
DESCRIPTIONS:

MATRIX Matrix to be filtered

* DIM Dimension of matrix to be filtered

i
I
i
i
i
i
i
I
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I A.2.2.1 CODING PROGRAM: ZNLTRN

I
U
I
I
I
I
I
I
I
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I

ZNLTRN.FTN - Discrete Cosine Transform Program
using the Zonal Quantizing Method

OPEN files and read input parameters

Do 70 times

Read in the ordering in which the coefficents will be checkedI in the quantizing routine and their dividing factors

'Calculate Cosine Matrix

I Calculate Transpose of Cosine Matrix

Define the boundaries of the image file

Initialize the total pixel being processed to zero

Do for the number of vertical sub-blocks

IGet row of horizontal sub-blocks

Do for the number of horizontal sub-blocks

SGet sub-block and transform the binary numbers of
a sub-block of the image file to real numbers J
Perform matrix multiplications to transform sub-

block matrix

Quanizethetransformed sub-block using the ZonalU I Quantization Methodj

Perform an integer filtering routine that puts
back in range out of range coefficients that were
due to quantization error
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ZNLTRN.FTN - Discrete Cosine Transform Program
using the Zonal Quantizing Method

U IDequantize the transformed sub-block

Perform matrix multiplications to transform the
sub-block back to original form. (The sub-block
will not be exactly the same due to quantizationerror)

Perform filtering process that puts back in rangeI the out of range pixels that were due to quanti-
zation error

Do for the number of vertical pixels

Do for the number of horizontal pixels

Do for the number of bits per word

Pack bits Into word

Increment total pixels being processed

* Write a row of horizontal sub-blocks to output file

Calculate and print out compression statistics

I END
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i RDBUFF.FTN - Buffer Reading Subroutine

i Move down to proper spot reading point of Image file

Do for the number of vertical dimension of sub-blocks

I Read horizontal block of pixels

Return
* END

i
I
J
i
I
i
i
i
i

i
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GETBLK.FTN - Sub-block Retrieving Subroutine

Move across to proper spot in buffer

i Do for the number of vertical dimension of sub-blocks

Do for half the horizontal dimension of sub-blocks

Do two times

i ITake half a word which is one pixel from the buffer

I
Return

I END

I
i
I
I
I
I
I

I
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ZNLQNT.FTN - Quantizing Subroutine

Initialize Quantizing sub-block

Initialize current coefficients being processed

Do WHILE current coefficient count of the sub-block is less than
the user inputted number of coefficients kept and that this is less
than 70. (The reason the current coefficient must be less than the
seventieth coefficient is that the image distorts keeping more than

* 70 coefficients.)

Divide the current coefficient to send it in eight bits

iIncrement PP to keep track of coefficients being processed

Since the PP count is always one ahead subtract one to
keep precise count

Return

END

I
I
I
I
I
I

I
I
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DQUANT.FTN - Dequantizing Subroutine

Initialize sub-block

Do for the number of pixels processed in the Quantizing Matrix

Multiply current pixel by what it was divided by in the
* IQuantizing Subroutine

ReturnI END

I
I
I
I
I
I
I
I
I
I
I
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INFTBK.FTN - Filtering Subroutine

I Do for vertical dimension of sub-block

Do for horizontal dimension of sub-block

Is this the DC coefficient and is
IYit greater than "255"?

Hake the DC coefficient equal to "255"

Is this an AC coefficient and is

YES it greater than "127"?

Make the current AC coefficient equal to "127"

Is this an AC coefficient and is
it less than "-127"?

YES

Make the current AC coefficient equal to "-127"I
ReturnI END

I
I
I
I

I
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I Program Documentation for module: ZNLTRN

PROGRAM: ZNLTRN

DESCRIPTION: This program uses a conditional zonal coding
technique which employs the Discrete Cosine
Transform (DCT). The program will divide an
image into sub-block matrices, then transform
each sub-block. The transformation process
packs the energy into the upper left portion of
the matrix. The program interactively inquires
for, then accepts an input parameter used in
runs quantizing a different amount of
coefficients from each sub-block. The
quantization process used is the conditional
zonal quantizing method. The ord-r in which
the coefficients are checked is based upon the
highest variances from a cross section of
images. After the quantization process the
program dequantizes, transforms the sub-blocks
back and writes the reconstructed image to an
output file. A summary of each run is printed
including; names, ending values and compression
statistics.

RUNSTRING: ZNLTRN,<INPUT NAME>,<OUTPUT NAME>,<STAT FILE-

INPUT NAME Input image file name

OUTPUT NAME Output reconstructed image file name

STAT FILE Statistics file ordered to check sub-block
matrices

INPUT PARAMETER: Ending value

U MODULES CALLED:

RDBUFF Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

SCOSMTX Subroutine to put in the cosine matrix.

TRNSPS Subroutine to put In the transpose of the
cosine matrix.

I
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Program Documentation for module: ZNLTRN

I MTXMUL Subroutine to do matrix multiplications of
real numbers.

I GETBLK Subroutine to retrieve a block of data from the

FTN77 buffer.

ZNLQNT Subroutine to quantize blocks of data.

DQUANT Subroutine to dequantize blocks of data.

FLTBLK Subroutine to filter out, out of range real
pixels.

I INFTBK Subroutine to filter out, out of range integer
coefficients.

GETFIL Subroutine to open input image an file for
processing.

I NAMED COMMON
DESCRIPTIONS:

Block Name: JFMBLK
Module Common to: RDBUFF

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
file

RECRDS Number of records in primcdry
* file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag
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I Program Documentation for module: ZNLTRN

IBlock Name: GTBLK
Module Common to: RDBUFF,GETBLK

* Descriptions:

OUT13UF output buffer

AI8



Subroutine Documentation for module: RDBUFF

SUBROUTINE: RDBUFF

MODULES
CALLED FROM: ZNLTRN, THRTRN

PURPOSE: This subroutine reads a horizontal sub-block of
data from the image file into the FTN77 buffer.

MODULES CALLED:

LGBUF Subroutine to make the buffer size larger.

CALLING FORMAT: CALL RDBUFF(YDIM,YVAL,INLU)

ARGUMENT
DESCRIPTIONS:

YDIM Y dimension of the buffer in words

YVAL Y coordinate of file for reading

INLU LU for the input image file

NAMED COMMON
DESCRIPTIONS:

Block Name: GFMBLK

Module Common to: ZNLTRN, THRTRN

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in input
file
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Subroutine Documentation for module: RDBUFF

I RECRDS Number of records in primary

file

FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag

I Block Name: GTBLK

Module Common to: GETBLK, ZNLTRN, THRTRN

* Description:

OUTBUF Output buffer

II
I
I
I
I

I
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Subroutine Documentation for module: GETBLK

SUBROUTINE: GETBLK

3 MODULES
CALLED FROM: ZNLTRN, THRTRN

U PURPOSE: This subroutine retrieves a block of data from
the block buffer and places it in the transform
data buffer for transformation.

CALLING FORMAT: CALL GETBLK(XVAL,YVAL,XSIZ,YSIZ,BLKNAM)

ARGUMENT
DESCRIPTIONS:

XVAL Upper left X file coordinate

I YVAL Upper left Y file coordinate

XSIZ X Block dimension

YSIZ Y Block dimensio,.

BLKNAM Memory to hold a block of data to be retrieved

NAMED COMMON
DESCRIPTIONS:

Block Name: GTBLK
Module Common to: GETBLK, ZNLTRN, THRTRN

Description:

I OUTBUF Output buffer

I
I
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Subroutine Documentation for module: ZNLQNT

SUBROUTINE: ZNLQNT

MODULE
CALLED FROM: ZNLTRN

PURPOSE: This subroutine will quantize a sub-block of
pixels. The quantization process takes a 32 bit
real coefficient from the buffer and transforms
it into an 8 bit integer coefficient. The
subroutine quantizes from the upper left
portion of the sub-block keeping an inputted
number of pixels from each sub-block.

CALLING FORMAT: CALL ZNLQNT(QNTMTX,BLKBUF,F,S,D,LAST,PP,
XDIM, YDIM)

ARGUMENT

*DESCRIPTIONS:

QNTMTX Output quantized matrix

BIKBUF Input matrix to be quantized

F,S The ordering in which a sub-block of data will
be checked
(e.g. IF BLKBUF(F,S) .LE. LAST)

D An array to hold division numbers thdL convert
the 32 bit real numbers into 8 bit integers

LAST The inputted number of coefficients kept in
each sub-block

PP Keeps count of the pixels being processed in
each call to ZNLQNT and sends it to the
dequantizing subroutine

XDIM X Dimension of inputted matrix

YDIM Y Dimension of inputted matrix

I
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Subroutine Documentation for module: DQUANT

SUBROUTINE: DQUANT

I MODULES
CALLED FROM: ZNLTRN, THRTRN

PURPOSE: This subroutine will dequantize a transformed
quantized sub-block of pixels. The dequant-
ization process takes an 8 bit integer pixel
from the quantizing routine and dequantizes it
into a 32 bit real pixel. The subroutine
dequantizes in the same way the quantization
process was done either adaptively or
conditionally and using the ordering that was* used in the quantizing routine.

CALLING FORMAT: CALL DQUANT(QNTMTX,BLKBUF,F,S,D,PP,XDIM,YDIM)

ARGUMENT
* DESCRIPTIONS:

QNTMTX Output quantized matrix

BLKBUF Input matrix to be dequantized

F,S The ordering in which a sub-block of data will
* be checked

D An array to hold division numbers that convert
the 8 bit integer numbers back into 32 bit
real numbers

PP Pixels to be processed that was determined in
the quantizing routine

XDIM X Dimension of inputted matrix

U YDIM Y Dimension of inputted matrix

I
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Subroutine Documentation for module: INFTBK

SUBROUTINE: INFTBK

MODULE
CALLED FROM: ZNLTRN, THRTRN

PURPOSE: This subroutine will filter out reconstructed
integer coefficients that are out of range.
(e.g. If the coefficient is the DC coefficient
it can be no larger than 255. Any othercoefficient can be no larger than 127 or
smaller than -127.)

CALLING FORMAT: CALL INFTBK(MATRIX,DIM)

ARGUMENT

DESCRIPTIONS:

MATRIX Matrix to be filtered

DIM Dimension of matrix to be filtered
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I A.2.2.2 CODING PROGRAM: THRTRN

I
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I
I
I
I
I
I
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I THRTRN.FTN - Discrete Cosine Transform Program
using the Adaptive Zonal Quantizing Method

OPEN files and read input parameters

I Do 70 times

Read in the ordering in which the coefficents will be checked
in the quantizing routine and their dividing factors

I I Calculate Cosine Matrix

Calculate Transpose of Cosine Matrix

I Define the boundaries of the Image file

Initialize the total pixel being processed to zero

Do for the number of vertical sub-blocks

I Get row of horizontal sub-blocks

I Do for the number of horizontal sub-blocks

I I Get sub-block and transform the binary numbers of
a sub-block of the image file to real numbers

SPerform matrix multiplications to transform sub-
block matrix

* I Quantize the transformed sub-block using the
Adaptive-Zonal Quantizing Method

I _____________________

Perform an integer filtering routine that puts
back In range out of range coefficients that were
due to quantization error
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THRTRN.FTN - Discrete Cosine Transform Program
using the Adaptive Zonal Quantizing Method

Dequantize the transformed sub-block I

Perform matrix multiplications to transform the
sub-block back to original form. (The sub-block
will not be exactly the same due to quantizationerror)

Perform filtering process that puts back in range
the out of range pixels that were due to quanti-
zation error

Do for the number of vertical pixels

Do for the number of horizontal pixels

Do for the number of bits per word

' Pack bits into word

Increment total pixels being processed

Write a row of horizontal sub-blocks to output file

Calculate and print out compression statistics

I N D
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THRQNT.FTN - Quantizing Subroutine

Initialize Quantizing sub-block

Initialize current coefficients being processed and FLAG to true

Do WHILE the flag condition is true

Do WHILE current coefficient of the sub-block is greater than
or equal to the cutoff number and that the coefficient is less
than 70. (The reason the current coefficient must be less than
the seventieth pixel is that the image distorts keeping more
than 70 coefficients.)

Divide the current coefficient to send it in eight bits

Increment PP to keep track of coefficients being processed

Are the next two coefficients greater than or
equal to 50 times the cutoff number andIis the last coefficient

less than 70 ?
YES NO

I Divide the current coefficient Set flag to false to get out
to send it in eight bits of while loop

I Increment PP to keep track of
coefficients being processed

Since the PP count is always one ahead subtract one to

keep precise count

I Return

A END
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Program Documentation for module: THRTRN

PROGRAM: THRTRN

DESCRIPTION: This program uses an adaptive zonal coding
method which employs the Discrete Cosine
Transform (DCT). The program will divide an
image into sub-block matrices, then transform
each sub-block. The transformation process
packs the energy into the upper left portion of

the matrix. The program interactively inquires
for, then accepts an input parameter used in
runs having different quantization cutoff
points. The quantization process quantizes
coefficients greater than these cutoff points.
The order in which the coefficients are checked
is based upon the highest varian-.s from a
cross section of images. After the
quantization process the program dequantizes,

transforms the sub-blocks back and writes the
reconstructed image to an output file. A
summary of each run is printed including;
names, cutoff points and compression
statistics.

RUNSTRING: THRTRN,<INPUT NAME>,<OUTPUT NAME>,<STAT FILE>

INPUT NAME Input image file name

OUTPUT NAME Output reconstructed image file name

STAT FILE Statistics file ordered to check sub-block
matrices

INPUT PARAMETER: Cutoff point

MODULES CALLED:

RDBUFF Subroutine to read a horizontal line of the
input image into the FTN77 buffer.

COSMTX Subroutine to put in the cosine matrix.

TRNSPS Subroutine to put In the transpose of the
cosine matrix.

MTXMUL Subroutine to do matrix multiplications of
real numbers.
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I Program Documentation for module: THRTRN

I GETBLK Subroutine to r~trieve a block of data from the

FTN77 buffer.

I THRQNT Subroutine to quantize blocks of data.

DQUANT Subroutine to dequantize blocks of data.

FLTBLK Subroutine to filter out, out of range real
pixels.

INFTBK Subroutine to filter out, out of range integer
coefficients.

GETFIL Subroutine to open input image an file for
processing.

NAMED COMMON
DESCRIPTIONS:

Block Name: GFMBLK
Module Common to: RDBUFF

Descriptions:

IMGFIL Input image file name

EXISTS File exists flag

ISTAT File status variable

RECLEN Record length in bytes

NUMREC Number of records in inpat
file

RECRDS Number of records in primary
file

I FTN77 Fortran read buffer

TEMBUF Temporary read buffer

ACCTYP File access flag

Block Name: GTBLK
Module Common to: RDBUFF,->%TBLK

* Descriptions:

OUTBUF Output buffer

A
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Subroutine Documentation for module: THRONT

SUBROUTINE: THRQNT

MODULE
CALLED FROM: THRTRN

PURPOSE: This subroutine will quantize a sub-block of
pixels. The quantization process takes a 32 bit
real coefficient from the buffer and transforms
It Into an 8 bit integer coefficient. The
subroutine quantizes from the upper left
portion of the sub-block quantizing
coefficients greater than a cutoff point. The
quantization process ends when a coefficient is
less than the cutoff point as long as it was
not an extrinsic coefficient. An extrinsic
coefficient is a coefficient that is less than
the cutoff point, but the next two coefficients
after the extrinsic coefficient are both
greater than 50 times the cutoff point. If an
extrinsic coefficient was encountered then the
quantization process would continue until it
fell out of the quantizing routine normally,
meeting a coefficient less than the cutoff
point that was not an extrinsic coefficient.

CALLING FORMAT: CALL THRQNT(QNTMTX, BLKBUF,FS,D,CUTOFFPP,
XDIM, YDIM)

ARGUMENT

DESCRIPTIONS:

QNTMTX Output quantized matrix

BLKBUF Input matrix to be quantized

F,S The ordering in which a sub-block of data will
be checked
(e.g. IF BLKBUF(FS) .LT. CUTOFF)

D An array to hold division numbers that convert
the 32 bit real numbers into 8 bit integers

CUTOFF The inputted cutoff point
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iI Subroutine Documentation for module: THRONT

PP Keeps count of the pixels being processed in
each call to THRONT and sends it to the
dequantizing subroutine

XDIM X Dimension of inputted matrix

YDIM Y Dimension of inputted matrix

I
I
I
I
I
I
I
I
I
I
I
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