
REPORT DOCUMENTATION PAGE I 'r00W0

Uu'w. "" - -II I.* - for mIi2.A'.

1. AGENCY USE OtLY (LMv* AwN 1L2 REPORT DTE & REPOR T YPE AD ONTES COERED
Final 31 May 89 to 31 May 90

4Im.EMNDSTLE Ada Compiler Validation Summary Report:Alsy s L.
I Limited, AlsyCOMP 017 V4.0, MicroVAX II (Host) to INMOS T425

C implemnted on a B403 TRAM (Target), 890531NI.10087

LAUTHORS)

National Computing Centre Limited
N Manchester, UNITED KINGDOM

7. PEFFOI IG ORWJIZAMTN NAwE(S) ANDADORESSS) L P RFORMING ORGANZATIONREPORT lUlaER

National Computing Centre Limited
AVF-VSR-90502/49

Oxford
Road

Manchester MI 7ED

UNITED KINGDOM

S IPONSWINGWN(ORI AGENCY NAtE(S) AND AM SS(ES) 10. SPONSOR NIN TORG AGENCY

Ada Joint Program Office
REPORT R

United States Department of Defense

Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12L DTRIUTCIOWAVALABI1TY STATEMENT 12. DISTRIBUTIN OWE

Approved for public release; distribution unlimited.

13. ABSTRACT Iftoftn2o aws

Alsys Limited, AlysCOMP_017 V4.0, Manchester England, MicroVAX II under MicroVMS V4.7

(Host) to INMOS T425 implemented on a B403 TRAM (bare), ACVC 1.10.

-- _DTICS ELECTE
JUN 7.10~

1.9U ECTI "E' Ada programming language, Ada Compiler Validation OF.PAWS

Summary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL-

STD-1815A; Ada Joint Program Office

UNCLASSIFIEDI UNCLASSIFIEDI UNCLASSIFIED

90 06 25 125 IM4"1

AVF Control Number:. AVF-VSR-90502/49

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number:. #890531N1.10087

Alsys Limited
AlsyCOMP_017 V4.0

MicroVAX II Host and INMOS T425 implemented on a B403 TRAM Target

Completion of On-Site Testing:
31 May 1989

Prepared By:
Testing Services

The National Computing Centre Limited
Oxford Road

Manchester M1 7ED
England

Prepared For:.
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Validation Summary Report AVF.VSR.90502/49

Alsys Limited AlsyCONIp017 V4.0 Page i of ii

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP 017 V4.0

Certificate Number: #890531N1.10087

Host: MicroVAX II under MicroVMS V4.7

Target: INMOS T425 implemented on a B403 TRAM (bare)

Testing Completed 31 May 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England DT;C

Acession For
Ada Validation 'rganization TI
Dr. J6hn W/ lTamerII T
Institute for DE(fense Analyses d3 'Alexandria VA 22311 Unamouncaod

Justtr teat Ion

By_

Avail. bility Codes
-"~~~ --''''" '- ii

Ada Joint Program Office I Aad, ad/or
Dr John Solomond Dist Special
Director AJPO
Department of Defense '
Washington DC 20301

Vaildatlon Summary Report AVF-VSR.90502/49

.Ahys Limited AlsyCOMP 017 V4.0 Page ii of ii

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 2
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2
CONFIGURATION INFORMATION 1

2.1 CONFIGURATION TESTED 1
2.2 IMPLEMENTATION CHARACTERISTICS 2

CHAPTER 3
TEST INFORMATION .. 1

3.1 TEST RESULTS 1
3.2 SUMMARY OF TEST RESULTS BY CLASS 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 1
3.4 WITHDRAWN TESTS 1
3.5 INAPPLICABLE TESTS 2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS ... 6
3.7 ADDITIONAL TESTING INFORMATION 6

3.7.1 Prevalidation 7
3.7.2 Test Method 7
3.7.3 Test Site 8

APPENDIX A
DECLARATION OF CONFORMANCE 1

APPENDIX B
APPENDIX F OF THE Ada STANDARD 1

APPENDIX C
TEST PARAMETERS ... 1

APPENDIX D
WITHDRAWN TESTS ... 1

Validation Summary Report AVF.VSR.90502149

Alsy, Limited AlsyCOIP_017 V4.0 Table of Contents - Page I of i

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. -A the dependencies
observed during the process of testing this compi' !r are given in th" report."-p. j -;

The information in this report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of th .
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The testing also identifies
behavior that is implementation dependent, but is permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time, at link time, and
during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents thi results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

0 To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

0 To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

o To determine that the implementation-dependent behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Validallon Summary Report AVF-VSR-90SO249

Alsys Limited AlsyCOMP_017 V4.0 Chapter I . Pap I of 5

INTRODUCTION

Organization (AVO). On-site testing was completed 31 May 1989 at Alsys Limited, Partridge
House, Newtown Road, Henley-on-Thames, Oxfordshire, RG9 1EN, UNITED KINGDOM.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Stre
Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited

Oxford Road
Manchester MI 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines
Ada Joint Program Office, 1 January 1987.

Validation Summary Report AVF.VSR.9O502/49

Alys Limited AlsyCOMP_017 V4.0 Chapter I - Page 2 of S

INTRODUCTION

3. Ada Compiler Validation Capability Implementers' Guide
SofTech, Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures contained
in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process for validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent praeaices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler
is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Validation Summary Report AVF.VSR9SO249

AMsys Limited AIsyCOMP_017 V4.0 Chapter I - Pap 3 of S

INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E and L. The first letter of a
test name identifies the class to which it belongs, Class A, C, D and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada programs with certain
language constructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every syntax or semantic error in the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a compiler by the Ada Standard for some parameters -- for
example, ihe number of identifiers permitted in a compilation or the number of units in a library -
-a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

Validation Summary Report AVF.VSR.9050?J49

Alsya Limited AsyCOMP 017 V4.0 Chapter I - Page 4 of S

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the self-
checking features of the executable tests. The package REPORT provides the mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Vulidation Summary Report AVF.VSR.90502149

Ay% Limited AlsyCOMP_017 V4.0 Chapter t - Page S of S

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: AlsyCOMP_017 V4.0

ACVC Version: 1.10

Certificate Number: #890531N1.10087

Host Computer:

Machine: MicroVAX II

Operating System: MicroVMS V4.7

Memory Size: 9Mb

Target Computer:

Machine: INMOS T425 implemented on a B403 TRAM (bare), using
the Host running INMOS Iserver V1.30 for file-server
support

Memory Size: 1Mb

Communications Network: CAPLIN QTO Board

Validation Summary Report AVF.VSR-90502149

Alsys Limited AlsyCOMP_017 V4.0 Chapter 2 - Pae I of 6

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723 variables in the
same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop statements nested to 65
levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive procedures separately

compiled as subunits nested to 17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types SHORTINTEGER
and LONGFLOAT in the package STANDARD. (See tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed raise NUMERIC-ERROR or
CONSTRAINT ERROR when a value exceeds SYSTEM.MAXINT. This
implementation raises NUMERICERROR during execution. (See test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record components are evaluated
before any value is chec-ked for membership in a component's subtype. (See test
C32117A.)

(2) Assignments for subtypes are performed with the same precision as the base type.
(See test C3;712B.)

Validation Summary Report AVF-VSR-90502/49

Alss .imited ALbyCOMP 017 V4.0 Chapler 2 - Page 2 or 6

CONFIGURATION INFORMATION

(3) This implementation uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

e. Rounding.

The method by which values are rounded in type conversions is not defined by the
language. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

(1) The method used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)

(2) The method used for rounding to longest integer is round to even. (See tests
C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal real expressions is
round to even. (See test C4AO14A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINT-ERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises NUMERICERROR. (See test C36003A.)

(2) CONSTRAINT..ERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

(3) CONSTRAINT ERROR is raised when an array type with SYSTEM.MAXINT
+ 2 components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
CONSTRAINTERROR when the array type is declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT-ERROR when the array type is declared. (See
test C52104Y.)

Validation Summary Report AVF-VSR-90502149

ANY% Limiled ALsyCOMP_017 V4.0 Chapter 2 - Page 3 or 6

CONFIGURATION INFORMATION

(6) In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater than INTEGER'LAST may raise
NUMERICERROR or CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises CONSTRAINTERROR when the
array type is declared. (See test E52103Y.)

h. Discriminated types.

(1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRATNT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test results indicate that all
choices are evaluated before checking against the index type. (See tests C43207A
and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all choices are
evaluated before being checked for identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions or procedures calls within a body.
The program INLINE for function calls with a declarative part is not supported.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests).)

k. Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

viatidmaion Summary Report AVF.VSR-90502/49

.\Litimled ALfyCO.MPOZ7 V4,0 Chapter 2 - POe 4 of 6

nuuan~inmnin, m m N mn nmmmil i milmnmm In

CONFIGURATION INFORMATION

(3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

(7) Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

Input and output.

(1) The package SEQUENTLALIO can be instantiated with unconstrained array types
and record types with discriminants without defaults. (See tests AE2101C, EE2201D
and EE2201E.)

(2) The package DIRECT10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests AE2101H, EE2401D
and EE2401G.)

(3) Modes INFILE and OUTFILE are supported for SEQUENTIAL_[0. (See tests
CE2102D..E, CE2102N and CE2102P.)

(4) Modes INFILE, OUTFILE, and INOUTFILE are supported for DIRECT_TO.
(See tests CE2102F, CE2102I.J (2 tests), CE2102R, CE2102T and CE2102V.)

(5) Modes INFILE and OUTFILE are supported for text files. (See tests CE3102E
and CE3102I..K (3 tests).)

(6) RESET and DELETE operations are supported for SEQUENTIAL_10. (See tests
CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO. (See tests
CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files. (See tests
CE3102F..G (2 tests), CE3104C, CE3110A and CE3114A.)

Vulidhi:|on Summary Report AVF-VSR.90502/49

LI~imited AJsyCOMP_017 V4.0 Chapter 2 - Page S or 6

CONFIGURATION INFORMATION

(9) Overwriting to a sequential file truncates to the last element written. (See test
CE2208B.)

(10) Temporary sequential files are given names and deleted when closed. (See test
CE2108A.)

(11) Temporary direct files are given names and deleted when closed. (See test
CE2108C.)

(12) Temporary text files are given names and deleted when closed. (See test
CE3112A.)

(13) More than one internal file can be associated with each external file for sequential
files when reading only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B and
CE2111D.)

(14) More than one internal file can be associated with each external file for direct files
when reading only. (See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(15) More than one internal file can be associated with each external file for text files
when reading only. (See tests CE3111A..E (5 tests), CE3114B and CE3115A.)

Validallon Summary Report AVF.VSR-90502/49

.%. limited A.,yCOMPOt7 V4.0 Chapter 2 - Page 6 or 6

I I I I I i I iw

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been
withdrawn because of test errors. The AVF determined that 390 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 42 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B . _D E L._

Passed 129 1131 1934 17 26 46 3283

Inapplicable 0 7 381 0 2 0 390

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT CHAPTER TOTAL

2 5 6 7 ._8 _ A. A.L 9i 1D. i4

Passed 198 577 544 245 172 99 160 332 137 36 252 251 280 3283

Inapp 14 72 136 3 0 0 6 0 0 0 0 118 41 390

Withdrawn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

Validallon Summary Report AVF-VSR-90S0249

Asbys Limited AlsyCOMP 017 V4.0 Chapter 3 . Pap t of I

TEST INFORMATION

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E C97116A
BC3009B CD2A62D CD2A63A..D (4 tests) CD2A66A.D (4 tests)
CD2A73A..D (4 tests) CD2A76A..D (4 tests) CD2A81G CD2A83G
CD2A84M..N (2 tests) CD50110 CD2B15C CD7205C
CD2D11B CD5007B ED7004B ED7005C..D (2 tests)
ED7006C..D (2 tests) CD7105A CD7203B CD7204B
CD7205D CE21071 CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, 390 tests were
inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests) C35706L..Y (14 tests)
C35707L..Y (14 tests) C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests) C45421L..Y (14 tests)
C45521L..Z (15 tests) C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702A and B86001T are not applicable because this implementation supports no
predefined type SHORTFLOAT.

c. The following 16 tests are not applicable because this implementation does not support a
predefined type LONG INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55BO9C B86001W
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable because the size of a
mantissa of a fixed point type is limited to 31 bits.

Validation Summary Report AVF-VSR-90502/49

.. ,ys Limited AIs)COMP_017 V4.0 Chapter 3 - Page 2 of 8

TEST INFORMATION

e. C86001F is not applicable because, for this implementation, the package TEXT_10 is
dependent upon package SYSTEM. These tests recompile package SYSTEM, making
package TEXTIO, and hence package REPORT, obsolete.

f. B86001X, C45231D, and CD7101G are not applicable because this implementation does
not support any predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORT-INTEGER.

g. B86001Y is not applicable because this implementation supports no predefined fixed-point
type other than DURATION.

h. B86001Z is not applicable because this implementation supports no predefined floating-
point type with a name other than FLOAT, LONG-FLOAT, or SHORT-FLOAT.

i. CD1009C, CD2A41A..E (5 tests) and CD2A42A..J (10 tests) are not applicable because the
SIZE clause on type FLOAT is not supported by this implementation.

j. The following 26 tests are inapplicable because for this implementation a length clause on
a type derived from a private type is not supported outside the defined package.

CD1C04A CD2A21C..D (2 tests) CD2A22C..D (2 tests)
CD2A22G..H (2 tests) CD2A31C..D (2 tests) CD2A32C..D (2 tests)
CD2A32G..H (2 tests) CD2A51C..D (2 tests) CD2A52C..D (2 tests)
CD2A52G..H (2 tests) CD2A53D CD2A54D
CD2A54H CD2A72A..B (2 tests) CD2A75A..B (2 tests)

k. CD1C04B, CD1C04E, CD4051A..B (2 tests) and CD4051C..D (2 tests) are not applicable
because this implementation does not support representation clauses in derived records or
derived tasks.

1. The following 25 tests are inapplicable because a LENGTH clause on an array or record
would require a change to the representation of the components or elements.

CD2A61A..D (4 tests) CD2A61F CD2A61H..L (5 tests)
CD2A62A..C (3 tests) CD2A71A..D (4 tests) CD2A72C..D (2 tests)
CD2A74A..D (4 tests) CD2A75C..D (2 tests)

m. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable because the 'SIZE clause
applied to the access type is less than the minimum (32 bits) required.

n. The following 30 tests are inapplicable because an ADDRESS clause for a constant is not
supported.

CD501IB CD5011D CD5011F
CD5011H CD5011L CD5011N
CD5011R..S (2 tests) CD5012C..D (2 tests) CD5012G..H (2 tests)

Validation Summary Report AVF.VSR.90502/49

Alsys Limited AisyCOMP_017 V4.0 Chapter 3 - Page 3 of 8

TEST INFORMATION

CD5012L CD5013B CD5013D
CD5013F CD5013H CD5013L
CD5013N CD5013R CD5014B
CD5014D CD5014F CD5014H
CD5014J CD5014L CD5014N
CD5014R CD5014U CD5014W

o. CD5012J, CD5013S and CD5014S are not applicable because ADDRESS clauses for tasks
are not supported.

p. CE2102D is inapplicable because this implementation supports CREATE with INFILE
mode for SEQUENTIAL_10.

q. CE2102E is inapplicable because this implementation supports CREATE with OUTFILE
mode for SEQUENTIAL_10.

r. CE2102F is inapplicable because this implementation supports CREATE with INOUT FILE
mode for DIRECT 10.

s. CE21021 is inapplicable because this implementation supports CREATE with INFILE
mode for DIRECT_10.

t. CE2102J is inapplicable because this implementation supports CREATE with OUT-FILE
mode for DIRECT10.

u. CE2102N is inapplicable because this implementation supports OPEN with INFILE mode
for SEQUENTIAL_10.

v. CE21020 is inapplicable because this implementation supports RESET with IN-FILE mode
for SEQUENTIAL_10.

w. CE2102P is inapplicable because this implementation supports OPEN with OUTFILE
mode for SEQUENTIAL 10.

x. CE2102Q is inapplicable because this implementation supports RESET with OUTFILE
mode for SEQUENTIAL 10.

y. CE2102R is inapplicable because this implementation supports OPEN with INOUT.FILE
mode for DIRECT_10.

z. CE2102S is inapplicable because this implementation supports RESET with INOUTFILE
mode for DIRECT 10.

aa. CE2102T is inapplicable because this implementation supports OPEN with INFILE mode
for DIRECT10.

Validalion Summary Report AVF.VSR.90502/49

Alkys Limited AsCOMP_017 V4.0 Chapter 3 - Page 4 of 8

TEST INFORMATION

ab. CE2102U is inapplicable because this implementation supports RESET with IN-FILE mode
for DIRECT 10.

ac. CE2102V is inapplicable because this implementation supports OPEN with OUTFILE
mode for DIRECT 10.

ad. CE2102W is inapplicable because this implementation supports RESET with OUTFILE
mode for DIRECT 10.

ae. CE2107B..E (4 tests), CE2107L, CE2110B and CE2401H are not applicable because
multiple internal files cannot be associated with the same external file when one or more
files is writing for sequential files. The proper exception is raised when multiple access is
attempted.

af. CE2107G..H (2 tests), CE2110D, CE2111D and CE2111H are not applicable because
multiple internal files cannot be associated with the same external file when one or more
files is writing for direct files. The proper exception is raised when multiple access is
attempted.

ag. EE2401D, and EE2401G use instantiations of package DIRECT_10 with unconstrained
array types and record types with discriminants with defaults. These instantiations cause
USE-ERROR to be raised without a FORM parameter.

ah. CE3102E is inapplicable because text file CREATE with IN-FILE mode is supported by
this implementation.

ai. CE3102F is inapplicable because text file RESET is supported by this implementation.

aj. CE3102G is inapplicable because text file deletion of an external file is supported by this
implementation.

ak. CE31021 is inapplicable because text file CREATE with OUT FILE mode is supported by
this implementation.

al. CE3102J is inapplicable because text file OPEN with IN-FILE mode is supported by this
implementation.

am. CE3102K is inapplicable because text file OPEN with OUTFILE mode is not supported
by this implementation.

an. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable because
multiple internal files cannot be associated with the same external file when one or more
files is writing for text files. The proper exception is raised when multiple access is
attempted.

Validution Summary Report AVF.VSR90502149

. Limited AlsyCOMP_017 V4.0 Chapter 3 - Pag S of 9

TEST INFORMATION

ao. CE3202A requires association of a name with the standard input/output files, but this is not
supported by this implementation which raises USEERROR. This behaviour is accepted
by the AVO pending a ruling by the language maintenance body.

ap. CE3605A is inapplicable because this test attempts to output a string of 517 characters
which exceeds the maximum allowed for this implementation.

3.6 TEST, PROCESSING. AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behavior. Modifications are made by the AVF in
cases where legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behavior that
was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 42 tests.

The following tests were split because syntax errors at one point resulted in the compiler not
detecting other errors in the test:

B23004A B24007A B24009A B28003A B28003C
B32202A B32202B B32202C B33001A B37004A
B45102A B61012A B62001B B62001C B62001D
B74304A B74401F B74401R B91004A B95069A
B95069B B97103E BAl101B2 BA1l01B4 BC2001D
BC3009C BD5005B

The following tests were split to prove the not-applicability criteria:

CD2A62A CD2A62B CD2A72A CD2A72B CD2A75A
CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E
CD2A84F CD2A84G CD2A84H CD2A84I

EA3004D, when processed, produces only two of the expected three errors: the implementation
fails to detect an error on line 27 of file EA3004D6M. This is because the pragma INLINE has
no effect when its object is within a package specification. The task was reordered to compile
files D2 and D3 after file D5 (the re-compilation of the "with"ed package that makes the various
earlier units obsolete), the re-ordered test executed and produced the expected
NOTAPPLICABLE result (as though INLINE were not supported at all). The re-ordering of
EA3004D test files was: 0-1-4-5-2-3-6. The AVO ruled that the test should be counted as passed.

3.7 ADDITIONAL TESTING INFORMATION

Validation Summary Report AVF.VSR-90502/49

AI%..' Limited AisyCOMP_017 V4.0 Chapter 3 - Pap 6 of 3

TEST INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the AlsyCOMP.017
V4.0 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP 017 V4.0 compiler using ACVC Version 1.10 was conducted on-site by
a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

Host computer MicroVAX II
Host operating system MicroVMS V4.7
Target computer . INMOS T425 implemented on a B403 TRAM

(bare), using the Host running INMOS Iserver VI.30
fo file-server suppot

Compiler AlsyCOMP_017 V4.0
Pre-linker : AlsyCOMP 017 V4.0
Linker : IMS D605A ILINK V2.0.2
Loader/Downloader : IMS D605A IBOOT V1.0.3
Runtime System AlsyCOMP_017 V4.0

The host and target computers were linked via CAPLIN QTO Board.

A magnetic tape containing all tests except for withdrawn tests and tests requiring unsupported
floating-point precisions was taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being written to the magnetic tape.
Tests requiring modifications during the prevalidation testing were not included in their modified
form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host computer, but loaded on
to a hard disc via a VAX 11/780. The disc was then manually swiched to allow the MicroVAX to
access the test files.

After the test files were loaded to disk, the full set of tests was compiled and linked on the
MicroVAX, then all executable images were transferred to the INMOS T425 via the CAPLINK and
run. Results were transfered from the host computer to the VAX 11/750 via FTP software from
where they were printed.

The compiler was tested using command scripts provided by Alsys Limited and reviewed by the
validation team. The compiler was tested using all the following default option settings:

OPTION EFFECT

VaIlidaion Summary Report AVF.VSR."502/49

AI'.% Limited A, yCOMP 017 V4.0 Chapter 3 - Page 7 of 8

TEST INFORMATION

CALLS=INLINE Allows inline insertion of code for subprograms.

OBJECT=NONE No peephole optimisations are performed, this is done for
compilation speed improvements.

OUTPUT= <file> <file> specifies the name of compilation listing generated.

In addition the following options were used to produce full compiler listings:

TEXT Print a compilation listing including full source text.

SIIOW=NONE Do not print a header and do not include an error summary in the
compilation listing.

ERROR=999 Set the maximum number of compilation errors permitted before
compilation is terminated to 999.

MONITORWIDTH=80 Set width for standard output to 80 columns.

FILEWIDTH=80 Set width fot listing file to 80 columns.

FILELENGTH=9999 Disable insertion of form feeds in the output.

Tests were compiled, linked, and executed (as appropriate) using a single host and target computer.
Test output, compilation listings, and job logs were captured on magnetic media and archived at
the AVF. The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Alsys Limited, Partridge House, Newtown Road, Henley-on-Thames,
Oxfordshire, RG9 1EN, UNITED KINGDOM and was completed on 31 May 1989.

Validation Summary Report AVF-VSR.90502/49

,Uy Limited AlsyCOMP_017 VJ.O Chapter 3 - Page 8 of 8

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys Limited has submitted the following Declaration of Conformance
concerning the AlsyCOMP 017 V4.0 compiler.

Vaildulion Summary Report AVF.VSR-90502/49

Ahki% Limited AlyCOMP_017 V4.0 Appendix A - Poe I of 3

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys Limited

Ada Validation Facility: The National Computing Centre Limited,
Oxford Road
Manchester
M1 7ED
UNITED KINGDOM

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_017 V4.0

Host Architecture: MicroVAX II
Host OS and Version: MicroVMS V4.7

Target Architecture: INMOS T425 transputer implemented on a B403
TRAM (bare), using the Host running INMOS
Iserver V1.30 for file-server support via a CAPLIN
QTO board link

Imiplementor's Declaration

I, the undersigned, representing Alsys Limited, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that Alsys Limited is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's corporate name.

_____Date :

Martyn Jordan
Marketing Director

Validation Summary Report AVF.VSR-9502/49

,J.s Limited AJsyCOMP017 V4.0 Appendix A - Page 2 of 3

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys Limited, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

""_____ ______Date:

Martyn Jordan
Marketing Director

Vaid aion Summary Report AVF.VSR-9SO49

, Limited ALyCOMP_017 V4.0 Appendix A - Pfte 3 of 3

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the AlsysCOMP 017 V4.0 compiler, as described in this Appendix, are provided
by Alsys Limited. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2*31 .. 2*31-1;

type SHORT-INTEGER is range -2**07.. 2"'07-1;

type FLOAT is digits 6 range -(2.0 - 2.0**(-23)) * 2.0"'127 .. (2.0 - 2.0**(-23)) * 2.0**127;

type LONGFLOAT is digits 15 range -(2.0 - 2.**{.51)) 2.0"'1023 ..

(2.0 - 2.0"*(-51)) * 2.0"'1023;

type DURATION is delta 2.0"*-14 range .86400.0 .. 86400.0;

end STANDARD;

vaii(dation Summary Reporl AVF.VSR.90502/49

1 Limitled AlyCOMP017 V4.0 Appendix B

Alsys transputer Ada Compiler

APPENDIX F

Implementation - Dependent Characteristics

Version 4.0

Alsys S.A.
29, Avenue de Versailles

78170 La Celle St. Cloud, France

Alsys Inc.
67 South Bedford Street

Burlington, MA 01803-5152. U.S.A.

Alsys Ltd.
Partridge House, Newtown Road

Henley-on- Thames,
Oxfordshire R69 IEN, U.K.

PREFACE

This Alsys transputer Ada Compiler Appendix F is for programmers, software engineers,
project managers, educators and students who want to develop an Ada program for the
INMOS transputer.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer to this manual).

This document assumes that the reader has some knowledge of the architecture of the
transputer. Access to the document OCCAM2 toolset manual (72-TDS-184-00), which
describes INMOS provided OCCAM programming tools, would also be advantageous.

Preface

'I Alsys trons puter Ada Compiler, Appendix F Y4.0

TABLE OF CONTENTS

APPENDIX F 1

1 Implementation-Dependent Pragmas 2
1.1 INLINE 2
1.2 INTERFACE 2
1.2.1 Calling Conventions 2
1.2.2 Parameter-Passing Conventions 3
1.2.3 Parameter Representations 3
1.2.4 Restrictions on Interfaced Subprograms 5
1.1 INTERFACENAME 6
1.4 Other Pragmas 6

2 Implementation-Dependent Attributes 7

3 Specification of the Package SYSTEM 8

4 Restrictions on Representation Clauses 9
4.1 Enumeration Types 9
4.2 Integer Types 12
4.3 Floating Point Types 14
4.4 Fixed Point Types 16
4.5 Access Types 19
4.6 Task Types 20
4.7 Array Types 21
4.8 Record Types 24

5 Conventions for Implementation-Generated Names 33

6 Address Clauses 34
6.1 Address Clauses for Objects 34
6.2 Address Clauses for Program Units 34
6.3 Address Clauses for Entries 34

Table of Contents

7 Restrictions on Unchecked Conversions 35
8 Input-Output Packages

368.1 NAME Parameter
368.2 FORM Parameter 36

8.3 USEERROR 38
38

9 Characteristics of Numeric Types 409.1 Integer Types - T2 transputer targets
409.2 Integer Types - T4/T8 transputer targets
409.3 Other Integer Types 40

9.4 Floating Point Type Attributes
41

9.5 Attributes of Type DURATION
42

INDEX
43

iv
Alsys transputer Ada Compiler, Appendix F. v4.0

APPENDIX F

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
Ada Compilers for the INMOS transputer. This document should be considered as the
Appendix F to the Reference Manual for the Ada Programming Language ANSI/MIL-
STD 1815A, January 1983, as appropriate to the Alsys Ada implementation for the
transputer.

Sections 1 to 8 of this appendix correspond to the various items of information required
in Appendix F (F]*; section 9 provides other information relevant to the Alsys
implementation. The contents of all these sections is described below:

1. The form, a.3wed places, and effect of every implementation-dependent

pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYSTEM [13.71.

4. The list of all restrictions on representation clauses [13.11.

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4].

6. The interpretation of expressions that appear in address clauses, including

those for interrupts [13.51.

7. Any restrictions on unchecked conversions [13.10.2].

8. Any implementation-dependent characteristics of the input-output packages
[14].

9. Characteristics of numeric types.

Throughout this appendix, the name Ada Run-Time Executive refers to the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, I/O, and other utility functions.

Throughout this manual, citations in square brackets refer to the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD- 181 SA, January 1983.

Appendix F, Implementation- Dependent Characteristics

I Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE [6.3.2] is fully supported, except for the fact that it is not possible to
inline a function call in a declarative part.

1.2 INTERFACE .

Ada programs can interface to subprograms written in OCCAM through the use of the
predefined pragma INTERFACE [13.91 and the implementation-defined pragma
INTERFACENAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (language-name, subprogram_name);

where:

" language name is the name of the other language whose calling and
parameter passing conventions are to be used.

" subprogramname is the name used within the Ada program to refer to the

interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is OCCAM.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use.

The language name OCCAM is used to refer to the standard OCCAM calling and
parameter passing conventions for the transputer. The programmer can use the language
name OCCAM to interface Ada subprograms with subroutines written in any language
that follows the standard OCCAM calling conventions.

1.2.1 Calling Conventions

The following calling conventions are required for code to be interfaced to Ada by use
of the pragma interface to OCCAM.

On entry to the subprogram, the registers A, B and C are undefined. For the T8 only,
the floating point registers FA, FB and FC are similarly undefined. The return address
and any parameters are accessed relative to the workspace pointer, W.

2 Als),s transputer Ada Compiler. Appendix F. v4.O

There are no assumptions concerning the register contents upon return from the
interfaced subprogram, other than for interfaced subprograms which are functions (see
below).

1.2.2 Parameter- Passing Conventions

On entry to the subprogram, the first word above the transputer workspace pointer
contains the return address of the called subprogram. Subsequent workspace locations
(from W+l to W+n, where n is the number of parameters) contain the subprograms
parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory for use by the OCCAM
compiler in allocating arrays declared in the interfaced subprogram.

Formal parameters of mode in which are access types or scalars of one machine word or
less in size are passed by copy. If such a parameter is less that one machine word in
length it is sign extended to a full word. For all other parameters the value passed is the
address of the actual parameter itself.

When passing arrays to OCCAM, it may be the case that some of its strides (dimensions)
are undefined in the source of the interfaced subprogram. If this is true, the missing
strides should be passed as extra integer value parameters to the subprogram. These
parameters should be placed immediately following the array parameter itself and in the
same order as the missing strides appear in the OCCAM source.

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms
are passed by address, they cannot be protected from modification by the called
subprogram even though they may be formally declared to be of mode in. It is the
programmer's responsibility to ensure that the semantics of the Ada parameter modes are
honoured in these cases.

If the subprogram is a function whose result is at most one machine word in length,
register A is used to return the result. All other results are returned by address in an
implicit parameter allocated before the list of normal parameters (i.e. in the first word
after the return address, at W+).

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

1.2.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used to alter the default representations of the types involved.
Chapter 4 describes the effect of representation clauses on the representation of values.

Appendix F. Implementation- Dependent Characteristics 3

Integer Types [3.5.4]

Ada integer types are represented in two's complement form and occupy a byte
(SHORT INTEGER), a word (INTEGER) or a double word (LONGINTEGER).
Parameters to interfaced subprograms of type SHORT _INTEGER are passed by copy in
a full machine word. The value occupies the low order byte of the word; the other
bytes in the word are always zero. Values of type INTEGER are always passed by copy.
The predefined type LONG INTEGER is available for T2 transputer targets only;
values of this type are stored least significant word first and are always passed by
address.

Enumeration Tv.es [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. For T2
transputer targets, those with between 257 and 65536 (2**16) elements are represented in
16 bits (i.e. a word). All others enumeration types are represented in 32 bits. The
maximum number of values an enumeration type can include is 2*31.

Consequently, the Ada predefined type CHARACTER [3.5.21 is represented in a bits,
using the standard ASCII codes [C) and the Ada predefined type BOOLEAN [3.5.31 is
represented in 8 bits, with FALSE represented by the value 0, and TRUE represented
by the value 1.

As the representation of enumeration types is basically the same that of integers, the
same parameter passing conventions apply.

Floating Point Tvoes [3.5.7, 3.5.8]

Ada floating-point values occupy 32 (FLOAT) or 64 (LONG-FLOAT) bits, and are held
in ANSI/IEEE 754 floating point format.

Fixed Point Tves (3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed mantissa
and a constant small. The mantissa is implemented as an 8, 16 or 32 bit integer value
for T2 transputer targets and as an 8 or 32 bit integer value for T4 and T8 transputer
targets. Small is a compile-time quantity which is the power of two equal or
immediately inferior to the delta specified in the declaration of the type.

The attribute MANTISSA is defined as the smallest number such that

2 00 MANTISSA >- max (abs (upperbound), abs (lowerbound)) / small

The size of a fixed point type is:

MANTISSA Size

4 Alsys transputer Ada Compiler. Appendix F. v4.O

..7 8 bits
1 15 16 bits (T2 transputer targets only).

16 .31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Types [3.81

Values of access types are represented internally by the address of the designated object
held in single word. The value MIN INT (the smallest integer that can be represented
in a machine word) is used to represent null.

Array Types [3.61

Ada arrays are passed by address; the value passed is the address of the first element of
the first dimension of the array. The elements of the array are allocated by row. When
an array is passed as a parameter to an interfaced subprogram, the usual consistency
checking between the array bounds declared in the calling program and the subprogram
is not enforced. It is the programmer's responsibility to ensure that the subprogram does
not violate the bounds of the array.

Values of the predefined type STRING [3.6.31 are arrays, and are passed in the same
way: the address of the first character in the string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes.

Record Tve r-

Ada recn,ds are passed by address; the value passed is the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Compiler
sc as to minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added
to the record. Thus the default layout of the internal structure of the record may not
be inferred directly from its Ada declaration. The use of a representation clause to
control the layout of any record type whose values are to be passed to interfaced
subprograms is recommended.

1.2.4 Restrictions on Interfaced Subprograms

Interfaced OCCAM subprograms must be compiled using the UNIVERSAL error mode
(X). In this mode, there is no error checking and any run-time errors in the OCCAM
code are ignored. This ensures that processes do not execute a STOPP instruction and
avoids the unpredictable results which may occur if this is allowed to happen.

It is not possible to interface to OCCAM functions which return floating point types,
nor to those which have more that one return value.

Appendix F, Implementation- Dependent Characteristics

1.3 INTERFACENAME

Pragma INTERFACE NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACE-NAME is not used, then the two names are assumed to be identical.

This pragma takes the form:

pragma INTERFACE-NAME (subprogram-name, stringliteral);

where:

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

" string literal is the name by which the interfaced subprogram is referred to
at link-time.

The use of INTERFACE_NAME is optional, and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the
name of the subprogram in its original language contains characters that are not
permitted in Ada identifiers. Ada identifiers can contain only letters, digits and
underscores, whereas the INMOS linker allows external names to contain other
characters, e.g. full stops. These characters can be specified in the stringliteral
argument of the pragma INTERFACE-NAME.

The pragma INTERFACENAME is allowed at the same places of an Ada program as
the pragma INTERFACE [13.9). However, the pragma INTERFACENAME must
always occur after the pragma INTERFACE declaration for the interfaced subprogram.

1.4 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority
(no pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given

compilation by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect.

CONTROLLED
MEMORYSIZE
OPTIMIZE
STORAGEUNIT
SYSTEM_NAME

Note that all access types are implemented by default as controlled collections as
described in [4.81.

6 Alsys transputer Ada Compiler, Appendix F, Y4.0

2 Implementation-Dependent Attributes

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the four attributes
listed in section 5 (Conventions for Implementation-Generated Names), for use in record
representation clauses, and the attributes described below are provided:

T'DESCRIPTORSIZE For a prefix T that denotes a type or subtype, this
attribute yields the size (in bits) required to hold a
descriptor for an object of the type T, allocated on the
heap or written to a file. If T is constrained,
T'DESCRIPTORSIZE will yield the value 0.

T'IS ARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an array
type or an array subtype; otherwise, it yields the value
FALSE.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as a prefix , ADDRESS:

" A constant or named number that is implemented as an immediate value (i.e.

does not have any space allocated for it).

" A package specification that is not a library unit.

" A package body that is not a library unit or subunit.

Appendix F, Implementation-Dependent Characteristics

3 Specification of the Package SYSTEM

package SYSTEM is

type NAME is (TRANSPUTER);

SYSTEMNAME : constant NAME :2 VAIEFIRST;
IMN INT : constant -(2**31);

MAX INT : constant :3 2**31-1;
MEMORYSIZE : constant :3 2*16;

-- for T2 transputer targetsMEMORYSIZE : constant :3 ?**31-1;
-- for T4/T8 transputer targets

type ADDRESS is new INTEGER;

STORAGE UNIT : constant :: 8;
MAX-DIGITS : constant :3 15;
MAX-MANTISSA : constant := 31;
FINE DELTA constant :g

2
#1.0#e-31;

TICK : constant := 1.e-6;
MULL-ADDRESS : constant ADDRESS :- ADORESS'F!,4T;

subtype PRIORITY is INTEGER range I .. 10;

end SYSTEM;

8
Alsys transputer Ada Compiler. Appendix F, Y4.0

4 Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys transputer
Ada Compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

The transputer supports operations on the data types byte, word and double-word, so
these data types are used to form the basis of the representation of Ada types. The
word length for T4 and T8 transputer targets is 32 bits whereas T2 transputers have a
word length of only 16 bits. Currently, the compiler does not support operations on
double 32 bit word quantities. This affects the representation of integer, fixed point
and enumeration types.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule
applies to a record type.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array
component, a record or a record component

" a record representation clause, when the object is a record or a record

component

" a size specification, in any case.

For each class of types the effect of a size specification is described. Interaction
between size specifications, packing and record representation clauses is described under
array and record types.

Representation clauses on derived record types or derived task types are not supported.

Size representation clauses on types derived from private types are not supported when

the derived type is declared outside the private part of the defining package.

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration

Appendix F, Implementation- Dependent Characteristics

literal. Then, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2 ... n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in [13.3]. The Alsys Compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 2 311.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the Compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2 L-I. For rn < 0, L is the smallest positive
integer such that - 2 L-1 <= m and M <= 2 L-1_ 1 . For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK AND WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK OR WHITE is BLACKANDWHITE range X.. X;
-- Assuming that X is not static, the minimum size of BLACKORWHITE is
-- 2 bits (the same as the minimum size of the static type mark
-- BLACKANDWHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as either unsigned bytes or
signed words. The Compiler selects automatically the smallest such object which can
hold each of the internal codes of the enumeration type (or subtype). The size of the
enumeration type and of any of its subtypes is thus 8 bits in the case of an unsigned
byte, or the machine word size (16 or 32 bits) in the case of a signed word.

10 Alsys transputer Ada Compiler. Appendix F. v4.0

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies. For example:

type EXTENDED is
-- The usual American ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DCI, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,

, , I...

09, 11, 12, 11, 14, '6l', 7,
8' 19, " 1, 1<1,' 9=9 I>1 ''
@ ', *A', 113% ICI, -D1, 'E', IF , IG ,
OHIO T, lJt, 'Kl, VL, 'MI, N', O0,
,PI, 'Q', 'R', 'S'., ", 'U', 'V', '9W,
'xI, ' x , Iz', 1[', 1\1, "], I.

S a', 'b', 'c', 'd', 'e', 'f', 'g'

IWO lit il I O 11, Im'1, 1n', 1o ,
I p", 'q $ rI, IS , Ut I , IV,, IV,
Ix , y y}', '~O, DEL,
-- Extended c;,,racters
LEFTARROW,
RIGHTARROW,
UPPERARROW,
LOWERARROW,
UPPER LEFT CORNER,
UPPER RIGHT CORNER,
LOWERRIGHT_CORNER,
LOWERLEFTCORNER,

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit values.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to
8 bits, word aligned otherwise.

Appendix F, Implementation- Dependent Characteristics

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is a multiple of the
alignment of the corresponding subtype.

4.2 Integer Types

Predefined integer types

In the Alsys Ada implementation for the transputer the number of predefined integer
types available differs depending upon the transputer target. For T4 and T8 transputer
targets there are two predefined integer types:

type SHORT INTEGER Is range -2**07 .. 2**07-1;
type INTEGER Is range -2**31 .. 2**31-1;

For T2 transputer targets there are three predefined integer types:

type SHORT INTEGER is range -2**07 .. 2*07-1;
type INTEGER is range -2*15 .. 2** 15-1;
type LONGINTEGER is range -2*31 .. 2'31 -1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from one of the predefined integer types. The Compiler

automatically selects the predefined integer type whose range is the shortest that contains
the values L to R inclusive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using

two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form (that is to say, in an unbiased form which includes a sign bit only if the range of
the subtype includes negative values).

12 Alsys transputer Ada Compiler. Appendix F. v4.0

For a static subtype, if it has a null range its minimum size is I. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <= 2L-1 . For m
< 0, L is the smallest positive integer such that - 2 L-F <= m and M <= 2 L-1_ 1 , For
example:

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size of an integer subtype

For T4 and T8 transputer targets, the sizes of the predefined integer types
SHORTINTEGER and INTEGER are 8 and 32 bits respectively. For T2 transputer
targets, the sizes of the predefined integer types SHORTINTEGER, INTEGER and
LONGINTEGER are 8, 16 and 32 bits respectively.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORTINTEGER; its size is 8 bits.

type J is range 0 .. 65535;
-- J is derived from INTEGER for T4 and TS targets and LONGINTEGER
-- for T2 targets; its size is 32 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER or LONGINTEGER as above;
-- its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies, for example:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORT INTEGER, but its size is 32 bits because
-- of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because of the
-- size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits

Appendix F, Implementation- Dependent Characteristics 13

-- because N inherits the size specification of J.

The Alsys Compiler implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Si:e of the objects of an integer subtype

Provided its size is not cortstrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, word aligned otherwise.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is a multiple of the alignment of
the corresponding subtype.

4.3 Floating Point Types

Predefined floating point types

In the Alsys Ada implementation for the transputer there are two predefined floating
point types.

type FLOAT is
digits 6 range -(2.0 - 2.0"*(-23))l*l**127 .. (2.0 - 2.0"*(-23))*2.0*"127;

type LONGFLOAT is
digits 15 range -(2.0 - 2.0"*(-51))02.0"*1023 .. (2.0 - 2.0"*(-5l))'2.0"*l023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T Is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The Compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

14 Alsys transputer Ada Compiler. Appendix F, v4.0

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the ANSI/IEEE 754 standard 32-bit and 64-bit floating point formats as appropriate.

Values of the predefined type FLOAT are represented using the 32-bit floating point
format and values of the predefined type LONG FLOAT are represented using the 64-
bit floating point format as defined by the standard. The values of any other floating
point type are represented in the same way as the values of the predefined type from
which it derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT and 64 bits if its base type is LONGFLOAT or a type
derived from LONGFLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONGFLOAT are 32 and
64 bits respectively.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is always word aligned.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is a multiple of the
alignment of the corresponding subtype.

Appendix F, Implementation- Dependent Characteristics 15

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for the transputer uses a set of

anonymous predefined types dependent upon the target transputer type.

For T4 and T8 transputer targets these anonymous types are:

type SHORTFIXED is delta D range (-2**7-1)*S .. 2"'7"S;
for SHORTFIXED'SMALL use S;

type FIXED is delta D range (-2"31-I)*S .. 2**31IS;

for FIXED'SMALL use S;

For T2 transputer targets these anonymous types are:

type SHORTFIXED is delta D range (-2**7-1)*S .. 2"'7"S;
for SHORTFIXED'SMALL use S;

type FIXED is delta D range (-2**15-l)*S .. 2**!5"S;
for FIXED'SMALL use S;

type LONG__FIXED is delta D range (-2*31-1)*S .. 2"'31"S;
for LONGFIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for "SMALL use S;

is implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L and R.

16 Alsys transputer Ada Compiler, Appendix F. v4.0

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / F'BASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of
the base type (that is to say, in an unbiased form which includes a sign bit only if the
range of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <= 2 L_1 . For i < 0, L is the smallest positive integer such that -2
<= i and I <= 2 L-1 1 . For example:

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S Is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

For T4 and T8 transputer targets, the sizes of the predefined fixed point types
SHORT _FIXED and FIXED are 8 and 32 bits respectively. For T2 transputer targets,
the sizes of the predefined fixed point types SHORTFIXED, FIXED and
LONGFIXED are 8, 16 and 32 bits respectively.

Appendix F. Implementation- Dependent Characteristics 17

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type F is delta 0.01 range 0.0 .. 1.0;
-- F is derived from a 8 bit predefined fixed type, its size is 8 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0 .. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies, for example:

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 32;
-- F is derived from an 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;
for F'SIZE use 16;
-- F is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.
-- The size specification is legal since the range contains no negative values
-- and therefore no sign bit is required.

type N Is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler implements size specifications. Nevertheless, as fixed point objects
are represented using machine integers, the specified length cannot be greater than 32
bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, word
aligned otherwise.

18 Alsys transputer Ada Compiler, Appendix F, v4.O

Address of an object of a fixed point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype i a multiple of the alignment
of the corresponding subtype.

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGESIZE is then 0.

As described in [13.21, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values

Access values are machine addresses represented as machine word-sized values (i.e. 16
bits for T2 targets ard 32 bits for T4 and T8 :gets).

Minimum size of an access subtype

The minimum size of an access subtype is that of the word size of the target transputer.

Size of an access subtype

The size of an access subtype is the same as its minimum size.

The only size that can be specified for an access type using a size specification is its
usual size.

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always one machine word long.

Alignment of an access subtype

An access subtype is always word aligned.

Appendix F, Implementation- Dependent Characteristics 19

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always on a word boundary,
since its subtype is word aligned.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in (13.2], a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind
time is ignored for this task type, and the length clause is obeyed.

I is not allowed to apply such a length clause to a derived type. The same storage space
is reserved for the activation of a task of a derived type as for the activation of a task
of the parent type.

Encoding of task values

Task values are represented as machine word sized values.

Minimum size of a task subtype

The minimum size of a task subtype is that of the word length of the target transputer.

Size of a task subtype

The size of a task subtype is the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual
size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always one machine word long.

Alignment of a task subtype

A task subtype is always word aligned.

20 Alsys transputer Ada Compiler. Appendix F. v4.O

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always on a word boundary, since its subtype is word
aligned.

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap Comporent Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components, for example:

type A is array (I .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0 .. 9;
for DECIMAL DIGIT'SIZE use 4;
type BINARY CODEDDECIMAL is

array (INTEGER range <>) of DECIMAL DIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of

-- type BINARY _CODEDDECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components, for example:

type A Is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- I bit.

Appendix F, Implementation-Dependent Characteristics 21

type DECIMAL DIGIT is range 0 .. 9,
type BINARY CODED DECIMAL is

array (INTEGER range <>) of DECIMAL DIGIT;
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMALDIGIT is 8 bits, but, as
-- BINARYCODED DECIMAL is packed, each component of an array of thi,
-- type will be represented in 4 bits as in the usual BCD representatior

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each
component and subcomponent to have an address consistent with the alignment of its
subtype, for example:

type INT is range -2**31 .. 2"'31 - 1;
type R is

record
K : INT; -- INT is word aligned.
B: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned; its size is 40 bits.

type A is array (I .. 10) of R;
-- A gap is inserted after each compu.¢ctt in order to respect the
-- alignmcnt of type R.

K , 0r. Biiii ' .. liii
copponent Gap Conponent Gap couponent Gap

Array of type A: each subcomponent K has a word offset.

22 Alsys transputer Ada Compiler. Appendix F. v4.0

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted, for example:

type INT is range -2**31 .. 2"'31 - 1;
type R is

record
K : INT;
B: BOOLEAN;

end record;

type A is array (1 .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array (I .. 10) of NR;
-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

conponent Component Coeponent

Array of type A or B." a subcomponent K can have any byte offset.

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

* if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of
packing an array type is thus to reduce its size.

Appendix F. Implementation- Dependent Characteristics 23

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the Compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype has the same alignment as the subtype of its components.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is the lesser
of the alignment of the subtype of its components and the relative displacement of the
components.

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is a multiple of the alignment of the corresponding
subtype.

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.41. In the Alsys implementation
for transputer targets there is no restriction on the position that can be specified for a
component of a record. If a component is not a record or an array, its size can be any
size from the minimum size to the size of its subtype. If a component is a record or an
array, its size must be the size of its subtype.

A record representation clause need not specify the position and the size for every
component.

24 Alsys transputer Ada Compiler. Appendix F. Y4.0

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of
the component so as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimisations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for
the components in a record object.

Pragma PACK has no further effect on records. The Alsys Compiler always optimizes
the layout of records as described above.

In the current version, it is not possible to apply a record representation clause to a
derived type. The same storage representation is used for an object of a derivea type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Seginning of the record

Caipite time offset
DIRECT

ConpiLe time offset
OFFSET
OFE

Run
time

offset

I ND I RECT

A direct and an indirect component

Appendix F, Implementation-Dependent Characteristics 25

If a record component is a record or an array, the size of its subtype may be evaluatedat run time and may even depend on the discriminants of the record. We will call thesecomponents dynamic components, For example:

type DEVICE is (SCREEN, PRINTER),

type COLOUR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L: NATURAL) is
record

X : SERIES(] .. L); -- The size of X depends on LY: SERIES(I .. L); -- The size of Y depends on Lend record;

Q : POSITIVE;

type PICTURE (N: NATURAL; D: DEVICE) is
record

F: GRAPH(N); The size of F depends on NS: GRAPH(Q); __ The size of S depends on Q
case D is

when SCREEN =>
C: COLOUR;

when PRINTER =>
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot beevaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and placesthem at the end of the record:

26
Alsys transputer Ada Compiler, Appendix F. Y4.0

D z SCREEN D PRINTER
N=2 N=1

Beginning of the record
S OFFSET S OFFSET

F OFFSET F OFFSET

WL N
D D

C0

Run time offsets F

F
S

s

The record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time, for example

Beginninrg of the record
Y OFFSET

Compile time offset
L

-1 CaiPile time offset

X Size dependent on discriminant L

Sie Run time offset

Y Size dependent on discriminent L

The record type GRAPH. the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The

Appendix F. Implementation-Dependent Characteristics 27

Compiler evaluates an upper bound MS of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation, the Compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or their
components are accessed, This information is stored in special components called
implicit components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORDSIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

RECORDSIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD _SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORDSIZE.

0 VARIANTINDEX

This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

28 Alsys transputer Ada Compiler, Appendix F, v4.0

Component lists that do not contain a variant part are numbered. These numbers are the

possible values of the implicit component VARIANTINDEX. For example:

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS: INTEGER;
case KIND is

when AIRCRAFT => -- I
WINGSPAN: INTEGER;

when others => -- 2
null;

end case;
when BOAT => -- 3

STEAM : BOOLEAN;
when ROCKET => -- 4

STAGES: INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

I (KIN, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED. STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Couponent Intervat

KIND --
SPEED - -
WHEELS 1 .. 2
WINGSPAN 1 1
STEAM 3 .. 3
STAGES 4 4

The implicit component VARIANT INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

Appendix F. Implementation-Dependent Characteristics 29

ARRAYDESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The Compiler treats an implicit component of the kind ARRAYDESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

a RECORDDESCRIPTOR

An implicit component of this kind is associated by the Compiler with-each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD _DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The Compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORD SIZE and/or VARIANT INDEX from a record type. This can be done
using an implementation defined pragma called IMPROVE. The syntax of this pragma
is as follows:

pragma IMPROVE (TIME I SPACE , [ON ->] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If
on the other hand SPACE is specified, the Compiler only inserts a VARIANT_INDEX
or a RECORDSIZE component if this component appears in a record representation

30 Alsys transputer Ada Compiler, Appendix F. v4.0

clause that applies to the record type. A record representation clause can thus be used
to keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

a when the record subtype has non-static constraints,

2 when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated e. -tly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 Kbyte. If the size of the subtype is greater than this, the
object has the size necessary to store its current value; storage space is allocated and
released as the discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype has the
same alignment as the component with the highest alignment requirement.

When a record representation clause that does not contain an alignment clause applies to
its base type, a record subtype has the same alignment as the component with the highest
alignment requirement which has not been overridden by its component clause.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Appendix F. Implementation- Dependent Characteristics 31

Address of an object of a record suhitvpe

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is a multiple of the alignment of the corresponding subtype.

32 Alsys transputer Ada Compiler. Appendix F. v4.0

5 Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

T'RECORDSIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a -record type with
defaulted discriminants when the sizes of the record
objects depend on the values of the discriminants.

T'VARIANTINDEX For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of
a record type with variant type.

C'ARRAYDESCRIPTOR
For a prefix C that denotes a record component of an
array type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

C'RECORDDESCRIPTOR
For a prefix C that denotes a record component of a
record type whose component subtype definition depends
on discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

Appendix F. Implementation -Dependent Characteristics 33

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 8 Kbyte.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
Compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the Compiler.

34 Alsys transputer Ada Compiler. Appendix F. v4.0

7 Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of

composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source
operand: the result has the size of the source.

" if an uncaiecked conversion is achieved of a composite source type to a scalar
or access target type, the result of the function is a copy of the source
operand: the result has the size of the target.

Appendix F. Implementation- Dependent Characteristics 35

8 Input-Output Packages

The predefined input-output packages SEQUENTIAL 10 [14.2.31, DIRECT_10 [14.2.5],
and TEXT.10 [14.3.10] are implemented as described in the Language Reference
Manual, as is the package 10_ EXCEPTIONS [14.5], which specifies the exceptions that
can be raised by the predefined input-output packages.

The package LOW _LEVEL 10 [14.61, which is concerned with low-level machine-
dependent input-output, has not been implemented.

All accesses to the services of the host system are provided through the INMOS supplied
iserver tool, so much of Ada input-output is host independent.

8.1 NAME Parameter

No special treatment is applied to the NAME parameter supplied to the Ada procedures
CREATE or OPEN [14.2.1]. This parameter is passed immediately on to the INMOS
server and from there to the host operating system. The file name can thus be in any
format acceptable to the host system.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of (21, separated by commas. The FORM parameter may be given as a null string
except when DIRECT 10 is instantiated with an unconstrained type; in this case the
RECORD SIZE attribute must be provided. Attributes are comma-separated; blanks
may be inserted between lexical elements as desired. In the descriptions below the
meanings of natural, positive, etc., are as in Ada; attribute keywords (represented in
upper case) are identifiers [2.3] and as such may be specified without regard to case.

USEERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if
a different file sharing attribute is specified in a later OPEN or CREATE call,
USEERROR will be raised. The syntax is as follows:

NOT SHARED I
SHARED -> access-mode

where

access mode ::= READERS I SINGLEWRITER I ANY

36 Alsys transpuier Ada Compiler, Appendix F. v4.0

A file sharing attribute of:

NOTSHARED

implies only one internal file may access the external file.

SHARED => READERS

imposes no restrictions on internal files of mode INFILE, but prevents any
internal files of mode OUTFILE or INOUTFILE being associated with
the external file.

SHARED => SINGLEWRITER

is as SHARED => READERS, but in addition allows a single internal file of
mode OUTFILE or INOUTFILE.

SHARED =;- ANY

places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is taken
from that file's sharing attribute, otherwise the default depends on the mode of the file:
for mode IN FILE the default is SHARED => READERS, for modes INOUTFILE
and OUTFILE the default is NOTSHARED.

Record size and record unit attributes

These attributes control the structure of external binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive records, each of the following structure:

[HEADER I OBJECT [UNUSEDPART I

where:

" OBJECT is the exact binary representation of the Ada object in the
executable program (possibly including an implicit object descriptor).

" HEADER contains two word sized values, the length of the object and the
length of the descriptor.

" UNUSED PART is a gap of variable size to permit full control of the
record's size.

The HEADER is only implemented if the actual parameter of the instantiation of the 10

package is unconstrained.

The formats of the file structure attributes are as follows:

RECORDSIZE => sizeinbytes

Appendix F, Implementation- Dependent Characteristics 37

RECORDUNIT => sizeinbytes

In the case of DIRECT 10 for unconstrained types the user is required to specify the
RECORDSIZE attribute. However, for SEQUENTIAL_10 for unconstrained types the
attribute is illegal. USEERROR will be raised by the OPEN or CREATE procedures
if either of these checks fail.

In all cases the value given must not be smaller than a mininum size. For constrained
types, this minimum size is ELEMENT TYPE'SIZE / SYSTEM.STORAGE UNIT;
USEERROR will be raised if this rule is violated. For unconstrained types, the
minimum size is ELEMENT TYPE'DESCRIPTOR SIZE / SYSTEM.STORAGEUNIT
plus the size of the largest record which is to be read or written. If a larger record is
processed, DATAERROR will be raised by the READ or WRITE.

If no RECORD SIZE attribute is specified for constrained types, the default value of
the object's size is assumed. In this case no UNUSEDPART will be implemented.

The RECORD UNIT attribute is only applicable to SEQUENTIAL_10 for
unconstrained types; it has a default value of 1. If specified, the record size will be the
smallest multiple of this value that holds the object and its length. This is the only case
where a file may contain variable length records.

Buffer size attribute

This attribute controls the size of the buffer used as a cache for input-output operations:

BUFFERSIZE => size in bytes

The default value for BUFFERSIZE is 0, which means no buffering.

Am~end

This attribute may only be used in the FORM parameter of the OPEN command. If
used in the FORM parameter of the CREATE command, USEERROR will be raised.

The affect of this attribute is to cause writing to commence at the end of the existing

file.

The syntax of the APPEND attribute is simply:

APPEND

The default is APPEND => FALSE, but this is over-ridden if this attribute is specified.

8.3 USEERROR

The following conditions will cause USEERROR to be raised:

Specifying a FORM parameter whose syntax does not conform to the rules
given above.

38 AlsYs transputer Ada Compiler. Appendix F. v4.O

" Specifying the RECORD SIZE FORM parameter attribute to have a value
of zero, or failing to specify RECORDSIZE for instantiations of
DIRECT_10 for unconstrained types.

" Specifying a RECORD SIZE FORM parameter attribute to have a value less
than that required to hold the element for instantiations of DIRECT_10 and
SEQUENTIAL_10 for constrained types.

" Violating the file sharing rules stated above.

" Attempting to perform an input-output operation which is not supported by
.e INMOS iserver due 'o restrictions of the host operating system.

" Errors detected whilst reading or writing (e.g. writing to a file on a read-
only disk).

Appendix F. Implementation- Dependent Characteristics 39

9 Characteristics of Numeric Types

9.1 Integer Types - T2 transputer targets
The ranges of values for integer types for T2 transputer targets declared in packageSTANDARD are as follows:
SHORTINTEGER

-128.. 127
2**7

INTEGER -32768 . 32767 2"15 I
LONGINTEGER

-2147483648 .. 2147483647
-- 2"31 - 1

9.2 Integer Types - T4/T8 transputer targets
The ranges of values for integer types for T4 and T8 transputer targets declared inpackage STANDARD are as follows:

SHORTINTEGER
-128.. 127

2*7INTEGER
-2147483648 .. 2147483647

- 2*31 -1

9.3 Other Integer Types
For the packages DIRECT 10 and TEXT_10, the ranges of values for types COUNTand POSITIVECOUNT areas follows:

COUNI
0 .. 2147483647

-- 2*31 - IPOSITIVECOUNT
1 .. 2147483647

2*31 - I
For the package TEXT_O, the range of values for the type FIELD is as follows:FIELD

0 .. 255
-- 2*8 - I

40
Ai'sys transputer Ada Compiler. Appendix F, 1,4.0

9.4 I:}oatig Point TI'ype Attributes

FLOAT

Approximate
value

DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 " -20 9.54E-7
SMALL 2.0 ' -85 2.58E-26
LARGE 2.0 * 84 0 (1.0 - 2.0 *0 -21) .93E+25
SAFE EMAX 125
SAFE SMALl. 2.0 00 -126 1.18F.-39
SAFE LARGE 2.0 00 125 * (1.0 - 2.0 00 -21) 4.25E+37
FIRST/ -2.0 *, 127 * (2.0 - 2.0 ** -23) -3.40E+38
LAST 2.0 0• 127 * (2.0 - 2.0 00 -23) 3.40E+38
MACHINE RADIX 2
MACHINE MANTISSA 24
MACHINE EMAX 128
MACHINE EMIN -125
MACHINE ROUNDS T I
MACHINE OVERFLOWS TRUE
SIZE 32

LONGFLOAT

Approximate
value

DIGITS 15
MANTISSA 5I
EMAX 204
EPSILON 2.0 00 -50 8.88E- 16
SMALL 2.0 $' -205 1.94E-62
LARGE 2.0 '0 204 0 (1.0 - 2.0 '* -5') 2.57E+61
SAFE EMAX 1021
SAFE SMALL 2.0 0* -1022 2.22E-308
SAFE LARGE 2.0 00 1021 * (1.0 - 2.0 "* -51) 225E+307
FIRST -2.0 00 1023 * (2.0 - 2.0 *0 -51) -1.79E+308
LAST 2.0 00 1023 * (2.0 - 2.0 0* -51) 1,79E+308
MACHINE RADIX 2
MACHINEMANTISSA 53
MACHINEEMAX 1024
MACHINEEMIN -1021
MACHINEROUNDS TRUE
MACHINE OVERFLOWS TRUE
SIZE 64

Appendix F. Implementation- Dependent Characteristics 41

9.5 Attributes of Type DURATION

DURATION'DELTA 2.0 " - 14
DURATION'SMALL 2.0 * -14
DURATION'LARGE 131072.0
DURATION'FIRST -86400.0
DURATION'LAST 86400.0

42 Alsys transputer Ada Compiler, Appendix F, v4.0

INDEX

ADDRESS attribute 7 LOW LEVEL 10 36
restrictions 7 SEQUENTIAL -_10 36

Append attribute 38 TEXT 10 36
ARRAYDESCRIPTOR attribute 33 INTEGER 4, 40
ASCII 4, 5 Integer types 4, 40
Attributes 7 COUNT 40

ARRAY DESCRIPTOR 33 FIELD 40
DESCRIPTOR SIZE 7 INTEGER 4, 40
IS ARRAY 7 LONG INTEGER 4, 40
RECORD DESCRIPTOR 33 POSITIVE COUNT 40
RECORDSIZE 33, 36 SHORT INTEGER 4, 40
representation attributes 7 INTERFACE 2
VARIANTINDEX 33 INTERFACE NAME 2, 6

Interfaced subprograms
BOOLEAN 4 Restrictions 5
Buffersize attribute 38 10_EXCEPTIONS 36

ISARRAY attribute 7
CHARACTER 4
COUNT 40 Language name 2

LONG FLOAT 4, 41
DESCRIPTOR SIZE attribute 7, 38 LONG INTEGER 4, 40
DIRECT 10 36, 40 LOWLEVEL_10 36
DURATION

attributes 42 "SAME parameter 36
NOT SHARED 36

Enumeration types 4 Numeric types
BOOLEAN 4 characteristics 40
CHARACTER 4 Fixed point types 42

integer types 40
FIFLD 40
Fil - sharing attribute 36 OCCAM 2
Fix'd point types 4

DURATION 42 PACK 6
FLOAT 4, 41 Parameter representations 3
Floating point types 4 Access types 5

-LOAT 4, 41 Array types 5
_ONG FLOAT 4, 41 Enumeration types 4

FORM parameter 36 Fixed point types 4
FOPM parameter attributes Floating point types 4

append 38 Integer types 4
huffer size attribute 38 Record types 5

ile sharing attribute 36 Parameter-passing conventions 3
record size attribute 37, 39 POSITIVE__COUNT 40

Scord-unit attribute 37 Pragma INLINE 2
Pragma INTERFACE 2

Imp !mentation-dependent attributes 7 language name 2
Imp; mentation-dependent prarma 2 OCCAM 2
Implementation-generated names 33 subprogram_name 2
IMPROVE 6 Pragma INTERFACENAME 2
INLINE 2 stringliteral 6
Input-Output packages 36 subprogramname 6

DIRECT 10 36 Pragmas
10_EXCEPTIONS 36 IMPROVE 6

Index 43

INTERFACE 2
INTERFACE NAME 6
PACK 6
PRIORITY 6
SUPPRESS 6

PRIORITY 6

RECORDDESCRIPTOR attribute 33
RECORDSIZE attribute 33, 36, 37,

39
Record unit attribute 37
Representation attributes 7
Representation clauses 9

restrictions 9

SEQUENTIAL 10 36
SHARED 36
SHORTINTEGER 4, 40
STRING 5
String literal 6
Subprogram name 2, 6
SUPPRESS 6
SYSTEM package 8

TEXT_10 36, 40

Unchecked conversions 35
restrictions 35

USEERROR 36, 38

VARIANTINDEX attribute 33

44
Alsys transpuler Ada Compiler, Appendix F. Y4.0

TEST I'ARAMETERS

APPENI)IX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test
is run. The values used for this validation are given below:

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value is the
number of bits sufficient to hold any
value of an access type.

S13IGID 1 (I1..254 =>'A', 255 =>I1)

Identifier the size of the maximum
input line length with varying last
character.

$BIG_ID2 (I..254=>'A', 255=>2)
Identifier the size of the maximum
input line length with varying last
character.

$131GID3 (1..127=>'A', 128=>3, 129..255=>'A')
Identifier the size of the maximum
input line length with varying middle
character.

$BIGID4 (1..127=>'A', 128=>4, 129..255=>'A')
Identifier the size of the maximum
input line length with varying middle
character.

SBIG INT LIT (I..252=>O. 253..255=>298)
An integer literal of value 298 with
enough leading zeroes so that it is
the size of the maximum line length

Vwlidalion Summary Repon AVF.VSR '9 0 50) 2/ 4 9

AIL, imited Aly('OMP_Ol7 V4.0 Appendix C • Pae I of 6

TEST PARAMEl'ERS

$13lC;_REALLIT
(l..249=>), 250..255=>69.OEI)

A universal real literal of value
6'X).(with enough leading zeroes to
be the size of the maximum line
length.

SI3I(; S'TRINGI
(L.. 127 = >'A')

A string literal which when
catcnated with BIG STRING2 yields
the image of BIGIDI.

$131lG_STRING2
(1-,127= >'A', 128= > I)

A string literal which when
catenated to the end of
BIG STRINGI yields the image of
BIG IDI.

$BLANKS
(1..235=>' ')

A sequence of blanks twenty
characters less than the size of the
maximum line length.

$COUNT LAST
2147483647

A universal integer literal whose
value is TEXT IO.COUNT'LAST.

$DfEFAULTMEMSIZE
2147483647

An integer literal whose value is
SYSTEM.MEMORYS IZE.

$DEFAULT STORUNIT 8
An integer literal whose value is
SYSTEM.STORAGEUNIT.

SDEFAULT SYS NAME TRANSPUTER
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC
2#1.0#E-31

A real literal whose value is
SYSTEM.FINE DELTA.

$FIELDLAST
255

A universal integer literal whose
value is TEXT IO.FIELD'LAST.

Vailidaion Summary Report
AVF-VSk.9-5./49

%1%% Linlled A*yCO-MP 017 V4.O
Appendix C - pne 2 tf 6

TEST PAR1AMETERS

$FIXED NAME NO SUCH TYPE
The name of a predefined fixed-
point type other than DURATION.

$FLOATNAME NO SUCH TYPE
The name of a predefined floating-
point type other than FLOAT,
S HOR T _ F LO0A T, o r
LONGFLOAT.

$GREATER_ THAN_-DURATION 00.(
A universal real literal that lies
between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SCG REATERTHAN DURATIONBASE I(N00.)
LAST

A universal real literal that is
g r e a t e r t h a n
DURATION'BASE'LAST.

$I-IIG-_PRIORITY 10
An integer literal whose value is the
upper bound of the range for
the subtype SYSTEMPRIORITY.

$ILLEGALEXTERNAL FILE NAME1 ?#-@10j+ =
An external file name which
contains invalid characters.

$ILLEGAL_-EXTERNAL FILE NAME2[0+=
An external file name which is too
long.

$INTEGER FIRST -2147483648
A universal integer literal whose
value is INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer literal whose
value is INTEGER'LAST.

$I NTEG ER -LAST PLUS 1 2147483648
A universal integer literal whose
value is INTEGER'LAST+I.

Violdullon Summary Reporl V.S-OZ4

,%I%)% Linsitd AbyCOMPOI17 V4.0 Appendix C -Pope 3 or' 6

TEST PARANMETERS

$LESSTHAN DURATION -100(X)0.0
A universal real literal that lies
between DURATION'BASE'FIRST
and DURATION'FIRST or any
value in the range of DURATION.

$LESSTHAN DURATION BASE FIRST -10)0 (O O.0
A universal real literal that is less
than DURATION'BASE'FIRST.

$LOW PRIORITY
An integer literal whose value is the
lower bound of the range for the
subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value is
SYSTEM.MAX MANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAXIN LEN 255
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal whose
value is SYSTEM.MAXINT.

$MAXINT PLUS 1 2147483648
A universal integer literal whose
value is SYSTEM.MAXINT+I.

$MAXLEN INTBASEDLITERAL (1..2=>'2:', 3..252=>'O', 253..255=>'11:')
A universal integer based literal
whose value is 2#11# with enough
leading zeroes in the mantissa to be
MAXINLEN long.

$MAXLEN REAL BASEDLITERAL (I..3=>'16:', 4..251=>'O', 252..255=>'F.E:')
A universal real based literal whose
value is 16:F.E: with enough leading
zeroes in the mantissa to be
MAX)IN LEN long.

Vlidalion Summary Report AVF.VSR.90502/49

AI%)% Limited AlnyCOMP 017 V4.0 Appendix C • Pinge 4 of 6

TEST PARAMETERS

$MAXSTRINGLITERAL (1=>"', 2..254=>'A', 255=>'")
A string literal of size
MAX IN LEN, including the quote
characters.

SM IN INT -2147483648
A universal integer literal whose
value is SYSTEM.MININT.

SMINTASKSIZE 32
An integer literal whose value is the
number of bits required to hold a
task object which has no entries, no
declarations, and "NULL;" as the
only statement in its body.

$NAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT,
S H O R T I'NTEG E R,
LONG _ FLOAT, or
LONGINTEGER.

$NAME LIST TRANSPUTER
A list of enumeration literals in the
type SYSTEM.NAME, separated by
commas.

$NEG BASED INT 16#FFFFFFFF#
A based integer literal whose highest
order nonzero bit falls in the sign
bit position of the representation
for SYSTEM.MAXINT.

$NEW_MEM_SIZE 2147483647
An integer literal whose value is a
permitted argument for pragma
memorysize, other than
$DEFAULTMEMSIZE. If there
is no other value, then use
$DEFAULT MEMSIZE.

Validalion Summary Report
AVF.VSR.90502/49

.l',y% .imited AlsyCOMP_017 V4.0
Appendix C . Page 5 of 6

'ES'' PARAMETlERS

$ Nt'W_STOR_UNIT 8
An integer literal whose value is a
permitted argument for pragma
storageunit, other than
$DEFAULTSTORUNIT. If there
is no other permitted value, then
U S e v a I u e o f
SYSTEM.STORAGEUNIT.

SNt-iW_SYS NAME TRANSPUTER
A value of the type
SYSTEM.NAME, other than
$DEFAULTSYS-NAME. If there
is only one value of that type, then
use that value.

$TASKSIZE 32
An integer literal whose value is the
number of bits required to hold a
task object which has a single entry
with one inout parameter.

STICK 1.OE-6
A real literal whose value is
SYSTEM.TICK.

Va01|dsiuon Summar, Repurt
AVF.VSR.9044)2/49

i%%y% Limited AA(yCOMP _O 7 v4.0
Appendix C - Pag 6 o(6

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following 44 tests had been withdrawn at the time of validation testing for the reasons
indicated. A reference of the form AI-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unintended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING OF THEGUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object's size be no greater than 10 although
its subtype ' - size was specified to be 40 (line 137).

CD2A63A..D, CD2A56A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M. & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

Validiion Summary Report AVF-VSR-90502/49

A'., Limited AlsyCOMP 017 V4.0 Appendix D . Page I o(3

WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

CD5007B This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task's activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar types be distinguished when read
from a file--DATAERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

CE3111C This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

CE3301A This test contains several calls to ENDOFLINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE341 LB This test requires that a text file's column number be set to COUNT'LAST in order
to check that LAYOUTERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Vilidallon Summary Report AVF.VSR.90502/49

.I..ky%. Ilmtled AIsyCOMP_017 V4.0 Appendix D - Pae 2 o(3

WITHDRAWN TESTS

Vaidation summary Report
A FV R95Z4!%1..% Limited AlsyCOMP 017 V4.0

Appndi D Pae of 34

