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1. Introducing COOL

x, 1.1 What is COOL?
COgL4&, software library written in the object-orented programming language

C++.f1,,-2 COOL was developed using the AT&T Cfront 1.2.1 compiler, but it
- be compatible with other versions of C++. COOL has been developed with a
"pure object-oriente4 programming idiom; the encapsulation and inheritance
features of C++ are exercised to the fullest extent possible. (An example of this
policy is that "friend" functions and classes that disable the protections and
restrictions of the object-oriented programming discipline are avoided.) COOL
does not provide a monolithic object hierarchy as provided by the languages
Smalltalk f3jand Objective-C ICpack 2014]ror by the NIH (OOPS) library for C++,

Instead, COOL consists of a group of separate inheritance hierarchies whose
structure is optimized for the inherent dependencies of the concepts they
represent in the target applications.

COOL Contains class Iefinitions relevant to research in computer vision, image
pattezn recognition, and computer graphics, which we will henceforth refer to as
the image sciences'L s_.cience algorithms implement mappings between
images and modelstFigure- 1IV Image processing algorithms map an input
image to another image that is an enhanced, restored, compressed, or corrected
version of the input image. Computer graphics algorithms take a model of a
virtual world and a viewing specification and produce an image as output.-, Image
pattern recognition algorithms infer from images some properties of a virtual
world - often a simple measurement or classification is all that is required, not a
complete virtual world model.

IMAGE MODEL

_,Computer Graphics

Pattern Recognition

LT Image Processing

Figure 1: Relationships among the image sciences

COOL is likely to be of some interest for its unique functionality supporting image
science research but even more for its coding and organization techniques.
COOLs nseqlib sublibrary encapsulates matrices, points, vectors, and
patterns. The graphlib sublibrary contains classes for generating and
manipulating graphical world models and display lists. The disklib sublibrary
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encapsulates disk file formats and operations. Classes are provided for random
variates, subscripts, histograms, timers, and analog devices. These and other
COOL structures may prove useful in themselves. The library organization and
coding techniques illustrated in COOL will probably be of broader interest than the
specific classes and implementations in COOL; therefore, the rationale for many
of these features and the tradeoffs they embody are described in detail.

1.2 Motivation for COOL

COOL arose from the convergence of four notions: First, research in the image
sciences requires a large software infrastructure that requires ongoing
maintenance due both to changes in hardware support and to algorithmic
advances. Second, an incipient software crisis pervades the image sciences
because the body of knowledge and the supporting infrastructures are changing
more rapidly that the software systems can keep up, and the research is
advancing beyond the capability of existing software systems to support it. Third,
recent advances in software engineering methodology, particularly object-
oriented programming and languages for supporting it, can help to solve, or at
least manage, the software problems facing the image sciences. Fourth, the
software supporting the image sciences should adhere to a new design criterion:
it needs to separate the concerns of (1) processing, (2) storage and
communication, and (3) display and interaction. The rest of this chapter
elaborates on these ideas.

1.21 Software requirements for image science research

Software for supporting the image sciences must address four issues: integration,
data complexity, algorithm complexity, and device dependencies.

Integration
A collection of all known image science procedures does not constitute a solution
to any image science problem. Integration of the methods is required both at the
software level, so that the methods can work well together, and at the theory level
so that different methods that are essentially the same can be considered together
and compared on their theoretical power as well as on pragmatic issues such as
run time. Integrating image science concepts at both of these levels requires a
unified theoretical foundation that has been lacking in the image sciences. The
unification and weeding of the diverse methods used in the image sciences may
finally occur in the forging of integrated software systems. COOL is an
experiment toward that end.

Data complexity
Image data is massive. While this data begins its existence as a spatial array of
intensities, interest in spectrally and temporally sampled imagery is increasing,
requiring manipulation of 3-D, 4-D, and higher-dimensional representations. In
addition, the representation of the inferences obtained from images requires
complex data structures such as multidimensional trees and graphs. Software
for image pattern recognition must facilitate the transformation of data from one
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form to another and support modifications of the forms in response to automatic
processes or interactive manipulations. Graphical models often begin as complex
data structures representing a virtual world and eventually yield a high-
resolution image array. Complex data structures are used to enhance
computational speed, flexibility, and interactivity. In view of this growing data
complexity, it is critical that software for image science research employ all of the
tools available for hiding irrelevant details at each implementation layer. The
encapsulation facilities of object-oriented languages are well-suited to supply this
need.

Algorithmic Complexity
Image science algorithms are complex, often requiring manipulation of multiple
representations at once and involving implementations of sophisticated
mathematical and computational methods. The details of the implementations
are significant because any operation, when applied to such massive data,
imposes a significant run-time cost; therefore, representations and forms of
algorithms that gain speed at the cost of complexity cannot be ruled out of the
question. Similarly, the order in which operations are performed may have a
dramatic effect on the memory requirements of the process being executed. The
flexibility to judge these tradeoffs must be left to the user (image science
researcher) and must not be made a priori by the library developer. In addition,
image science research often requires long run times, so most methods must be
executable with no interactive user interface; backgrounding batch mode jobs will
always be necessary because as our computer power increases we will want to
apply our algorithms to ever larger data sets or to more sophisticated
manipulations rather than using the improved hardware performance just to
give faster compute times. Thus, the level of abstraction of the routines provided
by the library must be chosen carefully. Process encapsulations must be provided
both for well-defined, self-contained operations and for operations that are
subjects of ongoing research and development.

Device dependencies
The devices for supporting the image sciences - cameras, digitizers, and
displays - not to mention fast processors - are changing so rapidly that much of
the effort devoted to maintaining image research libraries is devoted to updating
the software to accommodate new devices. This requires that device
independence be an important criterion in designing a software system for
supporting the image sciences. Unfortunately, the trend in software toward
window-oriented bit-mapped displays favors higher interdependence of the
software and the user interface. This trend must be resisted in image science
libraries in order to avoid massive rewrites as each new device, windowing
system, or user interface library comes available. By abstracting and isolating
the minimal, essential components of the user interface, COOL makes conversion
between windowing systems easy.

For example, COOL was begun when SunWindows [61 was the dominant
windowing system in our laboratory. Only two user interface classes were
constructed, imagetool for SunWindows, and ikonas for the Adage/Ikonas 3600
display system. These classes support only the fundamental, abstract functions

1-3



required for the image sciences: primitive image display and line drawing, but
now that the X Window System [7] is becoming a laboratory standard, very little of
COOL needs to be rewritten. The ximagetool class was added to COOL in a day.

Furthermore, by encapsulating communication protocols used to communicate
between processors, COOL encapsulates tiresome details and provides minimal,
easy-to-use interfaces for programmers to take advantages of networks of
processors.

1.2.2 Incipient Software Crisis

A second aspect of the motivation for COOL is the incipient software crisis facing
the image sciences. The range of applications now appearing is combining with
the lack of a unified theoretical foundation to produce a fragmentation of the field
that has inhibited progress while consuming great quantities of effort from
research faculty and students. The combination of changing hardware and
broadening applications has already stretched to the limit the software
foundations in use. The older imaging library in our lab lacks data structures for
the hierarchies of image regions we now find essential to our research. The
library is not equipped to handle images of 1Kx1K pixels at all, and manipulation
of five-dimensional image data (three of space, one of time, and one of scale)
would require redesign of much of the library. Furthermore, the size of existing
libraries has increased to the limit of the ability of their programmers to
understand them. My own FORTRAN library, which I was working with before
beginning to build COOL, was so large and involved so many encoded subroutine
names that I was losing track of the tools I had formerly written to make later
coding easier. Object-oriented design can help image scientists to organize their
code around the important ideas of the field and hide irrelevant detail at each
layer of abstraction, resulting in more effective software support for the research.

12.3 Software Engineering Support

Object-oriented design [8,9,10 is a set of conventions that address several aspects
of the software crisis in the image sciences. Explicit support for encapsulation
helps programmers to organize and package their code. Inheritance makes
possible reuse of existing code and eliminates the need for error-prone and
difficult-to-debug features such as arrays of pointers to functions. Operator
overloading removes the exhausting concern with subroutine name encodings
since the language processor distinguishes procedures by their names and
argument lists jointly. Elimination of some syntactic restrictions makes writing
readable code easier. All of these features are addressed in C++ and are exploited
in the design and realization of COOL. in addition, we have developed a system of
subdirectories and Makefiles that simplify the management and use of the library
while bringing an object-oriented methodology to the administrative concerns of
library management as well. Object-oriented design will make image science
software easier to generalize and modify while organizing the software to hide
irrelevant details and reuse critical, specialized code.
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1.2.4 Separation of Concerns

One of the most powerful ideas in software engineering is the concept of
separation of concerns. This notion says that in order to simplify the development
of large programming systems, it is desirable to define modules so as to minimize
the communication required among modules and thereby minimize
communication overhead among their developers [11,12). This criterion is
optimized by defining separate domains of concern for each module and by
separating the concerns of the architecture, implementation, and realization of
each module. These separations of concerns can be enhanced by formal methods
of design, by object-oriented programming structures such as C++ classes, and by
appropriate design criteria for decomposing a large system into modules. COOL
creates and exploits just such separations of concerns. COOL uses C++ classes to
separate concerns of architecture from concerns of implementation and
realization, customized makefile and header file structures to separate the
concerns of coding from concepts of library management, and a set of C++
inheritance hierarchies to separate the concerns of processing, display and
interaction, and storage and communication. These ideas will be elaborated upon
in subsequent chapters.

1.3 Structure of the COOL Documentation

In order to provide a fairly complete description of COOL as well as the
underlying coding idiom and organizational techniques, each document in this
report will address a different innovation in COOL. Descriptions of the specific
classes in COOL are provided in a separate report, The COOL Library: User's
Manual,

Chapter 2 is an introduction to the discipline of Object-Oriented Design, including
an overview of its historical development and a description of its principal
features.

Chapter 3 introduces the C++ programming language and discusses how object-
oriented programming is carried out in C++.

Chapter 4 discusses design criteria for C++ libraries, criticizing some commonly
used (or assumed) criteria and illustrating a new set of criteria developed during
the implementation of COOL.

Chapter 5 explains the nuts-and-bolts of establishing, organizing, and
ma ntaining a C++ library. These organizational techniques are important
because of the extra overhead in header files required to use C++ classes. The
scheme described supports good software engineering practices, requires
minimal effort to maintain, invades minimally on the programmer using the
library, and is flexible enough to handle easily special cases such as mutual
dependencies and maintenance of the library for multiple architectures.

Chapter 6 describes the programming idiom used in COOL, including several
different types of encapsulation used in the library.
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Chapter 7 describes how to use COOL and includes some example programs.
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2. Object-Oriented Design

Object-Oriented Design refers to a set of conventions for organizing large software
systems. Language support for object-oriented design includes facilities for data
abstraction and inheritance.

2.1 Object-Oriented Design Conventions

Object-Oriented Programming has been described as being "in the 1980's what'structured programming' was in the 1970's" [1]. Advertising hype and
overclaiming by enthusiasts of the approach have made "object-oriented" little
more than a high-tech synonym for "good". Thus, one sees all kinds of things
labelled as being "object-oriented" or supporting "object-oriented methods"
whether or not they really have anything to say about the programming
methodology. The parallel with the way the term "structured progamming" was
used in the 1970's and early 1980's is striking.

Structured Programming is a coding convention whose application yields low-
level code structures that are easier for people to understand (and therefore easier
to debug and maintain). Reasoned arguments for adopting Structured
Programming involve measures of code complexity, the applicability of formal
and informal verification methodologies, the theoretical power of various control
constructs, and anecdotal evidence concerning the understandability of code.
Structured Programming became a serious undertaking when it was proved that
any program can be written using only a small set of control structures: the set
(sequence, iteration, and conditional) yields programming languages such as
Pascal, C, and Algol; the control set (composition of functions, recursion, and
conditional) yield Lisp and its derivatives. Additional (quite entertaining)
philosophical debates have concerned the appropriate use of the goto construct
and the value of various alternative control structures.

Object-Oriented Programming is a code packaging convention that allows a
designer to impose a reasonable structure on large software systems based on the
notions of encapsulation and inheritance. This convention provides several
useful software development innovations. First, it provides a useful operational
definition of module (a class is a module). Second, it establishes an organizing
principle for task decomposition (minimizing communication and dependencies
among modules). Third, it enforces a useful formal separation between
architecture, implementation, and realization (implemented in the separation
between public and private members of a class and in the separation of class
declaration from class realization). Object-oriented design simplifies the
structure of large software systems just as a decade ago structured programming
simplified the structure of code segments. In addition, object-oriented design
separates and clarifies some system design responsibilities, making
management of software teams more above-board and straightforward, and gives
us some new tools for thinking about software design.
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It is possible, in principle, to adopt object-oriented design for systems written in
languages that do not directly support object-oriented constructs. As with
structured programming, however, there are great advantages in having a
language embody and enforce the conventions. C++ supports object-oriented
programming without abandoning the familiar notation and environment of C
[2].

Object-Oriented Design is a good and useful methodology, but it is not the "silver
bullet" that will kill our software demons [3]. Object-oriented design does not
address the essential problems of software design: figuring out what you really
need to do, figuring out how to do it, figuring out what you failed to see the first
time and iterating. Object-Oriented design does address several substantial
incidental issues that arise in project management and design. The advantages
of Object-Oriented Design are significant, but they do not change the nature of the
software development process. On this point, I disagree with those who claim
that object-oriented design is a fundamental conceptual leap [1]. Instead, I see
this new methodology as the latest step in the natural evolution of the technologies
and methodologies for programming.

2.2 The Evolution of Object-Oriented Design

Object-Oriented Design is the latest product of a long history in which
technological developments in programming languages have led to improved
programming methodologies [4]. Each new methodology was, in its day, heralded
as a great conceptual breakthrough, especially by those who stood to profit by the
acceptance of the new methodology. Thus, the hype accompanying object-oriented
design also has a long tradition. In the following paragraphs we review high
points of this history to show that Object-Oriented Design, far from being a
conceptual breakthrough, is actually a normal evolutionary development of
programming methdology.

Assemblers made symbolic naming possible, especially symbolic addressing,
which led directly to relocatable code. The programming methodology called
procedural programming was made possible by the development of closed
subroutines. The ability to isolate name spaces and to explicitly indicate
information transfers through argument lists permits a partial separation of
concerns between implementors and users. The convention of data hiding,
supported by the technical innovation of object libraries, allows a partial
separation of concerns between architects and implementors but provides little
flexibility for users.

Data abstraction extends the data hiding concept by providing support in the
programming language for abstract or user-defined data types. With data
abstraction, the organizing principle for developing large systems is
encapsulation: one defines a complex collection of data as a single abstract data
type under a single name, providing a higher level of abstraction. Now the entire
collection of data can be referred to (as in procedure arguments) by a single name.
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One defines the types so as to minimize the interdependencies among them. The
abstract data type becomes the operational definition of a module, supporting a
nearly complete formal separation of concerns between users, architects, and
implementors.

Structured Programming and the associated stepwise refinement design method
were brought to general attention at about the same time as was data abstraction.
All of these ideas were introduced and implemented in the design (and
marketing) of the programming language Pascal.

The term "object-oriented programming" is often used as a synonym for data
abstraction, especially when the procedures that operate on the data are allowed
as members of the abstract data type, but the term properly refers to the use of
class hierarchies and inheritance to make explicit the commonalities among
abstract data types. (Note: Ada is not an object-oriented language!) Classes also
allow data and the procedures that operate on the data to be encapsulated
together, providing a yet higher degree of abstraction for system management and
integration, but this is an enhanced aspect of data abstraction, not an aspect of
object-oriented design. The implementation of the language Smalltalk took the
concepts of object-oriented design to their logical extreme. Smalltalk operates in a
rich, interpreted environment that includes powerful tools for examining and
modifying system code. This interpretive environment dramatically impacts the
way one pursues one's goals and makes True Believers out of Smalltalk users.
The effect of having such a rich programming environment is even more
immediate and dramatic than Object-Oriented Design itself. The interpretive
environment of Smalltalk is a remarkable innovation, but it is not inseparable
from Object-Oriented Design.

2.3 Encapsulation

When using object-oriented design, logically related data and operations are
packaged together (encapsulated) in a class. An instance of a class is called an
object. The class definition specifies both the memory structure and the set of
allowed operations for objects of the class. The operations and data in a class may
be private, so only objects belonging to the same class may access them, or public,
so objects of any class can use them. (C++ also supports an intermediate level of
isolation called protected. Protected components may be accessed by objects of
derived classes only.)

The support for public and private components creates an explicit separation of
the concerns of users, architects, and implementors. The public definition of a
class is a contract between the users of the class and its architects that certain
functionality will be supported. The collection of class declarations in a library
constitutes a contract between the architect and the implementor that certain
relationships among the classes will be supported. The implementation of the
class structures is then the implementor's domain. This separation of concerns
focuses the negotiations between users and architects on how the class structure
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can be defined to faithfully reflect the user's mental model of the objects being
represented, which is exactly where their discussion should be centered.

The operations (methods, member functions) defined for a class are invoked on an
object by sending a message to the object (or invoking a member function of the
object). The message names what is to be done by the object but does not specify
how it is to be done; "how" questions are reserved to the implementor. In
particular, the implementor may write the code for the required function in the
member function of the class, or the processing of the message may be deferred to
other objects by simply sending messages to request appropriate actions by those
objects. Class libraries often resemble bureaucracies: sometimes the purpose of a
class is simply to route messages to objects of other classes.

Constructors and destructors are special messages that are invoked
automatically when an object is created (by declaration or by explicit allocation
using the new operator) or destroyed (by exiting the scope of the object or by explicit
deallocation using the delete operator) to ensure that the object is initialized or
deallocated correctly. The explicit inclusion of these essential operations gives the
class definition a consistent and complete structure. In C++, constructors and
destructors are explicitly defined in a uniform fashion (the constructor has the
same name as the class; the destructor name is the class name preceded by a
tilde).

The analogy between classes and objects on the one hand and types and variables
on the other hand is obvious: classes and types are declarations that are instanced
by objects and variables, respectively. However, the object-oriented programming
constructs are more than a renaming of familiar ideas. The significance of
classes can be compared to the significance of the Pascal record or the C
struct. Records and structs allow logically related data items of different
types to be encapsulated together under a single name and then hierarchically
organized. This encapsulation serves both to agglomerate related items and to
separate unrelated items. The language support for these constructs enforces the
conventions defined in the record or struct declarations. Classes provide a
similar organization for data and code jointly. Thus, the class structure
organizes the software system and the data structures simultaneously.

To illustrate how data abstraction and encapsulation affect problem
decomposition, consider the modularization of a simple compiler (Figure 2). The
compiler will operate in four passes: lexical scan, parsing, code generation, and
optimization. A decomposition of the compiler project that assigns one team to
each pass (Figure 2a) imposes a heavy communication load between the teams.
For example, the teams must jointly design the symbol table, token list, parse
tree, and code list data structures. In an object-oriented design (Figure 2b), class
definitions for these objects would be the principal modules, and each module
would be written by one team. Negotiations between the teams can then focus on
the functionality and user interfaces of the modules; the internal structures and
algorithms are hidden inside the modules and those internal structures are
explicitly under the control of a team that specializes in their implementations.
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Figure 2: Two module decompositions of a compiler

(a): Traditional process-based decomposition
(b): Object-Oriented decomposition

Once the basic classes are designed, additional classes can be created for the
lexical scanner, parser, code generator, and optimizer. These process

encapsulations focus on controlling interactions among the objects involved in
each pass without the distracting details of internal representations, operation,
and naming of the basic objects. Objects that have as their purpose the control of
interactions among other objects are called enzymes or catalytic objects.

The compiler example illustrates how data abstraction clarifies several practical

issues in the management of large software projects. The distinction between
public and private data and operations provides a useful separation of concerns

between architecture, implementation, and realization. The class structure
focuses discussion among users and architects on the public structure of the

classes and how this public structure can best reflect the mental constructs they
represent. The ability of object-oriented design to focus debate at a high level is
one of the most significant contributions of the methodology.

Encapsulation is familiar to most programmers who have worked with C or
Pascal. The additional aspects of encapsulation provided by object-oriented
languages, the ability to encapsulate operations with the data they operate on or to
provide groups of operations under a single name, are usually easy to assimilate
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and use in one's own system design almost immediately. Inheritance, on the

other hand, is much more subtle and difficult to learn to use well.

2.4 Inheritance

Object-oriented design permits class definitions to be hierarchically organized,
leading to a powerful and subtle design tool called inheritance. With inheritance,
the memory and message structures of a base class are inherited by all classes
derived from the base class. (In object-oriented programming literature, the
terms base class and derived class are synonyms of superclass and subclass,
respectively.) Inheritance allows code to be shared among classes witil similar
structure. Variations of a class can be defined by specifying in the subclass
definitions only those aspects of the subclasses that differ from or elaborate on
those of the base class. Messages defined in the base class may be redefined in the
derived class to handle peculiarities of the derived class. The inheritance
structure allows modifications to an implementation to be localized in the base
class and automatically propagated to the derived classes.

Sometimes a class may be defined simply to hold structures common to several
subclasses; no objects of this base class will ever be defined. Such a class is called
an abstract superclass. Sometimes a superclass needs to be able to accept
messages that must be interpreted in different ways by its subclasses. For
example, if the subclasses store data of different primitive types, then different
type casts will be required for each subclass. But in order for the superclass to
receive the messages at all, the messages must be declared in the superclass.
The virtual function mechanism in C++ allows the superclass to receive a
message for which the interpretation must be supplied by a subclass. With
virtual functions, an object may be known to be a buffer but whether it is actually
an int buffer or a real-buffer might be unknown at compile time. If
appropriate virtual functions are defined in the buffer class, the selection of the
appropriate code to execute will be determined at run time based on the subclass
of the object that is receiving the message.
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3. Object-Oriented Programming in C++

C++ is a programming language developed by Bjarne Stroustrup and his co-
workers at Bell Laboratories [1,2). C++ is a reworking of the C programming
language that provides enhanced syntactic features, eases some stylistic
restrictions present in C, provides a version of strong type checking that is useful
for detecting subtle errors at compile time rather than after hours of debugging,
and provides new features for object-oriented programming.

This introduction to C++ assumes knowledge of UNIX and C. This introduction
and the 1.0 release of COOL are based on AT&T Cfront Version 1.2.1, though the
library should transfer easily to other implementations of C++.

3.1 From C to C++

C++ is an extension of the C programming language that directly supports object-
oriented programming constructs and implements several extensions and
improvements to C. C++ is useful as a better version of C even if one does not use
the object-oriented design constructs. The high compatibility with C makes it
possible for C programmers to "convert" themselves gradually to object-oriented
design while remaining productive themselves and while not losing the use of the
software infrastructure they have built in C. C++ still supports the high run-time
speed and low-level machine control available in C, but adds tools for creating
effective abstractions that help to organize large bodies of code.

The following sections are intended to provide, for C-literate programmers, a fast,
concise, effective (but not comprehensive) introduction to the new features of C++.
Section 3.2 describes syntactic enhancements to C that any C programmer could
use to advantage immediately. Section 3.3 describes the new features in C++ that
support the encapsulation aspects of object-oriented programming. Section 3.4
describes the use of inheritance in C++.

3.2 What You Already Know Probably Works

As a rule, what you know about C applies to C++.

The statement types available in C are available in C++, so much of what you see
in a C++ program will be familiar. Assignments, declarations, if, for, and
while statements, switch and case all work in C++ as they do in C. It is possible
to write C code and compile it using your C++ processor with little or no
modification. (C++ is moving toward an ANSI C foundation, and this causes
many of the changes that are necessary in conventional C code to make it work
under C++.) Many people take advantage of this high degree of compatibility to
gradually learn and use the new features of C++ while writing mostly the C code
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with which they are familiar. As they find instances where a new C++ feature is
useful, they quickly learn and use the C++ enhancement. COOL is an
experiment in "pure" object-oriented design, so studying the COOL code can
accelerate the process of learning how to use object-oriented design.

Section 2.2 describes several enhancements to C provided in C++. These
enhancements can be exploited by programmers who would like to use C++ as "a
better C" but are not yet ready to dive into the new ways of thinking required for
complete exploitation of object-oriented design. More significant and subtle
features of C++ will be described subsequently.

3.2.1 C++ has strong type checking

The most immediate, striking aspect of using C++ is that you don't need . i nt.
C++ incorporates most of the additional syntax and semantics checks that 1i nt
provides, without getting carried away with superfluous warning messages. Most
people appreciate finding at compile time simple errors like mismatches in the
number and types of arguments to procedures. Experience has shown that it is a
better application of time to find and correct errors before execution begins than to
wait for the inevitable but uninformative segmentation fault. (Checking of the
type and number of arguments to procedures can be overridden when desired
using an ellipsis ("...") in the formal parameter list as described below.)

The C++ processor will flag both assignment statements and procedure calls
containing a type mismatch. The user may employ casts, but if a class is
involved, there must be a constructor compatible with that particular coercion.
For example, to cast a OneType one into a TwoType and assign its value to
TwoType two:

/* both of these coercions are correct and legal */
two = TwoType (one);
two = (TwoType) one;

we require a constructor of the form:

TwoType: :Twotype (OneType o)

code which creates a TwoType from a OneType

Function prototypes for which checking of the number and type of arguments is
impossible or not desired may be written using ellipses ("...") as follows:

void foo(...); // any number and type is OK
int bar(int,int, ...); // 2 ints required, then anything

Note that in the these two examples the ellipses are valid C++ syntax and not an
indication of something being omitted from the code example.

32.2 Double-slash is a comment delimiter
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Comments may be initiated with a double slash. The rest of the source line is
then considered a comment. It is not possible to "turn off' the comment before the
end of the source line, but neither is it required to specify the location of the end of
the comment. The traditional C-style comments delimited by/* . */ are still
permitted.

Double-slash comments should be avoided in macros because they tend to interact
with the C preprocessor in unfortunate ways.

a=5; // the rest of this line is commented out; a=10;

// the value of a is 5 - the a=10 above was ignored

3.2.3 Declarations may appear anywhere

C++ allows variables to be declared at any point in the code, so the variable can be
declared near the code that uses it. The scope of the variable is the block in which
it is defined. Thus, the following code is perfectly legal:

foo()

int a,b; // declare at the beginning
a=0; b=10;
float farray[1O]; // declare in the procedure
for (int i=0; i < 10; i++) // declare i in the statement

farray[i]=i;

3.2.4 Variables and arguments can be declared const

Any type can be preceded by the adjective const which declares that the value
may not be modified. Const is particularly useful with procedure arguments.
The C++ semantics checks can prevent the disaster where a procedure modifies
the value of an argument believed by the calling procedure to be a constant.

const int hundred = 100;
const thousand = 1000; // if type is missing,int is assumed
const float pi = 3.14;
const char first-letter = 'a';

II The variable i cannot be modified in the procedure below, so a
// constant may be supplied as the actual parameter.

void CannotChange(const int& i);

3.2.5 Parameter lists use ANSI C syntax

In C++, the formal parameter list for a procedure contains both the formal
parameter name and its type. Whereas in C one would write

void test (a,b)
int a,b;
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code for test1

in C++ the same procedure header would be written as follows:

void test(int a, int b)
{

code for test
I

This modification (mainly due to the ANSI C function prototype syntax) is
important to remember when including C header files from packages like
SunWindows or X. The header files may require modifications before they can be
included in C++ programs.

326 Streams provide simpler or customized I/O

In addition to the standard C I/O package, stdio, C++ provides an 1/0
encapsulation in the object-oriented style called streams. To use this package,
your program must #include <stream.h> which contains the definitions of the
operations in the stream package. (COOL includes this file automatically).

Stream 1/0 consists of classes for both input and output, called ist ream and
ostream, respectively. Three standard streams are cout (for stdout) and cin
(for stdin) and cerr (for stderr). The operators << and >> are defined on these
streams as data transfer operations and are used as follows:

int val;
cout << "Hello there!\n"; // write to cout

// Prompt to cout and read value from cin
cout << "Input value:"; cin >> value;

// Demonstrate writing multiple things
cout << "The number is " << value << ".\n";

1/0 procedures for user-defined types (classes) can be defined by modifying the
definitions in stream. h by providing overloaded ost ream: : operator<< and
ist ream: :operator>> procedures for the new types. (This is considered an
advanced topic that will not be further discussed here.)

3.2.7 Arguments can be passed by reference

Call by reference is supported with the reference operator, &. C++ reference
parameters are equivalent to Pascal var parameters. Variables passed by
reference are used like any other variable and can appear on the left-hand side of
an assignment. The effect of call by reference is illustrated below.

void refproc(int a,int& b)

3-4



a=5; b=5;

void caller()

int first=O, second0;
refproc (first, second);

/1 now first==O and second==5

As in Pascal, reference parameters can be used to permit a procedure to have side
effects on the actual parameter (as with variable second above) or to prevent the
copying of a large array into the procedure's environment. A parameter declared
as const in -& will be passed by reference but since the procedure promises not
to change the value of the parameter by using const the actual parameter may be
a constant in the calling procedure.

The result of a function may be returned as a reference as long as the object being
returned is not part of the function's local environmenk (which is deacllocated on
the function's return). If a reference result is returned, then the function
invocation may be used on the left hand side of an assignment. This can result in
some valid and useful but unfamiliar constructions. For example, we might
define a member function, element as follows:

class IntList{
int list[i0]

public:
int& element(int t);

where the element member function returns a reference to the t-th integer in the
list array. The element function could be used then as follows:

Intlist ilist ;

ilist.element(7) = ilist.element (2)*2+ilist.element(=);

The function call on the left hand side of the = looks peculiar at first, but it is valid

C++.

3.2.8 Storage management is simpified

C++ provides operators new and delete for creating and deallocating objects in
the heap. New returns a pointer to an object of the desired class located in the
heap. When the object is allocated, a constructor is invoked to initialize the object.
The object remains on the heap until explicitly deallocated with the de lete
operator. Delete operates on a pointer to an object, invoking the destructor for the
object's class and deallocating the object. The number of items to be allocated or
deallocated can be specified (the default is 1). If only one object is being allocated,
the constructor to use can be specified by providing an argument list to the class
designator; otherwise, the null constructor (the one with no arguments) is used.
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COOL works with large objects such as images and graphical models. We have
developed an idiom that provides type independence in writing user code, efficient
storage management, and natural, direct methods for implementing objects. The
technique involves defining an "intelligent pointer class" that holds some
administrative information about the object along with a pointer to an object
belonging to a "storage class" that contains the mass of data. We can then
manipulate the objects of the pointer class directly and naturally while the real
activity is deferred to the storage class where the data is found. Type
independence can be achieved if the storage class consists of an abstract
superclass with subclasses for each primitive storage type. There are some
rather subtle interactions between the semantics of C++ functions and the
constructors and destructors of the header class (e.g. the superclass must have a
virtual destructor), but when these are resolved the resulting code is elegant and
efficient.

The following lines illustrate various forms of declarations with comments to
indicate the meaning of each. All of the declaration below are valid C++ syntax
under the given assumptions.

1/ Assume appropriate class definitions for "Point" and
/1 "IntList" exist.
// Here are some examples of the new and delete operators

Point pl; // pl is allocated on the stack.
Point* pptr; II pptr is an uninitialized pointer;

// no memory is allocated for a Point.
float* fptr; // Ditto for fptr.
IntList* ilistptr; // Ditto for ilistptr.
pptr = new Point; // pptr points to a new Point on the heap.
delete pptr; // The point is deleted.
pptr = new Point[15];

// pptr points to an array of 15 Points,
// all on the heap, constructed with the
// null constructor Point::Point().

delete[15] pptr; 1/ All 15 Points are deleted.
f = new float[90]; 1/ f is an array of 90 floats on the heap
ilist = new IntList(20);

// The constructor IntList(int) is invoked,
// and a pointer to one IntList (of size 20)
II is returned. The Intlist is on the heap.

ilist = new IntList[20];
// A pointer to an array of 20 IntLists is
// returned; the default (null) constructor
1/ IntList::IntList() is invoked for each of
// the twenty IntLists. All of the storage is
1/ on the heap.

C++ does not provide automatic garbage collection, so it is important to remember
to delete objects allocated on the heap. It is also important to remember to
specify the number of objects to be deleted if it is greater than 1, otherwise only
the first object will be deleted; the rest will remain as garbage.
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3.2.9 Inline functions speed execution

Small functions may be declared inline, meaning that the C++ processor may
generate the code for the function in-line rather than coding a jump to a separate
procedure. Inline functions are commonly used to simply return a value obtained
from another function or to return the value of a private variable in a class. The
declaration of an inline member function can take either of two forms illustrated
below for member functions f1 and f 2.

class foo
int i;

public:
foo()
int fl() {i+=1; return i;)
int f20;1;

inline int f2() // Many people prefer this form since
// it avoids cluttering up the class

i+=2;// definition.
return i;

}

There are several restrictions on the complexity of computations permissible in
inline functions. Furthermore, the definition of inline functions must appear in
the same compilation unit as the declaration. They are usually placed in the
header file for the class.

3.2.10 Overloaded functions and operators are supported

One of the most useful features of C++ for library design is operator overloading.
With operator overloading, the names of procedures need not be distinct. The
appropriate procedure to execute is determined by the procedure name, the
number of arguments, and the types of the arguments jointly. (But note: return
values are not used to distinguish overloaded functions.) Furthermore, symbolic
operators such as +, =, <<, +=, *=, etc. may be redefined to have valid
interpretations for arguments of any class.

Operator overloading has important uses in COOL. COOL contains some code
that is type-independent; we do not need different procedure names for
performing the same operation on different kinds of objects. Thus, when using
COOL matrices, vectors, and complex numbers, we may use the natural notation
* or .*= for multiplication; we do not need to remember whether matrix
multiplication is mpy or mult since the operators * and *= are defined
appropriately for each class. Also, we do not have to remember different
procedure names for multiplying a matrix by a scalar, a vector, or a matrix; all
these operations use the * or *= operator and return an object of the appropriate
type.
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Operator overloading permits the user to employ more natural notations and to be
less concerned with incidental matters like the storage types of values being
operated upon.

The following class has an overloaded constructor, an overloaded member
function, and an overloaded operator:

class MathThing

public:
MathThing(int); // Construct a math thing from an in..
"athThing(float); // Construct a math thing from a float.
double MyExponent(int); // Overload the member fcn
double MyExponent(MathThing) ;// MyExponent.
MathThing& operator=(MathThing& x);// Overload the =

To overload a function that is not a member function of a class, you must first
specify

overload functionname;

and then overload the function:

void functionname (formal parameter list){ ....

void functionname (a different formal parameter last){ .... ]

Operator overloading can yield particularly elegant code when used carefully.
For example, the statement

int i, j;
i = i * j;

clearly refers to multiplication of integers. The statements

Matrix ml, m2;
ml = ml*m2;

are natural but are undefined in C++. By defining a Ma Crix class and definitions
for the multiplication and assignment of matrices, the above statements can be
made valid and meaningful.

The indexing operator [I is often overloaded in order to include bounds
checking. A complete definition of an overloaded operator [ I for an integer array
class called IntArray is given below. The example assumes that BADVALUE, size,
and buffer are defined in the class declaration.

int IntArray: :operator[] (int index)
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if (index >= size)

cerr << "array index out of bounds\n";
return BADVALUE;
}
return buffer [index];

The first line indicates that this is an operator [ I member function of class
IntArray that returns an int result and has one int argument named index.

The same precedence rules apply to overloaded operators as to standard
operators. Precedence rules in C++ are the same as in C.

The following operators can be overloaded:

new delete ->

+ - * % & I
-> + = .= 0

&= = << >> >>= <<= == =
<= >= && 11 ++ -- () [

3.3 C++ Support for Encapsulation

This section will describe the language features available in C++ to support the
encapsulation aspects of the object-oriented programming methodology. A
discussion of the C++ features that support the inheritance aspect of object-
oriented design and the usage of inheritance will follow in the next section.

The example we will develop in this section illustrates the fundamentals of
defining and using classes. This example defines a binary tree node (btnc de)
having left and right subtree pointers and an integer data value. Integers are
inserted into the tree so that an infix traversal of the tree visits the data values in
increasing order. This example is not concerned with balancing the sorted tree.

3.&1 Classes Define the Structure and Function of Objects

A class is a collection of data structures and operations on those data structures.
The class definition is just a compiler declaration (like a user-defined type
declaration in Pascal or a struct definition in C); no storage is allocated or other
operations performed until an instance of the class (an object) is created.

The general structure for a class definition (without inheritance) is as follows:

class classname

private:
private data and member functions
(the keyword private: is the default and is
usually omitted)
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public:
public data and member functions

1;

The syntax for defining a class is illustrated through the following sections with
the complete definition of a node suitable for constructing a sorted binary tree of
integers. The class declaration is as follows:

class btnode
{/ Private stuff comes first

btnode* left;
btnode* right;
int data;
btnode& insert (int); // note: a private member function

public: // User interface routines follow

btnodeo; // "null" or "default" constructor
btnode(int); // another constructor
-btnodeo; // destructor
btnode& print infix( ;
btnode& operator+(int); // These messages illustrate
btnode& operator+(btnode) ;// operator overloading.

After the name of the class, several private data items and one private procedure,
insert, are declared. The public part of the class definition begins with the
keyword public: and lists the operations available to users of btnode objects
including the constructors, the destructor, and three other member functions.

Objects of this class are created by declaring them using the class name in the

role of a type or by explicit allocation on the heap using the new operator.

3.3.2 Constructors and Destructors Create and Destroy Objects

Constructors and destructors are invoked automatically and return no value
since their purpose is to create side effects in the object being constructed or
destroyed. Proper use of constructors ensures that all objects of the class are
given a valid, consistent state when they are created. Proper use of the destructor
ensures that all non-local memory allocations made by the object are cleaned up
before the object is deallocated, thereby preventing accumulation in the heap of
garbage data from deleted objects.

Constructors have the same name as the class; the two procedures called btnode
are constructors in the example. A constructor is invoked to initialize any object
of this class when it is created. The default constructor is used unless the
declaration of the new object specifies arguments that select another constructor.

For example, a btnode may be created in a user program in the following ways:

btnode Zeronode; // Zeronode is an object of class btnode
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// initialized with the default constructor.
btnode One(l); // One is a btnode initialized by the

// constructor btnode: :btnode(int).
btnode* btptr;
btptr = new btnode;// This btnode is allocated on-the heap

// using the default constructor
// Remember: new returns a pointer!

The code of the two constructors for btnode follows:

btnode: :btnode()
I/ the null constructor initializes the
// object to all default values
{

left=NULL;
right=NULL;
data=Q;

btnode: :btnode(int value)
// This constructor initializes the object
II with a particular data value as
/1 specified by the argument "value"

left=NULL;
right=NULL;
data=value;

The name of the destructor is a tilde followed by the class name; in the example,
the destructor is called -btnode. The destructor is invoked automatically
whenever an object of the class is destroyed either by explicit deallocation using
the delete operator or by automatic deletion when the object goes "out of scope"
(at the termination of a procedure for which the object is a local variable).

In the example, the destructor must ensure that when the current btnode object
is deleted that the btnode objects to which it points also receive the delete
message. Without this action, the current node would be deleted but its subtrees
would remain in the heap as garbage. The code of the destructor -btnode is as
follows:

btnode: : -btnode ()
// the destructor has to be sure that the subtrees
II get deallocated properly

if(left<>NULL) delete left;
if(right<>NULL) delete right;

Each btnode will invoke its destructor, sending the delete messages throughout
the tree. (Actually there is only one copy of the destructor code that is shared by
all objects of the class.)
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Most constructors and destructors are short, simple procedures. Classes that do
not allocate any space on the heap often have destructors with null bodies, written
( ). Constructors and destructors may be inline procedures. If a class is
complicated, requiring a more involved initialization sequence, the initialization
code may be shared by all of the constructors by placing most of the initialization
code in a private procedure (named init () or make a btnode (, for instance)
that is invoked by the various constructors.

3.&3 Private Data and Procedures Define Internal Structure

The declarations after the class name and before the public: keyword define
private components of the class. (There is also a private: keyword that is rarely
used since the default access at the beginning of a class declaration is private: .)
Private data and procedures cannot be accessed by the procedure that declares the
object or by the member functions of other classes.

In the btnode example, the two pointers left and right and the integer data
are private, as is the procedure insert. A tenet of the object-oriented
programming convention requires that users of an object know nothing of its
internal structure, so data members of a class are kept private. A user seeking
the value of a data item must request the value through a member function. This
rule has a foundation in software engineering practice: the data value could later
be moved to another class, so by accessing the value through a member function
we permit modifications in how the value is obtained without requiring
modifications in the users of the class. Private procedures are usually either
utilities needed by other methods or a procedure defined for use in the another
method that would clutter the code there. The inser: procedure is an example of
both rationales, though in this simplified example it is invoked only once in
another member function.

The code of procedure insert is shown below. It enters a given integer value into
the sorted tree of btnodes. The insert procedure has access only to the current
node, so if the integer is not to be attached to the current node it passes the integer
down to be inserted in one of the subtrees. Note that this is, in effect, a recursive
call from inse:t to itself, though the object being asked to invoke insert is a
different btnode. When reading a member function definition, remember that
the member function has access to the private variables of the object that is
invoking the function as they were defined in the class definition. Thus, data,
left, and rig:-: are defined already and refer to the values for the object that is
executing the function. In addition, every member function has access to t hi s,
which is a pointer to the object that invoked the function. I prefer to have access to
the object directly rather than through a pointer, so I always include

#define self (*this)

which defines self as the object to which the this pointer points. I can
therefore return the object as the value of the function, as illustrated below. The
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insert function also illustrates the syntax for sending a message to an object
through a pointer by using the -> operator.

btnode& btnode::insert(int i)

if (i<data) then // is i less than this node's value?
if (left=NULL) then // is there a left subtree?

left=new btnode(i); // allocate a new btnode
// with value i

else
left->insert(i); // left is a pointer;

// use -> syntax
else if (i>data) then

if (right=NULL) then // is there a right subtree?
right=new btnode(i); /1 allocate a new btnode

// with value i
else

right->insert(i); // send to right subtree
return self;

3&4 Public Member Functions Define Externally Visible Structure

The btnode class provides several operations for use by any procedure or other
object. The code for these procedures is shown in full below.

The print inf ix () procedure prints to cout the contents of the entire tree
whose root is self using an inorder traversal. Thus, if the insert procedure
works as expected, the values in the tree will be printed in ascending order.

The other public member functions redefine the + operator for use with btnode
objects, providing a simple, natural syntax for adding new objects to the tree.

Member functions of a class can be invoked on an object in two ways. To invoke
the member functions on the object itself (rather than invoking the function on the
object indirectly through a pointer) the syntax is

object.func(args);
To invoke a member function on an object that you access through a pointer, the
syntax is

objectptr->func (args);
In the former case, the variable object was declared as an object of its class. In
the latter case, the variable objectptr was declared as a pointer to an object of the
appropriate class (and the actual object was probably created on the heap by the
new operator). Confusing the semantics of your program and using the wrong
invocation mechanism will result in syntax errors.

If member functions return references to self when they would otherwise return
void, it becomes possible to chain messages together as follows:

object.dothis(args) .dothat(moreargs) .dotheother(evenmoreargs);
The messages are handled in order, left to right.
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Several points about these member functions are worthy of note. First, each of
them returns a reference to a btnode. In my idiom, a member function that
returns a reference to its own class is returning self. This makes possible the
chaining of operations on a single object. It is reasonable to return self from
any procedure that would otherwise return void. Second, notice that two of these
functions are named operator+. They are distinguished by the types of their
arguments. One adds an integer to the tree, the other adds a tree to the current
tree. Third, note how the operator+ functions send messages to self
(self . insert (i) ; or self +b. data; for example) in order to modify the current
object. Sending messages to self is particularly important in combination with
inheritance since a message to self is interpreted through the entire inheritance
hierarchy and not just with respect to the current class. It is therefore possible to
invoke functions defined in superclasses by sending the appropriate message to
self.

btnode& btnode::print_infix()
// This message uses recursive calls to itself to print the
// tree in infix (sorted) order

if(left!=NULL) left->printinfix(); I/ print my left
cout << data << .. "; // print my data
if(right!=NULL) right->print infix(); // print my right
return self;

btnode& btnode::operator+(int i)
II add an integer to the sort tree

self.insert(i); // (note: sending a message to myself!)
// since self is an object, use "." syntax

return self;

btnode& btnode: :operator+(btnode b)
// add a tree into self!!

if (b. left<>NULL) then
self+(*b.left); I/ * dereferences the pointer

if(b.right<>NULL) then // note the recursive calls to +
self+ (*b. right);

self+b.data; // This one is NOT recursive!
return self;

3.35 Programs use classes as if they were predefined types

The code and output of a main () program using class btnode is shown below.
The program begins by using #include directives to read the definitions of the
C++ stream classes and the btnode class. We assume for now that the btnode
class definition is in file btnode, h and the definitions of its member functions
are all stored in file btnode. c.
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#include <stream.h>
#include "btnode.h"
#include "btnode.c"

main()

btnode s,t; I/ define 2 default btnode objects
s+6+3+2+5+8+7; 1/ chaining is possible because each
t+4+9+1+10; // function returns self.
s.prin:_infixo; cout << "\n";
t.print--infix(); cout << "\n";

s+t; // tree plus tree gives tree!
s.prin-:infix(; cout << "\n";

Output from maino:

0235678

0 1 4 9 10
o 1 2 3 4 5 6 7 8 9 10

3.4 Using Inheritance

Inheritance is a subtle and powerful technique whereby a new class (called the
derived class or the subclass) can be declared as being derived from an existing
class (called the base class or the superclass) thereby inheriting all of the data and
operations of the base class. Inheritance is used to factor out commonalities
among a group of classes and then to implement common routines or common
portions of routines once in the base class. Alternately, the relationship may be
viewed as a subclass providing refinements or customizations to the definition of
the superclass. However you think about it, the code written for the superclass is
shared by all of the derived classes. Member functions of derived classes may
invoke superclass functions from any level up the inheritance hierarchy, modify
or replace superclass functions, or even hide them.

Several features have been added to C++ to support inheritance, and they are

described in this chapter.

3.4.1 Declaring a subclass

To declare a subclass, we make a notation in the class declaration as follows:

class derivedl public base(...}
class derived2 base(... I

In the first declaration, which is most commonly used, the public members of
class base are also public in class derivedl. In the second declaration, the
members of base are private in class derived2. Thus, the member functions of
der ived2 can invoke member functions of base, but users of derived2 cannot
access the members of derived2 that are defined in base.
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3.4.2 Accessing Members of the Superclass

An object belonging to a derived class contains all of the members declared in both
its own class declaration and in the superclass declaration(s). Members of the
superclass may be accessible to the derived class object or they might be restricted
based on the access permitted in the superclass declaration as described below.

Three types of access can be specified in a class definition. Private members are
accessible only to objects of the class being defined. Public members are accessible
to objects of any class or to ordinary program segments. Protected members are
accessible only to objects of the same class or to objects of its derived classes.

Typically, the private part of a class declaration includes all of the data members
and a few utility functions used in constructing the class. For example, a
complicated class requiring significant initialization work might have a dozen
constructors, meaning that there are a dozen different ways by which objects of
this class might be specified. If the initialization effort is similar for all of these
construction methods, then the initialization code might be placed in a private
utility function that is called by the constructors, perhaps after some
preprocessing of their arguments to rearrange them into a common form.

The protected part of a class consists of functions that subclasses might use but
that are of little interest to users of the class, These are usually utilities that are
shared among the subclasses.

3.4.3 The Semantics of Inheritance

We begin this discussion of inheritance with an example of an inheritance
hierarchy that will be used to illustrate the concepts. We will develop an
inheritance hierarchy for a sequence class that contains an array of floats and
then derive from it classes for pattern, a 1-D sequence, and matrix, a 2-D
sequence. Then from matrix we will derive a squarematrix class. The
inheritance hierarchy is diagrammed below. (This hierarchy is based on part of
the COOL nseqlib sublibrary.)

sequence

pattern matrixI
square_matrix

Each subclass refines or specializes its superclass. This refinement can involve
new data (a matrix must contain its row and column dimensions, which are not
required for a sequence which needs only its length) or new operations (inverse
and determinant are defined only for square matrices).
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class sequence
//
/1 This class defines a sequence of floats with only basic
// operations defined that are valid for both ID and 2D sequences

float* data;
int seq_len;

protected:
sequence 0;
sequence(sequence&);
sequence(int);

public:
sequence& zero(; /1 set all elements to 0.0
sequence& copy(sequence&); I/ copy given sequence to self
sequence& replace(sequence&);// adopt size and content of arg
sequence& add(sequence&); // add element by element
sequence& sub(sequence&); // subtract element by element
sequence& scale(float); 1/ multiply each element by arg
sequence& operator=(sequence&);// this does a replace
float& operator[] (int); II get a particular element

class matrix : public sequence

int rowsize, colsize; I/ A matrix has extra data
public:

matrix();
matrix(matrix&);
matrix(int rows,int cols); // A new constructor type
matrix multiply(matrix&); II A new operation
matrix& multiply(float); /1 Scalar multiplication
matrix& operator=(matrix&);
matrix operator*(matrix&); I/ Another version of multiply
matrix& operator*=(matrix&);
float& operator() (int,int);// A 2-D subscripting operator

class square-matrix : public matrix

public:
squarematrixo;
squarematrix(square matrix&);
square matrix(int dimension); II only 1 dimension needed
square matrix inverseo; 1/ new operations
float determinanto;
squarematrix& operator=(squarematrix&);
squarematrix operator*(squarematrix&);
squarematrix& operator*=(square matrix&);
square-matrix operator-(); /7 matrix inverse
square-matrix operator!(); // matrix transpose operator
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When an object of a derived class is created, a constructor of the superclass is
invoked first, then the specified derived class constructor is invoked. Thus, the
derived class constructor can assume that its inherited components are defined
from the superclass before it begins operation. Sometimes, most of the
initialization can be undertaken by the superclass constructor if the correct one
can be specified from the subclass. A special syntax is provided to do just that.
Class matrix has a constructor of the form

matrix::matrix(int rows, int cols)

The work of this constructor can be performed mainly by the sequence
constructor

sequence: :sequence(int length)

by using the following syntax in the definition the mat r ix constructor, which is
completely specified below:

matrix: :matrix(int rows, int cols) : (rows*cols)
f rowsize=rows; colsize=cols;}

The expression in parentheses after the colon specifies the arguments to be
provided to the superclass constructor. In this case, the sequence constructor
expects an int and it gets an int formed by the product of the arguments of the
matrix constructor. The sequence constructor is executed first, then the matrix
constructor may begin its work assuming that the specified sequence constructor
has executed. All that is left for the matrix constructor is to record the row and
column sizes in the private variables rows ize and colsize.

This technique of passing the work up to the superclass is an important feature of
inheritance that tends to cause maturing systems to shrink as more
commonalities are noticed by the designer and passed up the hierarchy to
successive superclasses. An example of this is how the
matrix: :multiply (float) member function can invoke
sequence: : scale (float) to perform its work. Here is a complete definition of
the class matrix member function multiply:

matrix& matrix: :multiply(float)

self.sequence: :scale(float);
return self;

Object-oriented programming yields programs that appear to work like an
effective bureaucracy: objects shuffle messages off to somewhere else for
processing; the results return, are stamped, and are returned to the sender.

By prepending the class name and double colons as in the previous example, a
particular member function of a superclass may be invoked, even if the name has
been overloaded in derived classes or even in the current class. Thus, in a
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member function of square matrix, one might invoke a member function of
sequence by writing:

self.sequence: :add(sm);
Access to system functions can be obtained by prepending just the double colon.
Thus, if cos has been overloaded, the system's cos function can be obtained by
invoking : : cos.

To make inherited operations more easily usable by users of the derived class, it is
common to provide a stub specific to the derived class that simply calls the
superclass procedure. This is especially true for operators since they must be
treated as functions and cannot work just by side-effects. Thus, in our example,
there is a square_matrix: :operator* (square matrix&) member function that
simply calls the matrix: : operator* (matrix&) operator. This makes using the
operator easier for squarematrix users since if the member function from
matrix were used directly its result would be a matrix, requiring a cast to assign
the result to a square-matrix variable.

Subscripting operators can be conveniently defined to return a reference to the
array element, thereby allowing assignment to the result of the function. Thus,
natural usages are possible such as:

x (5,3)=x(3, 5) *2.0;

3.4.4 Member Functions Most Classes Need

There are several member functions that almost every class needs for reasons of
administrative necessity or ease of use. These are:

A default (null) constructor. The default constructor is used to initialize each
element of an array of objects of a class. Its purpose is to ensure that an object of
the class can be created on demand even if no useful argument sequence is known
or can be specified. If the creation of an object requires certain external
conditions to hold, such as a disk file constructor requiring the file name not to
already exist, then a null constructor might not be provided, thereby requiring the
user to specify parameters, a file name, perhaps, and preventing the user from
creating an array of objects of the class.

A constructor that takes a reference to an object of the class as its argument (a
copy constructor). This constructor can be invoked by the user to create an object,
though more often the simultaneous declaration and assignment will be
preferred, as in

sequence s = sequence(8);
More important, the copy constructor is invoked automatically when an object of
the class is to be returned as the value of a function. Its purpose in that situation
is to copy the return value from the function's scope to the calling procedure's
scope.

A destructor. The destructor is necessary if the constructor allocates any
variables or objects using the new operator.
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An assignment operator. Since assignment is such a common operation, you
might as well go ahead and define it now because you will not feel like it later.

Access routines. In the culture of object-oriented design, manipulation of an
object's private data is considered impolite. Access functions return the values of
private variables of the object, making direct access to the object's data
unnecessary. This approach is desirable since the internal structure of the object
could change, and the extent of changes to calling procedures is minimized by
invoking a function rather than by grabbing the data values directly. For
example, the data items could be migrated to another class. Rather than
rewriting the user programs, the access function could simply ask the object of
the other class for the value rather than returning the value from itself. This
internal design change would have no effect at all on the user procedures.

3.4.5 Virtual Functions

One of the most hideously error-prone constructs in C is the pointer-to-a-function.
Even worse are transfer vectors, which are arrays-of-pointers-to-functions. One
of the great contributions of C++ is to make it possible to hide these messy
constructs in a compiler-checkable syntactic and semantic feature called virtual
functions.

The concept and operation of virtual functions is not simple, but it can be very
powerful - as powerful as transfer vectors. The notion is as follows:

Suppose you have a pointer to an object of a base class like sequence. You are
manipulating an object that you know is a sequence or some derivative of
sequence, and you really don't care which. What you would like to do is to ask
this object to do something - something that all sequence objects should know
about - an be able to expect a reasonable response. Now the action that the object
actually takes may depend on which derived class the object belongs. For
example, if you tell a buffer object to add 5.75 to each of its elements, how this
action is carried out depends on the storage type of the elements in the buffer. If
the storage type is float, you expect different results from the case where the
storage type is int. If buffer: :add (float) is declared virtual, then the add
message may be sent through a buffer* variable to an object and the C++ run-
time system will select the appropriate procedure to execute based on which
subclass of buffer the object really is: int buffer or float buffer, for
example. This technique is used in COOLIto provide type independence in the
bu f fe r 1 ib sublibrary, which in turn, allows for type-independent user
manipulation of image objects.

Another example of virtual functions in COOL occurs in the graphlib sublibrary
where a linked list of graphical object is being created. There are two subclasses
of class glob called gobject and group. When a graphical model is being
constructed, one could attach any of these classes to any other one. Since the types
of the objects cannot be determined at compile time, I defined several virtual
functions of glob that are implemented differently in objects of the subclasses.
The additions to the base class that make the subclasses unique and different
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Sfrom the base class require different processing in certain cases, so the use of
virtual functions makes possible the selection of the correct procedure to execute
at run time.

Virtual functions are implemented in C++ by a virtual function table (vtbl in error
messages). The virtual function table is basically a transfer vector in which the
entries defined by the base class are overwritten by the pointers to virtual function
implementations from the subclass. The result is a powerful run-time operation
provided by a simple syntactic addition that hides some of the most error-prone
and difficult-to-debug code that is available to write in C.
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4. Designing C++ Libraries

4.1 The Challenge of Software Library Design

Design is the art of recognizing, evaluating, and selecting tradeoffs. In software
development, design involves selecting from the multitude of expressions
available those particular forms that result in "good" code - code whose structure,
function, and operation optimize certain criteria. Software design is difficult: the
designer must weigh arbitrary, interacting constraints and conflicting objectives.
This difficulty is essential to the enterprise, not an incidental, temporary lack of
technological development, but the incidental difficulties are not negligible [1].
Tools, languages, or techniques that ease the incidental difficulties of expressing,
understanding, and updating ideas embodied in software are badly needed.
Object-oriented design provides such relief by specifying some criteria concerning
methods of encapsulation and a semantics of inheritance that have been
incorporated into several new programming languages, including C++ [7, 13].

To say that a library is written using object-oriented design says something about
the mechanisms used to code and package the library in a programming
language but nothing about the criteria used to select and evaluate the tradeoffs
that form the library. Library writers and their clients must understand that an"object-oriented library" does not mean a "well-designed library"; object-oriented
design is not a sufficiently comprehensive or detailed discipline to support such a
claim [11,14.

Moreover, C++ leaves the programmer the maximum flexibility of expression- a
language design criterion inherited from C [13]. This is good in that there are
relatively few arbitrary restrictions and many alternative strategies by which a
programmer can express an elegant idea; in fact there are so many ways to
express almost any idea that there is certainly an elegant expression in there
somewhere. The flexibility of C++ is bad in that inexperienced (and often, not-so-
inexperienced) programmers are too often tempted to select poor tradeoffs because
they lack understanding of the multitude of options that are available.

Regrettably, the ignorance on the part of computer programmers concerning good
design is compounded by the lack of a culture in which programmers study good
designs and communicate design ideas to others for review [16]. We tend to want
to learn from experience rather than from study. We are ready to adopt anything
that works, especially if it can be obtained free. The growing array of options
available through object-oriented programming and personal workstations with
color bit-mapped displays (a fertile application field for object-oriented design)
overwhelms the ability of psychology to provide scientific data on how this new
programming and user interface technology might be used effectively, reliably,
and safely.

The result is that there is some truly ridiculous code being written out there; all of
it, however, written in one of the popular new languages, and all of it adhering to
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(some form of) the Object-Oriented Programming Discipline (with capitalization
as if this Discipline were carved in the side of a mountain for everyone to visit and
admire - in fact, OOP is not a discipline at all, but a convention.) [11]. Fortunately,
I have been able to trace every ridiculous implementation question I have been
asked to the ridiculous design concept that caused it. If we were better designers,
we would know that encountering the need for a ridiculous hack during
implementation is an indictment of our design, not a challenge to our hacking
3kills.

Because library designers have so many options and so little experience with
them both individually and collertively (even if we were in the habit of using our
collective knowledge effectively), we need to specify, evaluate, and select specific
criteria that will govern how we evaluate the tradeoffs we face in the design of
object-oriented libraries. Informed consumers of such libraries should demand of
the library supplier some discussion not only of what is in the library and how it
works but also of what criteria were used to select what is in the library and why it
is expressed as it is.

C++ is a new programming language advocating new software design methods
and programming language technologies, so it is not surprising that there has
been considerable discussion concerning how the language and the methods it
supports can be employed most effectively. This paper will review three design
strategies used, even advocated, for C++ programs and libraries, discuss serious
problems with all three approaches, and propose an alternative set of design
criteria, more specific than the three common approaches, that has proven
effective in the author's C++ library.

Three design strategies current in the practice and literature of object-oriented
software design are

(1) comprehensive, monolithic class hierarchies,
(2) collections of tiny encapsulated tools, and
(3) flow control residing in the user interface code.

4.2 Why comprehensive, monolithic hierarchies are a bad idea

The notion of defining a single hierarchy containing all of the classes one might
ever need was implemented in the Smalltalk system [5]. Every class is a part of a
single hierarchy with object as its root. The Smaltalk design has been
transplanted into other object-oriented languages such as Objective-C's ICpack
201 [12] and even C++. The NIH class library (formerly called OOPS) is a
transliteration of a large subset of the Smalltalk hierarchy into C++ [6].

Smalltalk is an interpreted system that gives up a great deal of performance in
order to achieve an amazing degree of flexibility. Since the definition of the
Smalltalk system is accessible to the programmer, each programmer can create
customized but incompatible Smalltalk environments. The main reasons for
using the more conventional object-oriented languages rather than Smalltalk is
that performance, portability, and compatibility matter. The tradeoff one accepts
in selecting a more conventional language is that changing one's environment is

4-2



more difficult than in Smalltalk. A monolithic class hierarchy is less
troublesome in Smalltalk than in other languages because the Smalltalk
environment can be changed so easily. More conventional operating system and
language environments are much more difficult to change. Thus, imposing a
monolithic hierarchy locks users into a single implementation of each class that
is difficult to change.

The monolithic hierarchy is particularly inappropriate in C++. Implementation
of a monolithic hierarchy requires extensive use of macros to fake polymorphism
and complicated class names to encode type information in order to satisfy the
strong type checking of C++ [6]. The result is object-oriented code that is more
error-prone, harder to read and understand, with even more memory burden on
the programmer due to even more complicated names to remember. Rather than
helping programmers to control programs, monolithic hierarchies combine with
design decisions implemented in C++ in unexpectedly nasty ways to produce
more of a mess than we faced with conventional C. Name spaces make poor
databases.

Moreover, the use of a monolithic class hierarchy is contrary to the design criteria
of C++. C++ was designed to provide as many implementation options as possible
within its constraints, not to dictate solutions or solution methods [13,14]. To use
C + in a way that restricts those options in costly, ineffective ways is ironic.

4.3 Why a toolkit of tiny classes is a bad idea

The worst aspect of object-oriented design is that it tends to encourage bottom-up
design instead of top-down design [14]. Top-down design (also called Stepwise
Refinement [17]) is a heuristic that suggests that better software systems result if
the application-level concepts guide the design process rather than the low-level
implementation structures that happen to be available or convenient [2,4,17]. The
tendency to favor the bottom-up approach while using object-oriented design
causes the greatest disasters when it leads programmers to design libraries of
tiny classes from which, supposedly, larger classes may be constructed. The
fallacy of this approach is easy to see from several viewpoints.

From an economic viewpoint, to buy a class (that is, to obtain, learn about, and
use somebody else's clasr definition and code) saves the buyer certain costs in
developing and debugging the code while exacting certain other costs: First, the
author's approach must be understood and accepted, including its impact on the
buyer's subsequent design decisions. Second, the buyer must relinquish a
measure of control over the product; the buyer is now dependent to some extent for
bug fixes and enhancements on the author of the library. The economic point of
view says that the value of the library must exceed its costs or it will not be bought.
From this viewpoint, building collections of tiny classes does not maximize the
likelihood that other people will buy the library: Small encapsulations are small
benefit.

From a user viewpoint, also, the toolkit of tiny classes is not the most desirable
way to obtain labor-saving software. The user has a problem to solve, and the
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solution requires code to be written. What the user wants is an encapsulation of
the concepts required to solve the problem, not a set of polymorphic stacks and
queues. The most valuable kind of software from the user's viewpoint is a tool
that matches the need, not a collection of low-level implementation hacks to which
the needs must be retrofitted. Tiny classes are not what the user wants.

From a software-engineering viewpoint, a toolkit of tiny classes employs object-
oriented design in a way that fails to achieve one of the main rationales for
adopting object-oriented design: organizing the name space. The library of tiny
classes fails to decrease the surface area of the library (the number of names
acces'ible at some point in the code (3]) and, in the context of strong type
checking, complicates the names that are used. A name space makes a poor
database. This is exactly why conventional libraries with flat name spaces are
difficult to use as the library gets large. A library of tiny classes encounters the
same problem, only slightly later because the small encapsulations that are used
do contribute a little to the organization of the name space. Building a library of
tiny classes is a bad design strategy.

This discussion in particular has important implications for teaching object-
oriented design. For one thing, it implies that the common example of
inheritance where rectangle and circle are derived classes from polygon reflects a
bad design strategy because the classes are too small to be of any benefit.

4A Why UI-controlled implementation is probably not a great idea

Computer people are a friendly, cooperative folk until we enter the arena of user
interface design. On this topic, programmers are passionate, interested,
parochial, bigoted, and deeply ignorant. And the situation is not getting better.
The appeal of user interface design is clear: the immediate, visible results and the
unlimited potential for midnight hacking are powerful aphrodisiacs in this
community. In addition, a user interface package works with ideas that fit
naturally into an object-oriented design methodology, so object-oriented user
interface work is aesthetically satisfying.

Color bit-mapped displays have opened new worlds for user interface designers to
explore. The complex software systems that control these displays consume
many compute cycles and require much attention from the application software;
so much attention that many people are advocating that the operation of
application programs be controlled by the user interface. That is, after
initialization (and the required initialization is extensive), control is given to the
user interface system which invokes application procedures via "callback
functions" as required by the user interaction [8,15].

This design strategy gives a deserved importance to the user interface and
facilitates highly responsive user interaction since nothing happens until the
user commands it; the application is interrupt-driven based on the user's actions.
It has been painful to me to find flaws in this approach, but the main flaw is less
serious than with the other two design strategies.
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There are several tradeoffs in using the UI-controlled design strategy. The user
interface control system must be extremely complex in order to handle the variety
of interactions that might be required. The structure of the desired user interface
must be communicated to the user interface control system, of course, but in
addition, the structure of the application program must be communicated to the
user interface through callback functions. Thus, the initialization of the user
interface system is extremely complex, error-prone and tedious.

The problem is that the user-interface control strategy does not map gracefully
into an object-oriented design. The user interface is not an "object" any more, and
it is not separated from other aspects of the application. The structure of the
application must be defined to the user interface, adding a burden of messy, error-
prone procedure calls atop the application. In effect, the application must be
written and then its structure must be "explained" via the user interface
definition and the callback functions to the user interface control system. While
the user interface control system might be written in an object-oriented manner,
its appearance to its client applications is like that of kudzu: intertwined, going
where it shouldn't, and next to impossible to manage neatly. UI-controlled
implementations are not object-oriented implementations.

4.5 Objectives of Library Design

The purpose of a library is to encapsulate useful implementations in a form that
is easy to use. The principal design objective of a library architect is to create and
exploit a separation of concerns [9,10] between the library user and the library
implementer. This separation of concerns is achieved by defining encapsulations
that are useful and that are, to the extent possible, self-contained. The architect
endeavors to minimize instances where to use a module in the library it is
necessary to know about the internal structure of that module or about the
structure or operation of other modules in the library.

Object-oriented programming languages contribute to library design by
supporting the separation of concerns created by the library architect. However,
this does not mean that an object-oriented library is necessarily a well-designed
library. Some further guidance is necessary to improve the chances of obtaining a
well-designed library.

I have found that there are three different kinds of concerns that face library
developers and users. First are the concerns of processing, including how data
items might be teased apart to form a more complex internal structure to
facilitate processing and what process encapsulations are required to get the job
done. Second are the concerns of interaction and display where one encounters
many hardware dependencies and where timing of interrupts and input
sampling is likely to be critical. Third are storage and communication concerns
where formatting of bytes in a standard sequential order is an essential problem.
I submit that designing class libraries to separate these concerns leads to elegant,
effective, and useful encapsulations.
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4.6 Library Design in Practice

This new design criterion immediately affects how one selects and implements
encapsulations in a library. Three examples from my library, COOL, which is
concerned with image processing, image pattern recognition, and computer
graphics, illustrate the impact of the criterion in practice.

The image class is central to my library. I originally wrote the image class with
load () and save () member functions so that an image knew how to load itself
from disk and save itself there. These were the longest member functions in the
whole image class, so they already looked out of place there. When I later found
that I needed to load () and save () certain matrices, I realized that the code I
had developed to implement loads and stores of images could not be used (via
inheritance) to help me define analogous operations on matrices. This struck me
immediately as a serious design flaw. I decided to bring together all disk
handling routines under a single inheritance structure in which basic disk file
services are provided by a base class, diskfile, which conveniently encapsulates
UNIX file handling procedures, while file formatting information for different
kinds of files is hidden in subclasses of class d i s k f i e.

The representation of an image on disk is encapsulated by class image f ile. To
read an image from disk one creates an image file with appropriate
parameters and then invokes

image imagefile: :load(int plane=O).
The image returned will be a plane from the image file (which can hold many
image planes). Similarly, to save an image to disk, one invokes

imagefile& imagefile::save(image im, int plane=O).
The imagefile object does not need to know the internal structure of an image - it
does need to know how to ask an image for whatever components of the image are
required to create a disk representation of it.

Another example occurs in my imagetool and Ximagetool classes, which
encapsulate image display on workstations under SunView [15] and the X
Window System [8], respectively. To display an image on a workstation running
X, one creates an Ximagetool object and invokes the member function

Ximagetool& Ximagetool: :display(int viewport, image im).
The viewport argument specifies the quadrant of the ximagetool window in
which the image will be displayed.

The real contribution of the imagetool and Ximagetool classes is to abstract the
essential qualities I want in an image display, on whatever device the display
appears. All three of my image display classes (the third is called ikonas) have
identical public interfaces, but their internal structures are very different. My
library design criterion requires that display and interaction be separated from
processing concerns, so the display of images is encapsulated and separated from
the code that is concerned with the processing of images. By encapsulating the
code that is dependent on the display system, I know exactly what needs to be
rewritten to enable my style of image display on another device or under another
user interface control system. The port of imagetool to X took just a few hours,
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and there was never any doubt that everything that needed to be ported was indeed
ported.

Now we will consider a possible future addition to COOL that appears at first to
raise problems for my library design criterion. Suppose we want a class,
net display, that can display an image either on the local workstation or on a
remote workstation in a manner that is transparent to the user. This class must
involve functions in both the display and interaction category and in the storage
and communication category. Does this violate the separation of concerns? No,
the desired encapsulation is a reasonable one: a design criterion that forbids
useful encapsulations should be sharply questioned. However, a poorly designed
implementation of this class might seek to violate the separation of concerns or
even perform outrageous hacks of the C++ runtime system. A good
implementation will maintain the separation of concerns as illustrated below.

Suppose we have defined a communications class c that handles the transfer of
images to a remote device and a local display class D that displays images on the
local workstation. The netdisplay class desired can be designed as follows:

class net display

C* comm; // note: pointers don't allocate the object
D* local; // they point to.
int which; // O=local display, l=remote display

public:

// The first constructor creates a local display;
// the second creates a remote display
netdisplay(<various display params>);
net_displav(char* machinename, <various display params>);

// The display function sends the image to comm or local
// depending on the value of which.
netdisplay& display(image im);

This implementation provides the desired functionality without any hacks, while
maintaining the separation of concerns.

4.7 Conclusion: Toward a Collaborative Class Design Methodology

Well-designed class libraries could make possible the software economy [3] that
object-oriented design has largely failed to create. The lack of guidance for library
design provided by the object-oriented design methodology has allowed library
developers to aim either too low (and create collections of tiny classes that are not
really useful) or too high (and create comprehensive monolithic hierarchies that
attempt to provide too much generality). An intermediate approach is more likely
to be effective, especially in the compilation environment of C++.
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Effective class libraries will require more explicit design criteria and a preference
for larger classes that encapsulate concepts that are really of interest to their
users. This paper has criticized three common design criteria and has presented
a new candidate design criterion motivated by a particular separation of
concerns.

Effective libraries are most likely to be produced in a collaborative effort between
the library architect and an application area specialist. The time has come and
the tools are at hand to make this kind of collaborative software design feasible.
The separation of concerns between architecture, implementation, and
realization provided by object-oriented design, and by the structure of C++ classes
in particular, elevate the level of discourse about software design to the
application level where our clients can effectively contribute. Only by involving
application specialists, who are the ultimate users of the library, can essential
concepts be identified and effective encapsulations created. Such collaborative
efforts keep the library architect focused on issues that yield real progress and
ensure that the effort invested in library design will indeed be valuable to a real
user.
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5. Managing C++ Libraries

This chapter describes the scheme we have used to manage the development of
COOL (under AT&T Cfront 1.2.1). The scheme involves a hierarchical directory
structure, and represents dependencies between classes in the library in a
globally accessible file 'coolprelude.h'. We also discuss the structure of the
description files (makefiles) used with the UNIX 'make' program, some compiler
options we have found to be useful in reducing the size of the library (cool. a file),
how to minimize recompilation time after trivial changes to the source code of the
library, and how to maintain the library for several different computer
architectures sharing the source code under NFS.

5.1 The Problems of library Management

Libraries of C++ classes help users to exploit predefined encapsulations, so they
are essential to achieving the goals of code reuse prominent as a justification for
object-oriented design. We have encountered and solved several problems in
using and managing the COOL library. This scheme is used in the COOL
distribution tape.

An appropriate arrangement of subdirectories for a library can simplify the
management of the library by its developers and the understanding of the library
by its users. We describe in Section 5.2.1 our scheme for organizing the code of
our C++ library into subdirectories. Another issue in C++ library management is
whether to store member functions in separate '.c' files or to keep all member
functions for a class in a single '.c' file. Section 5.2.2 describes the tradeoffs we
have discovered between these organizational strategies.

The management of dependencies and header files in a C++ library is an
essential problem that, for many potential C++ developers, seriously limits the
usefulness of the language. We have developed a scheme that ensures efficient
inclusion of required header files while requiring minimal effort from the
application and library developers. This scheme is not difficult to use, but it is
rather intricate and takes some effort to establish. Once in place, however,
maintenance and use of the library are greatly simplified. Section 5.3 covers this
issue of dependency management.

A problem we have encountered with AT&T Cfront 1.2.1 is the production of
excessively large executable files. This problem was solved, in part, by the use of
cc command options that are documented in the Cfront release notes. We
describe in Section 5.4 how we use these options to obtain an order-of-magnitude
decrease in the size of the library. This section also discusses a simple scheme we
use to avoid recompilation of large sections of the library after trivial changes to
source files.
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Many recently developed workstations operate under the Network File System
(NFS) which makes disk files present on remote machines accessible from any
machine on the network. Since machines from different vendors having different
architectures can share the COOL source code through NFS, we have developed
mechanisms for maintaining multiple versions of the COOL object files for
multiple architectures based on the same source and makefiles. Section 5.5
describes this scheme.

5.2 Directory Management

Organizing a library in a hierarchical directory structure simplifies development,
maintenance, and use of the library by contributing to two desirable goals: (1)
Separation of concerns and (2) Information hiding.

Part of the justification for object-oriented design is the formal separation of the
concerns of the user, designer, and implementor of a class. In C++, the
interfaces between these communities are formalized in the header (.h) file. The
public part of the header file is a contract between the user community and the
class designer. The entire header file is a contract between the class designer and
the implementor. It is only natural that this separation of concerns should be
reflected in the large-scale organization of a library as well as in small-scale
coding structures. The encapsulation implemented in the "class" concept is
reinforced by physically separating the code of different class implementations. A
single directory containing copies of the header files helps to reinforce the
separation between user concerns, requiring frequent access to headers of many
classes, and implementor concerns, requiring access to code and header files of
the particular class being implemented.

The humble admission of the limited capacity of short-term memory leads to the
technique called information hiding (encapsulation), e.g. [3]. We seek to
minimize the amount of data that a software developer or user must manipulate
at one time to correctly use the system. This notion is an essential motivation for
object-oriented design and should be reflected in the large-scale structure of
libraries as well as in the design of code and languages. A suitable directory
hierarchy hides code, headers, and administrative concerns that are irrelevant to
the current activity. Minimizing the number of names that must be understood
or manipulated at once (the "surface area" of a system [2]) is an important
technique for simplifying the use of a large body of software.

52.1 Library Directory Organization

We organized the library in a three-level directory hierarchy as shown by the
simplified example in Figure 1. The library is located under a directory (called
"mainlib" in Figure 1) with subdirectories for sub-libraries consisting of groups of
related classes. Several of these groups are stand-alone inheritance hierarchies,
while others are collections of topically related classes. Each class has its own
subdirectory in the sublibrary directory. Of course, a smaller library might be
organized without the intermediate level; the main directory might contain the
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class subdirectories. Since users most often refer to header files, we have another
subdirectory called "headers" that contains copies of all of the header files
throughout the library.

mainlib

sublibl headers sublib2

Class A Class B Class C Class D Class E

Figure 2: Three-level directory structure used in COOL

Each directory contains a Makefile that performs appropriate operations for a
directory at that level. The Makefile in mainlib invokes the Makefiles for
sublibraries; those Makefiles invoke the Makefiles for class directories. Thus, the
directory structure implements a version of the object-oriented philosophy at the
level of library organization. All of the Makefiles at each level have a common
format (Appendix A) which simplifies addition of new member functions, classes,
or sublibraries.

To add a new sublibrary or to add a new class to a sublibrary, the next available
symbol (see Appendix A: makefile for Sublibl) should be defined and the comment
marks should be removed from subsequent lines involving that symbol. To add a
new member function to the class's makefile is even easier: the name of the . o file
should be added to the OBJ symbol definition. (Note that if the list extends to
multiple lines, the escape character (\) must be used at the end of each nonfinal
line.)

The third makefile in Appendix A takes advantage of the implicit rules in the
UNIX program make for transforming . c files to .o files (see make(l)). We modify
the implicit rule . c. o to echo a status message as each compilation begins.

The Makefile structures described here and in Appendix A are simplified
versions of the scheme we are using now. Our present scheme, which will be
distributed in a later version of COOL, performs more operations automatically
and is even easier to maintain, but it is much more complex, using very advanced
features of make.

52.2 Separating Member Functions

The third Makefile also illustrates another technique we have used to organize
and optimize use of the library. We store each non-inline member function in a
separate . c file. This practice requires that tradeoffs be evaluated to determine
whether the technique is worthwhile for a particular case. We believe that for
larger libraries the advantages outweigh the disadvantages.

Advantages of storing each function in a separate '. c' file include:
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(1) The standard UNIX linker will not attempt to break apart . o files. Therefore,
if all functions of a class are stored in a single . c file, a reference by the
application code to any function in the class will cause all of the functions to be
linked into the application program's a. out file. Separating member functions
into separate .c files helps to minimize the size of a. out files and decrease link
time.

(2) A member function can be recompiled without recompiling the entire class.

Since this is a common operation, we consider the savings to be significant.

Disadvantages of storing each function in a separate . c file include:

(1) Names must be assigned to the . c file for each function. This becomes a
problem if there exist many overloaded versions of some operations since, in
effect, the file name must encode the arguments in order to distinguish the
functions. By convention, we name all constructors with an upper-case C
followed by an encoding of the arguments to the constructor. CDest. c is the
destructor, CNull. c is the constructor with no arguments, CCopy. c is the
constructor that takes a reference to an object of the same class, Cintint. c takes
two integers, etc. If the names assigned to the . c files are not unique across the
entire library, then when the library is created, you must suppress elimination of
duplicate names by using the -q option on the ar(l) command. Unfortunately,
this means that the . a file must be re-created from the . o files whenever any
member function in the library is recompiled. However, by assigning a prefix to
the . o file names (which can be done in the Makefile), one can sidestep this
problem at a small cost in setup overhead.

(2) Compilation of the whole library takes MUCH longer because all relevant
header files must be processed for each member function instead of once for each
class. We have found this potential disadvantage to be largely irrelevant because
we rarely r.3ed to recompile the entire library.

5.3 Dependency Management

The use of libraries in C++ is complicated by dependencies among the classes of
the library. An application program must include the header files for all classes
on which the application depends, directly or transitively. Direct dependencies
are clear from the code of the application program itself. Finding transitive
dependencies requires knowledge of the internal structure of the library. We
might expect a program author to know and to declare what resources he is using
directly, but it is unreasonable to require him to know internal structures of the
libraries he is using.

For this discussion, a dependency between classes A and B exists if the header for
class A or any member function of class A refers to an object of class B as a
member, an argument, or a local variable. (This definition is more conservative
but much simpler than the optimal definition for our purpose.)
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Due to the complex dependencies between classes in a typical C++ library, many
header files may be required even for applications that use objects of just one
class. Without management techniques such as we will describe, ensuring that
all of the necessary headers are included requires analysis of the entire
dependency hierarchy of the library by the library user. We consider knowledge of
the internal structure of the library to be an unacceptable burden on the
application developer (or on the library developer!). We seek to minimize the
interference of such incidental concerns in the development of code that uses the
library. Fortunately, we have developed a scheme that ensures that the necessary
headers are included while requiring minimal effort from the application or
library developer.

An ideal solution to the problems of header file and dependency management
would possess the following characteristics:

Whatever is needed gets included.

The users do not pay for what is not needed.

The users do not need to know the entire dependency hierarchy when writing
main () or member functions.

The system should be easy to use. To make this concrete, we will insist that only
one '#include' directive be required in main () or member functions.

The solution should support good software engineering practice.

The solution should be compatible with multiple inheritance and other
anticipated evolutionary changes in C++.

A program written using our management system should read only the header
files that are necessary and should read them only once.

The scheme we have developed conforms to these objectives and allows enough
flexibility to handle unforeseen situations with grace.

5A1 Dependencies

Consider the small inheritance hierarchy given in Figure 3. Class foobar is a
base class with derived classes foo and bar. Class baz is not part of the
inheritance hierarchy, but since class foobar uses objects of class ba z, any
compilation of fooba r requires inclusion of the header for class baz. The
dependency structure of these classes is shown in Figure 3.1.1. Notice that only
direct dependencies are drawn; transitive dependencies (foo requires foobar
which requires baz) are not drawn. (If there were a direct dependency between
bar and baz, for example, we would include that link in the dependency
hierarchy graph.)
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Inheritance Hierarchy Dependency Hierarchy

foo bar

f baz
foo bar foot ar

baz

Figure 3: Inheritance and Dependence Hierarchies

The determination of which header files to include when compiling an
application or a member function depends on the dependency hierarchy, which
depends on internal details of the design of the whole system of classes, most uf
which is embodied in the header files. The creation of such dependencies is
essential to the library's usefulness. If objects are to work together at all, an(, if
code is to be reused at all, then dependencies must exist. We need a method f Ir
declaring direct dependencies and reliably tracing those dependencies throughout
the dependency hierarchies when needed.

&&2 Rejected Approaches

Include what you need.

In this approach, each member function and each application program must
contain #include directives to obtain whatever is needed. This requires the
application developer to understand the entire dependency structure of the
library, which we find unacceptable. Furthermore, this approach leads to a long
list of #include directives, whose creation interferes with the task of software
development.

Include everything.

We considered #include-ing everything, but this violates the objective of not paying
for what is not needed. In a large library, the time required to process all of the
'.h' files is not negligible, so we reject this option.

Use #ifndef SYM -. #endif chains, (Sometimes called '"wrapperO

A common solution in practice requires surrounding each '.h' file with C
preprocessor directives to test whether a symbol unique to that class is defined
and if not to process the header file. If the symbol is defined, the translator must
still scan the file until reaching the #endif at the end of the file. This is a
plausible solution, which we finally rejected for several reasons. First, this
system allows a header file to be #included many times - it will be processed only
once, but we prefer that it not be touched at all if it is not required. Second, this
approach requires that the user know the path names to many header files -
details that are incidental to the coding task and should be eliminated from the
programmer's concern. With our hierarchical directory scheme described in
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Section 2.1 specifying path names requires that users know the whole directory
hierarchy, which we find unacceptable. Third, we find the intrusion of the
#ifndef... #endif directives in our header files aesthetically displeasing. We
prefer a less invasive approach that isolates administrative concerns, such as
dependencies, in a single location away from our code.

5.3 Proposed Solution

The solution we have developed is noninvasive, it requires no knowledge of the
dependency structure or the directory structure of the library, and it causes
header files to be included only when required, and only once even then. The
following sections explain our scheme.

&4 Dependency Files

In the subdirectory for each class, we define a dependency file (with a . d suffix)
that declares direct dependencies on other classes by defining symbols of the form
D classname. After the appropriate symbols are defined, we check to see whether
the "prelude" for the whole library has been defined; if not, we #include it. (The
structure of the prelude is critical to our scheme and will be discussed in the next
section.)

For the example given in Figure 3.1.1, the dependency file for classes bar and
foobar are shown below.

FILE bar.d FILE foobar.d

#define DBAR #define D FOOBAR
#define DFOOBAR #define D BAZ

#ifndef DPRELUDE #ifndef DPRELUDE
#include "../../libprelude.h" #include "../../libprelude.h"
#endif #endif

The structure of the dependency file is determined entirely by the dependency
structure of the library. Typically, a class will declare a dependency on itself, its
base class if any, and the classes referenced by the class as arguments to
messages or as local variables in member functions.

Other additions to the . d file can handle special situations. If there are classes
with mutual dependencies, the forward declaration of the sibling classes can be
inserted in the . d files of each class. The #includes for header files of specialized
libraries may be inserted in the dependency file. In our library, for example,
header files for the SunView libraries are #included in the .d file of the
imagetool class which handles image display on Sun Workstations.

The ability to place #include directives for special .h files in the . d file (thereby
placing the # include in every compilation involving the .h file of the class) does
not preclude the option of placing #include directives for some system libraries
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in the specific member functions that require them, or even placing additional

#include directives in the .h file itself.

5A5 The Prelude File

In the main directory for the library, we define a 'prelude' file which has three
parts. The prelude file for the example in Figure 3.2.1 is given below. The first
part of the prelude file #includes system header files that we want always to le
included. (But in the future those libraries might be organized similarly to, Irs.)
The second part is a level-by-level traversal of the dependency graph from tho top
down in which the .d files of all classes that have been declared as being rc,. ired
are #included.

The top-down traversal is critical to allow all of the transitive dependencies to be
recognized correctly. For example, if the application program references only
class foo, we know to include foo. d, which contains the definition of D FC DBAR.
Since we are going top-down through the dependency hierarchy, we wil-llat,-r
check DFOOBAR and #include foobar.d which defines DBAZ and so on.

In the third part of the prelude file, the header files of all classes that have been
declared as needed by defining the D classname symbol are #included, once and
once only. The classes are checked in bottom-up order according to the
dependency hierarchy so that every .h file that is required is defined before it is
needed by another class definition. Thus, all of the .h files that are needed are
included, and they are included only once. A prelude file for the example given in
Figure 3 is shown below.

FILE libprelude.h

#define DPRELUDE Define the prelude symbol.
#include <stream.h>
#include <string.h> Include system header files
#include <math.h> that are always needed.

#ifdef DFOO
#include "/.../foo/foo.d" Include '.d' files in top-down
#endif order traversal of dependency
#ifdef DBAR hierarchy. This determines
#include "/.. ./bar/bar.d what headers are required
#ifdef DFOOBAR using just compiler symbols.
#include "I.. ./foobar/foobar.d"
#endif
#ifdef D BAZ
#include "/. ../baz/baz.d"
#endif

#ifdef D BAZ
#include "I.. ./baz.h" Include '.h' files in bottom-up
#endif order traversal of dependency
#ifdef D FOOBAR hierarchy.
#include "I.. ./foobar.h"
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#endif
#ifdef DBAR
#include "I.. ./bar.h"
#endif
#ifdef DFOO
#include / .../foo.h"
#endif

The prelude file looks more complex than it is. Maintaining the prelude fie is
also easier than it looks. Classes at the same level in the dependency hierarchy
can be listed in any order, so the ordering of the sections is not as critical as it
might appear. Also, the most common situation requiring modification of the
prelude file is the implementation of a new class, which happens relatively
infrequently compared to changes in member functions. We have found that
development of new classes outside the library is a safe and effective strategy. The
classes can be incorporated into the directory structure and the prelude file as
they mature.

It is possible to develop tools for automatically producing the prelude file for a
library based on the .d files or on a separate descrition of dependencies. We have
not pursued this possibility because we have never found a need to regenerate a
prelude file.

5.36 Using the System

To use our strategy for managing dependencies, the application programmer
need only #define the symbols for the classes used in the program and # include
the library prelude file. The writer of member functions must simply include the
class's dependency file. Examples are given below:

Application Code Member Function

FILE prog.c FILE foo::reset.c

#define DFOO #include "foo.d"
#define DBAZ <code of reset.c>
#include "I/.../mainlib/prelude.h1,
<code of prog.c>

We have found this to require a minimal level of invasion in the process of
preparing a .c file, and while our scheme is rather costly to set up, it is very easy
to maintain. The use of more than one library configured as we describe also
involves minimal intrusion in the user's code (one #define statement per class
used and one #include statement for the prelude file of each library).

53.7 Robustness

Our organization scheme degrades gracefully in the presence of several kinds of
likely errors.
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If the programmer omits a Dclassname symbol definition for a class used
directly in the application code and it so happens that the class whose symbol w'as
omitted is required by another class that is listed, then everything works
normally and there is no error. Thus, if the programmer does know something
about the structure of the library, he can take advantage of that knowledge and
minimize the administrivia in the . c file.

If the programmer omits a symbol definition for a class that is indeed required,
the C++ translator will flag syntax errors claiming that "foo is not a class
name" when you know very well that it is.

If the programmer omits the +e l flag on the compilation and links with a library
compiled with +eO, the linker will give error messages like " foobar_vtbl_
is not defined".

If the checks for a new class are placed in the first (second) traversal in the
prelude file anywhere above (below) the highest (lowest) existing class used by the
new class, then everything will work correctly, at least until the next class is
entered.

5.4 Opimizations

The scheme presented so far virtually eliminates the need for application
programmers and library developers to separately maintain knowledge about the
internal structure of the library. And although this scheme reduces incidental
tasks significantly two troublesome problems, common to all larger libraries
written in C++, remained. First, the size of the library's object file was very large
compared to the cumulative size of the source for the library. The excessive
volume propagated to the application code resulting in executable modules of
application programs that were also unacceptably large, and this occurred even
when the application code used only a few routines from the library. Section 5.4.1
describes how we optimize the size of both the library's object file and the size of
application program executables. Second, the dependencies within the library
cause recompilation time to be high (many source modules were included in the
recompilation) even when small, trivial changes were made to class
specifications (.h files). Section 5.4.2 proposes a simple scheme to reduce the
number of recompiled files when trivial changes are made.

5.4.1 Size Optimization

Libraries are essential productivity aids that multiply the advantages of object-
oriented design by making possible the reuse of separately compiled code. When
we began using AT&T cfront 1.2.1 with our library, we found that the library
generated a huge object file (about 2Mbytes for 10K lines of code) and most
programs linked with the library produced unacceptably large executab files of
over 1Mbyte each. Another library for similar purposes but written in L produces
executable files of 150K or less. The exorbitant size of the C++ executables made
the lan,'uage unacceptable for routine use.
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The Cfront 1.2.1release notes describe the operation of a new compiler option, +e.
Basically, +e controls whether virtual function tables are created separately for
each .c file or are shared among all of the . c files. This option is crucial for
library developers and users since it produces massive reduction in the size of
executable files, and as side benefits, significant decreases the time required for
library creation and linking.

We reproduce in Appendix B the description of the +e option from the C++
Translator Release 1.2 Addendum to the Release Notes [1]. What is lacking in
them is the simple description of how to use +e for managing C++ libraries. The
critical insight is as follows:

Compile all of the routines in your library with +e0, and compile programs using
the library with +el.

In COOL, which consists of about 60 classes, the use of the +e option caused the
library's object file to decrease from about 2Mbytes to about 200Kbytes - an order of
magnitude reduction! Programs linked with the library decreased in some cases
from 1.5Mbytes to 500Kbytes or less, with an average of 30% reduction even for
simple programs using only a few primitive classes. Significant reductions have
been observed in the time required to create the library from . o files, to execute
ranlib(1) on the library, and to link programs using the library. The use of the +e
option transformed COOL from an interesting curiosity to a usable tool.

5.4.2 Minimizing Recompilations

Using the comparison of timestamps and the dependency structure to determine
the set of files that need recompilation after an arbitrary change to a C++ source
file hinders the incremental development of large systems in C++ since a single
change can unleash a torrent of recompilations. We would like to see a method
that could (1) determine the minimal set of files that need recompilation given
some arbitrary change and (2) produce a list of files that need changes as a
consequence of the original change. We are not aware of any method presently
capable of either of the above. In the absence of a method for determining the
minimum set of files that need recompilation, we propose here a reasonable
alternative.

Our method depends on the library developer distinguishing two kinds of source
code modifications: trivial and non-trivial. Trivial changes do not necessitate any
recompilation, and non-trivial changes do necessitate recompilation of the files
which are dependent on the file to which the change has been made.

The problem of determining the minimal set of files that need recompilation
cannot be satisfactorily solved by looking at the dependency structure of the
library. For example, suppose that c. c includes A. h and B. h, and assume that
A. h has been changed in a trivial way (that would not require c. o to be recreated)
and B. h has been changed in a non-trivial way (that would require C. o to be
recreated). If some method based only on dependency information and
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timestamps for determining which files required compilation is invoked at thi-
point, it will update the timestamp of C. o without recompiling since C. o depends
on A. h and the change to A. h is known to be trivial. But this is an error since a
non-trivial change was made to B. h. A request to remake the system at this point
would not remake c. o since its timestamp indicates it is newer than B. h. Given a
sequence of interleaved trivial and non-trivial changes to the system, dependency
information is inadequate to determine a minimum recompilation set. If just the
trivial change had been made, then basing recompilation on dependency
information would work, but since only trivial changes have been made, eve- ais
is not necessary.

The above example leads to the observation that if a sequence of trivial chang
has been made to a library, the timestamps of all of the .o files in the system tn
be updated (e.g. using touch(1)) to the current time without loss of consistenc. .
Consider the state of the system before the sequence of trivial changes; the s, m
is in a 'no recompilation needed' state. By definition, the trivial changes hav not
really changed this state so it can do no harm to touch all of the .o files in the
system since this action will return the actual state of the system to 'no
recompilation needed'.

With this in mind we have included a "trivial" target in the Makefiles of the
library (see Appendix A). This could be accomplished, of course, by a very small
shell script, but we prefer to incorporate the operation in the Makefile system
because of the added control afforded. We can invoke the updating at any of three
subdirectory levels. Invoking at the mainlib level will update the complete system,
at the sublibrary level will update related classes and at the class level will update
only a single class.

5.5 Conclusion

We have described several methods that when used together reduce the
complexity of using and maintaining a large library of C++ routines. Our
scheme includes structuring the directories containing the source code of the
library in a three level hierarchy, using a separate source file for each non-inline
member function, explicitly encoding the dependency structure of the library in
'.d' files and the prelude file, and optimizing the size and recompilation of the
library. We feel that this scheme has changed our library from an interesting
academic exercise to a usable tool. Also, the scheme maintains conceptual
integrity in the presence of multiple libraries.
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Appendix A

MAKEFILE FOR MAINLIB

.SILENT:

A - sublibl
B - sublib2#C=
#D =

trivial:
echo "Update the complete system"
(cd $A; make trivial)
(cd SB; make trivial)

# (cd $C; make trivial)
# (cd $D; make trivial)

echo "Update complete"
compile:

echo "Perform all compilations"
(cd $A; make all)
(cd $B; make all)

# (cd $C; make all)
(cd $D; make all)
echo "Compilations complete"

cleanup:
echo "Cleanup all libraries"
(cd $A; make cleanup)
(cd $B; make cleanup)

# (cd $C; make cleanup)
# (cd $D; make cleanup)

echo "Cleanup complete"

create:
echo "Create mainlib.a from scratch"
(cd SA; make library)
(cd SB; make library)

# (cd $C; make library)
# (cd SD; make library)

touch mainlib.a
rm mainlib.a
my newlib.a mainlib.a
ranlib mainlib.a
echo "mainlib.a complete"

MAKEFILE FOR SUBLIBI
.SILENT:
.in +1
LIB - SUBLIBI
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MAINLIB= /.. /mainlib/newlib.a ( <-- full path name of the .a
file)
A = ClassA
B = ClassB#C =
#D =

trivial:
echo "$(LIB) Update the sublibrary"
(cd SA; make trivial)
(cd $B; make trivial)

# (cd $C; make trivial)
# (cd SD; make trivial)

echo "$(LIB) Update complete"

all:
echo "$(LIB) Begin Compilation"
(cd SA; make all)
(cd $B; make all)

# (cd $C; make all)
# (cd SD; make all)

echo "$(LIB) Compilation Complete"
cleanup:

echo "$(LIB) Begin Cleanup"
(cd SA; make cleanup)
(cd SB; make cleanup)

# (cd $C; make cleanup)
# (cd SD; make cleanup)

echo "$(LIB) Cleanup Complete"

library:
echo "$(LIB) Create library"
ar lq $(MAINLIB) $A/*.o
ar lq $(MAINLIB) SB/*.o

# ar lq $(MAINLIB) $C/*.o
# ar lq $(MAINLIB) $D/*.o

echo "$(LIB) Create library complete"

MAKEFILE FOR CLASS CLASSA

.SILENT:

.An +1
CLASS = CLASSA
OBJ = CDest.o CNull.o Cintint.o reset.o draw.o compute.o

trivial:
echo "$(CLASS) Update"
touch *.o
echo "$(CLASS) Update complete"

all:
echo "$(CLASS) Begin Compilation"
make $(OBJ)
echo "$(CLASS) Compilation complete"
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cleanup:
echo "$(CLASS) Cleanup"
/bin/rm *.o
echo "$(CLASS) Cleanup complete',

CC=CC
CFLAGS= +eO -fswitch

echo "Begin $*.c
$(CC) $ (CFLAGS) -c $<
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Appendi xB

Reproduced from the AT&T C++ Translator Release 1.2 Addendum to the
Release Notes [1]

CC +e Option

There is a new compiler option, +e. It works as follows: CC +el causes virtual
tables to be external and defined, that is, initialized. CC +eO causes virtual tables
to be external but only declared, that is, uninitialized.

CC causes virtual tables to be local to a file (static) and defined.

For example, given a header file, SUPER.h, with the class definition

class SUPER {
public:

virtual sizeo;
virtual is_equal();
virtual growo;

each separately compiled executable component with a #include of SUPER.h will
normally generate a static virtual jump table. Using +e allows you to optimize a
program by ensuring that only one virtual table is generated per class. This can
save 25 percent of object files size, a.out size, link time, and (in the case of cross-
compilation) download time.

For example, suppose our executable is composed of tO.c, tl.c, t2.c and t3.c, each
containing a #include of SUPER.h. The target portion of our makefile would look
as follows:

foo: $(OBJECTS)
$(CC) -o foo $(CCFLAGS) $(OBJECTS)

tO.o: SUPER.h
$(CC) $(CCFLAGS) -c tO.c

tl.o: SUPER.h
$(CC) $(CCFLAGS) -c tl.c

t2.o: SUPER.h
$(CC) $(CCFLAGS) -c t2.c

t3.o: SUPER.h
$(CC) $(CCFLAGS) -c t3.c

To generate only one instance of the SUPER class virtual table, the makefile would
be changed as follows:
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foo: $(OBJECTS)
$(CC) -o foo $(CCFLAGS) $(OBJECTS)

tO.o: SUPER.h
$(CC) $(CCFLAGS) -c +el tO.c

tl.o: SUPER.h
$(CC) $(CCFLAGS) -c +eO tl.c

t2.o: SUPER.h
$(CC) $(CCFLAGS) -c +eO t2.c

t3.o: SUPER.h
$(CC) $(CCFLAGS) -c +eO t3.c

The +el option in the tO.o file suppresses the static scope specifier in the generated
tO.o object.

The +eO option in the other targets suppresses the generation of the SUPER class
virtual tables.
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6. Implementation Techniques in COOL

Research efforts in image pattern recognition and computer graphics face two
kinds of software problems. First is the intrinsic complexity of the algorithms
developed in the course of the research. Second is the design and construction of
the researcher's software toolbox including fundamental operations, standards
for data storage and communication, and interfaces to rapidly changing sets of
display and interaction devices. The complexity problem is intrinsic to the subject
matter and objectives, and it is the proper domain of the researcher. The second
kind of problem is incidental to the research objectives and can be addressed by
adoption of modern software development tools and disciplines, including object-
oriented design for code and hypertext structures for documentation.

This section describes several techniques we have developed while designing
COOL, an integrated object-oriented software workbench for image pattern
recognition and interactive computer graphics. Design criteria for the system
include (1) pervasive integration of constructs, (2) maximum flexibility for
researchers using the system, (3) minimum user effort to invoke the facilities,
and (4) purity of the object-oriented design. We will describe in this chapter object-
oriented techniques we have developed for managing massive data structures,
providing type-independence at the user level, encapsulating device dependencies,
processes, and class interfaces, and designing the required software system while
maintaining integration of concepts.

6.1 Managing Massive Data Structures

The kinds of structures we manipulate (images, pattern matrices, graphical
models) often have large or very large memory requirements. We do not want to
reallocate, copy, and destroy these large structures in each function call and
function value return. Instead, we implement large structures using an
intelligent pointer object that contains a pointer to a storage object that contains
the data. The function of the intelligent pointer object is to pass most messages it
receives on to the storage object where code for performing the requested action
resides.

The class image, for example, contains only a pointer to an object of class buffer
which contains the pixel data for the image as well as the shape of the buffer and
the shape and position of a rectangular window for use as an area of interest.
Class image understands many messages, but the action of image is simply to
forward the message to the buffer object for processing. For example, the
member function

image& image: :add(image&)
is defined in the image class, but its action is simply to invoke the buffer method

void buffer: :add(buffer*).
Objects of class image are physically small, so they may be copied, allocated, and
destroyed as needed with negligible performance penalty. Therefore, we need not
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hesitate to pass an image as a value parameter to a procedure if that is
convenient.

We must be careful, however, in the constructors and destructor of irn.age to avoid
repeated allocation, copying and deallocation of large buffer objects. Thus, the
image:: image (image&) and image:: operator= (image&) messages simply copy
the buffer pointer of the source image and do not allocate a new buffer. In order
to prevent the destructor -image () from deallocating the buffer while it is still
being used by another image object, the image destructor checks a reference count
in the buffer object and deletes the buffer only if the reference count is zero after
decrementing. This reference count mechanism also prevents the large buffer
objects from being left in the heap as garbage, which would soon result in
exhaustion of virtual memory. We are planning to use the intelligent pointer
class/storage class implementation for all of our large structures such as pattern
matrices and some graphical models.

6.2 Implementing Type Independence

The separation of intelligent pointer and storage classes also makes possible type
independence at the user level. Storage types for images supported in COOL are
BYTE, INTEGER (short), REAL (float), and COMPLEX (a pair of floats). Objects of
class image are manipulated in natural wayi., wihtout any special consideration
of their storage type. Messages involving the pixel data are passed to the image's
buffer object. The buffer class contains virtual function declarations for the
suite of operations affecting the pixel data. The real work is finally performed in
subclasses of buffer that are type-specific: bytebuffer, int_buffer,
real buffer, and complexbuffer. The virtual function mechanism allows the
image to send messages to a buffer object without regard to the storage type of the
buffer.

Necessary storage type conversions can be explicitly requested using the message
image image: :convert (buffer type, converttype)

but appropriate conversions will take place without programmer intervention.
When more than one kind of conversion between a pair of types is possible
(complex-to-real can be performed by real part, imaginary part, magnitude, or
phase), a default (magnitude conversion) is assigned and an optional parameter
can be used to override the default.

The consequence for the programmer of this fairly complex internal decoupling is
that image objects can be manipulated naturally in expressions such as

image result=iml.add(im2) .add (im3);
without the error-prone distractions of creating and dereferencing pointers and
without the concerns over matching the storage types of the various images.
These internal facilities (virtual functions, reference counting, intelligent pointer
classes) are completely hidden from the user's attention.

The overhead of the extra level of indirectness required to implement these
features is negligible. Processing massive objects takes considerable time
anyway, so since we get both type-independent manipulations and a reasonable
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method for managing the large memory requirements, we do not begrudge a little

overhead cost.

6.3 Encapsulatig Device Dependenies

A serious problem in a high-technology lab such as ours is keeping the software
base current and consistent with the available hardware capabilities. We have
experienced a phenomenon we call "hardware indigestion" in which we have
difficulty incorporating new hardware into existing projects because of software
incompatibilities between the various devices. New equipment must be carefully
assessed to determine whether the effort required to make it compatible with and
usable in our environment is worth the time and effort involved. Promising
machines have been left to sit idle because of the difficulty of integrating the
machine with the rest of the laboratory. Advances in graphics and imaging
devices have usually involved incremental speed and resolution enhancements,
not entirely new functionality. Accessing that functionality is often difficult
because the vendor's software involves intricate code that is optimized in some
ways for the device's capabilities and that is not amenable to incorporation into a
uniform, laboratory-wide interface.

We have developed three kinds of device encapsulations. Disk file manipulations
are supported by a class diskfile that handles basic disk operations such as
open, close, read, write, and seek. These operations are then invoked by derived
classes that "know" the structures of particular kinds of disk files such as
imagefile, polyfile, and textfile. New kinds of file structures can be added
as derived classes of diskfile without changing any of the existing code.

Another kind of device encapsulation we have developed involves analog input
devices such as knobs, joysticks, and sliders. The key to the design of these classes
was recognizing that the only differences between them from the system's
viewpoint are the name of the device driver and the number of bytes expected from
the device in a single read operation. Operations provided by the abstract
superclass analogdevice include poll () to force a read of the device and int
rawdata (int) to obtain one of the values provided by the A/D converter. A
uniform user interface is provided by adopting the convention that the device-
specific classes convert the integer raw data value to a double between 0.0 and 1.0.
Now the roles of the devices can be interchanged by simply declaring the device
object to be of a different device subclass. Device-specific interfaces are also
available; a 2-D joystick can return a point, and a 3-D velocity joystick can return a
vector. Work is underway in the laboratory to produce more generic hardware
interaction devices that would be more interchangeable but would still present a
uniform interface to controlling software.

The third kind of device encapsulation involves display devices. In COOL, the unit
of encapsulation for display devices is the viewing surface, so on window-oriented
systems, the display object created is a window. Thus, several display objects may
be active at once on a device. Several basic capabilities are defined including
clearing the display, drawing lines, writing text, rendering polygons, and
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displaying images. We have not satisfactorily solved the problem of incorporating
enhanced capabilities of some devices, especially when the architecture of the
device requires the data to be prepared differently for display processing as is the
case for vector versus raster displays or specialized graphics architectures such
as the PixelPlanes graphics engine developed in our department.

Another kind of device encapsulation that has been explored but is not yet fully
integrated into COOL is encapsulation of other processors on the network. This
encapsulation was originally developed to support compute-intensive processes
and will be discussed in the next section.

6.4 Process Encapsulations

Since our research involves development of new algorithms for imaging and
graphics problems, encapsulation of these frequently-changing processes i,.
essential to our research software environment. We have used a technique called
process encapsulation to simplify the use and invocation of the processes based on
the dictum Encapsulate most deeply that which is most likely to change.

Conceptually, a process encapsulation creates an object that we call an enzyme or
a catalytic object, whose purpose is to mediate interactions among other objects.
In a process encapsulation, a class structure is defined for the process type, a
renderer or a classifier, for example, that specifies the minimum functionality
and parameters of such a process. Then, specific algorithms are defined as
derived classes with their own parameters, as required. To use the process, we
create an object of the desired subclass, connect it to other objects and supply the
parameters it needs, and send it a "begin" message. The objects that supply input
and output services to the process encapsulation object can be supplied in three
ways: by arguments to the constructor, by assignment in separate messages to the
object, and by arguments to the "begin" message. This design allows the user to
customize the process in a separate code segment from that where the process is
invoked, leading to clean, readable code in the routine that invokes the pr ess.
The inheritance of fundamental operations and structures from the process' base
class contributes to rapid development and evaluation of algorithm modifications
and parameters.

The best example of a process encapsulation in COOL is the f ft server class.
This class performs fast discrete Fourier transforms and inverse transforms on
images. To use the f ft server class, one creates an f ft server object that is
specific to a particular image size. If FFTs of images of a-different size are
needed, a separate f ft server object is required. The constructor of fft server
computes a series of tables that are used to make the actual FFT computations
blazing fast. The size of these tables depends on the image size, so different image
sizes require different fft server objects. The fft server is an excellent
example of a process that is well-defined and of interest itself and therefore a
candidate for a process encapsulation.
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Another interesting encapsulation is our Convex class, under development for a
later release of COOL, that encapsulates interfaces and operations on a Convex
mini-supercomputer accessible from our laboratory over a network. Since
software must be running at both ends of the network connection, and since the
Convex does not support C++, we have not managed to make this connection
simple to use. However, we have managed to make use of the Convex for massive
filtering operations related to our computer vision research. The Convex class
must partition the image data into chunks to send over the network, inform the
server procedure on the Convex that the transfer is complete, and wait for word
that a result is ready. The local workstation and the Convex computer's software
handshake to transfer several massive result images back for further analysis.
Writing the Convex server involved more tedious byte-ordering manipulations
than we thought warranted massive continued effort once the initial project was
completed. We will attack it again later and try to resolve the ease-of-use
problems. We would like to develop code to interface easily to our Pixar Image
Computer as well, but there has been insufficient interest in using that machine
for anything more sophisticated than as a large frame buffer, for which the
Pixar's software is adequate.

6.5 Class Interface Encapsulations

The definition of process interfaces is facilitated by classes that store intermediate
results in a standardized form (or a set of agreed-upon forms). A typical example
occurs in a graphics pipeline where various kinds of object models must be
converted into "rendering primitives" that the display devices understand and
can process. By adopting a standard set of rendering primitives, developers of
process encapsulations for renderers and developers of display device
encapsulations are insulated from each other's internal data structures and
processing requirements. Development of renderers can proceed in a device-
independent fashion and augmentations to the set of rendering primitives are
explicitly noted and handled by all device encapsulations.

The interface between stages in the graphics pipeline is provided in COOL by the
polyobject class. A polyobject is a list of Polylines, which are matrices
containing points. Polyobjects are used to store object prototype models,
intermediate results of viewing transforms, clipping results, and polylines ready
for display. Polyline obejcts can hold polygons, but the additional semantics must
be enforced by programming conventioai; there is no distinction supported in
COOL.

By standardizing interface classes, most of our graphics research efforts can
begin to share code. We find that research that is advancing the state of the art
sometimes still must diverge from the standards either in order to optimize
performance or in order to explore new paradigms that are beyond the state of the
art. An example of the former case is real-time interactive graphics using
customized parallel architectures requiring a different structure in the graphics
pipeline. An example of the latter case is research in texture mapping in which
the graphics pipeline is modified to accomodate an entirely new kind of
rendering.
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In order to accomodate these research efforts, the COOL graphics classes are
designed for ease of use by system developers and has been criticized for being less
than optimal for users. This is an explicit design tradeoff that we have accepted in
order to provide flexibility and control at the expense of some ease of use and
fidelity to user-level conceptual structures.

6.6 Separaion of Concerns

The interface classes described above are used to implement a separation of
concerns that has guided the design of our basic class structures. We will
illustrate its effect with an example from our image processing library.

In our first implementation of class image, we included messages such as load,
save, and display. The resulting structure had several problems. First, putting
everything into image made the code too large. Second, the code for image had an
unpleasing asymmetry. The code for the load, save, and display messages
overwhelmed the code for the numerous image processing messages, most of
which were less than ten lines each. Third, the intricate code we worked out for
handling disk I/O for images was unusable by any other classes, and the display
operation was useless on any but the device we defined it for.

The next incarnation of image separated the concerns of storage, processing, and
interaction devices into different classes. Storage was handled by a class,
dis k f i I e, that encapsulates all low-level disk operations but without any
knowledge of the semantics of the file being manipulated. A subclass imagef ile
directs the decoding and interpretation of the disk data. The image class retains
the processing operations. Display of images was moved out to an imagetool
class. Thus, an "image" became a "rendering primitive" that all display devices
are expected to process in some reasonable manner.

The principle of separation of concerns is primarily an implementation principle
that helps to provide the control and flexibility that we need in our research
environment, but it sometimes works against the kind of user-level ease-of-use
and fidelity to conceptual structures that is a hallmark of Smalltalk. We are still
investigating whether and how a user-level class structure might be imposed atop
our implementation structures without redesign for each alternative
implementation of a graphics or imaging pipeline.

&7 Conclusion= Is C++ Really the Right Tool?

Object-Oriented Programming is a code packaging discipline that imposes a
reasonable structure on large bodies of code, with additional benefits of code
sharing within each class hierarchies and effective conceptual metaphors for
talking and thinking about programs. Object-oriented programming provides just
the kind of discipline and structure that we need as the size and complexity of our
software base increases beyond a level where a single person can maintain,
control, and understand it.
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Since our laboratory is an established C and UNIX environment, a language
derived from C makes sense, especially in view of our large installed base of C
code and our need for implementation control in order to support real-time
operations and efficient handling of large storage structures. These properties of
our environment and objectives make C++ a reasonable language for our software
development efforts.
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7. Program Examples

This chapter will describe how to write programs using COOL and illustrate
some useful programming techniques with examples.

7.1 A Simple Program Using COOL

#define D IMAGEFILE
#include "coolprelude.h"

image buildimage(int size)
//
// This procedure creates an image of a specified size.

debug("Begin image create loop");
image im(size,size,REAL); // allocate the image
subscript s(O,O,im.shapeo); // set up for loop
for(s.inito; s.testo; s++)

im.set(s,s.sizeo%256); // define each pixel
I
debug("Image create loop done");
return im;

main() / Program MakeImage
/,7

II This program gets an image file name and row size,
I/ creates an image, and saves it to the named imagefile.

int size;
char fname[80);
cout << "Image file name:"; cin >> fname;
cout << "Image row size="; cin >> size;

imagefile* imfile;
subscript s(size, size);
imfile = new imagefile(fname,REAL,s,l); // create the disk file

debug("Begin build-image");
image im=buildimage(size); 1/ build the image in memory

debug ("Save the image");
imfile->save(im); // save the image to the disk file

debug("Close and exit");
delete imfile;
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The simple but complete program above illustrates several important techniques
involved in using COOL successfully. The program's purpose is to create a REAL
image of a user-specified size using a procedure called build image. This
particular build image procedure will produce a series of diagonal intensity
ramps. The following discussion will explain each section of the program.

The first lines of the program define symbols for the C++ compiler indicating
what COOL classes are required by this program. The form of the symbols is
D_<class_name> where the class name is in all upper case. Once the appropriate
symbols are defined for classes used directly by the program, we

#include "coolprelude.h"
which ensures that all other #include files from COOL that are needed to fully
define this program will be included at the appropriate points in the compilation.
Thus, all COOL classes that are required by the imagefile class will be included
by the coolprelude .h file. Note that you must specify the correct path for your
version of coolprelude .h; this depends on your where your local version of COOL
is installed. At UNC, the correct path name is

"/usr/local/include/cool/coolprelude.h".
Of course, it is possible to use the -I compiler switch to specify the directory. Or, at
UNC, the prelude file is in the compiler's default search path, so we could write

#include <cool/coolprelude.h>
Alternatively, you may wish to define a soft link to coo ipre lude. h in some
directory of yours that you know is in your search path.

The buildimage procedure illustrates that C++ procedures may accept
arguments and return objects as required. The debug macro in COOL simply
prints its string argument. The declaration of the image im specifies that the
size will be 256x256 pixels and that the storage type of the associated buffer is REAL
(float). The subsequent declaration of the subscript object s invokes a special
constructor that prepares the subscript for use as the control for the following
for loop. Messages to the subscript object cause it to initialize, test, and
increment itself, hiding from the programmer's view the details of the row and
column structure of the image object. The value assigned to the image at location
s is the product of the row and column subscripts (s . size ()) modulo 256. The
image is returned as the value of build-image.

The main () procedure prompts the user for a file name and an integer size for the
image to be produced. It then creates the imagefile that will hold the image by
specifying the file name, buffer type, size, and number of planes. Notice that the
imagefile object was allocated on the heap by using the now operator. This
allocation method gives more control over the time and method of deallocation
than does automatic allocation. For imagefile objects, this means that we can
control when the file is closed (since the imagefile destructor simply closes the
file). In this particular instance it makes no difference in the action of the
program. A local image object is allocated and assigned the value returned by
buildimage. This result is saved to the imagefile. Before exiting, this
program explicitly closes the imagefile by using the delete operator on the
imagefile pointer. This does not delete the file; it deletes the image file object.
The destructor of that object simply closes the file.
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7.2 Preparing a Program Using COOL

To compile and link a program Myprog. c that uses COOL, you may use a
Makefile such as the one included below (based on the GNU gmake program):

.SILENT:
CC=C
COOLBIN= /usr/local/lib
COOLLIB= $ (COOLBIN) /cool .a
CQOLINC= /usr/local/include/cool
CFLAGS= -c +el -I$(COOLINC)
LIBStYN= -isuntool -Isunwindow -lpixrect
LIBIK = -igik -lik -lgdevserv
MAKE = /usr/Jlocal/contrib/bin/gmake -i -s

Myprog: Myprog.o
echo "Linking"
CC Myprog.o -o Myprog $(COOLLIB) -lm

Myprog.o: Myprog.c
echo "Compiling"
CC $(cflags) Myprog..c

Now the command
make Myprog

will try to compile and link the program.

If you write many programs using this kind of makefile, you will soon find your
makefile growing unwieldy. It is possible to define a generic Makefile that will
allow you to compile any program by specifying a symbol to make in the command
line. For example, in one of my directories I have the following makefile:

SILENT:
CC=CC
COOLBIN= /usr/local/lib
COOLLIB= $ (COOLBIN) /cool .a
COOLINC= /usr/local/include/cool
CFLAGS= -c +'el -I$(COOLINC)
LIBStJN= -isuntool -isunwindow -lpixrect
LIBIK = -igik -lik -lgdevserv
MAKE = /usr/local/contrib/bin/gmake -i -s

Normal:
$(MAKE)\

PROG=$ (PROG) CFLAGS='$ (CFLAGS)"I LIBS="$ (COOLLIB) -lm"\
EXECUTABLE

EXECUTABLE: $(PROG) .o
echo "Linking $ (PROG)"
CC $(PROG).o -o $(PROG) $(LIBS)

8-3



$(PROG).o: $(PROG).c
echo "Compiling $(PROG)"
CC $ (CFLAGS) $ (PROG) .c

This file can be used to compile and link Myprog. c using the command
make PROG=Myprog.c Normal

The operation of this makefile is fairly clever, so we will describe its main features
below.

Line I invokes the . SILENT attribute which inhibits the printing of each command
as it executes.

Lines 2-9 define symbols for use later in the Makefile. Such symbol definitions
decrease the size of the Makefile and bring changeable Makefile code to the top
where it can be easily found.

The Normal: target defines how compiles should "normally" proceed. This
command recursively invokes gmake with more arguments defining more
precisely the kind of compilation to perform. The Normal: target basically
contains a make EXECUTABLE command which is defined below it.

The make EXECUTABLE target declares a dependency on $ (PROG) . o; the method
for creating that file is described next. The cc command uses the LIBS symbol to
define the libraries to search during linking. This is one of the ways in which
other preparation strategies may differ. Programs that require additional
libraries, such as Xlib, may be compiled under some different target that invokes
make with a different LIBS parameter.

The $ (PROG) . o target performs the actual compilation. Additional modes of
compilation may be defined to use different CFLAGS parameters to adjust the
compilation procedure. For example, debugger flags might be added, or
optimizations may be requested by changing the values of the CFLAGS.

7.3 Displaytool

The program reproduced next, displaytool, supports automatic contrast
stretching, display and interaction operations on 2D and 3D diskfiles. Displaytool
has proven to be one of the most generally useful programs I have written using
COOL, and the support COOL provides is extensive. Unfortunately, I have few
intermediate-size programs to demonstrate at present. Displaytool grew from a
minimal display program to a fairly large one by accretion of needed features.
The basic idea is simple. We create a window on the Sun screen with space for 4
images. As we display an image, we apply a linear cont-rast enhancement so that
the full range of gray levels is used. In addition, displaytool will scan a file or
display an image with 2X sampling (by pixel replication). In polling mode,
clicking a mouse button will produce a message telling the viewport, location, and
gray level at that location.
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The more complex feature supported here is a mask image. If a mask imag isused, its gray level is used to determine the color scale in which the intensit. ofthe other image will be displayed. For details, see the User's Manual for thedocumentation of imagetool.

#de fine D IMAGETOOL
#define D IMAGEFILE
#inlclude "1Cooiprelude .h"l
inlagefile* openimagefile (imagefile* imfilep)

char cmd[801;
subscript s;
int plane;
if (imfilep !=NULL)

irnfilep->filename (cmd);cout << "Closing o << cmd << 11.n11;delete imfilep;

cout << "Filename:11; cn >> cmd;imfilep = new imagefile (cmd);imfilep->filename (cmd);
imfilep->size (S,plane);
cout << "Image file name: " << cmd;char* typ = (char*) imfilep->typeo;
cout <<" Type= "<< typ;cout << Size= "; .printo; cO~ << << plane <<« n'return iinfilep;

image readimage(imagefile* 
imfilep, int iplane, mnt autoscale)

{double minvalO .0; double maxval=O .0;image im;
if (imfilep--NULL)
fdebug("There is no open imagefile.u1);;else

cout << "Loading plane to << iplane;im = imfilep.->oad(ipla);
if(autoscalei=O)

im.stats0(minval~ava)
cout << "; Range = (" << minval << <<" maxval <<
if(minval<0.

0 It minval>50.
0 11 maxval>255.

0 11maxval<200 .0)
im. scale (-minval, 255.0/ (maxval-minval) ,0.0);

else
cout << ".\n";
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return im;

void displayimage(int maskf lag, imagetool* imtool,
image im, image IM, byte enaole, const mnt vp)

if (im. sizeO -)1)

debug("'There is no image to display.");

else if(maskflag == 1 && IM.sizeo==l)

debug("'There is no mask to display.");

else

mnt i; i=vp;
mnt sel = maskflag;
while(i<O) {cout << "Viewport:"1; cn >> i;}

i = i%4;
switch (sel)

case 0:
imtool->display(i, im);
break;

case 1:
cout << "Enable byte <<" enable << f\nf";
imtool->display (i, im, TM, enable);
break;

void pollsunwindow (imagetool* imtool, image im, image IM)

mnt button, viewport=O, imval, TMval, i;
subscript location;
debug("Polling sun imagetool window until right button

pressed");
button0O;
while (button!=2)

button=-.;
imtool->get_input (button,viewport,location);
if (button >=0)

imval=im.get i (location);
IMval=IM.geti(location);
cout << "Button=" << button << " Viewport=" << viewport

Location="; location.printo;
cout << " image=" << imval << " mask=";
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for(i=O;i<8;i++){cout << (IMval&1); IMval= IMval>>l;1
cout << 1\n";

maino(

char c,cmd(5Q);

debug("'Allocate tools");
imagefile* imfilep =NULL;
imagefile* IMfilep = NULL;
image im;
image IM;
image* tempi;
image* temp2;

debug ("Defining flags")
mnt contflag=l;
int maskflag=O;
int maskops=O;
int colordisp=O;
byte enable=255;
subscript s; subscript t;
int nplane, i,j;

debug ("Allocating imagetool");
imagetool* imtool = new imagetool;

debug("Enter processing loop: ? for help");
while (cont flag)

cout << "Comxnand(oOrRdDEpsxq?) :"; cn >> cmd;
c = cmd[O];

switch (c){

case '0': IIOpen operation
imfilep = openimagefile(imfilep);
im = readimage(imfilep,O,l);
imfilep->size(s,nplane);
break;

case '0': IIOpen mask operation
IMfilep = openimagefile(IMfilep);
IM = readimage(IMfilep,O,O);
break;

case 'r': /1Read operation
imfilep->size (s,nplarie);

while(i<O 11 i>nplane-1)
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{cout << "Plane (0-" << nplane-1 << "):"; cin >> i;)
im = readimage(imfilep,i,l);
break;

case 'R': // Read mask operation
IMfilep->size (s,nplane);
i=-l;

while(i<0 i i i>nplane-1)
{cout << "Plane (0-" << nplane-1 << "):"; cin >> i;}

IM = readimage(IMfilep,i,O);
break;

case 'd': // Display without mask operation
displayimage (0, imtool, im, IM,enable,-1);
colordisp=O;
break;

case 'D': // Display with mask operation
displayimage (1, imtool, im, IM, enable, -1);
colordisp=l;
break;

case 'E': // Set plane enable byte for mask
cout << "Current enable byte = " << enable << "\n";
cout << "New Enable byte value="; cin >> i;
enable = i;
cout << "New Enable byte value=" << enable << "\n";
break;

case 'p': // Poll sun window command
pollsunwindow(imtool, im, IM);
break;

case 's' II Scan images

i = -1;
while(i<0 I I i>nplane-1)

{cout << "Starting image plane = "; cin >> i;}

j = -1;
while(j<0 II j>nplane-1)

{cout << "Stop at image plane = "; cin j;}

for (;i<=j; i++)
{

im = readimage(imfilep,i,I);
displayimage (0, imtool, im, IM, enable, i);

colordisp=O;
break;

case 'x': // eXpand operation
templ = new image(512,512,BYTE);
temp2 = new image(512,512,BYTE);
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t=subscript (templ->shape ));
s=subscript (im.shape 0);

for(t.init(; t.test(; t++)
{

i=t.ro/2; j=t.co/2;
s.set (i, j);
templ->set(t,im.get r(s));
if (colordisp>O) temp2->set (t, IM.get_r (s));

}
displayimage (colordisp, imtool, *templ, *temp2,enable, 0);
delete templ;
delete temp2;
break;

case 'q': // Quit operation
contflag=O;
break;

default:
debug("o: open and read an image file");
debug("O: open and read a mask image file");
debug("r: read an image from the current imagefile");
debug("R: read a mask image from the current mask

imagefile");
debug("d: display current image in a viewport");
debug("D: display current image with current mask");
debug("E: set Enable byte for masks");
debug("p: poll sun imagetool (to use mouse)");
debug("s: scan image planes");
debug("q: quit program");

break;
}
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