DTIC r:LE copy

RADC-TR-90-25

Final Technical Report
Aprit 1990

MACHINE LEARNING

The MITRE Corporation

Melissa P. Chase

AD-A223 732

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

WAL

GOy 20 035




This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-25 has been reviewed and is approved for publication.

APPROVED: %‘L’Z ) 7&% é;

MARK T. MAYBURY, 1LT,
Project Engineer

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: ﬂ : %M‘L

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.




REPORT DOCUMENTATION

Form Approved
OPM No. 0704-0188

PAGE

Public repareng Busaen fer fus col of [} 1 howr per
ne dns [ )

noasiing he wme or
e

Y SN sarond gaterng ard
-u-eld'uuimm ormnm NOALING SUgDe SONE

w9 e

mnm-w'n-n-m- - for ‘Ginu--nﬁ--|nsuaﬂ:ﬂ~nu¢-qsu-|m-~nv-|uznw4xa-u-
0 OMce of NrMesen arxd Reghaary Aflars, Ofce of & anct Bupet. OC 20803.
1. AGENCY USE ONLY (Leave Siank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1990 Final Oct 88 to Sep 89

4. TITLE AND SUBTTTLE
MACHINE LEARNING

S. FUNDING NUMBERS

6. AUTHOR(S)
Melissa P. Chase

C - F19628-89-C-0001
PE - 62702F

PR - MOIE

TA - 79

WU - 80

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

The MITRE Corporation
Burlington Road
Bedford MA 01730-0208

8. PERFORAMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Air Development Center (COES)
Griffiss AFB NY 13441-5700

10 SPONSORINGMONITORING AGENCY
REPORT NUMBER

RADC-TR-90-25

11. SUPPLEMENTARY NOTES

RADC Project Engineer:

Mark T. Maybury, 1LT, USAF/COES/(315) 330-3655

12a. DISTRIBUTIONAVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

120. DISTRIBUTION CODE

13. ABSTRACT (Maxsmum 200 woras)

that improves its own performance as it sol
is based upon explanation-based learning te
weaknesses in that technology that becomes
to realistic problems.

This report summarizes the design and implementation of an intelligent planner

ves problems. The system, called ULS,
chniques, but addresses some of the
particularly apparent as it is applied

14 SUBJECT TERMS
Artificial Intelligence, Learning, Planning

18. SECURITY CLASSIFICATION

17 SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

15 NUMBER OF PAGES
24

16. PRICE CODE

19 SECURITY QASSIF ICATION 20 LIMITATION OF ABSTRACT
OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED

UNCLASSIFIED UL

NSN 7540-01.260-3500

SWnaarg rorm 8092
Presarmed by ANSI ST IR 18
2.0




1.2 OBJECTIVES &nr\ FEEES

SECTION 1
INTRODUCTION

1.1 BACKGROUND

Research in machine learning has taken two directions in the problem of ac-
quiring concept descriptions from examples: inductive learning and explanation-
based learning. Typically, inductive learning algorithms examine multiple posi-
tive and negative examples to determine which features are present in a descrip-
tion of the target concept. Explanation-based learning algorithms, on the other
hand, use a domain theory to analyze a single example and construct an expla-
nation of why that example is a member of the target concept; this explanation
is then used to form a concept description[Mit86, DeJ86, ElI89].

Explanation-based learning has received a great deal of attention during the
past few years. It has appealed to researchers because it captures our intuitions
that it is possible to learn a great deal from a single example. One of the major
applications of explanation-based learning techniques has been to improve the
performance of problem solvers through the acquisition of search control knowl-
edge. Researchers had assumed that using learned search control knowledge
would necessarily improve a problem solver’s performance, but recently evidence
that casts doubt on this assumption has been reported for both SOAR[Tam88]
and STRIPS-like problem solvers[Min85, Min88]. This empirical evidence sug-
gests that for machine learning techniques to genuinely improve a system’s per-
formance, the utility of what is learned must be taken into consideration. For, if
the cost of testing the applicability of the search control knowledge is greater than
the savings realized by reducing the search, the learned search control knowledge
may actually degrade the problem solver’s performance.

- - =

Our goal is to design and implement k planner that improves its own perfor-
mance as it solves problems. This system, called ULS, is based upon explanation-
based learning techniques, but addresses some of the weaknesses in that technol-
ogy that become particularly apparent as it is applied to realistic problems. Our
research has been specifically directed toward the above-mentioned utility prob-
lem. Our approach to addressing the utility of learning is to approximate the
results of explanation-based learning[Cha89, Zwe88].

This year, our efforts were focused on improving the approximation tech-
niques, defining new simplified domains, and conducting experiments in various
domains.




1.3 ORGANIZATION OF THIS DOCUMENT

This paper describes ULS at the end of FY89. In Section 2, we present the
problem of acquiring useful search control knowledge in a more general setting,
namely, the familiar theme of viewing learning search control knowledge as a
search process itself. We describe some previous solutions to this problem within
this setting, as well as place our own approach within this framework. In Section
3, we describe the implementation of ULS. In Section 4, we discuss the experi-
ments that we conducted this year. In Section 5, we discuss our results and some
future directions.

Accession For

TuTIS GRAgI

; DTTC TAB

. Unannounced O
Ju:tlficatio

By
3 Birtribupion[‘__

i punilability Codes
‘ “iawail and/or

it gspoclal

im:/_lmm L o




SECTION 2
FRAMEWORK

2.1 ACHIEVING UTILITY THROUGH SEARCH

Mitchell formulated the task of learning a concept description as a search
process|Mit82]. More recently, Keller has extended this idea to the problem
of learning an approximate concept description, that is, the description may
sacrifice accuracy to achieve some performance objectives[Kel88]. We would like
to elaborate upon this framework in the context of acquiring useful search control
knowledge. To see how this particular task may be viewed as a state space search,
we must specify the following features common to all search problems:

1. The states of the search space.

2. The initial state.

3. The search operators, i.e., state transition functions.

4. The search termination condition, i.e., the objectives of the search.
5. The heuristic guidance of the search.

In our search control acquisition problem, the search space consists of sets of
search control concept descriptions. Each concept description represents a search
control heuristic that guides the problem solver’s search, while each set of concept
descriptions is a collection of such heuristics.! The search begins with an initial
hypothesis set of descriptions. Search operators navigate through the space by
applying transformations to a set of concept descriptions as a whole, or to a single
heuristic within the set. Some of these operators obey the subset relation[Sim88],
that is, the set of instances (the situations in which the heuristics are applica-
ble) covered by the set of concept descriptions after the operator is applied is a
subset of the set of instances covered by the old set of concept descriptions, or
vice versa. When the new set is a subset of the old set, the operator is a special-
izing transformation; when the old set is a subset of the new set, the operator
is a generalizing transformation; and when each set is a subset of the other, the
operator is a truth-preserving transformation. Operators which do not obey the

'We must always keep in mind that there are two searches: (1) the search carried out by
the problem solver, or performance element of the system; and (2) the search carried out by
the learning component which acquires heuristics to guide the first type of search. The latter
is the case under consideration in this paper.




subset relation are called approximating transformations. After such an opera-
tor is applied, the old and new sets of instances intersect, but the new set may
contain negative instances that had been excluded by the old concept descrip-
tions and omit positive instances that had been covered by the old set of concept
descriptions. The search objectives are met when the collection of rules satisfies
some utility criterion. Since the search objectives may involve performance crite-
ria as well as accuracy criteria, the collection of rules may only approximate the
target search control concepts in the sense that some instances may have been
misclassified (i.e., a rule may cover a situation that it should not, or a rule may
not cover a situation that it should).? The search can be guided by a variety of
heuristics, such as domain knowledge and performance measures.

2.2 PREVIOUS WORK

Minton’s PRODIGY[Min88, Min87] and Keller’s MetaLEX[Kel87b, Kel87a]
are two systems that address the utility of learning. Before describing our own
approach, which is strongly influenced by these two systems, we would like to
reconstruct both of them within the framework outlined above.

In PRODIGY the search for useful search control heuristics begins with an
initial hypothesis, namely a search control rule, that has been acquired through
explanation-based learning. PRODIGY then applies truth-preserving search con-
trol operators to this.rule. These operators compress the rule by applying logical
identities and domain-dependent simplifications. The search objective is to max-
imize the average utility, defined by

(average-savings x application-frequency) - average-match-cost

In practice, the utility of a search control rule is estimated from the training
instance by empirically measuring the match cost of the rule and by measuring
the time spent exploring the portion of the tree that would have been elimi-
nated by the rule. Although PRODIGY considers performance as an element
of its search objectives, since it applies only truth-preserving operators, it ac-
quires search control rules that cover the same instances as the initial hypothesis.
In PRODIGY, the search for control rules is guided by domain-dependent and
domain-independent knowledge, as well as by performance ineasures.

In MetaLEX the search begins with an initial “useful” concept description
acquired from an inductive learner. The search operators which may be applied

2 An approximate concept description may be generated by an operator that obeys the subset
relation. For example, we may apply a generalization operator so that the more general descrip-
tion now includes negative instances that had been excluded by the more specific description.




to a concept description are Truify and Falsify, which replace subexpressions in
a concept description with T (the atom T) or F (the atom NIL), respectively.
Truify generalizes and Falsify specializes a concept description. In MetaLEX
the search objectives are satisfied when performance is improved as measured by
efficiency (cpu time is less than some threshold) and effectiveness (the number of
problems solved is greater than some minimum number). Since MetaLEX both
considers performance in its search objectives and applies non-truth-preserving
transformations, it acquires concept descriptions that approximate the original
concept description. The search is guided by monitoring the system’s performance
on a set of training examples.

2.3 OUR APPROACH

Our chief goal is to build a system that will be able to improve its performance
over time without the need for a set of training examples. We are developing a
system called ULS to achieve this goal by combining both analytical and empirical
techniques. As we describe ULS within the search framework its debts to both
PRODIGY and MetaLEX will be apparent.

In ULS the search for useful search control knowledge begins with an initial
hypothesis description, i.e., a search contro!l rule, acquired through explanation-
based learning. The operators that navigate through the space of sets of search
control rules are generalizing and specializing transformations, as in MetaLEX.
The objective of this search is to satisfy a measure of utility similar to that used
in PRODIGY. In practice we estimate this utility by gathering statistics on rule
applications to suggest which generalizations and specializations will reduce the
cost of rule application without unduly diminishing the accuracy of the rule.
Again, as in MetaLEX, since ULS considers performance in its search objectives
and applies non-truth-preserving operators, it acquires search control rules that
approximate the original rule. The search is guided by by monitoring the system'’s
performance during ordinary problem solving.

The major contribution of this research, and the one that will be emphasized
in the following section, is the way ULS estimates the utility of rules and how it
guides its search.




SECTION 3
IMPLEMENTATION

ULS consists of a problem solver, an explanation-based learner, and a rule-
transformer.

3.1 PROBLEM SOLVER

The ULS problem solver is a STRIPS-like problem solver[Fik72]. Tasks are
given to the problem solver in the form of a conjunction of predicates. The
system attempts to find a sequence of operator applications that will change the
world state so that the conjunction of goals is true in the changed world state.
Each of these operators consists of a conjunction of preconditions that determines
if an operator is applicable, and an add-list and a delete-list that describe the
condition of the world state after the operator is applied. The problem solving
process is one of search. During each decision cycle, the problem solver first
selects a goal to satisfy and then selects an operator that makes the goal true.
When an operator’s preconditions are not true, they become goals that must be
satisfied.

The problem solver’s search can be guided by applying rules that prefer or
reject a search control decision. Qur experiments have focused upon operator
preference rules. In this case, when an operator must be selected, all operator
preference rules are evaluated and those that evaluate to true vote to prefer an
operator. The operator with the most votes is the one that is applied.

When there are no search control rules, or when the application of preference
rules produces a tie, ULS follows some arbitrary search strategy. Initially, this
strategy was depth-first search. Later, we employed random search as the default
strategy. We did this so that the explanation-based learning component would
be able to acquire search control rules more readily. With depth-first search,
many operators were never tried (since it was too expensive in time and space to
completely explore the search space) and hence were never candidates for subjects
of search control rules.

3.2 EXPLANATION-BASED LEARNER

ULS’s explanation-based learner is modeled on PRODIGY. Knowledge about
the problem solver’s architecture, as well as knowledge about the application
domain, are represented as schemas.

.




The architecture-level schemas describe the behavior of the problem-solver;
in particular they define what it means for choices at the various points in the
decision cycle to be successful or unsuccessful. For example, the schemas that
describe the search control concept of a successful operator choice are:

(OPERATOR-SUCCEEDS-SCHEMA-1
:comment ‘‘An operator succeeds if it directly
solves the problem’’
:if-part (and (added-by-operator 7goal ?op)
(operator-applicable 7op 7node))
:then-part (operator-succeeds 7op ?goal ?node))

and

(OPERATOR-SUCCEEDS-SCHEMA-2

:comment ‘‘An operator succeeds if it succeeds
at a descendant of node’’
:if-part (and (operator-succeeds-at-descendant

?op 7goal ?node ?descendant)
(regress-goal ?goal 7descendant ?node)
(regress-preconditions ?descendant ?node))
:then-part (operator-succeeds 7op ?goal ?node))

The application-level schemas encode information about the actions in the
domain. This knowledge is of two varieties: information about the applicability
of an operator and information about the effects of an operator. Both sorts of
knowledge are derived automatically from the operator descriptions.

For example, the schema that describes what it means for the operator goto-box
to be applicable, which is derived from the operator’s preconditions, is:

(OPERATOR-APPLICABLE-SCHEMA-1
:if-part (and (operator-at-node ?op 7node)
(matches 7op goto-box)
(known (and (type ?box box)
(inroom ?box ?room)
(inroom robot ?room))))
:then-part (operator-applicable ?op ?node)
:domain robot-world

and the schema that describes effects of the operator goto-box, which is derived
from the operator’s add-list, is:




(ADDED-BY-OPERATOR-SCHEMA-1
:if-part (and (matches 7op goto-box)
(matches ?goal (nextto robot ?box))
:then-part (added-by-operator ?goal ?op)
:domain robot-world

The explanation-based learning algorithm used in ULS is essentially schema
specialization. The learner is given a target concept, such as,

(operator-succeeds ?op ?goal ?node)

and a training instance drawn from the search tree constructed by the problem
solver during a problem-solving session, such as

(operator-succeeds push-box-to-door
’(nextto box3 doori-2) node-3).

ULS constructs an explanation of why the training instance is an example
of the target concept by progressively specializing schema in the context of the
search tree. The explanation is then converted into a search control rule:

(OPERATOR-PREFERENCE-RULE-1

:if-part (and (current-node 7node)
(is-goal 7node ?7goal)
(matches ?goal ’(nextto ?var86 ?7var82))
(matches ?7op push-box-to-door)
(known ’(connects ?7var82 ?var83 ?var84) 7node)
(known ’(inroom robot ?var83) ?node)
(known ’(type 7var84 office) ?node)
(known ’(status 7var82 open) ?node)
(known ’(type 7var82 door) 7node)
(known ’(connects ?var82 ?var84 ?var83) ?node)
(known ’(inroom ?var86 ?var84) 7node)
(known ’(pushable ?var86) ?7node)
(known ’(type ?var86 box) ?node))

:then-part (prefer 7op))

This year, in order to reduce the time and space used during learning. the
schemas have been proceduralized.




3.3 RULE TRANSFORMER

The rule transformation component of ULS produces rules that approximate
the search control rules acquired through explanation-based learning. It applies
generalization and specialization operators in order to transform the rules into
more useful ones, which are now efficient to test and still accurately reduce the
problem solver’s need to search. The generalization operator drops conditions in
the search control if statistically justified, while the specialization operator adds
conditions that had been previously dropped.

3.3.1 Justifying Generalization

Ideally, one wants to base the decision to apply the generalization operator
upon the utility of the search control rule obtained by applying these operators.
In practice, it 1s usually difficult to carry out a utility analysis, so we estimate
the utility. Since the generali-ation operator drops conditions, the resulting rule
usually will be less expensive to evaluate. To ensure that dropping a condition
will not lead to greater search, we only drop conditions that seem to be predicted
by other conditions in the rule; hence we may assume that this condition is
superfluous and its presence or absence will not affect the truth value of the
rule’s conditions.

This estimation procedure is implemented as follows. ULS’s rule evaluator
tests conditions from left to right, so we compute the conditional probability that
a condition is true given that the conditions to its left are true.® Symbolically,
if the antecedent of a rule is a conjunction of conditions, C;y ACy A--- A C,, the
conditional probability that Cj is true given that Cy,Cy,...,Ci_; are true is

= 1 P(Cy)
P(Ci) | Q P(Cy)) = .—E:’_P—(—CT)

When a rule is applied, tallies are kept of the number of times a condition is
tested and the number of times the condition is true. Since a condition is never
tested unless the conditions to its left are true, the ratio

number of times condition is true

number of times condition is tested
gives the desired conditional probability. When a condition’s conditional prob-

ability exceeds a pre-set threshhold, 8, and the condition has been tested a suf-
ficient number of times, the condition may be dropped. provided it does not

31f rules are evaluated in some other fashion, different conditional probabilities would have
to be computed, but the general idea of capturing redundant conditions in this way would still
he appropriate.




introduce variable bindings. Bernoulli’s Theorem|[Pea84] is used to determine
the number of tests needed to guarantee with sufficiently high probability ()
that the difference between the actual conditional probability (#) and the sample
conditional probability (p) will be less than e:

2l 2
Tl—?z- Ogl—r}

Even when the threshhold, 8, is surpassed and the number of tests determined
by Bernoulli’s Theorem is satisfied, a condition might not be dropped for one of
two reasons.

First, a condition may have unbound variables and serves as a generator for
those variable bindings. Whenever there are no constraints on the potential bind-
ings (e.g., all the variables in the condition are unbound), every time the condition
1s tested, it will match against the world state, generate a set of bindings, and
succeed. In this case the conditional probability for this condition would be 1.0.
Even when some variables in the condition are bound, the condition is likely to
match against the world state and succeed. Consequently, we have chosen to not
drop conditions that generate variable bindings.

The second situation results from the effect dropping a condition has on the
conditional probabilities of other conditions. When a condition is dropped. the
tallies representing the conditional probabilities of all conditions to its right are
invalidated (since they depend in part on the dropped condition) and are resct to
0. If the conditional probability of one of those conditions is over the threshhold,
6, and the number of tests is “close” to the required number, a lot of work would
be lost by zeroing the tally. To circumvent this, ULS does not drop a literal when
ones to its right are close to being dropped. A literal is close to being dropped if

n—-t<a-p- At,

where n is the number of tests required (derived from Bernoulli’s Theorem). t
is the number of tests already made, a is the average number of times a rule is
evaluated per problem, p is the number of problems we are willing to wait before
dropping, and At is the rate of change of the number of times a rules is tested
per problem.

For the operator preference rule given above, the following statistics were
gathered:

10




Condition # Tests # True Prob
(known ’(connects ?var82 ?var83 ?var84) node) 763 763 1.00
(known ’(inroom robot ?var83) ?node) 763 458 0.60
(known ’(type 7var84 office) "node) 458 458 1.00
(known '(status ?var82 open) ?node) 458 403 0.88
(known ’(type ?var82 door) ?node) 403 403 1.00
(known ’(connects ?var82 ?var84 ?var83) 7node) 403 403 1.00
(known ’(inroom ?var86 ?var84) node) 403 403 1.00
(known ’(pushable ?var86) ?node) 403 270 0.67
(known ’(type ?7var86 box) 7node) 270 270 1.00

With 8 set to .8 and the number of tests set to 267 (for € = .15 and 5 = .95),
the following rule was created by dropping those conditions eligible to be dropped:

(OPERATOR-PREFERENCE-RULE-1

:if-part (and (current-node 7node)
(is-goal 7node ?goal)
(matches 7goal ’(nextto ?var86 ?var82))
(matches 7op push-box-to-door)
(known ’(connects 7var82 ?var83 ?var84) 7node)
(known °’(inroom robot ?var83) ?node)
(known ’(pushable 7var86) 7node))

:then-part (prefer 7op))

All conditions whose conditional probability was greater than .8 and had
been tested more than 267 were dropped, except for (known ’(connects ?var82
?var83 ?var84) 7node). It was not dropped because it is a generator for two
unbound variables, ?var83 and ?var8g4.

3.3.2 Justifying Specialization

As with generalization, one would like to base the decision to specialize upon
a utility analysis. Again, ULS estimates the utility by relying upon statistics
gathered during problem solving. If an approximated rule applies inappropri-
ately, that is, the rule suggests applying an operator and that choice leads to
backtracking, the approximation may be the culprit. In order to determine if
this is the case, the original rule is evaluated to see if it would have voted dif-
ferently from the generalized rule. If that happens a sufficient number of times.

11

_-—-——:




ULS decides that the generalization is responsible for the misapplications of the
rule, and then employs some strategy to determine which missing condition or
conditions is to blame. The first strategy we have implemented is to test each
dropped condition individually. For example, if after the above approximated
rule was created, doors are now closed more often than open, this rule may mis-
apply a sufficient number of times to be blamed. When it is blamed, (known
' (status ?7var82 open) ?node) will be the only dropped condition that has a
different value, so it will be restored.

The specialization component has been designed and a prototype has been
implemented, but not yet tested. One problem we encountered was that the
domains we have been using are not suitable for specialization (as described
above). For specialization to be useful, the domain must have several operators
which can achieve the same goal but have different sets of preconditions, some
of which cannot be made true. This characteristic causes backtracking to occur;
otherwise the first operator tried will eventually succeed through subgoaling. \We
have just recently implemented some domains which will be suitable for testing
specialization.

12




SECTION 4
EXPERIMENTS

We have been conducting experiments using a two-room and a three-room
STRIPS domain[Fik72], and an extended two-room STRIPS domain[Min88] to
measure the effectiveness of these techniques. We automatically generate random
sets of test problems for a particular configuration of rooms. We can control
various parameters, such as the percentage of open doors, in order to introduce
regularities into the problems. Although ULS has been designed to interleave
learning and problem solving, we decouple these processes when collecting timing
data. After using explanation-based learning to learn search control rules and
using the techniques described above to approximate these rules, we use a set
of 100 problems to run timing tests on the problem solver for three cases: (1)
unguided search, (2) search guided by rules acquired through explanation-based
learning, and (3) search guided by the same rules after they were approximated.

The first set of tests were carried out in the two-room and three-room STRIPS
domain. For each set of problems, two regularities were introduced into the
domain: (1) doors are open 90 percent of the time, and (2) boxes are pushable
100 percent of the time. The results demonstrated a modest improvement in
performance. In the two-room domain, when given a time limit of 5 minutes,
ULS could solve only 23 problems before learning. After learning 27 rules ULS
could solve 92 problems, and it solved the same number with the approximated
rules (with 52 percent of all conditions dropped). In the three-room domain,
ULS could solve only 13 problems before learning. After learning 18 rules ULS
could solve 50 problems, and it solved the same number with the approximated
rules (with 39 percent of the conditions dropped). The effect of approximation on
cumulative plan time for solved problems is summarized in the following table:

Domain { EBL Rules | Approz. Rules | % Decrease
2 Room | 4451.22 4382.86 1.53
3 Room 2066.18 2001.07 2.67

As can be seen from the table, the results were not very encouraging. When
we profiled the problem solver in order to get a clearer picture of where time was
spent during problem solving, we discovered that our timings were ambiguous
(in cases where the plan time was greater for the dropped rules than the original
rules, with the profiler turned on the plan time for the dropped rules was actually
less). We felt that there was some overhead incurred by using PCL (Portable
CommonLoops, the Xerox PARC portable implementation of the Common LISDP

13




Object System) which affected the different cases differently, namely in the code
that tested whether a condition was dropped (when a predicate is dropped its
type is changed to dropped; subsequently when a dropped predicate’s truth value
is tested, the predicate immediately returns true). So we decided to run a new set
of tests in the three-room STRIPS domain and the extended two-room STRIPS
domain. In these tests, dropped predicates were completely ignored.

The three-room STRIPS domain was run on a set of problems similar to those
described above. On this set of problems, ULS could only solve 9 problems.
After learning 76 rules, ULS could solve 59 problems. After dropping 32 percent
of the conditions dropped, ULS solved the same number of problems using the
approximated rules. The effect of approximation on cumulative plan time is
presented in the following table:

Domain | EBL Rules | Approz. Rules | % Decrease
3 Room | 5789.38 5039.40 14.88

In the extended STRIPS domain, boxes can be carried as well as pushed. and
doors can be locked. The regularities introduced into the domain were: (1) doois
were locked 20 percent of the time, (2) boxes were pushable 100 percent of the
time, and (3) boxes were carriable 20 percent of the time. In order to solve any
problems, even with learned rules, the time limit was increased to 15 minutes.
After learning 129 rules, ULS was able to solve 26 problems within the time limit.
After dropping 24 percent of the conditions, ULS was able to solve 27 problems
within the time limit. The effect of approximation on cumulative plan time (only
for solved problems) is summarized in the following table:

Domain | EBL Rules | Approz. Rules | % Decrease
Extended 5821.54 5255.01 10.08

After reducing the overhead incurred by PCL, the approximated rules demon-
strated a clear, although relatively modest, improvement in performance. We will
discuss the reasons for these modest results in the following section.

14




SECTION 5
DISCUSSION

Our approach to acquiring useful search control rules through approximation
captures regularities in the application domain and unstated features of the prob-
lem solver architecture. By uncovering these relationships, ULS is able to produce
a useful set of search control rules. The techniques may be helpful not just for
improving the quality of automatically learned rules, but might also improve
hand-crafted rules, especially in cases where assumptions made by the knowledge
engineer may no longer be valid because of changes in the underlying knowledge
base.

In our experiments, we have found that ULS observes and exploits two kinds
of regularities in the domain. First, some conditions are almost always true. In
the example rule above, the fact that problems were generated so that doors
were usually open was captured. Second, some conditions are almost always true
conditionally. In the example rule above, the statistics captured the fact that
all pushable objects are boxes (since the only objects are robot and boxes, and
boxes are always pushable).

In addition, we have found that ULS discovers dependencies between condi-
tions in a rule that arise from the problem solver architecture. We see a case of
this in the example rule above. Once

(known °’(connects ?var82 ?7var83 7var84) 7node)
is tested, 7var82 is bound to a door. Thus, it is not necessary to test
(known ’(type ?var82 door) ?7node)

The relationship between these two conditions arises because the conditions of a
rule are tested by unifying them against a database representing the world state.

Our experimental evidence demonstrates that we can use statistical evidence
gathered during problem solving to produce approximate search control rules
that are still accurate and somewhat more efficient to test. The improvement in
performance has not been large because the generalizing and specializing transfor-
mations we have used do not really address the combinatorics of rule evaluation.
The time to evaluate a rule is O(n®), where n is the number of conditions. and
b is the average number of variable binding choices per condition. Our transfor-
mations only reduce the number of conditions and do not affect the number of
times a condition is tested (because all variables in those conditions are bound).
and hence produce only a linear improvement in performance, which increases as

15




the number of binding choices increases (e.g., as the complexity of the domain
increases). To produce approximate rules that are much more efficient than the
original rules, however, it is necessary to reduce the number of binding choices.
Thus in the future, we plan to provide ULS with other operators that search
the space of search control rules. For example, we would like to apply trans-
formations that reorder the conditions appearing in the left-hand side of a rule.
estimating the number of binding choices statistically in order to arrive at a good
approximation to the optimal ordering.

16




LIST OF REFERENCES

[Cha89] Chase, M.P., Zweben, M., Piazza, R.L., Bruger, J.D., Maglio, P.P.
Approximating Learned Search Control Knowledge. In Proceedings of
the Sizth International Workshop on Machine Learning, Ann Arbor,
MI, 1989.

[DeJ86] DelJong, G.F. and Mooney, R. Explanation-Based Generalization: An
Alternative View. Machine Learning, 1, 1986.

[Ell89]  Ellman, T. Explanation-Based Learning: A Survey of Programs and
Perspectives. Computing Surveys, 21, 1989.

[Fik72]  Fikes, R.E., Hart, P.E., and Nilsson, N.J. Learning and Executing
Generalized Robot Plans. Artificial Intelligence, 3, 1972.

[Kel87a] Keller, R.M. Defining Operationality for Explanation-Based Learning.
In Proceedings of the Sixth National Conference on Artificial Intelli-
gence, Seattle, WA, 1987.

[Kel87b] Keller, R.M. The Role of Fzplicit Knowledge in Learning Concepts to
Improve Performance. PhD thesis, Dept. of Computer Science, Rutgers
University, January 1987.

[Kel88]  Keller, R.M. Learning Approximate Concept Descriptions. 1988. Un-
published paper.

[Min85] Minton, S. Selectively Generalizing Plans for Problem Solving. In
Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, Los Angeles, CA, 1985.

[Min87] Minton, S. and Carbonell, J.G. Strategies for Learning Search Control
Rules: An Explanation-Based Approach. In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, Milan, Italy.
1987.

[Min88] Miuton, S.  Learning Effective Search Control Knowledge: An
Explanation-Based Approach. PhD thesis, Dept. of Computer Science.
Carnegie-Mellon University, March 1988.

[Mit82]  Mitchell, T.M. Generalization as Search. Artificial Intelligence. 18,
1982.

17

_——-‘




[Mit86]

[Pea84]

[Sim88]

[Tam88]

[Zwe88]

Mitchell, T.M., Keller, R.M., and Kedar-Cabelli. S.T. Explanation-
Based Generalization: A Unifying View. Machine Learning. 1. 1936.

Pearl, J. Heuristics. Addison Wesley, Reading, MA, 1984.

Sims, M.H., Zweben, M., and Chase, M.P. An Abstraction of EBL and
the Clarification of Approzimations. Technical Report, Al Lab, NASA
Ames Research Center, 1988.

Tambe, M. and Newell, A. Why Some Chunks Are Erpensive. Tech-
nical Report, Dept. of Computer Science, Carnegie-Mellon University.
1988.

Zweben, M. and Chase, M.P. Improving Operationality with Approx-
imate Heuristics. In Proceedings of the AAAI Spring Symposium on
Ezplanation-Based Learning, Stanford University, 1988.

18




MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
scitences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.




