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Abstract

Weighted integrals of random processes are approximated by the trape%)idal rule based on a
stratified and symmetrized random sample of size n. The weight functions f/re assumed to be twice
continuously differentiable. We consider the rate of convergence to zero of the mean-square integral
approximation error as the sample size increases indefinitely. For randon}/;processes which are twice

mean-square continuously differentiable it is shown that the rate is ;r’d, just as without a random

~N
component (Haber {2]X. For random processes which are a bit more than once, but not twice, mean-

square continuously differentiable the rate is shown to be ré" . In both cases the asymptotic constant is

also determined.
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1. Introduction, Results, and Discussion

We consider the numerical approximation of the integral
1
I)=[f@a (1.1)
0

of a function f over a finite interval. The simple Monte Carlo numerical approximation of / takes the

form
0 1 ¢
JP=— T fWUD
B oiml
where U, - -+, U, are independent random variables each with a uniform distribution over the interval

[0, 1]. When fis square integrable the mean-square error is given by
1
EUF)~IDEOF =— ¢ - U

and the rate of n~! cannot be improved by imposing additional smoothness assumptions on f.

Haber [1] introduced a stratified sampling scheme whereby the interval [0, 1] is partitioned into n
subintervals A,;, i =1, --- ,n, of equal length and a point U,; is chosen at random, i.e., uniformly
distributed, in A,; (the U,;’s being independent for each n ). Then the stratified Monte Carlo
approximation of the integral /(f) is

IOE)== T fWnd.

i=]

When f has a continuous derivative on (0, 1] the rate of quadratic-mean convergence is n~> (1],
1 1

lim n* EU(F) =IO == [IF 0P dr v
n —poo 12 0

and this rate cannot be improved by imposing further smoothness requirements on f. In order to obtain a

|

3

faster rate of convergence when f has a continuous second derivative on [0, 1], Haber [2] adopted the

antithetic variates method and considered the following stratified and symmetrized scheme where along 1-7—"*

with each U, ; its antithetic point U, ; (i.e., the symmetrically opposite point to U, ; in A, ;) is uscd. Thety Codef
and/or

stratified and symmetrized Monte Carlo approximation of the integral /(f) is J1at | upocial
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1

)=+ 3 3

im]

U Ua) +fU 0] . (1.2)

If f has a continuous second derivative on [0,1] then the rate of convergence is n~> and

2

1
’ 2
= { [F()) dr . (1.3)

lim (2n)° E[1(f) = I,(f))* =

In this paper we consider weighted integrals of random processes and establish the rate of
quadratic-mean convergence and the asymptotic constant for estimates of the form (1.2), allowing for
nonuniform partitions. Throughout this paper X = {X(t,w), 0S¢ <1} is a measurable second-order
random process with mean zero, E [X (¢)] =0, and covariance function R (7,s) = E [X ()X (s)], defined on a

probability space (Q,F, P). We shall be concemed with the numerical approximation of the integral

1
1(X)= [f @)X @)dt 14
0

i
which exists as a sample path integral whenever f 1f@i R™%(@, t)dt < os. (We suppress the probability
0

variable @ and write X(¢) for X (¢, ®)). Integrals of the form (1.4) are common in detection and
estimation problems. Unlike (1.2) we allow the partition {A,;}i.; of the interval [0,1] to be
nonequally-spaced and we adopt "regular” partitions 0 =1, g <) < *** <l,a =1 defined by means of
continuous, strictly positive, probability density function A (¢) on [0, 1] as follows:

b

[roa=+ ; i=01, - ,n. (1.5)
0 n

We sct
An.i = (‘n,i-l ’ tn,i). ’ Af,.,' Slyi—lyi-1 i=1, - ,n. (1.6)

When A (t) = 1 we obtain a uniform partition of {0, 1]. It will be seen subsequently that the quality of the

approximation can be improved by tailoring the density & (¢) to the covariance R (¢, 5) of the process X.

We assume that foreachn 2 1,
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i) U, is uniformly distributed overA,;, i=1, -+ -, n,
ii) Ua 1, *** , Una are independent,

iii) {U,i} = is independent of the process X.
We denote the antithetical point of U, ; by U’y ;:
U'n,i = zcn.i - Un.i (.7

where ¢, ; is the midpoint of A, ;,

(tn,i-1 + i) (1.8)

1
Cpi = -2'
The stratified and symmetrized Monte Carlo approximation of the integral / (fX) of (1.4) is now defined

as

=5 % {f (UadXWa) +f(U’.,,-)X(U’,.,.-)}At..,; 19

i=l
and is in fact a trapezoidal rule. We first establish an expression for the quadratic-mean approximation

error under general conditions. This is useful for evaluating finite sample size performance and for

studying the asymptotic convergence properties.

1
THEOREM 1. If [f2(t)R(t,t)dt <o thenforall n 2 1 we have
0

EUGK) - IR = 3 {% Aty [ PHORE O+ f ORE 2eni =) f Qcni~Ddt
i=l A

- [fORE s (s)dtds}. (1.10)
Ay Aui

We next show that when the function f has a continuous second derivative and the process X has
cssentially one (but not two) quadratic-mean derivative which is mean-square continuous, then the rate of
convergence of the quadratic-mean integral approximation error is precisely n~* ( not n=3 ). Specifically

we make the following assumption.




ASSUMPTION A.

i)  f has a continuous second derivative on [0, 1].

ii)  The covariance function R (t, s) of the process X has continuous mixed derivatives R&i(, s)of
order 2, 0<k +j <2, on the unit square [0, 1] x[0.1}); and of order 3, k+j =3, off its
diagonal with finite one-sided limits at the diagonal which are continuous along the diagonal.

iii) The function r(t) = R (¢, t) has a continuous third derivative on [0,1].

The assumption of continuous mixed derivatives of R of order up to 2 on [0, 1] x [0, 1] is equivalent

1o the assumption that the processes X has one mean-square continuous quadratic-mean derivative. The
additional assumption of differentiability of order 3 off the diagonal is weak and is always satisfied when,
for example, X is stationary, has rational spectral density, and exactly one quadratic-mean derivative. The

smoothness assumption on r (¢) is very weak and is always satisfied in the stationary case. With

R @, = lim RY@uyv), RMH@ )= lim R% @yv), (1.11)
(0 (0

the one-sided limits of the derivatives of R above and below the diagonal, respectively, we set
Bujt)=R&i(s, 1) - REI(r, 1) (1.12)

which exist under Assumption A for k + j =3. We can now state one of our main results.
THEOREM 2. Under Assumption A we have
1 1
lim 2m)* EU(X) - I2a(fOY = —31 [3133 o)+ TB21 (D) dr . (1.13)
" oh

It is seen that the rate of quadratic-mean convergence is precisely n~*, provided 3B3,0(t) + 7B2,1(1)
is not identically zero, and cannot be improved by additional smoothness of f. In case the third order
mixed derivatives of R are continuous at the diagonal, the asymptotic constant in (1.13) is zero and the
mean-square approximation error is o(n ™). The asymptotic constant in Theorem 2 depends on the
density function k of the regular partition. The optimal density h* which minimizes the asymptotic

constant in (1.13) is given by
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2 s
B = : {F2®)[3B3,0(t) + 72,1 (D]} (1.14)

[ (FH@)(3B3,0(u) + 7B, (w)1}¥° du
0

for which (1.13) becomes

1

5
4 2 _ 2 /5
Lim 2n)"E U (X) - La(fX))? = 120 {I [f (O[3B3,0(t) + B2, 1(0]] dt} :

When the process X is weakly-stationary, R (t, s) =R (¢ — 5), Assumption A simplifies to

ASSUMPTION A’ (STATIONARY CASE).

i)  f has a continuous second derivative on {0, 1].

iif)  The covariance function R (¢) has a continuous derivative of order 2 on the entire real line and

of order 3 away from the origin with finite one-sided limits R ®)(£0).
With
B3 ARPO+) -R®©0-) 20, (1.15)
Theorem 2 becomes

COROLLARY 1. When the process X is stationary, under Assumption A’, we have

lim (20)* EU (%) ~ 14O = j f f(‘; . (1.16)

It is seen that if R®(r) is discontinuous at the origin, the quadratic-mean convergence rate is
precisely n™; if R®)(¢) is continuous at the origin then B3 =0 and the mean-square approximation error

is o (n™). The asymptotically optimal density is now given by

I 10
JIf @)1 du
0

for which (1.16) becomes

5
1
lim 2n)* E[I(fX) - I, ()P = % {I If ()13 dr} .
R —poe 0
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It is clear from Theorem 2 that for the approximation of weighted integrals of random processes we
obtain a quadratic-mean convergence rate of 2~* when the weight has two continuous derivatives and the
process has essentially one but not quite two mean-square continuous quadratic-mean derivatives. We
now show that under an additional smoothness condition on the covariance function R (z, s) of the process

X, we can obtain a rate of n~5 for weighted integrals of random processes. To this end we set

ASSUMPTION B.

i)  f has a continuous second derivative on [0, 1].

ii) The covariance function R (¢, s) of the process X has continuous mixed derivatives R*/(z, s) of

order 4, 0 < k + j < 4, on the unit square {0, 1] x [0, 1].

Part (ii) of Assumption B is equivalent to the assumption that the process X has two mean-square

continuous quadratic-mean derivatives. We then have our second principal result.

THEOREM 3. Under Assumption B we have

1 .2
Hm(Zn)sE[I(fX)—Iz,,(fX)F:%I A 4 (1.17)
n—)oe o

o
(V]
~~
~y
A

where

A2 =R DI OF + 4RMO@, D (O)f" @)

+4 %R’"’(:. Of OF7@) + RV 1, @) | + 4RZ1 @, 0)f (0)f (1) + RF2(t, O)F2 (1)

= E{[f X"} (1.18)

and differentiation of the process X is meant in quadratic-mean.

Since A%(¢) cannot be identically zero, the rate of quadratic-mean convergence is precisely n~> and
cannot be improved by additional smoothness of for R. As in the discussion following Thcorem 2, we

can select the partitioning density 4 so as to minimize the asymptotic constant in Theorem 3. We obtain

2/6
wo=A0

[1AGu)1*/5du
0




for which (1.17) becomes
1 6
lim 2n)® E[I (fX) - I (fX))* = 425 J’ |A(£)[%6 dt } '
R —poo 3

We now specialize Theorem 3 to the stationary case. Here Assumption B simplies to the following.

ASSUMPTION B’ (STATIONARY CASE).

i)  f has a continuous second derivative on [0, 1].
ii) The covariance function R (¢) has a continuous derivative of order 4.
We then have

COROLLARY 2. When the process X is stationary, under Assumption B’, we have

2 ¢ A
: 5 2 _
}1m(2n) EU(X) = I2,(X)P = 5 g P dt (1.19)

where
-2 - ] 2 ”, ’ 2 id @) 2
A O=ROU"OF + 2[-R"O)] (2’ ®OF = £ @O)f ()} + R™() f(2)
= E {[f (OX(O1")2. (1.20)
The asymptotically optimal partitioning density is now given by

-2 1/6
D

[ (A @)V du
0

In the stratified and symmetrized Monte Carlo approximation considered in this paper, the randomly
chosen points {U, ;). are uniformly distributed within each subinterval of the rcgular partition. On the
other hand one may wish to retain the property of the crude Monte Carlo whereby the randomly chosen

points {U,;}; are uniformly distributed over the domain of integration {0, 1]. Such an approach lcads

to trapczoidal Monte Carlo integration which was considered in Yakowitz et al. [4] for integration of

(deterministic) functions f and in Masry and Cambanis [3] for weighted integrals of random processcs. It
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may be of interest to provide a comparison of the performance of these two integral approximation
schemes (both of which use trapezoidal rules) under identical assumptions on the integrands. For the
trapezoidal Monte Carlo approximation we use independent random variables Uy, - - - , U, uniformly
distributed on [0, 1], independent of X, and we let T, 0 80 < T, ) <Tp2 < *** <Tpnp <187, be

the corresponding ordered sample. The integral (1.4) is approximated by

BP0 =2 §) [f EnX Cn) + Enis X Cniar) | Enion =) (121)

For simplicity we state below the convergence properties of /%7 in the stationary case only. Under

Assumption A’ we have [3]
1
limn*E (1 (fX) - 1D (MO = %/33 j FA(dr + %E[(ﬂ( Y(1) ~ (XY ()P =Crap -
R —poo 0

In order to compare this to Corollary 1, we assume even sample size N so that
2
lim N* E[l UX) - If® (ﬁc)] =Cinp
N

whereas by Corollaly 1 with h (l) =1 we have
im N Ell(fX)-lN(fx)l -—j‘} (t)dt-—c tr

It is clear that, while the symmetric-stratified and the trapezoidal Monte Carlo approximations have
identical rates of quadratic-mean convergence, their corresponding asymptotic constants satisfy
(Cuap ! C )™ > (45/2)" =2.18 and thus, asymptotically, for the same accuracy measured in terms of
quadratic-mean error, more than twice as many samples are required for the trapezoidal scheme. This

discrepancy also appears in the example below where the finite sarhple size performance is evaluated.

Finally, it may be interest to examine the performance of the stratified-symmetrized Monte Carlo
integral approximation when the function f and the process X satisfy weaker smoothness conditions than
those stated earlier. For integrals of random process / (fX) we assume for simplicity that f=1 and X is
wide-scnse stationary process. The following table of quadratic-mean convergence ratcs complements

Theorems 2 and 3. The additional rates displayed in the table can be established in the manncr of the




-10-

proofs of Theorems 2 and 3.

I2,(f) I2,(X)
Smoothness Rate Smoothness Rate
f continuous o(n™h R continuous o(n™h)

R’ continuous o(n™?
f’ continuous | o(n™?) R” continuous o(n™>)
R” continuous & n
R®(041) finite, #0
f” continuous | n~3 R™ continuous n-S

Recall that a wide-sense stationary process X has k mean-square continuous quadratic-mean
derivatives if and only if R®® is continuous. It is then seen from the table that when the nonrandom
function f or the stationary process X have 0, 1, or 2 derivatives, usual or quadratic-mean respectively,
the rates of convergence of the mean-square approximation error of their integrals are identical. For the
approximation /,,(fX) of I (fX) with mixed smoothness conditions on f and on X, it can be shown that the
slower rate prevails. Thus, for example, if f’ is continuous and R™® is continuous, the rate of

convergence of the mean-square approximation is o (n~>).

Thus the ultimate rate of convergence, n~>, of the symmetric-stratified Monte Carlo approximation
of I(fX) is achieved when the nonrandom function f has two continuous derivatives and the random
process X has two mean-square continuous quadratic-mean derivatives; i.e. when the usual smoothness of
fand the quadratic-mean smoothness of X are comparable. This is in contrast with the trapezoidal Monte
Carlo approximation of /(fX) whose ultimate rate, n™*, is achieved when the nonrandom function f has
two continuous derivatives and the random process X has one mean-square continuous quadratic-mean
derivative and continuous mixed partial derivatives of R of order 3 off the diagonal, but not two
quadratic-mean derivatives; i.c., when the quadratic-mean smoothness of X is less than the usual

smoothness of f!
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EXAMPLE. We illustrate via an example the finite sample size performance of the stratified-
symmetrized Monte Carlo approximation and compare it to that of the trapezoidal Monte Carlo

approximation. We consider a stationary process X with mean zero and covariance function
R@®=Q1+y)t])e™M"

where ¥ > 0. Note that R (0) =1 and the process has exactly one quadratic mean derivative. Moreover,
R®(r) is discontinuous at the origin so that Corollary 1 is applicable and the rate of mean-square error

convergence of I,,(fX) is n~*. For simplicity we take f (f) =1 so that the integral to be estimated is

1
I (X)=jX (t)dt. We choose an equally-spaced partition, A(t) =1, for which the approximation (1.9)
0

becomes

i=1

In0=5- 3 {x Uni)+ xaf.,.-)} .

The variance 6% of 1 (X) is given by

0'2=E[(X)]2=}}R(t-s)dtds=2- 2—2+ l+-3— e >,
00 Y Y Y

From Theorem 1 we find after some algebra, that the mean-square error is given by

giron- 1P =L+ 8] f1-em) -2 1em).

The asymptotic constant C , is given by

Co=Lm

=720

Let N=2n=2,4,---, be the (true) sample size with corresponding mean-square error
mse(N)=E[I(X) - IN(X)]z. The fractional mean-square error is then given by mse (N /2. In order to
select appropriate values of ¥ for numerical display of the finite sample size performance, the behavior of
the fractional error mse (2)/02 ( based on 2 samples) as a function of y was investigated. Table 1 below

lists the results along with the value of the asymptotic constant.
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y mse(2)/a? Cor

2 | 6.055x107° 6.66 x1075
1 | 5.456 x1073 8.33 x1073
3 | 8.02x1072 225
s | 2321 1.04
7| .4293 2.858

10 | .7646 8.333

15 | 1.361 28.125

20 | 1.973 66.666

We select two values ¥ =5 and ¥ = 10 corresponding to moderate values of mse (2)/ o’.

In Figure 1 the fractional mean-square error mse (N)/o? is plotted as a function of the sample size
N=2,4,6, ---,30fory=5and y=10. Itis seen that for the smaller value of y =5, the fractional error
is considerably smaller for each sample size N. This can be explained by the less rapid decay of R (¢) and
hence the larger correlation between consecutive samples so that /y(X) provides a better estimate of /(X)
in this case. The closeness of the fractional mean-square error to its asymptotic value,

Cyu ! G*

mse(N)/o? ~ N

is displayed in Figure 2 for parameter ¥ =5. Note that the asymptotic value overestimates the true error
for all sample sizes N in the plotted range. Naturally, the discrepancy between the two values diminishes

as N increases.

It may be of interest to compare the above finite sample size performance to that of the trapezoidal
Monte Carlo approximation (1.21). For the latter approximation the expression for the mean-square error
for a finite sample size is given in (3, Eq. (1.13)]. In Figure 3, the fractional mean-square errors
mse(N)/c? are plotted as functions of the sample size N =2, 4, - -+, 30 for y=5. It is scen that the
symmetric-stratified approximation outperforms the trapezoidal Monte Carlo approximation by a wide
margin for all sample sizes N in the plotted range. For 1% fractional mean-square error 6 samples are
required for the symmetric-stratified approximation but 12 samples for the trapczoidal Monte Carlo

approximation; for .1% fractional mean-square error, the corresponding numbers of samples arc 12 and
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24 respeciively. Asymptotically, for large N, we can compare instead the asymptotic constants
Crp={1+6Y+(¥-1 e} /2, Cu=7/120
and it is seen that forall y > 0,
Cirp/C gr > 360

so that, for the same mean-square error, the trapezoidal Monte Carlo approximation requires a sample
size N greater than that of the symmetric-stratified Monte Carlo approximation by a factor of at least

(360)/* = 4.35. Wheny =S5, [Crap / C r]" = (372.32)" = 4.393,

2. Derivations

In order to simplify the writing throughout this section we will drop the subscript n from

Anis tnis Blni , Cni» Upi.

PROOF OF THEOREM 1. The expectation in E [/ (fX) - I2,(fX)]? is with respect to both the

random samples {U;}}.; and the random process {X(¢), 0 <t < 1} which are mutually independent. We
first verify that both /(fX) and /,,(fX) have finite second moments. To simplify the notation we put

Y@)=f )X (@)and M (1, s)=f () R(t, s)f (s). It follows that

1 11 1
E(IIMI*YSE{JE(IY®Idt¥ =[[E(IY©)Y (5)| } deds < ([ M*(t, 1)t )2 < oo
0 00 0

where we used E2{| Y (1)Y (s)|} S E{Y2(1)} E {Y?(s)} =M (t, ) M(s, 5) . The more restrictive condition

1
jM(t, t)dt <o is needed for the finiteness of the second moment of /,,(Y). Indeed, taking first the
0

expectation with respect to the random samples, we find for each i,

2 . - L 2 =L o0
E{Y (U,)}-E{M {Y (:)d:} " '{M(t, f)dt <oo.

3

These inequalities justify the interchanging of integrals and expectations below. In view of (1.1)

and (1.9) the integral approximation error can be written as
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1(0) = Ioa() = i{ [ Y@t~ 2861 U+ Y C2ei - U.-)]} A% e

i=1 (Al i=]

The bias of the ith error term is

E{e)= E{E(e; | X)} = E{ | Y(t)dt—% | [Y(t)+Y(20,-—t)]dt}= E(0}=0.
A 4

Thus /,, is an unbiased estimator of I:

E{(I(Y)-13,(1)}=0.

Since given the random process X, the error terms {e;} 7. are independent with zero mean we have for

E{eiej} =E{E(eiej | X)} =E{E(e;| X)E(¢; | X)} =E(0)=0.

It follows that

n 2 n L n
mse2x éE[l(Y)—Iz,.(Y)]2=E{Z e;} =Y ¥ Eleiej} =Y E(el}.

i=1 i=] j=1 i=]

Performing first the expectation with respect to the samples we find

2
E{ef) =E{ [r@ar- %A:;[Y(U;)+ Y(2c.-—U.->1}
A

2
=E {[ jY(t)dt] = Ay [Y(0)dt [Y (U)+Y 2c; - U} + %At,z[Y(U,-) +Y(Q2c; - U,-)]Z}
A A

2
=E{[IY(t)dt] - [ Y(o)de 1Y (s)+ Y Q2ci—5)lds + % Ay [ (Y (8)+Y(2c; - )P d:}
A Ai A A

= [ [ M@ s)deds - [ [ M@t 5)+ M 2¢; - 5)] deds
AA AA

+ %AI; _[[M(t. D+2M(t, 2¢; =)+ MQ2c; -1, 2¢c; - 1)] dt
A,
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= Lan[ M@ 0+ M@ 20 -0)1de - [ [ M@, 5 drds .
2 A Ad

and (1.10) follows by summation. (J

PROOF OF THEOREM 2. We first Taylor-expand R (t,s) for (¢, s) off the diagonal of A;xA; (i..,

¢t # 5) about the center (c;, ¢;). From Assumption A. (ii) we have

R(t, 5)=R(ci, ¢)) + (¢ = c) R"O(ci ci) + (s = i) R% (civ €)

+ %(z -2 R¥(ci, c) + —;-(s =) R%3(ci, )+ (t = ci)(s — ) RV (ci c)
+ %(r —¢)’ R*O(int) + -;—(: —¢;%(s - ¢))R*>!(int) (2.1
+ %(z — et — ¢ RM3(int )+ —é—(s — ¢ R%3(int)

where int is a point in the open line segment determined by (z, 5) and (ci, ¢;) (depending of course on
both). We also Taylor-expand the function r(t) =R (¢, t) about ¢;. In view of Assumption A. (i) — (iii)

we have 7(t) =2 R10@t, 1), 7’(t) =2(R%°(t, 1) + R 1 (s, 1)] and thus

Rt 1) =R(ci, i)+ (t — c)2 R™(ci, ¢) + (t = c)*R¥0(ci, ci) + RV (ci, €]
1 3 rys
+<¢ -¢;)’ 7”(int) 2.2)

where int is a point in between ¢ and ¢; (depending on both). Substituting (2.1) and (2.2) into (1.10) and

regrouping terms using the symmetry of R (¢, s) we obtain

MSE, = E[l (fX) - 22X @23
= 3 R, ci){%mi [+ Lo, [fof Qe —:)dz-(Jf)’} AEY® @30
i=1 A 24 A
+ TR, c.-){A:.- [e-carrma-2[f) | (:-c.-)f(r)d:} AEYY (32
i= A A A

i=]

+ TR, c;){—;-Ata [ (= cPfwds + 58 [ ¢ - OF Qe =
A A
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(N Ja-ciro dt} Azl (233)
A A

i=]

+ 3 RM(, c.-){% AL | (- eyds - % A% [ (¢ = f @O ci-vyat
A A

~(f t-cof @ d:)’} AEY  (234)
A,
+y —112- At; [ - P (int )dt AE,  (235)
i=1 A

* fi { % & AI fOF Qe =0 %(t =)’ RO, 2~ w) + %(c; —1)* R%3(u,2¢; - w)

+ 20t = e = DR, 26; = ) + -6 = ci)ei = 1) RV (w26 = ) 1 e

!

12s

FOF O % (t - ¢ R¥OCint ) + %(s — ¢ R%3(int) 2.3.6)

+%(t—c,-)z(s—c,-)Rz"(int)+%(t—c,-)(s,-—c,-)zR"z( int ) ] deds } A3

In (2.3.5), int denotes a point in A; depending on ¢. In the first term of (2.3.6), R (¢, 2¢; — t) is expanded
about R(c; ¢;) and thus the point 1, is in between ¢ and ¢;, and in the second term the intermediate point
" int " is in between (¢, ) and (c;, ¢;) and we excluded the diagonal ¢ = s from the integration because it

has zero Lebesgue measure.

We now use the Taylor expansion of f (¢) about c;, which in view of Assumption A.(i) has the form
1 ”
F@O=fled+@—cof e+ 5~ )2 f1d 4 ¢)) (24)

and the intermediate point d depends on ¢ and c;.

Terms involving R (c;, ¢;) (E2°). From (2.4) we find

— Ap F e 3. 1
{f— AL f () + A 57 f7(inty), @.5)

[ = At e+ A < Uef "Cinta) + [ e))
A
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v oq €U "(intg) - f*(ints)] +Af % [f”(inty)}? , (2.6)

[ £0)f Qe =yt = Aaf )+ A8 —-{F @f "(inty) = [FE)P)
Ai

+ At —f “(€lf”(int3) - f7(inty)] + Aff 32_0f “(ints)f”(2c; - ints), @7

and substituting into (2.3.1) we obtain

E} = i R(c;, c)AL 1 [f"( int2))® + -l—f"( ints)f”(2c; — ints) - 1 U Cint )P } 2.8)
i=l 64 10 9

Using

L = [ hodt = h(int)ag 2.9)
U

it follows from (2.8) by Riemann integrability that as n — o,

RG OO 2.10)

] 00
@nyER® - <= j P

Terms involving R'-%(c;, ¢;) (EX9). From (2.4) we find

[ ¢~ cof s =88} — £'(e+ A Dl (int) = F(ints)), @11
Ai

[t -coft@ydr=as {S—f (€)f'(ci) + At} 314- f e (inty) - f*(int3)] ,
A

+ A % Flecof”(intg) + ArS {[f"(intg))? - [f"(int3)]?) , (2.12)

1536

and substituting them, along with (2.5), into (2.3.2) we obtain

EM = zR‘°(c..c.){A:. 144f(C.)[ f”(intg) - f"(mtn)l+o(n‘7)}

i=]

where the term o(n~") is uniform in i since by (2.9), As; < (en)™! for some € > O as h is bounded away

from zero. It then follows from (2.9) that as n — oo,




1 .10 p gt
s 1,0 8 ¢ RGO Wf"®)
@n)° E} > 6[ P dr. (2.13)

Terms involving R*%(c;, ¢;) (E%°). From (2.4) we find

Je=cRf di= AR = f () + 85 o= fCinte), 2.14)
Ai

[6- W= 88 = e+ A o (PP +£ () "(inte))

A;

[f”(intg))? (2.15)

6 L ereovifCinten) = £( 7 _1
+ Ar; 384 Fedlf”(intyy) = f”(intyp] + A 1792

J 6= (f @ei = n)dt = A} = (6D + e 25 Uf (e "(inte) = P (eT?)
A'.

+ A8 = e Cintio) = £7Cint )] + AT o f(int)f Qe — inty),  (2.16)

384 1792

and substituting into (2.3.3) along with (2.5) we obtain

i=]

E20 =3 R, c»{m? & el f"(inte) = 5f"(into)] + o(n*‘>}

where the 0 (n~%) term is uniform in i. It follows from (2.9) that as n — o,

1 2,0 ’e
s 20 _, 4 ¢ RO Of O
@n)° E3° - 2 (j) P dt . 17

Terms involving R'!(c;, ¢;) (EL'). Substituting (2.11), (2.15) and (2.16) into (2.3.4) we obtain

E}'= f; R"\(c;, c,-){Ax? T%o—[fl (€))? +o(n*‘)}
i=[

where the o (n~) term is uniform in i, and thus by (2.9), as n — oo,

1
s a8 (RM@ 0 @)
@2n)’ EM S 45!) P dr . 2.18)

Temms involving r”” (EZ). Substituting (2.4) into (2.35) we obtain

’_L. §L2 ", s e -5
E,= 12 M{At. A A’ (inty) = r”(int)) +o(n )}
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where the o (n~5) term is uniform in i, and using (2.9) we find as n — oo,

L ey - oy de =0. 2.19)

4 ror
@n)" En = 1264-[ R)

Temms_involving R*%,R%! (E3). When we substitute (2.4) into (2.3.6) the dominant term

corresponds to f (c;). We thus have

E= i[fz(c,-) +o(D]x (2.20)

i=]

1 1 1
X{I Ag; ;[ (- C.')3[§ R3O, 2¢c; —u,) - 3 R%3 (uy, 2¢; — uy)
— R¥ (uy, 2¢; = ug) + RV (uy, 2¢; ~ u))dt (2.20.1)
-] [% (¢ =c)* R¥O(int) + -;-(s -¢;)* R®3 (int)
AA;

+ %(: —¢)?(s —¢) R¥!(int) + —;-(: - ci)(s = ¢ RV3(int)) dtds}. (2.20.2)

where 0(1) is uniform in i. In view of the possible discontinuity of the third order mixed partial

derivatives of R at the diagonal (Assumption A. (ii)), we proceed as follows. For the first term (2.20.1) in

P 2
(2.20), we split the integral j into the two parts | + [ and then apply the mean value theorem to each

tia ]

part, since (¢t — c,-)3 has constant sign over each half-interval (¢;_;, ¢;), (¢;, t;), to obtain, e.g.,
¢ [4

J@e—c® R3O, 2c; - u)dt =R*%@y) [ ¢t -c®dt +R*Oby) [ -c) ar
A ba <

= % AL -R¥O(a,) + R3O(b))],

where a; and b denote intermediate points in A; xA; above and below its diagonal respectively. (For
R(t, 5), above the diagonal means ¢ <s, and below the diagonal means ¢ > 5). For thc sccond term

(2.20.2) of (2.20) we split each of the four double integrals ” into four parts corrcsponding to the
AXA,
s
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regions above and below the diagonal where the terms (¢ = ¢;)*, (s — ¢;)?, (t = c)?(s — ;)\ (¢ — c)(s — ¢;)?

have constant sign, and then apply the mean value theorem. For instance we get

[Je-cy R3'°(int)dtds={ [+« [ + ]+ [ }(z-c,-)3R3-°(im)d:ds
AA; 1<s<y; Gl <s <t La<s<t Lia<y<t<c
Ly <t<e <<y

—{_p30 s 9 | p3o s _1 _ p30 s 9 _p30 s_1
-{ R¥*@s)ar 25 +R (ag)AL] a0 TR (bs)Af a0 ~Rbear 640}

=af = {- 9R3%(as) + R3%(ag) + IR O(bs) - R3'°(b6)}

where a, and b, denote intermediate points above and below the diagonal in A; X A; respectively.

Proceeding likewise for the remaining terms we obtain

E} =3 [F2(c) + o (1)] Aff x

i=]

A _1pao,y,.1pi0 1 po3, v L posg
x{256[ 3 R@)+ 3 RZ(GD + 3 R (@) - R (b2)

+R2"(a3)-Rz-‘(bg)-R‘-z(ao+R"2(b4)}

1
- <oi0 |~ R @) +R*(y) +9R3'°(b5)—R3'°(b6)]

1 r
- o[- RO +9R%(ap) + RO - 9Rby) |

Lot
- 5960 L~ 3R%Y(ag) + TR*\(a19) + 3R*'(by) -7R2-‘(b,0)]

. L- TR (@y) +3R ¥ (a) + TR (bu) - 3R (b ‘2)] }

Using (2.9) and (1.12) we obtain as n — oo,

1 2
@.] 1 1 1
@2n)* E} > 16(‘[41‘,% {ﬁ [- gﬂa.o(t) + 550.3(‘)+ﬂ2.l(‘)-ﬂl.z(f)]




-21-

4
2:960

+ 6-240 [plo(t)—ﬁo,:;(t)] - [ﬁz,:(')-ﬁl.z(t)]}.

By (1.11) we have by the symmetry of R that Ri*(s, ) =R}/(t, t) and thus B k(1) = — By (1) for

Jj+k=3. Hence

1
4 53 1 ¢ ffo
@n)' Bz - 5 g P [3p,,o(:)+ 7/32,1(:)] dr . 21)

The final result follows from the expression (2.3) of the mean square error and from the asymptotics of its

terms derived in (2.10), (2.13), (2.17), (2.18), (2.19) and (2.21). O

PROOF OF COROLLARY 1. Inthe weakly stationary case Part (ii). of Assumption A reduces to

Part (ii) of Assumption A’, while Part (iii) is automatically satisfied. Also in this case B3 o(t) = ~ 83 and

B2.1(t) = B3, and thus Corollary 1 follows from Theorem 2. O

PROOF OF THEOREM 3. The proof proceeds along lines similar to the proof of Theorem 2.

Since by Assumption B.(ii), R (¢, 5) has continuous mixed partial derivatives of order four, its Taylor
expansion (2.1) has the point (c;, ¢;) in place of the intermediate point int in the terms of order three and

in addition it has the following fourth order terms:
-217 (¢ -c)*R*%(int) + %(: -c)*(s ~cHR¥(int) + %(z —c)*(s = cY’R¥2(int)
+ %(: —e)s — ) RM(int ) + -217(.9 ~c)* RO4(int) @1y

where int is again a point in the open line segment determined by (z, 5) and (c; ¢;) and depends on (¢, 5).
Also for the Taylor expansion of r(¢) = R(¢, t) in (2.2) we now have

r®) =2[R30t, £) +3RZ1(t, )] , r () =2[R*%(, 1) +4R>' (1, ) + 3R¥3(1, 1)),  (2.22)

and the third order term in (2.2) is modified as follows and a fourth order term is added:
= cPrOe) + 5o - ) rOm) @2y

where v, is a point in between ¢ and c;, depending on t. When (2.1) - (2.1)" and (2.2) - (2.2)" are now

substituted into (1.1), the resulting expression for the mean-square error is given by
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MSE, =E3° + E}O + E20 + ELY + (ELY + (E3Y + E}
where the first four terms on the right side are given by (2.3.1) - (2.3.4), (E})” and (E2Y are modifications

of (2.3.5) and (2.3.6) respectively and E} is a new term. We have

Ey=3 %A:.{rm(c.-) f@ = e e + } fa-c f’(r)r“)(v,)dr}. (23.57
i=1 A A

the term (E3)” modifies E> of (2.3.6) and simplies to

= - i Rs‘o(civ

i=1

[Jle-cP +6 -l @) f()dras,
AA

O\|-—-

-5 R (e = j j [ -l =c)+(=c)s =cPIf O f ()drds,  (23.6)

i=]

because the term in (2.3.6) involving _[ is identically zero once R/*(u,, 2c; —u,) is replaced by
A'.

R/*(c;, ¢;). The additional fourth order term E? is given by

v L, Y — e 1L p40
—ZZN.A{f(t)f(%. e —ct [ R

i=]

1 1 1 1
- ER” + ZR“ o RV + Evs R%* ) (u,, 2¢; - u)dt

_" L_,44,o. .l_-.3_,3.1~ l_.2_'22'2.
lZ‘;i/_[f(t)f(s)[24(t ci)'R (mt)+6(t ¢y (s—c)R (mt)+4(t c)*(s - ¢;)? R¥3(int )

+ %(: —c)s—-¢)PRY3(int) + 2—14(5' —c)* RO4(int )] dt ds 237
where u, is a point in between ¢t and ¢; and " int " is a point in the open line segment of (s, ¢) and (c;, ¢;).

The asymptotics of the terms (2.3.1) - (2.3.4) are given in (2.10), (2.13), (2.17) and (2.18).

The term (E;)’. From the Taylor expansion (2.4) of f we find

[t A= = ff (e) +o(n™),
A 40

[€-c* POdE=a8 = ) +o(r™),
i 80

where the o(n~%) terms are uniform in i. Substituting into (2.3.5)" we obtain
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(ELY = }“: {Ar? L [Zf @ F ) r®e) + L ey r® (int )] + o(n“‘)}
fart 960 4

and using (2.9) we have as n — oo,

1
n* € 35 [ OF OO0+ P OrO01 223
0
The term (E3Y’. Using (2.5), (2.11), (2.14) and
—c) =Ar5 L fre. 6 1 (ompiy N _pmes
{(r ¢ f @dr=Arf <o e+ Asf =z [f”(intyy) = f*(int 10)] (2.24)

we obtain
(E3) = - i R"°(c.-c.-){At? E}E f)f () +o(n*‘)} - f: R¥Y(c;cy) {A:? 1+44f(c;>f'(c.-) +o(n *)}

i=] i=1

where the o (n'6) terms are uniform in i. It then follows by (2.9) that as n — oo,

1
, QFr® [ 2 s 2
@n)’ (E3Y — - £ ath-(t)L [Ts_ R30(, 1)+ S R¥ 1) ] dt | 2.25)

The term E“,. When the Taylor expansion (2.4) of f is substituted in (2.3.7), the dominant term

corresponds to f (c;) and we obtain

En=Y [f(c) +o(1)]x (2.26)
i=]
xisan [@-c)| R0 - L3ty g2z Ly Lgosiey oc_uyar (2.26.1)
e R Y 6 4 6 24 i

- Af i [2% (t~c)*R**(int) + 51;4- (s = c)* R%*(int ) + % (- ¢ (s —c)* R¥*(int )J dt ds
(2.262)

I] [%(: —¢;)’ (s - c)R*!(int) + %(: —¢;) (s — ;) R (int )} ds ds} (2.26.3)
A,

A
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where o(1) is uniform in i. Applying the mean value theorem, we find that the term (2.26.1) equals

6 1 [p40_ p04_4p3l_apl3 2,2] - e

Ml 38024 [R +R™—4R™ —4R +6R™ | (inty), (2.26.1)
and the term (2.26.2) equals

- 61 4,0 ; 0,4 (: 2,2/ :{ ’

A 33024 [3R (intz) +3R%* (int3) + 10R“*(iinty) | . (2.26.2)

In order to apply the mean value theorem in the terms of (2.26.3), the square A; X A; is split into its four

squares with half size over each of which (¢ — ¢;)(s — ¢;) has constant sign. We thus find

J .[("Ci)3 (s —c))R>!(int )dr ds =
A A,

[ LG [ [
={R3-'(int5)f [ +R*!(intg) [ [ +R>}(inty) [ [+R*I(ints) | f}(t—c,-)3 (s —c)drds
Gi by G ¢

Ly b Lia ¢

= AfS ?%{R'-‘-‘( ints) - R3!(intg) + R*1(inty) - R31( ints)} (2.27)

where int; are points in A; X A;, and likewise for the other term. It then follows from (2.26), (2.27) and

(2.9) that as n = oo,

! 2
5 g4 5 IAl0) 1 [ 40 _ p04 _4p3l _apll 2.2]
2n)’ E; - 2 E|;dz 750 { 58024 R*"™W +R 4R 4R +6R (M)

1

[3R"° +3R% 4+ 10R?~2](:. 1)

3-80-24
N N PN 3.1] __1 [2Rl.3_ 1.3]
6512 [2R 2R ) 6512 2R 0
1
1 L0 | oa0 3,1 1 522 n
= =-— R*™(t, )+4R> (1, )+ — R““t, 1) | dt . 2.28)
60 !, h5(:)[ 0 “n+3 ) (

Finally, adding (2.10), (2.13), (2.17), (2.18), (2.23), (2.25) and (2.28), we obtain (1.17) and (1.18).

The final compact expression in (1.18) follows by straightforward calculation. (J
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