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Abstract

Strategies for Tutoring Multiple Bugs

David Carl Littman

Yale University

1990

The dissertation "Strategies for Tutoring Multiple Bugs" investigates a problem

that has not been effectively addressed before. That problem is how to help students who

need help with more than one error, or bug. For example, novice students who write

computer programs rarely make a single bug. Rather, they come to their tutors with

five, six, seven, or more bugs and they need help with all the bugs.

Empirical observations of experienced human tutors show that they do not just

jump in and start tutoring the first bug in the student's program. Instead, tutors

formulate a tutorial plan for helping the student. Creating a tutorial plan requires the

tutor to answer the following five tutorial planning decisions about each bug:

TPD1. Should the bug be tutored?

TPD2. Which other bugs should the bug be tutored with?

TPD3. What tutorial objectives does the tutor want to achieve?

TPD4. When should the bug be tutored?

TPD5. What intervention strategies should be used to tutor the bug?

Making the five Tutorial Planning Decisions cannot be done by simply generating

all the possible tutorial plans and choosing the best: There are literally hundreds of

millions of possible plans for the same set of seven bugs.



Previous work on multiple bugs has not considered problem solving situations in

which students make more than two or three bugs. The approaches to multiple bugs

developed for simple situations cannot work once the student makes more than three or

four bugs.

"Strategies for Tutoring Multiple Bugs" explores the problem of tutoring

multiple bugs. Starting from empirical observations of experienced human tutors, a

model is developed of the knowledge required to answer the five tutorial planning

questions. The model is implemented as a computer program, TP, that can develop

tutorial plans for multiple bugs.
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Chapter 1

INTRODUCTION TO THE PROBLEM: MOTIVATION AND GOALS

1.1. Introduction

A key issue for the field of Intelligent Tutoring Systems (ITSs) is

how to treat students' bugs. When a student makes one, or

possibly two bugs, the tutor only needs to decide what strategy

to use with the student, e. g., point the bug out; fix the bug; hint

at the existence of the bug. When a student makes several bugs,

however, the tutor's problem is more complex. In addition to

deciding what strategy to use, the tutor now must think about the

order in which to tutor the bugs, which bugs to tutor together,

which bugs to spend less time on in order to spend more time on

other bugs, and so on. Each of these decisions can have an impact

on how well the tutor helps the student.

The simplistic strategies that have been used to handle the

problem of multiple bugs in existing ITS are only interim

solutions. These strategies, which are discussed later in this

chapter, were not intended to, and cannot be expected to, scale up

to general solutions for the problem of multiple bugs in a wide

variety of tutoring domains. For example, there are many

patterns of multiple bugs that have implications for tutoring



strategies: few such patterns have been identified in existing

approaches.

The goal of this dissertation is therefore to investigate one

of the tutorial issues that is ubiquitous in complex domains and

which has potentially important implications for the the design

of all tutoring systems for complex domains. That issue is

multiple bugs. This introductory chapter attempts to accomplish

four main goals. First, the issue of multiple bugs is introduced

and some intuitions are provided about why the study of multiple

bugs is important for ITS. Second, five major decisions are

described that confront the tutor who must help a student who

has made multiple bugs. Third, the principle strategies are

identified that have been used in an attempt to handle multiple

bugs. Finally, the major claims and goals of the dissertation are

identified.

1.2. The Three Problems of Multiple Bugs

When a student tries to solve a complex task, such as writing a

computer program, it is unlikely that the first, second, or even

last, attempt will produce a complete, bug free, solution. When

novices try to solve a difficult problem they typically home in on

a solution with a sequence of attempts in which more and more of

the solution is correct and more and more of the bugs are

identified and removed. Thus, a tutor who has the task of helping

a student solve a complex problem, such as writing a 40 line

2



computer program, is almost always confronted with imperfect

solutions that have multiple bugs. For example, empirical

analyses of novice computer programmers show that students

typically make six or seven bugs when they attempt to write a

40-line program that is assigned one-third of the way through an

introductory programming course (Johnson, Cutler, Draper &

Soloway, 1984; Spohrer et al. 1985).

Multiple programming bugs present three main problems for

a tutor:

* First, the fact of multiple programming bugs requires the

tutor to formulate a tutorial plan for how to help the student who

made the bugs.

* Second, given exactly the same task specification,

different students write different programs and the different

programs contain different bugs. Thus, a tutor must be able to

manage different students' solutions to the same problem where

different solutions have different bugs. This type of variability

is called inter-student variability.

• Third, the same bug can appear in conjunction with many

different sets of other bugs. Because different contexts for the

same bug can have different implications for the tutorial plan,

the approach to a particular bug may depend upon the other bugs

with which it appears. This type of variability is called

contextual variability.

The main goal of this section is to describe the three chief

aspects of the problem of multiple bugs.

l3



1.2.1. Multiple Programming Bugs

The program in Figure 1.1 was written by a student in an

introductory programming course and contains 9 bugs. This

program is typical of those written by students trying to solve

the Rainfall Assignment, shown in Figure 1.2. The tutor who

wants to help the student who wrote this buggy program has many

choices to make. For example, some bugs are more "important"

than others because they cause the program to behave in ways

that confuse the student --- BUG 4, the missing READ(RAINFALL);

in the loop causes an infinite loop. An infinite loop makes the

program look like it simply stopped in the course of execution and

is very hard to understand. This is probably the reason the

student came for help.

BUG 5, the misplaced update of TOTALRAIN enclosed in a

BEGIN/END pair, suggests that the student has a misconception

about the scope of a WHILE loop. BUG 5 is, therefore an

"important" bug because tutors believe that misconceptions aoout

programming concepts are important. Other bugs are "trivial"

because they have virtually no effect on the behavior of the

program and are fairly meaningless from the point of view of the

student's understanding of programming. For example, BUG 9, the

missing guard for an undefined Maximum which arises in the

obscure case in which the user starts the program and terminates

it before entering any data, is such a b Tutors would probably

ignore lis bug unless they wanted to help the student learn about

4



the importance of the skill of testing programs against boundary

conditions such as the case of no valid input.

Further, the choice of strategy that the tutor uses to help

the student with the bugs is not the same for each bug. For

example, it may be enough to point out BUG 4 to the student and

expect him or her to understand immediately that it is causing

the computer to "hang" because of the infinite loop it creates.

The misconception about how loops are scoped that is indicated

by BUG 5, on the other hand, requires the tutor to do more than

simply point it out. Thus, unless the tutor can handle all multiple

bug situations with a few very simple rules, such as: "tutor all

bugs"; "start with the first bug in the code"; "use the strategy of

pointing out bugs" it is unlikely that existing approaches can be

effective for complex cases of multiple bugs.

In fact, observations of experienced human tutors show that

they do not use such a simplistic approach to tutoring multiple

bugs (Littman, Pinto, & Soloway, 1985; Littman, Pinto, &

Soloway, 1986; Littman & Soloway, 1986; Littman, Pinto, &

Soloway, 1987). One very common plan that tutors employ to

manage multiple bugs uses some of the student's simple bugs to

build up to a more difficult bug (Littman 1988). For example,

nearly all human tutors confronted with the program shown in

Figure 1.1 reason that BUG 5, the misplaced update of TOTALRAIN,

is the most serious bug and therefore should be the main topic of

the tutoring session. However, rather than focusing the student's

attention on that bug first, a tutor might look for another bug

that would lead the student to think about the behavior of the
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main loop, which seems to be the problem that led to BUG 5. BUG

3, the unconditional update of RAINDAYS, allows the tutor to lead

the student to think: about the behavior of the loop in preparation

for tackling what appears to be the cause of BUG 5, namely a

misconception about the scope of a WHILE loop. Before even

working on the unconditional update, however, it might be

advisable to eliminate the confusing infinite loop caused by BUG

4, the missing READ(RAINFALL); statement in the loop. A

reasonable tutorial plan might therefore start with BUG 4, then

move to BUG 3, and finally get to the key bug, BUG 5. The

remaining bugs may or not be addressed, as time and the student's

motivation permit.

If, on the other hand, the tutor used the simpler strategies

of "start with the first bug in the code" and "tutor all bugs" and

wpoint out the bugsw then the tutor could not drive the tutoring

session toward the student's misconception about the scoping of

loops (Littman, 1988). The student would simply see a sequence

of bugs that needed to be fixed and would perhaps receive some

simple advice about how to fix them. No attempt would be made

to verify that the tutoring had clarified the student's

misconception about the scoping of loops. Furthermore, the most

trivial bugs, BUG 7, BUG 8, and BUG 9 would be addressed at the

end of the tutoring session, perhaps making it hard for the

student to remember all the lessons of the important bug, if the

student even realized that it was the important bug. Thus,

although this simplistic approach might be effective for bright

students, or students who make trivial bugs for simple reasons,

6 j
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it probably would not be effective for less able students or

students who make bugs because they have misconceptions or are

missing important knowledge.

In sum, a reasonable tutorial plan for a student's multi-bug

program may not address all the bugs, may use different

strategies for different bugs, and may tutor bugs in an order

different from the order in which they appear in the student's

program. In short, developing a plan for tutoring a multi-bug

program is not always, or even often, straightforward.
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PROGRAM NOAH (INPUT, OUTPUT);
OONST
SENTINEL - 99999;
VAR
RAINFALL, AVERAGE, RAINDAYS, TOTALRAIN: REAL;
BEGINI
(-'PROMPT FOR AND READ IN FIRST VALUE)
WRITELN ('PLEASE TYPE IN THE FIRST VALUE');
READLN;
READ (RAINFALL);
(-'INITIALIZE THE VARIABLE)
BUG l: AssIgnment of 0 to RAINFALL Clobber. Input af RAINFALL
RAINFALL ;- 0; HIGHEST :. 0;
13UG 2: MIssing InItIalizatIon of RAINDAYS
(READ IN NUMBERS UNTIL 99999 IS READ)
(ENTER DATA IN ONE DAY AT A TIME)

WHILE RAINFALL c> 99999 DO
BEGIN
(' CHECK FOR HIGHEST RAINFALL'
IF RAINFALL > HIGHEST THEN
HIGHEST*: RAINFALL,
('INCREMENT COUNT VARIABLES DEPENDING ON RAINFALL VALUE)
IF RAINFALL < 0 THEN
WRITELN ('ENTER ONLY POSITIVE NUMBERS)

BUG So No Counter For Ra1131 Dave - RAINDAYS Increments Each Time
RAINDAYS :w RAINDAYS + 1;
BUG 4: Noa READ(RAINFALL) In Loon
END;
BUG 5: Update at TOTALRAIN Below Loop

TOTALRAIN :. RAINFALL + TOTALRAIN;
END;
(' COMPUTE THE AVERAGE RAINFALL'
BUG S: Divide OX Zero Guard Mlssing
BEG1Y
AVERAGE :a TOTALRAIN/RAINDAYS;
END;
(' PRINT OUT THE RESULTS'
WRITELN;
WRITELN(-THE PROGRAM READ IN', RAINDAYS :0:2, 'RAINY DAYS');
BUIG 7: Wrong Variable Outnut
WRITELN( 14ERE WERE -, RAINFALL :0:2, 'RAINY DAYS IN PERIOD');
RUG go No Guard for Undefined Averagek
WRITELN('THE AVERAGE WAS ', AVERAGE :0:2, 'INCHES PER DAY');
BUG 9.: No Guard for Undefined Max~mum
WRITELN('THE MAXIMUM WAS '. HIGHEST :0:2, 'INCHES');

Figure 1.1: A Sample Buggy Rainfall Program



The Noah Problem: Noah needs to keep track of the rainfall in the New Haven area to
determine when to launch his ark. Write a program so he can do this. Your program
should read the rainfall for each day, stopping when Noah types "99999", which is not a
data value, but a sentinel indicating the end of input. If the user types in a negative value
the program should reject it, since negative rainfall is not possible. Your program
should print out the number of valid days typed in, the number of rainy days, the
average rainfall per day over the period, and the maximum amount of rainfall that fell
on any one day.

Figure 1.2: The Rainfall Assignment

1.2.2. Inter-Student Variability -- Different Students:

Different Programs

The statement that 200 students write 200 different programs is

only somewhat exaggerated. For example, Johnson, et al. (1984)

present a taxonomical catalogue of the most common bugs that

students make when they solve the Rainfall Task. Each of the

approximately 90 buggy programs presented in the catalogue was

written by a student who was trying to solve the Rainfall Task:

No two of the programs are the same.

Figure 1.3 shows fragments of two buggy solutions to the

Rainfall Task. Each of the two multi-bug solutions has different

bugs and each solution results from the student making different

choices at the same point in the process of writing the program

(Spohrer, 1989).

• In the first buggy solution the student has chosen to read

an initial value of RAINFALL above the loop, then to process the

value, and finally to get the next value of RAINFALL before

checking the loop termination condition. This solution is called



the "Process-Read" solution because the input of the new

RAINFALL occurs at the bottom of the loop.

In the second solution the student's program reads the

value of RAINFALL in the first statement of the loop, processes

the value, gets another value, and so on. This solution is called

the "Read-Process" solution because the input of the new

RAINFALL occurs at the top of the loop.

These represent two different plans for reading and

processing the value of RAINFALL.

Notice that the bugs in the two program fragments shown in

Figure 1.3 are not the same. For example, in the first solution the

student has added the incorrect value (RAINFALL) into the counter

for TOTALDAYS. In the second solution the student has failed to

guard the processing of RAINFALL against the case in which the

value signals the end of processing. This bug cannot occur in the

first solution because, as soon as a new value of RAINFALL is

obtained, it is checked in the loop exit test. Thus, the two

solutions have different bugs, in part because the students took

different approaches to solving the same problem.

Just as different approaches to the same problem can lead

to different bugs, the same approach to the same problem can

lead to different bugs. For example, Figure 1.4 shows two more

solutions to the Rainfall Task. Both students have used the

Process-Read plan for the loop. Notice that in the first solution

there is a spurious initialization of RAINFALL above the loop

which is not present in the second solution. Equally, the second

solution has a misplaced update of TOTALRAIN which is correctly
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placed in the first solution. Thus, even though two students tried

to solve the same task "the same way", they made different bugs.

A tutor must be able to manage the inter-student

variability which is the rule rather than the exception.

PROGRAM NOAH-1 (INPUT, OUTPUT);

READ (RAINFALL);
WHILE RAINFALL <o 99999 DO
BEGIN
IF RAINFALL > HIGHEST THEN
HIGHEST := RAINFALL;
BUG 1: RAINFALL Added to TOTALDAYS Counter
TOTALDAYS :. TOTALDAYS + RAINFALL;
READ (RAINFALL);
BUG 2: No Update of TOTALRAIN
END;

PROGRAM NOAH-2 (INPUT, OUTPUT);

RAINFALL ;- 0;
WHILE RAINFALL <> 99999 DO
BEGIN

READ (RAINFALL);
BUG 1: No Guard for RAINFALL a Sentinel
IF RAINFALL > HIGHEST THEN
BUG 2a Asasanment Bsekwards
RAINFALL :. HIGHEST;
TOTALRAIN :- TOTALRAIN + RAINFALL;
END;

Figure 1.3: Two Solutions to the Rainfall Task

.
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PROGRAM NOAH-i (INPUT, OUTPUT);

RUG 1:' Misin Initialization of TOTAIRAIN
READ (RAINFALL);
WHILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL > HIGHEST THEN
HIGHEST :. RAINFALL;
READ (RAINFALL);
END;
RUG 2: Mloplaced U~date of TOTALRAIN
BEI
TOTALRAIN :- TOTALRAIN + RAINFALL;
END;

PROGRAM NOAH-2 (INPUT, OUTPUT);

READ (RAINFALL);
RUG I: Assignment of 0 to RAINFALL Clobbers Input of RAINFALL
RAINFALL :- 0;
WHILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL > HIGHEST THEN
HIGHEST :- RAINFALL,
BUG I.: TOTALRAIN WronglX Increkased I Instead of TOTAIRAIN
TOTAIRAIN := TOTALRAIN + 1;
READ (RAINFALL);
END;

Figure 1.4 : Two Solutions to the Rainfall Task

1.2.3. Contextual Variability -- Same Bug: Different

Context

The approach of a tutor to a particular bug can depend on the

other bugs that appear with the bug. For example, Figure 1.5

shows the same bug associated with different groups of other

bugs. In both cases the student failed to initialize the variable

12



MAXRAIN (BUG 1) which keeps track of the maximum value of

RAINFALL. However, a tutor would approach the same bug

differently according to which of the two programs in which it

appeared:

4 In the first program, the only problem with the student's

attempt to determine, and output, the maximum value for

RAINFALL is the missing initialization of MAXRAIN. Indeed,

several other variables are also incorrectly left uninitialized. In

this case, the tutor would probably deal with all of the missing

initializations at the same time without singling out the missing

initialization of MAXRAIN.

0 In the second program there are three bugs associated

with the student's attempt to calculate MAXRAIN. First, MAXRAIN

is not initialized: This is the same bug that appeared in the first

program. Second, the boolean test for the maximum is incorrect:

The test should be "<>" rather than "<". Third, the statement to

write out the value of MAXRAIN is missing from the program.

In this case the tutor would probably put all the bugs

associated with the calculation of MAXIMUM into the same
"group". That is, the tutor would not address the missing

initialization of MAXRAIN along with the other missing

initializations, as in the first program shown in Figure 1.5.

Instead, the tutor would address the missing initialization of

MAXRAIN along with other bugs in the student's attempt to

calculate and output the value of MAXRAIN.

In sum, the context in which a bug appears can affect how a

tutor approaches it. Thus, the treatment of a particular bug in
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the student's program can depend upon the treatment of the other

bugs in the program.

PROGRAM NOAH-1 (INPUT, OUTPUT);

BUG 1: No Initialization of MAXRAIN
BUG 2: No Initialization of TOTALRAIN
BUG 3: No Initialization of TOTALDAYS

READ (RAINFALL);
WHILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL > MAXRAIN THEN
MAXRAIN := RAINFALL;
BUG 4 RAINFALL Added to TOTALDAYS Counter
TOTALDAYS :. TOTALDAYS + 1;
READ (RAINFALL);
END;

WRITELN ('Maximum Rain Was', MAXRAIN);

PROGRAM NOAH-2 (INPUT, OUTPUT);
BUG 1: No Initialization of MAXRAIN
BUG 2: No InItIalization of TOTALRAIN
BUG 3: No Initialization of TOTALDAYS

READ (RAINFALL);
WHILE RAINFALL <> 99999 DO
BEGIN

BUG 4: Wrong Boolean Teat for MAXRAIN
IF RAINFALL < MAXRAIN THEN
MAXRAIN :w RAINFALL;
TOTALDAYS :- TOTALDAYS + 1;
TOTALRAIN := TOTALRAIN + RAINFALL;
READ (RAINFALL);

BUG go No Output of MAXRAIN

Figure 1.5: The Same Bug In Different Contexts

14



1.3. The Tutor's Task

As the foregoing examples show, when a student makes several

bugs the tutor must reason about how to construct a tutorial plan

that coordinates the tutoring of the bugs: Some bugs should be

treated together, some bugs should be addressed before others,

some bugs should go untutored, and so forth. In effect, the tutor

must construct a tutorial plan to handle multiple bugs (Littman,

1988).
The tutorial planning task requires the tutor to address, at

least, the five Tutorial Planning Decisions shown in Figure 1.6:

Tutorial Planning Decision 1: GROUPING Relationships

among the bugs -- Tutors do not treat all bugs as distinct. They

classify bugs according to several criteria including e. g., what

caused the bugs, the effects they have on the program, what the

student needs to learn to avoid making the bug in the future, and

so forth. This classification of bugs provides a basis for

deciding which bugs to group together in the tutorial plan.

* Tutorial Planning Decision 2: YES-NO Whether to tutor

each bug -- Some bugs are critical, others are too trivial, or too

hard, to tutor; other bugs offer diagnostic opportunities to

determine the student's skill level and still others provide the

starting point for helping the student to extend his or her

knowledge about e. g., debugging methods.

* Tutorial Planning Decision 3: ORDERING When to tutor

each bug -- Bugs seem to fit naturally in the tutoring plan at
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some points but not at others. For example, a student who is

unmotivated, or lacks confidence, would probably benefit from

starting with a simple bug that is easy to fix. With a highly

motivated, confident student, on the other hand, the tutor could

probably start with a difficult, important bug without running the

risk of discouraging the student.

0 Tutorial Planning Decision 4: OBJECTIVE What to

accomplish Sometimes tutors just want to fix a bug quickly to

get it out of the way; other timt ; tutors want to focus on a bug to

clear up a misconception. In generating a tutorial plan for a

student's bugs, tutors reason about, for example, what they want

the student to get out of the tutoring session.

- Tutorial Planning Decision 5: STRATEGY How to tutor

each bug -- Some bugs can simply be pointed out to the student;

others are best approached with a more complex strategy e. g.,

asking the student to generate a justification for why the buggy

code was written as it was anc then asking the student to

generate an alternative that avoids the bugs. As well, some

students need considerable help fixing bugs, others just a hint

about the right direction for a solution.

These five Tutorial Planning Decisions form the backbone of

the tutorial planning process: Making the five Tutorial Planning

Decisions results in a tutorial plan. A tutorial plan for multiple

bugs consists of 1) bugs grouped together to facilitate tutoring;

2) bugs prioritized so that, for example, trivial bugs will be

overlooked if more important bugs take up most of the tutoring

session, 3) bugs ordered so that, for example, tutoring bugs early '!



in the session will lay the groundwork for tutoring other bugs

later in the session, 4) objectives established for the treatment

of each of the bugs, or groups of bugs, and 5) tutorial strategies

appropriate for each of the bugs. The next section examines

three possible approaches to the five Tutorial Planning Decisions.

The examination shows that they are inadequate, especially if the

research goal is to devise solutions that are generally applicable

to ITS for many domains.

Tutorial
Planning Decision Label Description

1 GROJPING Which bugs to tutor together?
2 YES-NO Should the bug be tutored?
3 ORDERING What order to tutor groups?
4 OBJECTIVE What to achieve by tutoring?
5 STRATEGY What strategies to use?

Figure 1.6: The Five Tutorial Planning Decisions

1.4. Inadequacy of the Brute Force Approach

Given that the tutor must generate a plan to help students who

make multiple bugs, the question is how such plans are generated.

It turns out that, if a student makes the 9 bugs shown in Figure

1.1 and the tutor must decide only a) the order in which to tutor

the bugs (Tutorial Planning Decision 2) and b) which of four

possible teaching strategies to use (Tutorial Planning Decision
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5), that there are several billion possible alternative

arrangements of orders and strategies i. e., plans.

Because the size of the search space of tutorial plans is so

large it is unreasonable to suppose that tutors use a brute force

approach to tutorial plan generation. Even if the human, or

machine tutor could generate all, or many of, the possible tutorial

plans there remains the problem of deciding which among them to

use. For example, what heuristics would the tutor use to select

one plan in preference to all the others? What knowledge would

allow the tutor to reject certain plans as "obviously"

inappropriate?

Because of these considerations, it does not seem

reasonable to pursue the brute force approach to tutorial planning

for multiple bugs in machine tutors. Rather, an effective

approach to the problem of tutorial planning for multiple bugs

seems to require a knowledge-based approach. Indeed, the

evidence presented in this dissertation suggests that, if a tutor

has the right knowledge, the search process plays virtually no

role in tutorial plan generation.

1.5. Previous Work on Multiple Bugs

Previous approaches to the problem of multiple bugs can be

classified into two main categories. First, some ITS simply avoid

the problem of multiple bugs by preventing students from making

more than one bug at a time. Second, other ITS capitalize on the

18



1.7
features of the knowledge being taught so that a few simple rules

for multiple bugs are adequate for the domains in which they

tutor.

1.5.1. Preventing Multiple Bugs

One approach to the problem of multiple bugs is to prevent the

student from making them. For example, the intelligent tutoring

systems built by John Anderson and his colleagues (Anderson,

Boyle, Farrell, and Reiser, 1984) adhere strongly to the principle

that students should receive immediate feedback whenever they

make a mistake and should not be allowed to proceed until the

mistake is corrected.

There are some advantages to the tutor and to the student

of the immediate feedback approach. For the tutor the prevention

of multiple bugs eliminates the problem of figuring out how to

handle them. The problem of devising a tutorial plan for the bugs

does not arise. The tutor does not have to reason about, for

example, 'similar' bugs, or 'interacting' bugs. Instead, once a bug

is detected, the tutor only needs to decide what to do or say.

For the student, preventing multiple bugs can have the

advantageous result that the student's finished product is free of

bugs. Thus, in the case of the LISP tutor, when the student

finishes a program it is guaranteed to run.

There are, however, some potential disadvantages to the

prevention of multiple bugs.
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First, it may actually be good for students to make more

than one mistake before receiving corrective feedback.

Observations of human tutors, and intuition, suggest that

students benefit from making, finding, and correcting their

mistakes and that a tutor is most constructive if it intervenes

when the student is unable to find and correct important errors

rather than nattering the student at every mistake.

* Second, it is not always advisable to interrupt each time

the student makes a bug. For example, if a student is deep in the

analysis of a complex problem and makes a typographical error,

interrupting could cause the student to lose an important train of

thought. In addition, as the WEST experience demonstrated,

interrupting after each mistake can cause students to feel

badgered and therefore to lose interest (Burton and Brown, 1982).

0 Third, it seems unlikely that it will be possible to

provide the kind of exhaustive analysis of the problem solving

processes for complex domains that the immediate feedback

strategy requires. For example, the use of an immediate feedback

strategy in Anderson's LISP programming tutor depends on a

complete, unambiguous analysis of all the solution paths for each

program that a student could write. This strategy has been

possible for the LISP tutor because of the small size of the LISP

programs that the tutor can help with. The programs for which

the LISP tutor can provide coaching is an order of magnitude

smaller than the programs students write midway through an

introductory PASCAL programming course. If larger programs

lead to ambiguity in the tutor's diagnosis of the cause of a

20
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student's bug then it is impossible to provide immediate,

accurate, intervention. If the tutor waits for more information to

disambiguate the diagnosis, then it is possible for the student to

make more bugs before the tutor receives sufficient

disambiguating information. This would require the tutor to

decide what to do about the additional bugs: tutor them first?

tutor them last? ignore them? pick the most important bug so

far and tutor it? pick an easy bug if the student is not very

skilled? tutor the bugs in the order in which they were created?

in the order in which they are encountered when the program

executes? according to the underlying cause?

In sum, though the strategy of preventing students from

making multiple bugs has some definite advantages, the

immediate feedback and prevention strategy does not appear to be

one that will scale up effectively to more complex problem

solving situations.

1.5.2. Domain Independent Rules For Tutoring Multiple Bugs

A second approach to multiple bugs uses a few general, simple

rules that depend on intrinsic structure of the knowledge

students are trying to acquire. For example, in the case of the

Socratic tutors developed by Collins and his colleagues, the

structure of the domain imposes a corresponding structure on

tutoring. In the weather domain, for example, Collins, Stevens,

and Goldin (1982) have identified several "scripts" that

characterize the causal structure, and therefore the knowledge
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that a tutor shoulrl teach, of complex weather processes. For

example, the "heavy rainfall" script is represented as a sequence

of events in which t) a large warm air mass absorbs evaporated

water from a large water mass, 2) winds carry the warm air

mass over land, 3) the warm, water-laden air mass cools quickly

over land, and 4) the cooled moisture in the air mass precipitates

onto the land area. Tutoring students who have buggy knowledge

about e.g., the role of evaporation of ocean water on weather in

regions of heavy rainfall is directed toward teaching, or

clarifying, relevant components of, and relations among

components of, such scripts (Collins, et al., 1982).

In the weather domain much of the buggy knowledge that

students have can be viewed in terms of failures to

understand causal scripts. For example, a student might think

that a water-laden cloud would be too heavy for a wind to move it

past a coastline and over land. The use of such scripts to teach

students capitalizes on the structure of the scripts and thus

leads naturally to rules for managing multiple bugs. For example,

there is no point in teaching the student about a new component

of the script if the student has an erroneous belief about a

component on which it depends; equally, there is no value in

teaching a small detail of a causal script if the student has a

misunderstanding about the large issue in which the detail is

based. Thus, 'teach knowledge preconditions' is a simple rule for

tutoring that applies when causal scripts organize the domain

knowledge that a student must master.
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Concretely, if the tutor is trying to teach the student

why it is so rainy in Oregon, a warm coastal region, and if the

student does not know that evaporation of warm ocean water is

a crucial, causal determinant of weather patterns in coastal

areas, there is not much point in teaching the student that the

temperature of ocean currents indirectly affects evaporation

rates. Thus, because of the intrinsic structure that the

domain provides --- the causal scripts for weather processes --

- simple rules often suffice for determining when to tutor bugs.

In sum, there are tutoring situations in which the impact of

multiple bugs can be minimized. Avoiding the problem of multiple

bugs, however, requires either that 1) the behavior of the student

is sufficiently unambiguous to permit the tutor to make correct

interventions with immediate feedback or 2) the structure of the

knowledge the student is trying to acquire imposes natural

restrictions on how to help the student with multiple bugs. It

therefore appears that a more general approach is needed to the

problem of multiple bugs because many tutoring domains, such as

computer programming, do not conform to the foregoing

requirements.

1.6. Main Claim and Goals of Dissertation

The purpose of the dissertation is to provide support for the

thesis that tutorial planning for multiple bugs is not haphazard
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but, rather, is governed by well-defined knowledge about

programming and tutoring.

The main claim of the dissertation is therefore:

MAIN CLAIM: To effectively tutor a student who makes multiple

bugs,

• a tutor must generate a tutorial plan for the tutoring session

• the tutorial plan must represent, at least, whether to tutor

each bug, when to tutor each bug, and how to tutor each bug

0 the tutorial plan is generated by making the five Tutorial

Planning Decisions.

To support this claim the dissertation has three main goals,

ranked in order of the emphasis they have been given in the

research for the dissertation:

GOAL 1: Identift Knowledge Required for Tutorial

Generating a tutorial plan for multiple bugs requires extensive

knowledge about e.g., causes of bugs, bug importance, tutorial

strategies, and so on. The problem of tutoring multiple bugs has

not been systematically studied and current solutions are

simplistic and hence restricted in generality. A primary goal of

the dissertation is, therefore, to identify the knowledge that

tutors use to plan for multiple bug tutoring in the programming

domain.
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GOAL 2: Characterize The Generation of Tutorial Plans

Once the knowledge has been identified that is required to

generate tutorial plans, it remains to determine how the

knowledge is coordinated to generate plans. That is, what control

structure governs the use of the knowledge? The second goal of

the dissertation is to characterize the generation of tutorial

plans. This resulted in a computer program which generates the

same tutorial plans for multiple bugs as human tutors. The

tutorial planner generates 1) the same plans for tutoring novices'

multiple bug programs that experienced human tutors generated

in an empirical study of human tutors and 2) plausible tutorial

plans for many additional multiple bug novice programs. As

discussed in a later section, the plans for several of the latter

programs have been validated in an empirical study of plan

acceptability.

GOAL 3: Investigate Recovery from Tutorial Failures

Once the tutor has constructed a tutorial plan, the plan must be

carried out. The execution of a tutorial plan sometimes leads to

failures and the need to recover from the failures. Though not a

major goal of the dissertation, some preliminary analyses were

made of types of tutorial failures and strategies for recovering

from failures. The analyses were based on the behavior of human

tutors. Some of the results of this work were incorporated into

the plan execution mechanism of the tutor. The main goal of the

work on tutorial failure is to lay the groundwork for future

2
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research on the delivery of tutoring that follows tutorial

planning.

The research on strategies for multiple bugs was carried

out in the domain of novice PASCAL programming. The main

focus of the dissertation is thus how to handle multiple bugs in

the programming domain. Many of the strategies for handling

multiple programming bugs are applicable to other domains.

Discussion of the domain generality of this research is provided

at several points in the dissertation.

1.7. The Dissertation In a Nutshell

"Strategies for Tutoring Multiple Bugs" addresses five primary

topics.

* The five Tutorial Planning Decisions

" The knowledge required to make the five Tutorial Planning

Decisions

* The computer program, TP, that generates tutorial plans like

the tutorial plans that experienced human tutors generate

* The empirical study that was designed to provide evidence for

the validity of the model of tutorial planning

* Recovering from failure during tutorial plani execution.

These five topics form the skeleton of the dissertation; this

section provides a brief description of the work on the five

topics:
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AFirst, five decisions that must be made to create a tutorial

plan for multiple bugs are identified and described. These

decisions are the five Tutorial Planning Decisions that were

discussed earlier in this chapter. The result of making the five

Tutorial Planning Decisions is a tutorial plan that reflects each

of the five Tutorial Planning Decisions. That is, a tutorial plan

specifies which bugs to address, which bugs to address together,

when to address each bug, the goals of addressing each bug, and

the strategy to use to achieve the goals.

Second, the knowledge required to make the five Tutorial

Planning Decisions is described in detail and shown to fall into

four main categories: 1) knowledge about students; 2) knowledge

about the domain of programming; 3) knowledge about bugs; 4)

knowledge about teaching. Each of the four knowledge categories

has several types of knowledge within it. For example, within

Knowledge Category 1 is knowledge about student ability;

knowledge about the causes of bugs is in Knowledge Category 3.

Third, TP, the computer program that creates human-like

tutorial plans is described. TP uses the knowledge in the four

categories to construct tutorial plans. The control structure of

TP is a planner that has five goals. Each of the five goals

corresponds to one of the Tutorial Planning Decisions. Creating a

tutorial plan begins with a classification task in which

knowledge within several of the above-noted four categories is

used to decide which bugs to place in the same group. There are

approximately 12 types of groups. Each type of group is defined

by the relationships among the two or more bugs in the group. For
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example, if a student leaves out all the initializations in a

program then, ceteris paribus, all the bugs would be placed in the

same group because they are all the same type of bug (missing)

and they are all in the same part of the program (initialization).

The 12 different types of groups play a central role in the

generation of tutorial plans because the remaining four Tutorial

Planning Decisions -- whether to tutor bugs, when to tutor them,

why to tutor them and how to tutor them are all atbected by the

groups into Nhich the bugs are placed.

Fourth, the empirical validation of the tutorial planner is

discussed. The empirical validation focused on whether

experienced human tutors found the tutorial plans for multiple

bugs generated by the computer program, TP, to be acceptable.

Experienced tutors answered questions about tutorial plans

generated by the computer program for 10 multi-bug PASCAL

programs. Judgements of acceptability were made on several

features of the tutorial plans e. g., whether the tutorial plans

were as good as the plans the human tutors would have generated;

whether the human tutors would be willing to use the tutorial

plans to help the student who wrote the program; and so forth.

The results of the empirical validation support the conclusion

that the plans generated by the tutorial planner are "the same as"

those generated by experienced human tutors.

Fifth, the problem of recovering from failure during tutorial

plan execution is addressed. The analysis of failure recovery

suggests that there are two main types of failures, namely major

failures and minor failures. Each specific failure has an
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associated recovery strategy which is used when the failure

occurs. For example, if a minor failure arises in which the

student cannot locate a bug when the tutor describes the bug type

-- say the tutor tells the student that there is a missing guard on

an update -- then the tutor might recover from the failure by

telling the student where the bug is in the program text e. g., the

recovery strategy is to identify for the student the line on which

the bug occurs.

The chapters that focus on each topic are identified in the

next section. Each topic is treated in one or more chapters in the

dissertation. The dissertation also considers several additional,

subsidiary topics, as the next section describes.

1.8. Contents of Dissertation

"Strategies for Tutoring Multiple Bugs" contains nine chapters

following the introduction:

Chapter 2 and Chapter 3 present the results of the

analyses of the empirical studies of human tutorial planning for

multiple bugs in the programming domain. The main content of

the chapters is a description of the knowledge types in the four

knowledge categories identified in the previous section. The

primary focus of this section is therefore GOAL 1. above.

* Chapter 4 discusses different tutorial plans for the same

bugs and the tutorial planners that generate the different plans.

The discussion in this chapter focuses on a sequence of
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increasingly complex tutorial plans for the same set of bugs and

shows 1) the types of knowledge required to make the tutorial

planning decisions' that result from the five Tutorial Planning

Decisions and 2) the different control structures that are

required to make use of the knowledge to generate the different

plans.

* Chapter 5 describes TP, the tutorial planner that is the

demonstration program for the thesis. This chapter describes 1)

the representations for TP's knowledge and 2) the control

structure which governs the generation of TP's tutorial plans.

Chapter 5 therefore focuses on GOAL 2, identified above.

* Chapter 6 describes the strength of the current

implementation of the tutorial planner. This chapter discusses

the programming assignments for which TP can generate tutoring

plans and the 140 or so bugs about which TP can reason.

* Chapter 7 touches on issues that arise during plan

execution. Although plan execution was not intended to be a

major focus of the dissertation, this chapter discusses some

observations about how human tutors recover from tutorial

planning failures and how these observations were incorporated

into the tutorial planner. Chapter 7 thus addresses GOAL 3,

above.

* Chapter 8 briefly addresses the generality of the current

approach to multiple bugs. Although the tutorial planner depends

on knowledge about the domain of computer programming, much of

its reasoning is independent of any particular domain. This
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section identifies some of the domain general knowledge of the

tutorial planner as well as some of its limitations.

" Chapter 9 presents the main conclusions that can be

drawn from the work presented in the dissertation.

* Chapter 10 identifies several directions for future
research that have emerged during the work on tutorial planning

for multiple bugs. The future directions range from obvious next

steps, such as studying a wider sample of tutors and programming

assignments, to more ambitious topics of research, such as

generalizing the tutor to other domains and integrating it with a

complete tutoring system for novice programming.

The most important chapters for the non-technical reader

are Chapters 2, 3, 4, 5, and 9. Readers interested in the

preliminary work on tutorial plan execution may wish to read

Chapter 7.
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Chapter 2

DESCRIPTION OF TUTORIAL KNOWLEDGE

2.1. Introduction

Chapter 1 introduced the problem of multiple bugs in tutoring and

provided some intuitions about how tutors, whether human or

machine, could tutor effectively in multi-bug situations. The main

suggestion of that discussion was that tutors engage in knowledge-

intensive planning to determine how to help a student who has made

multiple bugs. For example, it was suggested that, in generating

tutorial plans for multiple bugs, tutors reason about the student's

ability, the importance of bugs, the effects of bugs on the program,

why students make bugs, relationships among bugs, and so on.

The primary purpose of this chapter and the next chapter is to

describe the knowledge that tutors use to generate tutorial plans for

multiple bug tutoring situations. These two chapters therefore have

three main goals. The first goal is to show that the knowledge that

tutors use to generate tutorial plans is not a haphazard collection

but, rather, can be organized into four main categories. For example,

knowledge about the student is one such category of knowledge. The

second goal is to present the details of each of the types of

knowledge. For example, one type of tutorial knowledge that tutors

use to generate tutorial plans is about the causes of bugs; this
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chapter describes the causes of bugs in detail. In essence, the goal

of the presentation of the details of the tutorial knowledge types is

to display the content theory of tutorial planning for multiple bugs.

The goal of the next chapter is to show how the five Tutorial

Planning Decisions depend on the tutorial knowledge types described

in this chapter.

The remainder of this chapter is divided into three main

sections. First, a brief description is given of the empirical basis

for the work that is reported in the dissertation. The second section

provides an overview of the four knowledge categories, the tutorial

knowledge types in them, and how the five Tutorial Planning

Decisions are based on the types of knowledge. The third section

describes in detail the three tutorial knowledge types on which

tutorial planning depends.

The following chapter describes how the five Tutorial Planning

Decisions depend on the tutorial knowledge types described in this

&:napter. The section that describes the tutorial knowledge types

required for tutorial planning precedes the section on the five

Tutorial Planning Decisions because the rules that make the five

Tutorial Planning Decisions depend upon the tutorial knowledge
types.

2.2. Empirical Basis of the Research *

The description of the types of knowledge that tutors use to

generate tutorial plans is based on empirical studies of human
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tutors (cf. Littman, Pinto, & Soloway, 1987). The methods used to

collect data from tutors placed experienced tutors in situations that

were similar to real tutoring situations. Three studies were

performed and all the results described in this chapter derive from

one or all of the studies:

* In the first study, called the Real Time Study, tutors were

observed and videotaped in real time interactions with students.

The purpose of the real time tutoring studies was to generate

information about how tutors behaved when students came to them

with multi-bug programs.

0 In the second study, called the Questionnaire Study,

experienced tutors were placed in an experimental situation

designed to elicit the reasoning they perform when they must decide

how to tutor a student who has made multiple bugs (Littman, Pinto,

& Soloway, 1987). In the experiment tutors were shown five buggy

solutions to the Rainfall Assignment that had been written by

students in an introductory programming class. Each program had

between six and nine bugs. The bugs were all identified for the

tutors. For each program, the tutor was asked to fill out a

questionnaire that asked about 1) the tutorial plans they developed

to treat the bugs and 2) the reasoning behind the plans. The

questionnaire thus asked them to say what bugs they would tutor

together, and why; what bugs were most important, and why; why

they thought the student made the bugs; what bugs they would tutor

first, second, etc. -- and why; how skilled they thought the student

was who wrote the program; and so forth. A portion of the

questionnaire is shown in Figure 2.1.
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In the third study, called the Failure Recovery Study, tutors

were observed while they tutored students who were enrolled in an

introductory PASCAL programming class. Each time the student

failed to understand the point that the tutor was making the

situation and the failure were described, and the corrective action

taken by the tutor was characterized. This study provided the basis

for the preliminary work on tutorial plan execution and recovery

from failure that is described in this dissertation.

One issue will continue to appear throughout the discussion of

the knowledge categories and the five Tutorial Planning Decisions in

this and the next chapter. That issue is that the descriptions of how

tutors resolve the five Tutorial Planning Decisions often sound as

though every tutor makes each decision in the same way. This is, of

course, not so. Littman, Pinto, & Soloway (1988; 1989) show that,

statistically, different tutors' resolutions of the five Tutorial

Planning Decisions are very far from random. There are, of course,

differences among tutors. Littman, Pinto, & Soloway (1985), for

example, discuss in detail some differences in tutors' grouping and

ordering of bugs in a single buggy program. The intent of the

dissertation, however, is not to present an account of individual

differences among tutors in making the five Tutorial Planning

Decisions: That is a topic for future research. Rather, the intent of

the research reported in the dissertation is to account for the

predominant patterns of decisions in resolving the five Tutorial

Planning Decisions, as measured by the methods reported in Littman,

Pinto, & Soloway (1988; 1989) as guides.
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We would like to get a picture of your approach to tutoring. Please answer each of the following
questions. These questions are intended to prompt you rather than constrain you; feel free to
include other remarks as well.

a) Which bug(s) would you tutor first?

If applicable, why did you group these bugs together?

b) Why would you tutor this bug (or group of bugs) first?

c) Why do you think the student might have made this bug (or group of bugs)?

d) Is there anything you could find out from the student about whether or she knows in relation
to this bug (or group of bugs) that would make you more certain of what the misunderstanding
is? What? Why?

e) How would you approach tutoring a student who made this bug (or
group of bugs) only?

f) What would you say are the main points that you want the student
to learn from your tutoring this bug (or group of bugs) ?

g) If you had to tell the student why this is a bug (these are bugs),
what would you say? Would you do anything before you told the
student? If you would do something, what would you do?

h) Given what you've accomplished with the student so far, would you tell the student to go re-
write the program independently or would you continue tutoring the student? Why?

i) If you would tell the student to re-write the program Independently, what would you expect
to happen? Would you expect to tutor the bugs which might still remain unaddressed or would
you expect not to address those bugs at all? Explain.

Figure 2.1: Portion of Tutors' Questionnaire

2.3. Synopsis of Knowledge Categories and Tutorial Planning Decisions

The purpose of this section is to provide an overview of the

categorization scheme for the types of knowledge required to make

the five Tutorial Planning Decisions identified in the first chapter.
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For example, when a tutor decides that the two missing output guard

bugs shown in Figure 1.1 should be grouped together for tutoring

(Tutorial Planning' Decision 1), the tutor reasons about a)

relationships among bugs -- each bug is a missing plan component --

and b) types of plan components -- the plan component is the guard

against the case of no input. During the course of introducing the

problem of tutoring multiple bugs, the discussion and examples of

Chapter 1 mentioned approximately a dozen types of knowledge that

tutors use to make the five Tutorial Planning Decisions.

Figure 2.2 shows the tutorial knowledge types mentioned in

Chapter 1 along with example quotations that illustrate the

knowledge types. For example, the first row in the figure gives an

example of a tutor stating that a misconception caused the bug under

consideration. Tutors use knowledge about Bug Cause to make

several Tutorial Planning Decisions: A tutor would treat a bug

caused by a slip differently from a bug caused by a deep

misconception. The example for tutorial strategy shows that the

tutor would use hand simulation of code to show the student how an

action performed at line 23 has the effect of negating an action

performed at line 16 before the action taken at line 16 has its

proper effect. Although it is useful to see a list of the knowledge

types and an example illustrating a tutor reasoning about each, it is

hard to form from this listing a coherent picture of the knowledge

required for tutorial planning. The knowledge must be categorized.

I:
2.3.1. Categorizing the Knowledge Types
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As it happens, each of the knowledge types shown in Figure 2.2 can

be placed naturally in one of four categories. Figure 2.3 identifies

the four categories of knowledge and the types of knowledge in each

of the four categories. The columns in the body of the table contain

the types of knowledge that fall into each category. Thus, ability is

a type of knowledge that tutors have about students and this

knowledge type is therefore placed in that category. As will be

shown later in this chapter, the knowledge types shown in the figure

are the basis of the five Tutorial Planning Decisions and each of the

knowledge types typically affects more than one of the decisions.

The four knowledge categories that organize the tutorial knowledge

types are:

* Knowledge Category 1: Knowledge about Students For

example, tutors know about different levels of student ability and

this has implications for selecting a tutorial strategy: A student

who is very able may be tutored with a strategy that requires more

work from the student than a strategy that would be used with a

student who is less able.

* Knowledge Category 2: Knowledoe about the Domain For

example, in the domain of programming, tutors know the

programming plans that can be used to solve the tasks that students

receive as assignments and they frequently focus on teaching

students the plans that are better than the ones that the student

used to try to solve a problem. As an example, tutors many know

different plans for creating a main processing loop for e.g., the

Rainfall Task and they are concerned to teach students the

conditions in which they should use the different plans.
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Knowledge Category 3: Knowledge about Bu=s Tutors know

about patterns of bugs and relationships among bugs. For example,

tutors are sensitive to the pattern in which the student unknowingly

creates a second bug in the attempt to repair an original bug that the

student detected. As will be seen later, there are approximately 15

types of patterns of bugs that form a hierarchy. This knowledge is

used, in part, to determine bug groupings, Tutorial Planning Decision
1.

* Knowledge Category 4: Knowledge about Teaching Tutors

have two main types of knowledge about teaching. First, tutors

know how to construct a tutorial plan: This is the main topic of the

dissertation. Second, tutors know how to execute a tutorial plan

and, especially, how to recover from failures that occur during

tutoring. The topic of recovery from failure while executing tutorial

plans is addressed later in the dissertation. Tutorial strategies is

one of the main knowledge types that tutors use to construct

tutorial plans. Tutors know when particular tutorial strategies,

such as asking the student for an explanation of a choice of plan, are

appropriate. Knowledge about different tutorial strategies, and

when they are appropriate, therefore affects the fifth Tutorial

Planning Decision.

Some of the knowledge types tutors use to generate tutorial

plans are simple. For example, student ability is either low,

moderate, or high. Other knowledge types are complex. For example,

one of the complex types of knowledge that tutors have about the

domain of prog -rnming is task specifications (symbolized as "task

spec" in the table): Task specifications for a single assignment,
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such as the Rainfall Assignment, typically specify more than 30

goals that are related to one another in several possible ways e. g.,

some goals are preconditions of other goals; some goals are subgoals

of other goals, and so forth.

All the knowledge types are described later in this chapter.

KNOWLEDGE TYPE EXAMPLE QUOTATION

Cause of Bug "Badly formed internal concept of conditionals."
Tutorial Strategy "Hand Simulation to show line 23 clobber 16."
Effect of Bug "Line 23 clobbers line 16 before it should."
Student Ability "... understands how to program pretty well."
Importance of Bug "These are the most serious bugs."
Patterns of Bugs "These are all basically the same bug."
Programming Plans "I want to show them the right way to do ... "

Student Knowledge "He doesn't know the REPEAT loop."
Teaching Goals "... how to construct a WHILE-DO loop."
Program Concepts "If then else is sometimes hard ... "

Task Specs "... calculation of the average is really the focus"
Teaching Rules "I like to get to the hard bugs as soon as I can."
Student Motivation "If student was feeling hopeless I would ... "

Figure 2.2: The Knowledge Types For Tutorial Planning
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.AE Y. CATEGORY 2 CATEGR I CAIEGYA

STUDENTS DOMAIN BUGS TEACHING

ability task specifications causes tutorial planning knowledge

motivation programing plans effects plan execution knowledge

intentions concepts types

knowledge skills plan location

Figure 2.3: Tutorial Knowledge Types in 4 Categories of Tutorial Knowledge

2.3.2. Knowledge Types and Tutorial Planning Decisions

All the knowledge types shown in Figure 2.3 play a role in the

generation of tutorial plans for multiple bugs. Each of the

knowledge types is used to make at least one of the five Tutorial

Planning Decisions. For example, student ability can affect the

tutorial plan. If a student of high ability makes several similar

bugs that are hard to find, the tutor might help the student find only

one and then tell the student that there may be some additional,

similar bugs. If the student is of medium ability the tutor may

decide to help the student find all the bugs but only assist with the

repair of one of the bugs. If the student's ability is low, the tutor

may help the student find and repair all the bugs. Hence, the

student's ability has an effect on Tutorial Planning Decision 5, the

selection of a strategy for tutoring the student.
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Figure 2.4 illustrates the dependence of the five Tutorial

Planning Decisions on the types of knowledge in the four categories.

The table presented in Figure 2.4 is intended just to give an idea of

how some of the knowledge types contribute to the five Tutorial

Planning Decisions. The treatment in this overview section is not

intended to be exhaustive. The relationships between knowledge

types and Tutorial Planning Decisions is elaborated in the last

section of this chapter which describes the rules that make the

Tutorial Planning Decisions and the knowledge on which the rules

depend.

As an example of the dependence of Tutorial Planning

Decisions on the knowledge types shown in Figure 2.3, consider a

tutor's decision not to tutor BUG 8 and BUG 9 in the program shown

in Figure 1.1. Figure 2.4 shows each of the five Tutorial Planning

Decisions and the knowledge types that they depend on. The columns

represent the four categories of knowledge. Each entry in a cell in

the figure indicates that the Tutorial Planning Decision

corresponding to that row uses knowledge of the type that is in the

cell. As the figure suggests, Tutorial Planning Decision 2, whether

to tutor the bugs, depends upon knowledge about the student,

knowledge about the domain, and knowledge about bugs. A tutor's

reasoning leading to the decision not to tutor BUG 8 and BUG 9 might

go something like this:

Knowledge about the Student: The student's ability is

high, so the tutor does not have to worry that the student would be

unable to fix the bugs later, without help, if they caused a problem.
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* Knowledge about the Domain: The task specification goal

of guarding the output against the rare case of no input is neither

explicit in the problem description nor an important goal for the

solution of the Rainfall Problem.

- Knowledge about Bugs: The tutor uses two types of

knowledge about bugs to make the decision not to address the two

missing output guard bugs. First, the importance of missing output

guard bugs is not very high, for reasons that are discussed in the

next section. Second, the effects of the bugs are trivial: The bugs

do not have any impact on key actions in the program because they

only affect the final output and these effects show up only in rare

circumstances. Other missing guards, however, can have important

effects. For example, a missing guard against division by 0 in the

calculation of AVERAGERAIN can cause a runtime error that can be

very confusing to students.

Thus, in this scenario, the tutor uses three different types of

knowledge simply to decide whether to tutor bugs. Similar

accounts can be given of the dependence of the other four Tutorial

Planning Decisions on the types of knowledge presented in Figure

2.4.

In summary, tutors use many different types of knowledge to

make the five Tutorial Planning Decisions. The types of knowledge

are not random, however. Rather, each type of knowledge can be

placed into one of four main categories of knowledge, as this

overview has suggested. The next section gives a detailed account

of the types of knowledge that fall into the four main categories.

I
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TUTORIAL KNOWLEDGE CATEGORY
PLANNING
DECISION

Student Domain Bugs Teaching

1. Grouping plans patterns grouping rules

2. Whether ability task spec importance
effects

3. Goals knowledge concepts cause tutorial goals
motivation

4. Ordering effects ordering rules

5. Strategy ability concepts strategies

Figure 2.4 : Knowledge Types and the 5 Tutorial Planning Decisions

2.4. Types of Knowledge in the 4 Knowledge Categories

The previous section briefly identified and described the four

categories of knowledge that tutors use to make the five Tutorial

Planning Decisions. As well, an example was given of how

knowledge types in three of the four categories affected a specific

tutorial decision, namely whether to tutor two similar, trivial bugs.

The major goal of this section is to describe in more detail the

tutorial knowledge types that comprise the four categories. The
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presentation is organized around the four categories of knowledge.

Each tutorial knowledge type described in a section devoted to its

parent category. For example, tutorial knowledge about causes of

bugs and tutorial knowledge about effects of bugs are both described

in the third subsection, entitled Knowledge about Bugs.

The content of each of the tutorial knowledge types was

derived primarily from the Questionnaire Study though some content

was generated from analysis of the results of the Real Time Study.

For example, analyses of tutors' planning in the Questionnaire Study

revealed four primary tutorial strategies that they use with

students, including requesting justifications and asking students to

hand simulate sections of code. In the Real Time Study, tutors were

observed to use the tutorial strategies identified in the

Questionnaire Study.

It is important to realize that the characterizations of

tutorial knowledge types is not intended to be exhaustive in the

sense that the characterizations account for every piece of

knowledge that every tutor ever referred to in generating a tutorial

plan. Rather, the knowledge identified in the following descriptions

is both a) widespread, in the sense that most tutors studied

empirically used the knowledge, and b) sufficient for generating the

tutorial plans observed in the empirical studies of human tutors (cf.

Littman, Pinto, & Soloway, 1986). The claims that this knowledge is

widespread and sufficient are addressed in Littman, Pinto, &

Soloway (1989). That paper presents both the empirical findings

about the knowledge required to generate tutorial plans and a

1
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description of the statistical methods that were used to analyze the

data that support the claims.

2.4.1. Knowledge Category 1: Knowledge about Students

As Figure 2.3 shows, tutors use three types of knowledge about

students when they generate their tutorial plans. The first three

tutorial knowledge types shown in the figure, student ability,

student motivation, and student intentions, are the simplest. The

fourth tutorial knowledge type, student knowledge, is somewhat

more complex.

0 Student Ability: Student Ability has one of three values,

low, medium, or high. Tutors use Student Ability primarily to decide

what strategy to use with a student. Students who have high ability

need less help from the tutor than students who have low ability and

a tutor's strategy selection reflects this. Student ability is coded

as a three-valued variable because the empirical data reported in

Littman, Pinto, & Soloway (1989) suggest that tutors do not make

finer distinctions. For example, tutors say such things as "This

student doesn't know what's going on.", "This student seems to be

doing Okay.", and "This student seems to really know what's going on

so I think these are just slips."

* Student Motivation: Student Motivation has one of three

values: low, medium, or high. Tutors use Student Motivation

primarily to decide how to begin a tutoring session, how long the

tutoring session will be, and what strategies are appropriate for the

student. For example, if a student has low motivation, tutors
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typically begin the tutoring session with an easy problem and give

the student enough help so that the student gains confidence in the

ability to find, and: fix, bugs. Student motivation is treated as a

three-valued variable for the same reasons that student ability is

treated as a three-valued variable.

Student Intentions: Student intentions are the goals that

the student wants to solve. Each goal that a student solves is part

of the task specification or is a transformed, buggy task

specification. Each goal that a student solves is either 1) solved

unknowingly (a spurious goal) or 2) is solved intentionally. For the

most part, students' intentions match the goals in the task

specification. This is not always the case, however. For example, a

student might put the output statements for the Rainfall Task inside

the loop to cause the output to occur on each iteration of the loop.

That is, the student intends the values of AVERAGRAIN, MAXIMUM,

and so on to be written out on each pass of the loop whereas the

Rainfall Task Specification implies that the output statements

should follow the loop.

0 Student Knowledge: Student Knowledge is the most complex

of the three tutorial knowledge types in Knowledge Category 1.

Tutors reason about a) programming concepts the student

understands and b) programming skills the student is able to use

effectively. The measure of a student's proficiency is a three-

valued attribute with the values high, medium, and low. The

concepts and skills that students know about are a type of domain

knowledge. They are discussed in the subsection devoted to tutorial

knowledge types in the category of Domain Knowledge.
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As a brief example of student knowledge, consider an

alternative scenario for the tutor trying to decide whether to

address BUG 8 and BUG 9 in the program shown in Figure 1.1.

Suppose that the student's ability were high but the student was

weak on the skill of testing programs for boundary conditions, which

could lead to BUG 8 and BUG 9. If the tutor wanted to address the

skill of testing programs for boundary conditions -- tutor often do

this with good students -- then BUG 8 and BUG 9 provide a good

setting for that goal. Thus, in this example, the tutor's knowledge

about the student's skill affects the the tutorial goals that the tutor

establishes (Tutorial Planning Decision 3) and whether the tutor

addresses certain bugs (Tutorial Planning Decision 2).

In summary, tutors use three types of knowledge about

students when they generate their tutorial plans. Student ability

and student motivation are simple three-valued attributes. Student

knowledge has two subtypes, programming concepts and

programming skills. As will be seen later, each of the types of

knowledge about students influences more than one of the five

Tutorial Planning Decisions.

2.4.2. Knowledge Category 2: Knowledge about the Domain

Figure 2.3 shows the four tutorial knowledge types about the domain

of programming that tutors use to generate tutorial plans. The first

of the four knowledge types shown in the figure, task

specifications, is specific to solving assignments that students

receive in their classes. For example, the Rainfall task
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specification requires that the program have variables for

RAINFALL, AVERAGERAIN, MAXIMUM, etc.; the Rainfall task

specification must have a computation for AVERAGERAIN and output

statements for AVERAGERAIN, MAXIMUM, and RAINDAYS. Thus, task

specifications are specific to problems. The remaining three types

of knowledge about the programming domain are not specific to any

assignment. For example, a programming plan for interactive data

collection is required by many task specifications; the concept of

iteration is ubiquitous in programming; and the skill of testing for

boundary cases is used in writing virtually any program. The

purpose of this section is to describe the four types of knowledge

about the domain of programming that are used in the contruction

of tutorial plans.

2.4.2.1. Task Specifications

Task specifications are represented in terms of the goals that must

be solved to produce a correct program. Goals in the task

specification are connected by a precondition relation. For example,

the goal of calculating AVERAGERAIN requires the preconditions

shown in Figure 2.5:

* the variables that participate in the calculation must be

declared

* the variables that contain calculated values must be
initialized

the values of variables from which AVERAGERAIN is derived

must be calculated.
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Finally, the focus of the goal, the division of TOTALRAIN by
TOTALDAYS, is represented as the action of the goal. The action for

the goal specifies what should be done (calculate AVERAGERAIN) and

plans that can be used to do the calculation. In the case of the
calculation of AVERAGERAIN the plan is to divide TOTALRAIN by

TOTALDAYS.

Each of the preconditions shown in Figure 2.5 is also
represented as a goal which has preconditions attached to it.

Tracing all preconditions from all output goals results in a complete

task specification. For example, the Rainfall Task Specification has

approximately forty goals, including input and calculation, and
output guards; an input statement for RAINFALL; an error recovery
in case the user enters illegal data; and so forth. The other

assignment that is represented in the knowledge base of the tutorial

planner, the Reformatting Task Specification, also has

approximately forty goals.

In summary, the task specification for a problem is a
representation of the goals that must be solved for a correct

solution. The goals in the task specification are connected by a
precondition relation which makes it possible to determine all

dependencies in the task specification.
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GOAL
Calculate AVERAGERAIN

PRECONDITIONS:
Declare AVERAGERAIN, TOTALRAIN, TOTALDAYS
Initialize TOTALRAIN, TOTALDAYS
Calculate TOTALRAIN, TOTALDAYS

ACTION:
Calculate AVERAGERAIN
PLANS FOR ACTION:

PREFERRED PLAN: Divide TOTALRAIN by TOTALDAYS
OTHER PLANS: None

Figure 2.5: Preconditions for Calculating AVERAGERAIN

2.4.2.2. Programming Plans

Programming plans are not specific to task specifications.

Programming plans are used to solve general goals such as

"accumulate each value of an input variable into a summation

variable". Using the same programming plan to solve two examples

of the same general goal requires only that the variable names in the

programming plan be changed to correspond with the task

specification. For example, the same programming plan can be used

to output the value of AVERAGERAIN and the value of MAXIMUM. The

only difference is that the variables accessed by the output

statements are different in the two cases.

Approximately ten programming plans are required by the

Rainfall task specification and the Reformatting task specification.

Most of these are shown in Figure 2.6. These programming plans can j
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be used to solve many other task specifications as well. Figure 2.6

shows several important plans and gives a description of each. For

example, the first plan is a Running Total Input Loop Plan. The goal

of the Running Total Input Loop Plan is to create a sum of a sequence

of values. The example given shows the variable Totl being

augmented by the value of New until New takes on the value Stop:

Stop could be declared as a numeric constant such as 99999. The

second example shown in Figure 2.6 is a Calculate Plan. There are

many Calculation Plans. Each Calculation Plan derives a value for a

resultant variable from one or more other values. The example

Calculation Plan shown is of the calculation of an average -- the

same plan required for the Rainfall Task Specification. The

remaining plans shown in the figure are plans that are ubiquitous in

programming. An extensive description of programming plans can be

found in Spohrer, Pope, Lipman, Sack, Freiman, Littman, Johnson,

Soloway, 1985 and Johnson, 1985.

Each programming plan that is used to generate tutorial plans

for multiple bugs specifies the name of the plan and alternative

ways of implementing it. For example, the Running Total Input Loop

Plan can be written with a WHILE construct or a REPEAT-UNTIL

construct. Figure 2.7 shows three different ways to write the

Running Total Loop Input Plan in the PASCAL programming language.

The first example using WHILE reads a value for New, enters

the loop if the value of New is not Stop, adds the value of New

(guaranteed not to be equal to Stop) to Totl, gets another value for

New and cycles through the loop again.
52
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The second example in the column of examples with the

WHILE loop first enters the loop, gets a value for New, checks to see

that it is not equal to the loop termination value, and then adds the

value into Totl.

* The example in the column for the REPEAT-UNTIL loop enters

the loop, gets a value for New, checks to be sure that New does not

equal Stop, adds New to Totl if New does not equal Stop, and

continues this process until New equals Stop.

In short, there are many ways to instantiate the same

programming plan. Each programming plan has a default preference

ordering its instantiations. For example, the default preference for

the instantiations for the Running Total Loop Input Plans shown in

Figure 2.7 is 1) the first example in the WHILE column, 2) the second

example in the WHILE column, 3) the example in the REPEAT-UNTIL

column. Intuitively, the preference ordering is defined according to

the way in which the Running Total Loop Input Plan instantiations

are taught in novice programming classes. For example, the first

WHILE loop instantiation does not duplicate the test for the equality

of New and Stop, and obtains a value for New before entering the

loop. This instantiation seems to be easiest for students to learn.

I
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Programing Plan Description Example
Readin (New);
While (New <> Stop)

Begin
Running Total Input Loop Sum value sequence in variable Tc tl :. Totl + New;

Readln (New)
End;

Calculate Calculate value from other values Ave :. Totl/Days;

Guard Calculation Guard calculation from bad caseslf Da s - 0 Then
Writeln ('Bad Data');

Input Get value from user Readln(New);

Output Write out value of variable Writeln(Totl);

Declare Bring variable into existence Var Totil : Real;

Initialize Give variable initial value Totl :- 0;

Figure 2.6: Examples of Important Plans

WHILE Loop REPEAT-UNTIL Loop

Readln(New);
While (New <> Stop) Repeat

Begin Readln(New);
Totl :. Totl + New If New <> Stop Then
Readln(New) Totl :. Totl + New;

End; Until(New . Stop);

While (New <> Stop)
Begin

Readln(New);
If New <> Stop Then

Totil : Totl + New;
End;

Figure 2.7: Three Ways to Write a Running Total Loop Input Plan
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2.4.2.3. Programming Concepts

Tutors use a student's knowledge of programming concepts to decide

1) how to help students fix their programs and 2) what they would

like teach the student about general programming topics. For

example, if a tutor believes that a student misplaced an update that

belongs in a loop because of a misconception about scoping, such as

BUG 5 in Figure 1.1, then the tutor would attempt to correct the

student's concept of scoping as a means to fix the bug. On the other

hand, tutors know that iteration is an important concept. Even if

the student has not made any bugs that implicate knowledge of

iteration, a tutor may work with the student on the iteration

concept to extend the student's knowledge.

Figure 2.8 shows the important programming concepts that are

involved in tutorial planning for multiple bugs. In the figure, each

concept is named, and a description and example of it is given. For

example, the first concept in the figure, Selection, refers to the

topic of when and how to decide on one of several actions. The

example for Selection is the If-Then-Else construct, which is part

of virtually all programming languages. The If-Then-Else construct

provides a way to choose either of two actions depending upon the

value of some test. The last concept in the figure is Typing. Typing

is an important programming concept because many languages, such

as PASCAL, enforce typing. Typing is the assignment of properties

to objects in the program. The properties of an object determine the

operations that can be performed on them. For example, if a variable

55



I

is a string of characters, then it is not possible to add a number to

it; if a variable is an integer, it is not possible to ask for the third

character in the integer.

Students either are strong, medium, or weak with respect to a

programming concept. Each programming concept has a default

importance of either low, medium, or high. The concepts shown in

Figure 2.8 are all either high or medium importance. Concepts such

as declaration and initialization are low importance.

Concept Description Example

Selection Deciding upon one of many actions If-Then-Else

Iteration Repeating the same actions Repeat-Until

Sequencing Ordering actions Control flow

Scoping Performing actions together Begin-End block

Input Getting information from world Reading from a user

Output Giving information to the world Writing to a user

Calculation Deriving a new value Find average

Guarding Preventing unwanted actions If-Then

Boundary Cases Handling all possible cases Zero-division error

Typing I Making objects have properties Integers

Figure 2.8: Primary Programming Concepts
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2.4.2.4. Programming Skills

Figure 2.9 shows the important programming skills that tutors are

concerned to help students acquire or improve. Each of the skills

has many different subcomponents. For example, the skill of Testing

involves

* identifying the part of the program to test

* generating appropriate input

& characterizing the expected output

* collecting the actual output

* comparing the expected and actual output

0 attributing discrepancies to their causes.

Equally, the skill of Reorganizing involves determining when to

reorganize, what to reorganize, and how to reorganize. For example,

if the actions in a loop are guarded against unwanted conditions and

the same guard statement appears twice in the loop, this is a clue

that the loop should be reorganized.

Each programming skill can be the focus of tutoring but more

often the skill is addressed in the context of fixing a bug. For

example, the tutor might help the student improve testing skills

while helping to fix output boundary guard bugs.

I
I
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Skill Description Example

Testing Knowing how to test programs Test boundary cases

1'. Identify segment to simulate
Simulating 2. Mentally run program Simulate Main Loop

3. Observe behavior

Debugging Finding bugs and fixing causes Fix Infinite Loop

Comparing Comparing actual with desired Verify calculation

Reorganizing Don't patch -- Redo Restructuring a loop

Figure 2.9: Primary Programming Skills

2.4.2.5. Summary

Tutors have four main types of knowledge about the domain of

programming. The four main types are: knowledge about task

specifications, knowledge about programming plans, knowledge

about programming concepts, and knowledge about programming

skills. Knowledge about task specifications provides a

representation of the goals of students' assignments and is

therefore specific to particular programming assignments.

Knowledge about programming plans, concepts, and skills is general

to the domain of programming. Therefore students can use this

knowledge to solve any assignment and tutors often emphasize it

when they work with students.

2.4.3. Knowledge Category 3: Knowledge about Bugs
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Figure 2.3 shows the types of tutorial knowledge about bugs that

tutors use when they generate tutorial plans. As the figure shows,

tutors use knowledge about causes of bugs, effects of bugs, the

importance of bugs, and patterns of bugs. For example:

• tutors know about causes of bugs, such as slips,

misconceptions, and missing knowledge

• tutors know about effects of bugs, such as a variable having

a wrong value, one program action clobbering another program action

before it should

• tutors know about patterns of bugs, such as one bug being

created in an attempt to repair another bug

• tutors know about the importance of bugs, which can affect

whether and how a bug is tutored.

The purpose of this section is to describe each of the four

knowledge types that are in Knowledge Category 3, the category of

bugs.

2.4.3.1. Causes

This section gives the details of the causes that tutors reason about

when they generate tutorial plans. Bug causes have two components,

a cause type and a cause object. For example, a student might have a

misconception (the cause type) about the scope of loops (the cause

object, one of the programming concepts discussed in the previous

section). Indeed, this misconception may have led the student who

5
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wrote the program in Figure 1.1 to make BUG 5, the misplaced update

of TOTALRAIN below the main loop.

The criticality of a cause is a function of the seriousness of

the cause type and the importance of the cause object. For example,

students frequently do not know a plan that is required to solve an

assignment. The default seriousness for the cause type 'not

knowing' is high. The criticality of the cause, however, depends upon

the importance of the object of the cause. For example, if a student

does not know the running total plan, an important plan in procedural

programming languages, the criticality of the cause is high. If a

student does not know about a less important plan, such as guarding

output statements against the case of no input, the criticality is

low because of the low importance of guarding output against the

case of no input. Thus, a simple function of cause type and cause

object determines the criticality of a cause.

Figure 2.10 identifies each cause type in the first column,

gives an underlined definition and an example in the second column,

and displays the default seriousness measure in the third column.

The cause type of a bug can range from a slip, which occurs when the

student neglects to do something that the student knows to do; to a

misconception which means that the student has a mistaken idea

about some concept that leads to an incorrect solution; to failure to

test, which means that the student did not perform sufficient

testing to find the bug. As well, the default seriousness of each

cause type is indicated. For example, a misconception has a high

seriousness rating and is more serious than a slip which has a low-

f seriousness rating.
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Each cause object is in one of the four tutorial knowledge

types in the second knowledge category shown in Figure 2.3, Domain

Knowledge; these tutorial knowledge types are discussed in an

earlier section. More examples of combinations of cause types and

cause objects are given in the section which discusses the rules

that govern the five Tutorial Planning Decisions.

In summary, bug causes are made up of two components, a

type, such as a misconception or forgetting to perform an action, and

an object, such as the concept of scoping of a loop, or plans for

accumulating a running total such as TOTALRAIN. Each causo type

has an associated seriousness and each cause object has an

importance measure associated with it from which the criticality of

the cause is calculated The criticality of a cause is thus a simple

joint measure of the seriousness of the cause type and the

importance of the cause object.
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CAUSE TYPE DEFINITION & EXAMPLE SERIOUSNESS

slip Student formed intention but did not carry out LOW
forgetting to initialize variable

overlook Student never formed intention LON
missing output of RainyDays

misinterpret goal Student misinterpreted a goal HKH
calculate AverageRain with RainyDays

rationalized away Student convinced that required action unnecessary HKH

not know Student did not know reauired piece of knowledge HKH
not knowing Process/Read loop

uncertainty about Student unsure about conceot, conditions for action etc. MEDIUM
not sure when to initialize variables

misconception Student has misconception HGI
belief that all numeric variables must be same type

delay development Student has intent to solve goal. iust hasn' done it vet Lew
not create code to output maximum until rest works

version hacking Student created error because of extensive patching MEDIUM
misplaced code caused by moving code around

try optimization Student tried to solve goal in a better way & created bug MEDIUM

attempted repair Student tried to fix one mistake and created another MEDIUM
initializing divisor in AverageRain to 1

plan pollution Student solved oroblem using previous, wrong method ION
create next value RainDays by adding 1 to prior value

failure to test Student did not test orooram in way to uncover bug LON
I_ I not see missing guard on calculation of AverageRain I

Figure 2.10: Causes of Bugs

2.4.3.2. Effects

A bug effect is defined as the impact of a bug on the behavior of a

program. Bug effect types range from a variable having a wrong

value to the inconvenience a user experiences if the output of a

program is not labelled. There are approximately 10 eaffect types

that tutors consistently use when they generate tutorial plans. The
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purpose of this section is to identify the different types of effects

that bugs can have on the behavior of a program.

For example, if a student initializes the counter variable

RAINDAYS to 1, perhaps in an attempt to avoid division by zero in the

calculation of the average, then there are several effects of the bug:

" an off by one value for RAINDAYS

" a -ong value for AVERAGERAIN

* a wrong value output AVERAGERAIN

This example therefore shows that a single bug can have

several effects.

Some effects of bugs are easy for most students to find. For

example, no output for AVERAGERAIN would be easy for most

students to find. Other bugs are difficult for most students to find.

For example, the effect of a misplaced statement that clobbered

only the first value of a variable being added into a running total

would be difficult for most students to find. BUG 1 in Figure 1.1 is

an e "nple of this sort of bug.

Figure 2.11 shows the effects of bugs, their seriousness, and

the likelihood that most students can find them. For example, a

wrong value for a variable has a medium seriousness whereas a

missing value (no value) is more serious. These two effects have

different likelihoods that students can find them; no value for a

variable is very salient whereas a wrong value can only be detected

if the student performs hand simulation of the program and thereby

anticipates the values that variables should take on.
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EFFECT TYPE SERIOUSNESS FINDABILITY

Wrong Value MEDIUM LOW
No Value HIGH HIGH
Calculation Error MEDIUM MEDIUM
Off By One LOW LOW
Infinite Loop HIGH HIGH
Wrong Output MEDIUM MEDIUM
No Output HIGH HIGH
Clobber Required Value MEDIUM LOW
User Inconvenience LOW LOW

Figure 2.11: Effects of Bugs

2.4.3.3. Types}

Bug types provide a classification scheme for individual bugs, in

contrast to the bug patterns described in the next chapter, which

characterize relations among several bugs. For example, BUG 4 in

the program shown in Figure 1.1 is a missing statement to read a

new value of RAINFALL on each iteration of the main processing

loop; BUG 5 is a misplaced update of TOTALRAIN; BUG 7 has the

wrong variable in the output statement for the number of rainy days.

The italicized words in the previous sentence are types of bugs and

this section identifies and describes the six types of bugs that are

used in generating a tutorial plan.

The typology of bugs used for tutorial planning is similar to

that described in Johnson, Soloway, Cutler, and Draper, 1983.

Figure 2.12 shows the typology of individual bugs. There are six

types of bugs, as the figure shows. Each of the six types named in

the figure is defined by an underlined statement and an example of

that type is given just below.
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BUG TYPE DEFIIION & EXAMPLE

Missing The code is missing
No counter for RAINDAYS

Misplaced The code is in the wrong place
Calculating AVERAGERAIN in the loop

Spurious The code is not required by the task
Maintaining a counter DRYDAYS

Wrong The plan of the student is incorrect
WHILE not IF for simple conditional

Malformed The plan of the student is imperfect
Adding 1 to update TOTALRAIN

Inelegant There is a better way to achieve task goal
I Subtract sentinel from running total

Figure 2.12: Typology of Individual Bugs

2.4.3.4. Plan Location

The location of a programming plan is specified relative to other

plans in the program. For example, the misplaced update of

TOTALRAIN shown as BUG 5 in Figure 1.1 is AFTER the main loop and

BEFORE the calculation of AVERAGERAIN. The descriptors for plan

location are intuitively obvious and consist of BEFORE, INSIDE, and

AFTER. The description of the correct location of a plan is contained

in the representation of the task specification, discussed above. The

actual location of the student's buggy plan is a feature of the

description of the student's bugs. Thus, the tutor knows where a

plan should be and where the student put it. For example, the update

of TOTALRAIN should be INSIDE the main loop; the student, however,
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put the update of TOTALRAIN AFTER the main loop and BEFORE the

calculation of AVERAGERAIN.

2.4.3.5. Summary

Tutors have four types of knowledge about bugs. Tutors reason about

the causes of bugs, the effects of bugs, types of bugs, and the

location of bugs. Each of these four types of knowledge about bugs

affects tutorial planning. For example, the cause of a bug can

affect the tutorial strategy the tutor uses to help the student with

the bug; a bug which has serious effects on a program, such as an

infinite loop, is more likely to be addressed than a bug the has minor

effects, such as the wrong value output in an obscure boundary

condition.

2.5. Chapter Summary

In summary, this chapter has identified four categories of

knowledge that tutors use to generate a tutorial plan. Within each

of the four categories there are several types of knowledge. For

example, in the category of knowledge about bugs, there are four

types of knowledge -- knowledge about causes, effects, types, and

location.

Each of the types of knowledge in the four categories plays a

role in making one or more of the five Tutorial Planning Decisions

which are necessary to create a tutorial plan. For example, tutors
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must decide which bugs are worth addressing and which bugs are not

worth working on. A bug can be eliminated from the tutorial plan for

several reasons. A bug may be too hard for the student to understand

in which case the tutorial plan will not address it. The bug may be

too trivial and therefore take up valuable time needed for other,

more important bugs.

This chapter has provided detailed descriptions of three of the

four categories of knowledge, namely knowledge about students,

knowledge about the domain, and knowledge about bugs. The next

chapter describes in detail the fourth category of knowledge:

knowledge about teaching, which includes knowledge about tutorial

planning and knowledge about executing tutorial plans.
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Chapter 3

KNOWLEDGE CATEGORY 4: KNOWLEDGE ABOUT TEACHING

3.1. Introduction

Tutors have two primary types of knowledge about teaching. First,

tutors have knowledge that they use to construct their tutorial

plans. For example, tutors know which bugs are important to tutor

and which bugs do not matter. Second, tutors have knowledge about

how to execute tutorial plans. One type of knowledge about tutorial

plan execution is how to recover from failures during tutoring. For

example, if a tutor mekes an assumption about why the student

made a bug that later turns out to be incorrect, tutors know how to

modify their tutoring to incorporate the correct cause. Knowledge

about how to construct tutorial plans and knowledge about how to

execute tutorial plans are the two types of knowledge in Category 4,

knowledge about teaching, as shown in Figure 2.3.

The purpose of this chapter is to describe the knowledge that

tutors use to generate tutorial plans -- knowledge about executing

tutorial plans and recovering from failures is discussed in Chapter

7. As noted in Chapter 2, all tutors do not generate exactly the same

tutorial plans. As for Chapter 2, the goal of this chapter is not to

68(j

41



account for individual differences among tutors but, rather, to

describe the predominant decisions that tutors make as described in

Littman, Pinto, & Soloway, 1989.

3.2. Tutorial Planning Knowledge

A major claim of the dissertation is that experienced tutors

construct a tutorial plan when they must help a student who has

made multiple bugs and that the construction of the tutorial plan

revolves around the five Tutorial Planning Decisions that were

identified in the first chapter of the dissertation and are displayed

in Figure 1.6. The goal of this section is to describe the knowledge

that tutors use to make the five tutorial planning decisions.

The section is divided into five subsections, each devoted to

one of the five Tutorial Planning Decisions. Each of the five

subsections has the same format. First, the tutorial planning

decision is described and a brief example is given; next, the

conceptual knowledge is identified that the tutorial planning

decision depends on; finally, the rules are described that use the

conceptual knowledge to make the tutorial planning decision and

examples of the rules are given.

3.2.1. Tutorial Planning Decision 1: GROUPING

The result of the Grouping Decision is that all the student's bugs are

sorted into groups which have one or more bugs. For example, we
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have seen that BUG 8 and BUG 9 in Figure 1.1 are placed in the same

group by tutors because both bugs are in the same plan component,

namely guards for- output statements. In essence, the grouping

decision is a classification problem in which the goal is to put bugs

together that are somehow "related". The goal of this section is to

describe what is meant by the term "related". The remainder of this

section describes the bug groupings and illustrates the bug

groupings with examples, and then describes the rules that sort bugs

into groupings.

3.2.1.1. Bug Groupings and Subgroupings

Figure 3.1 displays the conceptual tree of bug groupings that

underlies the classification of multiple bugs. The first level in the

tree contains six groupings, some of which have subgroupings. For

example, the third grouping from the left is labeled "Same Plan

Component"; BUG 8 and BUG 9 in Figure 1.1 are in the offspring

grouping "Housekeeping" of the Same Plan Component grouping. BUG

8 and BUG 9 are in the Same Plan Component grouping because the

bugs are both in the same plan component; they are in the

Housekeeping grouping because the output guard plan component is a

minor plan component. The six main groupings and their

subgroupings, illustrated by examples are:

Buo Deoendency Bug Dependency groupings relate bugs in

which one of the bugs in the grouping results because of other bugs

in the grouping. For example, if a student initializes the divisor

TotalDays to 1, a bug, in order to avoid a division by zero in the
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calculation of AverageRain, another bug, then the student has

created the first bug because of the second. In this case the student

has attempted to repair the division by zero bug by introducing the

incorrect initialization bug. In terms of the conceptual tree of bug

groupings, the incorrect initialization bug and the missing guard on

the AVERAGERAIN calculation, BUG 1 and BUG 2 in Figure 3.2, is in

the grouping Bad Repair, a subgrouping of Program Behavior

Interaction, which is a subgrouping of Bug Dependency. An example

of a Good Repair grouping is shown in Figure 3.3. Here the student

has allowed the sentinel value that is intended to signal the end of

input to be added into TOTALRAIN. The student's repair to this bug is

to subtract the sentinel from TOTALRAIN just before calculating

AVERAGERAIN. Although the student's repair is correct, it is

inelegant and nearly all human tutors group the two bugs together

The two remaining Bug Dependency subgroupings are

Undetected Program Behavior Interactions and Consistency

Maintenance Program Behavior Interactions. Undetected Program

Behavior Interactions occur when the program contains interactions

between program components and the student does not know about

the interactions. For example, BUG 1 in Figure 1.1 is a case of an

Undetected Program Behavior Interaction. The assignment of 0 to

the variable RAINFALL destroys the first value of RAINFALL acquired

in the READ(RAINFALL) statement just above the buggy assignment.

Thus, it seems that the student did not know about the bug.

Consistency Maintenance Program Behavior Interactions occur

when the student creates a second bug to maintain consistency with

another bug. For example, in Figure 3.4 the student has made two
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bugs. The first bug is the declaration of all variables to be integers.

The second bug results from the first: The student knows that

dividing integers requires the DIV operation and so uses DIV in the

calculation of AVERAGERAIN. The use of DIV results from the

student's desire to maintain consistency between the improper

variable declarations and the calculation of AVERAGERAIN.

In short, Bug Dependency groupings are those in which there is

some sort of "dependency" between bugs.

- Same.Pa Same Plan bug groupings are those in which all

the bugs are in the same parent plan. For example, if the student

forgets to initialize the variable MAXRAIN and also forgets to

include an output statement for it, then these two bugs would be

put in a Same Plan grouping. If the plan is an important plan, such as

the calculation of AVERAGERAIN, then it is a Main Same Plan

grouping. The missing initialization and output statements for

MAXRAIN are a Main Same Plan grouping. If the plan is not an

important plan then the grouping is a Secondary Same Plan grouping.

* Same Plan Component Same Plan Component bug groupings

are those in which all the bugs are in the same plan component. For

example, the two missing output guards, BUG 8 and BUG 9 in Figure

1.1, are both in a Same Plan Component grouping. These two bugs are

in a Housekeeping subgrouping because they are unimportant plan

components.

If there are several bugs in the same plan component, say an

input statement, and the parent plan is focal -- i. e., very important

in the solution of the main goals of the task specification, then the

bugs would be in the Focal subgrouping of Same Plan Component. If
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some of the bugs were in focal parent plans and some were in

unimportant parent plans, then the bugs would be placed in a Mixed

subgrouping of Same Plan Component.

D iagnosi If the tutor does not know exactly why the

student made one or more bugs, and the tutor wants to determine the

reason, then the bugs are placed ir, a bug grouping of type Diagnosis.

If the tutor has no strong hypothesis about the cause of the bugs, as

is the case for most tutors and Bugs 2 through 5 in Figure 3.5, the

strange updates, then the bugs are placed into the subgrouping

Exploratory Diagnosis.

If the tutor has a good idea of the cause of a bug, but has a

competing hypothesis, then the tutor would place the bugs in the

subgrouping Confirmatory Diagnosis.

• Hard Hard bug groupings are those in which a key bug, one

that is very important but hard to tutor, is the focus of tutoring and

one or more other bugs, the supporting bugs, are treated before the

key bug expressly to facilitate tutoring the key bug.

The two kinds of supporting bugs are clean-up and lead-in

bugs. A clean-up bug is one which, if eliminated, makes the parts of

the program affecting the key bug easier for the student to

understand. A lead-in bug is one whose tutoring gives the student

useful information or practice with skills that are needed for

tutoring the key bug.

For example, in Figure 3.6, the key bug is BUG 4, the update of

TOTALRAIN which is misplaced below the loop. BUG 3, the missing

input statement for RAINFALL, causes an infinite loop, which

students find confusing. BUG 2, the incorrectly formed counter for
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RAINDAYS, is a very easy bug which the tutor can use to get the

student thinking about what happens each time the loop executes.

Because the student has a misconception about the scoping of loops,

and therefore incorrectly believes that the update of TOTALRAIN

occurs on each execution of the loop, this is exactly what the tutor

wants to focus on for BUG 4, the misplaced update of TOTALRAIN.

However, before getting the student to observe or simulate the

behavior of the loop, it would be a good idea to eliminate the infinite

loop. This reasoning leads to a Hard grouping in which

* BUG 3, the missing input statement for RAINFALL is addressed

first; this is a clean-up bug

* followed by BUG 2, the unconditional counter for RAINDAYS,

which Is a lead-in bug

* finally addressing the key bug, the misplaced update for

TOTALRAIN.

- Singletgn Singleton groupings are groupings with only one bug.
The bugs in Singleton groupings are those for which no good case

can be made to place them in a grouping with other bugs. For

example, a student might assign 9999 to SENTINEL, the constant

for a loop termination variable. Because there are no other related

bugs, this bug would appear in a Singleton grouping in the tutorial

plan.

In summary, bugs are classified into groups according to

relations with other bugs. For example, two missing output guards

are related because they are in the same plan component; a bug

created in the attempt to fix another bug are related by a Repair
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relationship; bugs which facilitate tutoring a key bug may be placed

in a Hard grouping.

GROUP TYPE

Bug Dependency
n g le t n

. Same Plan

Program Same Plan Component Diagnosis
Behavior Interacions

Hard

Consister cy Main SecondaryjMaintenance 

C ni m t rUndetected Confwrnator
Repaired uetpg

Focal Housekeeping Exploratorj

A 
HMskepn ixed

Good Bad

Figure 3.1: Group Type

3.2.1.2. Bug Grouping Rules

The purpose of this section is to describe the grouping rules that

decide how to place bugs in groups in the tutorial plan, Tutorial

Planning Decision 1. Because most bugs in a student's program could

be placed in any of several groups, but some groupings are preferable

to others (e. g., a bug should be placed in a Singleton group only as a

last resort), this section 1) illustrates the rules that are used to
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make bug groups and 2) describes the priority scheme that ensures

that bugs are placed into preferred groups.

The rules that make Tutorial Planning Decision 1 can be

thought of as recognizers for the groupings and subgroupings shown

in Figure 3.1. Each grouping, such as the Same Plan Comronent

grouping, is based on combinations of features of bugs. The

recognition rules corresponding to a bug grouping identify the legal

combinations of features for the grouping. For example, BUG 8 and

BUG 9 in Figure 1.1 both are in the same housekeeping plan

component, the output guard. Thus, when these two bugs are

encountered by the rules that recogni'e the Same Housekeeping Plan

Component grouping, a Same Housekeeping Plan Component bug group

is created for the two bugs. In fact, each grouping has several rules

that correspond to it. The rules make distinctions between

subgroupings and handle housekeeping chores such as adding a single

bug to an existing group.

Grouping rules are all IF-THEN rules. The IF clause specifies

the conditions under which the THEN clause acts. As an example,

consider the following grouping rule, one that creates Bad Repair bug

grouping.

GROUP-BUGS:BAD-REP-AIRlfULE1

IF BUG-Y Is an Incorrect repair for BUG-X

AND both bugs are unassigned to groups

THEN Create a bug group of type BAD-REPAIR

Assign BUG-Y to repairs set

Assign BUG-X to cause set
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Such a grouping would be used for the incorrect initialization

of TOTALDAYS to 1 and a missing guard in the calculation of

AVERAGERAIN, shown as BUG 1 and BUG 2 in Figure 3.2.

The IF part of this rule requires that 1) BUG-Y be an incorrect

repair for BUG-X, as BUG 1 is an incorrect repair for BUG 2 in Figure

3.2, and 2) neither bug be assigned to another group. The THEN part

of this rule performs three actions:

• Create a BAD-REPAIR bug group, which has two sets of bugs,

a set of bugs that are the repairs and a set of bugs that are the

cause of the repair.

* Assign BUG-Y to the repair set.

* Assign BUG-X to the cause set.

In short, this rule says that the tutorial planner should 1)

place BUG 1 and BUG 2 into the same group, 2) distinguish them

according to which bug is a repair (BUG 1) and which bug caused the

student to make the repair (BUG 2), and 3) make the group type BAD-

REPAIR because the repair, initializing TOTALDAYS to 1, is

incorrect.

Figure 3.7 gives example rules for three of the bug groupings

and subgroupings shown in Figure 3.1. The rule discussed above,

GFOUP-BUGS:REPAIR-RULE1, has a counterpart that creates bug

groups in which repairs are successful: This is the first rule shown

in the figure. The second rule creates a bug group for bugs which all

are in the same focal plan. As described in an earlier example, if the

student left out the initialization and the output statement for the

!
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variable MAXRAIN, then these two bugs would be placed in the same

group which would be Same Focal Plan grouping.

The third group type in Figure 3.7 shows three rules that

create a Hard bug group. As we have seen, BUG 2, BUG 3, and BUG 4 in

Figure 3.6 would be placed in the same Hard group. BUG 4, the

misplaced update of TOTALRAIN, would be identified by the first of

the three rules, RULE FOR KEY BUG, as the key bug. BUG 3, the

missing input statement for RAINFALL, would be identified by RULE

FOR CLEAN UP BUGS as a bug that could interfere with tutoring the

key bug, BUG 4 because of its effect on the behavior of the program.

BUG 3 would therefore be assigned to the clean-up bugs for BUG 4.

Finally, BUG 2 would be identified by RULE FOR LEAD-IN BUGS as one

that would be useful for tutoring the key bug because BUG 2 would 1)

be easy to tutor, 2) focus the student's attention on the behavior of

the loop, and 3) lead the student to do hand simulation of the main

loop in the program. Thus, BUG 2 would be assigned to the lead-in

bugs for BUG 4.

Bugs can be grouped in several ways. For example, a missing

initialization of the variable MAXRAIN could be grouped with other

missing initializations or with a missing output statement for

MAXRAIN. On both empirical grounds, derived from studies of tutors,

and functional grounds, and from arguments about good tutoring

practice, grouping the missing initialization of MAXRAIN with the

missing output statement for MAXRAIN is preferable.

Because bugs can be grouped in several ways, tutors assign

priorities to groupings. For example, a repair bug should be grouped

with its corresponding bug rather than with other bugs that are in
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the same plan component; any bug should be grouped with other bugs

rather than treated as a Singleton; a bug which requires diagnosis

should be placed in a group of bugs which the tutor suspects all have

the same cause, as with BUG 2, BUG 3, BUG 4, and BUG 5, the

malformed updates shown in Figure 1.1.

Figure 3.8 shows the priorities which tutors assign to

groupings. The priorities derive from analysis of the empirical

grouping behavior of tutors in the Questionnaire Study (Littman,

Pinto, & Soloway, 1988). The priorities are hierarchical and

correspond to the tree structure of groupings shown in Figure 3.1.

For example, the most important grouping is Diagnosis: If a tutor

does not know why a student made a bug, then it is crucial to

determine the cause. Bug Dependencies, as shown in the Figure 3.8

are next in priority. The numbering scheme shows that in the

grouping of Program Behavior Interactions, Undetected bugs have a

higher priority than Repaired bugs. The remainder of the Figure

displays the rest of the priority scheme, with Singleton being the

lowest priority.

In summary, there is a conceptual framework for the groupings

of bugs that are created for a tutorial plan. The framework is shown

in Figure 3.1. Rules identify the criterial features for each grouping

e. g., Same Housekeeping Plan Component. A priority scheme

controls the preferences given to the different groupings so that any

particular bug is placed in the most preferred grouping.
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PROGRAM RAINFALL (INPUT, OUTPUT);
CONST

SENTINEL = 99999;
VAR

DAILYRAINFALL, MAXIMUM, AVERAGERAIN: REAL;
TOTALDAYS, RAINDAYS : INTEGER;

BEGIN
BUG 1: TOTALDAYS SHOULD BE INITIALIZED TO 0

TOTALDAYS := 1;
WRITELN ('ENTER DAILY RAINFALL');

READLN;
READLN (DAILYRAINFALL);

WHILE NUM <> SENTINEL DO
BEGIN

IF (DAILYRAINFALL > 0) THEN BEGIN

READLN (DAILYRAINFALL);
END;

BUG 2: MISSING GUARD AGAINST TOTALDAYS = 0
AVERAGERAIN := TOTALRAIN / TOTALDAYS;

END.

Figure 3.2: An Undetected Bug
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PROGRAM RAINFALL (INPUT, OUTPUT);
CONST

SENTINEL - 99999;
VAR

DAILYRAINFALL, MAXIMUM, AVERAGERAIN: REAL;
TOTALDAYS, RAINDAYS : INTEGER;

BEGIN
TOTALDAYS := 1;

WHILE NUM ,> SENTINEL DO
BEGIN

WRITELN ('ENTER DAILY RAINFALL');
READLN (DAILYRAINFALL);
IF (DAILYRAINFALL > 0) THEN BEGIN

BUG 1: SENTINEL ADDED INTO TOTALRAIN
TOTALRAIN := TOTALRAIN + DAILYRAINFALL;

READLN (DAILYRAINFALL);
END;

BUG 2: SUBTRACT OUT SENTINEL FROM TOTALRAIN
AVERAGERAIN := (TOTALRAIN - 99999) / TOTALDAYS;

END.

Figure 3.3: A Detected Bug
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PROGRAM RAINFALL (INPUT, OUTPUT);
CONST

SENTINEL = 99999;
VAR

BUG 1: ALL VARIABLES DECLARED INTEGER TYPE
DAILYRAINFALL, MAXIMUM, AVERAGERAIN,

TOTALDAYS, RAINDAYS : INTEGER;
BEGIN

TOTALDAYS :- 0;
WRITELN ('ENTER DAILY RAINFALU);
READLN (DAILYRAINFALL);

WHILE NUM <> SENTINEL DO
BEGIN

IF (DAILYRAINFALL > 0) THEN BEGIN
TOTALRAIN := TOTALRAIN + DAILYRAINFALL;

WRITELN ('ENTER DAILY RAINFALL');
READLN (DAILYRAINFALL);

END;
BUG 2: WRONG OPERATOR IN DIVISION

AVERAGERAIN = TOTALRAIN DIV TOTALDAYS;

END.

Figure 3.4: Maintaining Consistency

I
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PROGRAM RAINFALL (INPUT, OUTPUT);
CONST

SENTINEL = 9999;
VAR

NUM, TOT, GREATEST, AVERAGE: REAL;
SUM, TOTAL, GREAT, RAIN, COUNT, RAINDAYS: INTEGER;

BEGIN
WRITELN ( THIS PROGRAM CALCULATES AVERAGE RAINFALL');
WRITELN ('IT ALSO COMPUTES NUMBER OF RAINDAYS, NUMBER OF DAYS);
WRITELN ('THAT IT ACTUALLY RAINED AND THE GREATEST RAIN FALL');
WRITELN ('ENTER RAINFALL');
READLN;
READ (NUM);

TOT:- 0; COUNT:- GREAT:- 0; RAIN:- 0;
BUG 1: wrong sentinet test (should be 99999. not 99991

WHILE NUM <> SENTINEL DO
BEGIN

IF (NUM < 0.0)
THEN BEGIN

WRITELN ( THE VALUE ENTERED DOES NOT MAKE ANY SENSE.');
WRITELN ('PLEASE CHECK YOUR INPUT AND TRY AGAIN');

END
ELSE BEGIN

BUG 2: malformed update of TOTAL
F TOTAL - TOT + NUM
THEN TOT :- TOTAL;

BUG 3 malformed update of SUM
IF SUM - COUNT + 1
THEN COUNT :- SUM;

BUG 4: malformed update of GREATEST
IF NUM > GREAT I
THEN GREATEST :- NUM;

BUG 5: malformed uodate Inside Boolean expression
IF ((NUM > 0) AND (RAINDAYS - RAIN + 1))

THEN RAIN :- RAINDAYS;
BUG 6: AVERAGE calculated Inside 10o0

AVERAGE .- TOT/COUNT
BUG 7: no READ(NUMI: In looR

END; END;
WRITELN (COUNT :0, 'VALID RAIN FALLS WERE ENTERED');

BUG B: no guard for undefined averaae
WRITELN ( THE AVERAGE RAINFALL WAS',
WRITELN (AVERAGE :0, 'INCHES PER DAY);

BUG 9: no guard for undefined maximum
WRITELN ( THE HIGHEST RAINFALL WAS', GREATEST 2, 'INCHES');
WRITELN ('THERE WERE ', RAIN :2, 'RAINY DAYS IN THIS PERIOD')

END.

Figure 3.5: Buggy Rainfall Program

I
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SENTINEL 99999;
VAR
RAINFALL, AVERAGE, RAINDAYS, TOTALRAIN: REAL;
BEGIN
(- PROMPT FOR AND READ IN FIRST VALUE *)
WRITELN ('PLEASE TYPE IN THE FIRST VALUE');
READLN;
READ (RAINFALL);
(- INITIALIZE THE VARIABLE *)
RAINFALL ;- 0; HIGHEST :- 0;
BUg 1: Miseing InItIalization of RAINDAYS
(* READ IN NUMBERS UNTIL 99999 IS READ *)
(- ENTER DATA IN ONE DAY AT A TIME*)
WHILE RAINFALL <> 99999 DO
BEGIN
(* CHECK FOR HIGHEST RAINFALL )
IF RAINFALL > HIGHEST THEN
HIGHEST := RAINFALL;
(- INCREMENT COUNT VARIABLES DEPENDING ON RAINFALL VALUE )
IF RAINFALL < 0 THEN
WRITELN ('ENTER ONLY POSITIVE NUMBERS'

~ELSE
BUG 2: No Counter For Rainy Days - RAINDAYS Increments Each TIme
RAINDAYS := RAINDAYS + 1;
BUG 3: No READ(RAINFALL) In Loop
END;
BUG 4: Update of TOTALRAIN Below Looo
BEGIN
TOTALRAIN :. RAINFALL + TOTALRAIN;
END;
(" COMPUTE THE AVERAGE RAINFALL )
BEGN
AVERAGF :, TOTALRAIN/RAINDAYS;
END;
(- PRINT OUT THE RESULTS )
WRrrELN;
WRITELN(THE PROGRAM READ IN', RAINDAYS :0:2, 'RAINY DAYS');
WRITELN('THERE WERE ', RAINFALL :0:2, 'RAINY DAYS IN PERIOD');
BUG 5: No Guard for Undefined AveraM
WRITELN('THE AVERAGE WAS ', AVERAGE :0:2, 'INCHES PER DAY');
BUG 6: No Guard for Undefined Maximum
WRITELN(THE MAXIMUM WAS ', HIGHEST :0:2, 'INCHES');

Figure 3.6: A Simplified Buggy Rainfall Program
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GROUP TYPE EXAMPLE GROUPING RULES

IF BUG-Y is a correct repair for BUG-X
AND both bugs are unassigned

GOOD REPAJR THEN Create a bug group of type GOOD-REPAIR
Assign BUG-Y to repairs set
Assign BUG-X to cause set

IF BUG-X and BUG-Y are in the same parent plan
AND the parent plan Is for an important goal

SAME MAIN PLAN AND both bugs are unassigned
THEN Create a bug group of type SAME-MAIN-PLAN

Assign BUG-X and BUG-Y to group

RULE FOR KEY BUG
IF BUG-X is important and hard to tutor
THEN Create a bug group of type MULTI-HARD

Assign BUG-X to key bug

RULE FOR CLEAN-UP BUGS
IF BUG-X interferes with tutoring KEY-BUG-Y

HARD THEN Assign BUG-X to clean-up bugs for KEY-BUG-Y

RULE FOR LEAD-IN BUGS
IF Tutoring BUG-X focuses attention on either

1) program behavior or
2) concepts

useful for tutoring KEY-BUG-Y
AND BUG-X is easy to tutor

I THEN Assign BUG-X to lead-in bugs for KEY-BUG-Y

Figure 3.7: Example Rules Tutorial Planning Decision 1 -- Grouping

3.2.1.1. Tutorial Planning Decision 2: YES-NO

The result of the Yes-No Decision is that all bugs are labeled

according to whether or not they will be addressed in the tutoring

session. For example, BUG 8 and BUG 9, placed in the same group as

described in the previous section, would not be addressed by most
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tutors because the bugs do not affect the functioning of the program

nor are they key aspects of the task specification. BUG 8 and BUG 9

might be addressed if the student were smart and motivated and

there were no serious bugs in the program.

The goal of this section is to describe the three decisions that

tutors can make about whether to tutor a bug and to describe the

knowledge on which the decisions are based. The YES-NO decision is

based on two kinds features, primitive features such as the plan

component in which the bug occurs, and computed features, such as

the difficulty of tutoring a bug, which is computed from primitive

features of students and bugs. The remainder of this section

describes the three YES-NO decisions, gives examples of YES-NO

decisions, shows and describes an example rule, and describes the

two different kinds of features that are used by the rules that make

the YES-NO decision.

Figure 3.9 shows the possible Yes-No decisions that tutors can

make when they construct a tutorial plan. The most clear-cut

decisions are represented by Yes Definitely, the leftmost leaf in the

tree, and No, the third leaf from the left. The two remaining

decisions are Yes Try and If Opportunity Arises. If the tutor decides

definitely to address a bug, then it is given priority when the tutor

makes Tutorial Planning Decision 3, the ordering decision; if the

tutor decides not to address a bug, then it is eliminated from the

remaining Tutorial Planning Decisions. For example, no tutorial

objectives (Tutorial Planning Decision 4) are generated for bugs that

the tutor decides not to address.
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In the program shown in Figure 1.1, the tutor decides

definitely to address BUG 5, the misplaced update of TOTALRAIN.

The tutor makes this decision because the cause of BUG 5 is

potentially a serious misconception. Equally, the tutor decides not

to address BUG 8 and BUG 9, the two missing output guards because,

as noted earlier, they are not important for the specification and

they do not suggest any deep problems in the student's

understanding. The commitments to address the other bugs in the

program fall between the two extremes. For example, most tutors

are not firm one way or another about addressing BUG 6, the missing

guard to prevent division by 0 in the calculation of AVERAGERAIN.

This bug can be used to illustrate some lessons about testing the

program at boundary conditions, but addressing the misplaced update

of TOTALRAIN could potentially consume the entire tutoring session.

Thus, the tutor decides to address BUG 6 if the opportunity arises.

BUG 1 is more important than BUG 6 because the assignment of 0 to

RAINFALL destroys the initial value read by the input statement.

This problem is both serious and probably easy to correct, because

the initialization is a spurious statement that only needs to be

eliminated. A tutor might therefore decide to try to address BUG 1.
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1. DIAGNOSIS
1. CONFIRMATORY
2. EXPLORATORY

2. BUG DEPENDENCY
1. PROGRAM BEHAVIOR INTERACTIONS

1. UNDETECTED
2. REPAIRED

1. BAD
2. GOOD

2. CONSISTENCY MAINTENANCE

3. SAME PLAN
1. PRIMARY
2. SECONDARY

4. HARD

5. SAME PLAN COMPONENT
1. FOCAL
2. HOUSEKEEPING
3. MIXED

6. SINGLETON

Figure 3.8: Priorities for Placing Bugs in Groups
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WHETHER TO TUTOR

Yes If Opportunity Arises
No

Definitely
Try

Figure 3.9: Whether to Tutor

2.1.1.3. Rules for YES-NO Decision

The rules that make Tutorial Planning Decision 2, the YES-NO

decision, use tutorial knowledge types from the categories of

Student, Domain, and Bugs. An example of a YES-NO rule is the

following:

YES-NO-BUGS DEFINITELY-RULEt

I F Effects of BUG-X are Important

AND Effects of BUG-X are hard to understand

AND Cause of BUG-X is easy to understand

THEN Definitely Tutor BUG-X.
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YES-NO-BUGS:DEFINITELY-RULE1 uses information about the

causes and the effects of bugs. The IF clauses asks whether the

effects of the bug are both 1) important and 2) hard to understand

and whether the cause of the bug is easy to understand. The three IF

clauses use two different kinds of features:

0 Primitive Features Primitive features are part of the

representation of students, the domain, and bugs. The first clause of

YES-NO-BUGS:DEFINITELY-RULE1, which asks whether the effects of

the bug are important, uses the primitive feature of the importance

of the effect of the bug. All the features discussed in the first

part of the chapter on the four categories of tutorial knowledge are

primitive features.

* Computed Features Computed features are derived from two

or more primitive features. The second and third clause of YES-NO-

BUGS:DEFINITELY-RULE1 uses computed features. The difficulty of

understanding the effect of a bug varies according to the ability of

the student and the default difficulty of understanding the effect.

For example, an effect is hard to understand if the student is not of

high ability and the default difficulty of understanding the effect is

high. A similar method is used to compute whether the cause of a

bug is easy to understand.

Figure 3.10 shows how computed difficulty is derived from

default difficulty and student ability. The entries in the cells of the

table show the computed difficulty values that correspond to the

joint values of student ability and default difficulty. This method of
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computing difficulty values is used for the "difficulty" features

listed in Figure 3.11. For example, the difficulty of tutoring a bug is

a joint function of the student's ability and the default difficulty of

tutoring the bug. Thus, the second and third clauses of the rule YES-

NO-BUGS:DEFINITELY-RULE1 use computed features.

A second example rule, YES-NO-BUGS:DEFINITELY-RULE2, is

based on the features of the task specification, a tutorial knowledge

type in Category 2, knowledge about the domain:

YES-NO-BUGS:DEFINITELY-RULE2

IF Task Specification In which BUG-X appears is Important

AND the cause of the bug Is not a slip

THEN Try To Tutor BUG-X.

YES-NO-BUGS:DEFINITELY-RULE2 insures that all bugs that are

in important parts of the task specification e. g., the calculation of

AVERAGERAIN; the output statements for AVERAGERAIN and

MAXIMUM, are given a chance to be addressed.

Figure 3.12 gives an example rule for each of the four possible

decisions that can be made about whether to address a bug in the

tutoring plan. For example, in the third row is a rule that, if fired,

results in a bug not being tutored. In this case, if a bug is hard to

tutor and the importance of the bug is low, then it should not be

tutored.

The previous discussion has focussed on the YES-NO decision

for Singleton bugs. The method for making the YES-NO decision for

a group of bugs is nearly the same. The decision method for a group
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of bugs simply computes the maximum of the relevant features, such

as importance or tutorial difficulty, for all the bugs in a group. The

YES-NO decision is made according to the rules for the maximum

values. If any bug, BUG 2, in a group is dependent on another bug,

BUG 1, in the group e. g., one bug is a repair for another, then BUG 2

is addressed if BUG 1 is addressed.

In summary, the second Tutorial Planning Decision requires the

tutor to decide whether or not to address each of the student's bugs.

The tutor may decide definitely to address a bug or definitely not to

address a bug. In addition, the tutor can take more of a wait-and-

see attitude and decide to try to address a bug or see if an

opportunity arises for the bug. Rules based on primitive features of

students, bugs, and the domain, and features computed from the

primitive features, are the basis of Tutorial Planning Decision 2.

DEFAULT DIFFICULTY

STUDENT ABILITY HIGH MEDIUM LOW

HIGH MEDIUM LOW LOW

MEDIUM HIGH MEDIUM LOW

LOW HIGH HIGH MEDIUM

Figure 3.10: Difficulty Computed from Ability and Default Difficulty
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1. Difficulty of Understanding Cause of Bug
2. Difficulty of Understanding Effect of Bug
3. Difficulty of Tutoring a Bug

Figure 3.11: Difficulty Computed from Ability and Default

YES-NO DECISION EXAMPLE RULES

IF Effects of BUG-X are important
AND Effects of BUG-X are hard to understand

DEFINITELY AND Cause of BUG-X is easy to understand
THEN Definitely Tutor BUG-X

IF Importance of BUG-X Is High
TRY AND Student Knowledge about BUG-X weak

THEN Try to Tutor

IF Tutorial Difficulty of BUG-X is High
10 AND Importance of BUG-X is Low

THEN Do Not Tutor BUG-X

IF IF Importance of BUG-X is Medium
OPPORTUNIr AND Student Knowledge about BUG-X weak

ARISES THEN Tutor if opportunity arises

Figure 3.12: Examples of Rules for Tutorial Planning Decision 2 -- YES-NO
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3.2.1.2. Tutorial Planning Decision 3: ORDERING

The result of Tutorial Planning Decision 3 is that the groups of bugs,

and the bugs within groups, are ordered in the tutorial plan. For

example, if a tutor has no idea why a student made a bug then, if the

bug is potentially important for the reasons discussed earlier in the

chapter, then the tutor will focus on that bug first. For example, all

11 tutors in the Questionnaire Study said they would first address

the four malformed variable updates in Figure 3.5, BUG 2, BUG 3, BUG

4, and BUG 5. The reason that they gave for addressing the

malformed updates first was that they had no idea why the student

made the bug but that, whatever the cause, it was serious and they

wanted to find out before going further. The tutors therefore put all

four bugs in a group of type Exploratory Diagnosis and planned to

address that group first.

When more than one bug is in a group, the tutor must decide on

the order in which to address the bugs. For example, when the tutor

has made a grouping of bugs in which one is an incorrect repair for

the other, the tutor first makes sure that the student understands

the effects of the incorrect repair and then addresses the cause.

This policy imposes an ordering on the bugs within the Repair

grouping. The purpose of this section is to describe how groups of

bugs are ordered in the tutorial plan and how bugs are ordered within

groups of bugs. Each of these topics is treated in a separate

subsection.
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2.1.2.1. Ordering Groups of Bugs

Figure 3.13 shows, the two prototypical orders of bug groups in

tutorial plans. Whenever possible, tutors prefer to do diagnosis of

important bugs before doing anything else. For example, as noted

earlier, all tutors in the Questionnaire Study said that they would

attempt to determine why the student made the malformed updates

shown in Figure 3.5 before doing anything else. Although tutors

prefer to engage in diagnosis of causes of important bugs first,

there are circumstances which affect that ordering.

The chief reason that tutors do not perform diagnosis first is

that the student is not especially good, or is unmotivated or

dispirited, a common situation in tutoring novice programmers. The

two branches shown in Figure 3.13 show the prototypical orders of

groups of bugs for good students and for weak students.

-Good Students: When the tutor creates a tutorial plan for a

good student, d.-gnosis of important bugs is the first issue

addressed. As discussed earlier, a bug can be important either

because of the part of the task specification it is in or because of

the cause of the bug. For example, a bug caused by a misconception

is more important that the same bug caused by a slip. Following the

diagnosis of important bugs are Hard bug groups, as described in the f
section on Tutorial Planning Decision 1. Following the Hard bug

groups are the remaining groups, ordered by default as shown in the

box at the bottom of Figure 3.13. This topic is discussed below.

* Weak Students: When a tutor tries to help a weak or

unmotivated student, the tutor is concerned with the student's ]
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emotional state. Tutors try to avoid making students feel that they

cannot find and fix bugs. Therefore, a tutorial plan for a weak

student typically begins with an easy bug. As one tutor put it:

"This will give the student confidence that he can find bugs and make it more likely that

he won't give up later when the going gets tough."

Following the motivational work with easy bugs are bugs for

which it is important to perform diagnosis. Then, if the student is

able, the tutorial plan addresses Hard bugs, followed by the order of

the groups shown in the box at the bottom of Figure 3.13.

Once the tutor has addressed the motivational problems of

weak students, performed any needed diagnosis, and addressed Hard

bug groups, then the remaining bugs are considered. The remaining

bugs are ordered according to the default order shown in the box at

the bottom of Figure 3.13, subject to modification by the simple

group ordering heuristics described below.

The default order for the remaining groups of bugs focuses

first on making the program easy for the student to work with, then

on important bugs and finally on programming techniques and skills

that the tutor wants to teach the student. For example, the tutor

might leave until last a group of bugs in which guards were missing

from output statements. The tutor would not ordinarily care about

fixing the output statements but might use the opportunity to teach

a good student some skills of program testing, debugging, and so

forth

The heuristics for altering the default order of the groups of

remaining bugs are straightforward. Each of the heuristics

J !expresses the intuition that "All other things being equal, prefer to
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tutor bugs which meet the criteria exr essed by the heuristic". The

foil wing descriptions of the heuristics identify the features which

are the basis for altering the default order of groups. An example

rule is given for each.

Imgocrtan: All other things being equal, order of tutc ig

should begin with the most important bugs. The definition of an

important bug is one which either 1) has effects on the program

behavior that are hard to understand or hard to find, 2) is in an

important goal of the task specification or 3) suggests the student

has a misconception about an important programming concept. These

three features are primitive features of, respectively, 1) bugs, 2)

the task specification and 3) knowledge about programming. An

example rule is

ORDER-GROUPS:IMPORTANCE1

I F Group 1 contains bugs or concepts that are more

Important than Group 2

THEN Address Group 1 before Group 2

* Knowledge Preconditions: Bugs or bug groups which provide

knowledge that is required or useful for tutoring an other bug or bug

group should be tutored before the bugs or bug groups that depend on

them.

ORDER.GROU PS:KNOWLEDGE.PRECONDITIONS1 J
I F Group 1 contains bugs or concepts that are required

for Group 2 1
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THEN Address Group 1 before Group 2

*Program Behavior Preconditions: Bugs which make the

program hard to interpret should be tutored as early as possible.

ORDER.GROUPS:PROGRAM-BEHAVIOR-PRECONDITIONS1

I F Group 1 contains bugs that make program behavior

confusing for Group 2

THEN Address Group 1 before Group 2

- Difficulty of TutorinG: Bugs which are easy to tutor should

be tutored before bugs that are hard to tutor, assuming that the

rules for importance, knowledge preconditions, and program behavior

preconditions have been satisfied.

ORDER-GROUPS:DIFFICULTY1

I F Group 1 contains bugs that are harder to tutor

than Group 2

THEN Address Group 2 before Group 1

In summary, there is a default order for addressing bug groups.

The default order depends on the student's ability and motivation.

The default order is subject to alteration according to heuristics

that are based on four, intuitive features such as importance and

difficulty of tutoring.
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Figure 3.13: Ordering Group
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2.1.2.2. Ordering Bugs Within Groups

Deciding the order of addressing bugs within groups depends upon

two types of information. First, certain types of groupings dictate

the order of bugs. Second, if the type of group does not dictate the

order of addressing bugs within the group then heuristics, nearly the

same as those which order groups of bugs, determine the ordering of

bugs within groups. This section first describes constraints on the

ordering of bugs within groups that are determined by the group and

then describes the general heuristics for ordering bugs within

groups.

Three types of groups impose an order on addressing bugs in

the group. The two types of groups are Repair Groupings, Same Plan

Groupings and Same Plan Component Groupings.

- Repair Grouping: In a Repair Grouping .one or more bugs lead

to the need for the repair (the cause bugs) and one or more bugs are

the repair bugs. These two types of bugs are treated in a

prototypical order. First the tutor identifies the cause of the

repair. For example, in the case of the incorrect initialization of

RAINDAYS to 1 rather than 0, shown in Figure 3.2, the tutor would

focus the student's attention on the fact that the calculation of

AVERAGERAIN could result in a runtime division-by-zero-error if

RAINDAYS were initialized to 0. Second, the tutor would focus on

the repair bug, in this case the initialization of RAINDAYS to 1.

Third, the tutor would help the student to identify unwanted side

effects of the repair. In this case the unwanted side effect is that

the value of RAINDAYS is incorrect when the first value entered by
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the user is the sentinel. Finally, the tutor would help the student

choose or generate an alternative plan for handling the cause, in this

case the potential division-by-zero error.

S Same Plan Grouning: The order of bugs in a Same Plan

Grouping is determined by the focus of the plan component in which

each bug occurs. The focus of each plan component is a feature that

is stored with the plan component. Thus, the update of a variable is

more focal than the initialization, which in turn is more focal than

the output guard. For example, if the student neglected to include

the update for MAXIMUM, the initialization of MAXIMUM, and the

output guard for MAXIMUM, then the tutor would first address the

missing update, then the missing initialization, and finally the

missing output guard.

* Same Plan Comoonent Grouoing: The order of bugs in a Same

Plan Grouping is determined by the importance of the bugs in the

group and the degree to which the bug illustrates the plan

component. For example, if a Same Plan Component Grouping

contains several missing initialization bugs, then the bugs will be

addressed in order of importance. The importance of the variable is

determined by whether it is a housekeeping variable, such as

RAINDAYS or a key variable, such as TOTALRAIN or AVERAGERAIN.

The heuristics that order bugs within groups are essentially

the same as those which order groups of bugs. As in the case of the

heuristics that order groups of bugs, the heuristics that order bugs

within groups depend upon importance, knowledge preconditions,

program behavior preconditions, and difficulty of tutoring. The rules
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that express these heuristics are applied to each group when that

group is the one being addressed by the tutor.

In summary, the problem of ordering bugs for tutoring has two

aspects. First, groups of bugs are ordered in a default sequence that

can be modified depending upon the ability of the student and

features of the bugs in the group such as importance, difficulty of

tutoring, and so forth.

Second, bugs within groups are ordered in two ways. First,

some bug groupings, such as repair groupings, have a built-in order

for addressing the bugs. Second, heuristics for ordering bugs within

groups are used when the bug grouping does not dictate an order.

The heuristics for ordering bug i within groups rely on the same

features as the heuristics that order groups of bugs.

3.2.1.3. Tutorial Planning Decision 4: OBJECTIVES

Making Tutorial Planning Decision 4 results in the assignment of

tutorial objectives to each group of bugs in the tutorial plan. For

example, if in the attempt to repair one bug a student makes a

second bug, then the tutor's objectives would depend on whether the

repair is good or bad. If the repair fixes the initial bug, as in the

program shown in Figure 3.3, the tutorial objective would be to

teach the student a plan that avoids the need for repair. If the

t repair is incorrect, as in the program shown in Figure 3.2, then the

tutor would have two objectives. The first objective would be to

lead the student to see that the repair is incorrect. The second

objective would be to teach the student the preferred plan, just as
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in the case of the correct repair. The purpose of this section is to

describe 1) the conceptual knowledge about objectives that tutors

use when they construct tutorial plans and 2) the rules that assign

objectives to tutorial plans.

2.1.3.1. Knowledge of Objectives

Figure 3.14 shows the possible objectives that can b issigned to a

tutorial plan. As the first level of the tree in thb figure shows,

there are four main types of objectives, each of which has subtypes:

- Teaching ObJectives: Teaching objectives are intended to

provide the student with knowledge or skills that the student does

not have or has not mastered, or need correction. For example, the

student who made BUG 5, the misplaced update of TOTALRAIN below

the loop in the program shown in Figure 1.1, is confused about the

concept of the scope of a loop. Thus, the tutor who wants to help

this student would establish a teaching objective to make sure the

student understands the concept of scoping of loops.

BUG 1 also suggests that the student may not have good skills

in testing programs because an effective simulation would have

detected the fact that the assignment of 0 to RAINFALL destroys the

initial value of RAINFALL acquired by the input statement. The

tutor might, therefore, establish a teaching objective to improve the

student's skill in hand simulating programs.

The two remaining types of teaching objectives are to teach

plans and to eliminate misconceptions. The first example in this

section, of the tutor deciding to teach the student a way to solve the
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task specification that avoids the need for a repair, was an

objective to teach plans. Sometimes students have active

misconceptions that require correction. If the tutor discovered that

the student had an active misconception about the scope of a loop, e.

g., that the scope of a loop is any consecutive sequence of BEGIN-END

blocks, then the tutor would set the objective to eliminate that

misconception.

0 Fix Proaram Objectives: Tutors frequently establish

objectives to help students fix their programs. Sometimes the code

is the focus of the tutoring, as in the case of the spurious

initialization of RAINFALL, shown as BUG 1 in the program in Figure

1.1. In this case the tutor would probably ask the student to hand

simulate the buggy lines of code with the intent of leading the

student to see how the spurious line destroys the initial, needed

value of RAINFALL acquired with the input statement.

An objective to fix the program does not mean that the code is

the focus of tutoring. A tutor can also decide to help the student

fix the program but focus on the student's plans for achieving a goal

rather than on the code. For example, if the student calculates

AVERAGERAIN in the loop then the tutor may decide to help the

student to choose a preferred plan, namely calculating AVERAGERAIN

after the termination of the loop. The tutor's objective is to help

the student fix the program and in this case the tutor focuses on the

student's decision to calculate AVERAGERAIN in the loop. I. e., the

tutor will focus on the student's plan for calculating AVERAGERAIN.

Finally, if the student has solved the wrong problem, for

example, calculating AVERAGERAIN using RAINDAYS rather than
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TOTALDAYS as the divisor, the tutor may help the student to fix the

program but will focus on the student's incorrect goal, namely

failing to calculate AVERAGERAIN over the whole period during

which the user entered rainfall data.

- Session Management Objectives: Session Management

objectives are typically in service of other objectives. Tutors

establish session management objectives when they want to control

the way in which the tutoring session proceeds. For example, a tutor

who wanted to run the program shown in 1.1 and ask the student

questions about its behavior would know that the infinite loop

caused by the missing input statement for RAINFALL would make the

behavior of the program hard for the student to understand. One of

the first priorities of the tutoring session would thus be eliminating

BUG 4, the missing input statement for RAINFALL that causes the

infinite loop. The reason for working on BUG 4 would be to clean up

the behavior of the loop before working on the misplaced update of

TOTALRAIN. Thus, the tutor's objective in working on BUG 4 would

be a session management objective about program behavior

preconditions.

If a tutor decides that a student needs to understand, or be

made aware of, some facts or concepts before working on a

particular problem, then the tutor would establish a Knowledge

Precondition objective. For example, a tutor may decide that a

student should understand how interactive loops work in general

before explaining that there are two main kinds of interactive WHILE

loops, one in which the input statement is at the beginning of the
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loop and one in which the input statement is at the bottom of the

loop.

In addition, the tutor may decide that a student should

understand the serious effects of a bug before teaching the student a

plan that avoids the bug. In this case the tutor would establish a

Knowledge Precondition objective to make the student aware of the

effects of the bug.

Finally, tutors understand that poor students can become

discouraged when they solve difficult problems. Tutors may begin a

tutoring session with a bug that will be easy to fix and inspire the

student with confidence from the success before proceeding to more

difficult bugs. Equally, tutors know that good students often get

bored when the work becomes too easy; to prevent boredom tutors

may have the session management objective of sparking the

student's interest and so begin the tutoring session with a difficult

bug.

. Diagnostic Obiectives: As Figure 3.14 shows, diagnostic

objectives are either exploratory or confirmatory. A tutor who has

no idea why a student made one, or several similar, bugs would

establish the objective to explore causes. For example, the four

malformed update bugs in Figure 3.5 (BUG 2, BUG 3, BUG 4, and BUG

5) would lead a tutor to explore why the student made the bugs. On f
the other hand, if the tutor had a strong hypothesis about why a

student made a bug -- such as the misconception that the scope of a

WHILE loop includes any sequence of BEGIN/END blocks -- then the

tutor would establish a diagnostic objective to confirm that this

misconception is the cause. il
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In sum, there are four main types of objectives which tutors

can establish as part of a tutorial plan. First, teaching objectives

are intended to provide the student with some kind of knowledge or

to correct existing beliefs. Second, tutors often help students fix

their programs. In addition to focusing on the code, this frequently

means fixing the program from the perspective of the plans the

studer 4 has used or the goals the student has attempted to solve.

Third, session management objectives control the order of topics

and the interest of the student in the tutoring session. Finally,

diagnostic objectives are established when the tutor wants to

determine the cause of some action of the student.

II
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OBJECTIVE TYPE

Teaching Fix Program Dagostic

1 \ 1 Session management"'lt, Eliminate Code PonnrGoal
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Preconditions
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Knowledge
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Make Student Aware

Existence of Bug Effects of Bug

Figure 3.14: Objective Types
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2.1.3.2. Objective Selection Rules

Tutorial objectives are established in two ways. One set of rules

for establishing tutorial objectives depends upon the type of group

to which the objective is being assigned. A second set of rules

assigns session management objectives to any type of groups.

2.1.3.2.1. Objective Selection Rules Based On Group Type

Figure 3.1 displays the types of groupings that tutors place bugs

into. Each of the groupings requires different objectives.

Objectives that depend upon the type of grouping are organized in

packets that handle special cases. For example, the following rule

assigns an objective to a bug group in which the student has made a

correct repair to an initial bug:

OBJECTIVES:GOOi-REPAIR1

I F BUGGROUPTYPE Is repair

AND the repair Is good

THEN Assign the objectives

Teach Preferred Plan

OBJECTIVES:GOOD-REPAIR1 means that if the student has

corrected one bug with an inelegant patch, then the tutor should try

to teach the student a better way to achieve the task specification

goal that led to the initial bug. The next rule handles the case in
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which the student has repaired an initial bug but the repair does not

work:

OBJECTIVES:BAD-R EPAIR1

IF BUGGROUPTYPE is repair

AND the repair is bad

THEN Assign the objectives

Make Student Aware of Repair Failure

Teach Preferred Plan

This rule assigns two objectives to a group in which the

student has made an unsuccessful repair to an initial bug. First, the

tutor should make sure that the student is aware of the fact that the

repair is not good. The assumption is that the student did not know

that the repair was incorrect and needs to see that it is, and why.

Once the student knows that the repair is bad, then the tutor should

try to teach a new plan that avoids the bug that led to the need for

the repair. Thus, OBJECTIVES:BAD-REPAIR1 is like OBJECTIVES:GOOD-

REPAIRI with the exception that the tutor first makes sure that the

student knows that the attempted repair does not fix the original

bug.

Figure 3.15 shows examples of rules that assign objectives to j
groups according to the type of group. Each of the example rules is

one of several rules that assign objectives for groups of that type.

As the example rules show, the rules depend upon the group type, as

well as upon features of the bugs in the group. For example, the

third rule, OBJECTIVES:SINGLETON1, which is one of the rules that
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assigns objectives to Singleton groups, uses the type of cause of the

bug to assign tutorial objectives. The rule shown in the figure

handles the case in which the cause of the bug is a misconception.

This cause leads to a teaching objective to eliminate the

misconception, one of the types of objectives shown in Figure 3.14.

GROUP TYPE EXAMPLE OBJECTIVE ASSIGNMENT RULES

OBJECTiVES:GOOD-REPAIR1
IF BUGGROUPTYPE is Repair

AND the repair is good
GOODREPAIR THEN Assign objectives

1. Teach Preferred Plan

OBJECTIVES:SAME-PLAN.COMPONENT1
IF BUGGROUPTYPE is Same Plan Component

AND the plan component Is housekeeping
AND the group is Definitely Tutor

SAME PLAN COMPONENT THEN Assign objectives
1. Identify one bug
2. Identify Preferred Plan for bug
3. Make Student Aware of remaining bugs

O1JECTIVES:SINGIETON1
IF BUGGROUPTYPE is Singleton

AND the cause of the bug is misconception
SINGLETON THEN Assign objectives

1. eliminate misconception

Figure 3.15: Examples of Rules that Assign Objectives to Tutorial Plan

I
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2.1.3.2.1. Objective Selection Rules Not Based On Group Typa

In addition to rules, based on the type of group, there are rules for

assigning tutorial objectives that are based on other features.

Aside from group type, the main reason for assigning tutorial

objectives is to provide the student with knowledge preconditions -

-one type of Session Management objective -- as shown in Figure
3.14.

For example, in the case of the student who incorrectly

initialized the counter TOTALDAYS to 1 to avoid division by zero in

the calculation of AVERAGERAIN, as shown in Figure 3.2, the tutor

may establish the objective of ensuring that the student understands

the concept of initialization, and the effects of initialization,

before helping the student with the preferred plan for guarding the

calculation of AVERAGERAIN.

Tutorial objectives can also be established to maintain a

student's motivation. For example, if the student's ability is low,

and the student has made several bugs, then the tutor may decide to

begin the tutoring session with an easy problem to stimulate the

student's interest. This problem is discussed in the section on

making Tutorial Planning Decision 4 -- when in the tutorial plan to

address bugs.

In summary, rules that assign tutorial objectives to the

tutorial plan are of two types. The first, major type of rule assigns I
objectives to groups according to the type of group. For example,

the objectives assigned to a Repair group of bugs is different from

the objectives assigned to a group of bugs which share a common
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plan component. Additional objective selection rules are based on

features of the tutoring situation beyond the type of group. These

rules assign objectives that are primarily directed toward managing

the tutorial session.

3.2.1.4. Tutorial Planning Decision 5: STRATEGY

Tutorial Planning Decision 5 requires the tutor to select strategies

to achieve tutorial objectives. For example, a tutor might have the

objective of making sure that the student is aware of the effects of

a particular bug, say a missing guard against division by zero in the

calculation of AVERAGERAIN; this bug is shown as BUG 6 in Figure

1.1. If the objective is to make the student aware of the effects of

the missing guard against division by zero, then the tutor might

employ the strategy of asking the student to hand simulate the part

of the program after the loop, where the calculation of

AVERAGERAIN is performed. The tutor would ask the student to

hand simulate the program segment in the case where the user does

not enter any data. This strategy will cause the student to attempt

the division by zero and will make it possible to lead the student to

see the effect of the missing guard, namely a runtime error caused

by the attempt to divide by zero.

The purpose of this section is to describe the tutorial

strategies that tutors know about and to show rules that govern the

selection of strategies to achieve tutorial objectives. The section is

divided in two subsections. The first subsection describes the
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strategies that tutors use. The second section describes the rules

that are used to select strategies.

2.1.4.1. Knowledge of Tutorial Strategies

Figure 3.16 shows the four main strategies that tutors use to

achieve their objectives when they assist programming students.

Each of the strategies can be performed in one or more situations,

which are designated by the branches emerging from each of the

strategies. For example, a tutor might ask a student to justify

either a plan for a goal that the student has stated, e. g., the goal of

calculating a total for TOTALRAINFALL, or to justify a goal for a

particular task specification, e. g., to find the average amount of

rain that fell in a designated period. The purpose of this section is

to describe the four main strategies that tutors use to help

programming students. Each of the four strategies is described and

examples are given of the most important cases.

Ssiy: Tutors ask students to justify their actions when

they want the student to understand why an action is correct, or to

discover why an action is incorrect. For example, a student might

have added one to TOTALRAINFALL on each iteration of the loop,

rather than adding in each new value of DAILYRAIN. In this case, the

tutor might ask the student to justify the use of the "add 1" plan for

the running total with the expectation that, as the student attempts

to formulate the justification, the bug will be detected. This case J
of the justification strategy is indicated by the leftmost leaf in

Figure 3.16.

114



The second reason for using the justify strategy arises when

the student has misinterpreted a task specification, defined an

incorrect goal to achieve, and used the appropriate plan for the

incorrect goal. For example, some students misinterpret the

Rainfall Assignment to mean that AVERAGERAIN should be the

average amount of rain that fell on days when it rained. The student

then divides TOTALRAIN by RAINDAYS to calculate AVERAGERAIN.

Thus, the student's goal is wrong but the plan for the student's goal

is appropriate. In this situation a tutor might ask the student to

justify the calculation of the average rainfall for rainy days. The

tutor expects that the student will detect the error as the

justification for the goal is formulated.

SExp.ain: Tutors ask students to explain some aspect of the

program when they want the student 1) to articulate what the

program does and 2) to draw some conclusions from the description

e. g., that the program does the wrong action. In contrast to the

strategy of justification, which focuses c the reasons for an

action, explanation focuses on the actions.

For example, if a tutor wanted to make the student aware of

the fact that the wrong variable is output in BUG 7 in Figure 1.1, the

tutor might ask the student to explain "what that line of code is

doing'. The student would probably reply with the statement that

the code is printing out the number of rainy days. The tutor would

then ask the student to explain how that number is written out. The

student at this point would probably detect the fact that the value

of the wrong variable was being printed out. If the tutor used the

strategy of justification, the tutor would probably ask the student
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why the student printed out the value of RAINFALL in the output

statement with the expectation that the student would immediately

see that RAINFALL is the wrong variable.

S lmul3: Tutors ask students to simulate their programs,

or segments of their programs, when they want the student to obtain

information about the behavior of the program. There are two types

of simulation, indicated by the two branches stemming from

Simulate in Figure 3.16.

First, tutors ask students to hand simulate programs with

particular values for certain variables. For example, the tutor might

ask the student to simulate a Rainfall Program when the only value

the user enters is 99999, the sentinel. In this case the tutor would

want the student to detect the division by zero error at the

calculation of AVERAGERAIN because TOTALDAYS would still be 0,

its initialization value.

The second kind of simulation does not depend upon specific

values for variables. The tutor asks the student to simulate the

flow of actions in the program, labeled as Simulation of Goals in

Figure 3.16. For example, the tutor might want the student to detect

the misplaced update of a variable, such as BUG 5 in Figure 1.1. The

tutor would ask the student to describe the sequence of actions that

occurs in, and after, the WHILE loop of the program. The tutor does

not care about any particular values of variables. Rather, the tutor

wants to help the student to understand the order in which events

occur i. e., goals are satisfied and how this affects the update of the J
TOTALRAIN.
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Sim2Lify: Tutors asks a student to work on a simplified

form of a problem when the student is confused or the tutor is

trying to determine why the student made a bug. As Figure 3.16

shows, there are three types of simplification: of concepts; of plans;

and of goals. Each of these three types of simplifications can be

used for two reasons.

First, if the student is confused by an issue and the student's

program is too complex to illustrate the issue, then the tutor might

use a simplification. For example, if the student is confused about

the concept of the scope of the WHILE loop, which is needed for the

Rainfall Assignment, the tutor may construct a simplified WHILE

loop, perhaps with only an input and an output statement. Using this

simplified example, the tutor might progressively add statements to

the loop until it satisfied the Rainfall Task Specification. At each

step the tutor would make sure that the student understood the

effects of the new additions.

Second, tutors simplify when they want to determine why a

student made a oug. For example, the student who made the

malformed updates shown in Figure 3.5 is confused about several

issues which are not apparent from the malformed code. Tutors in

the Questionnaire Study said that they would try to find out what

the student knows about assignment, updating, and running totals by

f using a simple version of them, asking the student questions about

the behavior of the code, and progressively adding complexity until

the cause of the bug was identified.
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STRATEGY TYPE

Simulate Simplify
Justifyj~Explain

EConcept 
Plan Goal

AValues Goals

Plan for Goal Goal for Spec

Plnfor Code

Goal for Plan

Figure 3.16 Strategy Type

2.1.4.2. Rules that Select Tutorial Strategies

The foregoing discussion of the four strategies presented examples

in which the tutor requested the student to justify, explain,

simulate, or simplify. In addition to requesting the student to

perform an action, such as simulating a section of code, tutors also

provide justifications, explanations, simulations, or solutions to

simplified problems.

For example, the tutor may want the student to draw

conclusions from the behavior of the processing loop in a buggy

Rainfall Program. However, because the student is weak, the tutor I

does not believe that the student can 1) perform a simulation of the
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loop, 2) observe the result of the simulation, and 3) .

conclusions from the simulation. In this case, the tutor might

perform the simulation for the student and even direct the student's

attention to relevant aspects of the simulation with the goal of

supporting the student in drawing the desired conclusions e. g., that

the update of TOTALRAIN occurs only once, after the main loop is

finished, as is the case for BUG 5 in 1.1.

2.1.4.2.1. Selecting Tutorial Stratlee,

The rules that select a tutorial strategy must make two decisions.

First, the rules must select the appropriate tutorial strategy i. e.,

justify, explain, simulate, or simplify. Second, the rules must

determine how much assistance to provide the student i. e., should

the tutor ask the student to perform a hand simulation of a segment

of code or should the tutor provide the simulation for the student?

The purpose of this section is to describe how the two decisions are

made.

Figure 3.17 shows how the selection of the four tutorial

strategies depends upon the objective that the tutor wants to
achieve. The following examples describe situations in which each

tutorial strategy is appropriate to the tutor's objective and states

one of the rules that is used to select the strategy in that situation.

Each objective has more than one associated rule that covers the

F various cases that arise for that objective. The rule shown here for
each objective is intended to be a straightforward example.
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ObJective -- Make Student Aware of Effects of Bua: If the

tutor's objective is to make the student aware of the effects of a

bug, such as the spurious initialization of RAINFALL shown as BUG 1

in 1.1, then the tutor would focus the student's attention on the

behavior of the program and select the strategy of simulation. A
rule for selecting the strategy for the objective of making the

student aware of the effects of a bug is:

STRATEGIES:MAKE-STUDENT-AWARE-EFFECTSI

IF Objective Is Make Student Aware of Effects of Bug

THEN Assign the strategies

simulation

This rule simply says that if the objective is to make the

student aware of the effects of a bug, then use the strategy of hand

simulation.

* Obiective -- Teach Student a Plan: If the tutor has the

objective of teaching the student a plan for a goal, such as using an

interactive loop to calculate a running total, the tutor would want

the student to focus on the relationship between a goal (calculate a

running total) and plans for doing so (using an interactive loop).

This would lead the tutor to choose the strategy of explaining the

connection beginning, perhaps, with simplifications of the plan. A

rule for selecting the strategy for the objective of teaching the

student a plan is: 1
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STRATEGIES:TEACH-PLAN1

I F Objective Is Teach Student Plan for Goal

THEN Assign the strategies

explain how subgoals correspond to plan components

OPTIONAL: use simplifications

This rule says that if the objective is to teach the student a

plan for a goal, the the focus should ze on explaining the way in

which the goal's subgoals are implemented by the components of the

plan. For example, the goal to calculate a running total has several

subgoals which are implemented by components of the Running Total

Plan. That is, the plan component that performs the addition

corresponds to the "add in consecutive values of input variable to

summation variable" subgoal; the plan component that inputs a new

value corresponds to the "get a new value" subgoal; the plan

component which checks for a termination condition corresponds to

the "stop when input ended" subgoal. The second clause of the THEN

statement in the rule says that it may be necessary or useful to use

simplifications of both the goals and the plans in addition to

explaining the how the full plan implements the entire g al.

Obiective -- Eliminate Misconception: If the tutor's

objective is to disentangle a student's confusions about doing

updates of variables, the tutor might 'begin at the beginning" and ask

for an explanation of the student's beliefs about updates. Then t,.i

tutor might ask the student to solve a progression of update

problems ranging from very simple to more complex. One of the
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rules for selecting the strategy for the objective of eliminating

misconceptions is:

STRATEGIES:ELIMINATE-MISCONCEPTION1

IF Objective is Eliminate Misconception

THEN Assign the strategies

use simplified counterexample

explain Incorrect concept

explain correct concept

This rule says that if the objective is to help a student to

eliminate a misconception, then the tutor should generate a

counterexample that shows the problem with the student's beliefs,

then explain the incorrect concept, and finally, to explain the

correct concept. As will be seen in the discussion of the second

decision required for strategy selection, namely how much help to

provide the student, assigning the strategy nexplain" can result

either in the tutor providing an explanation of the incorrect concept

(clause 2 of the THEN statement in the rule) or asking for an

explanation of the belief from the student.

Obiective -- Fix Program Plan: If the tutor has the

objective of helping the student to fix a program plan, such as j
calculating AVERAGERAIN in the correct location after the loop

rather than inside the loop, the tutors objective will be to focus on

the connection between the location feature of the student's plan

and the location feature of the task specification goals. The tutor

will therefore select the strategy of justification of the plan 3
122 I



location, perhaps with an explanation of why one location is

preferred over another. For example, the tutor might ask the student

to justify the necessity of calculating AVERAGERAIN in the loop and

then might provide an explanation of why placing the calculation in

the loop is not necessary. A rule for selecting the strategy for the

objective of fixing a plan in the student's program is:

STRATEGIES:FIX-PROGRAM-PLANI

IF Objective is Fix Program Plan

THEN Assign the strategies

justify the current plan

OPTIONAL: explain why unpreferred

justify preferred plan

This rule says that if the objective is to help the student fix a

plan in the student's program, then the tutor should focus on the

connection between the plan and the goals it satisfies by using a

strategy of justifying the plan. Next, the tutor may work on an

explanation of why the current plan is not the one of choice. Finally,

fthe preferred plan is justified, either by the student or by the tutor.

* Objective -- Diagnose Reason for Bug: Finally, the tutor may

have the objective of diagnosing the reason that a student made oneror more bugs. For example, if the tutor wants to discover why the

student made the four malformed update bugs shown in Figure 3.5,

[- the tutor would want to focus on the student's beliefs about

updating variables. This leads to selection of the strategy of asking

for an explanation of the student's beliefs and perhaps asking the
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student to solve some simplified updating problems. A rule for

selecting the strategy for the objective of diagnosing the reason a

student made one or more bugs is:

STRATEGIES:DIAGNOSE-CAUSE1

I F Objective is Diagnose Cause of Bug

THEN Assign the strategies

ask student to explain

the goal the student was attempting to solve

the reason for plan In which bug is found

the reason for code In which bug Is found

OPTIONAL: use simplification

OPTIONAL: use justification

This rule says that if the objective is to determine why a

student made a bug then (the student will) explain the reason for

writing the undiagnosed code, selecting the wrong plan, and trying to

achieve the incorrect goal; Two clauses specify optional strategies

that may help to achieve a diagnosis. For example, sometimes

asking the student to solve a simpler case of the goal that led to the

bug can provide useful diagnostic information.

1i
124 ,:'



TUTORIAL OBJECTIVE FOUS STRATEGY

Make Student Aware of behavior of program simulation
Effects of Bug

Teach Plan connection between explain (+ simplify)
goal and plans

Eliminate Misconception student's beliefs explain (+ simplify)

Fix Program Plan connection between justify (+ explain)
plan and goals

Diagnostic student's beliefs explain (+ simplify)
justify

Figure 3.17: Basis for Selecting Strategies

2.1.4.2.2. Deciding How Much Help to Give

The decision about how much help to give the student is a

straightforward function of 1) the importance of what is being

tutored (the object of tutoring e. g., the scope of a WHILE loop) and

2) the difficulty of tutoring what is being tutored, which was

described in the section on Tutorial Planning Decision 2 and is

presented in Figure COMPUTFEATI.1

t The general problem of combining features to derive a numerical value is complex. The
Issue was resolved in the dissertation by using a simple linear sum of the component
features. This scheme is sufficient to make tutorial planning decisions that result In
reasonable tutorial plans, as discussed In Chapter 6.
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The importance of the object of tutoring is computed from the

importance of 1) the task specification, 2) programming knowledge

involved, 3) causes of bugs and 4) effects of bugs. Each of these

kinds of knowledge has a primitive feature that defines its

importance. For example, the calculation of AVERAGERAIN, one goal

in the task specification for the Rainfall Assignment, is more

important than the goal of initializing the counter for RAINDAYS;

knowledge of iteration and how to use a WHILE loop to make an

interactive program is more important than knowledge of runtime

errors that result from division by zero; a bug which is caused by a

misconception is more important than the same bug caused by a slip;

a bug which has a pervasive effect, such as infinite looping, is more

important than a bug which has minor effects, such as the counter

for TOTALDAYS being off by one. The calculation of the importance

of the object of tutoring is a simple sum of the importance of the

four components.

There are two possible values for the amount of help to give to

the student, namely Request and Give. (Perkins and Martin, 1986

discuss several issues bearing on how much help to give students.)

For example, if a tutor wants a good student to reason about the

results of a simulation of the main loop in a Rainfall Program, the

tutor would ask the student 1) to perform the simulation and 2) then

describe "what is going on?". If the tutor wants a weak student to

reason about the results of a simulation of the main loop, the tutor

would perform the hand simulation for the student, making sure

that the student knows what values the variables take on, and would
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then ask the student "what is going on?" to lead the student to draw

conclusions from the result of the simulation.

The intuition behind the decision about how much help to give

the student is expressed in the following general rule:

STRATEGIES:SELECT-HELP-LEVEL

IF Student Is weak on strategy

AND the strategy Is not the object of tutoring

THEN Assign help level GIVE to strategy

This rule says that students should not be made to do actions

which are both 1) not the focus of tutoring and 2) likely to interfere

with helping the student to understand the focus of tutoring.

For example, suppose a student has placed the calculation of

AVERAGERAIN in the main loop. This is unnecessary because the

calculation of AVERAGERAIN needs to be done only once after the

termination of the main loop. The tutor's objective is for the

student to select an alternative plan for the calculation of

AVERAGERAIN, namely placing the calculation of AVERAGERAIN after

the main loop. The tutors approach is to have the student evaluate a

justification of placing the calculation in the loop with the intent

that the student will see that placing the calculation in the loop is

redundant. If the student is weak, the tutor might provide a false

justification of the placement of the calculation in the loop by

saying that AVERAGERAIN must be calculated on each iteration of

the loop. The student should recognize that the tutor's statement is

false and then select the plan of placing the calculation of ]
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AVERAGERAIN after the main loop. If the student were strong, the

tutor might ask the student both 1) to justify placing the calculation

of AVERAGERAIN in the loop and 2) to select an alternative plan for

the calculation.

It should be noted that a strategy itself can be the focus of

tutoring. For example, tutors frequently teach students how to hand

simulate their programs, a skill that is important for program

testing and debugging. If the strategy itself is the object of

tutoring then the foregoing description of whether tutors request

the student to perform a strategy or give the student the "answer"

depends upon how important the strategy is to teach (they all are

important) and how hard it is to teach (simplification is especially

hard to teach). The foregoing analysis of how the decision is made

applies to strategies when they are objects of tutoring.

In summary, this section has described four tutorial strategies

that are widely used by tutors. The four strategies described in

this section are justification, explanation, simulation, and

simplification. Tutorial strategies are selected according to the

tutor's objectives. In addition to deciding which strategy to use to

attain a tutorial objective the tutor must also decide how much help

to give the student with the strategy. The general rule for deciding

how much help to give the student with the strategy holds that the

performance of the strategy e. g., hand simulation should not

interfere with the main objective of the tutoring e. g., teaching the

student about the scope of a WHILE loop.

3.21 .5- Summary
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The five Tutorial Planning Decisions comprise the tutor's knowledge

about tutorial planning. Making each of the tutorial decisions

results in further specification of the tutorial plan. The tutorial

plan specifies

" which bugs should be addressed together: Tutorial Decision 1.

* which bugs to tutor: Tutorial Planning Decision 2.

* what order to tutor bugs in: Tutorial Planning Decision 3.

" what to accomplish in tutoring the bugs: Tutorial Planning

Decision 4.

* how to tutor each bug: Tutorial Planning Decision 5.

The five Tutorial Planning Decisions depend upon three

categories of knowledge, namely knowledge about students,

knowledge about the domain, and knowledge about bugs. Each of the

foregoing categories has several types of knowledge within it. For

example, knowledge of causes of bugs, locations of bugs, and effects

of bugs are all in the category of knowledge about bugs. These three

categories of knowledge were defined in the previous chapter.

3.3. Chapter Summary

This chapter has described tutorial knowledge about teaching, the

fourth of the categories of knowledge identified in Figure 2.3. The

main focus of this chapter was on the Five Tutorial Planning

Decisions and how the knowledge described in the previous chapter

is employed to make them.
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The next chapter gives an overview of the generation of

tutorial plans. The overview of tutorial plan generation makes the

point that there can be many different plans for the same buggy

computer program and that the plan that is generated depends upon

1) the tutorial planner's knowledge and 2) the tutorial planner's

control structure. The subsequent chapter describes TP, the

computer program that uses the knowledge described in this and the

previous chapters to generate tutorial plans for multi-bug novice

programs.

1

I
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Chapter 4

TUTORIAL PLANS AND TUTORIAL PLANNERS

4.1. Introduction

Previous chapters have introduced the issue of multiple bugs,

identified the five Tutorial Planning Decisions that confront a

tutorial planner that must cope with multiple bugs, and described

the main types of knowledge that are brought to bear on the five

Tutorial Planning Decisions. Along the way, fragments of tutorial

plans were described and some rules that might guide tutorial

planning were suggested. There is, of course, more than one

possible tutorial plan for any multi-bug program. Some plans are

very simple, some are complex. Generating very simple tutorial

plans does not require much complexity of knowledge or control

structure. On the other hand, more complex tutorial plans, which

would help students more than a simple plan, require much more

knowledge and more complex control structures to generate.

The purpose of this chapter is to give an idea of different

kinds of plans that tutorial planners might generate and to display

the knowledge and control structures that would be necessary to

generate them. This chapter illustrates, for the same set of

multiple bugs, tutorial plans that vary in complexity. The discussion
presents a progression of four tutorial plans for the set of bugs. The
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progresssion begins with a very simple plan and ends with one that

is much like the plan that human tutors generate. After the four

tutorial plans have been described, the control structures and

knowledge required to generate each of them are discussed. Finally,

the relationship between variability and tutorial planners is briefly

discussed.

The main purpose of this discussion is to prepare the reader

for the next chapter which describes TP, the tutorial planner that is

the focus of the dissertation. As the reader might anticipate, the

fourth, most complex, tutorial planner described in this chapter is

similar to TP.

which to tutor ordering grouping strategy

Plani ALL LINEAR NCNE CANNED

Plan2 important LINEAR NCNE CANNED

Plan3 important clean up first N CANNED

Plan4 important first clean up then lead in lead in to import, bug based on stud. ability

Figure 4.1: Attributes of Plans and Four Example Plans
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4.2. Tutorial Plans

The following discussion uses the program shown in Figure 3.6 to

illustrate different plans for the same bugs. Although the student

who wrote the program made nine bugs, only six are considered in an

effort to keep the following discussion as simple as possible. The

discussion builds up from a simple tutorial plan that an experienced

tutor would probably not use to a plan that a human tutor might use

to help the student who wrote the program. The first plan is very

much like one that the original PROUST (Johnson, 1985) would use.

The second plan is slightly different in that it makes some decisions

about which bugs to tell the student to work on. The second plan is

similar to the one that PROUST, enhanced by a few very simple rules

for managing multiple bugs, might use (See Appendix I). The third

and fourth plans are more complex than any so far used with

PROUST, or any similar tutoring system.

The differences between the four tutorial plans is shown in

Figure 4.1. The columns represent the attributes of the tutorial

plans that we have been considering. The rows indicate the values

of the attributes for each of the plans Entries in capital letters

mean that the tutorial planner does not reason about the attribute at

the head of the column and that decisions about the attribute are

fixed by the program's control structure. Entries in lower case mean

that the tutorial planner does reason about the attribute. For

example, the attributes of Plan 1 are determined by the control
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structure of the tutorial planner. Plan 4, on the other hand, is

generated by reasoning about all four attributes.

Plan 1: The simplest plan tutors all the bugs, uses the

ordering rule of starting at the top of the program and tutoring bugs

in the order they appear, and simply prints out some canned text that

is associated with each of the bugs in a library of bugs. Plan 1 is

not especially good for several reasons, which are addressed in the

descriptions of the following plans.

Plan 2: In Plan 1, all the bugs are tutored. This is not always

advisable. For example BUG 5 and BUG 6 are missing guards on the

output of Average and Maximum. These bugs are not very important

because they only arise in the case when the user of the program

starts it up and then immediately enters the sentinel. In addition,

the idea of making sure undefined values are reported as such is not

a key concept in an introductory programming course, especially

when compared to other problems the student who wrote the

program apparently has. Therefore, the first improvement that can

be made on the first tutorial plan is to decide which bugs to tutor.

In Plan 2, BUG 5 and BUG 6 are not tutored.

Plan 3: In Plan 2, the bugs are still tutored in the order in

which they appear in the program. In Plan 3, however, the tutor

tries to eliminate aspects of the program that make it hard to tutor

the student because the behavior of the program is hard to

understand. One problem that makes the behavior of the program

hard to understand is BUG 3, the missing statement to read a new

value of RAINFALL in the loop. This causes an infinite loop that may

confuse the student. In Plan 3, the tutor picks BUG 3 to tutor first
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with the idea that cleaning up the output of the loop will make it

easier to work on the bug that is the real problem, the student's

misunderstanding about how loops work, which leads to the

misplaced update below the loop.

Plan 4: Sometimes getting a student to think about one bug

facilitates the tutoring of a second bug. In Plan 3, no attempt is

made to use one bug to facilitate the tutoring of another bug. For

example, BUG 4, the misplaced update of TOTALRAINFALL, suggests

that the student does not understand the scope of a WHILE loop.

Perhaps the student thinks that any sequence of BEGIN/END blocks

following a WHILE statement is executed in the scope of the WHILE

statement. If the tutor could focus the student's attention on the

true behavior of the loop before tutoring the misplaced update, that

would lead the student to see what the loop actually does and maybe

even to identify BUG 4 without the tutor's help. Plan 4 thus is

different from Plan 3 in two ways. First, the tutor uses BUG 2, the

unconditional update of RAINDAYS, a bug that is easy to understand

and to fix, as a way to focus the student's attention on the loop:

these two bugs are therefore grouped together. Second, instead of

just reporting to the student some canned text associated with the

bug, the tutor uses a strategy of asking the student to simulate

several iterations of the loop and to keep track of the value of

RAINDAYS when RAINFALL is positive on some iterations and 0 on

others. Finally, if there is any time left in the tutoring session, and

it has gone well, the tutor might work on the unguarded outputs with

the idea of teaching the student about the idea of boundary

conditions.
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In short, there is a range of corrlexity for plans that could be

used to organize the tutoring for a student who makes several bugs.

Some plans are very simple and do not require any reasoning about

issues such as bug importance or relationships among bugs; others

must be constructed by tutorial planners that can reason about

various kinds of knowledge, such as the importance of bugs,

strategies to use with bugs, and so forth. The following section

describes planning mechanisms that ge ite the foregoing plans.

4.3. Tutorial Planners

This section describes the four algorithms that generate the four

tutorial plans described in the previous section and indicates the

types of knowledge that are required by the tutorial planners. The

algorithms, and the types of knowledge required for them to operate,

are shown in Figure 4.2. As will be seen, the algorithms that

generate the more sophisticated plans are correspondingly complex.

Tutorial Planner 1: Tutorial Planner 1 does not appeal to

any knowledge to generate its plan. All the "knowledge" of the

planner resides in its control structure. The planner simply starts

with the first bug in the student's program, associates the

appropriate canned text with the bug, and continues until there are

no more bugs in the student's program. The control structure for

this planner is shown in Figure 4.2. Alongside the description of the

control structure is a list of the knowledge required for the tutorial

planner to operate. As can be seen, Tutorial Planner 1 does not
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require any knowledge and the tutorial plan is generated as a direct

result of its control structure.

Tutorial Planner 2: As the algorithm for Tutorial Planner 2

shows, this tutorial planner makes a single decision about each bug

in the student's program. This decision is whether the bug is

sufficiently important to tutor. In the case of the program shown in

Figure 3.6, the decision about bug importance requires the tutor to

reason about whether the concepts that the student must understand

to avoid the bug in the future are important enough to justify

tutoring. For example, the tutorial planner decides that the concept

of unlikely boundary conditions, implicated by BUG 5 and BUG 6, are

not important enough to justify tutoring. On the other hand, the

student's problem with the concept of the scope of a loop is

important enough to justify tutoring.

Tutorial Planner 3: Tutorial Planner 3 makes two decisions.

In addition to deciding about the importance of bugs, Tutorial

Planner 3 determines which bugs interfere with the tutoring of

other bugs. In the case of the program shown in Figure 3.6, the

tutorial planner decides that the infinite loop caused by the missing

READ(RAINFALL); statement could make it difficult to tutor the

misunderstanding about the scope of loops that leads to the

misplaced update of TOTALRAINFALL. Thus, the tutor decides to

clean up the infinite loop before tackling the misplaced update.

Tutorial Planner 4: In addition to bug importance and

tutoring interference, Tutorial Planner 4 reasons about several

additional issues. First, Tutorial Planner 4 reasons about which

bugs are hard to tutor and, therefore, how to use bugs that are easy
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to tutor to lead up to bugs that are hard to tutor. Second, Tutorial

Planner 4 reasons about which strategies are effective in tutoring

bugs. As the description of the control structure for Tutorial

Planner 4 shows, this introduces considerable complexity. The tutor

first reasons about how to use easy bugs to lead up to important

bugs that are hard to tutor. Next the tutor must decide what

strategies to use for bugs so that 1) the bugs that interfere with

tutoring hard bugs can be quickly fixed and 2) the strategies for bugs

that are intended to lead up to the hard, important bugs are

compatible with the strategies for the hard, important bugs. Then

the tutor reorders bug groups so that the interfering bugs come early

and reorders bugs within bug groups so lead in bugs come before hard

bugs.

I
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TUTORIAL PLANNER CONTROL STRUCTURES KNOWLEDGE USEr

Tutorial Planner I
For each bug in BUGS

Get canned text for first bug NONE
Add bug and canned text to TUTORIALPLAN

Tutorial Planner 2
For each bug in BUGS

If first bug is important Then IMPOF ANCE
Begin

Get canned text for first bug
Add bug and canned text to TUTORIALPLAN

End

Tutorial Planner 3
For each bug in BUGS

Begin
If first bug is important Then

Begin IMPORTANCE
Get canned text for first bug TUTORING INTERFERENC
Add bug and canned text to TUTORIALPLAN

Erd
Erd
Reorder bugs in TUTORIALPLAN such that:

If fixing BUG-X makes BUG-Y easier understand
Then put BUG-X before BUG-Y in TUTORIALPLAN

Tutorial Planner 4
Begin
Make groups of bugs in BUGS such that: IMPORTANCE

easy bugs lead up to TUORING INTEFFEREN
important bugs that are hard to tutor TUTOF ING DIFFICULTY

Add groups of bugs to TUTORIALPLAN LEADII G TO HARD BUGS
Select strategies for groups in TUTORIALPLAN such that: STRATEGIES

clean up bugs can be quickly fixed
strategies for lead in bugs compatible with

strategies for Important bugsI Reorder between bug groups in TUTORIAL_PLAN such that:
clean up bugs are before important bugs

Reorder within bug groups in TUTORIAL.PLAN such that:
lead in bugs come before important bugs

Mark groups of unimportant bugs *tutor if time remains'
End

Figure 4.2: Control Structures and Knowledge for Planners
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4.4. Tutorial Plans, Tutorial Planners, and Variability

Chapter 1 showed that two types of variability -- inter-subject

variability and contextual variability -- can affect how a tutor

approaches a student's bugs i.e., the plan that the tutor formulates.

The purpose of this section is to identify key relationships between

the two types of variability and the characterization of tutorial

plans and tutorial planners presented in this chapter. This

discussion compares the impact of the two types of variability on

Tutorial Planner 1, the simplest tutorial planner described in this

chapter, and and Tutorial Planner 4, the most complex tutorial

planner treated in this chapter.

It is somewhat ironic that simple tutorial planners, and the

simple plans that they generate, are less affected by the two kinds

of variability than more complex tutorial planners and plans.

Tutorial Planner 1, for example, is adversely affected by variability

only to the extent that its library of bugs is incomplete. Because

Tutorial Planner 1 uses the same ordering strategy -- textual order

-- for all bugs, and the same tutorial strategy -- printing out canned

text -- the problems of 1) grouping together non-consecutive bugs,

and 2) using different strategies for the same bug depending on the

other bugs it appears with, do not arise. Thus, if the bugs for which

Tutorial Planner 1 must develop a tutorial plan are represented in

its bug library, Tutorial Planner 1 is completely unaffected by either

type of variability.
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For example, Tutorial Planner 1 would treat BUG 1 in Figure 1.5

in the same way regardless of the other bugs the student made. In

both cases, Tutorial' Planner 1 would address BUG 1 first and output

the same canned text. Tutorial Planner 1 cannot reason that BUG 1

in the second program in Figure 1.5 should be addressed with the

other bugs in the plan to find the maximum of RAINFALL and not with

the other missing initializations. Indeed, Tutorial Planner 1 has no

understanding of programming plans, similar bugs, alternative

strategies, and so forth. Thus, the rigid control structure of

Tutorial Planner 1 reduces the problem of variability to the problem

of how many bugs it has in its bug library.

At the other extreme, Tutorial Planner 4 is affected by both

inter-subject variability and context variability. Inter-subject

variability affects Tutorial Planner 4 because Tutorial Planner 4

does not rely on a rigid control structure and a library of bugs with

canned advice for the student. Rather, Tutorial Planner 4's control

structure uses many types of knowledge to create a tutorial plan:

Tutorial Planner 4 uses a representation of the task specification in

terms of its goals and associated plans; a representation of various

aspects of the curriculum, such as the importance of e.g., iteration;

knowledge about what makes bugs hard to tutor; knowledge about

$ appropriate groupings of bugs, appropriate orderings of bugs, and so

forth. Thus, Tutorial Planner 4's ability to handle inter-student

variability depends on far more than a simple, fixed library of bugs

with canned text designed to help the student with the bugs.

Context variability requires Tutorial Planner 4 to reason about

( the relationship of a particular bug in a student's program to the
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other bugs in the student's program. The reasoning that Tutorial

Planner 4 may have to do to handle context variability can depend on

the task specification network; the types of effects of different

bugs; plan components that bugs have in common, and so on. For

example, the two programs shown in Figure 1.5 contain in common,

among others, BUG 1, the missing initialization of MAXRAIN. As the

discussion in Chapter 1 suggested, BUG 1 fits d -Ierently into the

tutorial plan depending upon whether it is 1) similar in type to other

bugs (the missing initializations 3hown in the first program in

Figure 1.5) or part of the same task goal (the incomplete, incorrect

plan to find MAXRAIN shown in the second program in Figure 1.5).

4.5. Chapter Summary

In sum, there are many possible tutorial plans for the same set of

multiple bugs. The possible plans range from very simple to quite

sophisticated. 7 -) control structure required to generate

sophisticated tut_ al plans is more complex than the control

structure required to generate simple tutorial plans. In addition, the

generation of more complex tutorial plans requires more knowledge

than the generation of simple tutorial plans. The increased

knowledge required to generate sophisticated tutorial plans requires

a tutorial planner to handle both inter-student variability and

context variability. A primary goal of the dissertation is to

construct a tutorial planner that produces tutorial plans that are

like those produced by experienced human tutors. The next chapter
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describes TP, the tutorial planner implemented in a computer

program, that generates human-like tutorial plans for novices'

multi-bug computer programs.

1I
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Chapter 5

THE TUTORIAL PLANNER: TP

5.1. Introduction

TP is the computer program that generates tutorial plans for

multiple bugs like the tutorial plans that experienced human tutors

generate. TP's generation of tutorial plans is guided by its rules for

making the five Tutorial Planning Decisions described in Chapter 1

and discussed in detail in Chapter 3. The processing mechanism

that makes the five Tutorial Planning Decisions uses tutorial

knowledge in the four Knowledge Categories described in Chapter 2

and Chapter 3.

The main goal of this chapter is to describe TP. The focus of

this chapter is on 1) the way TP represents the tutorial planning

knowledge described in Chapter 2 and Chapter 3 and 2) the control

structure that governs how TP generates tutorial plans for multiple

bugs. This chapter contains five main sections.

First, there is a general overview of TP. The general

overview is intended to provide a synopsis of TP without burdening

the reader with too many details.

& Second, TP's knowledge is described in detail. This section

focuses on TP's knowledge about 1) the domain of novice

programming, 2) bugs, and 3) tutorial planning rules.

* Third, TP's representation of tutorial plans is described.
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* Fourth, the architecture and processing flow of TP are

described.

* Fifth, the main lessons learned from constructing the TP are

identified.

The reader who is not interested in the details of TP only

needs to read the general overview section and, possibly, the final

section, which contains examples of tutorial plans for multiple bugs.

5.2. General Overview of TP

This section provides an overview of TP. The goal is to give the

reader a general picture of 1) TP's rule knowledge about tutorial

planning, 2) TP's representation of tutorial plans, and 3) TP's

architecture. The presentation of topics in this section mirrors the

structure of the remainder of the chapter, which works oL, the

details of the topics presented in this overview section.

TP constructs a tutorial plan by making the five Tutorial

Planning Decisions. TP represents each of the five Tutorial Planning

Decisions as a Tutorial Planning Goal. TP uses a simple rule-based

planning architecture in which each of the five Tutorial Planning

Goals is achieved by applying rules specific to that Tutorial Planning

Goal. As the rules associated with each Tutorial Planning Goal fire,

the Tutorial Plan is gradually built up. The Tutorial Plan is

specified when all the Tutorial Planning Goals have been achieved.

For example, the first Tutorial Planning Decision, how to group bugs

together, has a corresponding Tutorial Planning Goal in TP. When
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that Tutorial Planning Goal is achieved, the grouping decisions are

made.

Figure 5.1 depicts the architecture of TP. The level of detail

in the figure corresponds to the description of TP given in this

general overview. The figure shows the three primary components

of TP. Each component is indicated by the underlined words along

the left side of the figure.

- INPUT. The input to TP consists of two components: 1) a list

of descriptions of the student's bugs and 2) TP's Knowledge Base,

which comprises the Knowledge Categories of Student, Domain, and

Bugs, and Teaching. The first three of these Knowledge Categories

are described in Chapter 2. Knowledge Category 4 is described in

Chapter 3. Each bug in the student's program is described by a

record structure with the fields identified below.

• PROCESSING* TP's processing is controlled by a Rule Applier

which executes rules stored in the Knowledge Base. A separate set

of rules is responsible for achieving each of the Five Tutorial

Planning Goals. The Tutorial Planning Rules depend upon the

knowledge types in Knowledge Categories 1, 2, and 3.

• QUTPUT: TP's output is the Tutorial Plan for multiple bugs.

The Tutorial Plan specifies groups of bugs, how much attention to

give to each bug, the order in which to tutor bugs, the objectives to

be achieved in the tutoring session, and the strategies to be used to

achieve the objectives.

In short, TP uses a straightforward rule-based architecture to

build a Tutorial Plan for multiple bugs. The following describes

each of the three components of Figure 5.1. The discussion of the
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output -- the Tutorial Plan -- precedes the discussion of the

processing mechanism because the discussion of the processing

mechanism describes actions performed on the Tutorial Plan i.e., the

output.
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KNOWLEDGE BASE

INPUT STUDENTSCATEGORIES 
CATEGORY: TEACHING

BUGS 1. Student F4.Rules For Five
F2. Domain Tutorial Planning
3. Bugs Goeel

RULE
APPLIER

PROCESSING 
ANISM

MECHANISM

I Tutorial
OUTPUT Plan

Figure 5.1: TP Input/Processing/Output
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5.2.1. Tutorial Planning Knowledge: INPUT

TP's tutorial planning knowledge resides in TP's Knowledge Base, as

shown in Figure 5.1. TP's Knowledge Base contains the
representation of the knowledge types in Knowledge Categories 1, 2,

3, and 4. The knowledge types in the first three Knowledge

Categories are represented declaratively. Knowledge Category 4,
TP's knowledge about teaching, is represented as rules about how to

construct tutorial plans.

5.2.1.1. Knowledge Categories 1. 2. and 3

TP's input has three categories of knowledge. The three Knowledge

Categories, discussed in Chapter 2, are knowledge about students,

knowledge about the domain of programming, and knowledge about

bugs. The purpose of this section is to describe those three

Knowledge Categories.

- Knowledge Category 1: TP's knowledge about students is

represented in record structures that have exactly the features

identified in the section in Chapter 2 which described Knowledge

Category 1, knowledge about students.

A record for an individual student contains fields for ability,

motivation, concepts mastered, and skills mastered. TP can be

initialized with different students simply by changing the values in

the fields of the student record. For example, it is possible to add

to, and delete from, a student record programming skills such as
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debugging simply by changing the values in the field corresponding

to programming skills mastered. Figure 5.2 shows a student record.

The Tutorial' Planning Rules, described below, refer to

information in the student record when constructing the tutorial

plan. For example, the student shown in the Figure 5.2 has high

ability and high motivation. Therefore, the rules that achieve

Tutorial Planning Goal 3, and make the ordering decision, would

decide to start the tutoring session with a difficult bug.

• Knowledge Category 2: TP's knowledge about the

programming domain represents the four knowledge types shown in

Figure 2.3 under Category 2:

• Task Specifications are represented as a partially ordered

graph of goals which represent precondition relationships. Each

node in the graph corresponds to a task specification goal, such as

initializing the counter for RAINDAYS. Each node in the task

specification graph identifies a goal, the preconditions for the goal,

and the actions that will achieve the goal. An example of a task

specification goal is shown in Figure 2.5.

• Programming Plans are represented as record structures

which have the attributes discussed in Chapter 2. Figure 2.6 shows

several important plans that novice programmers learn. TP has two

kinds of knowledge about programming plans. First, the importance

of a programming plan is either high, moderate, or low. Second,
there may be alternative ways to achieve the same plan in the code:

Figure 2.7 shows three ways to write a running total loop plan. TP

uses the representation of programming plans for two main

purposes. First, the importance of the programming plan is used in
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cc -ion with any bugs the student has made in the plan to decide

wh it should be addressed in the tutoring session. For example,

a trivial bug in a low importance plan is less likely to be tutored

than an important bug in a high importance plan. Second, the

alternative ways of writing the same plan can be used if the tutor

formulates the objective to teach the student a better way to

achieve one of the student's goals.

a Programming Concepts a-e represented in a graph that is

partialy ordered by a knowledge precondition relation. In addition,

each concept has an importance value. There are approximately 10

nodes in the graph, reflecting the concepts shown in Figure 2.8. A

piece of the concept graph is shown in Figure 5.3. This example

shows that the important concept of iteration has two important

knowledge precondition concepts: sequencing and scoping. Rules

that decide on the ordering of bugs in the Tutorial Plan refer to the

graph of Programming Concepts to decide which bugs point to

co; epts that should be tutored before the concepts pointed to by

other bugs.

* Programming Skills are represented in terms of their

subskills. For example, the skill of Reorganizing, illustrated in

Figure 2.9, requires the programmer to 1) identify a segment of the

program that is not cleanly written, 2) reanalyze the plans selected

to achieve the goals of the segment, 3) select alternative plans, and

4) instantiate the alternative plans in the code. For example, a

student whose Rainfall Program unnecessarily re 3ats the test for

valid data (RAINFALL >- 0) in the main loop mi, -: decide to collapse

all the actions guarded by the test into a single block covered by one i|
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test for RAINFALL >- 0. TP does not represent precondition

relations among programming skills.

0 Knowledae Category 3: TP's knowledge about bugs,

Knowledge Category 3, is encoded in terms of the values that can fill

the slots of a record structure that represents a bug. A bug record

structure has a slot for 1) the cause of the bug, 2) the effects of the

bug, 3) the type of the bug, and 4) the location of the plan in which

the bug occurs. Each field of a bug record can have any of the values

described in Chapter 2. For example, Figure 5.4 shows a description

of the misplaced update of TOTALRAIN, BUG 5 in Figure 1.1. The

description of the bug has a field for its name, which has no meaning

beyond serving as a unique identifier. The cause of the bug is a

misconception about the scoping of a WHILE loop; the effects of the

bug are to give wrong values to TOTALRAIN and AVERAGERAIN; the

type of the bug is a misplaced running total update; and the location

of the bug is below the main loop.

The five fields show in Figure 5.4 are the main attributes of

bugs in TP. Bug records actually have more fields than these five

fields; they are described later in the chapter.

In summary, TP uses declarative representations for the

knowledge types in the first three Knowledge Categories: Students,

the Domain, and Bugs. Legal values for the fields in the declarative

representations are described in Chapter 2. A fuller discussion of

the implementations of the knowledge types in the first three

Knowledge Categories is given later in the chapter.
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NAME: Chris
ABILITY: -High

MOTIVATION: High
CONCEPTS MASTERED: Loop, If-Then-Else,
SKILLS MASTERED: Boundary Testing, Test Data Generation,

Figure 5.2: A Student Record

enM~g~rcondito knoy1.d e-prcondition

Figure 5.3: Portion of Curriculum Graph
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NAME: UPDATE-TOTALRAIN-BELOW-LOOP

CAUSE: MISCONCEPTION: SCOPING WHILE LOOP

EFFECTS: WRONG VALUE: TOTALRAIN AVERAGERAIN

TYPE: MISPLACED RUNNING TOTAL UPDATE

LOCATION: BELOW MAIN LOOP

Figure 5.4 : An Example Bug

5.2.1.2. Knowledge Category 4: Teaching Knowledae

The rightmost box in the picture of TP's Knowledge Base (Figure 5.1)

depicts knowledge about teaching. The bulk of TP's knowledge about

teaching consists of Tutorial Planning Rules that achieve the five

Tutorial Planning Goals. A separate set of Tutorial Planning Rules

is associated with each Tutorial Planning Goal. TP constructs

tutorial plans for multiple bugs by running the Tutorial Planning

Rules associated with each of the five Tutorial Planning Goals.

Tutorial Planning Rules, whose precise form is described in a

j later section of the chapter, are straightforward IF-THEN rules

which are run by a rule interpreter, also described in a later section

of this chapter. The Tutorial Planning Rules are partitioned into

sets that correspond to the five Tutorial Planning Goals.

TP's Knowledge Base contains approximately 100 Tutorial

Planning Rules. Each row of Figure 5.5 shows 1) a Tutorial Planning
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Goal, 2) an example Tutorial Planning Rule that corresponds to the

Tutorial Planning Goal and 3) the number of Tutorial Planning Rules

that are associated with the Tutorial Planning Goal. For example,

there are approximately 25 rules associated with the first Tutorial

Planning Goal, the grouping goal. One such rule, shown in Figure 5.5,

constructs bug groups in which one of the bugs is made in the

attempt to repair a second bug.

In this overview section, abbreviated forms of Tutorial

Planning Rules are shown -- complete rules are shown in a later

section of this chapter. TP also has knowledge about how to recover

from tutorial planning failures during tutorial plan execution. This

topic is addressed in a later chapter.

Tutorial Planning Example Rule Number of
Goal (abbreviated form) Rules

1. Group Bugs IF BUG-1 is Repair 25
for BUG-2

THEN Group together

2. YES-NO IF Bug Cause is Serious 20
THEN Definitely Tutor

3. Ordering IF BUG-1 makes BUG-2 1 5
Easy to Tutor

THEN BUG-1 before BUG-2

4. Objectives IF Cause Bad Misconception 25
THEN Fix Misconception

5. Strategy IF Objective is Make Student 20
Aware of Effects of Bug

THEN Use Hand Simulation

Figure 5.5: Tutorial Planning Goals and Rules
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5.2.2. Tutorial Plans: OUTPUT

TP's tutorial plans represent the results of achieving the five

Tutorial Planning Goals. A Tutorial Plan consists of a list of bug

groups. The bug groups:

• are ordered

• are labeled according to whether they should be addressed or not

* have objectives identified that should be achieved in addressing

the bug group

* have strategies identified to achieve the objectives.

Figure 5.6 shows the main attributes of a bug group. Figure 5.7

shows two bug groups constructed from a subset of the bugs in

Figure 1.1, namely BUG 3, BUG 4, BUG 5, BUG 8, and BUG 9. For the

purpose of illustrating the attributes of bug groups and the

attributes of tutorial plans, the figure shows a simplification of the

actual bug groups generated by TP when it is confronted with all the

bugs in Figure 1.1.

BUG GROUP 1 contains the two missing output boundary guards.

Thie bug group should be addressed only if there is time to do so and,

if addressed, should be used to make the point that unexpected

boundary conditions can arise in even the simplest programs. BUG

IGROUP 2 contains the hard bug in the program, namely BUG 5, the

misplaced update of TOTALRAIN that was probably caused by a

I misconception about the scoping of loops. The two other bugs in BUG

GROUP 2 play the roles of 1) cleaning up the program to make the
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hard bug easier to approach (BUG 4) and 2) focusing the student's

attc tion on the behavior of the main loop.

Figure 5.7 shows a tutorial plan for BUG GROUP 1 and BUG

GROUP 2. The tutorial plan specifies the order in which the two bug

groups should be addressed and the emphasis that should be placed

on each of them. As the figure shows, BUG GROUP 2 should be

addressed first followed by BUG GROUP 1. In addition, the tutorial

plan makes explicit the fact that BUG GROUP 2 should receive the

most attention.

1. BUGS IN GROUP

2. GROUP TYPE

3. YES-NO

4. OBJECTIVES

5. STRATEGIES

Figure 5.6: Attributes of Bug Groups

157



I
I

1. BUGS IN GROUP: BUG 8, BUG9
Missing Output Guards of
AVERAGERAIN and MAXRAIN

2. GROUP TYPE: Same Plan Component Housekeeping

3. YES-NO: Tutor if time

4. OBJECTIVES: Make student aware of bugs
Emphasize boundary conditions

5. STRATEGIES: Ask for simulation of test case of no input
Compare actual with correct output

BUG GROUP 1

1. BUGS IN GROUP: BUG 3, BUG 4, BUG 5
Unconditional Update RAINDAYS
No READ(RAINFALL); in loop
Misplaced update TOTALRAIN

2. GROUP TYPE: Hard bug (with clean up and lead in)

3. YES-NO: Definitely Tutor

4. OBJECTIVES: First: Clean up infinite loop BUG 4
Second: Lead in to problem with loop
Third: Fix misconception about scoping

5. STRATEGIES: Point out missing READ(RAINFALL);
Simulation to detect unconditional update RAINDAYS

BUG GROUP 2
i

Figure 5.7: Two Bug Groups
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ORDER: 1. BUG GROUP 2
2. BUG GROUP 1

EMPHASIS: BUG GROUP 2
More imoortant than
BUG GROUP 1

Figure 5.8: A Simple Tutorial Plan

Initialize TUTORIAL-PLANNING-GOAL-QUEUE with Tutorial Planning Goals
For GOAL in TUTORIAL-PLANNING-GOAL-QUEUE Do

Begin
Initialize Rule Applier with TUTORIAL-PLANNING-RULES for GOAL
For T-P-RULE in TUTORIAL-PLANNING-RULES

Attempt T-P-RULE
End

Figure 5.9: The Top Level of the Tutorial Planning Algorithm

5.2.3. Architecture & Processing Flow: PROCESSING

The purpose of this section is to provide a high level view of TP's

architecture and processing mechanism. Details of the processing

mechanism, such as its goal queue and rule selection mechanism, are

discussed in a later section.
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There are no subtleties in TP's architecture. As Figure 5.1

shows, TP's design is a straightforward combination of two

components: 1) a Knowledge Base that contains the knowledge

described in Chapter 2 and Chapter 3 and 2) a Rule Applier.

The central feature of TP's processing mechanism is the Rule

Applier. The Rule Applier uses a simple algorithm that executes the

Tutorial Planning Rules associated with each Tutorial Planning Goal.

The high level description of TP's algorithm is shown in Figure 5.9:

• First, the processing mechanism initializes a queue of

Tutorial Planning Goals with the five Tutorial Planning Goals.

* Second, the Tutorial Planning Rules associated with the

current Tutorial Planning Goal are passed to the Rule Applier. For

example, if the current Tutorial Planning Goal were to select

strategies for the bug groups in the Tutorial Plan, then the

approximately 20 Tutorial Planning Rules that know how to select

tutorial strategies would be passed to the Rule Applier.

* Third, the Rule Applier executes the Tutorial Planning Rules

for the current Tutorial Planning Goal. Each Tutorial Planning Rule

has an IF part and a THEN part. The IF part of each rule is a conjunct

of disjuncts or conjuncts. The IF parts of the rules typically

perform tests on 1) the student's bugs, 2) the student's ability, and

3) current attributes of the Tutorial Plan.

For example, a rule might ask 1) if the student has made

several bugs in the same minor plan component, 2) if the student

has high ability and 3) the tutorial plan currently contains no

serious bugs. These tests, and the way in which they are

represented, are described in detail in a later section.
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The THEN part of each rule is a conjunct of actions to be taken

when the criteria stated in the IF part are met. Each Tutorial

Planning Rule that fires makes an addition to, or modification of, the

Tutorial Plan.

For example, if the Tutorial Plan specifies the objective of

making the student aware of the effects of a particular bug, such as

a missing guard to protect the calculation of AVERAGERAIN from

division by zero, and the current Tutorial Planning Goal is to select

strategies, then the strategy selection rules might add a link

between the bug and the strategy of hand simulation of the program.

During tutoring the tutor might ask the student to simulate the

calculation of AVERAGERAIN when the user does not enter any valid

RAINFALL data.

0 This process continues until there are no more Tutorial

Planning Goals.

Additional data structures and components of the processing

mechanism support TP's tutorial planning activity. Because they are

not key to understanding TP's general character, they are described

in a later section of this chapter.

5.2.4. Summary

TP generates tutorial plans for multiple bug programs written by

novice Pascal programmers. The input to TP is a list of the

student's bugs and a knowledge base that contains tutorial planning

knowledge. The output of TP is a Tutorial Plan that results from

making the five Tutorial Planning Decisions. Each of the Tutorial
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Planning Decisions is implemented in TP as a Tutorial Planning Goal

with associated Tutorial Planning Rules that are responsible for

achieving that Tutorial Planning Goal. TP's processing is performed

by a straightforward rule application mechanism that executes the

Tutorial Planning Rules.

5.3. TP's Knowledge

The purpose of this section is to describe further the data

structures that encode the knowledge that TP uses to generate

tutorial plans. Several of the simpler data structures e.g., the

student, were described earlier. Others, such as the representation

of task specification goals, were described very generally. The

focus of this section is therefore on TP's knowledge about the

domain i.e., task specifications, bugs, and tutorial planning

knowledge.

5.3.1. Knowledge about the Domain

The previous sections have described programming concepts and

skills, which have a simple representation. Two types of knowledge

about the domain that have more complex representations are task

specifications and programming plans. This section describes those

two types of knowledge

5.3.1.1. Task Specifications
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Figure 5.10 shows an example of the record structure that

represents each goal in a task specification. Each task goal is a

record in a network connected by two slots in the task goal

representation, namely the supergoals slot and the subgoals slot. In

the example shown in Figure 5.10, the attributes of the goal to

calculate TOTALRAIN are shown.

Each task goal has eight slots. The commented text to the side

of the slots gives the fillers for the goal to calculate TOTALRAIN.

For example, the objects involved in the calculation are RAINFALL

and TOTALRAIN; the subgoals are, for example, to input RAINFALL;

the action to be taken is to sum RAINFALL into TOTALRAIN; and a

plan for the goal is the running total loop plan. The entire set of

goals for the Rainfall Task and for the Reformatting Task are shown

in Figure 6.1, Figure 6.2 and Figure 6.3.

5.3.1.2. Programming Plans

Figure 5.11 shows the representation for programming plans. Each

programming plan has five attributes: a name; an action; objects on

which the action is performed; constraints; and location. The

example shown in Figure PROGRPLANREP is the initialization of

DAILYRAINFALL. The action to be taken in the initialization is an

asQiqnment. The object to be assigned is DAILYRAINFALL. The single

c "aint on the assignment is that it not equal the sentinel. The

location of the initialization is before the main loop. Each of the
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approximately 60 programming plans in TP's knowledge base has the

format shown in Figure 5.11.

5.3.2. Knowledge about Bugs

Each bug in TP is represented as a record structure with 20

attributes. The example in Figure 5.12 shows the bug in which the

student has spuriously initialized DAILYRAIN after reading the

initial value of DAILYRAIN. The spurious initialization destroys the

first value of DAILYRAIN that was read in just before the spurious

initialization.

The representation of each bug contains, among others,

attributes about the task specification component the bug is in;

parent plans of the plan in which the bug is located; the objects

associated with the bug; and the operation which is performed on the

objects. In addition, each bug record indicates the focality, type,

and location of the bug, the cause of the bug, what the student's

intent was that led to the bug, the effects of the bug and whether

the student is aware of them, the actual and correct code, the

tutorial difficulty of the bug and its importance, and five kinds of

information that are used for housekeeping during the execution of

-" the tutorial planning program.

Each of the bugs shown in Figures 6.4 and 6.5, and Figure 6.6 is

represented in the form shown in Figure 5.12.
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(defstruct TASKGOAL
goal ; e.g., (calculate TOTALRt 1)
goal-type ; e.g., calculate
objects ; e.g., RAINFALL, TOTALRAIN
supergoals ; e.g., (calculate AVERAGERAIN)
subgoals ; e.g., (input RAINFALL)
action ; e.g., (sum-into RAINFALL TOTALRAIN)
plans-for ; e.g., running-total-loop
importance ; e.g., high)

Figure 5.10: Representation of a Task Specification Goal

(defstruct PROGPLAN
name ; initialize-DAILYRAINFALL
action ; e.g., assign
objects ;e.g., DAILYRAINFALL
constraints ; e.g., (NotEqual Sentinel'
location ; e.g., (before main-loop,
)

Figure 5.11: Representation of a Programming Plan

165



(make-BUG
:NAME 'init-DailyRain-O-clobbers-readrainfalI
:SPEC '((implicit (init DailyRain)))
:PARPLANS '(calc-TotaiRain)
.PLANCOMP 'init
:OBJECTS '(DailyRain)
:OPERATION '((Assign DailyRain 0))
:FOCAL1TrY 'low
:TYPE 'spurious
.LOC '((after (init DailyRain)))
:CAUSE '((plan-pollution))
.STUD-INTENT '(innt DailyRainfall))
:EFFECTS '(Stud-Unaware (wrong-value TotalRain))

(Stud-Unaware (clobber-value-before-use TotalRain)))

:CODE '(BEGIN)
(KEYS ECTION READLN (DailyRain)\-

Daiyain A- =O0#..)
(WHILE (DailyRain <> 99999))
(BEGIN)

(TotalRain: TotalRain + DailyRain )
(END # ))

.CODE-SHOULDBE '((BEGIN)
(KEYSECTION READLN (DailyRain#))
(WHILE (DailyRain <> 99999))
(BEGIN)
(TotalRainA*= Totan + DailyRain#4
(END # ))

.TUTDIFF 'low
.MPORTANCE 'medium
:BUGGRQUP nil
:USEDAS nil
:TUTORED? nil
:RULESFIRED nil

Figure 5.12: Representation of Bugs
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5.3.3. Tutorial Planning Rules

The tutorial planning rules that implement each of the tutorial

planning goals in TP are simple production-like objects. The rules

are stored in packages each of which corresponds to a Tutorial

Planning Goal. Each rule has a set of conditions which must be met

in order for the rule to fire and a set of actions to be taken if the

rule fires. Figure 5.13 shows an example rule. The rule shown in

Figure 5.13 creates a bug group of type GOOD REPAIR if it encounters

two unassigned bugs where one of the pair is a good repair for the

other. Note that the action of the rule 1) creates a new group 2)

adds the two bugs to a newly made group and 3) adds the attributes

for group type to the descriptors for the group. The three attributes

added to the group -- Bug Dependency Program Behavior and Good

Repair-- correspond to the position of this group type in the tree of

bug group types shown in Figure 3.1.

The rules in TP are written with one level of syntactic sugar.

The list of conditions for each rule, headed by IF, is expressed as any

combination of arbitrarily nested conjuncts and disjuncts. The list

of actions for each rule, headed by THEN, can be arbitrary lisp code.

A lisp function takes each rule expression and creates a lambda

expression that is run by the rule interpreter which is part of TP's

control mechanism.
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(RULEMAKE=Make2BugRule 'GROUP-GoodRepairlI.1

'(IF
(BUGPRED=UnequalBothUnassigned? bug1 bug2)
(BUGPRED=Bug2GoodRepairForBugl? bugl bug2)
)

'(THEN
(BUGGROUP=MakeNewGroup (list bugl bug2)

'(BugDependency ProgramBehavior GoodRepair))

Figure 5.13: An Example Grouping Rule

5.4. Tutorial Plans In TP

A tutorial plan in TP is an ordered list of bug groups. As Figure 5.14

shows, each bug group has nine attributes. The last two slots

contain housekeeping information about whether the bug group has

been addressed yet (tutored?) and which rules fired during the

construction of the bug group.

The example shown in Figure 5.14 is of the good repair type in

which the student has repaired the problem of adding in the sentinel

to TOTALRAIN in the loop by subtracting from TOTALRAIN before

performing the calculation of AVERAGERAIN. The goals associated

witn the bug group are specific to the bugs in the bug group. There

can be more than one goal specified for bugs in a bug group. If there

is more than one goal specified, then the goa; slot consists of a list

of lists in which the first element in each sublist is the goal to be

achieved and the remaining elements in the list are the bugs for

which the goal is intended.
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(defstruct BUGGROUP
type ;e.g., Good Repair
size ;e.g., 2
descriptors ; e.g., ProgBehavior BugDependency GoodRepair
bugs , e.g., (add-sentinel-total back-out-sentinel)
goals ; e.g., Teach-Better-Plan
tutoradvice ; e.g., definitely
tutored? ;e.g., no
rulesfired ; e.g., RULE-STRAT-SELECT5 ...

Figure 5.14: Representation of a Bug Group

5.5. Architecture & Processing Flow of TP

TP uses a simple rule application architecture, as shown in Figure

5.1. The purpose of this section is to describe, in more detail than

was provided in the general description, the processing Vnechanism

of TP. The processing mechanism was represented in Figure 5.1 by

the box labelled Rule Applier Mechanism.

5.6. TP's Architecture

Figure 5.15 shows the details of TP's architecture. The arrows

connecting components in the figure represent the processing flow.

The two main components of TP are 1) its planning knowledge,

shown in the box labelled Tutorial Planning Knowledge, and 2) its

processing mechanism, shown in the box labelled Processing

Mechanism. Tutorial planning goals and tutorial planning rules have
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been discussed above so the focus in this section is on the

processing mechanism.

The main components of TP's processing mechanism consist of

its dynamic data structures, shown in the box so labelled, and its

rule mechanism, shown in the box labelled by that term. TPs control

mechanism uses three dynamic data structures.

* Tutorial Planning Goal Queue: This is the list of tutorial

planning goals with which TP is initialized. The initial list consists

of the five Tutorial Planning Goals that correspond to the five

Tutorial Planning Decisions.

a Current Planning Goal: This is the tutorial planning goal

that is currently active. As each tutorial planning goal is achieved,

it is removed from the tutorial planning goal queue and the next goal

in the queue is made the current planning goal.

* Tutorial Plan: The attributes of the tutorial plan, as

described above, are specified as the processing mechanism

executes the rules corresponding to the Tutorial Planning Goals.

The rule mechanism shown in Figure 5.15 has two main

components: a rule selector and a rule applier.

0 The rule selector functions by identifying the current

planning goal when it becomes newly active, selecting the tutorial

planning rules associated with that goal, and initializing the rule

applier.

* The rule applier executes whatever rules are currently on

its rule list. The rule applier evaluates the lambda expressions

corresponding to the rules that are associated with each Tutorial

Planning Goal.
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Tutorial Planning Knowledge

tutorial tutorial
planning planning

goals rules

5

2 P1anng :
goall seleco

tuoal plannin tutorial
goal ueueplan

6 rule applier

dynamic data stutrsrle mechanism

PROCESSING MECHANISM

Figure 5.15: Details of TP's Processing Mechanism
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5.7. TP's Processing Flow

The control algorithm for TP loops over the tutorial planning goals

in the tutorial planning goal queue. As each tutorial planning goal is

encountered and made the current planning goal, corresponding

tutorial planning rules are executed. The processing flow generated

by TP's control algorithm is represented by numbered arrows in

Figure TPPROCMECH. The control algorithm for TP's processing,

shown in pseudocode in Figure 5.9, has six main steps.

• Arrow 1: Initialize the tutorial planning goal queue with the

tutorial planning goals.

* Arrow 2: Make the first goal on the tutorial planning goal

queue the current planning goal.

* Arrow 3: Call the rule selector to choose the tutorial

planning rules for the current tutorial planning goal.

* Arrow 4: Choose the tutorial planning rules for the current

totorial planning goal.

* Arrow 5: Initialize the rule applier with the tutorial

planning rules for the current tutorial planning goal.

• Arrow 6: Apply the tutorial plannirg rules, which make

changes to the tutorial plan.

In short, TP's processing algorithm is based on a simpk ,ile

interpreter that is at the center of processing. Tutorial Planning

goals that represent the 5 Tutorial Planning Decisions are activated,

the rules for those goals are executed by the rule applier, and
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changes specified by the rules are made to the tutorial plan. TP has

no provision for either backtracking or heuristic evaluation of

alternative tutorial plans. The possibility of incorporating a

backtracking facility in TP is discussed in Chapter 8, which explores

the generality of TP as an approach to tutorial planning.

5.8. Lessons Learned

Constructing TP, the implementation of the model of tutorial

planning for multi-bug novice computer programs, was a useful

exercise that produced many lessons. Of course there is the point

that many holes were found in the model as the implementation was

built that would probably not have been found without building TP:

This is a standard result of building an implementation program such

as TP. Two lessons, however, stand out as primary:

0 Primary Lesson 1: The majority of multi-bug tutoring

situations are not one-off, distinct situations. Rather, most multi-

bug tutoring situations are built up of known groups of multiple bugs

that are commonly seen. In the Rainfall Task, for example, common

patterns are missing output guards; spurious or malformed

initializations; incorrect updates of accumulation variables, etc.

This fact became especially clear as TP was constructed.

Because it was necessary to represent the knowledge that tutors use

to generate tutorial plans for multiple bugs, an economical

representation was desirable. The representations that were

developed for TP are based on common patterns of multiple bugs.
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Primary Lesson 2: Tutorial planning for common multi-bug

situations can be viewed as a pattern classification task in which

the generation of a tutorial plan is based on identifying known

patterns of bugs, selecting goals appropriate for the patterns of

bugs, and selecting strategies that can achieve the goals.

Primary Lesson 2 is closely related to Primary Lesson 1. TP's

representation of common multiple bug tutoring situations consists

of a knowledge base of known patterns. For example, missing

output guards form a known pattern that TP could find and then use

to constrain the selection of tutorial goals and strategies. Thus,

Primary Lesson 2 is that the generation of tutorial plans for common

patterns of multiple bugs can be viewed as pattern-based.

5.9. Chapter Summary

This chapter has described TP, the implementation of the model of

tutorial planning described in the previous three chapters. TP was

described at two levels. First, TP was described at a general level,

to give a high-level overview of its data structures and control

flow. Second, a more detailed account of TP gave the specifics of its

central data structures and the details of its processing mechanism.

The final section presented two primary lessons that resulted from

constructing the implementation. The two lessons revolved around

the point that the generation of tutorial plans for common multiple

j bug tutoring situations can be viewed as a process driven by the

recognition of known patterns of multiple bugs.
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Chapter 6

STRENGTH OF CURRENT IMPLEMENTATION

6.1. Introduction

The previous chapters described the problem of tutoring a student

who makes multiple bugs, the need for tutorial plans to guide the

tutoring, the knowledge that human tutors use to generate tutorial

plans, and TP, the computer program that is claimed to generate

human-like tutorial plans.

The major question at this point is "How strong is the

implementation of the tutorial planner?" That is, how much does TP

know and how good are TP's tutorial plans? The purpose of this

chapter is to present an evaluation of these two aspects of the

strength of TP. The evaluation of TP therefore addresses two

primary Evaluation Questions:

E Evaluation Question 1 (E.Q.1): How much knowledge does TP

have about novice programming tasks and the bugs that students

make when they try to solve those tasks?

* Evaluation Question 2 (E.Q.2): How good are the tutorial

plans that TP generates?

This remainder of this chapter is divided into two main

sections, each dealing with one of the two Evaluation Questions.
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6.2. 0. 1: How Much TP Knows About Tasks and Bugs

6.2.1. Introduction

As the previous two chapters have shown, TP has four general

categories of knowledge, each of which has st eral types. For

example, TP's knowledge about the domain of programming includes

the knowledge type of task specification--, TP's knowledge ,.bout

bugs includes the knowledge type about where in the plan bugs are

located. Because TP operates in the domain of novice Pascal

programming, an important evaluation issue is the extent of TP's

knowledge about task specifications and bugs. The purpose . :his

section, therefore, is to describe how much knowledge TP has about

programming tasks and bugs.

6.2.2. Task Specifications TP Knows About

6.2.2.1. Introduction

TP has - isentations of the goals in the task specifications for

two assign. nts, the Rainfall Task and the Reformatting Task. The

task specifications are represented in a connected graph of goals, as

described in Chapter 5: Each node in the graph identifies a goal,

connects to parent and children goals, and identifies plans that can

solve the goal.
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6.2.2.2. The Rainfall Specification

The specification for the Rainfall Task consists of approximately 40

goals. The goals range from the very general goal of correctly

understanding the task specification as described in the assignment,

to including a main processing loop.

As Figure 6.1 shows, the goals of the Rainfall Task can be

grouped into several primary categories. These categories are: to

declare variables; to initialize variables; to update variables; to

perform appropriate calculations, and to output the values of

selected variables.

6.2.2.3. The Reformatting Specification

The specification for the Reformatting Task consists of

approximately 90 goals. The Reformatting Task requires many more

variables than the Rainfall Task, and nearly all variables require the

same goals to be solved for them.

As Figures REFORMATGIOALS1 and REFORMATGIOALS2 show,

there are approximately 10 variables which must be declared,

initialized, repeatedly input, and guarded. Several calculations must

be performed as intermediate steps to tha final calculation. A

subset of the variables must appear in documented output

statements. For example, PROBLEMTYPE must be input, guarded,

updated, reinput if necessary, and finally written out in a

documented output statement.
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Name of Goal Description of Goal

UNDERSTAND-SPEC Identify goals in specification correctly
DECLARE-SENTINEL Declare the variable for the loop termination dition
DECLARE-AVERAGERAIN Declare REAL variable for AVERAGERAIN
DECLARE-DAILYRAIN Declare REAL variable for DAILYRAIN
DECLARE-RAINDAYS Declare INTEGER counmr for RAINDAYS
DECLARE-TOTALDAYS Declare INTEGER counter for TOTALDAYS
DECLARE-MAXRAINFALL Declare REAL variable for MAXRAINFALL
DECLARFETOTALRAINFALL Declare REAL variable for TCrALRAINFALL
IN1T-DAILYRAIN Initialize DAILYRAIN
INIH-RA/NDAYS Initialize RAINDAYS
INIT-TOTALDAYS Initialize TOTALDAYS
INIT-MAXRAINFALL Initialize MAXRAINFALL
INIT-TOTALRAINFALL Initialize TOTALRAINFALL
INIT-SENTINEL Initialize sentinel
CALC-AVERAGERAIN Calculate AVERAGERAIN
UPDATE-DAILYRAIN Update DAILYRAIN
UPDATE-RAINDAYS Update RAINDAYS
UPDATE.TOrALDAYS Updae TOTALDAYS
UPDATE-MAXRANFALL Upda MAXRAINFALL
UPDATE-TOTALRAINFALL Update TOTALRAINFALL
GUARD-CALC-AVERAGERAIN Guard calculation of AVERAGERAIN
GUARD-UPDATE-DAILYRAIN Guard update of DAILYRAIN
GUARD-UPDATE-TOTALRAINFALL Guard update of TOTALRAINFALL
GUARD-UPDATE-RAINDAYS Guard update of RAINDAYS
GUARD-UPDATE-TXrAWAYS Guard update of TOTALDAYS
GUARD-UPDATE-MAXRAJNFALL Guard update of MAXRAINFALL
GUARD-OU-PUT-AVERAGERAIN Guard output of AVERAGERAIN
GUARD.OUTPUT'-RAINDAYS Guard output of RAINDAYS
GUARDwOfrPUT-TOTALDAYS Guard output of TOTALDAYS
GUARD-OUT-MAXRAINFALL Guard output of MAXRAINFALL
GUARD-MAIN-LOOP Guard main loop with setinel
GUARD-RETRY Guard retry on invalid input
OUTPUT-AVERAGERAIN Output AVERAGERAIN
OUTPUT-RAINDAYS Output RAINDAYS
OUTPUT-TOTALDAYS Output TOTALDAYS
OUrPUT-MAXRAINFALL Output MAXRAINFALL
CHECK-LOOP-CONDITION Check loop termiaion condition
MAIN-LOOP Implement main loop

Figure 6.1: Rainfall Task Specification Goals

1
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Name of Goal Description of Goal

UNDERSTAND-SPEC Understand goals in specification correctly
DECLARE-ID Declare ID INTEER
DECLARE-STARTHOUR Declare STARTHOUR INTEGER
DECLARE-STARTMINUIB Declare STARTMINUTE INTEGER
DECLARE-STARTSECOND Declare STARTSECOND INTEGER
DECLARE-ENDHOUR Declare ENDHOUR INFEGER
DECLARE-ENDMINUTE Declare ENDMINUT R TEGER
DECLARE-ENDSECOND Declare EN4DSECOND INTEGER
DECLARE-STARTTIME Declare STARTTIME REAL
DECLARE-ENDTIME Declare ENDTIME REAL
DECLARE-ELAPSEDT[ME Declare ELAPSEDTBAE REAL
DECLARE-PROBLEMITYPE Declare PROBLEMnTP CHAR
DECLARE-ACCURACY Declare PROBLEMTYPE CHAR
DECLARE-ANSWER Declare ANSWER CHAR
NIT-ID Intialize ID)
IMi-STARTHOUR. Iitialize STARTHOUR,
RUl-STARTMINUTE Initialize STARTMINUTE
JNI-STARTSECOND Intialize STARTSECOND
INlTENDHOUR Initialize ENDHOUR
NrI'ENDMINUTE Wntialize ENDMINYTE
IOl-ENDSECOND Initialize ENDSECOND
IN1T-STARTTIME Winjulize STARTTIME
ORT-ENUIA Ittitalze END71M
IMl-ELAPSEDTIME Initialize ELAPSEDTIME
IBlT-PROELEMITYPE Initialize PROBLEMTYPE
INIT-ACCURACY Wntializ ACCURACY
IPlT-ANSWER Iitialize ANSWER
UPDATE-ID Updat I
UPDATE-STARTHOUR Update STARTHOUR
UPDATE-STARTMINUTE Update STARTMINLTE
UPDATE-STARTSECOND UpdateSTARTSECOND
UPDATE-ENDHOUR, Update ENDHOUR
UPDATE-ENDMINUTE Update ENDMNUFE
UPDATE-ENDSECOND Update ENDSECOND
UPDATE-STARTTIME Update STARTTIME
UPDAMEENDTIME Update ENYINM
UPDATE-PROBLENITYPE Update PROBLEMTYPE
UPDATE-ACCURACY Update ACCURACY
UPDATEANSWER Update ANSWER
UPDAMEALLDATA Update all variables
PROMPT-UPDATE-ALLDATA Prompt update of all variables

PROMIPT-UPDATEID Prompt update of ID
PROMPT-UPDATE-STARTHOUR. Prompt update of STARTHOUR.
PROMPT-UPDATE-STAThNUTE Prompt update of STARTMINUTEIPROMPT-UPDATE-STARTSECOND Prompt update of STARTSECOND

j Figure 6.2: Reformatting Task Specification Goals
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Name of Goal Description of Goal

FROMPT-UPDATE-ENDHOUR Prompt update of ENDHOUR
PROMFr-UPDATE-ENDMINUTE Prompt update of ENDMINUTE
PROMPT-UPDATE-ENDSECOND Prompt update of ENDSECOND
PROMFr-UPDATE-STARTTIME Prompt update of STARTHIME
PROMr UPDATE-ENDTIME Prompt update of ENYIME
PROMPT-UPDATE-PROBLEMTYPE Prompt update of PROBLEMTYPE
PROMPT-UPDATE-ACCURACY Prompt update of ACCURACY
PROMPTUPDATE-ANSWER Prompt update of ANSWER
GUARD-UPDATE-ID Guard update of ID
GUARD-UPDATE-STARTHOUR Guard updat of STARTHOUR
GUARD-UPDATE-STARTMINUIE Guard update of STARTMINUTE
GUARD-UPDATE-STARTSECOND Guard update of STARTSECOND
GUARD-UPDATE-ENDHOUR Guard update of ENDHOUR
GUARD-UPDATE-ENDMINUTE Guard update of ENDMINITE
GUARD-UPDATE-ENDSECOND Guard update of ENDSECOND
GUARD-UPDATE-STARTIIME Guard update of STARTIME
GUARD-UPDATE-ENDTIME Guard update of ENDIME
GUARD-UPDATE-PROBLEMTYPE Guard update of PROBLEMTYPE
GUARD-UPDATE-ACCURACY Guard update of ACCURACY
GUARD-UPDATE-ANSWER Gund update of ANSWER
GUARD-UPDATE-ALLDATA Guard update of all variables
RETRY-ID Reinput ID on invalid value
RETRY-STARTHOUR Reinput STARTHOUR on invalid value
RETRY-STARTMINUrE Renput STARTMINUTE on invalid value
RETRY-STARTSECOND Renput STARTSECOND on invalid value
RETRY-ENDHOUR Reinput ENDHOUR on invalid value
RETRY-ENDMINUTE Reainput ENDMINUTE on invalid value
RETRY-ENDSECOND Reinput ENDSECOND on invalid value
RETRY-PROBLEMTYPE Reput PROBLEMTYPE on invalid value
RETRY-ACCURACY Reinput ACCURACY on invalid value
RETRY-ALLDATA Reinput all variables on invalid values
CALC-STARTrIME Calculate STARTrIME
CALC-EN TrVE Calculate ENYTIME
CALC-ELAPSEDTAME Calculate ELAPSEDTIME
GUARD-CAIC-ELAPSETU[E Guard calculation of ELAPSEDTIME
MAIN-LOOP Use loW to repeat
OIrPUT-ID OutputID
OUrPUT-PROBLEMTYPE Output PROBLEMTYPE
OUTPUT-ELAPSEDTIME Output ELAPSEDTIME
OUTPUT-ACCURACY Output ACCURACY
DOCUUMM-OITIPUT-ID Document the output of ID
DOCUMENT-OUTPUT-ACCURACY Document the output of ACCURACY
DOCUME -OUTPUT-PROB Document the output of PROBLEMTYPE
DOCUMENT-OUTPUT-ELAPSEDTDE Document the output of ELAPSEDTIME

Figure 6.3: More Reformatting Task Specification Goals
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6.2.3. TP's Knowledge About Bugs

6.2.3.1. Introduction

TP's knowledge of bugs is currently stored in a static database that

contains approximately 114 bugs. The database is partitioned into

69 Rainfall Task bugs and 45 Reformatting Task bugs. Each bug in

the database is represented in a form that could be generated by a

program such as PROUST (Johnson, 1985) or CHIRON (Sack, 1988).

The database of bugs is simply a convenience for developing the

tutorial planner and it is intended that, in a full tutoring system for

programming, bugs will be detected and represented dynamically for

each student's program. Thus, TP is not inherently dependent on a

"bug database" as are e. g., MENO-II (Soloway, Woolf, Barth, & Rubin,

1981) or BRIDGE (ref).

Bugs in the database can be combined as desired to construct

many different programs. The remainder of this section discusses

the Rainfall bugs and the Reformatting bugs that are currently in

TP's database and the approximate percentages of student bugs that

they account for.

I 6.2.3.2. Rainfall B3ugs

The 70 Rainfall bugs in TP's database are a compilation of bugs from

the programs in Bug Catalogue I (Johnson, et al. 1983) and additional
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bugs from programs generated by students in several introductory

Pascal courses. The 70 bugs account for more than 60% of the bugs

that students make when they try to solve the Rainfall Task

(Johnson, et al., 1983).

Figures 6.4 and 6.5 list all the Rainfall Task bugs in the

database and give a brief explanation of each.

6.2.3.3. Reformatting Bugs

The 45 Reformatting bugs in TP's database were selected form

programs that appear in Bug Catalogue III (Spohrer, et al., 1985).

The 45 Reformatting bugs account for more than 60% of the bugs

that students make when they write programs for the Reformatting

Task (Spohrer, et al., 1985).

Figure 6.6 lists all the Reformat Task bugs and describes each.
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Name of Bug Description of Bug

INIT-DALYRAN-CLOBBER-READ-DAILYRAIN Spurious init destroys first value of DAILYRAN
MISSINO-N-RAINDAYS- Counter for RAINDAYS not initialized
NO-GUARD-RADIlDAYS-COUNTER Counter for RAINDAYS inctunonted unconditionally
NO-READ-DAMLYRAIN-IN.LOOP Input for DAILYRAIN trussing from loop
UPDATE-TOrALRAINFALL-BELOW-LOOP TOrALRAINFALL not accurmulated in loop
DAILYRAIN-OU7WUT-FOR-RAINDAYS Wrong variable output for RAINDAYS
NO-GUARD.OUWPU-AVERAOERAIN AVERAGERAIN output regardless of input

NOGUARD-OUTPUT-MAXRAINFALL MAXRAIFALL output regardless of input
WRONG-TYPE-lF)R-AVERAGERAIN AVERAGELAIN declared a an INrEGER
WRONG-OPERATOR-A VERAGERAIN-CALC INTEGER divde used. not REAL divide
NflSS1NG-IPlT-DAMLYRAlN-NEQ-Swn1NEL DAELYRAIN not guaranteed unequal to sentinel on Ist loop pass
MISSING-GUARD-DAMLYRAIN-EQUAL-S No guard against DALYRAfr4 equal to loop ternmation

value
SENTINEL-A.DD-IN.TO)TALRAINFALL Sentinel value accumulated into TOTALRAIN
RUNNING TOTAL-TOALRAINAS-COUMME TOTALRAIN mcrenented not acaulaWa
BACKOUT-SENTNEL-AVERAGERAIN-CALC Sentinel value subtracted fiom TOTALRAINFALL
SPURlOus-UDJffALlZATION-AVERAGERAfrJ AVERAGERADI unnecessarily initialized
WRONG-SENTINEL-TEST-VALUE Loop termination condition incorrect
MALFORMED-UPDATE-TOTALRAINFALL TOTALRAIN not octanulased correcdy
MALFORMED-UPDATE-TOTALDAYS TOTAWDAYS not accumiulated corrctly
MALFORMED-UPDATE-MAXRAINFALL MAXRAINFALL not accurnuiged correctly
MALP2RMED-UPDATE-RAINDAYS RAINDAYS not accuntulated corecy
AVERAGELAIN-CAL-I-LO)OP AVERAGERAIN calculated each pas of loop
WRONG-TYPE-FOR-TOTALDAYS TOTAWDAYS decled REAL
TOFAWAYS-INIALEMD-TO-l-NOI-O Wrong initial value for TOFALDAYS
LOOP-READ-CLOBBER-DImAL-DAILYRAIN DAILYRAIN reed above loop and in loop before updates
MUSSING-IMr-TOYTALAYS TOTALDAYS not initialized
MISSIN I-rVTALRAINFALJ. 'IUALRAINFALL not iitialized
MISSIM1-INI-MAXRAINFALL MAXRAfr4FALL not initialized
MISPLACED-BEGIN-AT-TOP-LOOP BEGIN for loop block misplaced
NULL-REPEAT-UNTIL-LO)OP Empty REPEAT/UNTI loop after main loop
WRONG-LOOP-GUARD-BINOP wrong lest in loop guard
MISPLACED-AVERAGERAIN-CALC Calculation of AVERAGERAIN not after loop. before output
RAINDAYS-UPDATE-POR-TOTAWDAYS RAINDAYS perfoms ftzmction of TOrALDAYS
WRONG-DIVISO-A VERAGERAIN TO)TALDAYS not divisor in AVERAGERAIN calculation

Figure 6.4: Rainfall Task Bugs
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Name of Bug Description of Bug

WRONG-TYPE-FOR-MAXRAINFALL, MAXRAMhJAULdeclared asIN IEGER
WRONG-TYPE-FOR-TOTALRAINFALL, TCTAWDAYS declared as REAL
WRONG-TYPE-POR-DAILYRAIN DAILYRAIN declared INTEGER
MISSING-MAIN-BEGINOEN-IN-LOOP No BEGIN/END block in main loop
SPUROUS-GUARD-UPDATE.TOTAWDAYS TOTALDAYS urmecessarily guarded
SPURIOUS-GUARD-UPDATE-TOTALRAINFAL TOI'ALRAINFALL wimecesuarily guarded
SpURIOUS.GUARD-UPDATE-AVERAGERAIN AVERAGERAIN urmeceaSarily guarded
NUSSING-OUTPUr-AVERAGERAIN AVERAGERAIN not output
MISSINO-OUTPUT-MAXRAINFALL MAXRAINFALL not output
hflSSNG-O~YFPUr-TOTALDAYS TOTALDAYS not output
NUSSINO-OUTP~fl-RAINDAYS RAINDAYS not output
MISSINO-UPDATE-MAXRAINFALL MAXRAINFALL not updated
SPURIOUS-COUNTER-DRYDAYS Nunmber of dry days unnecesarily counted
MALFORMED-BOOLEAN MAIN LOOP-GUARD Loop termination test wrong
M1SSVNG-IN1T1AL-VALUEDAILYRAIN DAILYRAIN not given initial value
MISSING-UPDATE-TOTALDAYS TOTALDAYS not counted
SPURIOUS-ASSIGNMENT-MAXRAINFALL MAxRINFALL ssigned regardleus of value of DAILYRAIN
NaSSING-GOAL-OYFFUT-TOTALDAYS TOTAOLDAYS not output
MISPLACED-OlnP~r-RAINDAYS RAINDAYS not output after main loop
NUSPLCDOTU-ARIFL MAXRAINFALL not output after Mm loop
WROJCOSAFI-O-UR Incorrect value for sentinel
SPURIOUS-READ-DAELYRAIN DAILYRAIN unneessarily guarded
WRONo-vARLABLE-OUTPU-FOR-TTALDAY TOTAWDAYS not output for total munber of days
RAINDAYS-DIlAUZED-TO--NOT-0 RAINDAYS initialized to 1 inatead of 0
MISSINO-SENINEL-GUARD-AF7ER.REFRY Sentinel not detected after re-input
MISPLACEDINIT-RAINDAYS RAINDAYS initialized in wrong place
MISPLACED-DNI-COUNTER-X-RAIN Spurious variable initialized in wrong place
SPURIOUS-OUTPUT-TOTALDAYS TOTALDAYS output too often
SPURIOUS-OUTPU'T-TOTALRAIN TOTALRAIN output too often
SPURIOUS- YrPUrrAVERAGERAIN AVERAGERAIN output too often
N(ISPLACED-IPfl-MAXRAINFALL, Initialization of MAXRAINFALL misplaced
SPURIOUS-OLFFPUT-MAXRAINPALL MAXRAINFALL output too often
SPURIOUS-OUTFPUT- MAXDAYS Spurious variable output too often
WHILE-FOR-IF-IN-MAXRAINFAUAJUPDAT'E Update of MAXRAINFALL in WHILE loop

Figure 6.5: More Rainfall Task Bugs
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Name of Bug Description of Bug

MISSING0-BEGIN/END-FOR-MAIN-LOOP No BEGIN/END for main loop
BLANK-CHAR-READ-FOR-ACCURACY READL2.! reads blank for ACCURACY
WRONG-BOOLEAN-OP-OR-FOR-AND OR for AND in Boolean test
MISS-GUARD-STARTIME-GT-ENDTIME STARiTME> ENDTM undetected
MISS-PLAN-SI'ARTTIME-GT-ENDTIME Calculation doesn't handle STARTTME > ENDITIME
MISS-PROMPT-FOR-LO)OP-CONTINUE No prompt to continue
MISS-PROMPT-FOR-NEW-DATA No prompt to entersmore data
MISS-REINLT-OF-DATA No reinput of data
MISS-BEGINJEND-PAIR-FOR-BLA)CK Missing BEGIN/END
FORCE-IPUT-ALL-DATA-ON-RETRY Input error forces all variables to be reinput
WRONG-BOOLEAN-OP-AND-FOR-OR AND for OR in Boolean test
OFF-BY-ONE-GUARD-STARTHOUR STARTHOUR could be 13
SPURIOUS-BEGIN/END-PAIR. Umiecessy BEGIN/END
MALFORMEED-GUARD-BOOLEAN-OP-PREC PT Wrong test for PROBLEME
MALFORMED-GUARD-BOOLEAN-OP-PRECAC Wrong test for ACCURACY
MALFORMED-GUARD-BOOLEAN-OPERATCID Wrong test for ID
MISS-GUARD-FOR-VAUIDrTY-OF-TIME-DATASH No guard for invalid STARTHOUR.
NISS-GUARD-VALIDrTY-OF-T[ME-DATASM No guard for STARTMINUM
MISS-GUARD-VALIDrfY-OF-TIME-DATASS No guard for STARTSECOND
MISS GUARD-VALIDrrY-OF-TIME-DATAEH No guard for ENDHOUR
NUSS-GUARD-VALIDrrY-OF-ThRdE-DATAEM No guard for ENDMINMhI

MSS-GUARD-VALIDrrY-OF-TIME-DATAES No guard ELAPSEDITE
WRONG-PLAN-GUARD-START TRME-GT.ENDT5 STAMihE > ENDITIM Caic wrong
MISS-RETRY-ON-BAD-DATA No reinpu on invali data
MISS-PROMPTf-FOR-NEGATIVE-ID-TO-SIP No prompt to enter negative for ID to atop
STARTrIME-AND-ENIfME-REVERSED-CALC STARiTIE a ENIYIM reversed in calculation
SPURIOUS-VAR-READ-PROBLE~rrYPE PROBLEMTYPE read too often
SPUOUS-VAR-READ-ID-OUTPUr ID read too often
SPURIOUS-VAR-READ-PROBLEMTYPE-OUTPUT PROBLEMTYPE rod before write
SPURIOUS-VAR-READ-ENDTIME-OU END71ME read before write
SPURIOUS-VAR-READ-ELAPSEDTME-OFPT ELAPSEDTIME read before write
PURIOUS-VAR-READ-ACCURACY-OTTPUT ACCURACY read before write
MISS-GUARD-F;OR-STARTHOUR-GT-0 No guard for STARTHOUR > 0
OFF-BY-ONE-GUARD-STARThtINUT!-59 STARTMINUTE could be 60
OFF-BY-ONE-GUARD-STARTSECOND-59 STARTSECOND, could be 60
OFF-BY-ONE-GUARD-ENDHOUR-12 ENDHOUR. could be 13
OF-YOEGADEDMUE5 ENDNUTE could be 60
OFF-BY-ONE-GUARD-ENDSECON4D-59 ENDSECOND could be 60
MISPLACED-REINPtTF-ID Reinput on invalid misplaced
WRONG-PLAN-CALC-ELAPSEDIME ELAPSEDTIM not calculated correctly
NO-DESCRIPTION-OF-OUTPUT-ID Output of ID not documented
NO-DESCREMTON-OF-OUTPUr-AC Output of ACCURACY not documented
NO-DESCRIPTON-OF-OUTPUT-VT Output of PROBLEMTYPE not documnented
NO-DESCRIPTON-OF-OUTPUF-ET Output of ELAPSEIYFME not documnented
------------- --------------------------------- -----------------------------------------------

j Figure 6.6: Reformat Task Bugs
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6.2.4. Summary: E. 0. 1

TP has representations for two task specifications and the the most

common bugs that students make when they try to solve the tasks

(Spohrer, et al., 1985). TP represents each task as a conjunction of

goals. There are approximately 40 goals for the Rainfall Task and 90

goals for the Reformatting Task.

The bugs in TP's knowledge base are associated with specific

goals in the task representations. The bugs in TP's database account

for approximately 60 percent of the bugs that students make when

they try to solve the Rainfall Task and the Reformatting Task.

Many of the task goals, and many of the bug types, are common

across the two task specifications. This communality leads to a

degree of domain generality, a topic that is discussed in Chapter 8.

6.3. 0. 2: How Good TP's Tutorial Plans Are

6.3.1. Introduction

The empirical validation of the tutorial plans that TP can produce

was designed to determine whether TP's tutorial plans were as good

as the tutorial plans generated by experienced human tutors. Two

studies were performed that presented experienced human tutors

with tutorial plans generated by TP. The human tutors rated various

features of TP's tutorial plans. For example, the tutors were asked
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to rate the acceptability of each plan, how willing they would be to

use the plan to tutor the buggy program for which the tutorial plan

was generated, and: so forth. As well, the tutors were given ample

opportunity to identify aspects of each tutorial plan that they did

not like and were able to indicate how they would modify

undesirable aspects of the tutorial plan.

In the first study, experienced tutors were asked to criticize

TP's best tutorial plan for each of five buggy programs. In the second

study, experienced tutors were presented with three tutorial plans

for each of five buggy programs. TP generated one of the tutorial

plans and the others were generated by the experimenter. The

tutor's task was to rate each of the tutorial plans according to

several features and then to rank order the three tutorial plans

a(,cording to their goodness.

The argument that the first empirical study attempts to

support can be stated as follows:

" Experienced human tutors generate, and use, good tutorial plans.

" Experienced tutors can identify the aspects of a tutorial plan

that are good and the aspects the tutorial plan that are bad.

* Tutors can say how the bad aspects of the plan could be modified

to make it better.

* If the agreement among several tutors about the acceptability

TP's tutorial plans is statistically significant, and they agree that

the tutorial plans are acceptable, then the study provides strong

prima facie evidence that TPs tutorial plans are similar to the

tutorial plans that the human tutors would use.
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The argument that the second empirical study attempts to

support is the following:

* Experienced tutors can recognize good tutorial plans and bad

tutorial plans for the same buggy programs.

* Exyerienced tutors can identify how good and how bad the

tutoriai plans are according to how the plans address the five

tutorial planning decisio-s.

• If tutors agree about which tutorial plans are best, and which

are bad, and the bad tutorial plans were generated by ignoring one

,r more of the five tutorial planning decisions, then the study

provides evidence that the five tutorial planning decisions are key

to generating good tutorial plans.

Thus, the validation studies for the quality of TP's tutorial

plans are based on extensive evaluation by experienced human tutors.

6.3.2. Description of Empirical Study 1

6.3.2.1. Subjects

The four subjects in the empirical test of the acceptability of TP's

tutorial plans were all graduate students in the Computer Science

Department at Yale University. Each subject was an experienced

tutor who had tutored students in novice Pascal courses (among

others) for at least two terms. Because of the amount of data I

.;ollected from each subject and the amount of time required to

complete the task (the average was more than six hours), four J
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subjects participated in the study. Each subject produced

approximately 90 pages of data. Only a small part of the data

produced by each subject was analyzed for the validation study.

6.3.2.2. Materials

Subjects were asked to evaluate tutorial plans for 5 buggy Rainfall

Task programs and 5 buggy Reformatting Task programs. There was

an average of eight bugs per program. In each of the 10 stimulus

programs the bugs were identified for the tutors because the goal

was to evaluate tutorial plans, not bug finding. The ten programs

were not in the set of programs from which TP's knowledge base

was generated.

Figure 6.7 shows Program BMT085, one of the 5 buggy Rainfall

programs: Program BMT085 has 12 bugs. Figure 6.8 shows the

tutorial plan for the program shown in Figure 6.7. The bugs in the

tutorial plan are divided into groups, objectives are identified for

them, strategies are indicated for the objectives, a note is made

about how important it is to tutor the bugs in the group and the

groups of bugs are ordered. In this case, TP said that all but the

final group of bugs, Group 5, definitely should be tutored. In the

tcase of Group 5, TP said that the bugs should just be pointed out to

the student.

The experienced tutors who served as subjects were asked to

rate, on 7-point scales, several aspects of each tutorial plan. The

leftmost point on the scale, corresponding to 1, represented the

least desirable value on the scale. The rightmost point,
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corresponding to 7, represented the most desirable value on the

scale. Figure 6.9 shows the bulk of the scaled questions that the

subjects were asked about each of the 10 buggy programs in the

Validation Study.2  The first question asks for a scaled global

evaluation of the quality of the tutorial plan. As the additional

questions in the figure show, tutors were asked to evaluate the

grouping, ordering, and strategy selections for each tutorial plan. In

addition, tutors were asked for global scaled evaluations of the

intelligence of the student who wrote the program and how hard they

thought it would be to tutor the student. As well, a final, open ended

question gave subjects the opportunity to bring up any issues that

they felt had not been covered adequately in the specific questions.

2These questions were spread out over four pages In the questionnaires the tutors filled
out. The questions are minified to show them all In one figure.1
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/" BMT085 */
PROGRAM Noah (INPUT,OUTPUT);

Sentinel - 99999;
VAR

BUG 1: WRONG TYPE DAILY RAINFALL
BUG 2: WRONG TYPE MAXIMUM
BUG 3: WRONG TYPE TOTAL RAINFALL

DailyRainfall, MaxRainfall, TempRaindays
Raindays, TotalRainfall, TotalDays : INTEGER;
AverageRain : REAL

BEGIN
BUG 4: NO INITIALIZATION TOTAL DAYS

AverageRain :- 0;
MaxRainfall :, 0;
Raindays :- 0;
TotalRainfall :- 0;

BUG 5: NO INITIALIZATION DAILY RAINFALL -m SENTINEL
BUG 6: MALFORMED LOOP GUARD (SHOULD BE a.)

WHILE DailyRainfall < 99999 DO
BEGI

WRITLEN('Enter rainfall data. ');
READLN;
READ(DailyRainfall);
BackOutlnvalid :- Backoutlnvalid + 1;
WHILE DailyRainfall < 0 DO

BEGIN
WRITLEN('Enter rainfall value > 0. ');
READLN;
READ(DAILYRAINFALL);END;

BUG 7: NO SENTINEL GUARD
TotalRainfall :- TotalRainfall + DailyRainfall;
IF DailyRainfall - 0 THEN TempRainDays :- 0;
IF DailyRainfall > 0 THEN TempRainDays :- 1;
RainDays :- RainDays + TempRainDays;
IF DailyRainfall > MaxRainfall THEN

MaxRainfall :- DailyRainfall;
BUG 8: AVERAGE CALCULATION IN LOOP

*BUG 9: NO GUARD AGAINST RAINDAYS = 0
* BUG 10: WRONG DIVISOR FOR AVERAGE RAIN

AverageRain :- TotalRainfall/RainDays;
END;

BUG 11: NO GUARD AVERAGE OUTPUT
BUG 12: NO GUARD MAXIMUM OUTPUT

WRITELN('There were ', RainDays :0:2 'rainy days In the period.');
WRITELN('The average daily rainfall was ', AverageRain :0:2 'inches per day. ');
WRITLEN('The highest daily rainfall was' MaxRainfall :0:2, ' inches.');

END.

Figure 6.7: One of 10 Buggy Programs In Evaluation Study
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GROUP I
WHETHER TO TUTOR: DEFINITELY

Justification: Student may not realize that rainfall may not be
integer value

BUGS IN GROUP:
Bug 1: Wrongtype for Daily Rainfall
Bug 2: Wrong type for Maximum
Bug 3: Wrong type for Total Rainfall
Justification: All are problems with variable typing

ORDER OF BUGS: Doesn't matter
PLAN
1. Show student that there could be non-integer values of each variable.

WHETHER TO TUTOR. DEFINrTLY
Justification: Program will not produce correct result

BUGS IN GROUP:
Bug 10: Wrong divisor for Average Rain

ORDER OF BUGS:
PLAN
1. Ask student why s/be used Rainy days for the divisor

GROUP-
WHETHER TO TUTOR: DEFINITELY

Justification: common pattern to watch out for
BUGS IN GROUP:

Bug 5: No initialization of rainfall not equal to sentinel
Bug 6: Malformed loop guard
Bug 7: No guard rainfall equal to sentinel
Justification: Common pattern in this type of loop

ORDER OF BUGS:
Bug 5: No initialization of rainfall not equal to sentinel
Bug 7: No guard rainfall equal to sentinel
Bug 6: Malformed loop guard

PLAN
1. Simulate loop, especially with boundary case of DailyRainfall equal to setinel. This will get
student to articulate problem. Then hint at use of guard. Then "point out" that the condition is not quite righ

WHETHER TO TUTOR: DEFINIELY
Justification: Not the standard way of doing things

BUGS IN GROUP:
Bug 4: Average caic in loop

ORDER OF BUGS:
PLAN
1. Ask student why the average calc is in loop.

WHETHER TO TUTOR: IF TIME REMAINS
Justifiation: These bugs are not crucial.

BUGS IN GROUP:
Bug9, No guard forRaindays = 0
Bug 11: No Guard for output of Average
Bug 12: No guard for output of Maximum

ORDER OF BUGS:
Probably start with Bug 9 because it could cause the program to blow up. &PLAN

1. Thew bugs should just be pointed out

Figure 6.8: A Tutorial Plan for MT085 In Evaluation Study
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6.3.2.3. Procedure

Subjects were given all the stimulus materials (approximately 150

pages) at one time. They were allowed to work at their own pace

with the following provisos:

* Subjects were to finish all five Rainfall Task programs at one

sitting.

* Subjects were to finish all five Reformatting Task programs at

one sitting.

* Subjects were to complete the task in two days or less.

Subjects worked in their offices, or at home. Each subject

took at least six hours to complete the task. Some tutors took over

seven hours. Subjects said that the task was tedious but that they

believed that their responses were realistic. Subjects were paid for

their participation.

6.3.2.4. Results

The results of the validation study demonstrated that the tutorial

plans evaluated by the tutors were more than acceptable to them.

Figure 6.10 shows the results for the seven main rating scale

questions asked of the tutors shown in Figure 6.9.

According to common procedure for scaled data, marks on the

scale line were converted to, and analyzed as, decimal numbers. The

three columns corresponding to each question in Figure 6.10 are

averages across all 10 programs (five Rainfall programs and five
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Reformatting programs) and all four tutors. Thus, each entry

represents 40 observations.

The entries in the column corresponding to the mean of all the

tutors' judgements shows that, on all seven scales, the tutorial

plans generated by TP were more than acceptable. Note especially

that TP's grouping decisions and strategy selection decisions were

particularly good, according to the human tutors. The standard

deviations, as well, were smaller than might be expected if

different tutors had radically different ideas about the attributes

that constitute a good tutorial plan. The last column identifies the

conclusions that can be drawn from the validation study. As the

conclusions column for the first five questions shows, tutors

believed that TP generates tutorial plans that are more than

acceptable.

The final question in the Figure 6.10 provides an intriguing

insight into the tutors attitudes toward TP's tutorial plans: The

tutors in the validation study said that they would be willing to use

TP's plans to tutor the student who wrote the buggy program

corresponding to the plan. This can be interpreted to mean that they

genuinely felt TP's plans were good.

1.I
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I QUESTION MEAN STANDARD DEV. CONCLUSION

Global Quality 5.0 2.0 +
Grouping 5.9 1.4 ++
Tutor or Not 6.0 1.7 ++
Group Ordering 5.2 1.7 +
Strategies 6.7 0.5 ++
Would Use? 5.4 1.5 +

(N=40 per Question)

Figure 6.10: Results of Scaled Questions in the Validation Study

6.3.3. Description of Empirical Study 2

6.3.3.1. Subiects

10 subjects participated in the second empirical test of the

acceptability of TP's tutorial plans. Subjects were either graduate

students, professional staff, or faculty in the Computer Science

Department at Yale University who had not participated in Empirical

Study 1. Each subject was an experienced tutor who had tutored

students in novice Pascal courses (among others) for at least two

Iterms. Each subject produced approximately 20 pages of data.

1
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6.3.3.2. Materials

Subjects evaluated three different tutorial plans for each of five

buggy programs, for a total of 15 tutorial plans. The three tutorial

plans for each buggy program were designed to be more, or less, like

those that experienced human tutors generate:

* One tutorial plan was generated by TP. This tutorial plan was

generated by making the five Tutorial Planning Decisions and

therefore the plan differed for each of the five buggy programs.

* One tutorial plan used none of the knowledge and rules that TP

used. This tutorial plan was exactly the same for each of the five

buggy programs. The five tutorial decisions were made as follows:

* Tutorial Decision 1: All bugs are tutored.

" Tutorial Decision 2: Bugs are tutored separately.

* Tutorial Decision 3: Bugs are tutored in the order that they

appear in the program.

* Tutorial Decision 4: The only tutorial goal is to make the

program work.

* Tutorial Decision 5: The tutorial strategy is to point out the

bug and tell the student how to fix it.

One tutorial plan used some of the knowledge and rules that TP

used. Specifically:

Tutorial Decision 1: All bugs are tutored.
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* Tutorial Decision 2: Bugs are tutored separately.
I Tutorial Decision 3: Bugs are tutored in order of importance

starting with the most important bugs.

. Tutorial Decision 4: Tutorial goals are as generated by TP.

* Tutorial Decision 5: The tutorial strategy is to point out the

bug and ask the student how to fix it.

For each tutorial plan, subjects were asked to indicate the

extent to which they agreed with seven statements about the

tutorial plan. Five of the seven statements asked how much they

agreed with the five Tutorial Planning Decisions. One statement

asked subjects how good the tutorial plan was overall and the final

statement asked how willing subjects would be to use the tutorial

plan to help the student who wrote the buggy program.

Finally, subjects were required to rank order the three tutorial

plans in terms of overall quality. No ties were permitted in the

rankings. After the ranking task, subjects were given the

opportunity to respond to some open-ended questions that allowed

them to say anything they cared to about the study, the programs,

the tutorial plans, and the task.

01. Overall, this tutorial plan is as good as best possible
02. Decision about which bugs to tutor is as good as best possible
03. Decision about bugs to tutor together is as good as best possible
04. Decision about ordering of bugs is as good as best possible
05. Decision about goals to achieve is as good as best possible
06. Decision about strategies to use is as good as best possible
07. I would be willing to use this tutorial plan

[ Figure 6.11: Seven Statements about Tutorial Plans
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6.3.3.3. Procedure

Subjects received all the stimulus materials in a single packet.

They were allowed to work on the materials at their own pace.

Subjects worked in their offices or at home. The task required much

less time to complete than in Experiment 1. No subject needed more

than 2 hours to complete the task.

6.3.3.4. Results

The results of Empirical Study 2 provide strong support for the

claim that TP's tutorial plans are more better than tutorial plans

generated without all of TP's knowledge and rules. The two main

results of Empirical Study 2 show:

0 First, when subjects are asked to rank the three tutorial

plans for a multi-bug program by identifying the best tutorial plan,

the worst tutorial plan, and the intermediate quality tutorial plan,

TP's tutorial plans almost uniformly ranked ahead of the other two

plans. In 38 out of a possible 40 cases, TP's tutorial plans were

ranked first. The results of the tutorial plan ranking task are

significant by sign test at beyond the .001 level of statistical

significance.

* Second, when subjects are asked to indicate how strongly

they agree with each of the seven positive statements about the

three tutorial plans for each of the five multi-bug programs, they

express much stronger agreement with the statements when they
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refer to TP's tutorial plans than when they refer to plans generated

without TP's knowledge and rules.

Figure 6.12 shows the seven statements and the number of

times subjects agreed with the statements most strongly when they

referred to TP's tutorial plans. The figure shows that,

overwhelmingly, the tutors agreed that TP's tutorial plans were

better than the other two in terms of 1) overall quality, 2) three of

the five Tutorial Planning Decisions, and 3) how willing they would

be to use the tutorial plan generated by TP.

Tutors did not rate TP's ordering and goal selection decisions

as highly as the other three Tutorial Planning Decisions. There are

several possible explanations for this. First, tutors may simply

disagree more among themselves on these two Tutorial Planning

Decisions than the other three. Second, TP may be deficient in

making these two Tutorial Planning Decisions in comparison with

the other three and tutors agree that TP is deficient i.e., it is not

simply a a matter of an honest difference of opinion. Third, tutors

may have been less certain of their own ordering and goal selection

decisions and therefore were reluctant to rate any such decisions,

including TP's, higher than others.

Regardless of which of these explanations turns out to be

correct, it is not valid to conclude from the data that tutors thought

that TP did badly on the goal and ordering decisions. To see this,

notice that the proportions reported in Figure 6.12 are very

conservative because, if two tutorial plans were equally acceptable

for one of the seven questions, this was counted as a loss by TP's

tutorial plan. In addition, out of the 280 responses (8 subjects X 5
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programs X 7 questions) there were only 13 citright losses by t1-3

tutorial p'-ns generated by TP. There were 61 ties which came

almost exclusively from the tutorial plans for which the tutorial

decisions for the intermediate plan were the same as TP's decisions.

Thus, it is as if the glass were half full as opposed to half empty:

Under a very conservative interpretation, experienced tutors

preferred TP's decisions - z least half the time.

TP's Plan
Rated Best

QI. Overall 33/40
02. which bugs to tutor 34/40
Q3. bugs to tutor together 3 6/40
Q4. ordering of bugs 20/40
Q5. goals to achieve 1 23/40
06. strategies to use 34/40
07. willing to use 36/40

Figure 6.12: Number of Times out of 40 TP's Plan Rated Best

6.3.4. Summary: E. Q. 2

In summary, TP's tutorial plans were evaluated by human tutors in

two separate studies. In the first study, tutors reported on the

acceptability of each of ten tutorial plans according to several

attributes such as overall quality, grouping decisions, and strategy

selection. The results show that the tutorial plans were a(. ptable

on the main features, including grouping, ordering, strategy
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selection, and the willingness of the tutors to use the tutorial plans

to tutor the student who wrote the buggy programs.

In the second study, tutors rated 15 tutorial plans -- three

each for the five buggy programs. The three tutorial plans were

simple, intermediate in complexity, or generated by TP. The results

of the analyses of the rating data show that TP's tutorial plans are

overwhelmingly preferred over the other tutorial plans.

6.4. Chapter Summary

This chapter has described the chief aspects of the evaluation of TP

and the tutorial plans that TP generates. The evaluation of TP was

focused on two evaluation questions. The first evaluation question,

E. 0. 1, asks how much TP knows. The second evaluation question, E.

0. 2 addresses the quality of the tutorial plans that TP generates.

Two aspects of TP's knowledge are key to its performance,

namely its knowledge about task specifications and its knowledge

about bugs. Both of these kinds of knowledge are extensive and

fairly general in that slight modifications of them can produce other

task specifications and other bugs.

The tutorial plans that TP generates are considered to be more

than acceptable by human tutors. The tutors' judgements about how

well TP answered the five Tutorial Planning Questions showed that,

at the least, TP's knowledge about how to generate tutorial plans is

powerful enough to generate tutorial plans similar to the ones that
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human tutors generate. Two studies addressing the acceptability of

TP's tutorial plans supported the same conclusions.

2
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Chapter 7

EXECUTING TUTORIAL PLANS & RECOVERING FROM FAILURE

7.1. Introduction

Once the tutor, whether human or computer, generates a tutorial

plan, two issues arise. First, the tutorial plan must be executed ---

the student does not receive any help until the tutorial plan is

executed. Second, during the execution of the tutorial plan there are

likely to be tutoring failures. The mechanism that executes the

tutorial plan must be able to recover dynamically from failures: It

is unreasonable for the tutor to try to anticipate, for every action.

of the tutorial plan, each possible reaction of the student and to

generate a tutorial response for each possible reaction (Peachy &

McCalla, 1986).

For example, if as in Figure 1.1, the student makes a bug

because of a misconception about the scoping of a WHILE loop, the

tutorial plan might specify that the tutor ask the student to perform

a hand simulation of the main loop in order to lead the student to see

how the loop behaves when it executes. Suppose that, when the tutor

makes the request for the hand simulation, the student is unable to

carry it out effectively; this is a common occurrence because

students do not always know how to perform complete hand

simulations (Spohrer, 1989). The tutorial plan thus fails at the

point when the tutor asks the student to perform a hand simulation.
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Any subsequent tutoring that depends on the results of the student's

hand simulation of the loop will most likely be unsuccessful.

The problem for the tutorial plan execution mechanism is to

recover from this failure. For example, one recovery procedure

might be for the tutor to perform the hand simulation of the main

loop while the student observes the results of the simulation.

Because the tutor's goal is to lead the student to understand scoping

of WHILE loops, and not specifically how to perform hand

simulations of them, this is a reasonable recovery strategy.

The focus of this chapter is on tutorial plan execution and

recovery from failures during tutorial plan execution. Although

tutorial plan execution and recovery from failure are not the main

topics of the dissertation they are important issues that must be

addressed as the effort progresses to build a complete tutoring

system for novice programming. The goal of this chapter is to

present some descriptive analyses of the knowledge supporting

tutorial plan execution and recovery from tutorial failure. The

analyses of the empirical data bearing on these two issues are not

as exhaustive as the analyses that led to the model of tutorial

planning:

0 In the case of tutorial plan execution, an attempt was made

to provide a plausible breakdown into individual steps of the tutorial

strategies described in Chapter 5.

* In the case of recovery from tutorial failure, interactions

between tutors and students in the Failure Recovery Study were

evaluated with the goal of identifying some common strategies that

tutors use when their tutorial plans encounter minor failures e. g.,
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the student does not understand how the data are stored in a file and

the tutor draws a picture of the file with data in it.

7.2. Tutorial Plan Execution and Recovery from Failure

The work on tutorial plan execution and recovery resulted in a

preliminary model of some of the knowledge required to execute

tutorial plans and recover from failure. The model was implemented

in a very simple program module called PEFR (Plan ixecution and

Eailure Recovery). The implementation of PEFR is so simple that it

will not be discussed further. However, it is useful to distinguish

PEFR's functions from TP's functions

Figure 7.1 shows the primary functions of TP and PEFR. TP

identifies appropriate tutorial strategies, such as asking the

student to hand simulate a section of code with the objective of

making the student aware of the existence of a bug. TP does not,

however, specify in the tutorial plan the specific steps of the

tutorial strategies. PEFR identifies the steps (such as identifying a

section of code by describing it) to be taken for each strategy

specified by TP and then prints a message corresponding to what the

tutor would say if it were a complete tutoring system. No claim is
made that humans identify the actions of tutorial plans at execution

time. However, it seems unreasonable to suppose that humans

specify all the actions at planning time.

Second, PEFR responds to tutorial failures by asking the human

user of the program to serve as an oracle and to identify the cause
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of the failure. PEFR then determines the action that is appropriate

for the failure and prints a message corresponding to what the tutor

would do in response to the failure e. g., "Identify effects of bug for

student." This topic is considered later in this chapter. TP's main

responsibility is thus the generation of the tutorial plan, which is

passed to PEFR to be executed -- this is shown in Figure 7.2. PEFR's

main responsibilities include executing the tutorial plan and

recovering from tutorial failures.

It is important to note that these analyses are intended to be

preliminary and to point the direction for future research. The

tutorial plans generated by TP, and executed by PEFR, were not

evaluated by trying them with students and observing their effects

on the students' problem solving behavior: This type performance

evaluation is intended as a future research topic. The tutorial plans

generated by TP were evaluated in the study described in Chapter 6.

FUNCTIONS OF PROGRAM MODULE:

TP PEFR
1. Make Tutorial Planning Decisions 1. Execute Tutorial Plan

Group Expand Strategies into Steps
Order Identify Actions for Steps
Tutor-Or-Not Name Actions for Steps j
Objectives
Strategies 2. Recover From Failure

Ask Oracle for Cause of Failu I
Recovery Strategy
Name Actions for Recovery J

Figure 7.1: Functions of Tutorial Planner and Plan Executor

206



IU

I

GENERATE TUTORIAL PLAN
Group

Order
Tutor-Or-Not --

Objectives
Strategies

TUTORIAL PLAN EXECUTION
Expand Strategies
Identify Actions
Name Actions to Perform 2.EF R
I I

RECOVERY FROM FAILURE
Use Oracle for Failure Cause
Execute Recoverg Strategy

Figure 7.2: Functions of Tutorial Planner and Plan Executor

I
i
I
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7.2.1. Tutorial Plan Execution

As noted above, TP specifies tutorial strategies for objectives but

it is the responsibility of PEFR to expand each strategy selected by

TP into its component steps.3  The current work on tutorial plan

execution attempted to address one issue in tutorial plan execution,

namely the nature of the breakdown of tutorial strategies selected

by TP into individual steps.

The breakdowns of the strategies into component steps

presented in this chapter are based on the data from the

Questionnaire Study and the Real Time Study. The analyses of the

data were only deep enough to support what appear to be extremely

intuitive breakdowns of the strategies. Tutors did not consistently

specify the steps of their strategies in the Questionnaire Study and

the data set from the Real Time Study are limited. Therefore, no

strong claim is being made that the strategy breakdowns given here

are the ones that all tutors use. Rather, the claim is made that

these strategy breakdowns are intuitive, prototypical, and common,

and suggest the direction for future research on the topic.

Figure 7.3 shows an example of the breakdown of one of the

four strategies discussed in Chapter 5, "Simulate Values". The

context in which TP specified this strategy is shown in Figure 3.2.

In the program shown in Figure 3.2, the student has initialized the

counter TOTALD 3 to 1 to avoid a potential division by zero error

3 PEFR simply looks up the strategy breakdowns In a table and prints them out. Because
this Is a trivial implementation, the program is not discussed further.!
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in the calculation of AVERAGERAIN. The result of the student's

choice of initial values for TOTALDAYS is an undetected bug:

TOTALDAYS will have an incorrect value (1) whenever the user of the

program does not enter any valid values for RAINFALL. As part of

the process of helping the student, the tutor specifies the objective

of making the student aware of the bug --- the undesired side effect

of the initialization. To achieve this objective the tutor uses the

strategy of asking the student to simulate the program when the

user does not enter any valid data e. g., the user enters all negative

numbers for DAILYRAIN. The tutor uses a directed simulation

because the objective is to make the student aware of the bug, not

to teach program testing skills.

The strategy of directed simulation of values expands into four

steps:

* First, the tutor informs the student that they are about to

perform a hand simulation of code and identifies the code segment.

In this instance, the tutor asks the student to hand simulate the

main loop.

* Second, the tutor gives the student the values with which to

perform the hand simulation. The tutor gives the student the values

because the strategy selected is a directed simulation. In this

instance the tutor asks the student to hand simulate the code when

the user does not enter any legal values of DAII.YRAIN.

0 Third, the tutor asks the student to hand simulate the

section of code with the provided values. In this instance the tutor

asks the student to hand simulate the main loop with a set of values

for DAILYRAIN that are all negative i. e., illegal.
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Fourth, the tutor identifies target variables (e. g.,

TOTALRAIN) and asks about the status of them. In this instance the

tutor asks if the value of TOTALRAIN is legal after the hand

simulation.

Figure 7.4 shows breakdowns into components of examples of

the other three strategies, Justify, Explain, and Simplify. Each of

the breakdowns of the steps follows the same pattern as the

breakdown of the simulate values strategy shown in Figure 7.3. Each

example in Figure 7.4 shows the breakdown of the strategy at one of

the leaves under the nodes labelled Justify, Explain, and Simplify of

the strategy tree in Figure 3.16. For example, the Justification

strategy, which is used to achieve the objective of helping the

student to generate a new plan for a goal, shows the steps in the

strategy at the leftmost leaf in the tree in Figure 3.16.

In summary, this section identified prototypical, plausible

analyses of the component steps of four major tutorial strategies.

For example, the component steps of the strategy of asking the

student to perform a hand simulation of a segment of code, with

specified values, is displayed in Figure 7.3. The analyses were based

on empirical data gathered in the Real Time Study and the

Questionnaire Study. Future research will address more deeply the

issue of the component steps of tutorial strategies.
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OBJECTIVE • Make Student Aware : Bug
STRATEGY : Simulate Values : Directed
STRATEGY STEPS

1. Ask student to simulate code fragment
2. Provide values for simulation
3. Ask student to simulate and give values of variables
4. Ask status of target variables

Figure 7.3 : Steps of the Strategy "Simulate Values"

OBJECTIVE: Generate New Plan for Goal
STRATEGY : Justify : Existing Plan for Goal
STRATEGY STEPS

1. Identify goal
2. Ask student to identify plan
3. Ask student to justify existing plan for goal
4. Produce & critique new plan

4.1 Produce new plan
4.2 Critique new plan
4.3 Repeat 4.1 & 4.2 until satisfactory new plan

OBJECTIVE: Correct Program Goal
STRATEGY • Explain Goal For Plan
STRATEGY STEPS

1. Identify plan
2. Ask student to identify goal
3. Ask student why used plan for goal
4. Correct goal
5. Produce & critique plan for goal

OBJECTIVE: Teach Student Concept : Interactive Loop
STRATEGY • Simplify : Read/Write Loop
STRATEGY STEPS

1. Name concept to teach
2. Identify simplification
3. Present simplification
4. Progressively increase complexity to target

L Figure 7.4: Steps of Examples of Justify, Explain, and Simplify
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7.2.2. Recovery From Failure

Tutorial plans do not always work perfectly. For example, suppose a

student incorrectly attempts to read an entire file of single-digit

numeric data with a single READ statement.4 The tutor may decide

on a simple verbal description of a loop with a READ statement in it

as the strategy for helping the student to understand how a loop can

be used to read numeric data from a file. However, when the tutor

gives the student the simple verbal description, the student may not

understand it. One reason could be that the student does not

understand that a file of single-digit numeric data consists of

single characters separated from one another by blanks and that a

single READ statement only reads a single character in the file.

When the tutor gives the simple verbal description, the stucent

fails to understand it. The tutor realizes that the failure oc -red

because the student does not know how 1) data are representea in a

file and 2) they are scanned by a READ statement. To overcome the

student's failure of understanding, and hence the tutorial planning

failure, the tutor draws a picture of the file with the single-digit

numeric data in it, draws a schematic loop with a single READ

statement in it, and then hand simulates the loop, pointing with a

finger to show how a single character in the file is scanned on each

iteration of the loop. In short, the tutor planned to help the student

in a way that led to a failure, and then recovered from the failure

4 This eplsde occurred In the Failure Recovery Study.
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with an another, more expressive, technique. The recovery strategy

the tutor used is called Object Mapping Simulation because the tutor

draws representations of the two main objects (the file and the

loop) and then simulates the effects of the iterative READ statement

on the file. Thus, the file and the loop are mapped to objects and

then the actions of the loop on the data in the file are simulated.

The goal of the research on tutorial failures was not to build a

working component of a tutoring system that could recover from

tutoring failures: Many significantly difficult problems have to be

solved to do so. Rather, the research on recovery from tutoring

failure had the goal of developing an initial description of the

knowledge that tutors have about 1) types of failures encountered

during tutoring and 2) strategies that can be used to recover from

the failures. Clearly, the knowledge about types of failures and

recovery strategies is a prerequisite to constructing a failure-

recovery module for a tutoring system for programming.

7.2.2.1. Types of Failures

The Failure Recovery Study provided the data on which this work is

based. Tutors were observed while they helped novice programming

students and failure episodes were identified. Failure episodes

were defined as interchanges between the tutor and the student in

which the tutor gave the student some information, the student

failed to understand the information, the tutor recognized failure,

and then took corrective action. Each failure episode was
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characterized, the tutor's response to it was noted, and its effect on

the student was recorded.

Tutorial failures arose primarily because the tutor made an

incorrect assumption about the student. There were three very

rough types of incorrect assumptions tutors made about the student:

• Ability Assumption Failure. The tutor attributes too much,

or too little, ability to the student. The current treatment deals

only with cases in which the tutor attributes too much ability to the

student.

• Knowledge Assumption Failure. The tutor believes the

student knows less, or more, than the student in fact knows. The

current treatment deals only with cases in which the tutor

attributes too much knowledge to the student.

• Intent Assumption Failure. The tutor believes that the

student had one intention in writing a segment of code whereas, in

fact, the student had a different intention.

This categorization of the types of assumption failures is very

coarse grained because each type has many subtypes, which the

analyses of the data did not permit to be fully enumerated. For

example, in the first category of assumption failures, ability is

treated as a simple three-valued variable with the values High,

Medium, and Low. In reality, tutors make ability assumption failures

about students' skills for testing programs; figuring out how to

translate a verbal description of an algorithm into its counterpart in

a programming language; etc. and not simply mistaken assumptions

that e. g., the student is high ability when, in fact, the student is

low ability. Nevertheless, the coarse grained categorization of
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types of failures is useful for understanding how tutors identify and
recover from failures.

7.2.2.2. Types of Recoveries

Tutors' recovery strategies were related to the type of failure which

the recovery strategy was intended to remedy. For example, if the

tutor made a Knowledge Assumption Failure, the tutor tried to

provide the knowledge that the student needed; if the tutor

misjudged the student's ability, then the tutor changed the difficulty

of the student's task.

The preliminary analysis of recovery strategies focused on

Ability Assumption Failure and Knowledge Assumption Failure. For

each type of failure a common, concrete recovery strategy was

identified and is described in this section: The recovery strategies

tutors used to remedy Intent Assumption Failures were less clear

cut than those used to remedy Ability and Knowledge Assumption

Failures and therefore are not discussed here because they are a

topic of future research.

Ability Assumption Failures were uncommon and seemed to

occur when a tutor did not know the student very well. The recovery

strategy used by tutors depended upon the direction in which they

misjudged the student's ability. When they attributed too little

intelligence to the student, tutors became more telegraphic about
Jreferences and provided less connective material between points

they wanted to make. When tutors attributed too much ability to the

student they took the opposite tack and were more explicit about
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references and provided more connective material between points

they wanted to make. These strategies are not implemented in PEFR.

When an Ability Assumption Failure occurs, PEFR merely says that

it would give more or less information to the student.

Knowledge Assumption Failures arose primarily in three

situations. Each of the three situations led to a different recovery

strategy, which are depicted in Figure 7.5:

- Factual Information Strategy for Factual Knowledge

Assumption Failure Sometimes a student simply "didn't know

something" and the tutor told the student. For example, some

student's did not know that division by zero causes a runtime error.

When this occurred, tutors simply told students about the division

by zero error and explained that such errors must be avoided because

they cause the program to halt execution.

- Object Reification Strategy for Object Knowledge

Assumption Failure Often a student might have a poor mental model

of an object. For example, if a student did not know how single-

digit numeric data are represented in a file, the tutor typically drew

a picture of the file with single-digit numbers arranged on the lines

of the files. Or, if the student did not understand Pascal records,

the tutor might draw a large box to represent the record as a

container and little boxes inside the large box to represent the

fields of the record. Object Reification by drawing, or telling the

student to visualize an object with certain properties, is intended to
help the student build a mental model of an object that the tutor J
believes the student must be able to reason about for successful

tutoring. '1
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I
1 . Object Mapping Simulation Strategy for Object Relationship

Assumption Failure A student might have a poor mental model of

jthe relationship between two objects. For example, a student might

not know how a WHILE loop with a READ statement iteratively reads

Idata from a file of single-digit numbers. In this situation the tutor

typically drew a picture of the two objects -- the file and the loop -

-and then, using hand and finger motions, showed how the action of

one object affected the other object. In the case of a student who

did not know how a WHILE loop read data from a file of single-digit

Inumbers, the tutor moved a finger on one hand over the numbers in

the picture of the file while moving a finger on the other hand over

each statement in the WHILE loop, stopping momentarily each time

the READ statement was encountered and showing the student what

happened to the variable into which the READ statement placed the

number from the file.

The implementation of failure recovery strategies is very

simple. PEFR does not determine the cause of the failure. The user

of the program is asked for the cause of the failure e. g., Object

Relationship Assumption Failure. PEFR uses the cause of the failure

I and the objects associated with the failure e. g., a file of numbers

and a WHILE loop and performs table lookup to find the remedial

i strategy. When PEFR does not find a remedy, the user can add a

remedy corresponding to the cause of the failure and the associated

objects.

2
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Failure Strategy Example

Factual Knowledge Factual Information Division by Zero
Runtime Error

Object Knowledge Object Reification Pascal Records

Object Relationship Object Mapping Sim. Using WHILE loop
to read from file

Figure 7.5: Knowledge Assumption Failures and Recoveries

7.3. Chapter Summary

This chapter has discussed two problems that arise when a tutorial

plan is executed. First, tutorial strategies specified by TP must be

broken down into component steps. For example, if TP specifies a

strategy of directed simulation to make the student aware of a bug,

the component steps of the strategy must be specified. For example,

in one of the steps of the strategy of directed simulation the tutor

must identify the code to simulate; in another step the tutor must

tell the student which values to use for the simulation. The

specification of the component steps of strategies is performed by

PEFR, the tutorial plan execution module.

Second, when tutorial plans fail, the tutorial plan execution

module must attempt to recover from the failure. Analyses of

interactions of tutors and students revealed a coarse, three element I
categorization of tutorial failures. One of the types of failure, -
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1 Ability Assumption Failure, is remedied very simply. A second type

of failure, Intention Assumption Failure, was not analyzed and

reported here. The three chief kinds of Knowledge Assumption

Failures, e. g., Object Knowledge Assumption Failure, were

i discussed and recovery strategies for them, such as Object

Reification, were identified.

I
I
I
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Chapter 8

GENERALITY OF APPROACH TO TUTORIAL PLANNING

8.1. Introduction

Domain generality is a major issue for any ITS, component of an ITS,

or model of human tutorial reasoning. During the current, formative

phase of building ITSs, it is only reasonable that progress toward

the goal of powerful ITSs, and methods for building them, depend

upon identifying the aspects of each existing ITS that are domain

general, and therefore applicable beyond the specific ITS, and the

aspects of the ITS that are domain specific and therefore not

generally applicable. Doing so makes it possible to apply the lessons

learned from building an ITS to future efforts. For example,

analyses of CAI systems, which are based on a domain general, but

rigid, control structure, and domain specific representations of

knowledge, show that they do not provide much leverage for the goal

of developing general approaches to machine based instruction.

The purpose of this chapter is to describe the aspects of TP

which are not restricted to generating tutorial plans for the domain

of novice programming. That is, the goal is to describe the main

aspects of TP, and the knowledge on which TP is based, that are not

tailored specifically to the domain of novice programming.
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This chapter is divided into four major sections. The first

section discusses the domain generality of the model of tutorial

planning that is described in Chapter 2 and Chapter 3. The second

section discusses that generality of TP, the implementation of the

model of human tutorial planning. The third section identifies

limitations of the model of tutorial planning; the fourth section

provides some intuition about how the model described in this

dissertation might apply to other domains.

8.2. Generality of Model of Tutorial Planning

This section discusses the domain generality of the four categories

of knowledge that were described in Chapter 2 and Chapter 3. The

first three types of knowledge are about students, the domain, and

bugs. This knowledge is represented as records with slots and legal

fillers for the slots. For example, one slot in the representation of

the student is *ability", which has three possible values: "high",

"medium" or "low*. Knowledge about teaching falls into two

categories: knowledge about tutorial planning and knowledge about

tutorial plan execution.

8.2.1. Student

Students are represented with four main attributes each of which is

domain general. The fillers for two of the slots -- ability and
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I motivation -- are also domain general. The fillers for the remaining

two slots -- concepts and skills -- are domain specific.

IThe three-valued variables denoting the student's ability and

motivation refer to the student's ability and motivation to work in

i the domain of the tutor, e..g., programming. The values of high,

medium, and low, however, are independent of the domain of the

tutor.

IThe remaining two attributes, denoting the student's concepts

and skills, are domain general. A tutor for any domain would require

Iknowledge about what the student knows and what the student can

do. The values the attributes can assume, however, are not domain

general. For example, iteration, one of the concepts a student may

or may not understand, is a concept in the domain of programming.

Iteration is not specific to Pascal programming, but it is not

relevant to the domain of e. g., bacteriological diagnosis. The three

values that denote the possible degrees of understanding a student

has of a concept are domain general.

8.2.2. Domain

The tutor's knowledge of the domain of programming is obviously not

general to all domains. The tutor's knowledge of the domain falls

into four categories. The four categories and their limitations are:

a Task Specifications: As described in Chapter 2, task

I specifications describe the goals and subgoals for a programming

assignment e.g., the Rainfall Task. Although the goals included in a

I particular task specification may be used in another task

K. I 222



specification (e.g., guard the update of a run ing total),

specifications are specific to the Jomain of programming.

a Programming Plans: While the same programming plans may

be used to solve several different programming tasks e.g., guarding

an update of a variable is a comr in plan, programming plans are

specific to the domain of computer programming.

• Concepts: Concepts such as iteration, sequencing, guarding,

and so forth may have analogues in domains besides programming,

but no claim is male that their representation in TP is domain

general.

* Skills: Skills such as simulation, testing boundary

conditions, and so forth may have analogues in domains besides

programming, but no claim is made that t" -ir representation in TP is

domain general.

Thus, although a case might be made that some of TP's

knowledge about the domain of programming is not absolutely

restricted to programming, no claim is made for its domain

generality.

8.2.3. Bugs

Tutorial knowledge about bugs includes the four knowleige types of

of causes, effects, plan component, and location. Knowledge of

L.tuses and knowledge of location are domain general whereas

knowledge of effects and knowledge of plan component are not

domain general.
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The 13 causes of bugs that are used to generate a tutorial

plans were identified in Chapter 2. With only four possible

exceptions -- version hacking, try optimization, plan pollution, and

failure to test -- the causes of bugs are not specific to the domain

of programming. For example, slips are a common source of errors

in many types of problem solving (Anderson, 1983). As well,

misconceptions, misinterpreting a goal, and being uncertain about

how to achieve a goal are common sources of errors in most domains

of problem solving.

A plan for solving a goal is described by combinations of three

location descriptors -- Before, Inside and After. Any domain in

which the location of the components of a solution can be defined

can use those three location descriptors. These there are two

reasons that the three location descriptors, are not a complete set.

First, the location descriptors refer to physical location of objects

and not to e.g., temporal locations such as "Simultaneously*.

Second, the three physical location descriptions required to

generate tutorial plans for the programming domain refer to objects

on a two dimensional plane. The three physical descriptors cannot

handle all cases of placement of objects e.g., they are not sufficient

for 3-space. For example, the location description "Behind", which

might be required to describe the relative position of one component

of a computer system with respect to another component, is not
available in TP. However, the three location descriptions used by TP

are a subset of location descriptions that would be required for a

domain general spatial reasoning component of an ITS.
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8.2.4. Generality of Tutorial Planning Decisions

The five Tutorial Planning Decisions that are the basis of the model

of tutorial planning and TP, the implementation, are not restricted

to the domain of novice computer programming. Regardless of the

domain, each of the five Tutorial Planning Decisions must be made

for a tutor to help a student with a multiple bugs.

Although the five Tutorial Planning Decisions are domain

general, a few of the options for some of the five Tutorial Planning

Decisions may not be. For example, hand simulation, one of the

options in the teaching strategy taxonomy, is appropriate only in

domains where there is an object to simulate. This section

considers the taxonomy for each of the five Tutorial Planning

Decision and identifies those options that may not be general across

domains.

a Grouping: A grouping option identified in Figure 3.1 is

applicable to any domain for which such a grouping is possible. None

of the grouping options is inherently restricted to the domain of

programming. Three kinds of groups, those based on bug

dependencies, those based on a multi-component plan, and those

based on plan components may have limited domain generality.

Some domains may not have an analogue of program behavior

interactions, as defined in TP, because they do not have interacting

components. For example, a solution to a problem consisting of a set

of selections of e.g., stocks for an investor's portfolio, then the

concept of "runtime interactions" is not sensible and therefore not

applicable to that domain.
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Yes-No: The three possible options for whether to tutor a

bug -- Definitely Yes; Try; Definitely Not; and If Opportunity Arises

-- are not specific to the domain of computer programming.

* Ordering: It is plausible that the two primary ordering

strategies shown in Figure 3.13 are not specific to the domain of

programming. Although the other elements of the ordering taxonomy

may not be universally applicable, they do not appear to be specific

to the domain of programming.

0 Objectives: The objectives listed under the node "Fix

Program" in Figure 3.14 are not domain general. The three

objectives of fixing the program code, the plans in the program, and

the goals the student tried to solve in the program, are specific to

programming. However, if the object of the three objectives -- the

student's program -- were changed to be the object of the student's

problem solving, then analogues of the three "Fix Program"

objectives would be defined in virtually any domain.

For example, if the student were trying to design an

automobile, then "Fix Program" would be changed to "Fix Design" and

the programming domain objective of fixing the code would be

changed to the design domain objective of fixing the student's

design.

* Strategy: Most of the strategy options can be used in many

domains. For example, asking for a justification, providing a

simplified form of a problem for the student to solve, and

explaining aspects of a solution are all domain general strategies.

The only two strategies that are not obviously appropriate for all

domains are 1) simulation (as discussed above) and asking, or j
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providing, an explanation for code. If the object of the explanation

referred to entities in the domain analogous to code in the program

domain, then it would be appropriate to ask for, or provide, an

explanation of that entity. For example, a tutor for building

architecture might ask a student who is designing an office building

to explain the how the electrical wiring configuration supports the

electrical power demands required by the building specifications.

8.2.5. Summary

The model of tutorial planning for multiple bugs in the domain of

computer programming described in Chapters 2, 3, 4, and 5 is not

inherently limited to the domain of programming. The 5 Tutorial

Planning Decisions which must be made to generate a tutorial plan,

and the four categories of knowledge on which the decisions depend

are not specific to the domain of programming. For example, plan

components, groupings of bugs, and teaching strategies are all

concepts that have analogues in virtually any domain where the goal

of problem solving is to assemble many components (e.g., mechanical

parts; paragraphs; clusters of drugs) to achieve a solution.

Some types of knowledge in the four main categories are, of

course, limited to the domain of programming. For example, many of

the effects of bugs, such as "value is off-by-one" do not have

analogues in other domains. On the other hand, it is unreasonable to

suppose that the fact of domain specific types of knowledge would

prevent the model of tutorial planning for multiple bugs from being

applicable in other domains. For example, the concept of "value is
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off by one" does not apply in the case of constructing a treatment

plan for a patient with several illnesses that produce multiple signs

and symptoms. The major work in the future, to increase the domain

generality of the model, will be 1) to characterize the domains to

which the types of knowledge in the four categories apply and 2) To

identify additional knowledge types that are required for tutorial

planning in additional domains.

8.3. Domain Generality of Implementation

This section addresses the extent to which TP's ability to construct

tutorial plans is limited to the domain of novice computer

programming. Because the the generality of TP depends upon its

architecture and its tutorial planning rules, this section considers

the domain generality of these two components.

8.3.1. Generality of Architecture of TP

TP's architecture, described in Chapter 5, is a straightforward, non-

backtracking, rule-based design. TP's rules depend on declarative

knowledge sources specific to the domain in which TP operates. For

example, TP currently constructs tutorial plans for the domain of

novice Pascal programming because its knowledge sources encode

knowledge about the domain of novice Pascal programming.

To construct tutorial plans for another domain, TP's domain

knowledge would have to be changed. If tutorial plans in the other
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domain can be constructed by making the five Tutorial Planning

Decisions, and TP's rules for making the decisions are adequate, then

TP's architecture does not impose any limitation.

If generation of tutorial plans for the other domain

necessitated heuristic evaluation of alternative plans and

backtracking then TP in its current state could not construct

adequate plans. Although heuristic evaluation of plans and

dependency-based backtracking could be added to TP without

compromising its basic tutorial planning goals or the rules used to

achieve the goals, TP does not currently do so. Hence, TP's

architecture does not currently handle selection of alternative

tutorial plans but its form does not preclude the addition of a

component to do so.

8.3.2. Generality of Tutorial Planning Rules

As Chapter 5 described, each of the five Tutorial Planning Decisions

has a corresponding Tutorial Planning Goal in TP. In turn, TP

achieves a tutorial planning goal by executing rules that are specific

to that goal.

Tutorial planning rules are written in a domain general form.

Each tutorial planning rule has two parts, a test part and an action

part. The test part of a rule is constructed from a predicate base

defined on e. g., the student, bugs, relationships among bugs, tutorial

objectives, and tutorial strategies. The predicates for the est

parts of the rules do not refer explicitly to the domain of

programming. For example, one test predicate asks whether a bug is
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is caused by a misconception. The answer to the predicate is either

yes or no regardless of the domain in which the tutor operates. The

test predicates are- evaluated in the context of a knowledge base

that is domain specific. If the knowledge base is for novice

programming (as it is in the implementation of TP described in the

dissertation) then the predicates are "about" novice programming. If

the knowledge base is for the design of mechanical devices, such as

automobiles, then the predicates are "about" automotive design.

The action base consists of operations performed on the

I tutorial plan that TP constructs. The actions that can be performed

are not specific to the domain of programming. For example, one

action is to record in the tutorial plan the decision not to tutor a

particular bug. This action looks the same regardless of the domain

in which TP operates. Other actions on tutorial plans are described

below.

8.3.2.1. The Predicate Base

Figure 8.1 shows nine predicates in the predicate base. The nine

i predicates are sampled from the three types of knowledge described

in Chapter 2. There are approximately 70 predicates in the predicate

base for these three types of knowledge. For example, predicates

defined on the student determine whether the student e.g., has high

ability; knows a particular skill; knows a particular concept, etc.

j Predicates defined on bugs determine e.g., whether the effects of a

bug are serious. Predicates defined on the domain (novice

I
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programming in the case of TP) determine whether e.g., a plan is

important or not.

Note that none of the predicates shown in Figure 8.1 contains

any explicit references to the domain of novice programming. The

predicates are designed to access data structures that contain

domain specific information. For example, in the programming

domain, each programming plan has a feature that encodes its

importance. DOM PRED-ImportantPlan? accesses this information

about the programming plan and returns "true" or "false*. Any

domain in which plans have an importance attribute, and in which

the implementation of plan knowledge is consistent with the

canonical form of plan knowledge in TP, automatically has

DOMPRED-lmportantPlan? defined for it. The same is true of all the

other predicates in TP.

8.3.2.2. The Action Base

Achieving a Tutorial Planning Goal alters the tutorial plan being

constructed. Figure 8.2 shows most of the actions that TP takes to

alter a tutorial plan. For example, the first Tutorial Planning Goal,

Grouping, has three primary actions: make a new group, add a group

to a plan, and add a bug to a group.

Each of the remaining four Tutorial Planning Goals is achieved

by making corresponding alterations of the tutorial plan. For

example, ordering the bug groups for tutoring can be viewed as

constructing a specific permutation of the groups. TP uses two

actions to construct a permutation of objects: Move one object

231 1



- before another and move one object after another. Moving a group to

the front of the tutorial plan is provided as a primitive operation, as

j] is moving a group to the end of the tutorial plan.

K-Type Example Explanation

STUDPRED-AbilityHigh? Does the student have high ability?
Student STUDPREDKnowsSkill? Does the student know the skill?

STUDPRED-.KnowsConcept? Does the student know the concept?

BUGPRED-EffectsSerious? Are the effects of the bug serious?
Bugs BUGPREDCauselsSlip? Is the cause of the bug a slip?

BUGPRED-SamePlanComp? Are the bugs in the same plan component?

I DOMPRED-importantPlan? Is the plan important?
Domain DOMPRED=importantConcept? Is the concept important?

DOMPRED-TaskSut*Goal? Is the task a subgoal of the goal?

Figure 8.1: Examples of the Predicate Base

TP Goa Example Explanation

ACTION-MakeNewGroup Create a new group of bugs
Grouping ACTION-AddGroupToPlan Add a group to the tutorial plan

ACTION-AddToGroup Add bugs to existing group in tutorial plan

ACTIONiMarkDoTutor Mark a group to be tutored
Yes-No ACTION.MarkNotTutor Mark a group to be left untutored

ACTION-MarkTutorlfrime Mark a group to be tutored if time permits

I ACTION-MoveBefore Move a group in tutorial plan before another
Order ACTION-MoveAfter Move a group in tutorial plan after another

ACTION-MoveToFront Move group to front of tutorial plan

ACTION-AddObjective Add a tutodlal objective to a group
Objectives ACTION.DeleteObjective Delete a tutorial objective from a group

= ACTIONuAddStrategy Add a tutorial strategy to a group
Strategy ACTION.DeleteStrategy Delete a tutorial strategy from a group

Figure 8.2 : Examples of the Actions TP Performs
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8.3.3. Summary

The domain generality of TP, the implementation of the model of

tutorial planning, depends upon 1) its architecture and 2) its tutorial

planning rules. TP's architecture is a simple, forward chaining,

rule-based design and therefore potentially general. Although TP

does not perform heuristic evaluation of alternative tutorial plans,

it would not be difficult to add such a process if a domain required

it.

The rules that TP uses to generate tutorial plans are

constructed from a base set of predicates and actions which are

domain general. The rules that make the five Tutorial Planning

Decisions are written in terms of the base set of predicates and

actions. The reasoning about the five Tutorial Planning Decisions

therefore occurs entirely at the level of these domain general

predicates and actions. These predicates refer to domain knowledge

to obtain their values: The rules for the five Tutorial Planning

Decisions do not. The generalization of the tutorial planner to a new

domain for which the current tutorial planning rules are adequate to

construct tutorial plans thus entails specifying the domain j
knowledge on which the tutorial planning predicates and actions

depend.
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j 8.4. An Example from Another Domain

The purpose of this section is to give a brief illustration of the

generality of the model of tutorial planning for multiple bugs. The

argument will not show that the model is fully general. Rather, the

argument will show that the analysis of tutorial planning for

multiple bugs offered in this dissertation can be applied naturally to

another domain which, on the surface, seems very unlike

programming. Thus, rather than making it possible to conclude that

the model of tutorial planning for multiple bugs applies to all

domains, it will be possible to conclude that the model of tutorial

planning is clearly not restricted to the domain of novice

programming: This seems a reasonable first step in the addressing

the research problem of the domain generality of the model.

The argument made in this section is focused on showing that

the knowledge that is used to generate tutorial plans for multiple

programming bugs can be used to generate tutorial plans for

multiple bugs in another domain. Thus, the argument will illustrate

how the five Tutorial Planning Decisions, and the knowledge that is

required to make them, both apply to another domain.

The non-programming domain in which the applicability of the

model of tutorial planning for multiple bugs will be illustrated is

that of mechanical design, specifically the design of automobiles.

The illustration will show the applicability of the five Tutorial

Planning Decisions and their taxonomies to the task of tutoring a

novice designer of automobiles. Clearly, an analysis of the domain
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knowledge required to tutor the design of automobiles is far beyond

the scope of the current work. Thus, the exampies of bugs may see

simplistic. However, this is, in fact, a good sign because it shows

that it is not necessary to look very deeply for evidence of the

generality of the model of tutorial planning for multiple bugs.

The automobile Iesign scenario is as follows: The student

designer generates a potential design for an automobile. The design

is in the form of pictures and text. The student's design has several

bugs. Among the bugs are the following:

0 BUG 1 - BUG 20: Lug nuts on wheel studs have round tops

and cannot be fastened with standard lug wrencnes.

- BUG 21 - BUG 24: Nuts on engine mounts have round tops and

cannot be fastened with standard tools.

* BUG 25: Oil pump is placed next to path of electrical wires

for computer sensor.

* BUG 26: E' strical wires for a computer sensor are wrapped

with insulation against heat which caL Is temperature sensors to

give false values.

A tutorial planner for the domain of car design would have to

m, a the five Tutorial Planning Decisions to generate a tutorial plan

for these 26 bugs. The tutorial plan is shown in Figure 8.3. The five

Tutorial Planning Decisions, recapitulated in the figure, are made as

follows:

Tutorial Planning Decision 1 Grouping, results in two bug groups.

Bug Group 1: BUG 1 to BUG 24. These 24 bugs are all in the

same plan component, that of securing a device to the supporting
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structure. The plan component is not focal. Thus, the bug group type

is Same Plan Component Housekeeping.

Bug Group 2: BUG 25 and BUG 26. The second bug, BUG 26,

wrapping the sensor wires in insulation, is a bad repair to the first

bug, BUG 25, infelicitously placing the oil pump. Thus, the bug group

type is Bad Repair.

Tutorial Planning Decision 2 The decision about whether or not to

tutor, is made as follows: Bug Group 2 is the most important bug

group and therefore must be tutored. Bug Group 1 may be addressed

but only if there is time: it is far less important

Tutorial Planning Decisions 3 The ordering decision follows from 1)

the second Tutorial Planning Decision, which determines the

importance of the bug groups and 2) the fact that Bug Group 2 does

not depend on tutoring any bug in Bug Group 1.

Tutorial Planning Decisions 4 The selection of objectives for Bug

Group 1 is based on the effects of the bugs. The selection of

objectives for Bug Group 2 derives from the same fact.

j Tutorial Planning Decisions 5 The tutorial str3tegy selected for Bug

Group 1 results from the objective of getting the student to see that

the selected attachment method will not work. Detailed simulation

of attaching or detaching the bolts with a wrench will get the

student to see that the wrench cannot gain a purchase on the round

bolt heads. The strategy for Bug Group 2, requesting justification of
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the insulation of the wires, is intended to lead the student to label

the insulation as a repair and to explain why it was selected. The

tutor can then ask the student about the problem of disrupting an

accurate signal in the temperature sensor wire.

In sum, the student's automobile design attempt contains many

bugs. As the tutorial plan for the bugs shows, the five Tutorial

Planning Decisions, and their associated taxonomies appear to apply

naturally to this multi-bug tutoring situation. The example does not

prove that the model of tutorial planning for multiple bugs is fully

general but it does show how naturally the model might be extended

to other domains. The immediate question is why this is so.

One reason may be the similarity of programs and automobiles.

Both are devices in that they "run" and, in so doing, produce behavior.

The second reason, closely related to the first, is that designing

programs and automobiles requires mapping desired functions onto

coordinated structures which, when operated, yield the desired

function. Further research is required to characterize the domains

to which the model of tutorial planning for multiple bugs can be

naturally extended.

I
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I GROUP 1: BUG1 TO BUG 24 GROUP 2: BUG 25 AND BUG

Same Plan Component Housekeep Bad Repair
All the bugs in this group are in The insulation on the wire se

GROUPING the same plan component (attach is to repair effect of heat ol
object with fastener) of differen pump. It is a bad repair bec=
plans it disrupts temperature sens

IFTIME DEEITELY
Easy to recognize and fix. This is a repair problem.

Generating an acceptable
YES/NO alternative placement for

the oil pump and an alternati,
path for wires will be hard.

Relatively easy to fix. Important and may be hard
Less important than repair bug to fix.

ORDERING

DIFFERENT PLAN DIFFERENT PLAN
Want student to see that Placement not functional. ME
attachment method won't work. use alternative method of

OBJECTIVE transmitting sensor informal

REQUEST SIMULATION REQUEST JUSTIFICATION
Want student to "run inton Want student first to see tha
problem that was overlooked, this is a repair. Then want

STRATEGY student to see why this
is a bad plan. Generating
justifications is strategy for

j this.

f Figure 8.3: The Five Tutorial Planning Decisions for Car Design Bugs

I
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8.5. Chapter Summary

This chapter has described the main aspects of the knowledge

required for tutorial planning, and the implementation of the

tutorial planner, that are not specifically dependent on the domain

of novice programming. The chapter showed that the four types of

knowledge described in Chapter 2 and Chapter 3 are not specific to

the domain of computer programming. For example, it was argued

that the five Tutorial Planning Decisions must be made in order to

construct a tutorial plan for multiple bugs in many domain.

In addition, the domain general aspects of TP, the

implementation of the tutorial planner, were described. It was

shown that both TP's architecture and processing mechanism do not

restrict the generation of tutorial plans for multiple bugs to the

domain of novice computer programming. The main limitation of

TP's forward chaining, non-backtracking control structure is that it

prevents TP from constructing several alternative tutorial plans and

heuristically evaluating them to find the best. TP's architecture

does not prohibit adding heuristic evaluation to the processing

mechanism. If this type of processing is required to generate

tutorial plans for either more complicated multiple bug programs or

for different domains, TP's current form would make it

straightforward to add such a mechanism.

Finally, an example was given to show that the model of

tutorial planning for multiple bugs described in this dissertation

extends naturally to other domains.
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Chapter 9

CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

9.1. Introduction

i This dissertation analyzed the problems that confront tutors when

they try to help novice programming students who make more than

one bug. The chief claim made in the dissertation is that effective

tutors develop a tutorial plan to help a student with multiple bugs.

This claim was supported by empirical analyses of tutorial planning

strategies of experienced human tutors. The empirical analyses

resulted in a model of the chief subtasks that must be accomplished

to produce a tutorial plan and the rules that are used to carry out the

subtasks.

The model of tutorial planning for multiple bugs is based on

the five Tutorial Planning Decisions that must be made to produce a

tutorial plan e.g., deciding whether or not to address each bug. A

major contribution of the dissertation research is the identification

jof the knowledge required to make each of the five Tutorial Planning

Decisions -- for example, a tutor typically reasons about the

I severity of a bug's effects in deciding whether or not to include it in

the tutorial plan. The model of tutorial planning that was developed

from the empirical analyses was implemented as TP, a computer
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program that generates tutorial plans that are similar to the ones

that experienced human tutors generate.

The remainder of this chapter addresses major limitations of

the present state of the model of tutorial planning for multiple bugs.

First, three limitations resulting from the focus of the dissertation

on the most prevalent multiple bug tutoring situations are identified

-- for each of these limitations, directions for immediate research

are described. Second, less immediate, but nonetheless important,

issues that that have emerged during the research are considered.

9.2. Limitations and Immediate Future Directions

The major goal of the research reported in the dissertation was to

account for the tutorial planning that occurs in the multiple bug

situations with which tutors are most often confronted. As a

result of the focus, certain issues that are important were

neglected but not forgotten. The purpose of this section is to

identify several of the chief limitations and, for each, to indicate

how it will be addressed in the next phase of research.

SLimtation _J: Small Number of Programming Tasks. TP

currently can develop tutorial plans for two task specifications.

Each task specification is represented as a a graph of goals to

satisfy. TP currently has a knowledge base of approximately 40

reusable goals. The next phase of research will make TP's goal

specification knowledge base more extensive so that more task

specifications can be represented.

241



R • JLtat.io : Weak Tutorial Plan Execution & Failure

Recovery. TP's strength lies in its ability to construct tutorial

plans. TP does not-have a powerful tutorial plan executor nor does it

have many strategies for recovering from failures that occur during

the execution of its tutorial plans. The next phase of research on

tutorial planning will be to study, in detail, how experienced human

tutors execute tutorial plans and how they cope with failures that

occur during tutoring.

Studies of tutorial plan execution will focus on techniques

that tutors use to deliver instruction to students. For example, a

tutorial plan may specify that the tutor use the strategy of asking

the student a "why" question. In this case a human tutor would use

expectations about what the student should say to monitor the

answer. These expectations are used to determine whether the

information the student gives is 1) correct and 2) sufficient. The

next phase of research will identify the form of these expectations

for the primary strategies that tutors specify in their tutorial plans.

Studies of failure recovery will attempt to determine the

conditions under which tutors use a particular recovery strategy.

Preliminary empirical studies of human tutors' recovery failure

strategies, reported in Chapter 7, suggest that tutors use a

I relatively small set of techniques for recovering from failure. For

example, a tutorial failure may occur if a student does not

understand the action of an input loop that reads from file, and the

tutor's plan was based on the assumption that the student did

understand it. If a failure does occur then the tutor may resort to

drawing a picture of the file, writing a loop with a read statement,

242



and hand simulating the action of the loop on the file, illustrating

how the file pointer moves with each iteration of the loop. The

strategy of drawing pictures to make abstract concepts more

concrete is a very common strategy that tutors use to recover from

certain types of failures. The next phase of research will identify

these strategies and the conditions in which they are used.

- Limitatin._.: Difficult Tutoring Situations. TP currently

can generate acceptable tutorial plans for approximately 65% of the

multiple bug situations with which it is confronted. TP's knowledge

about how to plan for multiple bugs is based on the approximately 13

common groups of multiple bugs. When TP is confronted with bugs

that do not fit neatly into known groupings, it is unable to construct

a tutorial plan that is as acceptable as those it builds when the

grouping is known. One of the causes of this limitation is that TP

does not construct and evaluate alternative plans for the same bugs:

Human tutors do appear to construct and evaluate alternative

tutorial plans when they are confronted with unfamiliar multiple

bug situations.

In the next phase of research on tutorial planning, human

tutors will be studied when they must construct tutorial plans for

unfamiliar, or difficult, tutoring situations where there is not one

clearly acceptable plan. The studies of human tutors will identify

the generation and evaluation strategies that result in the of an

acceptable plan. These generate and test strategies will then be

incorporated in the next version of TP.

In summary, the current state of understanding of tutorial

planning for multiple bugs is limited in, at least, three important
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ways. The first limitation, the small number of programming tasks

TP understands, is not serious and it will be straightforward to

remedy it. The remaining two limitations -- related to tutorial plan

execution and difficult tutorial planning tasks -- are deeper than the

first. The approach to the two more serious limitations will be to

perform empirical studies of the behavior of experienced human

tutors and to augment both the model and the implementation of

tutorial planning based on the findings from the empirical studies.

9.3. Additional Issues

During the course of the research on tutorial planning, several topics

have arisen that do not qualify for immediate treatment but, rather,

are general issues that should be kept in mind when doing the next

phases of the research. The purpose of this section is to identify

four such topics.

First, the model of tutorial planning described in the

dissertation is not intended to be a process model of the tutorial

planning of experienced human tutors. Rather, the model described

is a descriptive model. That is, the model identifies the knowledge

that human tutors use but does not give a detailed account of the

control mechanism that guides the use of the knowledge. Empirical

studies of the process of tutorial planning, analogous to the studies

of tutorial plan execution and failure recovery, should be be

j performed to clarify the process of tutorial planning.
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Second, acquisition of expertise and individual differences

among tutors should be studied. Effective tutors are not born, but

rather learn to become good tutors. It is important to determine

how to teach tutors to become experts.

Third, it is necessary to keep in mind the goal of constructing

a full tutoring system for novice programming. The tutorial planner

is only one component of a much larger system including a bug

finder, a student modeler, a domain expert, etc. The problem of

integrating the tutorial planner into a complete tutoring system

should be kept in mind as studies of the control structure of human

tutors are designed. It seems very plausible to suppose that careful

empirical study of the control structures that integrate the tasks of

bug finding, bug repair, tutorial planning and tutoring of experienced

human tutors will provide valuable information for integrating these

tasks in a machine tutor.

Finally, experienced human tutors have naive, or

volkpsychologie, models of human learning: Such naive models may

or may not be the same as the "correct" models derived from

controlled empirical studies of learning. Nonetheless, if one goal is

to teach tutors to become better tutors -- and that is a goal of this

research -- then it is necessary 1) to describe the naive models of

learning held by tutors and 2) to identify the aspects of the models

that are correct and, thus, should be left intact, and those aspects of

the models that are incorrect and, thus, should be a focus of efforts

to improve the expertise of human tutors. For example, if an ITS for

tutorial planning were to use the plan critiquing methodology of

Miller, 1986, it would be necessary to understand the naive models
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of learning held by tutors so that their inaccurate models could be

transformed to more accurate models.

9.4. Final Summary

This dissertation has provided an empirically based analysis of

tutorial planning by human tutors. The main result is the

identification of the knowledge required to generate tutorial plans

for multiple bugs that have the same form as, and are therefore as

acceptable as, tutorial plans for multiple bugs generated by

experienced human tutors. Three limitations of the research were

identified. Each limitation leads directly to a topic of future

research. Finally, several more general issues that are entailed by

any research on tutoring systems for complex problem solving were

identified and their importance briefly noted.

2I
I
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Appendix I

Pre-Dissertation Work on Multiple Programming Bugs

This appendix discusses some preliminary work on the problems that

arise when trying to decide what, and how, to tell students about

multiple bugs in their programs. The discussion first describes the

approach to reporting bugs taken by PROUST (Johnson, 1985) and

some of the limitations of PROUST's bug reports. Following

identification of some of the main problems of PROUST's bug report,

a brief discussion is given of some initial work on reporting

multiple bugs. The initial work resulted in 1) minor modifications

to PROUST that provided students with additional information about

their bugs and 2) a clearer idea of the issues entailed by multiple

bugs. This work thus set the stage for the dissertation work.

PROUST is a computer program written by Lewis Johnson

(Johnson, 1975) that finds non-syntactic bugs in novice

programmers' PASCAL programs. PROUST takes as input a student's

syntactically correct program and produces as output a listing of the

bugs in the program. For example, Figure 1.1 shows a student's

program that has nine bugs. When PROUST reports bugs to a student

it lists the bugs in textual order and gives the line number on which

the bug was found. Thus, PROUST's output is not organized for

tutoring. The output is intended simply to make student's aware

that bugs are present and to suggest some possible repairs.
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PROUST's identification of bugs is useful to students (Sack,

Littman, Soloway, 1987) but it cannot be considered optimal for

several reasons:

* PROUST reports all the bugs to the student. For example,

in the program shown in Figure 1.1, even though BUG 8 and BUG 9 are

bugs, they are so unimportant that most tutors do not even tell

students about them unless the rest of their programs are perfect

because they do not want to burden the student with too much to

think about. PROUST not only tells students about these bugs, it

does not tell students that they are "unimportant".

* PROUST reports bugs in textual order. Experienced tutors

try to work with students on common threads that run through

several bugs which may not be adjacent. In Figure 1.1, for example,

most tutors would begin the tutoring session by eliminating the

infinite loop caused by BUG 4. The infinite loop is both a hard bug to

fix and it is the symptom that brought the student to the tutor in the

first place.

* PROUST does not detect and group together "similar" bugs.

For example, a human tutor who decided to address BUG 8 and BUG 9

would note the similarity of the bugs, treat them together, and

probably tell the student about the similarity: PROUST does not tell

students about bugs that have a common theme.

* PROUST does not tell the student which bugs are important.

As with the problem of telling students about all bugs, PROUST's

output does not give students information about which bugs are

important and which bugs are minor.
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PROUST does not help the student figure out which bugs to

i correct first. PROUST cannot tell students what they should try to

fix first. The first step in correcting the program in Figure 1.1

would be to eliminate the infinite loop. Not all students have this

piece of knowledge and PROUST does not provide it.

Thus, while PROUST is very good at its original mission,

finding bugs, it is not sophisticated about helping students with

them. In particular, PROUST does not give students useful

information about what bugs are important

To overcome some of the limitations of PROUST's reports to

students, I added a program module to PROUST which organized its

output to be more useful to the student. In this first attempt to

organize bug reports for students, the main goals were to tell

students what bugs were important and to identify each bug with a

large organizing segment of the program, such as the main

processing loop, or the output section.

The modified PROUST identified bugs for students as either

critical or minor and told students which segment of the program

each bug was associated with. For example, Figure MODPROUST1

7 shows some of the output of PROUST that a student might see for

the program in Figure 1.1. Notice first that the bugs are reported

according to a natural segmentation of the program into major

sections -- the fragment of output shown in the figure reports bugs

from the main processing loop. Second, note that the bugs that are

critical are reported first to the student and are labelled as such.

Although the addition of rules to organize PROUST's output of

i bugs seemed to make it more useful to students, it fell far short of
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producing the organization of the bugs that a human tutor would use.

Chief among the remaining problems with the output were:

* The modified output did not suggest to the student

relationships among bugs. A trivial example from the program in

Figure 1.1 is that the modified PROUST would not realize that BUG 8

and BUG 9 were essentially "the same bug" and therefore could not

tell the student about the single input case in which both bugs arise.

0 PROUST still told the student about each bug, regardless of

its importance.

* PROUST could not tell students about bug dependencies. For

example, students often make one bug, detect it, and create a second

bug in the attempt to repair the first. Human tutors almost always

treat such patterns of bugs together. PROUST cannot.

Thus, although the modified output of PROUST gave students

additional information that may have been helpful, it was not a

satisfactory solution to the problem of multiple bugs in the

programming domain and it certainly did not provide a solution that

could be useful in domains other than programming.

i
I
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