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FOREWORD

This publication includes the individual papers of DAMPING '89 held
8-10 February 1989, West Palm Beach, Florida. The Workshop was sponsored
by the Air Force Wright Aeronautical Laboratories through the Advanced
Metallic Structures Advanced Development Program Office (AFWAL/FIBAA).

It is desired to transfer vibration damping technology in a timely

manner within the aerospace community, thereby, stimulating research,
development and applications.
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DAMPING ~ A KEY TO MORE, FASTER, FARTHER, HIGHFR

Major General Thomas R. Ferguson, Jr.
Deputy Chief of Staff for Technology
and Requirements Planning
Headquarters Ailr Force Systems Command
Andrews Air Force Base, Maryland

Vibration is everywhere. And where there is vibration, there is damping.
Most often, vibration is bad and damping is good. There are exceptions,
but since this conference 1s about damping, we will leave the undamping
crowd to their own devices.

After getting my primer on this subject, I was reminded that damping is a
complicated subject. In simple terms, vibratory response can lead to
cracked structure, defocused optics, or other types of degraded
performance., Historically, the damping in a vibratory system has been
“take what you get", called intrinsic damping. Only in the last few years
has damping been a design parameter. So let's begin with a scramble:
start the engines...on take off, light the burner. In my flying
experlence with the B-52, it was be sure all eight were running and start
the Hound-Dogs on the roll...there's a lot of noise coming out of these
engines. During take—off roll, there are two paths from the engine
exhaust noise to the aft structure: one is direct, the other is reflected
from the runway. Take-off 1s typically the highest acoustic environment
the structure 1s exposed to. The skin panel responds to sound pressure
level as does a microphone and it vibrates. It can vibrate enough to
literally crack and break. The skin panel also re-radiates the sound into
the interior. That's called "thru transmission.” That's also the
technical term for being able to hear people thru the motel wall, at least
the motels government per diem can afford in places like Boston and
Washington.

That aircraft skin panel also transmits vibratory energy into the
subgstructure~—~the stringers, frames, and bulkheads. So internal equipment
also gets hit with structural-borne vibratory energy at points like
mounting brackets and with acoustic energy on their covers. Internal
equipment can fail, malfunction or degrade to lower performance levels.

As our pilot retracts the gear and accelerates, the dynamic pressure
increases and the turbulent boundary layer, especially behind
protuberances, can create very high sound pressure levels. At about mach
0.9, the oscillating shocks have the same effect. When we maneuver,
especilally transonically, the aeroacoustic levels on the leading and
trailing edges (and external stores) reach high levels., When we open
weapons bay doors, the open cavity acts like a giant whistle and the
internal structure and stores can be subjected to tones of extremely large
amplitude. Since we fly to fight, we carry weapons; we fly at ever-higher
dynamic pressures and maneuver at transonic speeds to survive: This makes
the vibroacoustics problem more severe. Today, to do our engineering
right, structures-and-vibration-and-damping-engineers must participate in
the original design of these modern flying machines.




Vibration is also no longer an earthly problem., It is becoming a design
factor in satellites as well. Launch vibroacoustics typically cause the
highest vibration levels and can break equipment. There are also more
vibratory disturbances in orbit than you might think. There are always
imbalances in reaction wheels, momentum wheels, and control moment gyros
used for attitude control. Coolant flow, shifting solar arrays, liquid
slosh, gravity gradient, particle impact, to name just a few, are all
vibratory disturbances which, just for example, can degrade performance of
sensitive optics.

I shouldn't have to convince this audience--we know that vibratiom is
everywhere. Although the obvious is obvious to us, let's also acknowledge
that damping 1s a highly specialized subject. A damping engineer 1s a
specialist because he must first be a vibration engineer, who was probably
a structures englneer to start with, So, right off, we have a specialty
within a specialty within a specialty. The successful damping engineer
must know more than damping. He'd better know systems integration and be
very conversant about the operational environment. A prime example of
this is the highly successful "Damping Wrap” for the inlet guide vanes on
the engines used in the F-111F fighter. So many cracks were forming so
quickly that the inlet guilde vane case had to be refurbished after TOO few
hours of service. Air coming into the englne is turned slightly by the
inlet guide vanes to get best performance from the rotating first stage
compressor. The IGV case consists of titanium inlet gulde vanes welded to
inner and outer rings. Vibration was suspected as the cause of the cracks
which were forming in the heat affected zones of the welds. The intrinsic
damping was extremely low, and in this case, the dynamic magnification
factors at resonances were high. Obviously, the stage was set for a
damping engineer to really impress his boss. Adding damping to the inlet
guide vane was easy; developing a satisfactory damper wrap for a complex
systems operational environment was not. Sophisticated bonding technology
was used so that the damper wrap would adhere while exposed to the air
flow. The wrap had to be thin to minimize inlet blockage area, since
reduced alr flow would affect engine performance. Engine stall
characteristics, anti-icing effectiveness, erosion, corrosion, and
durability were all investigated and proven satisfactory. The point
being...this was a complex interdisciplinary problem-—solved very
successfully. This project has estimated cost avoidance savings to the
Alr Force of $50M. Spin-off damping applications in similar situationms
may well account for another $200 million. Other very recent
demonstrations of vibration-caused structural failures fixed by damping
are the A~7 center section leading edge flap, A-10 gun bay floor and side
wall, and F-111 spollers. Once again the logistics improvements in terms
of dollars were significant. I should also add these improvements lower
the heart rate for our maintainers.




For the most part, successful damping treatments have been of the add-on
variety. The hardware has been designed and a vibration problem rears its
ugly head. A damping treatment is designed and "added to" existing
structure. Once the hardware exists, add-on damping may be an extremely
cost effective solution. But it's better to avoid the problem altogether
and that can be done with integral damping. Commercial examples are
laminated valve covers, oll pans, and timing gear covers used in
automobile and diesel engines.

Integral damping is also the key to longer life, more durable aircraft
structure. The objective is increased sortie generation rate and reduced
maintenance cost. Since we often learn more from our fallures, there's no
shame to admit there have been many unsuccessful attempts to design
damping solutions. I'm told you don't have to be in this business very
long to have been bit., In fact, you don't earn your damping wings until
you've been humbled more than once. I don't want to focus on this aspect,
but during breaks and at socilal opportunities it also pays to discuss the
failures as well as the successes.

DAMPING '89 is put together to detail the state of the art, but the
keynote role allows me latitude to summarize. A baseline of damping
materials and manufacturing processes is established. We can measure
properties of materials fairly well. Data banks on damping materials are
also established. You can analyze simply supported beams in closed form
and can perform finite element analysis of damped structure to predict
modal frequencies and damping limits. You can experimentally measure the
modal frequencies and damping of structure. There are a growing number of
successful add-on and integral damping applications and you have
quantified these successes in terms, pay-off terms, that management
understands. Damping, in fact, is a hot, new tool in the engineer's kit
bag. But it's good not to believe as the song goes "Oh Lord it's hard to
be humble when you're perfect in every way.” What we already know is just
a glimpse of the future, There is still great opportunity. Therefore,
it's important to make good investment decisions as we plan the future.

As in most technical disciplines, the explosion in computational power,
coupled with advancements in damping technology, can greatly accelerate
our knowledge. Better dynamic test techniques are needed; a greater range
of materials properties should be measured and catalogued: and extensions
to analytical methods would really expand the range of applications. With
these wishes met, let's peer in the not too distant future and I'll make
some predictions:

0 Measurement of the dynamic mechanical properties of viscoelastic
damping materials will be more accurate, more efficlent, and have less
scatter,

0o Existing materials will be screened for toxicity, flammability,

outgassing, corrosion, long-term environmental stability and others.
These are properties which are mandatory for system application.
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o A fully computerized data clearing center will exist soon.

0 Wide-temperature range and low-temperature damping materials will be
developed.

o Approximate closed form analysis methods willl come into use for
structures like thin plates and shells, brackets, pipes and tubing.

o Approximate finite element analysis models will be developed as
preliminary design tools for damped structures such as satellite
equipment support structures,

o Computer aided design will yield optimum solutions by interacting
finite element analysis of damped structure with a data base of
damping materials.

o Most aircraft sheet metal will be laminated, ditto for automobiles and
household appliances.

0o Interest in damped composite structural materials will rise.
0 Housings and circuit boards of avionics equipment will be damped.

o Logistics imperatives——-maintainability and reliability--will dictate
much more use of damping.

o And, some of you who think you'll be millionaires exploiting these
opportunities will probably go bankrupt because of Murphy. So,
maximize the opportunity this conference offers.

o] Learn!!

0 Go home and apply the technology: Be passionate...become zealots for
your work and the opportunity it presents.

o Share your successes and fallures with as wide a technical community
as possible.

0 Think of yourselves as a team: Academia and practitioners in
commercial and military applications. All must play their roles to
see the most intelligent and widespread use of this technology.

I want to conclude with some non-damping thoughts. My boss, the AFSC
Commander, General Randolph, just gave a talk at the AF Aasociation's
Tactical Air Warfare Symposium. He ok'd my use of some of his remarks
because the message is so important for all of us. That message is about
total quality management.
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In the book, "A Passion for Excellence,” Peters and Austin recall the
management style of General Electric's aircraft engine piloneer, Gerhard
Neumann when he worked with Claire Chennault's World War II Flying
Tigers. Neumann wanted make sure his maintenance people fixed aircraft
engines right...the first time. So each day he used to ask a few of his
squadron mechanics to "volunteer” to test fly in the Single-Seat fighter
they'd just repaired. The pilot would sit on the crew chief's lap, and
neither could sit on a parachute because the cockpit wasn't big enough.

Well, improvements in workmanship were dramatic! 1In his book, "Herman the
German,” Neumann writes that each night, "Way past dinnertime, the
airfield looked as if it were invaded by glowworms; the twinkling came
from flashlights mechanics used to check--once more--the tightness of
pipes or conn=ctions they had made in case Neumann might suggest that they
'VYolunteer' to ride in their planes the next day."--Now there's a guy who
knew how to motivate quality. TQM's an overdue sign of a national quality
revolution. It's a buzzword you see in commercials, hear at symposiums,
and notice in bookstores. But don't just dismiss TQM as yet another
acronym that will die off. As a term, TQM might well change over time.
However, as a philosophy TQM will last, as more companies and managers
come to understand what continuous quality improvement means and what it
can do. Affordable price tags, fair profits and high product quality will
prove TQM's merits long after the trendiness of the buzzword disappears.
It offers opportunities for every person involved in research,
development, test, production and operations.

TQM~~1is BETTER QUALITY AT LOWER COST. It's the prerequisite to good
performance. AFSC's senior people have been through training seminars
with W, Edwards Deming, one of the best-known quality leaders in the
world., Deming's philosophy 1is that 85 percent of quality problems are
caused by the system; just 15 percent are caused by people. Just to be
sure we're communicating--you're likely to be part of the 85 percent! If
the products of U.S. industry are not well liked, loved, by the customer,
you are involved because you're that 85 percent of the system that
designs-in-problems the manufacturing work force can't correct.

General Randolph was challenged about his intensity on this subject of
total quality management. The person said 1t sounds as if quality 1ssues
are a matter of life and death. He said no, they're much more important
than that. Think about these statistics:

If the U.S. had service suppliers who did their jobs right 99.9 percent of
the time, there would still be:

- 20,000 wrong prescriptions filled each year;
- Unsafe drinking water almost one hour each month;

- 2 long or short airplane landings a day (That's an accident) at Los
Angeles and New York;




- And 2000 lost articles of mail per hour every day.

- In the defense arena, given 1 million grenades, you would have 999
duds--and 1 will go off in "0" seconds.

Where 1is your quality meter set?

General Randolph closed his talk with this story President Kennedy would
tell and I'11 do the same. It's about a retired French General whose
hobby was gardening. He was a very cultured man with a deep sense of
history. On his 80th birthday he bought a small shrub and instructed his
gardener to plant it in the garden.

"But, Sir,” the gardener protested, "that plant won't flower for a hundred
years!” "Then by all means,” the General said, "plant it now."

The total quality we plant in our work today is FREEDOM FOR TOMORROW. We
need to plant more flowers.




Fiber Optic Vibration Sensors for
Structural Control Applications

W.B. Spillman, Jr.
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Abstrac

In order to control the behavior of acrospace structures in real time, closed loop control systems
require highly accurate measurements of the vibrational frequencies and amplitudes exhibited by
structures at any given instant. Traditionally, this has meant the use of a large number of
accelerometers mounted at various locations on the structure. The motion of the structure has then
been inferred from these point measurements. Developments in the field of fiber optic sensing
have now reached the point at which practical sensors may provide a near term ability to produce
an output proportional to the integrated structural deformation along an attached or embedded
optical fiber. In this paper, the principles of operation of two candidate techniques are discussed:
polarimetric and statistical mode sensing. Experimental results are presented and compared with
theoretical predictions. Finally, the advantages and limitations of integrating vs point vibration
measurements are covered, with an emphasis on structural control applications.

Introduction

The one dimensional, flexible nature of optical fibers makes them almost ideal for use as
distributed sensors. A parameter of the fiber that can be easily affected by a stimulus is the optical
path length and a change in optical path length can be measured with great resolution using
interferometric techniques. Figure 1 shows a two arm optical fiber interferometer that is sensitive
to optical path length differences of less than a wavelength of light (<1 micron). Unfortunately,
this is much too sensitive for stable operation without complex compensation schemes. The
sensors described in this paper reduce the unwanted sensitivity by having all the arms of the
interferometer in the same fiber.

A polarimetric sensor results when the two arms of the interferometer are the two orthogonal
polarization modes of a single mode fiber. Any stimulus that induces a birefringence in the fiber
will effectively cause a difference in optical path lengths. The polarimetric sensor considered here
uses stress caused by bending to produce the birefringence. With a coherent light source at one
end of the fiber and an analyzer at the other, a bend modulated signal is observed.

A statistical mode sensor (SMS) results when the interferometer has many arms, all coexisting as
propagation modes within a single multimode fiber. When the output from a multimode optical
fiber is projected upon a screen, a uniform circular pattern is observed. When the light is
incoherent, there is a smooth distribution of intensity within the pattern. When coherent light is
used, however, the pattern becomes very granular and consists of a very large number of
"speckles” of varying intensities as seen in Figure 2. This is the complex interference pattern of a
many armed interferometer. The distribution of these speckles changes slowly over time, but the
intensity of the total circular pattern remains basically constant. When the optical fiber carrying the
coherent light is perturbed, the distribution of the speckle intensities is seen to change with the
perturbation, with some speckles becoming brighter, some dimmer, and some not changing at all.
The total intensity of the pattern remains unchanged, however. A statistical analysis of the changes
in the speckle pattern output from the optical fiber can then be used to obtain information about the
perturbation of the fiber.
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Fig. 2. Multimode optical fiber speckle emission.
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There exists a body of prior work involved with investigation and use of the output speckle pattern
from multimode optical fibers for a variety of purposes. Of particular interest is the work done by
Claus et al. {1-2] on the vibration sensing effects using low number of modes step index optical
fiber sensors. This work fills the gap between the two mode polarimetric sensor and the many
mode statistical mode sensor.

In this paper, the theory and use of distributed fiber optic vibration sensors is described. In one
implementation of a statistical mode sensor (SMS-A), simple spatial filtering is used to optically
process the speckle pattern to provide an output related to fiber perturbation. In a second, more
sophisticated implementation (SMS-B), the pattern is projected on a CCD array detector whose
output is used to process changes in the pattern distribution to allow for accurate correlation with
fiber perturbation. Theoretical analysis of the output modal pattern of a highly moded step index
optical fiber is utilized to create a mathematical model of the SMS implementations. The
mathematical model is then used to make predictions of SMS performance. Two implementations
of the sensor are then simulated via a computer program. The computer simulation and actual
device performance are compared with theoretical predictions. Experimental results are shown
indicating the operational characteristics of the SMS units in a simple field test environment.
Finally, a polarimetric sensor is described and its operation is compared to the statistical mode
SENsors.

Applications for distributed fiber optic vibration sensors include, but are not limited to, intrusion
detection, structural vibration sensing, and acoustic sensing. A distributed sensor may be of
particular importance where the alternative is a large number of point sensors such as on large
space structures.

Theory: Polarimetric Sensor.

Polarimetric sensors have been well described in the literature and have been used to sense a
number of different stimuli such as magnetic fields and sound waves. A concise mathematical
treatment of this type of sensor is given by Beasley et al. [3] in relation to a hydrophone.

A block diagram of a polarimetric sensor is shown in Figure 3. It consists of a source of polarized
light, a length of fiber with a portion exposed to a source of stress, and an output polarizer which
acts as an analyzer. By choosing a coordinate system that is referenced to the applied stress, the
input polarized light can be expressed (using Jones calculus) as

Em=[gx]=so{°°s 9} , 1)
Yy sin ©

where E, is the magnitude of the field and 6 is the orientation of the polarization relative to the
applied stress.

The fiber itself can be modeled by the transformation matrix

ei(a/2) cos @ _ei(g/2) sin ©
= (2)

e-i(q/2) sin @ @-i(0/2) cos ®

where q is the retardation of the coupled light, w is the percentage of light coupled between the
axes, and a is the phase difference between the two polarization modes given by

o = o, +28LC (ox-0y) (2a)

where a, is the static component, L is thexlength of fiber exposed to stress, C is stress-optic
coefficient, A is the wavelength of light, and oy and Oy are the orthogonal radial components of the

applied stress.
ICA-4




Polarizer Laser Diode
\ /
7
Stress

Polarizer

/
N__
/
/

Photodetector

Monitor

Fig. 3. Polarimetric fiber optic
Sensor.

ICA-5




Similarly, the output analyzing polarizer can be modeled by the transformation matrix

_| cosy siny
“|-esiny gcosy |’ 3)

where \ is the angle of the transmission axis of the polarizer and €2 is its extinction ratio.

The output of the analyzing polarizer is given by
_E.ou[':S.R._E.in. (4)

Assuming there is no mode coupling in the fiber, making w=0, and that the output light is linearly
polarized, making €=0, the output power can be expressed as

—_ —_ E2 . .
Tow=Eou * Eout = T°(1+cos 260 cos 2y+sin 20 sin 2y cos a) . )

Simplifying further by setting the input polarization angle and the analyzing polarizer angle to nt/4
reduces the equation to

E2
Iouw = —22(1- cos o) . (6)

From equation (4), it can be seen that stress on the fiber which alters the birefringence which
changes the factor a, will in effect modulate the light intensity. This modulation can be made fairly
linear if the stress perturbations are small and if the fiber is prestressed so that a is centered about
/2.

Theory: Statistical Mode Sensor.

Assume that the light in a multimode fiber is coherent, and linearly polarized, with the direction of
propagation along the z-axis, and the electric field oriented along the x-axis. Assume each speckle
has an intensity that depends upon modal interference of the coherent light in the fiber. Assume
that each speckle is projected upon a pheiodetector element and converted to an electrical signal.
The changes in this signal may then be processed to obtain information about perturbations of the
optical fiber. If each individual speckle intensity is given by I, the total intensity is roughly
constant, i.e.

IT=§Ii = constant , )]

i=1
where N is the number of speckles.

Next, assume that each of the N speckle intensities act like the output from individual
interferometers and vary with the fiber perturbation. Each individual speckle intensity would then
vary with time according to

Li=A; [1+B; {cos(8)-F(t) ; sin(5)]] . ©6)

Although these interferometers are obviously related, subsequent analysis and modeling will
assume that for small enough sampling areas and large enough number of samples, that individual
speckles will be weakly or randomly related in phase, amplitude and modulation depth with respect
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to perturbation, i.e. {A;, B;, ¢; and §;} are assumed to be collections of random numbers within
some limits. The degree of validity of this assumption will be determined through comparison of
model predictions with experimental results.

In order to allow comparison of theory and experiment, two different ways of processing the
individual Ij's are considered: (1) summing the changes of a small enough number of the signals
so that statistical averaging does not produce a constant sum as shown in Figure 4 and (2) taking
the sum of the absolute value of the changes in all of the signals as shown in Figure 5.

In the first case, the sum of n<<N components is taken. In addition, only the time varying
components are considered. In that case,

Alr = 3, -A; Bi & F(®) sin (8) (7a)

i=1
may be reduced to,

Alr = Y, C;F() sin (8) . (7b)
i=1

Since the F(t) term is independent of the sum, it can be pulled out with the result

n
Al = { > C; sin (ai)\ F() . ®)
-1 J
This expression represents the output that could be expected from a statistical mode sensor in
which the intermodal interference information is optically processed by simple spatial filtering. It
should be noted that Equation (8) is also an expression of conservation of the total power contained
in the speckle pattern, since as n becomes very large, the term in brackets goes to zero.

For the second case, in which the absolute values of the changes of all N pixels are summed, the
basic expression for the signal output is given by

Alt = g ’ci d gt(‘) sin (ai)’ , )

where the absolute values of the derivatives of Equation (7) have been summed. The final signal
output for this case can be written as

N

. d F(t

atr=! 31, sn (aoI\I 2|, (10)

o f

The term within the brackets sums over a large number of components so that in spite of local
P!

variations in the distribution, the sum will remain at a constant value which will be defined as C.
Equation (10) can then be expressed as

AI-r=Cld Ft(t)' _

d
From Equations (8) and (11), response to a sinusoidal perturbation, sin (ot), would be

(11)

Aly = [ Y G sin (8i)}sin ©1) (12)

i=1
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for the first case, while the second case would reduce to

Al = Clcos (wt)] . (13)
The absolute value term in Equation (13) can be replaced by an infinite sum, or

Alr=0C %ﬂ*%};
k=1

cos Rk wt)

(14)
(4k>2-1)

Based on Equations (11) and (14), SMS device performance when the two different processing
schemes are used can be predicted. For the first case, a signal should be present at the same
frequency as the perturbation and either in phase with the perturbation or ©t out of phase. The
amplitude of the signal could range from some maximum value down to zero. For the second
case, the signal has no component at the perturbation frequency, a large component at twice the
perturbation frequency, and smaller components at integral multiples of twice the perturbation
frequency. Although harmonic distortion exists, the signal should exhibit good amplitude and
phase stability due to the statistics involved in summing the absolute value of a very large number
of speckle intensity changes. In addition, due to the differentiation inherent in the second case, for
constant amplitude and varying frequency perturbation, the SMS signal should exhibit a linear fall
off of amplitude with decreasing frequency.

Computer Model of Statistical Mode Sensor

In order to determine the characteristics of a number (N) of interferometers with randomly related
coefficients {A;, B, ¢; and §;}, a computer model was developed in the C language to simulate

the expected output from the two different processing schemes for the statistical mode sensors.
The program was written in the Lightspeed C implementation of the language and run on a
Macintosh Plus computer. The language random number generator was used to provide N sets of
values (A;, B, ¢; and 3;} to correspond to the N randomly related interferometers. The
allowed ranges for the interferometer parameters were: 0.52A;20,1.02B;20,n/82¢;20,

and 2r 2> §; 2 0. The random number generator provided the same output every time, so that any
N>n set of interferometers always included the set of n interferometers generated for the smaller
number.

The computer modeling produced the results shown in Figure 6. In Figure 6(a), one cycle of
perturbation is applied and the normalized sums of 5, 50 and 500 pixels (interferometers) are
taken. The normalization factor is the average of the sum of the pixel intensities over the one cycle.
As can be seen, the fractional modulation of the pixel intensity sum decreases with increasing
number of pixels, so that for 500 pixels, the modulation is negligible. Figure 6(b) depicts the
result when the absolute value of each pixel change is summed over one cycle of modulation and
normalized to the sum of the pixel intensities over the cycle. In this case, the signal does not
change significantly as the number of pixels is increased with a modulation of ~2%.

Device Design and Fabrication

In order to test and compare the polarimetric and statistical mode sensors, three prototypes were
constructed. A polarimetric sensor and two SMS signal processing designs were implemented, the
SMS-A using spatial filtering to perform optical processing of the signal, and the SMS-B, which
used much more sophisticated electronics in conjunction with a CCD detector.

The polarimetric sensor was assembled as shown in Figure 3 in the laboratory for comparison
purposes. It consists of a laser diode light source, an input polarizer to assure a source of linearly
polarized light, a length of single mode fiber of the type used for communications, an output
analyzer polarizer, and a photodetector. Since the single mode fiber used was not polarization
preserving, the orientations of the input and output polarizers were simply adjusted to give the best
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light modulation. The only signal processing required consisted of an AC coupled amplifier; a
great deal of gain was needed because of the low sensitivity of the sensor.

Of greater interest were the statistical mode sensors. The SMS-A and SMS-B were designed and
packaged for both lab and field use.

For the SMS-A unit, most of the speckle intensity processing is done optically, as can be seen
from Figure 4. A simple amplifier for the photodetector would give a working system. Ideally,
though, the output of the sensor would be much more stable and repeatable if the random effects of
A;, B;, ¢;, and 9; could be reduced. This can be done by assuming these terms vary more slowly
than the perturbation signal so that they can be filtered out. Assuming a sinusoidal perturbation
F(t)= sin(wt), and summing Equation (6) over all speckles gives a total intensity

=) A+ 2 A; Bicos(8;- 2 A; B; ¢isin(ax)sin(3;) . (15)
i=1 il i=1

Simple high pass filtering will remove the first two terms leaving Equation (12). Because the
unwanted bracketed term in Equation (12) is a gain term rather than additive, an automatic gain
control (AGC) circuit is used. The control signal for the AGC circuit is derived from the inverse of
the terms that were filtered out by the high pass filter. This does not provide complete
compensation but A; is completely removed and experience verifies that stability is improved.
Figure 7 is a photograph of the SMS-A unit.

In the SMS-B sensor, all of the signal processing occurs in electronics as shown in Figure 5. The
detector was a 128 x 128 array of photodiodes which capture an image of the speckle pattern called
a frame. Each photodiode contributes one picture element, or "pixel”, to the frame. Each pixel is
digitized and stored in a digital memory called a frame buffer. Just before a new pixel is stored in
the frame buffer, the old pixel data is removed and both old and new pixel data are passed to an
arithmetic circuit. The arithmetic circuit finds the absolute value of the differences between the
old and new pixels. All of the absolute values of the differences for the entire frame are then
accumulated and normalized to give a single value. This single value represents the amount of
change in the speckle pattern that occurs over the period of time between captured frames. For
convenience, the digital value is converted back to an analog signal for display on an oscilloscope
or strip chart recorder. A prototype of the SMS-B sensor is shown in Figure 8. Bandwidths in
excess of 1 MHz can be attained by giving each pixel its own arithmetic circuit operating in
parallel. However, to keep circuit size within reason, the photodiode array must be made much
smaller. A more economical and slower method is to process the pixels serially through a single
arithmetic circuit or computer. The actual implementation shown in Figure 5 clocked the pixels out
of the array at 8 MHz through a pipelined "hardwired" circuit to attain a frame rate of
approximately 275 Hz. The prototype unit also has an output that bypasses the final summation
stage so that external signal processing may be used.

Results and Di ion

The polarimetric and the two SMS implementations were tested in a preliminary fashion in the
laboratory. The tests were carried out using a communication grade single mode fiber and a
100/140 pm step index multimode optical fiber attached to a bar clamped at both ends. The fibers
were attached to the bar in the same configuration as shown in Figures 4 and 5 with the single
mode fiber mounted parallel to the multimode fiber. A spring weakly coupled the center of the bar
to the drive piston of a Ling Dynamic Systems Linear Vibrator.

A vibrating bar was used to produce a distributed perturbation of the fiber. The choice of a bar
rather than a vibrating string helped greatly with the waveform, harmonic, and phase analysis.
This is because the overtones (higher modes of vibration) of a vibrating bar are not harmonic. If
the overtones of the bar are excited, they would not be synchronized with the fundamental allowing
them to be easily filtered out. In practice, the overtones were not present because there was no
source of excitation at their frequencies. Of all the different boundary conditions for a vibrating bar
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Fig. 7. SMS-A: Optical spatial filtering implementation.

Fig. 8. Prototype SMS-B: CCD detector implementation.
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(free, hinged, or clamped), the clamped - clamped configuration was chosen to avoid exciting the
portion of the fiber leading up to the sensor section.

To monitor the vibrations of the bar without introducing distortions, a non-contacting fiber optic
displacement sensor was used. The sensor consisted of a bundle of optical fibers whose sensing
end was cleaved and polished in a uniform manner_Half of the fibers in the bundle transmitted
light to the surface to be measured and the other hal¥eceivedthe reflected light. Because the ligh™
disperses as it leaves the transmitting fiber, how much light is gathered by the receiving fibers
depends on the distance to the reflecting surface.

The bar used was 74.7 cm between clamps, 0.7545 cm wide, 0.1265 cm thick, and made of steel.
The fiber and glue add a little weight to the bar increasing its effective density slightly. The
allowed frequencies for a bar clamped at both ends is [4]

_n [ QK g2 -a_
Va=o; 5 Bn, x 717 (16)

where 1 is the length, Q is Young's modulus, a is the thickness, p is the density, and B,, are
coefficients for the allowed frequencies. For the bar used

a=.321cm

1=74.7cm

Q= 19x1011 dyne/em_

d= 7.7 g/cc

and ;= 1.5056, o= 2.4997, B3= 3.5, B4=4.5, ...

This gives the fundamental mode at 29.4Hz which agrees with experiment. The shape of the bar
as it vibrates is of the form (1-cos(x)).

The bar was first perturbed in such a way as to provide a sinusoidal output from the reference
displacement sensor. This output is shown in Figure 9 along with the output from the polarimetric
sensor. The three signals from the polarimetric sensor indicate the result of varying the input
conditions to the fiber on the vibrating bar by wrapping the input fiber around mandrels of (a) 3.2
cm, (b) 3.8 cm, and (c) 4.4 cm. As can be seen, the polarimetric sensor is fairly immune to input
conditions. As long as the bending of the input fiber does not cause enough stress to move a
significantly away from n/2, Equation 6 predicts that the amplitude and phase of the output should
track the excitation.

Similarly, the output from the reference displacement sensor is shown in Figure 10 along with the
output from the SMS-A. The three signals from the SMS-A indicate the result of varying the input
conditions to the fiber as in the previous test. By changing the input conditions, the amplitude and
sign ot the sum term in Equation (8) have been modified so that curve (a) is &t out of phase with the
bar displacement with large amplitude, curve (b) is © out of phase with the bar displacement with
lower amplitude, and curve (c) is in phase with the bar displacement and has large amplitude.
These results indicate that the mathematical model used to predict the behavior of SMS type
sensors has reasonable validity.

Following these tests, the SMS-B sensor was tested using the same optical source, sensing fiber,
and excitation configuration. These results are shown in Figure 11. In this case, the frequency of
the SMS-B sensor is twice the excitation frequency, precisely in accordance with prediction but out
of phase by 310. When the input conditions were varied in exactly the same manner as for the
SMS-A sensor, the resulting output did not change in either amplitude or phase. These results
provide additional demonstration of the validity of the simple mathematical model of device
operation developed in this paper.

As Figure 11 shows, although the SMS-B maintains a constant phase, this phase is not n/2 as
predicted. The large phase lag is actually a fixed time delay caused by the pipelined architecture of
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Fig. 9. Effects of varying input conditions to polarimetric sensor.
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the arithmetic circuit. The camera of the SMS-B quantizes the speckle image into frames, a
complete frame taking 3.975 ms. There is a delay of approximately 3 frames from the photodiode
input to the analog output. This accounts for all of the measured phase delay within the SMS-B
electronics unit to within 420, The SMS-A electronics unit has no source of large phase shift and
measurement confirmed this to within +20.

The amplitude variation of the SMS-B signal at 60.8 Hz as a function of the change in amplitude of
the vibrating bar as measured by the reference sensor is shown in Figure 12. The dependence is
linear as expected. Finally, Figure 13 shows the ratio of the SMS-B signal output at 20 to the
reference sensor output at o as a function of w. As can be seen, there is a falloff at frequencies
above 65 Hz due to the frame processing rate of the SMS-B and a falloff at low frequencies due to
the explicit w dependence of the SMS-B signal as indicated by Equation (13).

A spectrum analysis of the outputs of the SMS devices was carried out under different conditions
of amplitude of bar vibration. It was found that the SMS-A was very sensitive to optical input lead
configuration, so that for one lead position, the fundamental frequency component virtually
disappeared, leaving nothing but higher frequency harmonics. For large amplitude vibrations (4
mm), the harmonic distortion varied from 7% to 540%. Reduction of the amplitude of the
vibrations by a factor of 4 (to 1 mm) resulted in a significant reduction of the harmonic distortion in
roughly the same proportion although the exact numbers are not quantifiable due to the sensitivity
of the SMS-A to the optical fiber lead configuration. When the SMS-B sensor was tested, it was
found that the harmonic distortion ranged from 15% to 43% at the larger amplitude excitation and
from 10% to 14% at the 25% excitation level.

mm n nclusion

Two methods of sensing vibration with integrating fiber optic sensors have been demonstrated.
Mathematical models have been developed which have shown good agreement with observed
sensor behavior. For the sensors examined, the sensing technique is compatible wiih off-the-shelf
components and fiber cable and even allows for simultaneous telecommunication and sensing
using the same optical fiber cable.

The results of the preliminary testing of the distributed sensors have been very encouraging. The
ability to sense vibration has been demonstrated in the laboratory. Table 1 outlines the relative
merits of the three sensors investigated.

Basically, the polarimetric sensor features simple construction and good amplitude, and frequency
information and, with calibration, good phase response. Its main drawbacks are its low sensitivity
to the type of bending stress used in our tests and the expense of coupling a laser to a single mode
fiber. This sensor also exhibits a limited dynamic range because of its inherently nonlinear
response as seen in Equation (6). The sensor must be adjusted to operate about a linear portion of
its response curve and the excitations must be kept small to avoid amplitude errors and harmonic
distortion.

The SMS-A type sensor offers the advantage that it is relatively simple and cost effective to
implement. Spectrum analysis of its output can be used to determine the vibrational frequencies of
whatever the sensing fiber is attached to or embedded in. This type of sensor is limited in that it
can only be used to provide accurate information about vibrational frequencies, information about
phase with an ambiguity of %, and no consistent information about amplitudes. Amplitude and
phase of the output signal are very sensitive to the spatial configuration of the input and output
optical leads to the sensing region, even if they are stationary, so frequent calibration is necessary
is these parameters are needed. Like the polarimetric sensor, the SMS-A type sensor has a limited
dynamic range because of its nonlinear response, however because of its statistical nature, the
errors are not as bad (but neither are they adjustable).

The SMS-B type sensor improves upon the performance of the SMS-A sensor in two ways. First,
like the polarimetric sensor, it is possible to obtain very accurate information about vibrational
amplitudes, but with much greater sensitivity. However, the sensitivity is proportional to the
signal's frequency which limits the band width and must be compensated for in subsequent
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Fig. 12. SMS-B output vs. reference sensor output at constant frequency.
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processing. Second, also like the polarimetric sensor, this type of sensor is not sensitive to the
spatial configuration of the input and output optical leads to the sensing region as long as they are
relatively stationary. Unlike the polarimetric and SMS-A type sensors, the dynamic range of the
SMS-B type sensor is relatively large because its response is linear as Equation (11) shows. The
principal limitation of the SMS-B sensor lies in the fact that it also provides phase information with
an ambiguity of 7 because its output is frequency doubled. The phase ambiguity inherent in the
SMS sensors precludes them from being straightforwardly used to provide error signals in closed
loop structural control systems. Their use in such systems is still possible using sophisticated
control algorithms based upon some a priori knowledge of the structural dynamics.

Both implementations of the SMS technique should have application for present sensing needs.
Integrating sensors for the determination of vibrational structural modes could be used for active
structural control in one application while another might include detection of structural damage or
fatigue through detection of changes in basic structural vibration patterns. In applications where
redundancy is needed for many point sensors, a distributed fiber optic sensor may be very cost
effective if used to verify the operation of the primary sensors.
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ABSTRACT

This work investigates the development of NiTiNOL Shape Memory Alloys (SMA) sensors and
actuators as components of an active vibration control system. Analytical and experimental models were
developed and tested. The test set-up consisted of an aluminum cantilever beam with distributed
NiTiNOL wires fastened along both sides. A constant amplitude control algorithm was used to provide
arate feedback force to actively suppress transient vibrations. The settling time of the beam was reduced
by afactor of 15 through the use of the NiTINOL wire sensors and actuators. Analytical simulations were
developed which correlated well with the experimental results. This investigation demonstrated the
feasibility of using NiTiNOL sensors and actuators for vibration suppression of structural members.
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INTRODUCTION

Future large spacecraft missions will require improved structural performance to meet serious vibration
and control issues. Active vibration suppression, and pointing and shape control techniques will have
to be developed to accurately control and monitor these large flexible space structures in the space
environment. The overall spacecraft design will rely on distributed structural control methods to
minimize local vibration and jitter, and maintain the high accuracy pointing and shape requirements.
Structural members which contain their own local sensors, actuators, and computational/control
capabilities need to be investigated.

Current state-of-the-art sensors and actuators are being researched industry wide. New design concepts
are using electro-rheological fluids[ 1], piezoelectric ceramics[2], and shape memory alloys as methods
of actuation. Some of these same designs involving piezoelectric ceramics and shape memory alloys
along with other concepts that use fiberoptics[3] and acoustic waveguides[4] are being developed for
sensing.

The focus of this paper is to investigate the feasibility of using shape memory alloy materials for both
local sensing and actuation to minimize vibrations of a simple structure. The preliminary results of this
investigation verify that shape memory materials can be used for vibration suppression.

SHAPE MEMORY PROCESS

Shape Memory Alloy materials are generally provided in a basic shape (i.e. wire, rod, tube, sheet, etc.),
from which the desired memory shape is constructed. The memory shape is physically constrained and
annealed (heat treated) under a controlled environment to provide a permanent set. Once the material
is annealed it is ready for operation. The SMA can be strained up to 8% of its original shape. This
condition is usually known as the Martensite or soft condition. To return the SMA back to its memory
set, heat is applied. After enough heat is added to reach the transition temperature the SMA will revert
back to the memory shape with high energy release. This condition is usually referred to as the Austenite
or hard condition. Once this transition has occurred heat is removed and the SMA can again be strained.
This cycle is repeatable between soft and hard conditions.

EXPERIMENTAL TEST STRUCTURE

A thin flexible cantilever beam was selected as the representative test structure with NiTINOL wires
mounted externally along the beam for both sensing and actuation (see figure 1). The test set-up was
designed for low frequency (approximately 1 Hz) testing such that the actuation of the NiTiNOL wire
could comfortly be cycled without bandwidth limitations. Table 1 lists the beam properties of the test
structure used. Standard 55-NiTiNOL was used for actuation. Two actuator wires are used to control
the 1st bending mode of the beam. A 10-mil wire was determined to provide sufficient actuation force
as reported from the literature in figure 2. For two-way memory operation the stroke is usually limited
to about 3-4% of the total wire length.
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Figure 1. Cantilever Beam With NiTiNOL Wires

Material Aluminum
Modulus 11.0 Msi
Length 48.00 inches
Thcikness 0.125 inches
Width 6.00 inches
Tip Mass 4.5 Ibs
Density 0.10 Ib/in?
Damping factor 0.002

Table 1. Beam Properties

640
156 L
O Yield load (Martensite) 500
4 Recovary load (Austenite) g
300
Assumae: “
Nitinol yield strength ~ 20 ksi

108k 7‘ 0.032 in x 2.00 in strip
‘e‘_ [ 0.032 in dia wire
T 84f
o
J o

) 0.024 in dia wire
60
-
0.018 in dia wire
36
= 0.010 in dia wire
12
0 [N R AT t ot laagnl o1 gl
103 10 107 107

Crossectional area, in?

Figure 2. NiTiNOL Load vs. Cross-Sectional Area (Recovery and Yield) from the Literature
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ANALOG CONTROL SYSTEM

The analog controlled NiTiNOL active damping circuit is shown in figure 3. A 10-mil diameter wire
NiTiNOL sensor was activated with current from a 15v supply through an 100 ohm resistor. This
provided about 100 ma of sensor current. As the beamdeflected, the resistance of the NiTiNOL increased
or decreased, causing a change of voltage across the sensor. The voltage across the sensor was detected
with an high gain differential amplifier, the sensor was connected through capacitors so the DC voltage
across the s2nsor would be ignored and any very slow changes due to temperature drift were also ignored.
High frequency noise and spurious beam oscillations were also filtered out. Only dynamic voltage
changes that correspond to the cantilever beam fundamental frequency were sensed.

NITINOL
AC COUPLED SIGNAL
ACTIVATOR PORPORTIONAL TO BEAM
AN
N

DEFLECTION
\M - N E\ o N\JoAcT1
. W ’ . 4
i J; e L PWR AMP
HF
AeseCT V 90
PHASE cup
SHIFT
No ACT2
: HALF-WAVE > PWR AMP
180 RECTIFIER WITH
PHASE e VARRBLE
SHET THRESHOLD
SENSORPOWER 1o oo

Figure 3. Analog-Controlled NiTiNOL Active Damping Circuit

The voltage out of the sensor was proportional to the length of the sensor wire or beam position. The

maximum output was detected at minimum beam tip velocity. By differentiating the position signal a

new signal was derived that was proportional to the velocity. In order to damp the beam oscillations, a

force was applied to the beam to add a velocity vector opposite the existing beam velocity. This was

intended to reduce the maximum beam velocity. Since a signal proportional to velocity was derived, it
_was most convenient to apply this force during the time of maximum velocity.

The velocity signal was sent to a rectifier. In parallel it was inverted and sent to a second rectifier. This
circuitry provided two out-of-phase sine shaped pulse signals (see figure 4). These pulses were amplified
using bench-type power amplifiers and applied to the NiTINOL actuators. Note that power was applied
alternatively toeach actuator. While one was heating, the other was cooling (ambient room temperature).
The clip adjustment was used to adjust the width of the heating pulses and the dead band.
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Figure 4. NiTiNOL Analog Control Signals
EXPERIMENTAL RESULTS

The effectiveness of the analog-controlled active vibration suppression circuit was evaluated by
comparing the transient responses of the beam both with and without active vibration control. The tip
of the beam was displaced a known distance (6 inches) and released. This test was performed first without
any actuator or sensor wires attached. The beam took 7 minutes to naturally dampen out the oscillations.
After the NiTiNOL wires were attached the beam was tested again and due to the high specific damping
capacity of NiTiNOL [5] the beam passively damped out the oscillations in 4 minutes and 10 seconds.
Figure 5 shows the oscilloscope readout of the transient response. Finally the test was repeated with the
analog-controlled damping circuitactivated the beam actively damped out the oscillations in 28 seconds.
Figure 6 shows the oscilloscope readout of the transient response.

L} Bs ~-74.20V UERT

4,060 V

INTENSITY veCcTORS
REAOOUT  DISP  INTEHE  GRAT __ ONIOFF
Figure 5. NiTiNOL Passive Damping System, Figure 6. NiTiNOL Activee Damping System,
4 min, 10 sec 28 sec
SENSOR COMPARISONS

A standard strain gage type accelerometer was mounted at the tip of the beam. The NiTiNOL signal was
differentiated twice to obtain a complimentary signal for comparison. Figure 7 shows an oscilloscope
readout of transient beam vibrations using both the NiTiNOL wire sensor and the strain-gage type
accelerometer. This comparison demonstrates the high level of resolution available from a NiTiNOL
sensor. Because the NiTiNOL wire was strung the total length of the beam, sensor readouts could be
taken at any point. To obtain this same capability using accelerometers, several would have to be placed
at the desired discrete locations.
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Figure 7. NiTiNOL Cantilever Beam Sensor Comparisons
SIMULATION MODEL AND RESULTS

A simple simulation model was developed to help predict the damping effectiveness that could be
achieved. A 20 node NASTRAN model was used to find the eigenvalues and eigenvectors. The
first two bending modes of interest were;

f,=0.73 Hz, ©, = 4.58659 rad/sec

f,= 8.20 Hz, ®, = 51.5206 rad/sec
The standard second order differential equation used to represent transverse vibration is given by [6]:

mX + kx =F ¢))
introduce the coordinate transformation

X=g0q (2)

where q are modal coordinates and ¢ the eigenvectors.

by substituting equation (2) into (1) and introducing modal damping yields:
M] (4} +[C] (q} + (K (q)} =¢'F

where
M is the identity modal mass matrix
C is 2{w, diagonal damping matrix i=1,2
K is o ? diagonal stiffness matrix  i=1,2
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where

f = constant magnitude force = 7.5 1bs/NiTiNOL wire.

Figure 8 shows the predicted tip position response which agrees with the experimental data discussed
previously. Figure 9 shows the predicted tip position response for 4 NiTiNOL actuator wires, with a
settling time of 16 seconds. Although the 1st modc was well behaved the second mode showed no
influence from the 1st mode control (figure 10). For multiple mode control, actuator distribution
becomes significant.

Tip Position, inch
o

Tip Position, inch
o

-2 1 -2
-4 bk -4}
-6 | ] | -6 L ! 1
0 10 20 30 0 10 20 30
Time Time

Figure 8. Two Actuator Tip Position Response ~ Figure 9. Four Actuator Tip Position Response

-10 —_ l '

0 10 20 30
Time Time

Figure 10. Flex-Response First Two Modes Two Actuator Model
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OVERALL DAMPING EFFECTIVENESS

Table 2 summarizes the overall damping effectiveness. Although the transient response has approxi-
mately linear decay rate, a viscous damping or exponential decay rate was used to approximate the
damping factor for comparison. As shown the active damping was found to be 15 times more effective
than no control at all and the simulation model determined that by doubling the actuator authority the
effectiveness could be approximately doubled.

v

(o Ts Effectivness
Uncontroiled 0.002 420 sec 1
Passive 0.003 250 sec 1.5
Active
2 NiTiNOL wires 0.031 28 sec 15
4 NiTiNOL wires** | 0.054 16 sec 27

* approximated viscous damping
** model prediction _
Table 2. Overall Damping Effectiveness

SMA CHARACTERIZATION

Further understanding of how SMA material provides actuation is determined by analyzing the basic
parameters that characterize SMA operation. Temperature, displacement and force are all interrelated
and are influenced by the power inputand the environment. Characterization curves can be used toderive
relationships between inputs and outputs. Relationships between parameters can help develop detailed
actuator models. These models can better aide the engineer in predicting the performance and defining
the limitations of shape memory alloys. The curves shown in figures 11 and 12 show the steady state
power versus temperature and temperature versus displacement curves, respectively. These two curves
can be used to derive the steady-state relationship between applied power and displacement. Notice that
the path is different in each direction, which is typical of thermal work cycles. These relationships help
define nonlinearities; hysteresis and creep. A preliminary investigation of these types of phenomena are
just starting to be understood. [7]
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Figure 11. Power vs. Temperature Figure 12. Temperature vs. Displacement
(Constant Force Test) (Constant Force Test)
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SUMMARY

This investigation has verified the feasibility of using shape memory alloy materials as both a sensor and
an actuator to actively suppress vibrations of a flexible structure. The overall effectiveness of the active
vibration control system was experimenta'ly demonstrated to reduce the spurious vibrations of the
flexible structure by a factor of 15. SMA’s are an attractive material for use in actuation systems because
of their large force capability for a given amount of material, however, they will probably be limited to
tairly low frequency applications. Two-way actuation using SMA wires is bandwidth limited by the
cooling time of the opposing wire. The SMA sensor showed high resolution along with easy signal
manipulation and readily available discrete sensor locations. Finally, SMA characterization will help
quantify nonlinearities, hysteresis, and creep to better understand the sensor/actuator functions.
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Abstract

This paper investigates the possibility of dissipating mechanical energy with piezoelectric
material shunted with passive electrical circuits. The effective mechanical impedance for
the piezoelectric element shunted by an arbitrary circuit is derived. The shunted
piezoelectric is shown to posses frequency dependant stiffness and loss factor which are
dependant on the shunting circuit. The generally shunted model is specialized to two cases:
the case of a resistor alone and that of a resistor and inductor. For resistive shunting, the
material properties have frequency dependance similar to viscoelastic materials but with
much higher stiffness and temperature stability. Shunting with a resistor and inductor
introduces an electrical resonance, which can be optimally tuncd to structural resonances in
a manner analogous to a mechanical vibration absorber. Techniques for analyzing systems
which incorporate these shunting cases are presented and applied to a cantilevered beam
experiment. The experimental results for both the resistive and resonant shunting circuits
validate the shunted piezoelectric damping models.

Nomenclature

diagonal matrix of cross sectional areas of piezoelectric bar
generic capacitance

inherent capacitance of the piezoelectric shunted in the i" direction
piezoelectric material constant relating voltage in ith direction to strain in j®
direction

vector of electrical displacements (charge/area)

elastic modulus of material

vector of electric fields (volts/meter)

real nondimensional frequency ratio = W/,
vector of external applied currents

modal stiffness

material electromechanical coupling coefficient
generalized electromechanical coupling coefficient
diagonal matrix of lengths of piezoelectric bar
generic inductor

modal mass

dissipation tuning parameter (RC )
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Introduction

generic resistance

Laplace parameter

piezoelectric material compliance matrix at constant field
vector of material strains

vector of material stresses

potential energy of element i

velocity

voltage

static displacement of a system = F/K,
open circuit electrical admittance of the piezoelectric (inherent capacitance)

electrical admittance of the piezoelectric ( sum of shunting admittance in
parallel to the inherent capacitance)

shunting admittance of the piezoelectric (in parallel to inherent capacitance)
generic impedance, mechanical or electrical

effective mechanical impedance of the shunted piezoelectric

electrical impedance of the piezoelectric (shunting impedance in parallel to
the inherent capacitance)

mass ratio (proof mass/system mass)

complex nondimensional frequency = s/,

resonant shunted piezoelectric frequency tuning parameter, /@y,
loss factor

nondimensional resistance (or frequency) = RCspa)

resonant shunted piezoelectric electrical resonant frequency
natural frequency of a 1-DOF system

piezoelectric

optimal by pole placement criteria
transpose of a vector or matrix
optimal by transfer function criteria

value taken at constant field (short circuit)

value taken at constant electrical displacement (open circuit)
pertaining to resister shunting

pertaining to resonant circuit shunting

value taken at c.~nstant strain (clamped)

shunted value

value taken at constant stress (free)

There are many applications where the addition of passive vibration damping to a
structural system can greatly increase the systems performance or stability. The addition of
passive damping can decrease peak vibration amplitudes in structural systems and add
robustness to marginally stable active control systems, Ref [1]. Structural damping can be
increased by several methods the most common being the addition of high loss factor
viscoelastic materials to the structure or the attachment of a mechanical vibration absorber.
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Figure 1: Assumed Geometry for a Typical Piezoelectric Material with the Top and
Bottom Surfaces Electroded

In recent years piezoelectric elements have been used as embedded sensors and
actuators in smart structures by Crawley and deLuis [2] and Hagood [3] and as elements of
active vibration suppression system for cantilevered beams by Hanagud [4] and Hubbard
(5]. They have also been used as actuation components in wave control experiments by
Pines and von Flotow [6]. Within active control systems, the piezoelectrics require
complex amplifiers and associated sensing electronics. These can be eliminated in passive
shunting applications where the only external element is a simple passive electrical circuit.
The shunted piezoelectric itself can also be used as a structural actuator in a control system.

This paper presents a new type of passive damping mechanism for structural
systems which uses piezoelectric materials bonded to the structure. Piezoelectric materials
possess certain properties which make them useful as dampers or control elements for
structures. The first is that they strain when an electrical field is applied across them. This
property makes them well suited as actuators for control systems (where the control signal
is typically an applied voltage. The second is that they produce a voltage under strain.
This property makes them well suited for sensing strain. In general, piezoelectrics have the
ability to efficiently transform mechanical energy to electrical energy and vice-versa. Itis
this transformation ability which makes them useful as structural dampers.

The advantages to this type of passive piezoelectric application were first presented
by Forward {7] & [8] and Edwards and Miyakawa [9] for damping applications on
resonant structures. This paper establishes the derivation and analytical foundation for
analysis of general systems with shunted piezoelectrics. A typical piezoelectric element is
shown in Fig. (1). The fundamental constitutive relations are the relation between strain
and applied field, known as the d constants, and between the charge density and the applied
strain known as the g constants. Another fundamental property is the electromechanical
coupling coefficient, k. which governs the energy transformation properties of a
piezoelectric. The constants are explained in detail in Ref. [10].

In passive energy dissipation applications, the electrodes of the piezoelectric are
shunted with some electrical impedance; hence the term shunted piezoelectrics is used. The
electrical impedance is designed to dissipate the electrical energy which has been converted
from mechanical energy by the piezoelectric. In the following sections, the shunted
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piezoelectric's interaction with external circuits will be modeled, and the benefits that can be
derived by passive circuit shunting of piezoelectrics will be quantified. First, the equivalent
effective impedance of the shunted piezoelectric will be derived. This expression will then
be applied to the cases of resistive and resonant circuit shunting. Expressions for the
system damping will be derived, and parameters will be found which maximize this
damping. An experiment verifies the accuracy of the analysis.

Modelling of G Ly SI | Piezoelectric Material

A general expression for the material constants of a linear piezoelectric can be written from
Ref. [11] as:

(805 = ]7]

= E
S1ld & }T M
where D is a vector of electrical displacements (charge/area), E is the vector of electrical

field applied to the material (volts/meter), S is the vector of material strains, and T is the
vector of material stresses (force/area).

S,] [S] [T,] [T,]
D, E, 222 zz ;:22 ;2
D=|D,| E-= EZ’S=533=SSPT=T33=T3
D, E, Sza S4 T23 T4
13 5 13 5

LSmJ _Ss_J _T12J _Ts_J )

The 3 direction is associated with the direction of poling and the material is approximately
isotropic in the other two directions. These direction conventions are shown in Fig. (1).
The matrix which relates the two electrical variables, electrical displacement and electrical
field, contains the dielectric constants for the material. This matrix can be written:

g 0 0
e =0 elT 0
00 g ®

where the superscript, ()T, signifies that the values are measured at constant stress. The
two elastic variables, stress and strain, are related through the compliance matrix of the
piezoceramic, which has the form:

[ F E E

S, S Si 0 0 O
st s) s. 0 0 O
Ll mero 0
0 0 0 s£0 0
0 0 0 0 s O
|0 0 0 0 0 s | )
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where the superscript, ()%, signifies that the values are measured at constant electrical field
(eg. short circuit). Note that due to symmetry the material properties are identical in the 1
and 2 directions.

Finally, there are those terms which couple the mechanical and electrical equations
by virtue of the piezoelectric effect. In the form of the equations given in (1) the coupling
terms are the piezoelectric constants which relate strain to applied field. For piezoelectric
ceramics, the matrix of piezoelectric constants has the form:

0 0 0 0 d, 0
d=|0 0 0 d 0 0
d, d,d, 0 0 0

1

&)

The first term in the subscript refers to the electrical axis while the second refers to the
mechanical. Thus d,, refers to the strain developed in the 1 direction in response to a field
in the 3 direction (parallel to the material poling).

In order to allow the use of traditional concepts of electrical admittance and
impedance for the shunting analysis it is necessary to perform a change of variables. If we
use the definitions for voltage and current in Ref. [10]:

L

v,=[E . dx

0 (6a)
L=Jb-dq

4 (6b)

and furthermore assume that the field within and electrical displacement on the surface are
uniform for the piezoelectric material, then linear relationships can be defined in the Laplace
domain:

V()=L- E(s),
I(s)=sA D (s) (7a &b)

where L is a diagonal matrix of the lengths of the piezoelectric bar in the i" direction, A is

the diagonal matrix of the areas of surfaces perpendicular to the i" direction, and s is the
Laplace parameter.

Taking the Laplace transform of eq. (1) and using eqs. (7a&b) to eliminate E and
D, the general equation for a piezoelectric in terms of the external current input and applied

voltage is obtained.
[I]_{sAeTElsAd]ﬁf]
= -1
SilaL s }T @®)

This equation can be further simplified by noting that the upper left partition of the
generalized compliance matrix is diagonal. The elements of this partition have the form:

i ®
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where C,, is the capacitance between the surfaces perpendicular to the i" direction. Noting
that sC, is the open circuit admittance of the piezoelectric material, eq. (8) can thus be
written:

[1 ] sC: sAd vy ]
-1 T
S dL s*

Y’(s) sAd ]:V

-1 E T
dL 8 (10)
where Y°(s) is the open circuit admittance of the piezoelectric (the inherent capacitance with
free mechanical boundary conditions). The open circuit admittance relates the voltage
applied across the piezoelectric's electrodes in Fig. (2) to the external current input into the
piezoelectric . The large leakage resistance of the piezoelectric material is treated as infinite
in this analysis but can easily be included as a modifying term.

For shunted piezoelectric applications, a passive electrical circuit is connected
between the surface electrodes as shown in one dimension in Fig. (2). Since the circuit is
placed across the electrodes, it appears in parallel to the inherent piezoelectric capacitance in
that direction. Since admittances in parallel add, the governing constitutive equations for a
shunted piezoelectric material become:

[I ]_[YEL s Ad jI:V ]
1Y
S dL” 5" T

YEL _y° . st 12)

(11)
with:

The externally applied current, I, is the sum of the currents flowing through the shunting
impedance, the inherent piezoelectric capacitance, and the piezoelectric transformer. The
shunting admittance matrix is assumed diagonal and frequency dependant with the form:

SU
Y 0 0
SU
: Y =|0 Y, 0
SU
0 0 Y3 (13)
The top partition of eq. (11) can be solved for the voltage appearing across the electrodes.

Vv =2"T-2"sAdT (14)

Where Z*" is the electrical impedance matrix and is equal to (YE)!. The electrical

impedance matrix is also diagonal. Equation (14) can be substituted into (11) to find an
expression for the strain in terms of stress and input current.

g =[8E _ d‘L—lZELSAd:h‘ +[d‘ L-IZEL 1%)

This is a governing equation for a shunted piezoelectric. It gives the strain for a
given applied stress and forcing current. Notice that shunting the piezoelectric does not
preclude use of the shunted element as an actuator in an active control system but rather
modifies the passive characteristics of the actuator. By modifying the passive stiffness of
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Figure 2: Simple Physical Model of a Shunted Piezoelectric and its Network Analog
Showing its Ability to Transform Energy from Mechanical to Electrical
and Vice Versa.
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the piezoelectric to include material damping, perfectly colocated damping can be
introduced into the system. This passive damping can be useful in stabilizing controlled
structures in the manner of Ref. [12] in which a mechanical actuator is passively damped.

Of particular importance is the new mechanical compliance term. The shunted
piezoelectric compliance can be defined from (15):

s =[s" - dL'Z2" s Ad | (16)

If we note that with constant stress:

Z" (s ) = 0 =short circuit electrical impedance (17a)
D T |1 o .o
Z (s)=(C,s) =open circuit electrical impedance (17b)
and that:
-1 r T

sL ¢ A=C,s (18)

equation (16) can be put in the form

_EL -1

s =[o* - d,27(") " d (19)
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where the matrix of nondimensional electrical impedances is defined:

ZEL _ ZEL(Z D )—l (20)

Finally, since Z® is diagonal, the electrical contribution to the compliance can simply be
written as a summation over the electrical impedances:

3 3
sSU = [SE - z [ZiEL(-el—Tdndi )]]: |:8E - %ZiELMi:l

i=1 i (21)
where d; denotes the i" row of d and for piezoelectric ceramics the M have the form:
[0 0 0 00 O] 0 0 0O 00}
00000 O 000 00O
M 110 0000 O 10000 00
r;ﬂooooozo M2=;?000d12500
000040 0000 00
L0 O 0O 0 0 O] L0 0 0 0 0 0] 22&b
[ ,2 2 T
d31 d31 d31d33 o 0 0
2 2
1 ddl d31 dSld33 0 O 0
— = 2
M,= er d31d33 d.’udaa dsa 000
’l o 0 0 000
0 0 0 000
| 0 0 0 00 O (22c)

These equations constitute a general expression for the compliance matrix of a
piezoelectric element with arbitrary electrode placement or elastic boundary conditions.
Several things are apparent from eq. (21). First, electroding and shunting the piezoelectric
element in the directions perpendicular to the poling direction (3) of the piezoelectric can
only effect the shear terms of the compliance. Secondly, shunting the piezoelectric in the 3
direction modifies all of the non-shear terms of the compliance matrix. Finally, the
electrical shunting circuit's ability to modify the piezoelectric material properties depends on
both the material piezoelectric constants and the nondimensional electrical impedance.

Specialization to Uniaxial Loading Cases

Equation (21) simplifies greatly when the piezoelectric element is loaded uniaxially
with either a normal or shear stress and only one pair of electrodes are present providing an
external electric field with components in only one direction. These common modes of
operation can be described:
Longitudinal Case: Force and field in the 3 direction
Transverse Case:  Force in 1 or 2 direction; Field in 3 direction

Shear Case: Force in 4 or 5 direction (shear); Field in 2 or 1 direction respectively
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With uniaxial loading in the j* direction, only a single term from the compliance matrix
contributes to the material strain energy. By examining that term the energy dissipation

properties of thc shunted plezoelectnc can be examined. For loading in the j ™ direction and
the field in the i" direction the term in the compliance matrix is:

2
d,)

g @3)

where the subscripts denote the row and column of the respective matrix.

At this point it is convenient to introduce the piezoelectric property known as the
electromechanical coupling coefficient. It is defined as the ratio of the peak energy stored
in the capacitor to the peak energy stored in the material strain (under uniaxial loading and
sinusoidal motion) with the piezoelectric electrodes open. Physically, its square represents
the percentage of mechanical strain energy which is converted into electrical energy and
vice-versa. For the 3 cases of piezoelectric operation considered, the electromechanical
coupling coefficients are defined in Ref. [10]:

_EL L
sSU =sE - Z (M.)..=s‘f—ZE
F/) b ' [ F/] i

d

Shear: k = —;—5-7= k,,
35581
Transverse: k, = += k,
sll e:
. . d33
Longitudinal: & = s
S35 (24)
or in the notation used before for force in the j~ direction and field in the i~ direction
b=
i ET
S 25)

Substituting eq. (25) into (23) we obtain:
s% = [1 k Z, ]

F) (26)

From eq. (26) we can see that the compliance of the shunted piezoelectric is related
to the short circuit compliance of the piezoelectric material modified by a nondimensional
term which depends on the electrical shunting circuit and the material's electromechanical
coupling coefficient. From eq. (26) the relation between the short circuit and open circuit
compliance of the piezoelectric can be derived by noting that in the open circuit case

Z =1 27)
and thus eq. (26) reduces to:

s? = sE[l— kz] 28)
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which is in agreement with the relation given in Ref. {10} for the cases considered.

Equation (28) gives the change in mechanical properties of the piezoceramic as the
electrical boundary conditions are changed (from short circuit to open circuit). An
analogous relation can be derived for the change in the piezoelectric inherent capacitance as
the mechanical boundary conditiens are changed. For uniaxial field and loading (only the
boundary conditions in the loading direction are varied) this relation is also dependant on
the electromechanical coupling coefficient.

S T 2
Cu= Cu[1- &;] 29)
This equation will be used for nondimensionalizations in the coming sections.

Equation (28) can be used with (26) to derive a nondimensional expression for the
mechanical impedance of the shunted piezoelectric. For uniaxial loading in the j" direction,
the mechanical impedance of the piezoelectric can be expressed as a function of the Laplace
parameter, s, as:

(s)"

8 L s (30}
Now using eq. (30) and (26) to define the impedance of the shunted piezoelectric and eq.
(28) to nondimensionalize, the final expression for the nondimensionalized mechanical
impedance of the shunted piezoelectric can be derived:

sU 2

ME Z. 1- k.
- i v
ij (s)= PL = 2 _EL

where the functional dependance of the mechanical and electrical impedances is written
explicitly; and the nondimensional mechanical impedance is defined as the ratio of the
shunted mechanical impedance to the open circuit impedance.

Coupling Shunted Piezoelectrics to Structures

ME
The nondimensional mechanical impedance, Z ,canbe complex and frequency
dependant since it depends on the complex, frequency dependant electrical impedance. If
we note that the impedance is primarily a stiffness, then we can represent the impedance as
a complex modulus, as is typically done in material damping. This is especially useful if
the shunting impedance is not resonant.

b

2, (s)=E, {1+ in; ()] (32)

where E is the ratio of shunted stiffness to open circuit stiffness of the piezoelectric and 1
is the material loss factor. This reduction leads to frequency-dependent equations for the
complex modulus of the shunted piezoelectric. Comparing eq. (32) to eq. (31) gives the
frequency dependant equivalent material properties for an arbitrarily shunted piezoelectric.

Im{Z HE (s )}
nlw)= ~NE
Loss Factor: Re{ Z (s )} (33a)
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_ ME
Modulus: E (@)=RelZ ()} (33b)

These equations, as well as (31), can be applied to arbitrary shunting conditions for
parameter optimization of the material loss factor at a critical frequency.

To find the total system loss factor, the expression for the effective impedance of
the shunted piezoelectric, eq. (31) can be used along with the impedances of the other
damping devices in the frequency domain system analysis described in Ref. [13]. In
general, just as for viscoelastic materials, the relation between the high loss factor of a
structural component and the loss factor of the total structure can be represented as an
average of the system component loss factors weighted by the fraction of strain energy in
the respective elements, Ref. [14]

i =1 : 34)

where U; is the peak strain energy in the i element of the structure. Techniques for
improving structural damping typically employ the damping material (shunted piezoelectrics
or viscoelastics) in areas of high strain energy to take advantage of this weighting. The
stiffness and loss factor of damping materials are typically frequency dependant. The high
stiffness (63 GPa) of the shunted piezoelectric gives them advantages over viscoelastic
materials (circa 1 MPa) since for a given strain they can store many times the strain energy
of the viscoelastic and thus contribute to higher system loss factors. The piezoelectric
material properties are also relatively temperature independent below their Curie
temperature (temperature at which they lose their piezoelectric properties) Ref. [11]. For

commonly available piezoelectrics this 1s typically in the range of several hundred °C.

spplication: _Resistive Shunti

A resistor can shunt the piezoelectric electrodes as shown in Fig. (3). In this
shunting geometry, the resistor is placed in parallel with the inherent capacitance of the
piezoelectric. The resistor provides a means of energy dissipation on the electrical side and
thus should increase the total piezoelectric loss factor above the loss factor for the short or
open circuited piezoelectric. Its exact effect on the stiffness and dissipation properties of
the piezoelectric can be modelled by applying eq. (31). For the case of a resistor across the

piezoelectric electrodes, the total nondimensional electrical impedance in the i" direction is:

SU
Z, (s)=E, (352)
_EL Z,EL(s ) R,.C:. s
Zi (s ) = lD = T
Z‘, (s) RiCF,s +1 (35b)

Eq. (35b) can be substituted into Eq. (31) to give an expression for the nondimensional
mechanical impedance of a resistive shunted piezoelectric.
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Figure 3: Resister Shunted Piezoelectric Schematic
2
2 (s)=1 *y
. (s)=1-——7—
! I+1p, (36a)
where py is the nondimensional frequency,
s 0]
p,=RC ow=—
k k>~ ph o, (36b)

and C,’ was defined in eq. (29).
Matcrials P :

Since there are no internal resonances, it is convenient to use (33a & b) to express
(36a) as a frequency dependent material stiffness and loss factor. The resistor can be
thought of as changing the material properties of the piezoelectric into those of a lossy
-material similar to a viscoelastic in behavior. Using (33a & b) to solve for

nondimensionalized expressions for 1 and E gives:

p.k,

" (@)= ——
(1= k)+ (37a)

2

E (w)=1- v
1+ g (37b)

These relations have been plotted versus p, the nondimensional frequency (or the
nondimensional resistance) in Fig. (4) for typical values of the longitudinal and transverse
coupling coefficients. These curves are similar to the equivalent material curves for a
standard linear solid. As illustrated in the graphs, for a given resistance the stiffness of the
piezoelectric changes from its short-circuit value at low frequencies to its open-circuit value
at high frequencies. The frequency of this transition is determined by the shunting
resistance. The material also exhibits a maximum loss factor at this transition point. The
value of this maximum loss factor can be found to be:
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at a nondimensional frequency of:

S 2
p,=RC, 0=_[1-Fk, (38b)

Thus by appropriate choice of resistor, the peak of the loss factor curve can be
moved to the desired frequency.

It is worthwhile to draw a comparison between resistively shunted piezoelectrics
and viscoelastic materials. The form of the frequency dependence of the viscoelastic can be
seen in Ref. [14] for typical damping materials. For common viscoelastic materials, the
peak loss factor occurs in a narrow frequency and temperature range where the viscoelastic
is in transition from its rubbery state to its glassy state. This placement is directly
analogous to the peak loss factor of the piezoelectric occurring at the transition from short
circuit to open circuit stiffness.

It should be noted that the loss factor curve takes the same form as the standard
relaxation curve for material damping, but can lead to material loss factors as high as 8.2%
in the transverse case and 42.5% in the longitudinal or shear cases for commonly available
piezoelectric ceramic materials. This compares favorably to the results obtained in Ref. [9]
for the effective material loss factor for a resistive shunted piezoelectric ceramic.

While these loss factor levels are not as high as those for viscoelastics, the
piezoelectric material (typically a ceramic) has higher stiffness than most viscoelastic
materials and thus stores more strain energy for a given strain. The piezoelectric ceramic
material properties also have the advantage of being relatively stable with temperature over
their operating range. Since their main constituant is lead, however, their density is 8 times
that of water. In all, the net effect is that in most structural cases shunted piezoelectrics will
provide higher total structural damping levels per unit mass with higher temperature
stability. These results for the resistive shunted piezoelectrics have been validated
experimentally and will be presented in a later section.

(38a)

ms Per tive for Determining Resisti i ic Ef!

Since the stiffness of the piezoelectric material is frequency dependant, maximizing
the loss factor of the piezoelectric material does not necessarily maximize the loss factor of
the total structural system of which the piezoelectric is a part. As shown by eq. (34) the
total damping of the system consists of the component damping weighted by the strain
energy fraction in that component. This strain energy fraction is frequency dependant for
shunted piezoelectrics since the piezoelectric stiffness varies with frequency. In order to
accurately model the system modal damping as a function of frequency or shunting
parameters (such as resistance), this frequency dependant stiffness must be carried through
the calculations.

Another method of obtaining the system modal damping which yields significant
insight into the problem is to represent a single mode of the system as a simple 1-DOF
system with a piezoelectric component in parallel to the system stiffness as shown in Fig.
(5). The mass and stiffness in the simple system can represent the modal mass and
stiffness of a multi-DOF system. In this case the modal stiffness of the piezoelectric should
also be used. The modal velocity of the piezoelectric system can be expressed in the
Laplace domain as:
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Resistor Shunted Piezoelectric Material Properties: Longitudinal Case
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Figure 4: Effective Material Properties of a Resistively Shunted Piezoelectric in the
Longitudinal (Upper) or Transverse (Lower) Cases
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Figure 5: 1-DOF System with Shunted Piezoelectric Element in Parallel with the
System Modal Mass

b(s)= I?(S)

RES
" (g 4

MS+T-raji (s) (39)
Where Ms is the impedance associated with the modal mass; K/sis the impedance
associated with the modal stiffness; and Z*(s) is the impedance associated with the
resonant shunted piezoelectric's contribution to the modal mass. After reduction and
nondimensionalization an expression for the position transfer function of such a mechanical
system with a shunted piezoelectric in parallel with the base system stiffness and a force
acting on the mass can be found from eq. (39):

x ry+1
x™ ry + y2+ r(1+ K;)'y +1

(40)

where x* is used for F/K,, and K, is the sum of the base system modal stiffness and the
piezoelectric open circuit modal stiffness. The nondimensionalization is defined relative to
the mechanical system's natural frequency with the piezoelectric open circuited.

K+ K-
of = [——L
M (41a)

Y = —'%:— = nondimensional frequency
@, (41b)
r= R,.Cfl.cof = p| = electrical damping ratio
o =ar (41c)
The generalized electromechanical coupling coefficient, Kjj, is defined:
E 2 2
K K, kﬁ _z k v
i~ E 2 |7 2
K+ij l—kv l—kv 42)
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where K is the ratio of piezoelectric short circuit modal stiffness to the total system modal
stiffness. The generalized coupling coefficient reflects the fact that the piezoelectric is in
parallel with some other stiffness, and thus a smaller fraction of the system strain energy is
converted to electrical energy. It is proportional to the fraction of the system modal strain
energy which is converted into electrical energy by the open circuit piezoelectric. As such,
itis a direct measurement of a shunted piezoelectric's influence on a system.

The modal damping ratio can now be found exactly by solving for the roots of the
cubic equation in the denominator of eq. (40), or approximately using commonly available
root solvers. The exact technique was used to calculate the modal damping of the
cantilevered beam test article.

spplication: R Circuit Shunfi

Another case of interest is to create a resonant circuit by shunting the inherent
capacitance of the piezoelectric with a resistor and inductor in series forming a LRC circuit
for ZF*. This circuit is shown in Fig. (6). This resonant electrical circuit can be tuned in
the vicinity of 1 mode of the underlying mechanical system and thereby greatly increase the
attainable modal damping ratio, in an effect similar to the classical proof-mass damper
(PMD) or resonant vibration absorber.

With an inductor and a resistor in parallel with the piezoelectric's inherent
capacitance, the total electrical impedance can be written:

z¥(s)=Ls +R, )

_EL LI.C:.82+ R‘.C:‘.s
Zi (S )= T T
L,-Cp,- s? + R,.Cp‘.s +1

(43b)

were L, is the shunting inductance and R, is the shunting resistance. This circuit is clearly
resonant with some damping due to the resistance, R. Equation (43b) can be substituted
into eq. (31) and the results nondimensionalized to obtain the nondimensional mechanical
impedance of a resonant shunted piezoelectric:

ZRSP( y=1 ka 52 )
. S)=1—-R,_
4 v ’); + 527")/ + 62 (44a)

where the nondimensionalizations are defined relative to some arbitrary normalization
frequency, o,

0= ——== electrical resonant frequency
[LC
Lo (44k)
6 a)e do . lt . to
= === imensiona ratio
w, = hon i uning rati (440)

and vy and r are defined in eqs. (41b & c) respectively.
Equation (44) is an expression of the effective mechanical impedance of a
piezoelectric element shunted by a resonant circuit. The key parameters of (44) are the
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Figure 6: Resonant Shunted Piezoelectric Schematic

frequency tuning parameter, §, and the damping parameter, r. Thesc parameters are
directly analogous to the ones used in classical proof mass damper nondimensionalization,

Ref. [15]. The & parameter reflects the frequency to which the electrical circuit is tuned,
while the r parameter is an expression for the damping in the shunting circuit.

Materials Perspective

There are several ways to determine the parameters of eq. (44) which maximize
energy dissipation. One of these involves treating the resonant shunted piezoelectric as a
material with frequency dependant properties, in a fashion analogous to the resistive
shunting case. The expression for the effective impedance of the piezoelectric can be put
into a complex modulus form such as (33). This leads to complicated freqi. «cy-dependant
expressions for the material stiffness and loss factor.

2. 2
E.'.zsp(w)=1-kj[ 00 —8) }

’ (& - g+ @rg) (452)
Y (@)= k56Te)
’ 8 - g +(@8%rg) - k8 (5"~ g% (45b)

LRC

where E'*¢ and n'*° are the effective material properties of the resonant shunted

piezoelectric, and g is the real form of ¥, (W®,). These expressions can be seen plotted in
Fig. (7) for common values of the parameters. They can be useful in system modelling if
the values of the parameters are already known. Both the effective material stiffness and

the damping vary nonlinearly with frequency and tuning parameter values, 8 and r. This
makes an optimization for energy dissipation difficult. The actual energy dissipated is

dependant on both E and 1 and can be calculated for the total system using eq. (34).
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Resonant Shunted Piezoelectric Material Properties
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Figure 7: Effective Material Properties of a Piezoelectric Ceramic Operating
Transversely and Shunted by a Resonant LRC Circuit.

Systems Perspective for Determining Resonant Shunted Piezoelectric's Effectiven

The problems associated with the parameter optimization can be greatly alleviated
by observing certain key similarities between a system containing a resonant shunted
piezoelectrics (RSP) and a system containing

a proof mass damper (PMD). As illustrated in Fig. (8), the similarities in system
topologies suggest that the method for obtaining the optimum parameters for the PMD can
be applied to the RSP. The derivation for optimal tuning and damping of the electrical
circuit parallels the technique for determining the optimal tuning and damping ratio of a
PMD as outlined in Ref. [15].

These two systems can be thought of as complementary since the proof mass
damper appears as a point impedance in system modeling and thus damps out only the
available kinetic energy. On the other hand, shunted piezoelectrics are modeled as multi-
port impedances which derive their dissipation from the relative motion of two system
nodes. Thus they can be thought of as dissipating structural strain energy. This difference
will reflect on the optimum placement of the actual dampers.

Following the techniques of modeling the 1-DOF system presented in the section on
resister shunting, the modal deformation rate of the piezoelectric system with resonant
shunted piezoelectrics can be expressed in the Laplace domain as:

F(s)

Ms +£§—+Z;sp(s)

vis)=
(46)

Where Ms, K/s are modal quantities, and (s) is the modal impedance associated with
the resonant shunted piezoelectric. After reduction and nondimensionalization, an
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Figure 8: Comparison of Resonant Damper Topologies between an RSP Damped
System (A) and a PMD Damped System (B)

expression for the position transfer function of a mechanical system with a RSP in parallel
with the base system stiffness and a force acting on the mass can be found from (46):

x (52+ f) + 52r7
—sr ~

x (1+ )7)(62+ v’ + 82ry) + K:(f+ 62ry) @

where the nondimensionalization is the same as that used in eq. (44). The mechanical
system's short circuit natural frequency (defined in eq. 41a) is substituted for the
normalization frequency used in (44) and the generalized electromechanical coupling
coefficient, K, is defined in eq. (42).

For the tuned PMD, the transfer function expression equivalent to eq. (47) is:

%, (6°+ )+ 8ry
% (1+ P8 + P+ 5ry) + p(8°F + 8ry) 48)

ICC-19




with the k;; used in the nondimensionalization set equal to zero and B equal to the damper
mass ratio as described in Ref. [15]. By comparing the form of these two equations, (47)
and (48), it is evident that the generalized electromechanical coupling coefficient for the

tuned piezoelectric case, K
system.

Two techniques for determining the "optimal" tuning criteria will be presented. The
first technique parallels the min-max criteria (presented in Ref. [15] for PMDs) for
minimizing the maximum of the system transfer function by appropriate choice of the RSP
parameters. This technique will be referred to as transfer function optimization, and the
optimal parameters will bear the subscript, (. The second technique will depend on pole
placement techniques to choose system pole locations which maximize the magnitude of the
real part of the system roots. The optimal parameters using this technique will bear the
subscript, ()pp, to signify pole placement.

ijz, serves the same function as the mass ratio, B, in the PMD

At this point the optimal tuning parameters using the transfer function technique can
be found by duplicating the argument for the PMD [15]. The first step in this process is to
find the magnitudes of the transfer functions which correspond to r = zero and r = infinity
respectively. From eq. (47) forr = 0:

* _I 52_g2
ST - 2 2
x 1-g°6 - g)- K. g
N I( g8)é -g)-K;g 49a)
and for r = infinity
Bl 1 |
ST - 2
x _ 2
1 (1+ Kﬁ.) g (49b)

These two transfer functions can be equated and a quadratic expression found for the
intersection points, called the S and T points in the PMD analysis. This expression is

v 610 £+ [ (20 1) -0 o

From the quadratic formula, the sum of the roots of this equation can be found to be

2. 2_ B _ 2 2
gi+g=-=(1+K)+38 1)

Equation (49b) can be solved for the magnitudes at the S and T points. This gives another
expression for the sum of the two roots.

g+ g =2(1+K,) 52)

Equating (51) and (52) leads to an expression for the tuning parameter which equalizes the
magnitudes of the S and T points. This is the optimum tuning parameter.

opt 2
6”, =./1+ Ka' (53)
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Resonant Shunted Piezoelectric Transfer Functions
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Figure 9: Transfer Function for a Single DOF System Containing a RSP at Various
Values of the Damping Parameter,r

Once the optimal tuning has been found using the transfer function criteria, there are
several methods for determining the "optimal” damping in the electrical circuit. One
method entails setting the amplitude of the system transfer function at a chosen frequency to
the amplitude of the transfer function at the invariant frequencies, the S and T points. A
particularly convenient (though not technically optimal) frequency corresponds to the

electrical tuning at g = 8. The amplitude of the S and T points can be found by first solving
equation (50) for the S and T frequencies. The roots of (50) are:

K(1+ K’
gir=(1+K;)2 "(1; )

(54)
This expression can be substituted into (53) to yield the amplitude at S or T:
X _ 2
ST 2 2
x K(l1+K,
Yisr i ( i ) (55)

Evaluating the system transfer function, eq. (47), at g = d and setting this amplitude equal
to (55) gives an equation that can be solved for a simple expression for the "optimal" circuit
damping:

K,

OP‘ — v_
T, = 2
™ 1+ K:

(56)
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The subscript, ()T, signifies that this expression was derived from transfer function
considerations. The effect of various circuit resistor values at optimal tuning is shown in
Fig. (9). As can be seen, the system sensitivities to damping parameter variations are
essentially identical to the PMD sensitivities. As the damping parameter is increased, the
two distinct system modes coalesce into a single mode which converges to the system
response with open circuit piezoelectrics as the damping parameter approaches infinity.

imal Tunin Pole Placement Techni

The second technique for determining the "optimal” tuning parameters is based on
s-plane methods described in Ref. [12] for PMDs and outlined in Ref. [9] for
piezoelectrics. The s-plane diagram in Fig. (10) shows the root locus for the poles of the
shunted piezoelectric system as the damping parameter, r, is varied. Just as in the PMD
case, as the damping parameter is increased the distinct poles can coalesce into double

complex conjugate pairs only if a special value of the frequency tuning parameter, §, is
chossen. This point of coalescence is the point of leftmost excursion in the s-plane. The
pole placement method of optimization involves finding the values of the frequency tuning

parameter, 3, and the damping parameter, r, which give that point on the s-plane. The
poles of the system are found from the denominator of eq. (47). Assuming the coalesced
poles are located at the coordinates, s = a + ib, a - ib, a series of equations for a and b
can be found by equating corresponding terms of the characteristic polynomial found in the
denominator of eq. (47).

2
&r =—4q (57a)
2 2
1+ 52)+ Kij=6a2+2b (57b)
2 2 2 2
sr(1+K))=-4a@*+b) (57¢)
5=a2+ b’ (57d) |

These equation can be solved for the parameters, r and §, to give the value which results in
the coalesced poles:

&y =1+ K?

(58a)

(58b)

The subscript, (),p, has been used to signify that the expressions were derived from pole-
placement considerations. The transfer function corresponding to optimal tuning and this
value of r is shown in Fig. (9). This method tends to give higher steady state responses
than the first method presented.

As a practical point the various damper tuning criteria are indistinguishable in all but
the most sensitive experimental setups. The ratios given for optimal tuning and electrical
damping can now be used to add maximum damping to targeted structural modes. Use of a
tuned circuit can increase the structural mode damping several orders of magnitude above
simple resistive shunting at the cost of reduced damper bandwidth.
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S f Analvtical Predicti

For resistive shunted piezoelectrics, the stiffness and loss factor of the
piezoelectrics were found to vary with frequency. The loss factor exhibited a maximum at
a frequency determined by the shunting resistance and the electromechanical coupling
coefficient of the piezoelectric. For common piezoelectric materials this loss factor can be
as high as 42.5% for the longitudinal and shear loading cases, and 8% for the transverse
loading case. This high loss factor, along with the high stiffness and temperature stability
of piezoelectric ceramics, makes them an attractive alternative to viscoelastic materials.

The shanted piezoelectric materials can be modeled within a structural system in
two principal ways. They can be modelled as having a frequency dependant complex
modulus and incorporated in the same manner as viscoelastic materials. Alternatively, their
internal dynamics can be modelled using mechanical impedance and assembled into a
system impedance model for dynamic analysis.

For resonant shunted piezoelectrics, the parameters of the resonant circuit can be
tuned to a structural mode so as to minimize the maximum response of the mode in a
fashion analogous to proof mass damper tuning. The effectiveness of the RSP damper at
optimal tuning is dependant on the generalized electromechanical coupling coefficient which
is a measure of the percentage of total system modal strain energy actually converted into
electrical energy by the piezoelectric. For typical structures where the piezoelectric contains
only a small fraction of the structural strain energy, the electrical resonance should be tuned
very close to the structural resonance. The optimal damping in the electrical resonance is
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also almost linearly dependant on the coupling coefficient in this case. Two sets of tuning
criteria are derived, depending on minimizing the magnitude of the transfer function, or
minimizing the real part of the system poles.

Descrintion of Experiment

Experiments were conducted to test the validity of the analytical formulae for
shunted piezoelectrics. The tests were designed to investigate the properties of the resistive
and resonant shunted piezoelectrics.

Dynamic tests were preformed on a cantilevered beam test article with surface
bonded piezoceramics and geometry as shown in Fig. (11). The cantilevered beam was
11.53" long, 1.0" wide, and 1/8" thick. Two sets of surface mounted piezoceramics were
bonded to the beam. The pair closest to the base was shunted while the pair furthest from
the base served to drive the beam. The shunted pair was located 97 mills from the base and
extended 2.44". The piezoceramic pairs were separated by 1".

The driving and shunted pairs consisted of 10 mil thick G-1195 piezoceramic sheets
manufactures by Piezoelectric Products, Inc. The pairs were poled through their thickness
and actuated lengthwise, so that they were operating in the transverse mode. For both
pairs, the piezoceramics were attached to the top and bottom surfaces of the beam and
wired as shown in Fig. (11), so as to produce a moment on the beam if a voltage were
applied as described in Ref. [2]. The piezoceramics are attached to the beam with a very
thin layer of conducting epoxy. The beam is grounded and the positive electrodes are
attached to the exterior electroded surfaces of the piezoceramic pairs. This produces
opposite fields in the top and bottom piezoceramics (which are poled in the same direction),
and thus causes the top piezoceramic of a pair to contract as the bottom expands, producing
a moment on the beam. Likewise for the shunted pair, a voltage appears across the shunt if
the beam is bent. The material properties of the piezoceramics are presented in Table (1). A
m%re detailed discussion of modeling of surface bonded piezoceramics is presented in Ref.
[16].

In the shunting experiments, either a resister or a resister and inductor are placed
across the piezoelectric electrodes at Z™(s), as shown in Fig. (11). An uncorrelated,
pseudo-random voltage is then applied as an input at the positive terminal to excite the beam
in the vicinity of its first bending mode at 33 Hz. The white noise excitation signal is
produced by a Textronix 2630 data collection system and amplified by a Crown DC-300A
audio amplifier. The strain response of the beam is measured at a point 2.74" above the
base a shown in Fig. (11). The amplified strain signal is collected by the Tectronix 2630
and a transfer function from input voltage to strain is computed.

In the resistive shunting experiments the shunting resistor is varied over a range of
1/10 to 10 times the theoretical optimum value for maximizing dissipation. Using eq. (38b)
the optimum shunting resistance was found to be 28,680 ohms. For each resistance the

damping and frequency of the first beam bending mode are identified using a 4" order

Table 1: Piezoelectric Pro eis St ci

Coupling Coefficient ks, = 0.35

Elastic Modulus (free) Ef, = 63 Gpa

Dielectric Constant €, = 1700¢°

Capacitance {clamped) c W = 0.156 pfarad

Curie Temperature = 360°C
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Figure 11: Cantilevered Beam Test Article with Position and Arrangement of Shunted
and Driving Piezoceramic Pairs

Recursive Lattice Least Squares (RLLS) algorithm from Ref. [17] applied to the time
domain data from which the transfer functions are derived.

For the resonant shunting experiments, a resistor and inductor in series are placed
across the piezoelectric leads and the resistor and inductor are tuned to the first beam
bending mode, in accordance with egs. (53) and (56). The transfer function from input
current to strain is then measured and compared to the theoretical response for a 1-DOF
system derived in eq. (47). The resistance is further varied in the range of the optimal
value to validate the behavior of the resonant shunted piezoelectric system in response to
parameter changes.

Di . [ Result

The experimental first mode damping for the resister shunting case is shown
compared to the analytical predictions in Fig. (12). In this figure, the experimental poles
were identified from the random time domain response using the recursive lattice least
squares algorithm mentioned previously. The identified damping ratio has been normalized
by subtracting off the inherent damping of the beam with the piezoelectrics shorted. The
curve thus represents only the damping increase afforded by the shunting process. This is
called the experimental added damping.

The two analytical curves were obtained by solving for the roots of the denominator
of eq. (40) exactly. The damping ratio was then found from the root location. The upper
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Figure 12: Comparison of Experimental and Analytical First Mode Damping Increase
as a Function of the Shunting Resistance

analytical curve reflects the value of the generalized electromechanical coupling coefficient
obtained for the shunted piezoceramic pair when a 5 mode Raleigh-Ritz analysis is used to

calculate the ratio of strain energy in the piezoelectric to that in the structure, K . For this
curve the values of the piezoelectric material properties supplied by the manufacturer were
used.

The first five bending modes of a uniform cantilevered beam were used in the 5
mode Ritz model which predicted a first resonant frequency of 35.65 Hz for shorted
piezoelectrics and a generalized coupling coefficient, K,;, of 0.169. In this analysis, the
piezoelectrics were assumed to be perfectly bonded. Details of this type of analysis for
bonded or embedded piezoelectrics are presented in Ref. [16]. Since the actual beam had a
first natural frequency of 33.36 Hz and the Ritz model accurately represents the system
mass, it can be concluded that the Ritz model contains about 14% error in the modal
stiffness of the beam. This error will effect the predicted piezoelectric performance. It can
be partially accounted for by the finite thickness bond layers of the shunted and driven
piezoceramic pairs. The Ritz model thus overestimates the amount of strain energy in the
piezoceramic and thus the performance of the resistive shunting.

An alternative approach is to obtain the generalized coupling coefficient by a simple
experiment. If it is noted that for a mode of a structure the frequency changes as the
stiffness of the piezoelectric changes from its short circuit to open circuit value:

E
K
P
K+ K" K+1—k2
a)E= ____r and wD= _____!_
n M n M (59)

then a simple expressinn for the generalized coupling coefficient for a piezoelectric bonded
to a structure can be obtained from the frequency change in these two cases:
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Kf___(wf) ‘(wf)

[ E 2
() (60)

The lower analytical curve was obtained by experimentally measuring the first natural
frequency of the beam with the shunted pair open or shorted and applying eq. (60) to
obtain the generalized electromechanical coupling coefficient. The value obtained was
0.157. This value was then used in the denominator of Eq. (40) and the resulting roots
found. As can be seen in Fig. (12), this method exhibits much better agreement with the
experimentally determined added damping.

The conclusion of this analysis is that the resistive shunting piezoelectric effect is
accurately modelled using the equations presented in this paper, and that the main source of
error is in the mechanical models of a piezoelectric bonded to a structure. The experimental
curve exhibits the form of the analytical predictions and agrees well with theory once the
generalized coupling coefficient has been accurately obtained. For this particular specimen
the amount of damping added is not large, because the piezoelectrics store only a small
portion of the strain energy and are operating transversely.

The beam transfer functions from applied voltage to strain guage with optimally
tuned resonant shunted piezoelectrics are shown compared to the same transfer functions
for the beam with shorted or open circuit piezoelectrics in Fig. (13). The change in natural
frequency from the shorted to the open circuit piezoelectrics is clear from this figure. The
optimal shunting parameter values were calculated from the transfer function criteria (eq. 53
and 56) using the value of the generalized coupling coefficient found from eq. (60). These
corresponded to a 142.4 Henry inductor and a 6640 ohm shunting resister. The large
inductor was necessary to produce a low electrical resonant frequency.

The resonant shunted piezoelectric pair was found to produce a 35 db drop in peak
vibration amplitude from the shorted or open circuit case. This large amplitude reduction is
in good agreement with the analytical curves for a 1-DOF system obtained from eq. (47).
The experimentally determined natural frequency and base damping of the beam with
shorted piezoelectrics were used in the analytical curves as well as the coupling coefficient
found by eq. (60). The 1-DOF system curves agrees well in the vicinity of the resonance
but fails (as expected) to capture the multiple mode nature of the beam. For this reason the
rolloff amplitudes are not identical.

The variation in the beam response as the shunting resister is varied away from the
optimal value is presented in Fig. (14) and shown to exhibit tendencies precisely as
predicted by the analytical model. This close agreement validates the resonant shunted
piezoelectric model. As predicted, the system exhibits two distinct modes when the resister
is below its optimal value. As the resistance is increased these modes coalesce into a single
mode which converges to the beam response with open circuit piezoelectrics.
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Conclusions

A new type of structural damping mechanism has been presented based on
piezoelectric materials shunted by passive electrical circuits. A model for general shunting
of these materials subject ot arbitrary eleastic boundary conditions was developed to
determine the 6x6 material compliance matrix when the material is shunted. This model
was found to simplify in the case of uniaxial loading and electrical field with the
introduction of the material electromechanical coupling coefficient.

The uniaxial equations were then applied to the cases of resistive and resonant
circuit shunting. In the resistor shunting case, the optimal shunting resistance for
maximizing the piezoelectric material loss factor at a given frequency was determined. The
material loss factor was found to be as high as 42% in the longitudinal loading case for
commonly available piezoceramics. The high loss factor, together with the high stiffness
(63 Gpa) and temperature stability, makes resister shunted piezoelectrics an attractive
alternative to viscoelastic materials in structural damping applications.

The problem of determining the global system damping was discussed in the
context of the frequency dependant material properties of the piezoceramic, and two
techniques were suggested. The shunted piezoelectric elements can be incorporated into the
structural stiffness model via a complex modulus representation (like for viscoelastic
materials), or analyzed as complex impedances and included in a complex system model
(like for electrical systems). Both modelling methods yield identical results. For systems
analysis, the energy transfer from the mechanical to electrical parts (and therefore the
effectiveness of the shunted piezoelectric) is governed by the generalized electromechanical
coupling coefficient which serves as measure of effectiveness. The square of this
coefficient represents the ratio of modal strain energy which is converted into electrical
energy by the piezoelectric.

Resonant circuit shunting of piezoelectrics was also modelled and shown to exhibit
behavior very similar to the well known mechanical tuned vibration absorber. The analogy
with the mechanical damper suggested a method of tuning the resonant shunting circuit to a
structural mode to optimally damp it. Tuning criteria were developed for the shunting
circuit which either minimized the peak amplitude of the system transfer function or placed
the poles as far right as possible in the s-plane. The resonant shunting can have large
effects on the mode to which it is tuned while the resistor shunting has a larger bandwidth.

Experiments were conducted on a cantilevered beam which validated the shunted
piezoelectric models. The models developed were able to accurately predict the influence of
the shunted piezoelectrics on the cantilevered beam damping in both the resistive and
resonant shunting cases. In both cases, the models also correctly predicted the optimal
tuning parameters and effect of variations away from the optimal parameters.

Great benefits for base system energy dissipation can be attained by shunting the
electrodes of the piezoelectric material with appropriate passive circuits. The passive
shunting introduces damping at the piezoelectric but does not preclude the use of shunted
piezoelectrics as actuators in structural active control applications. The analytical models of
the shunted piezoelectric, as well as the experimental verification of these models, provides
a solid groundwork for future structural damping applications of shunted piezoelectric
materials.
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ABSTRACT

A non-magnetic metal moving through a region of non-uniform magnetic
field experiences a drag force. For some simple, one-dimensional or axi-
symmetric cases, it is possible to obtain an exact analytical solution. For
more camplex geometries, finite element (FE) methods are the most practical
means of calculating the force between a configuration of magnets and a
moving conductor. This paper describes how FE calculations can be performed
and shows that good agreement can be obtained between FE calculations and
the measured response. When a conducting plate, bar or rod is constrained
to move near certain configurations of high energy density, permanent
magnets, a large drag force proporticnal to the relative velocity is
produced. This drag force can be used to damp mechanical motion. This
paper presents several candidate magnet-conductor configurations that could
be used as vibration damper assemblies. The next step is to design damper
assemblies for particular modes of a specific structure and then to compare
the calculated with the measured performance of these dampers.

* This work was supported in part by the Air Force Office of Scientific
Research through the Small Business Innovative Research program.
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1.0  INTRODUCTION

The reduction or elimination of wsanted structural motion is an ever
present problem in mechanical structures. Many very clever and effective
solutions have been developed to address vibration damping under a wide
variety of circumstances. This paper shows that electromagnetic damping as
described herein should became one of the candidate technologies that is
routinely considered for adding passive damping to structures. Several
modifications of the passive damping approaches discussed in this paper are
alsc candidates for combined active and passive dampers but these are not
discussed here.

2.0 GENERAL BACKGROUND THEORY

Currents are induced to flow in any conductor moving through a region
of localized magnetic field; these currents and fields obey Maxwell's

equations
V N E. = — .?_‘BL
- t (1)
and
Vaud = I (2)

For non-magnetic metals such as aluminum, the appropriate constitutive
equations for the moving conductor are
J = o E + T Vva B (3)
and

B = mH (4)
where v(r,t) is the velocity of the conductor relative to the magnetic field
B(r,t), o is the electrical conductivity and a4 is the magnetic permeability.
Following standard convention, solutions are developed in terms of a vector
and scalar potential such that

_ _2A
E= -3% + "¢ (5)
_B_ = vV A A (6)

Substituting Equations (5) and (6) into Equation (3) gives

A

T = -aa___.‘: -+ !/\VAﬁ\ -_ 0'V¢ (7)
Under most conditions at low frequencies, the time derivative of A will be
much smaller than the velocity term and one can write

J = T vaV AA - TV (8)
With no loss of generality for 2D current flow, one can take 4 = (0,0,A) ard
(dA/9z) = 0. Consequently,

3 2A

B, = ) By = - 3% , By =0 (9)
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One is free to chose the gauge such that ¥V.A = 0. Let us consider the
special case of a conducting plate moving in the y-direction (therefore
v = (0,V,0)) with the magnetic field confined to the x-y plane as required
by Equation (9). Combining Equations (2), (4), (6) and (8) gives

L %A L D%A DA —
—_— oA L + aovens . goVo =0 (o0

MoOx? Mooyt oY ¢ 1)
Solving Equation (10) gives the magnetic field and its gradients (and hence
the current density induced in the conductor).

The total power dissipated by the moving conductor is given by

*
P - L S J . J7 dxdydy (11)
g conductov

The equations developed above neglect any skin depth effects. If cornditions
are such that motion causes a significant screening of the inside of the
conductor, then the term in dA/dt in Equation (7) must be included. The
solution is straightforward but considerably more complex than the outlined
given above.

3.0 FINITE ELEMENT CALCULATIONS

The standard starting point for electromagnetic finite element (FE)
calculations is Equation (10) with the velocity dependent term equal to
zero. It is well known that the solution of a partial differential equation
(PDE) containing a term like (v éA/éy) such as in Equation (10) is difficult
to solve using mumerical procedures because there is a tendency to generate
oscillatory solutions.

Variational calculus shows that, if a functional F’ satisfies the
equation

OF' N OF' Y
i[am /br\] * 3'7[ a(aA/ay)] 'SR‘Ouz)

then F’ is a solution to the PDE given by Equation (10). With some
considerable efforts, we hae shown that

. JA\* (éA_)l

F - e"P<"/"°—YV>[<'§E =+ BY +ZA0-V¢ (13)
reproduces Equation (10) and hence can be used in the Ritz method for
obtaining a FE solution to Equation (10).

Using the functional given by Equation (13), we have developed a FE
solution to Equation (10). One particular case is shown in Figure 1 where
an aluminum plate is moving with a velocity of 1 m/sec between the poles of
a magnet that produces a maximum field of about 1 T in the gap region. It
is clear that the magnetic field lines within the plate are altered
substantially by current induced with the plate when it is moving.
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Figure 1 A finite element calculation showing the magnetic field
configuration due to a non-magnetic conductor moving in a magnetic field.

I Al PLATE V,

l DRIVE 1 SENSOR

LLLL

-
......

Figure 2 A pictorial illustration of the experimental arrangement used to
determine the viscous drag coefficient of a conductor (Al block) moving
within a reasonably localized field region, B2 . A current I (drive) through
& coil that passes through a region, B,, of reasonably constant field
produces a well defined driving force on the rigid system shown in the
figure. The frequency of the drive current is changed in order to map out
response curves. The velocity amplitude of the response is determined by the
voltage induced in a pickup coil moving in region, B;. This coil is
positioned in the field so that the pickup voltage is proportional to the
horizontal wvelocity of the rigid system. Naturally, this voltage is also

proportional to the frequency.
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4.0 COMPARISON WITH EXPERIMENTS

One of the most widely studied and easily understood mechanical systems
is the damped forced oscillator. This system, shown pictorially in
Figure 2, was chosen for a quantitative evaluation of passive
electromagnetic damping. Aluminum plates up to 6 mm thick were placed as
shown at the end of a long string to form a pendulum. For the case
described here, this pendulum had a frequency of 1.06 Hz. The Al plate
could be driven by a linear motor shown pictorially as B, on the left hand
side in Figure 2. The horizontal velocity produced by this driving force
was measured using a calibrated electromagnetic wvelocity sensor shown
pictorially on the right hand side in Figure 2.

This geametry does not satisfy all of the constraints imposed on the FE
solution, namely the magnetic field in the z-direction (vertical direction
in PFigure 2) is non-zero in some regions. We handled this by first
calculating the damping per unit volume assuming the plate to be infinite in
extent and the magnetic field to be constant within the rectangular region
defined by the dotted lines in Figure 2. The actual damping was calculated
by using the calculated damping per unit volume and the actual volume of
conductor over which there existed a magnetic field greater than 0.7 of the
maximm gap field.

5.0 A DRIVEN DAMPED HARMONIC SYSTEM

A driven, damped, harmonic system is described by the equation

Mx +2bx + wl x = P sin(wt) (14)

where M is the mass of the moving system, P is the peak driving force, b is
the damping or drag coefficient, W, is the system resonant frequency. The
steady state solution is given by

P / (15)
X, = 2 2 2 !
° [C 2 — w?) -1-4500_]/7‘
The experimental setup shown in Figure 2 gives directly the peak wvelocity.

The damping coefficient, b, can be obtained directly from these
measurements. To do this, let us rewrite Equation (15) as

O (R RRRTC

. -2 292
Plotting (wx.) T against w? [1 = (wo 1) J. one obtains a straight
line with slope (M/P)z and intercept of (2Mb/P)* from which one obtains b.
It is also customary to define a damping constant k = 2Mb.
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Figure 3 shows the velocity amplitude as a function of frequency,
f = WAn for a particular value of magnetic field. When plotted as Equation
(16), one obtains the graph shown in Figure 4. From this and many similar
plots, one finds that, as esgpected, the power dissipated by electramagnetic
damping is quadratic in both velocity and magnetic field. At the highest
field of 1.5 T where we have the greatest accuracy in our measurements, the
damping factors are

b(EXP) = (101 % 6) /sec; K(EXP) = (21 + 1) kg/sec
A FE calculation performed as described above for this same case yields
b(FE) = 72 /sec ; K(FE) = 15 kg/sec

We regard this as good quantitative agreement. Of course, better agreement
could be obtained using a 3D FE code but this would be a great deal more
time consuming to develop. A single point calibration that normalized the
calculated magnetic field to the measured value in the gap would also reduce
the difference between calculated and measured values for the damping.

6.0 POTENTIAL DAMPER CONFIGURATIONS

Although our example of a pendulun is an excellent case for
demonstrating that there is good quantitative agreement between FE
calculations and the measured behavior of a damped harmonic system, the
magnet and conductor configuration that was used is not very practical. For
many applications, we expect that it will be most practical to have magnets
near only one surface; that is, it will not generally be practical to place
the moving conductor within the gap of a permanent magnet. Figure 5 shows
one magnet configuration that provides good damping. An array of
rectangular permanent magnets (s placed with alternating magnet poles
adjacent to each other as shown in Figure 5. This magnet stack is attached
rigidly to some portion of the structure that will move relative to the
conductor that is adjacent to the magnet assembly. Damping results when the
magnet assembly moves relative to the conductor. The dimension of the
magnet pole height shown in Figure 5 determines the magnetic field 1liftoff
coefficient or how rapidly the magnetic field decreases with distance form
the pole face. This, in turn, determines the thickness and closeness of
conducting material that should be used in the damper. In general, a
damping constant of about 20000 kg/sec/m of pole area can be obtained for
each 1 mm in thickness of Al conducting material. Clearly, for the greatest
damping, such a damper should be placed between two points on a structure
having the largest relative velocity.

Figure 6 shows an inertial damper that is a modified version of the
damper in Figure 5. The non-magnetic springs keep the damper somewhat
centered. When the structure to which this damper is attached is
accelerated, the magnet assembly will move relative to the support Al tube.
Energy will be dissipated as long as this relative motion exists.

ICD-7




:

%

N s:/
/% N

SR %

dis N| |
A IN S

/N Nl
S

% {g
g 1

110 (1T

%

~d_ \\'-\_;
7 7777

Figure 5 An electromagnetic damper that is analogous to a viscoelastic
extensional shear damper. The magnet assembly is attached to one end of a
tubular support strut by a very light, thin walled tube (it need only support
the viscous drag or damping force between the magnets and the alumimm
strut) . Relative motion between the magnet assembly and aluminum strut
results when the strut is lengthened or compressed due to an applied load.
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SPRING MAGNET ASSEMBLY

Figure 6 An inertial electromagnetic damper that operates by relative
motion between the magnet assembly and the alumimm support tube. Spring
constants are chosen so that the magnet assembly-spring resonant frequency is
somewhat lower than the frequencies one wishes to damp. Under this
condition, any acceleration of the structure (which is connected directly to
the aluminum support tube) will produce relative motion between the magnet
and aluninum tube. This damper is best substituted for a load bearing member

although it can also be placed in parallel with structural members.
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A damper assembly capable of withstanding very large loads and
providing a large damping constant is shown in Figure 7.

7.0 ADDITIONAL CONSIDERATIONS

Like standard viscous damping, electromagnetic damping results from a
force that is velocity dependent. This raises questions about the
effectiveness of this damping at very low velocity. To evaluate the low
velocity behavior in a qualitative manner, we constructed a simple loaded
cantilever beam having an oscillation period of about 2 seconds. A stiff
plate attached to the free end of the beam formed the moving plate of an
electramagnetic damper assembly. This plate moved between the poles of an
electromagnet having a pole area of 0.5 square inches and a gap field that
could be as large as 1.8 T. A velocity sensor similar to the one shown in
Figure 2 was used to measure the velocity of the free end of the beam.
Figure 8 shows a sequence of velocity-time waveforms immediately after the
beam was deflected 1 cm from its equilibrium position. Figure (8a) shows
the behavior for zero applied field (about 0.05 T residual field). At a
field of 0.67 T, Figure (8d) shows that one gets the most rapid return to
equilibrium. Figure (8e) 1s very near the condition of critical damping
while Figures (8f) and (8g) show that damping beyond critical damping can be
achieved. Clearly, damping exists, as expected, down to the smallest
measurable velocities.

8.0 SUMMARY AND CONCLUSIONS

In this paper, we have shown that the damping that results from a
conducting, non-magnetic plate moving near the pole of a permanent magnet
can be understood in a very quantitative manner. 1In addition, the expected
quadratic dependence upon relative velocity (between the plate and magnet)
and magnetic field has been demonstrated. Several magnet geametries that
are adaptable to practical damper configurations have been suggested. To
date, no quantitative measurements on any of these assemblies have been
made.

Electromagnetic dampers have some advantages over other means that have
been used to achieve damping. Since the energy is dissipated within an
excellent thermal conductor, there is no problem in removing heat when large
average powers are involved. Nearly all the temperature dependence arises
from the electrica. conductivity (see Equation (11)). This is a very mild
temperature dependence compared to that encountered in using viscoelastic
materials (VEMs). A single damper assembly could operate very well over a
temp:rature range of several hundred Kelvin. Behavior of electromagnetic
dampers (EDs) is extremely predictable under a wide variety of conditions.
EDs can tolerate operating at elevated temperatures (in some cases, up to
about 1000 K) and in very high radiation (neutron, gamma or X-ray) fluxes.

Although the detailed description of EDs given in this paper is only
applicable at relatively low frequencies (say below 100 Hz), the basic
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Figure 7 An electromagnetic damper that can produce large damping forces and
handle large transient or steady-state loads.

Figure 8 The output of - velocity sensor placed on the end of a vibrating,
cantilever beam: (a) the damper moving in the residual field of the magnet,
about 0.05 kG; (b) a damper magnetic field of 2.8 kG; (c) a damper field of
5.1 kG; (d) a damper field of 6.7 kG; (e) a damper field of 8.1 kG; (f) a
damper field of 9.6 kG and (g) a damper field of 11.5 kG.
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physics described by Equations (1) to (8) is valid up to several hundred
megahertz. The primary effect of higher frequencies is to reduce the
effective volume of conductor that is contributing to the damping. This can
be overcome to some extent by using different conductor configurations.
Basically, we see no problem in realizing damping up to many megahertz.

Another advantage of ED is that there is absolutely no hysteresis in
either the amplitude or time behavior.

Varying the thickness of the conductor gives some degree of external
control over the damper.

It should also be easy to couple the passive ED discussed in this paper
with active control. For example, it is possible to embed current loops in
(but insulated fram) the conducting plate. Displacement or velocity sensors
can be used in the conventional manner to feed current through these control
loops to cancel urmanted motion. In fact, an inductive element attached
to either the magnet or plate assembly can be used as the velocity sensor in
this feedback loop because the time dependent fields that are produced
external (or internal) to the conductor depend quadratically upon the plate
velocity. These same current loops might alsoc be used to extract small
amounts of standby electrical power from the ambient mechanical noise. This
standby power could be used to energize local field (velocity) sensors and
thereby produce signals that could be used by the control system.

At low velocity. there can be very poor impedance matching in the sense
that much more force is available for damping than is actually being used.
When this is the case, ED will be improved by using a mechanical means of
amplifying the displacement (velocity).

ICD-11




DEVELOPMENT OF A NOMOGRAM FOR SELECTION
OF A VISCOELASTIC FREE LAYER DAMPING MATERIAL

By

Robert J. Dominic
University of Dayton
Research Institute
Dayton, OH 45469
(513) 229-2644

ABSTRACT

During recent years the University of Dayton Research Institute
(UDRI) has implemented the concept of design, development, and production of
viscoelastic damping materials to attain customer-specified damping
performance. The desired damping performance may be for a new application or
may be for an improvement that substantially increases the damping over that
being obtained from the customer’s currently used material. Usually several
new cardidate materials are produced in trial quantities and their damping
properties are evaluated by standard vibrating beam tests. Then analytical
estimates are made of their performance in the customer’s system
configuration. The entire procedure may be repeated several times as
improvement trends due to material component ratios and processing variables
are exploited. UDRI has developed a System Damping Nomogram (SDN) for free
layer damping systems whereby the relative system damping performance of
competing materials can be shown over a temperature range of interest by
plotting data points extracted from the Reduced Temperature Nomograms (RTN)
of the materials. As the new materials are characterized by vibrating beam
tests, the system damping performance that results from their use can be
determined and compared to previous material results by plotting appropriate
data on the SDN. The development and use of the SDON will be explained.

INTRODUCTION

There are many ways to display the performance of a damping system,
whether in lists or tables or graphs. We are considering here the
performance of a configuration of a particular damping material installed to
a structure, not the damping properties of the material itself. Those who
work primarily or frequently towards the alleviation of vibration-induced
noise or structural fatigue failures by use of the damping methodology
usually are comfortable with any of these damping performance
representations. Your boss will usually be in this category; however, your
customer may or may not be in it. The system damping performance nomogram
(SDN) presented here provides a clear picture of how damping material
property changes affect the damping performance of a specific damping system.
It is useful for convincing yourself, your boss, your customer, and
especially people who are peripheral to the problem but have authority to
make program decisions, that you are achieving significant system performance
improvement. In the programs discussed here, the performance improvement is
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obtained by formulation modifications of a damping material to improve the
performance of a damping system specified by the customer.

I want to make it clear here that most of the material development
work we perform for both government and industrial customers is restricted
from public distribution at various security classification levels.
Therefore, the example used for this paper was not a real project.

DEVELOPMENT OF THE SYSTEM DAMPING NOMOGRAM

Damping system design, as well as the development of the SDN,
requires certain knowledge about the vibration problem which is being
addressed. This includes:

1. the frequency of the primary vibration resonance of concern;

2. the structural temperature or temperature range at which the
vibration occurs;

3. the configuration and material properties of the structural
component(s) involved; and

4. the configuration of the desired damping system, or at Teast the
configuration limitation parameters of the damping system. ~

When these facts are known, the best damping material currently available to
solve the problem can be selected. Alternatively, a special damping material
can be formulated with damping properties which fit the problem better. The
parameters of the problem selected as an example are the following. The
structure is a cantilevered aluminum beam and shows a high resonant vibration
measured to be the secornd bending mode at 400 Hz in the operational
temperature range of 40 to 70°F. For whatever reasons, a free layer damping
system is required with the damping layer no thicker than the aluminum to
which it is installed. This is, of course, a simpler problem with a more
clear definition than you usually encounter.

We want to generate an SDN, specific to the problem, upon which we
can plot the damping properties of elastomeric polymer materials which we
might use as the free layer damping material. The SDN should show us ihe
system damping achieved at 400 Hz over the temperature range of 40 to 70°F
for each damping material under consideration. The SDN layout data can be
generated easily by a damping system prediction computer prooram. Our
program uses the beam damping equations of Ross, Kerwin, and Ungar (R-K-U
Equations); and the Oberst Equation. In this case we use the free layer
cantilever beam adaption of the Oberst Equation, one of the many options in
the program. In addition to the configuration information, required material
properties of the structure are entered to the program as are a range of the
damping material properties of elastic modulus (Young’s modulus) and loss
factor, and also the expected density of the damping layer material.
Structural dimensions may have to be varied somewhat to achieve the desired
resonance mode at the structure’s resonance frequency.

The computer printout for this example, showing input data and the
calculated system damping loss factors and vibration frequencies, is shown in
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Figure 1. The SDN is layed out from the material and system loss factor
values in this list, and is shown in Figure 2. The system and material loss
factor scales of the SDN usually are adjusted after evaluation of several
candidate materials’ damping performance.

USING THE SON

Use of the SDN requires knowledge of the loss factor and elastic
modulus, at the specified frequency and over the specified temperature range,
of the candidate damping materials. This information is all incorporated in
the "Reduced Temperature Nomogram" (RTN) depiction of material properties,
developed by Dr. Dave Jones of AFWAL/ML with the cooperation and/or
assistance of several others. [t is assumed that the reader is familiar with
the RTN and its use. Loss factor and modulus equations are commonly fitted
to damping material test data displayed on the RTN. The equations then can
be used to determine coincident values of damping material properties or they
can be determined manually on the RTN. The manual method was used for this
example.

Figure 3 shows the RTN of a rather poor example of a free layer
damping material, for this or any other problem. The drafting construction
to pick material properties values for use on the SDN are shown on this
figure. The 400 Hz frequency 1ine is drawn first. Then horizontal lines are
drawn through the loss factor curve at convenient values and verticals are
drawn through those intersections which extend through the 400 Hz line and
the modulus curve. Then horizontals are drawn through the modulus curve
intersections with the verticals to make it easy to determine modulus values.
Pertinent data is the 400 Hz value, the circled loss factor and modulus data
point values, and the temperature values at the intersections of the
verticals with the 400 Hz line. The loss factor-modulus data points then are
plotted on the SDN with the appropriate temperature noted at each data point,
as shown in Figure 4. This SDN shows rather poor damping performance, though
you might think otherwise if you had a part that was failing at 10 or 20
percent of its design service life. The damping performance does cover the
desired temperature range, but we can do better.

COMPARISON OF TWO SIMILAR DAMPING MATERIALS

Figures 5 and 6 show the RTN’s of two very similar materials which
appear to be different because the nomograms are plotted with different To
values but identical reduced frequency scales. Figures 7 and 8 show the
drafting construction to pick the data values for the SDN. That SDN is shown
in Figure 9 and does indicate that the two materials are fairly close in free
layer damping performance, but material A is better.

One problem with the SDN is the difficulty in following the
temperature trend of the damping performance comparison at the glassy end of
the transition region where elastic modulus values are high and loss factor
values are low. The solution to this problem is to plot the system loss
factors versus temperature over the desired temperature range. That
comparison plot for these two materials is shown in Figure 10 for the
temperature range of 30 to 80°F, just in case this range turns out to be
different than we were told when we started. Figure 10 shows more clearly
that material A provides better damping. Remember that this is not a real
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problem. We can obtain three to four times this level of damping with an
opt;mum free layer damping material formulated to fit specific problem
conditions.

We have found the SDN to be useful. It is not difficult to generate
or to use. It and the system damping versus temperature plot have been used
to convince people that significant progress was being made. Damping
performance improvements in systems using materials developed under this
monitoring method have been almost exactly what the SDN predicted. The
analysis is capable of predicting damping system performance on numerous beam
and plate configurations for both free layer and constrained layer damping
systems. Real problem solutions usually achieve considerably higher system
damping levels than was shown by this example.
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BEAM PARAMETERS:
BEAM TYPE:
FIRST B8EAM BENDIN6 MODE NUMBER:
LAST BEAM BENDINGE MODE NUMBER:
BEAM LEN6TH:
BEAM THICKNESS:
BEAM DENSITY:
BEAM YOUNG'S MODULUS:
DAMPING MATERIAL DENSITY:
DAMPING MATERIAL LOSS FACTOR:
DAMPING MATERIAL THICKNESS:
BEAM COATED ON ONE SIDE

MODE NUMBER 2
BARE BEAM FREQUENCY 1S 412.96 HZ

MATERIAL LOSS FACTOR IS .S

SYSTEM
MATERIAL L0SS SYSTEM
MOOULUS FACTOR FREQUENCY
2.000€+06 .291867 581.2
1.000E+26 .24918% 480.9
7.S00E+05S .22325 449.3
S.000E+0S .18324 413.7
4.000E+0S .16110 398.1
3.000E+0S . 13388 381.6
2.000E+05 .0998% 364.0
1.580€+0S .07956 354.8
1.000E+0S -05654 345.2
7.500E+04 04384 340.3
S.000E+24 .0302% 335.2
3.000E+04 .01867 331.2
1,000E+04 .20640 327.0
MATERIAL LOSS FACTOR IS 1.S
SYSTEM
MATERIAL LOSS SYSTEM
MOOULUS FACTOR FREQUENCY
2.000E+06 .87500 S$81.2
1.000E+06 .74745 480.9
7.S00E+05 .6697S 449.3
5.000E+05 .54972 413.7
4,000E+0S .48329 398.1
3.000E+05 .40159 381.8
2.000E+0S .2995§ 364.0
1 .S00E+0S .23867 354.8
1 .000E+0S . 16961 345.2
7.500E+04 13161 340.3
5.000E+04 .09074 335.2
3.000E+04 . 05600 331.2
1.000E+04 .01921 327.9
Figure 1.

CANTILEVER

2

2

11.000 in
.25Q in
. 1000 lb/cu 1n

1.000€E+37 ps:
.0600 Ib/cu in
.250 in

MATERIAL LOSS FACTOR IS 1

SYSTEM

MATERIAL LOSS SYSTEM
MODULUS FACTOR FREQUENCY
2.000E+06 .58333 $81.2
1.000E+06 .49830 480.9
7.S00E+9S .44650 449.3
5.000€+05 . 36648 413.7
4.000E+0S .32219 398.1
3.000E+05 .26773 381.6
2.000€E+0S .1997¢ 364.0
1.500E+05 .1891¢ 354.8
1.000€E+05 . 11307 345.2
7.500€+04 .08768 340.3
S.000E+04 96049 335.2
3.000E+04 .03733 331.2
1.000E+04 .01281 327.0

MATERIAL LOSS FACTOR IS 2

SYSTEM

MATERIAL LOSS SYSTEM

MOOULUS FACTOR FREQUENCY
2.000€E+96 1.16667 se1.2
1.000E+26 . 99661 480.9
7.S00€+95 .89300 449.3
5.000E+0S . 73296 413.7
4.000E+0S .54439 398.1
3.000E+05 .53546 381.5
2.000€+05 .39940 364.0
1.500E+05 .31823 354.8
1.000E+0S .22614 345.2
7.500E+24 . 17538 340.3
5.000€+04 .12098 338.2
3.000€E+04 .Q7467 331.2
1.000€E+04 .02862 327.9

COMPUTER RUN TO GENERATE NOMOGRAM
LAYOUT DATA.
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Coupled Modal Damping in Transient Solutions

Bruce C. McFarland *
Allen J. Bronowickit

TRW Space & Technology Group
Redondo Beach CA 90278

March 8, 1989

Abstract

The modal strain energy technique allows one to compute equivalent viscous damp-
ing ratios for real normal modes given structural loss factor data. This concept is
generalized to include inter-modal coupling effects due to damping forces. Off-diagonal
terms in the modal damping matrix are normalized by the geometric mean of the
natural frequencies of the coupled modes. Incorporation of the damping model in a
transient analysis scheme is described. The model is then demonstrated on a space
structure. The effect of damping coupling is shown to be significant when damping is
heavy and modal frequencies are closely spaced.

*Staff Engineer, Dynamics Department
'Head, Analytic Methods Section
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1 Introduction

The modal strain energy (MSE) technique is a common means of computing equivalent modal
damping values for simplified dynamic analysis of systems having structural losses. The
method bases the viscous damping ratio assigned to each normal mode on the relative degree
of participation in the mode of the various component strain energies, and on the material loss
factors in those components. This is a rule of mixtures approach to damping. Apportionment
of damping values by mode is useful since it allows one to construct a damping model in
which modal damping values do not rise with modal frequency. Generation of physical
equivalent viscous damping models have the undesirable effect of producing modal damping
values which are proportional to modal frequency.

The technique of basing modal damping values on strain energy participation was first
proposed by Ungar [1]. The method was applied to viscoelastic materials using standard
finite element codes by Rogers et. al. [2]. It has since seen increasing use in the aerospace
industry. The technique allows one to avoid solving a complex ejgen-problem by assigning
a viscous damping ratio to each real normal mode. The assumption is that damping forces
are smaller than elastic forces, and hence do not affect the orthogonality properties of the
modes. The standard application of this method thus does not account for coupling between
the response of the modes due to the viscous forces. It was shown in Reference 3 that the
effects of damping coupling between real normal modes are negligible for lightly damped
structures whose modes are well separated in frequency. However, when structures are
heavily damped and natural frequencies are not well separated, coupling between modes due
to damping forces can be significant. The modal strain energy technique is extended in this
work to account for these inter-modal coupling forces. The result is a coupled modal strain
energy (CMSE) technique.

2 Damping Models

The following development works toward an equivalent viscous treatment of structural damp-
ing which includes inter-modal coupling effects. The CMSE formulation allows the computa-
tion of transient response directly, without recourse to transform techniques. An appropriate
starting point for the derivation is the set of non-homogeneous equations of equilibrum in
the frequency domain.

[-Q*[M] + [K] + j sgn(Q)[K'I{X(Q)} = {F(N)} (1)

The system mass, stiffness and structural damping (or loss) matrices, [M], [K] and [K’],
respectively, are assumed to be real, symmetric and frequency independent. In the case of
viscoelastic materials the stiffness and loss matrices actually depend on frequency. The MSE
technique often employs material property data near a given natural frequency to obtain
equivalent damping values for modes in the vicinity of the assumed frequency. In that case
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the matrices are assumed to be piecewise frequency independent. For the purposes of this
development the assumption of frequency independence is adequate. The sign function is
required to ensure that the damping forces always oppose the velocity.

The stiffness and loss matrices are formed from the assembly of a number of elemental
stiffness and loss matrices, [Kf] and [K{']. The elemental loss matrices are assumed to be
related to their stiffness counterparts through a simple scalar loss factor, g;. The system
stiffness and loss matrices are thus represented:

(K] =3 _[K;] (2)

K] =YK =3 ailkK?) 3)

The nomenclature “element” may also be taken to mean component or material. The system
is merely being subdivided into regions having a constant loss factor.

The objective of the following developments is to find a simple means of computing
transient dynamic response which adequately matches the dynamics described by Equation 1.
One could simply apply transform techniques to these equations, but the resultant response
would be non-causal as discussed by Crandall [4]. A more physical approach which produces
the desired behavior without introducing non-causality is desirable.

At a single response frequency, {)y, one may compute an equivalent physical viscous
damping matrix [C] = [K']/Qo such that the viscous loss forces equal the structural loss
forces defined in Equation 1. When the system loss matrix is strictly proportional to the
stiffness matrix a set of modal damping ratios may be obtained. In that case these modal
damping ratios will be linear with modal frequency. High frequency modes become heavily
damped and low frequency modes are lightly damped. This is contrary to the structural
damping assumption in which all modes are damped equally when the material is uniform
throughout the structure. Thus equivalent viscous damping matrices formed in this simple
manner are not realistic.

2.1 The MSE Technique

The MSE technique begins with real normal modes satisfying the system eigenproblem with
damping terms discarded:

(K][@] = [M][®][w’] (4)

The resultant modes are normalized to give a unit diagonal modal mass matrix. The modal
transformation {z} = [®]{n} is then applied. Mass-orthonormalized modes are assumed in
the ensuing discussion. A truncated set of modes will generally be employed so that the
number of modal coordinates, 5, will be less than the number of physical coordinates, .
Time domain equations of motion in the modal space may then be defined as follows:

(114} + [ed{i} + W?){n(1)} = (@17 {f (1)} ()
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where [c], the viscous damping matrix in modal coordinates, is yet to be assigned. In the
MSE method the off-diagonal terms of [¢] are zeroed out and viscous damping ratios are
assigned to each mode m as follows:

W = Zigi{‘ﬁm}T[Kic’]{qsm} - Zg;{(ﬁm}T[Kf']{(ﬁm}
" )T [KH{én} wh,

where use has been made of the diagonalization of the stiffness matrix by the mode shapes.

Notice that the term in the numerator can be interpreted as the sum of the elemental modal

strain energies weighted by the elemental loss factors. In this manner, the modal loss factors

are apportioned according to the strain energy participation of the mode in each of the

materials. A diagonal modal damping matrix is obtained with non-zero elements
Tigi{8n } (K dm}

Cmm = 2mem = o (7)

(6)

Alternately, one can employ the definition of the system loss matrix, Equation 3, to obtain
an expression based on system rather than elemental quantities:
¢m}T[K' o
Cmm = 2Crnwm = { m} [ ]{ m} (8)

“m

The computation using the system loss matrix rather than elemental strain energies is often
simpler to perform in practice. It is instructional to view this modal damping matrix as the
projection of the loss matrix on the modal space with coupling terms discarded, and then
scaled by one power of frequency to reflect the additional time derivative applied to obtain
modal velocity from modal displacement. The frequency scale factor allows the loss per
cycle to be maintained for sinusoidal motions, assuming each mode responds only at its own
natural frequency. Given broad-band excitations and low to moderate levels of damping,
each mode will indeed respond primarily at its natural frequency.

When the structure is excited by a narrow-band input, it would be a better approximation
to scale the modal loss matrix by a single reference frequency. That reference frequency, (g,
is commonly chosen as the half-power frequency of the response power spectral density. This
option of computing an equivalent viscous damping matrix, by scaling the projection of the
loss matrix on the modal space by one user-defined reference frequency is available in many
major finite element codes, such as MSC/Nastran.

2.2 The Coupled MSE Technique

It is proposed here that the modal damping matrix be constructed on the basis of strain
energy participation without discarding coupling terms. This may be accomplished by pro-
jection on the modal space and application of a diagonal scaling transformation as shown

below:
[d] = wH]([@) (K (8)po~2] (9)
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The diagonal terms which result from the CMSE damping model are identical to those of
Equation 7. Coupling terms are scaled by the square root of the product of the natural
frequencies of the two modes being coupled, i.e. their geometric mean, as proposed by
Rogers et. al. [2]. When modes are closely spaced, and hence coupling terms are important,
the geometric mean will be close to the two natural frequencies of interest.

The model is intended to be useful in cases where damping coupling is significant; where
the damping forces are considered to be structural, such that the energy loss per cycle
is generally independent of response frequency; and where the response is not at a single
frequency, disallowing the use of a single reference frequency to scale loss terms. In other
words, for want of any better knowledge, the modes are assumed to be responding primarily
at their own natural frequencies. The resulting coupled damping matrix will necessitate a
further eigen-solution to obtain complex modes if one wishes to diagonalize the equations of
motion. Otherwise, coupled solution techniques can be applied in frequency or time domain
solutions.

A physical damping matrix, [C], corresponding to the assumed modal damping matrix
may now be constructed. We desire a minimum norm matrix which satisfies the relation
®TC® = c. Such a matrix may be found through application of the generalized inverse [5],
where ®# is defined as (®7®)~'®7. A computationally efficient substitute for the generalized
inverse of the eigenvector matrix for mass-normalized modes was proposed in Reference 6
to be ®T M. Applying this quasi-inverse to both sides of the above relation results in the
corresponding physical damping matrix

[C] = [M][@][c][@]" (M) (10)

®T M satisfies all but one of the sufficient conditions set forth in [5]; ®®* is symmetric,
®®TM is not. C derived from ®# will be the minimum 2-norm physical damping matrix
which provides the desired modal damping matrix. Its projection on truncated modes will
not be null. C derived ®TM provides the desired modal damping matrix and has null
projection on truncated modes. A comparison has shown that transient responses resulting
from use of the quasi-inverse vs. those resulting from use of the generalized inverse are within
.2 percent.

3 Transient Response Analysis

Having defined an appropriate modal damping matrix, the coupled modal equations of mo-
tion may easily be solved by direct integration. It is also possible to solve a complex eigen-
problem in the modal space to de-couple the equations prior to integration. If a small number
of modes are being used, the coupled integration will not be a computational burden. To
recover displacements a mode acceleration approach is more accurate than a mode displace-
ment approach. To do this requires the solution of the equations of equilibrium at each time
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step given the applied, inertial and viscous loads. The resultant physical displacements are

{«} = [KI7"({F} - [M][@}{7} - [C][@){n})
= [K]7'({F} - [M][®] ({7} + [c]{3})) (11)

The second, simplified expression given above was obtained by post-multiplying Equation 10
by ®, and taking advantage of mass-orthonormality to obtain C® = M®c. By recovering
displacements in this manner, it is not necessary to actually compute a physical damping
matrix. The modal viscous loads are used to augment the modal inertial loads, avoiding
computation of physical viscous loads. An even more simple form may be found by manip-
ulating the expression for the real eigenproblem, Equation 4. This results in the following
simple expression for displacement response due to modal inertial loads [7):

(K] [M][2] = [®][w™] (12)

Recovery of physical displacements is then obtained in terms of applied physical loads and
a summation of modal responses due to modal inertial and viscous loads:

{z} = [K]7{F} - [®]lw™*) ({ii} + [}{7}) (13)

4 Frequency Response Example

Figure 1 shows a spacecraft truss appendage supporting an optical mount. Damped tripod
struts and base joint dampers are modeled with material loss factors. The tip is subjected
to a lateral sine wave frequency sweep from 10 Hz to 1000 Hz. This emulates a secondary
coolant disturbance. Rotations of the optical mount are monitored for the reference case
with coupled imaginary stiffness, Equation 1, and for CMSE and MSE equivalent damping.
These responses are shown in plots of response vs. excitation frequency in Figures 2a-2c.
The CMSE viscous equivalent case shown in Figure 2b is similar to the imaginary stiffness
case in Figure 2a for most the the frequency range. The difference in second mode peak
response is about 10 percent. The MSE viscous equivalent case shown in Figure 2c compares
well only at specific frequencies. The difference in second mode peak response between the
MSE case and the imaginary stiffness reference case is 350 percent.

5 'Transient Response Example

Figure 3 shows a spacecraft with solar arrays cantilevered on booms. Active damping is
proposed to attenuate oscillations of the solar arrays due to spacecraft slew maneuvers. The
active damping is approximated by material loss factors applied to bending strain of the
booms. Boom loads recovered using displacements calculated by Equation 13 for CMSE
and MSE damping techniques are shown in Figures 4a and 4b. In this example peak boom
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bending loads are reduced by 20% when the CMSE technique is employed. A 10% increase in
positive peak loads is encountered when MSE damping forces are neglected in loads recovery.
This can be seen in Figure 4c. In this case neglecting damping forces in recovery improved
response as compared with the CMSE reference case, but this may not be true in general.
We conclude that in general additional error is incurred by neglecting large damping force
corrections in loads recovery.

A more significant result is the amplitude of free vibration after the slew maneuver. At
40 seconds, response in the CMSE case is an order of magnitude greater than response in
the MSE case. In this situation neglecting coupling terms in the damping matrix would lead
to large errors in prediction of post-slew spacecraft performance.
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6 Conclusions

The Coupled Modal Strain Energy technique allows one to build a physically reasonable
structural damping model without discarding modal coupling terms. Damping models in
both the modal and physical spaces were constructed. Modal coupling terms have previously
been shown to be important in the case of large damping and closely spaced modes. The
example presented confirms that the retention of modal coupling can have a significant effect
on transient response.
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ABSTRACT

The feasibility of using perturbation techniques to determine the effect of
added viscoelastic damping treatments on the modal properties of a system is
investigated. Linear perturbation equations for the changes introduced into
system eigenproperties are derived and applied to several examples involving
the flexural vibration of beams with varying degrees of damping treatment.
Both large and small perturbations are considered. Comparison of the results
with those obtained by direct solution of the corresponding complex eigenpro-
blem shows the procedure to be accurate. The perturbation approach described
can accommodate frequency-dependent material properties, and the procedures
involved are illustrated in an example. The perturbation approach appears to
be particularly well-suited for design situations where a number of damping
configurations must be investigated.
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INTRODUCTION

Addition of a viscoelastic damping treatment to a structure aiters its mass
and stiffness and introduces damping effects. If these changes are relati-
vely small, addition of the damping material constitutes a small pertur-
bation to the existing structure. This raises the possibility of using
structural modification (perturbation) techn'iquesl'6 to analyze the effect of
added damping treatments.

Perturbation techniques have the advantage that the changes in the modal pro-
perties can be expressed entirely in terms of the eigenproperties of the ori-
ginal system and the changes in system mass and stiffness. In the case of
added damping treatments, this means that the natural frequencies, loss fac-
tors and mode shapes of the damned system can be obtained directly, without
the need to re-solve the eigenvalue problem. From a computatioral point of
view, this feature of the perturbation approach is highly attractive.
Viscoelastic damoing treatments often lead to nonproportional damping, with
compiex eigenvalues and eigenvectors. Solution of large-order complex eigen-
value problems is time consuming and costly. This is particularly true for
damping treatment design, waich may require consideration of a number of dif-
ferent damping configurations.

In this paper we explore the feasibility of using perturbation techniques to
determine the effects of added viscoelastic damping treatments. Attention is
restricted to free-layer treatments applied to systems whose vibratory
response is described by discretized equations of motion. The basic pertur-
bation equations are derived and applied to several examples involving the
flexural vibration of an elastic cantilever beam with varying degrees of
damping treatment over its length. This configuration was chosen because of
its simple geometry and because of the existence of other solutions with
which to compare the results of the perturbation approach.

Values of the natural frequencies, 1loss factors and mode shapes for the
damped beam are presented for varying degrees of damping treatment. These
results are shown to be in very good agreement with those obtained by direct
solution of the corresponding complex eigenvalue problem. Both small and
large perturbations are considered. Large perturbations are treated .as a
series of smaller changes. Results showing the rates of convergence of
this sequential approach are presented. Also presented are results showing
the optimum locations along the beam for placement of partial damping treat-
ments. Use of the perturbation approach to account for the frequency depen-
dence of the damping material properties also is discussed and illustrated in
an example problem.

GENERAL CONSIDERATIONS

Consider a conservative vibratory system with symmetric mass and stiffness
matrices [M] and [K]. The corresponding eigenvalue problem is of the form/

A2 (M1 {u}y = [KD {v}; (1)
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where Ay is the eigenvalue for the ith mode of vibration and {y}; is the
corresponding eigenvector (mode shape). It is assumed that the system
eigenproperties are known.

Suppose, now, that a linearly viscoelastic damping treatment is added to the
system. Since Eq. (1) is expressed in the frequency domain, the complex
modulus 1is the proper representation for the properties of the damping
material. Consequently, addition of the damping treatment produces a real-
valued change [AM] in the mass matrix and a complex-valued change [AK(w)] 1in
stiffness. Since the properties of viscoelastic materials are frequency
dependent, the change in stiffness also depends upon the frequency, w.

These changes in the system parameters give rise to a new set of eigenvalues,

Ai2, and eigenvectors, {¥}i:
M2 2 M2+ g2 (2)

Wl = {w}y + {av}y (3)

Except for simple structures with uniform damping treatments over the entire
surface, addition of viscoelastic layers usually gives rise to a system with
nonproportional damping. In this case, the eigenvectors are complex-valued
and the eigenvalues are of the form

M2 = 032 (1 + iny) (4)

Here, wj is the damped natural frequency and nj is the corresponding modal
loss factor for the system.

One possibility for determining the eigenvalues and eigenvectors of the
damped system is to re-solve Eq. (1) using [M+AM] and [K+A8K(w)] as the mass
and stiffness matrices. This is not an attractive proposition for large
order systems, particularly if a number of different damping configurations
are to be investigated. Solution of large-order, complex-valued
eigenproblems is time consuming and costly.

Another possibility 1s to use approximate methods of analysis, such as the
modal strain energy approach of Johnson and Kienholz® or the Rayleigh
Quotient approach of Stevens et a19. These approaches are relatively simple
to apply and give results that are useful in many situations. However, they
do not always provide all the information needed. The modal strain energy
approach is restricted to problems with proportional damping and provides
estimates only of the modal 1loss factors; the Rayleigh Quotient approach
gives estimates of both the loss factors and damped natural frequencies and
applies to arbitrary damping configurations. Both methods are based upon the
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mode shapes of the undamped system, and neither provides information about
changes in the mode shapes.

The alternative considere% herein is to use linear perturbation techniques to
express the changes AA4¢ and {AY}y in the eigenvalues and eigenvectors
directly in terms of the changes [AMi and [AK(w)] and the eigenproperties of
the original system. This approach has the obvious advantage that infor-
mation about all the eigenproperties can be obtained for a variety of damping
configurations, while the eigenproblem need be solved only once. It should
be noted that the process need not start with a mathematical model of a con-
servative system, as assumed in the preceding discussion. The original
system can be damped. Systems. whose natural frequencies and mode shapes are
obtained experimentally via modal testing techniques7also can be handled,
provided an appropriate set of mode shapes is available.

There 1is one potential problem with the use of linear perturbation tech-
niques. The density of common damping materials is of the same order of
magnitude as common metals, so the changes in the mass matrix can be relati-
vely large. A higher-order perturbation theory10 could be used, but the
resulting equations are lengthy and the computations time consuming. The
alternative, used in this paper, is to treat large modifications as a series
of smaller ones. Changes in system stiffness usually are relatively small
and cause no particular difficulties. This 1is because the modulus of
damping materials typically in several orders of magnitude less than that of
the structure to which they are applied.

PERTURBATION EQUATIONS

First-order perturbation equations for the linear eigenvalue problem can be
derived in a variety of ways, and are available in various referencesl-
These derivations hold in the current case provided proper care is taken in
handling the change in stiffness, which is now complex-valued. Suffice it to
say that, for a system with distinct eigenvalues, the first-order approxima-
tions for the changes in the eigenproperties are:

1
a2 = — fwhT [ [AK] - A42 [aM] ] {wi} (5)
i
and
n
A{w} =J21 ajy {vly (6)
j#
where
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1
" M (M2 - Ag2)

aij {w};7 [ [8K] - A42 [aM] ] vl (7)

Here the superscript T denotes a vector or matrix transpose, and Mj is the
modal mass:

Mj = {w}iT [M] {w}; (8)

Expressions for [AM] and [AK] are given in the following Section (for a
beam). Once these are known, the step-by-step procedure for applying the
perturbation equations is as follows:

1. Solve the eigenvalue problem, Eq. (1), for the system without damping
treatment. This gives A2 and {y};, and is the starting point for the
modification steps.

2. Determine [AM] and [AK] for the damping treatment of interest. If
either change in relatively large, divide it into a member of smaller
changes.

3. Solve Egs. (5) and (6) for an increment of [AK] and [AM]. This deter-
mines the changes in the modal parameters.

4. Update the modal parameters using Eqs. (2) and (3).

5. Repeat steps 2 through 4 until the desired modification [AM] and [AK)
is achieved.

6. Solve for the damped natural frequencies and modal loss factors using
Eq. (4).

Frequency dependent material properties can be handled in a similar wayll,
First, the eigenproperties of the original system are determined using values
of the material properties at some convenient reference value of frequency.
The resulting values of the natural frequencies are then used to determine
updated values for the material properties and the corresponding changes in
stiffness [AK(w)]. Application of the perturbation equations then provides a
new estimate for the natural frequencies, and the process is repeated. This
jterative process is carried out mode-by-mode. Since the material properties
usually are slowly varying functions over the frequency interval of interest,
convergence is rapid.

Updating the mode shapes at each step of the perturbation process is a labor-
intensive operation. If the mode shapes are not updated at each step, i. e.,
if the mode shapes of the undamped structure are used throughout, the pertur-
bation method yields essentially the same results as the Rayleigh energy
approachl2-14, * These approximate results may be accurate enough in many
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instances. If so, the costly mode shape updating process can be avoided.
For damping treatment configurations that result in propurtional damping, the
mode shapes are the same as those of the undamped structure’. Updating of
the mode shapes is not required in this case.

It also is possible to minimize the calculations needed to update the mode
shapes. As can be seen from Eqs. (6) and (7), ajj will be small for those
modes for which the values of |i-j| is large. Thus, these modes contribute
little to the mode shape changes and can be ignored in the updating process.
This feature of updating only certain mode shapes is useful, especially for
large system models. Use of the perturbation approach with condensed dynamic
system models is not considered in this paper.

APPLICATIONS TO A BEAM

In this section, the perturbation approach described is applied to four
examples involving the flexural vibration of an elastic cantilever beam with
varying lengths of viscoelastic damping treatment on one side (Figure 1).
These examples also illustrate the capabilities of the perturbation approach.
The computations are based upon a finite element model of the beam, which
will be discusscd in more detail later. Expressions for the incremental mass
and stiffness matrices [AM] and [AK] are given in the Appendix, and the
dimensions and material properties used in the examples are listed in Table
1. Except where noted, all examples are for an aluminum beam with a
commercially-available damping layer. Computer programs were written to per-
form the necessary computations.

Example 1: Accuracy of the Method

The objective of this example was to assess the accuracy of the perturbation
equations. To this end, they were used to compute the damped natural fre-
quencies and modal loss factors for a beam with damping treatments ranging in
length from x/L = 0 to x/L = 1 and with thickness ratios ty/t = 0.2, 0.6 and
1.0 (see Figure 1). Here, and in the following, the subscript V denotes the
viscoelastic damping layer. The perturbations were carried out in ten, fif-
teen or thirty equal-sized increments, depending upon the thickness ratio,
and the material properties were assumed to be independent of frequency.

In order to provide a hasis of comparison for the perturbation solutions, the
complex eigenvalue problem associated with the finite element model was
solved directly using the IMSL subroutine EIGZC. The finite element model
was verified by comparing results for the damped natural frequencies and
modal 1loss factors for different numbers of elements. Results for an
undamped beam also were compared with theoretical values of the natural fre-
quencies and mode shapes. It was found that the use of ten elements gave
very accurate results for the first five modes, with a variety of damping
treatment lengths and thicknesses. Validation of the finite element model
was essential because the main purpose of this example was to establish the
accuracy of the perturbation method. Significant finite element discretiza-
tion errors would have confused the issue.

The natural frequencies and 1oss factors of the damped beam for the first and

second modes are presented in Figures (2) and (3). These results are indica-
tive of those for all the lower flexural modes. In these figures, wg i1s the
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natural frequency of the undamped beam and FEM refers to finite element
results obtained by direct solution of the complex eigenvalue probliem. As
mentioned previously, these results were validated carefully and can be con-
sidered to be "exact". As can be seen, the perturbation approach gives
excellent results; they are indiscernible from the finite element solutions.
Shear effects may be important for the thicker damping layers considered, but
were neglected in this investigation.

Example 2: Rate of Convergence

Relative errors in the perturbation solutions for the damped natural frequen-
cies and modal loss factors can be expressed as

Wp - Wfem
ey = | — (9)
Wfem
Mp - Nfem
ep = | — (10)
Nfem

Here, the subscript p refers to the perturbation solution and fem denotes
finite element results. These errors depend upon the step size used in the
perturbation solution, or, alternatively, upon the number of steps used to
implement the total perturbation.

Figure (4) shows the variation of e, and e with the number of perturbation
steps for the first mode. The total monficat1on was a complete damping
treatment with thickness ratio ty/t = 1.0, which corresponds to a 21%
increase in element mass. Again, the material properties were assumed to be
frequency independent. The eigenvalues, eigenvectors, and modal mass were
updated at each step.

For the particular case considered, the relative error in the loss factor is
always greater than the error in the damped natural frequency. As can be
seen from Figure (4), convergence is relatively rapid. With ten steps, the
error in the loss factor is approximately 2%, while the error in the damped
natural frequency is about 0.05%. Almost identical results were obtained for
the first five flexural modes. Although the results are not presented here,
the eigenvectors also were found to converge rapidiy.

Example 3 Partial Damping Treatment:

This example was designed to illustrate the effect of the location of a par-
tial damping treatment along the length of the beam. The beam was divided
into thirty elements of equal length, and the damping material was added to
one element at a time. The thickness ratio was ty/t = 0.6, and the modifica-
tion was carried out in ten steps. As before, the material properties were
assumed to be frequency independent.

Figure (5) shows the results for the first and second modes. As can
be seen, the highest l1oss factors are achieved when the damping material 1is
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placed at the nodes of the undamped member. The natural frequencies decrease
the most when the damping layer is located at the anti-nodes (results not
shown here). These results are as expected. At the nodes, bending strains
in the viscoelastic coating are maximum. Thus, damping material located near
the nodes is most effective. Placing it at the anti-nodes dissipates little
energy, but adds mass to the system and lowers the damped natural frequency.

Example 4 Frequency Dependent Material Properties

To 1llustrate the capability to handle frequency dependent material proper-
ties, Example 1 was repeated (for ty/t = 1) using the hypothetical material
properties shown in Figures (6) and (7). Note that damping in the aluminum
beam is now included. The dashed curves indicate the assumed variation in
the material properties, while the solid lines define the reference values
used in the initial calculations. The frequency dependence has been
exaggerated so that its effect can be more readily observed.

Figure (8) shows the system loss factors for the first two modes. The per-
turbation solutions account for the frequency dependence of the material pro-
perties, while the finite element results do not. They are based upon the
reference values of the material properties. Effects of the frequency depen-
dence on the system natural frequencies were negligible for this example.

CONCLUDING REMARKS

First-order matrix perturbation methods can be an efficient means for pre-
dicting the dynamic characteristics of modified structural systems.
Viscoelastic coating modifications are particularly suitable for this tech-
nique. The modifications need not be small, but, if they are not, they must
be built up by a series of small modification steps. Because this technique
works with discretized systems, it can be applied to structures of general
shape and can be implemented along with finite element codes.

The first-order stepwise perturbation technique used in this investigation
gave close approximations to the damped natural frequencies and loss factors
for a beam with various configurations of complete and partial damping treat-
ments. Relative errors in the loss factors were found to be greater than
those in the damped natural frequencies. If the mode shapes are not updated
at each modification step, the perturbation solution produces an approxima-
tion which 1is comparable to that of the Rayleigh energy approach”.
Application to problems with frequency-dependent material properties was
described and {1llustrated in an example problem. These same procedures also
can be used for material properties that are temperature dependent.

An important factor not addressed in this paper is the question of the effi-
ciency of the perturbation approach. Does it require more or less com-
putational effort than a re-solution of the complex eigenvalue problem? The
answer to this question depends very much upon the algorithms used to imple-
ment the perturbation equations. For example, for partial damping treatments
covering only a small portion of a structure, the incremental mass and stiff-
ness matrices consist almost entirely of zero elements. Computational time
can be reduced by taking advantage of such facts. For small modifications
requiring only a single solution step, the perturbation technique appears to
be very effective.
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TABLE 1. PROPERTIES FOR BEAM EXAMPLE

Beam E =70 x 109 N/m2
(ATuminum)

p = 2.7 x 103 «kg/m3
Damping Layer Ey = 0.69 x 109 N/m2
(Commercially
Available) ny = 0.64

py = 0.58 x 103 «kg/m3
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APPENDIX-BEAM EQUATIONS

Consider an elastic cantilever beam with thickness t, flexure rigidity EI,
length L and elastic modulus E, with a viscoelastic damping layer of
thickness ty bonded to it over a portion of its length (Figure 1). The pro-
perties of the damping layer are described by the complex modulus

Ex = E, (1+iny) (A1)

where Ey is the storage modulus and ny is the material loss factor. Here,
and in the following, the subscript v denotes the viscoelastic damping
material.

Addition of a damping layer to one side of a beam causes a shift in the
neutral axis of the cross-section. Using simple beam theory, this shift can
be shown to be

_ . Et(1+t)
y=y/t=—— (A2)

2(1+Et)

where y* is the distance between the neutral axis of the composite cross
section and the midplane of the beam and

E = Ey/E t = ty/t (A3)

Note that y usually is small, since E is typically small, and often can be
neglected.

The mass and stiffness matrices for a beam element are available in the
literatureld;

12 6a_ -12 6a
El  [>~422 -6a  2a2 -

(k] = — ~~12 -6a = k [K] (A4)
a3 SYM ~< . 4da
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156 22a_ 54 -13
pAta |~o 432 13a -3a -
M] = — ~156 -22 = m [M] (A5)
420 SYM ™~ 4a

Here, p is the mass density, A is the cross-sectional area and a is the ele-
ment length.

The incremental mass matrix [AM] due to the viscoelastic layer is given by
Eq. (A5) with the beam dimensions and properties replaced by those of the
layer. The incremental stiffness matrix is given by Eq. (A4), except with k

replaced by ky. Using standard finite element procedures and simple beam
theory (shear effects neglected), it can be shown that

El [ — - - - -
ky = — | EL+ 12y2 + 12t [% (1+4t) - y]2 (A6)
a
where
i = Iv/l

(A7)
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DAMPING AND VIBRATION QONTROL OF SQME LAMINATED COMPOSITE BEAMS
USING ADD-ON VISCOOEIASTIC MATERIAIS

V. S. Rao, C. T. Sun and B. V. Sankar
Department of Aerospace Engineering, Mechanics
ard Engineering Science
University of Florida
Gainesville, Florida 32611

ABSTRACT

This paper describes the develcpment of a finite element model for
laminated beams treated by a constrained viscoelastic layer. The finite
elenent model is designed so as to represent the viscoelastic core shear
accurately. An offset-beam element is develcped that is specially suited for
modelling such laminated beams. Element matrices are derived starting with an
assumed displacement field and stress-strain relations. System damping and
tip displacement are calculated analytically, and compared with those measured
experimentally using the impulse-frequency response technique. Results show
that dynamic response is significantly improved by use of such damping
treatments.

*  This work is sponsored by the Army Research Office,
monitored by Dr. Gary L. Anderson under contract No.
DAALO3-88-K0013.
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Introduction

The increasing use of constrained viscoelastic materials in numerocus
dynamic applications have motivated the authors to aevelop an accurate ard
efficient method to estimate damping in such structures.l Considerable work
has been done in the past few years to analyze ccnstrained viscoelastic layer
dampmg Early work in the field can be found in Ross, Ungar and Kerwin's
work.?2 Plunkett and Lee discussed the cptimization of constrained
viscoelastic layer damping for beams.3 The analysis assumes that. the
treatment is always symmetric and that the base structure is perfectly
elastic. While this is reascnable for metals, fiber reinforced plastics are
known to have much higher loss factors.

More recently, finite element techm.ques have been used to address this
problem.4/5:6 Most of the work done so far is on damping treatment applied to
metals. Advanced fiber reinforced ccmpos:.tes are prime candidates for several
interesting applications where damping is a key parameter. Improvement of
damping characteristics of these materials make them even more attractive.
Since most camposite structural elements in military and space applications
are subject to severe dynamic enviromments, further vibration control beccmes
extremely necessary. This can be achieved by using damping treatments.

High damping in a structure can often improve performance in a dynamic
load ervirorment. Efficient methods for predicting damping from a structure
are required, so that means of increasing damping by design can be explored.
Jchnson et al. and Brockman discuss same of the finite element modeling
techniques that are axrrerrtly popular for modeling structures containing
viscoelastic materials.?/8

mchoftheproblemsmanalyzmgdampmglnstructures is due to
camplicated geametries; it is therefore natural to lock to finite element
solutions. The method considered here makes use of the correspondence
principle of v:.scoelasl::.c:.ty When applied stresses are not too large, the
camposite and its constituent materials exhibit linear viscoelastic behavior.
For such materials, due to the corresporndence principle, the Youngs modulus
and shear modulus can be treated as camplex qualities. The real part is
@lledthestozagemodulusarﬂthemagmaxypartthelossmodulus.

The direct frequency response technique was used for the analytical
estimation of danpumg and tip displacement. Experimental measurement of
damping was done using the mpulse—frequency response technique. In composite
base structures, several factors influence system response. For example, the
stac}ungsequernemthebasestructure arnd the location, amount and type of
treatment influence the response strongly. Parametric studies, at best, lead
to locally optimal solutions; while no formal optimization was done, results

show the potential for optimization.

Finite Element Analysis.

The finite element method was used to evaluate damping in the structure
for different lengths of treatment of the constrained viscoelastic layer.
Figure 1 shows the arrangement used for mocdeling the three layer sandwich.
The base structure and constraining layer were modeled using a specially
developed three-node, seven-degree-of~freedcm, offset beam element. A key
feature of this element is its ability to account for coupling between
stretching and bending deformations. This allows for the beam nodes to be
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offset to ocne surface of the beam, coincident with the nodes of the adjoining
element. The viscoelastic core is modeled using a rectangular plane stress
element that is ccmpatible with the offset beam element.

1 Sin (wt)

Figure 1: Typical Finite Element Mesh

Offset Beam Element

The element stiffness matrix for the offset beam element shown in Fig. 2
is fornilated as follows. The different displacement components are given by,

u(x,y) =y, (x) + (z - §)¢(x)
w(x,y) = w(x) | (1)
¥ (x,y) = $(x)

u, and ¥y are defined using linear interpolation functiens.

w(x) = (%) 1w 1T
L) /1, } (2a)

pO0 = (1Y) X1 ¥ 1T

where, uj, u;, p,and ¥, are corresponding nodal displacements. w is defined
using quadratic lation functions.
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22 -
w=[ @ +z) 1T ()
o - &, {w ¢} (2b)
L ¢ :
X+ 25, W
L, 1 L)

N
e

where wj, w; and wi are nodal displacements.
Strains are derived fram the displacement using the kinematic strain-
displacement relations of linear elasticity.
€, gsa?l1=§l&, + 2
x 3x ax

_au aw_,  aw 4

Tex = 52 7 ax ax

The strain energy density for the system is given by
Uo =%Clle:x +%k2 CSS 7:: (4)

G, and G, are constants from the constitutive equations. The total strain
energy for the system is given by

N

L by,
U=JU°W=bJJU°m (5)
v o‘.h/z

Using equations (2), (3), (4) and (5), the strain energy of the system is
reduced to,

U=2 @7 (K] (&)
vhere,
{d, ) = vector of elemental D.O.F.
(K, ] = element stiffness matrix

The calculations involved are lengthy, but straight forward and are not
presented here. The distributed mass matrix is evaluated similarly from the

kinetic energy of the system.
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Figure 2: Offset Beam Element

Modeling and Solution Technique

Asnertionedbeforethebasestnmbarewasmdeledusingtheﬂmee—rwde
shear-deformable beam element. Typically, twenty elements are used to model
the beam. Very large aspect ratios are cammon for elements used to model the
viscoelastic core. Values as high as 5000 to 1 have been used successfully,
andarescmetmsevennecessazy, since the viscoelastic core is only two mils
thick.” Aspect ratios up to 200 to 1 were used in the present study. To
validate this formulation, several calculations were made to determine natural
frequencies ard tip displacement of simple systems, closed form solutions to
which are easily derived.

melossfactorwasevaluatedusjngthedlrectfrequencym
technique. In this method, a forced vibration at a known frequency is
considered. Systemdlsplacementsareobtainedbysolvuqasystemofcanpla:-
valued linear equations. The frequency response spectrum is cbtained by
plotting amplitudes over a range of frequencies. The loss factor, a measuce
ofdampmg,lsobtamedfromtherealpart.oftheresporse This technique,
thoughmtthemosteff:.c:.ent was used for two reasons, simplicity and the
relative small size of the problem in question.

The modeling method used is reascnably efficient. A three layer
structure is modeled using only two layers of nodes. This technique can be
easily extended to two-dimensicnal problems. However, alternative methods for
detminhgm system loss factor will have to be used as the problem size
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Experimental Procedure

The most ccmmon methods used to measure damping are the free vibration
cdecay methed, the rescnant dwell methed, the hysteresis locp methed and the
frecuency-rescernse technicue. For the rurpese of this research the impulse~
frequency rescense technique was used.® This technique offers potential for
rapid nardestzuctive evaluation of materials ard structures.

In the imrulse-frequency respanse technicque, the specimen is excited
impulsively with a controlled-impact hammer which has a farce transducer
attached to its head. The specimen respanse is sensed by a non-contacting
eddy anrent proximity probe. The signals from the force transducer ard the
moticon transcducer are fed to a Fast Fourier Transform (FFT) analyzer which
displays the freguency spectzum. A block diagram of the instrumentation is
shewn in Figure 3. By analyzing the rescnant peaks for a particular mcde, the
loss factor, a measure of damping, is cbtained from the real part of the
respanse spectzum as explained in Fig. 4. In this research the improvement
technique was used.® Same of the featires of this improved technique are the
excitation level is acawrately comtrolled, therefore, the amplitude of
vibration of the specimen can be reduced to a minimm (thereby reducing air
damping to a minimm). Also, the respense function, which is identical in
shapgtothetmnsfergﬁmctionafterensemble averaging, can be used for
danping measureswents.

Hammer
Force Transducasr

a ij/:cs 208 A03

[*)

*—
9 Edcy current probe ——el )

[TT}777
Disglacament <
Measuring v
Systam
Kaman KD-24CC Candlitloning
Rasgense Amplifler
signal PCS 480 A
FFT
Analyser
HP 3420 A |~ Excitation signal J

Figure 6: vVariation of Loss Factor with Tape Length (Mode I)
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Results and Discussion

The material prcoperties of Glass-Epoxy and the soft alumirmm i
layer are given in Table I. The damping material used was 3M's SI2052x, a
class of constrained viscoelastic damping tape. The shear modulus and loss
factor of the damping material, as a function of temperature and frequency are
provided by the manufacturers.

Table - I Material Properties

Glass-epoxy camposites (0°)

p E, Ep Grr
Vv, 9/cm3 GP GPa GPa vIm nL nT

0.50 1.90 38 8.80 3.0 0.28 0.0033 0.01

Constraining layer: — Type 1100 Dead Soft Alumirmm.

P E G v n

2.76 g/cm3 69 GPa 26 GPa 0.32 0.005

Structural damping with and without (taped amd untaped) the add-on
viscoelastic layer are evaluated experimentally, and analytically using finite
element analysis. Results of the effects of different parameters such as, the
quantity of treatment, location of treatment and the thickness of the damping
mte.nalontheove:ralldampmgofﬂzesystemarepresented Stacking
sequences of the three different laminates analyzed, specimen dimensions,
measured loss factors of the untaped beam and first and second mode rescnant
frequencies are given in Table ITI.

Table IT - ILaminates Tested**

laminate length thickness fregquency (Hz) loss factor
(rmm) (mm) Mode I Mode II Mode I Mode IT

[0/90]4s 20.32 3.57 54.1 339.7 0.00291 0.00282
[0/90/00/90]2g 20.32 3.68 49.4 309.3 0.00382 0.00346

[90/90/0/90]2g 20.32 3.61 41.2 258.2 0.00428 0.00422

FigureSshmstherealaniimagmaxyparts and magnitude of the
response as a function of the frequency of the forced vibration for three
different lengths of treatment. Corresponding structural loss factors

*k Three specimens tested in each case.
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evaluated from the finite element analysis is also shown. The change in
system response due to addition of the viscoelastic material can be seen from
the figure. Displacement is plotted in meters, per Newtcn of applied force.
large reductions in response amplitude can be seen due to application of the
damping tape.

Figure 6 shows the variation of loss factor with tape length for the
three different laminates for mode 1. Loss factor ratio is the ratio of the
loss factor of the taped beam to the measured lcss factor of the untaped beam
(value in Table IT). In each case the loss factor increases rapidly from
b/1=0 to B/1=0.4, after which it shows a slight drop and then remains steady.
The existence of a tape length, b, for which 2/1<1 ard damping is maximized is
significant. This result confirms ocur previocus belief that shear deformation
of the viscoelastic core is the primary source for energy dissipation. For
lengths greater than the optimal value, the deformation of the viscoelastic
core follows the extensicnal deformation of the swrface of the beam.

Similar results are presented in Fig. 7 for vibration in the second mode.
The trend cbserved here is different from that for mode 1. While treatment
closer to the root of the beam seems to have the greatest effect on mode 1,
the center of the beam seems to be the optimal lecation for mede 2. Figure 8
presents the experimental results for the [0/90]4g laminate. The trends
cbserved are identical to those suggested by analytical results for mede 1.
However, fbr'b/1?0.4 experimental results are consistently higher than
analytical predictions. Mode IT results show excellent agreement with
analytical predictions.
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Figure 6: Variation of Loss Factor with Tape Length (Mode I)




The variation of loss factor ratio with tape length for different
thicknesses of the damping material is shown in Fig. 9. The results suggest
that for a given thickness of the constraining layer there exists an optimal
thickness of the viscoelastic damping material (about 0.127 mm for a
constraining layer thickness of 0.254 mm) for which greatest damping can be
achieved. The variation of amplitude ratio with tape length is given in Fig.
10. Amplitude ratio is the ratio of the maximm tip displacement of the taped
beam to that of the untaped beam. For each of the three laminates the
vibration amplitude is seen to reduce dramatically with increasing damping.
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Figure 7: Variation of Loss Factor with Tape Length (Mode II)
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ncluding Remarks

Based on the mumerical and experimental results presented, it is
concluded that viscoelastic surface layer treatments can be used to
significantly improve the dynamic response of structures. Increases in
overall system damping and large reductions in response amplitudes are
achieved using damping treatment. Results also show, for each mode of
vibration, there exists a length, location and a thickness of the damping
tape, for a glven thickness of the constraining layer, for which the overall
system damping is maximized.

In future the work will be extended to accommodate the effects of
cantimious variation in cross section, (this is already possible with a little
medification) pre-stress, initial twisting and rotation on the system

response.
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CLASSIFICATION IN THE FREQUENCY-TEMPERATURE
RANGE OF VISCOELASTIC MATERIALS FOR DAMPING
OF FLEXURAL WAVES IN SANDWICH STRUCTURES
WITH VARIOUS BOUNDARY CONDITIONS.
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Damping of flexural waves by constrained or unconstrained viscoelastic layers is conside-
red in order to classify the viscoelastic materials according to their efficiency for givenranges of
temperature and frequency . The loss factor is computed for structures of various geometries ,
such as beams, plates and tubes, with various materials of the constraining layers , such as steel,
aluminum, fiber glass composite . The influence of boundary conditions is studied . The curves
corresponding to particular loss factors are plotted in the frequency - temperature plane for a gi-
ven structure, so that the efficiency of the damping treatment may be evaluated immediately for
each range of temperature or frequency . A classification between different materials can then be
made . An experiment giving the modes and the corresponding loss factors of free sandwich

plates is presented .

1 External consulting engineer for CERDAN .
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INTRODUCTION

The damping of flexural vibrations by the mean of viscoelastic materials is a classic method
involving different techniques such as extensional damping by unconstrained layers, and
shear damping by constrained layers . The resulting loss factor for an elementary structure
such as a beam, a plate or a tube, is given by well-known theories (Oberst, Ruzicka and Ker-
win). However, one of the user's problems is the choice of the different added layers : the vis-
coelastic material and, eventually, the material of the constraining layer, and their dimen-
sions.

This paper presents a method of classification of viscoelastic materials, based on their
intrinsic loss factor or on the composite loss factor of damped structures in which they are in-
volved. The principal results are curves representing a given loss factor in the temperature-
frequency plane, so that the user can immediately evaluate the damping's efficiency in the
ranges of temperature and frequency he is interested in. It is also possible to plot the loss fac-
tor of a composite structure versus the frequency (or the temperature) for given temperatures
(or given frequencies), or versus different thickness ratios for given temperatures and fre-
quencies.

The combination of all these possibilities helps to find the best viscoelastic material, and
eventually the constraining material, and to optimize the thickness of each layer.

The utilization of the method will be illustrated with some examples of damping by five
different viscoelastic materials .

INTRINSIC DAMPING .

Characterization of a viscoelastic material .

Under linear conditions, the complex modulus is a classic way to characterize the be-
havior of a viscoelastic material . The stress-strain relation can be written ;

c=E({T) 1+ (T)) €

where f is the frequency, T is the temperature, and E, 8 are respectively the Young's modu-
lus and the loss factor of the material .

The complex modulus E(1+if ) is provided by experimental data giving the variations of E

and B with temperature and frequency . Usually, there is an equivalence between temperature
and frequency effects, so that the separate variables f and T can be combined in a single vari-

able faT called the reduced frequency , where the ‘shift factor’ o is a non-dimensional par-

ameter depending only on temperature . The Young's modulus E (or the shear modulus
G=E/3 ) and the loss factor are then given ,in function of the reduced frequency , by the 'mas-
ter curves' which characterize each viscoelastic material . Figures 1 and 2 show the master
curves of two viscoelastic materials : M1 and M4 .
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Classification of viscoelastic materials according to their intrinsic loss factor .

One way of comparing the efficiencies of different viscoelastic materials is to look for
the frequency intervals where their loss factor is greater than a certain value, for the tempera-

tures one is interested in.Table 1 shows the frequency intervals where p >0.5 for five mate-
rials: M1 to M35, and for three temperatures . This method gives a first indication about the
best materials available for given temperatures and frequencies .

In order to avoid tedious manipulations, the master curves of the viscoelastic materials

have been stocked in a library ; the user can then compute E and B for each value of f and T
by the mean of a simplc program using the following method : it first computes the shift fac-

tor ovpsthen the reduced frequency four, and finally E and B.The user can obtain more global

results than the table above by plotting E and P versus frequency (or temperature) for the
temperatures (or the frequencies) he is interested in. However, if he wants to have a general
view of the efficiency of the material in order to make a first selection, the most appropriate

method consists in plotting the curves corresponding to different values of B in the (f,T)
plane . These curves are obtained by a program which computes B for several values of f and

T, and then plots contour lines corresponding to the desired values of B . In order to have re-
liable results, one should consider a great number of points in f and T, and make regular sub-
divisions in log(f) and T . Figures 3 and 4 show the curves obtained for M1 and M4 for

10 Hz < f <10000 Hz and 0°C< T < 60°C . A comparison with the results of Table 1 or the
master graphs shows that the curves give quite good results if we take into account the impre-
cision on the master graphs .

The different types of viscoelastic damping treatments .
There are two types of viscoelastic damping treatments :

-the extensional damping ( by unconstrained layer ), in which the extensional deformation of
the damping layer accounts for the damping

-the shear damping ( by constrained layer ) , in which the energy losses due to shear motions
are dominant .

We will study these two types of treatments with one viscoelastic layer and for elementary

structures such as beams, plates, and tubes .

EXTENSIONAL DAMPING.

This method consists in adding a viscoelastic layer of Young's modulus E, (1+jB) to the base
structure (Figure 5) .

The loss factor of the composite structure in the case of a damped beam or plate is given by :
[1,2,3]:
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Beh(3+6h+4h2+2eh3+e2h¥

'n =
(1+¢h) (1+4eh+6ehZ+4eh3+e2hd)
Hj , H, : Thicknesses of the layers

e=Ey/E|
h=Hy H
eh = Ev Hy / E{ Hy : Ratio of the extensional stiffnesses of the two layers

In most practical cases, eh << 1.

For a damped tube, the loss factor is :

BE,R3*-Ry%)

‘n =
E)Ry*R1 %) + E,R3*Ry%)

with Ry, R : Internal and external radii of the initial tube
Ry . External radius of the damped tube

For the beam or plate as well as for the tube, the composite loss factor increases with the
intrinsic loss factor , the Young's modulus and the thickness of the viscoelastic layer . The
best materials for extensional damping are then those which have the greatest loss factor and
extensional stiffness . Increasing the thickness of the viscoelastic layer improves the efficien-
cy of the treatment, however there is a limit above which the damping tends to saturate and
even to decrease . '

For example, the material M4 is better than M1 for extensional damping (Table 1, Figures 3
and 4) . In fact , M4 and M5 are used for extensional damping, whereas M1,M2 and M3 are
used for shear damping .

Figures 6 and 7 show the curves 1 (f,T) for a beam damped by M4 and M5 . By comparing
them, one can deduce that :

- M4 is less efficient than MS for high temperatures and low frequencies, and more efficient
for low temperatures and high frequencies

- M4 is more efficient than M5 for intermediate temperatures and frequencies

More precise results can be obtained by superimposing the figures 6 and 7 ). The best materi-
al for the particular case considered is then deduced immediately for each range of tempera-
ture and frequency .

The influence of H,, can also be studied by plotting the curves 1( H,/Hj ) for given val-
uesof fand T (Figures8and9).
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SHEAR DAMPING.

This treatment, which has been considered by many authors [1,2,4], consists in applying a
constrained viscoelastic layer (Figures 10 and 11) . Ruzicka and Kerwin [4] have provided a
simplified theory with the following assumptions :

-The considered modes are sinusoidal (simply supported structure)

-The effects of the boundary constraints are negligible

-Shear and torsional distorsions of the elastic elements are negligible

-The dimensions of the different cross-sections remain constant

-There is contact without slippage at all the interfaces

-The stress-strain relations are linear in all the layers

-The axial inertial forces are negligible

-The elastic elements have zero extensional and shear loss factors

-The elastic elements are considerably stiffer in extension than the viscoelastic material
-The viscoelastic material is thin and of approximately constant thickness

The loss factor of the composite structure is :
BXY

1+ X(Y+2) + 1+BHX2(Y+1)

with B : Intrinsic loss factor of the viscoelastic material
X: Shear parameter
Y: Geometrical parameter

The intrinsic Joss factor is deduced of the master graphs . It depends on the frequency and
thetemperature : B (f,T) .

The geometrical parameter Y is defined as

Y = (EDoo/ EDg } - 1

where (EI)) (resp. (EI),,, ) is the flexural rigidity of the composite structure when the elastic
elements are completely uncoupled (resp. coupled) . Another expression for Y is :

MA; A2d2

(Al + MA2)(11 + MIZ)

with M = E5/E;
Aj 2 : Cross sections of the elastic elements
11’2 : Moments of inertia of the elastic elements
d :Distance between the neutral planes of the elastic elements
More generally, Y = Yox (Y/Y(y)
where Yy is a function of dimension ratios and ratios of Young's moduli of the elastic layers
Y/Y) is a correction factor representing the influence of the viscoelastic layer
Yo=YH, =0)
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The expressions of Y for a beam, a plate or a tube are given with figures 10 and 11 ;

The shear parameter for the mode n is given by
Gy By dg?
X, =
Pn2 Hy Yg (EDg

where G'y, B, and H,, are respectively the shear modulus, the mean length and the thick

ness of the viscoelastic layer
dg is the distance between the neutral planes of the elastic elements when H,, =0

Pp, is the wave number
The frequency of the mode n for the beam or the tube is :

azn (EDy

2n.2 m

where (EI),, is the flexural rigidity of the composite structure
m is its mass per unit length
L isits length
a,, is a coefficient depending on the boundary conditions

For a simply supported structure, the modes are sinusoidal ; the wave length is related to L
by:

2L
= —
n
and a,=nn

The wave number p,, is then given by :

2x m
) = 2n,
Ay (EDy

pn2= (

If we suppose that (EI),, is the real part of the complex rigidity (EI)n*[4], then

x

xn
(ED;, =Re (ED," = (EDg Re (1+

Y)

*

14X,
withXp* =X, (1 -if,)
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If we introduce the 'coupling parameter’ :

X (1+X) + X 2B, 2

Zﬂ =
(14X,2) + X, 2B,°

the flexural rigidity can also be written :

(ED, = (EDg (1+Z,Y)

Then the shear parameter for the mode n is :

Gy By dO2 Gy By d02 I+Z,Y
X, = . =
ont,|[m_H, Yo EDg 21, H,, Yojn(ED)
(EDp

(the expressions of (EI)( and dy are given with figures 10 and 11)

For a given frequency, X, and Z,, are obtained by an iterative method, then the loss factor is
deduced.

If we consider a motion in one direction, the formulation is the same for a plate,with
analogous expressions for the wave number and the frequency (Table 2).

In order to compare the effects of different constraining layers, the curves n(f,T) have
been plotted for a steel beam damped by M1, and constrained by steel, aluminium or fiber
glass layers introducing the same added mass (Figures 12,13,14) . It appears that in this case,
the most efficient material is aluminium, which can provide a loss factor of 0.2 . However,
this is a global conclusion, and another material can be more efficient for particular values of
temperature and frequency .

The influence of the viscoelastic material can be studied by considering the steel beam
damped by M1, M2 or M3, with the same constraining layer, for example steel (Figures 12,
15 and 16). It appears that, globally, the most efficient material is M1, which can provide a
loss factor of 0.15 .

Influence of boundary conditions (free structure)

In the case of a free structure, the modes are no more sinusoidal, so that the theory is not
valid . However, analogous relations for f, and a;, may be used [5], knowing that the expres-

sion for a, is not valid for the first five modes . If one is interested in the value of the fre-

quency , independantly of the modal analysis, the loss factor is the same as for the simply
supported plate.
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EXPERIMENT

Modal damping measurements have been made on steel plates damped by constrained
viscoelastic layers (with steel constraining layers ) . The plates were free and excited by a
hammer . The measurements were made in five different points, and a modal analysis has
given the modal frequencies as well as the corresponding loss factors . In the frequency ran
ge of measurement, a few flexural modes were identified . We plotted he experimental and
theoretical values of the loss factors on the same curves (Figures 17 and 18). We can see that
the experimental values are a little lower than the theoretical ones. However, the agreement
between experiment and theory remains quite acceptable.

CONCLUSION

We have developed a program based on well-known theories and which can be of great
help for the designer of damping devices with viscoelastic layers . It allows the user to visual-
ize immediately the efficiency of damping treatments and then to choose the most appropri-
ate . It offers different possibilities such as :

- extensional or shear damping

- beams, plates or tubes

- various viscoelastic layers, which master curves are stocked in a library

- various constraining layers, such as steel, aluminium, fiber glass composite
with different thicknesses of the added layers .

However, one has to make many tries before finding the best damping device . The pro-
gram needs to be extended to an optimization program which would give the best materials
with the appropriate dimensions for a given structure to damp .
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M1 M2 M3 M4 M5
T=0°C 1 1 1
1740 1000 10 000
T=20°C 6 20 20 1 1
10 000 10 000 10 000 600 40
T=40°C 300 250 3 15
10 000 10 000 10 000 3000

Table 1 - Frequency intervals (between 10 Hz and 10000 Hz) where the intrinsic loss factor is
greater than 0,5 for the viscoelastic materials considered (M1 1o M5 ).

FREQUENCY OF SIMPLY FREE (n>5)
THE MODE n SUPPORTED
2
a (ED a_=nit _(2n+17
BEAM/TUBE [ = — i o | T 22
2rtL” m An=- 55— O el
A n 2yr-—1
PLATE 32 D 2n+1D7
(modon alongone [ . - Gn =07 T
= oy 21X ar.
direction) ® oonl? m =0 An=nFT
L : Length
m  : Mass per unit length / surface

* (EI)p, : Flexural rigidity of the beam or the mbe

D, :Flexural rigidity of the plate

Table 2
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Figure 11 - Shear damping for a tube
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Figure 17 - Shear damping .Loss factor versus frequency for T=27°C
Theoretical curve and experimental points (x)
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STEEL H, =0.0025m
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Figure 18 - Shear damping .Loss factor versus frequency for T =27 °C
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ABSTRACT

This paper presents the results of a study to determine the feasibility of using statistical energy
analysis (SEA) methods for the design of viscoelastic passive damping treatments. The primary
emphasis of the study was to determine the applicability of SEA methods for predicting the
response of damped structures in the high frequency, high modal density regime where modal
methods such as the modal strain energy technique become inappropriate because of model
complexity or uncertainties in geometry. The other area of interest was the use of SEA augmented
by modal strain energy methods as a type of substructuring technique for large, complex
structures. To accomplish this investigation, the VAPEPS SEA code was used to model a
component test article in several damped configurations and the results were compared to available
test data to determine the validity of the analysis methods. The component test article was
constructed during the Reliability for Satellite Equipment in Environmental Vibration (RELSAT)
program as a developmental platform representative of satellite equipment support structures which
are subjected to high-level vibroacoustic environments typical of launch vehicles.




INTRODUCTION

Recent advances in the field of viscoelastic passive damping have been numerous and cover a wide
variety of disciplines. They were successfully used in the "Reliability for Satellite Equipment in
Environmental Vibration (RELSAT)" program to demonstrate the use of viscoelastic passive
damping to control the vibroacoustic response of satellite avionics equipment (reference 1). In
particular, an analysis technique utilizing finite element modeling and the modal strain energy
(MSE) method is now being used to analytically predict the effects of applying viscoelastic
damping treatments to structures (reference 2). Since the technique is based on finite elements, it is
possible to analyze a wide variety of structural configurations, however, the size of the model
required to accurately predict damping rapidly increases with the size and complexity of the
structure. For this reason, a study is currently in progress at Boeing Aerospace to determine the
feasibility of using finite element modeling and MSE to analyze the design of damping treatments
on the substructure-level and statistical energy analysis (SEA) to evaluate the resulting changes in
the vibroacoustic responses on the system level. This paper presents the approach that is being
used in the study and discusses some preliminary results.

BACKGROUND

The study described in this paper is an extension of work that was performed by Boeing Aerospace
on the RELSAT program. The program was started approximately 6 years ago by the AFWAL
Flight Dynamics Laboratory under the direction of Dr. Lynn Rogers and was completed last year.
The RELSAT program was a study to investigate the use of viscoelastic passive damping
technology to reduce the structural response of typical satellite systems to high-level acoustic noise.

The approach used was to (1) design passive damping treatments into an example satellite system
and  (2) perform acoustic and modal survey testing on the structure to verify their effectiveness.
A pictorial view of the program methodology is shown in figure 1. The Boeing Aerospace Inertial
Upper Stage (IUS), which is subjected to the severe launch vibroacoustic environments of the
Space Shuttle and Titan launch vehicles, was selected as the baseline satellite system. System
requirements were outlined, system disturbances were identified, and a set of goals for a
redesigned damped dynamic test article were established. A sketch of the IUS is shown as the first
illustration in figure 1. The harshest vibrational environment endured by the IUS occurs during
launch when the acoustic noise in the Space Shuttle payload bay typically reaches levels of 145 db
overall from 20 to 2000 Hz. The design of damping treatments for the [US dynamic test vehicle

JBA-2




(DTV) was carried out in several stages using finite element techniques and the modal strain energy
(MSE) method to analytically predict the effectiveness of the designs.

To conduct the design development phase in a cost effective manner, a smaller substructure
representative of the [US DTV equipment support section was designed and fabricated. A finite
element model of the substructure is shown as the second illustration in figure 1. Several design,
analysis, and test cycles were performed to evaluate a wide variety of damping'concepts and to
establish the validity of the analysis methods. The preliminary design development on this smaller
substructure proved to be very valuable in choosing damping treatments for application to the full
scale DTV.

The DTV was then analyzed by breaking it into several substructures representative of critical
portions of the structure. Damping treatments were designed and optimized for these substructures
and then applied to the full vehicle for testing. All of the damping treatments for the DTV were
designed and optimized using finite element analysis and the MSE method to predict damping
levels. Figure 2 shows the finite element models and lists the damping treatments designed with
each one. The global model described the entire DTV in the test configuration including a
simulated spacecraft payload structure. This model was used only to design a ring damping
treatment for the global ring type modes of vibration. The model was much too coarse to design
damping treatments for the local substructures. The other three substructure models represent
critical isolated portions of the DTV and were used to design the remainder of the damping
treatments. Detailed descriptions of the damping treatments and the design optimization process
are contained in reference 3.

Figure 3 shows the DTV located in the Boeing Aerospace Environmental Test Laboratory acoustic
cell for testing. The acoustic testing revealed that the structural response at all equipment locations
were substantially reduced by the addition of the damping treatments. A summary of the RMS
response of five critical IUS avionics components is given in figure 4. Overall response levels at
the avionics equipment attachment points were typically reduced by 62%. Acceleration response
power spectral density (PSD) envelopes for an encrypter located on the DTV equipment support
deck are shown in figures 5 - 7 before and after the application of viscoelastic passive damping.
This is typical of the types of reductions achieved. Analyses and tests were also performed to
assess the impact of the damping treatments on IUS system-level requirements such as vehicle
weight, outgassing, strength, and heat transfer.

JBA-3




Although the results of the acoustic tests of the DTV showed that significant decreases in the
vibroacoustic responses were achieved through application of the viscoelastic passive damping
treatments, a good test/analysis correlation of predicted and measured modal damping and vibration
levels could not be obtained. Due to the large size and complexity of the finite element models
which include the viscoelastic damping treatments, it was not economically feasible to run a
dynamic analysis with an overall finite element structural model of the DTV. Ordinary
substructuring techniques based on component mode synthesis would not significantly decrease
the problem size because no simple boundaries exist between the various substructures, and a large
number of component modes would have to be carried to adequately predict the local deformations
in the substructures.

Through the RELSAT program, it was realized that the modal strain energy method is a powerful
analysis tool for damping design that is limited primarily by the ability to model the damped
structure with finite elements. Extremely large, detailed models must be developed which tend to
be very costly in terms of computer time to run the models and manpower to interpret the results.
Areas identified for further research included the refinement of substructuring techniques and the
development of an economical method to determine system-level responses from substructure-level
analyses. The application of statistical energy analysis (SEA) methods was identified as a
technique which should be investigated to address this issue. It was felt that SEA could potentially
be a good method to track the principal energy paths of acoustic and vibration disturbances, to
identify the critical substructures for the application of damping, and to envelope the system-level
responses in the high-frequency 200- to 2000-Hz range.

STATISTICAL ENERGY ANALYSIS (SEA)

SEA is an analytical method to predict vibration and acoustic responses of dynamic systems by
treating the structural or acoustical mode shapes and frequencies as statistical parameters. The
dynamic energy is used to describe the state of the system and simple power balance equations
describe the interactions between the coupled subsystems that constitute the dynamic system.
Reference 4 contains a comprehensive overview of the development and engineering applications
of the SEA method. As described in the reference, the general steps required in SEA to develop a
model and calculate responses are outlined in figure 8. The first three steps are the development of
the SEA models of the subsystems and their interactions. These steps require engineering
experience and judgement. The last three steps involve computational procedures that can be
performed through implementation of one of several available general purpose SEA computer
codes.
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For this study, the Vibroacoustic Payload Environment Prediction System (VAPEPS) code was
used to perform the SEA response predictions. The VAPEPS code development was sponsored
by NASA and the Air Force Space Division. The development and maintenance of the code is
currently being performed by the Jet Propulsion Laboratory (JPL). In addition to the SEA option,
VAPEPS provides a database of vibration and acoustic data that can be used with empirical and
semiempirical techniques for determining vibroacoustic responses and test environments.

The SEA model of the IUS DTV that was developed for this study is shown in figure 9. An
illustration of the DTV acoustic test configuration is shown with the associated power flow
diagram for the dynamic system. The diagram describes the acoustic and structural subsystems
and their interconnections. This model was used to predict the acoustic environment internal to the
IUS interstage structure and the vibration response of a battery located on the interstage structure.

Equivalent plates were used for the SEA model of the interstage structure. The equivalent plate
calculations are presented in figure 10. Two approaches were used in the equivalent plate
calculations. The first approach included stiffening effects of the interstage rings by determining
an equivalent plate thickness. The second approach considered the rings as boundary conditions.

The predicted IUS interstage internal acoustic environment is shown in figure 11 for the two
equivalent plate modeling approaches. Also shown is the acoustic sound pressure level (SPL) data
obtained from microphones located in the interstage internal volume during the acoustic test of the
IUS DTV. Although good correlation was obtained with both approaches, the spectral levels
predicted by the first approach appear to correlate better with the test data. The predicted
acceleration PSD for the vibration response of the interstage battery is shown in figure 12. The
PSD of the vibration responses measured by accelerometers mounted on the battery during the
acoustic tests are also shown for comparison. It can be seen that the SEA prediction correlates
fairly well with the test data, however, the correlation between the predicted and measured
vibration responses does not appear to be as good as that obtained for the acoustic responses. One
cause for this is VAPEP's inability to account for non-structural mass in its coupling and damping
calculations. Currently, VAPEPS only uses non-structural mass in the conversion from energy to
mean response for the entire element. This may be one area where finite element methods can be

used to effectively augment the response predictions for avionics equipment and include the
localized effects of a lumped mass.




SUMMARY

In summary, although the results of this study are still very preliminary, it appears that SEA may
provide the means to analytically establish avionics component vibration and acoustic
environments. Although the method requires an experienced user to obtain accurate results, it
provides a systematic means for determining vibroacoustic responses that will be particularly
useful when performing vehicle design trade studies in which predicting the absolute magnitude of
the responses may not be as important as predicting the differences produced by changes in the
design trade parameters. The acoustic test data obtained during the RELSAT program will be
useful to correlate with SEA predictions of the differences in vibroacoustic responses produced by
varying levels of substructure damping. This will be the emphasis of future efforts for this study.

During the RELSAT program, viscoelastic passive damping treatments were designed for an
extremely complex structure using finite element structural modeling techniques and the MSE
damping prediction method. By isolating portions of the structure down to substructures, it was
possible to cost effectively design damping treatments for an otherwise intractable structure. The
significant reductions in the vibroacoustic responses observed during the acoustic testing of the
IUS DTV verified the viscoelastic passive damping design and analysis methodology. The MSE
method was shown to be a powerful analysis tool that is limited primarily by the computational
cost required to model a large complex damped structure with finite elements. This study is
investigating the application of SEA methods to address this issue of economically determining
system level responses utilizing the information provided by substructure level analyses. The
z2sults to date of this study and of the RELSAT program have demonstrated the use of new
damping design and analysis methods and conclusively shown that viscoelastic passive damping
has the potential to yield a system level payoff in the form of lower vibroacoustic environments and
increased reliability for future space systems if incorporated early in the design cycle.
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Figure 2. Summary of IUS DTV Finite Element Models and Damping Treatments
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Figure 3. DTV Set Up for Acoustic Testing

URndamped ’?amped Percent

Component Direction esponse esponse :

G RMS G RMS Reduction
Encrypter Axial 21.83 6.47 70
Radial 17.26 2.98 83
Tangential 19.67 258 87
ESS Computer | Axial 16.27 2.40 85
Radial 12.01 4.20 65
Tangential 17.74 3.99 78
REM Axial 15.78 9.75 38
Radial 11.12 6.62 40
Tangential 13.48 10.16 25
ESS Battery Axial 11.84 3.81 68
Radial 10.61 3.74 65
Tangential 15.84 3.86 76
Interstage Axial 5.09 3.00 41
Battery Radial 8.63 5.51 36
Tangential 10.08 2.83 72

Figure 4. Overall Response of Five Critical DTV Avionics Component s
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Figure 7. Envelopes of DTV Encrypter Axial Response

Step 1: Identify SEA Subsystems
+ Substructure
+ Identify similar modes

Step 2: Identify Junctions
« Point, line, and area junctions

Step 3: Compute Power inputs
+ Impedance formulation

Step 4. Compute SEA Parameters
+ Modal densities
« Coupling factors
+ Damping factors

Step 5: Power Balance Equations
+ Form matrix equation
+ Solve for modal energies

Step 6: Response Statistics
+ Relate to modal energies
* Mean response
+ Standard deviation

Figure 8. General Procedure for SEA
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Figure 9. SEA Model for DTV Vibroacoustic Response Analysis
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Density = 8.44E-05 lbr s2/ in

Figure 10. Interstage Panels Equivalent Plate Calculations for VAPEPS SEA Mode!
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RELSAT DAMPED SATELLITE EQUIPMENT PANELS - DYNAMIC PERFORMANCE*

by
C. V. Stahle, J. A. Staley, and J. C. Strain

General Electric Space Systems Division

ABSTRACT

This paper presents performance results for viscoelastically damped satellire
equipment panel designs. Results show that launch vibroacoustic cesponse
acceleration pover spectrei densities at component mounting locations are
reduced by up to 20 dB by damped panel designs. Corresponding derived
component random vibration test specification PSDs are reduced by about 13 dB
by damped panel designs. Component RMS response levels for the specifications
for damped panels are predicted to Lo reduced by over 50 percent compared to
baseline undamped panel designs basel on a random response spectrum prediction
method. Damped panel designs showed low hysteresis under application and
removal of static loads. Test data show that viscoelastic material which had
been in space for about four years maintained good damping and stiffness
properties compared to materials which had not been in space. Viscoelas-ic
damping treatments appear applicable to .lignment critical structures because
of low hysteresis under load application and removal and good property
stability under long term space vacuum exposure. Results shown demonstrate the
validity of methods used to design and fabricate vi:coelastically damped
satellite equipment panels.

*This work was performed for the Air Force Flight Dynamics Laboratory under the
RELSAT (Reliability for Satellite Zquipment in Environmental Vibration)
Contract.




1.0 INTRODUCTION

Figure 1 shows a summary of the General Electric RELSAT program objective,
approach and expected payoffs. The RELSAT program is aimed at improving
satellite reliability by reducing satellite equipment failures due to effects
of the launch vibroacoustic environment. The specific objective is to
demonstrate the use of passive damping to control vibration of rpanel mounted
equipment during launch. The approach is to design, fabricate, and test damped
panels corresponding to Bay 3 of the DSCS (Defense Satellite Communication
System) III Transponder Panel. This effort involved three major tasks: 1)
evaluation of candidate damping material characteristics; 2) development and
implementation of design concepts based on selected viscoelastic materials
(VEMS); and 3) performing vibration, acoustie, static, and shock tests to
evaluate the performance of damped equipment panel design concepts. This paper
presents some of the performance results from the third task. Results from the
first two tasks are reported in two other papers.]!2 The payoffs which are
expected to result from development of damped panel designs for satellite
equipment panels include: 1) 1improved stability and pointing accuracy for
alignment critical items which might be sensitive to effects of onboard
disturbances and maneuvers; 2) a 20 percent increase in the satellite
reliability on orbit as a result of a 50 percent reduction in the component
vibroacoustic environment during launch; 3) a reduction in the potentially
large number of ground test failures by 50 percent; and 4) a reduction of the
spacecraft system development and operating cost by an estimated $40 million
for a system consisting of a total of 14 DSCS III type satellites with a
constellation of four satellites on orbit at any given time.

Figure 2 shows several key points relative to the RELSAT program. The DSCS III
spacecraft shown is the system selected as the basis for the demonstration
program. It is an Air Force communication satellite. Four are in
geosynchronous orbit at any given time to give global communication coverage.
The specific test article selected for study was Bay 3 of the DSCS III
Transponder (North) panel. This bay has three 10 watt Traveling Wave Tube
Amplifiers (TWTAs) and several smaller components mounted on it. Bay 3 is
about 2 ft by 2 ft square and weighs about 50 lb including components and
structure. The baseline panel structure consists of a magnesium base plate
wich two stiffeners. The design requirements for the panel include
incerdisciplinary constraints such as the need to radiate waste heat from the
TWTAs through the base panel to space. Optical Solar Reflectors (OSRs) are
mounted on the space side of the panel for solar radiation reflection and
survivability. The panel must also have the structural integrity to withstand
the steady state and low frequency accelerations during the launch phase. The
center of Figure 2 shows a typical reduced temperature nomogram” for a VEM
vhich might be considered for design of a damped equipment panel for the
baseline DSCS III. The nomogram shows VEM shear modulus and damping properties
as a function of frequency ard temperature. An important requirement for VEMS
for satellite applications, is that they be space compatible, i.e., have low
outgassing characteristics. Figure 2 also indicates that the ultimate
objective of the demonstration program is to develop damped stable platforms
for satellite equipment and to develop damped stable platforms for satellite
equipment and to demonstrate the technology for design and manufacture
(fabrication) of such platforms.




2.0 DAMPING PAYOFFS

The interest in providing damping in satellite equipment panels has resulted
from a history of failures after launch of a satellite and during ground
development and production testing of a satellite, its subsystems, and its
components. A significant number of spacecraft anomalies have been related to
the launch vibration environment.> Figure 3 shows flight failures or
malfunctions vs days after launch. Figure 3 also shows that about 40 percent
of these are related to vibration. A reduction of these failures from 40 to
about 20 percent and a corresponding reduction in ground test failures is
expected to result in a total savings of about $40 million for a complement of
14 DSCS III type satellites. Vibration is also a major cause of failures
occurring during ground environmental tests of spacecraft, its subsystems, and
its components. Figure 4 shows that during design qualification, 64 percent of
failures wvere related to vibration. ” Following qualification of the satellite
design, 30 percent of failures in production acceptance tests were vibration
related. With damped equipment panel designs similar to those developed under
the GE RELSAT program, a 50 percent reduction in vibration/acoustic related
ground test failures is expected.

A cost/reliability model which can be used to determine payoffs from equipment
panel damping is available in a computer program known as OCTAVE (Optimized
Cost of Testing for Acoustic and Vibration Environments.’»3 This computer
program showed that a significant increase in reliability and decrease in
satellite system cost could be obtained if the vibroacoustic responses during
launch could be reduced by 50 percent. The cost and reliability improvements
vere based on a statistical decision theory model which in turn used a data
base of cost/failure rate information for satellite components. A model of the
spacecraft system was first developed which consisted of three major elements:
1) satellite housekeeping components; 2) the satellite structure; and 3) the
payload (i.e., the communication system components). Various types of cost
elements were incorporated in the model including direct and probablistic cost
types. Ground test options were considered which would assure that the
satellite had a high reliability on orbit at optimum cost. The value of 50
percent reduction in the launch vibroacoustic environment for components was
assumed due to equipment panel damping. The results showed a 20 percent
improvement in reliability on orbit and a $40 million savings for a 14
spacecraft production (DSCS III type system).

The history of increasing severitiy of vibration environments over the past
decade for spacecraft components shows a smaller portion of spacecraft

components passing vibration tests. This trend of increasing vibration
environment is related to the increased acoustic sound pressure levels at
launch and the need for increased vibroacoustic reliability. In particular,

the Space Transportation System (STS) (or Space Shuttle) exhibits an increase
in sound pressure levels in the low frequency range (below 300 Hz) compared to
earlier expendable launch vehicles. Vibration requirements for new spacecraft
currently being developed are higher than for previous spacecraft. Figure 5
shows: 1) a component random vibration test specification for a large diameter
spacecraft being developed for 1launch on the Shuttle; 2) a corresponding
specification for a small diameter (9 ft or 1less) spacecraft which was
developed for launch on an expendable launch vehicle; and 3) the specification
for the large diameter payload reduced by a factor of two on an RMS basis (by a
factor of four or 6 dB on a PSD basis). Figure 5 shows that damping could
reduce component random vibration levels for large dianmeter Shuttle payloads to
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levels for smaller payloads developed for flight on expendable launch vehicles.
Figure 5 also shows that the most significant random vibration environment is
currently in the low frequency range (below 300 Hz) for shuttle launched
payloads.

3. TEST PANELS

Damping materials were evaluated, damping materials were selected, damped panel
design concepts were developed and evaluated, and baseline and damped panels
corresponding to Bay 3 of the DSCS III transponder panel were designed and
fabricated. Figure 6 shows a baseline panel consisting of a base plate with
two stiffeners. Three mass simulated TWTAs are mounted directly to the base
panel. Figure 7 shows a corresponding damped panel. This damped panel has
damped honeycomb sandwich stiffeners. An aluminum core/aluminum face sandwich
is bonded to the base plate to provide inherent stiffness of tha panel
independent of the damping treatment. The VEM 1is bonded to this honeycomb
sandwich stiffener. An aluminum core/graphite-epoxy face sandwich is then
bonded to the VEM to provide a constraining sandwich for the VEM. Damped
panels were also made with hat stiffeners riveted to the base plate and with a
VEM layer with a graphite-epoxy constr.ining layer bonded to the hat stiffener.
Various tests were conducted on the baseline and damped panels. These included
acoustic, sine vibration, static, creep, and pyro shock tests. Pyro shock test
results are described briefly below. Results of acoustic tests are then
discussed in some detail. Component random vibration test requirements are
derived from the vibroacoustic tests for the baseline and damped panels. The
implication for component random vibration test requirements are considered to
be the primary result of the RELSAT satellite equipment panel damping
demonstration effort.

4. PYRO SHOCK TESTS

Pyro shock tests were performed on the baseline and a damped panel. In
separate tests, these panels were mounted in one bay of a dual bay simulator
wvhich is normally used to perform spacecraft separation shock tests for
components mounted on the DSCS III transponder panel. The shock was produced
by firing an explosive separation nut. In these tests, the separation nut was
activated by a high pressure gas supply connected to the nut. This separation
nut is used to separate the DSCS III from the IUS and from a second DSCS III
spacecraft. Separation nuts are on bolts at either ends of the two longerons
which form two ends of the DSCS III transponder panel. Three separation nut
firings were made each for the baseline and a damped panel. Triaxial
accelerometers were mounted at the shock source and two accelerometers vwere
attached near the mounting locations of each of the TWTA masses on each of the
panels tested. One of these two accelerometers was oriented normal to the test
panel and the other was oriented in the in-plane direction of the panel in the
direction of separation nut firing (in the direction of the longeron).

Figure 8 shows comparisons of damped and baseline shock spectra for the two
accelerometers mounted near TVWTA number 2 which was mounted in the middle of
each panel. Results shown are envelopes for three firings, although results
from the three firings for each panel showed little variation in the shock
spectra. Figure 8 shows results for the out-of-plane and in-plane
accelerometers. The figure shows that the shock spectra peak near 2200 Hz with
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maximum levels on the order of 1000 g. This is above the frequency where
significant damping occurs. Damping treatments were designed primarily to
reduce vibroacoustic response in the out-of-plane direction in the 50 to 500 Hz
range. Damping reduced the peak shock in the out-of-plane shock spectra by
about 30 percent. The out-of-plane direction is the direction in which damping
vas intended to be provided by the damped panel design. Figure 8 shows that
the peak in the shock spectra for the in-plane direction was increased by about
30 percent for the damped panel relative to the baseline. This may be due to
the addition of stiffeners for the damped panel configuration which connect the
longerons to the TWTA’s.

5. VIBROACOUSTIC TESTS

Acoustic tests were conducted on the baseline and seven damped panel
configurations. Panels with bectr hat and sandwich damped suifieners were
tested. The configurations included four different viscoelastic materials.
Tests were conducted at temperatures ranging from 60 to 78 degrees F. Two
tests were conducted with four panels suspended in the GE acoustic test
facility for each test. Tests were conducted at 139.3 and 143.8 dB overall.
Instrumentation on each panel consisted of 12 out-of-plane accelerometers and
tvo in-plane accelerometers attached at component mounting locations.
Thermocouples were used to monitor temperatures of viscoelastic materials.
Four microphones were used to measure and control the acoustic test
environment. Figure 9 shows one-third octave band qualification sound pressure
levels for small diameter and large diameter shuttle payloads.? 10 The acoustic
environment used for acoustic tests corresponded to the shape of the 9 £t
payload sound pressure level curve. Test vibroacoustic levels were scaled to
correspond to acoustic levels shown in Figure 9. The 9 ft diameter levels
correspond to a DSCS III qualification test level.

Figure 10 shows four of the damped panels suspended in the GE acoustic test
facility. Each panel was mounted to a heavy aluminum frame which was supported
by a low frequency suspension system. Figure 10 shows the location of four
out-of-plane accelerometers at the mounting locations for each TWTA mass. Each
panel had two in-plane accelerometers. In-plane vibroacoustic responses were
small compared to out-of-plane responses. For each of the panels tested, the
12 out-of-plane accelerometers were analyzed statistically to obtain a 95
percentile level. The spectral content of the data were then scaled to
acoustic levels shown in Figure 9 for the 9 and 15 ft diameter shuttle payload
qualification acoustic test levels. Figure 11 shows results for the 9 ft
diameter payload for test data for 72 degrees F. Results are shown for the
baseline and a damped panel. Results for all damped panels were very similar.
Results shown in Figure 11 are for the damped panel which gave the best results
for all panels tested. Other damped panel designs had similar vibroacoustic
responses but were slightly higher above 500 Hz. Figure 11 shows that damping
reduces response by up to 20 dB. The largest peaks for the baseline panel were
reduced the most and these peaks were in the 1low frequency range. Damping
reduced responses significantly for frequencies up to about 400 Hz. Figure 12
shows results scaled for the 15 ft diameter shuttle payload acoustic
environment at launch. These results indicate that damping can provide very
significant benefits for large diameter shuttle payloads.
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6. RANDOM VIBRATION SPECIFICATIONS

The Random Response Spectrum (RRS) method!! was used to determine component
random vibration test requirements corresponding to the 95th percentile
out-of-plane random vibration levels determined from the acoustic tests for the
baseline and best damped panels. The RRS method is similar to the shock
spectrum concept. The RRS is the RMS response of a single-degree-of-freedom
oscillator to a random vibration input spectrum vs the oscillator resonant
frequency. A Q of ten was assumed for the component. The objective was to
generate a random vibration test spectrum which had an RRS similar to the RRS
for the actual component random vibration environment, i.e., for the 95th
percentile out-of-plane random vibration spectrum. Random vibration
specificatons were generated in this manner for the baseline and damped panel
component random vibration environments. Figure 13 shows the out-of-plane
random vibration spectrum and corresponding test spectrum for the 9 ft diameter
payload (DSCS) baseline panel qualification level. The RRS for this
specification level and the the 95 percentile out-of-plane data are also shown
in Figure 13. The RRS for the specification is seen to envelope that for the
actual baseline panel test data. The peak value of about 30 GRMS occurs for a
component natural frequency just above 100 Hz. Note that the largest
magnitudes of the test data, the specification, and the RRS are in the low
frequency region (below 300 Hz). Corresponding results for the damped panel
are shown in Figure 14. Damping significantly reduces the low frequency test
and specification random vibration spectrum levels. The largest RRS level now
occurs at about 2000 Hz for both the damped panel test data and specification.
The peak GRMS at this frequency, however is now only about 13 g. Figure 15
compares the specifications for the damped and baseline panels shown previously
in Figures 13 and 14. The maximum specification PSD has been reduced 13 dB
using damping. The maximum GRMS has been reduced by 64 percent for the damped
panel. Corresponding results for the 15 ft diameter shuttle payload are shown
in Figure 16. Here the damped panel PSD is seen to be reduced by 14 dB
relative to the baseline panel and the peak GRMS is reduced by 53 percent due
to damping. This figure shows that major benefits from damping can be” expected
for large diameter payloads on the shuttle. Component random vibration test
responses might be reduced from about 40 to about 20 GRMS by the addition of
damping to equipment panels.

7. DAMPED PANEL HYSTERESIS AND LONG TERM VEM STABILITY

A static load test was conducted on a panel with damped hat stiffeners. A load
was applied to each TWTA normal to the plane of the panel. The panel was
loaded statically to an 11 g (550 1lb) load in increments of approximately 1 g.
The 1load was then removed in adpproximately 1 g increments. Deflections of the
panel and strains in hat stiffeners were measured. Figure 17 shows a plot of
strain in a hat stiffener vs total panel load for both the loading and
unloading cycle. Figure 17 shows that very low hysteresis occurred. This
result indicates that for the damped panel designs developed under RELSAT,
viscoelastic treatments may be feasible for application to platforms requiring
high alignment and pointing stability without introducing hysteresis during
loading and unloading events such as launch, orbit transfer, deployments, and
separations.

In April 1984, The Modular Attitude Control System (MACS) module was retrieved
form the Solar Max Mission (SMM) spacecraft on a Shuttle repair mission. The
SMM spacecraft was launced in January of 1980. The Attitude Control
Electronics (ACE) component on the MACS module used viscoelastic materials

JBB-6




extensively for damping treatments. A piece of this material which had been in
orbit for over four years was tested to determine its material properties after
four years exposure to space environment. Figure 18 shows the measured loss
factor and shear modulus (discrete data points) compared to properties of
similar nen-flight material (curves). The material retrieved from space is
seen to have excellent damping properties (circles) which are nearly identical
to the non-flight material. The shear modulus (squares) for the material which
was in oroit is slightly stiffer than the similar material which was not flown.
These results indicate that damping materials of the type used in the GE RELSAT
damped panel designs will retain their viscoelastic characteristics for long
periods of time when in orbit and could be quite useful for orbital damping
applications.

8. SUMMARY AND CONCLUSIONS

The primary objective of the GE RELSAT program was to develop and demcnstrate
damped panel designs which would reduce the vibroacoustic response. An initial
goal was to reduce the RMS response by 50 percent (6 dB). A reduction of this
magnitude was estimated to result in a cost savings of $14 million for 14
spacecraft system (DSCS type). The most significant Shuttle vibroacoustic
environments are in the low frequency range. The largest deflections and
stresses of components are expected here. Pyro shock tests showed attenuation
of out-of-plane shock spectra due to damping but an increase was seen in the
in-plane shock spectra tor damped panels. Vibroacoustic responses were reduced
up to 20 dB for power spectral densities in the 50 to 300 Hz range.
Corresponding component random vibration specificaiton levels were reduced
about 13 dB. The expected component RMS acceleration responses to derived
component random vibration specifications were reduced by 50 to 60 percent by
damped panel designs. Lowv hysteresis in static load deflection tests indicates
that damping may be applicable to alignment critical structures. Data recently
obtained on viscoelastic material which had been in space for four years showed
that long term space exposure had little or no effect on the material damping
and stiffness properties. Materials of this type appear applicable to orbital
damped panel designs for alignment critical structures.
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(RELIABILITY FOR SATELLITE EQUIPMENT IN ENVIRONMENTAL VIBRATION)

OBJECTIVE
® GENERICALLY DEMONSTRATE PASSIVE DAMPING CONTROL OF PANEL
MOUNTED COMPONENT VIBRATION
APPROACH
o DESIGN, FABRICATE AND TEST DAMPED DSCS-iii TRANSPONDER PANEL
- EVALUATE MATERIAL PROPERTIES
- DEVELOP AND IMPLEMENT DESIGN CONCEPTS
- PERFORM VIBRATION, ACOUSTIC, SHOCK AND STATIC TESTS

PAYOFFS
e STABLE PLATFORM WITH HIGH POINTING ACCURACY FOR MANEUVERS
AND ON-BOARD DISTURBANCES

® 20 PERCENT INCREASE IN RELIABILITY THROUGH 50 PERCENT
REDUCTION IN VIBRATION ENVIRONMENT

o REDUCE LARGE NUMBER OF TEST FAILURES BY 50 PERCENT
e REDUCE SPACE SYSTEM DEVELOPMENT/OPERATING COST BY $40M

Figure 1. RELSAT Program
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FIGURE 2. RELSAT DSCS III Baseline System
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RELSAT DAMPED EQUIPMENT PANELS - ANALYSIS AND EXPERIMENTAL VERIFICATION

C. V. STAHLE, J. A. STALEY and J. C. STRAIN
General Electric Company
Valiey Forge Space Center
RCA Astro Space Division
P.0. Box 8555, Philadeiphia, PA 19101

ABSTRACT

The design, analysis and modal tests of viscoelastically damped spacecraft
equipment panel structures are presented. The work was performed as part of
the AFWAL RELSAT program and uses the DSCS III transponder panel to demonstrate
the generic control of equipment vibration with passive damping. Highly effec-
tive integrally damped panel designs are achieved with small increase in struc-
tural weight. A damped stiffener approach is used that satisfies interdisci-
plinary constraints such as heat dissipation. Strength and deflection criter-
ia are used that account for the load reduction and stiffness of the damped de-
sign. Two lightweight configurations aré described: one using unidirectional
graphite epoxy (G/E) constraining layers and the other using G/E honeycomb con-
straining layers with an aluminum honeycomb stiffener. Loss factors greater
than 0.2 are obtained for low frequency modes using GE SMRD 100 damping ma-
terials. Damping is more than doubled in all modes below 500 Hz. The analysis

uses NASTRAN finite element models with modal strain energy and can be applied

to any complex design. Initial beam element tests compare analytical predic-

tions with test results for the G/E constraining layer and honeycomb configur-

ations using material properties from two different laboratories. Subsequent

panel tests indicate damped panel analyses predict low mode resonant frequen-

cies within 10 percent, damping loss factors within 30 percent and the temper-

ature of maximum damping within 10 degrees F. The major source of prediction

error appears to be material properties caused by measurement error, the tem-

perature shift relation and the reference temperature. More accurate material

property definition is recommended. The 20 dB attenuation of the vibroacou-

stic response, the material selection and panel fabrication are discussed in

tvo other papers included in the proceedings.

*The work reported herein wvas performed for the Air Force Wright Aeronautical
Laboratory, Contract No. F33615-82-C-3223, "Reliability for Satellite Equip-
ment in Environmental Vibration," under the technical direction of James
Eichenlaub and Lynn Rogers.
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1.0 INTRODUCTION

This paper discusses the design, analysis, and modal tests of viscoelastically
damped spacecraft equipment panels. Examination of early spacecraft flight
anomalies has indicated a large number are caused by the vibroacoustic launch
vibration. As a result, vibration requirements have been increased which has
led to a large number of ground test failures during component, subassembly
and spacecraft random vibration and acoustic tests. Even after qualification
tests of a spacecraft design have been successfully completed, subsequent
acceptance tests of production units exhibit a large number of failures indica-
ting a susceptability of the final designs to the vibroacoustic environment.
Although damping has been used effectively within electronic packages to im-
prove vibroacoustic reliability, its use to control equipment panel vibration
has been limited and generally applied to existing designs. Because studies
have shown that significant cost reductions can be obtained and that the vibro-
acoustic reliability can be significantly improved by reducing the random vi-
bration environment, the RELSAT program (Reliability for Satellite Eguipuent in
Environmental Vibration) has been initiated by AFWAL to generically demonstrate
the passive damping control of panel mounted component vibration. Parallel
RELSAT programs are being performed by Boeing and General Electric.

The approach used in the GE-RELSAT program is to design, fabricate and test a
damped DSCS III transponder panel. The DSCS III (Defense Satellite Communica-
tion System) spacecraft was selected because the design is mature and enables
interdisciplinary constraints to be readily defined. The goal is to achieve a
reduction of 6 dB in the random vibration environment. As shown in Figure 1,
large diameter shuttle spacecraft random vibration requirements exhibit high
spectral amplitudes in the frequency range below 200 Hz where major equipment
resonances occur. By obtaining a 6 dB reduction, the spectrum levels are re-
duced to those of current small diameter spacecraft. For any size spacecraft,
the vibroacoustic reliability is significantly enhanced.

Three workshop papers are included in the proceedings covering different as-
pects of the GE-RELSAT program. This paper discusses the design and analysis
of the panel and describes modal tests performed to verify the resonant fre-
quency and modal damping predictions. The quantification of the cost reduction
and reliability improvement, as well as the experimental results from acoustic
and shock tests are presented in a second paper. The third paper discussed
the selection of the viscoelastic material and describes the methods used in
fabricating the damped panel.

The following sections discuss the panel design and analysis, the correlation
of beam element tests with analytic predictions, comparison of panel modal
test results with analytical results, and finally the conclusions reached in
this portion of the RELSAT program.

2.0 TRANSPONDER PANEL DESIGN

The test article chosen for viscoelastic damping treatment was the North Panel
Bay 3 of the Defense Satellite Communications System (DSCS) III, Figure 2.
This equipment panel is approximately 27 inches square, constructed of magne-
sium thorium .18 inches thick and contains two integrally milled/riveted stif-
feners. Three 10 watt traveling wave tube amplifiers (TWTA’s) are mounted on
it along with associated wave guides and electronics. These TWTA’s place a
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severe design constraint on the panel since the thermal requirement to dissi-
pate their 30 watts of power makes the use of a lightweight honeycomb sandwich
for the base panel impractical. Hence, the thick .18 plate which is required
for thermal, not structural reasons.

The test articles for the RELSAT program utilize a .125 inch thick aluminum
plate to simulate the stiffness of the actual .18 inch thick magnesium-thorium
panel. The TWTA simulators are made of an aluminum block mounted to a steel
plate. They provide the weight and center of gravity of the actual TWTA’s and
other components necessary to make the total panel weight equal to that of the
actual flight hardware.

2.1 BASELINE UNDAMPED PANEL

This panel was designed to closely simulate the "as is" undamped North Panel

Bay 3. It consists of the aluminum base plate and three TWTA simulators plus
two aluminum hat section stiffeners in lieu of the integrally milled/riveted
stiffeners on the flight hardware. These stiffeners were sized to provide a

fundamental frequency near that of the actual DSCS panel. Figure 3 is a photo-
graph of this test article, the NASTRAN model for which is shown in Figure 4.
This model which contained 412 GRIDS and 259 ASET degrees of freedom (DOF) was
constructed entirely of CQUAD4 elements with the exception of the TWTA’s which
vere single 6 DOF nodes attached to the panel with rigid elements.

A modal test was performed on the baseline panel to provide a reference for
damped panel measurements, and to verify analysis methods without the added
complexity of modeling viscoelastic properties. Inaccuracies in the undamped
panel model will be propagated in the viscoelastic properties used for damped
panel analysis since these are very frequency dependent. These inaccuracies
may result from both lack of detail in modelling, and from the unknown boundary
condition.

2.2 DAMPED PANEL DESIGN

Two damped stiffener concepts were used in the designs. These were a honey-
comb sandwich stiffener with a honeycomb sandwich constraining layer, and an
aluminum hat section stiffener with a graphite constraining layer. Both of
these concepts are illustrated in Figure 5. As in the baseline design, the
aluminum hat section stiffener simulates the integrally milled/riveted stiffen-
er on the actual DSCS III spacecraft equipment panel. The honeycomb sandwich
stiffener is designed for lighter weight, and maximizes the strain energy in
the viscoelastic material through a larger separation of the constraining layer
neutral axis from the viscoelastic layer. One example, using each of these two
concepts will be discussed in this section: a panel vith honeycomb stiffeners
and SMRD 100F90B damping material, and a panel with aluminum hat section stif-
feners and SMRD 100BSOA damping material.

A total of seven damped panels were designed for the RELSAT program. The scope
of this paper is to describe the analysis used to design the panel damping
treatments, and the correlation of the analysis to data from the modal test
performed on one of the damped test articles.
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2.2.1 DAMPED DESIGN CRITERIA

A primary objective of this effort is to demonstrate a 50% reduction of vibro-
acoustic response by developing damped panel designs. A preliminary damping
criteria wvhich is expected to accomplish this is:

1) a minimum loss factor of 0.30 in the fundamental
equipment panel mode, and

2) a minimum loss factor of 0.10 for all other major panel
modes up to 500 Hz.

In addition to the damping criteria, structural design criteria must also be
established.

A set of structural design criteria have been established for developing damped
panel designs. These criteria are based on varying degrees of conservatism in
the assumptions regarding: 1) the degree to which the vibroacoustic loads have
been reduced, 2) limits on expected deflections, and 3) the degree to which the
viscoelastic damping treatment is assumed to share in design loads for the pan-
el structure.

Equivalent steady load factors are often used for satellite structure design.
These load factors are usually composed of two parts: 1) a low frequency or
quasi-steady part vhich consists of the nearly steady acceleration at liftoff
plus a low frequency (typically of the order of two to fifty Hz) transient dur-
ing liftoff; and 2) a higher frequency vibroacoustic portion induced by acous-
tic pressures caused by the propulsion system during launch. The sum of these
tvo effects results in an equivalent design load factor which is used for de-
sign of secondary structures and components. The primary structure is gener-
ally designed by the quasi-steady portion only.

Three structural design criteria for the damped DTA designs are considered as
shovn in Table 1.

Criterion I - Baseline: Designs using this criterion represent "add-on" damp-
ing configurations. These designs consider neither the reduced dynamic loads
due to damping nor the load carrying capacity of the damping treatment. For
the DSCS III transponder panel the baseline structural design criterion con-
sists of a 60 Hz minimum frequency requirement and a 35 G total load factor.
The 35 G load is the sum of an 11.5 G quasi-static and a 23.5 G vibroacoustic
load.

Criterion II - Conservative Integrally Damped: This criterion considers the
reduction in dynamic loads due to damping, but does not allow for the load car-
rying capability of the damping treatment. The structural integrity of the
panel is maintained by the undamped structure vhich is designed to a load fac-
tor wvhich has now been significantly reduced by damping. The goal of the GE
RELSAT program was to reduce the vibroacoustic portion of the dynamic loading
by 50 percent. The total load factor for the criterion II design is therefore
the sum of an 11.5 G quasi-steady load and a vibroacoustic load reduced to
11.8 G, or 23.3 G as compared to 35 G for the criterion I design. The stiff-
ness of the undamped panel designed to this lower load factor will be less than
that of the baseline panel, but it’s deflection under the combined quasi-steady
and vibroacoustic load of 23.3 G will be kept the same as that of the baseline
panel under 35 G’s.
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Criterion III - Advanced Integrally Damped: This design criterion considers
not only the reduction in vibroacoustic load due to damping, but also allows
for the damping treatment’s load carrying capability. This will provide the
lightest weight damped design. The total design load factor remains at 23.3 G
as in criterion II, but allowing the damping treatment to carry part of the
structural loads will result in a lower weight design. For this criterion, the
stiffness of the undamped panel may be further reduced using the requirement
that the deflection under 23.3 G of the damped criterion III design does not
exceed that of the undamped criterion II design under the same load.

Table 2 and Figure 6 illustrate the structural weight obtainable with the three
criteria. This table compares preliminary design results using all three cri-
teria to the undamped baseline. The first three damped designs utilized an
aluminum hat section stiffener, with a graphite constraining layer, while the
last used a honeycomb sandwich stiffener and constraining layer. The criterion
IT design with hat stiffeners is seen to provide a 2% structural weight reduc-
tion from the add-on, and the criteria III design with hat stiffeners provides
an additional 2% reduction. Using honeycomb sandwich stiffeners in place of
the aluminum hats, reduces the weight by another 8% so that it is comparable in
in weight to the original undamped structure.

Final designs of the RELSAT test articles were all performed using criterion
III.

2.2.2 DESIGN ANALYSIS METHODS

Design of the damped panels was performed primarily with MSC NASTRAN modal
strain energy (MSE) calculations . The strain energy option in NASTRAN outputs
tables of strain energy in each element of the NASTRAN finite element model,
for each mode shape calculated. The viscoelastic material is modeled with
solid brick elements having a shear modulus which is selected for a temperature
and frequency. The ratio of the MSE in the viscoelastic elements, to the total
MSE in the mode shape, multiplied by a material loss factor gives the composite
loss factor. Since the resulting loss factor is correct only for the selected
temperature and frequency several runs must be made using differend VEM shear
moduli to get results for all modes of interest. A NASTRAN direct frequency
response analysis will produce sinusoidal transfer functions which account for
the frequency dependence of the shear modulus andloss factor in a single run.
Hovever, if the structure being analyzed does not have modes which are well
enough separated to be considered as single-degree-of-freedom responses, the
equivalent normal modal characteristics cannot be readily obtained.

Of all the variables in the finite element model, the shear modulus of the VEM,
vhich is both frequency and temperature dependent, is the most difficult
to quantify. The shear modulus was obtained from VEM test data which is reduced
by a least squares fit to equations for shear modulus and loss factor as a
function of frequency and reduced frequency. The reduced frequency is the
frequency multiplied by a shift parameter which is a function of temperatures
relative to a reference temperature, To. Experience has shown that this refer-
ence temperature is difficult to choose properly and that the size of typical
discrepancies which often occur can produce significant differences in material
properties using test data from different sources. An accura.e and consistent
method for choosing To has been determined to be a much needed development to
increase the reliavility of finite element damping calculations.
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Another, much simpler but often useful analysis method is that described by
Abdulhadi 8 . This is a "general analysis...for three layer plates consisting
of two distinct plate type facings and a core that carries shear stresses
only.” A sixth order equation is solved to obtain composite frequency and loss
factor for various boundary conditions. Abdulhadi’s method is a useful method
for optimization of damping treatments for uniform beams and plates. This
anlaysis method was used to size sub-panel dampers. These graphite epoxy con-
straining layer damper strips were added to reduce the acoustic response of the
sub-panels, vhich had frequencies calculated to be between 300 and 300 Hz.

2.2.3 SMRD 100F90B DAMPED, HONEYCOMB STIFFENED PANEL

This panel uses the aluminum baseplate and three TWTA simulators previously
described, as do all of the test articles. It incorporates four honeycomb
sandwich stiffeners in a "criss-cross" pattern. These are made from .4 inch
thick Hexcel 1/8-5052-.002 aluminum honeycomb with a 5 mil aluminum lower face
sheet and 30 mil aluminum upper face sheet. The damping is provided by .25
inch thick General Electric SMRD 100F90B viscoelastic damping material between
the stiffeners and a honeycomb sandwich constraining layer. The constraining
layer consists of .4 inch thick Hexcel 1/8-5052-.002 aluminum honeycomb with a
lover face sheet of 5 mil uniaxial HMS/CE339 graphite epoxy and upper face
sheet of 80 mils uniaxial HMS/CE339. A sketch of this stiffener/constraining
layer is shown in Figure 5.

The .5 inch width of the stiffeners was chosen as a result of previous para-
metric analysis on a stiffened end supported plate which showed this width to
provide optimum damping for the lowest weight, and the desire to use as little
of the panel area as possible since most satellite equipment panels are very
densely filled with components.

The panel stiffener height and face sheet are designed to provide a minimum
frequency to satisfy the static deflection requirements of criterion III. The
constraining sandvich layer is designed to provide adequate stiffness under the
transient and vibroacoustic loads of criterion III and, along with the visco-
elastic material, to provide a minimum loss factor of .3 in the fundamental
mode, and .1 for all important modes below 500 Hz. Figure 7 is a photograph of
this panel. The NASTRAN model used for correlation with the modal test data is
showvn 1in Pigure 8. This model contained 674 GRIDs and 294 ASET DOF. A more
coarse model with 303 GRIDs and 78 ASET DOF was used in performing the para-
metric analyses.

NASTRAN Modal Strain Energy (MSE) analyses were run to determine the first mode
mode loss factors for the various parametric configurations, and to give a
conservative estimate of .the loss factors for the higher modes. Figure 9 shows
the NASTRAN MSE in the VEM plotted vs. VEM thickness, with the chosen design
point circled. NASTRAN MSE calculations were made for a wide range of VEM shear
modulus to give the loss factors for all modes up to 500 Hz. The calculated
composite loss factors are plotted vs. frequency in Figure 10 for a temperature
range of 60° F to 70° F, the temperature range during launch.
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2.2.4 SMRD 100B30A DAMPED, HAT SECTION STIFFENED PANEL

This design employs four aluminum hat section stiffeners in the same pattern
as the stiffeners of the honeycomb stiffener panel. These are .5 inches high,
.5 inches wide, and bent up from 1/32 inch aluminum. The damping is provided
by .10 inch thick SMRD 100B50A viscoelastic damping material and a constraining
layer of .25 inch thick uniaxial HMS/CE339 graphite epoxy. A photograph of
this panel is presented in Figure 11 and the NASTRAN model containing 367 GRIDs
and 78 ASET DOF is shown in Figure 5 along with a sketch depicting the stiffen-
er/constraining layer configuration.

NASTRAN MSE analyses were run to determine the first mode loss factors for the
various parametric configurations, and to give a conservative estimate of the
loss factors for the higher modes. Figure 12 shows the NASTRAN calculated
strain energy in the VEM vs. VEM thickness. Constraining layer thickness and
test article total weight as calculated by NASTRAN are cross plotted. The
point chosen for the design is circled. The hat section was designed to meet
the static deflection requirements of criterion III and the final choice of
stiffener, VEM, and constraining layer was checked to ensure the satisfaction
of the total deflection requirements. The calculated loss factors are plotted
vs. frequency for modes up to 500 Hz. in Figure 13. Results for a temper-
ture range of 60° F to 70° F are presented. Values for each temperature were
determined from a single NASTRAN run using the shear modulus at the fundamental
frequency and are therefore conservatively low in both frequency and loss fac-
tor for the higner modes. A more detailed model than the coarse one shown in
Figure 11 would be required to accurately calculate loss factors for the higher
modes, but since it was decided that the honeycomb stiffener panel would be
used for the modal test and the analysis correlation tasks, a larger model was
not justified. The more coarse model is adequate for determining the loss fac-
tor of the lower modes and performing the parametric analyses to determine the
design point.

3.0 BEAM ELEMENT FABRICATION AND EXPERIMENTAL EVALUATION

Several beam elements of candidate stiffener designs were fabricated and tested
ted to (1) verify fabrication methods planned for panels and (2) verify analy-
tical predictions of performance. ISD112 and several GE-SMRD VEM’s were used
in a honeycomb sandwich configuration and in several hat stiffened configura-
tions with unidirectional graphite-epoxy constraining layers. Results indicated
ISD112 was not suitable for the stiffener configuration because of low bond
strength. The SMRD materials were found to provide maximum performance close
to room temperature but vere slightly off on either the high or low side. Test
results agreed reasonably well with analytical predictions using NASTRAN modal
strain energy methods. Material properties appeared to be a major source of
analysis error. Temperature was highlighted as the key variable effecting
damping performance. These beam element tests are discussed in this section.

3.1 CANTILEVER BEAM ELEMENTS




3.1.1 TEST CONFIGURATIONS

A cantilever beam specimen was designed and fabricated to provide an early
evaluation of candidate configurations, a preliminary correlation of analysis
predictions with measured damping performance and identify unanticipated fab-
rication problems. The beam test article is shown in Figure 14. The honeycomb
sandvich configuration was the lightest weight design wusing graphite epoxy
(G/E) face sheets with thicknesses selected to provide inherent structural
stiffness corresponding to criterion III. Honeycomb face sheet thicknesses
wvere selected to maximize damping as discussed previously. Steel bars bonded
to the bottom surface of the beam provided transverse stiffness and increased
the weight so that the resonant frequencies would be in the range of panel
designs. SMRD 100F90 material of 1/4 inch thickness was found to approximate
the desired damping and 1is of the thickness used in other spacecraft applica-
tions. The beam width was abritrary. The aluminum thickness simulates the
stiffness of the DSCS III magnesium panel.

The initial viscoelastic material selected for the honeycomb sandwich was
ISD112 with a 10 mil thickness. This material uses a pressure sensitive adhe-
sive and was found to come loose as a result of surface irregularities in the
honeycomb pieces. This problem combined with concerns as to the bond strength
in this stiffener application resulted in a change to SMRD 100F90. The
The SMRD 100F90 uses a structural adhesive (HYSOL EA9309.3) known to exceed the
VEM shear strength.

3.1.2  ANALYTICAL PREDICTIONS

A NASTRAN model of the Honeycomb cantilever beam configuration was used to
estimate the damping and fundamental resonant frequency using the Modal Strain
Energy method (MSE). The model was relatively coarse as shown in the SUPERTAB
plots of Figure 15. The beam was divided into 10 spanvise segments and 7
crosswvise segments using a single row of elements to represent the stiffeners
and has 219 nodes. CQUAD4 elements were used for the aluminum baseplate and
the honeycomb face sheets. The VEM and honeycomb core were modeled using
CHEXA elements. Offsets were used in the CQUAD4 elements adjacent to the
CHEXA elements so that common nodes could be used between the elements while
simulating the neutral axis position. The steel bars were modeled using CBAR
elements with offsets. All nodes at the cantilevered end were fixed which rep-
resented the interface with the test fixture, i.e. all DOF’s at the end nodes
of the plate, stiffener, VEM, and constraining layer. The model was reduced to
52 ASET DOF’'s of which approximately two-thirds were in the out-of-plane direc-
tion. The full mass matrix was calculated by NASTRAN using material densities
for the various elements. A model check was made for the fundamental mode by
increasing the number of nodes and dynamic DOF's by approximately 4; however,
the wmuch finer model results did not differ significantly from the coarse mod-
el. The Young’s modulus for the G/E elements was 30E6 psi based on a 60 per-
cent fiber volume fraction. The shear moduli for the honeycomb core were 135
Ksi and 54 Ksi representing the nominal value for 1/8-5052-.002 core material
provided by Hexcel. The shear modulus of the viscoelastic material was varied
over a range of values to determine the fundamental mode resonant frequency and
loss factor as a function of temperature.
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The analytical prediction of the fundamental resonant frequency and loss fac-
tor as a function temperature were determined by combining the NASTRAN results
with the SMRD 100F90 properties displayed as a function of reduced frequency.
The procedure is shown graphically in Figure 16. The VEM shear modulus, G, was
varied in the NASTRAN analysis and the fundamental resonant frequency deter-
mined and plotted. The percent of modal strain energy in the VEM was also
determined and plotted in the Figure. A resonant frequency was selected and
the value of G determined from the NASTRAN results as indicated by Step 1.
Using these values for F and G, the corresponding temperature is uniquely de-
termined as shown. This also determines the VEM loss factor as indicated in
the figure. The VEM loss factor and the NASTRAN modal strain energy are then
combined as described previously to determine the composite loss factor. This
procedure is repeated for various frequencies providing the analytical predic-
tion of resonant frequency and composite loss factor as a function of tempera-
ture. The analytical results for the cantilever beam are shown in Figure 17.

The analytical results were determined using two different sets of material
properties. The properties of SMRD10OF90A have been determined by three dif-
ferent 1laboratories. Although the approaches used by each wvere similar,
differences exist in the final properties. Two Reduced Temperature Nomographs
are shown in Figure 18. The basic nomograms differ in shift parameters preclu-
ding direct comparison. The shear modulus and loss factor data from these two
nomograms were used to define the properties at a temperature of 65 F and
plotted vs. frequency in Figure 19. Also included is a third set of data mea-
sured from the same batch of VEM that was used for the Lab B measurements. The
Lab A and Lab B measurements were both performed with sandwich beams and the
data reduced with different gy relations and different To constants. The Lab
C measurements wvere obtained from a modified Oberst beam and reduced with the
same ot relation that was used for the Lab B data reduction, but with a dif-
ferent To.

It is apparent from the three curves of Figure 19 that more research should be
be performed on VEM measurement and data reduction methods. There is consid-
erable scatter in the raw data through which these curves were faired, and the
choice of constant To in the temperature shift relation oy is of great impor-
tance. Analyses were performed using the two reduced temperature nomograms and
results were compared with test results.

The accuracy of these analytical predictions depends on the accurate modeling
of the overall structure as wvell as the accurate representation of the VEM
properties. Inherent in the procedure is the assumption that the model without
the VEM accurately predicts the structural behavior. If the model of the non
VEM structure is too stiff, then the analytical predictions will require a
lover VEM shear modulus to match the measured resonant frequency. This will
ultimately result in an apparent shift in the analytic results to a higher
temperature. Similarly, higher strain energy in the non VEM structure will
cause the analytical composite loss factor to be low. On the other hand,
inaccuracies in the VEM properties could cause the analytical predictions to
vary in either direction. When correlating analytical and experimental re-
sults, structural model error sources should be kept in mind and the overall
difference should not be attributed solely to the VEM modeling.
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3.1.3 EXPERIMENTAL RESULTS

The cantilever beam was tested wusing base excitation and circle fit techni-
ques to accurately determine the resonant frequency and damping. The keam was
clamped over a two inch span at the root and bolted to a Team Hydrostatic
Table which was driven with an MB C-150 shaker. Three accelerometers were
mounted to the tip of the beams to determine the phase and amplitude of the
beam response. A single reference accelerometer was mounted to the vibration
table to measure the input. The beam was excited sinusoidally. The acceler-
ometers were recorded on magnetic tape and processed through the HP5423A
Dynamic Analyzer. The analyzer determined the resonant frequency and damping of
the beams at the fundamental resonance using a circle fit to the response witl
the input acceleration used as a reference. Because the fundamental mode was
wvell separated from other resonances, this technique provided an accurate esti-
mate of the loss factor and resonant frequency. The measurements were repeat-
able within approximately 1X and are not subject to inaccuracies associated
wvith bandwidth measurements. Initial tests at input levels varying from 1/2 to
2 g’s indicated that non-linear effects were small compared to temperature ef-
fects. Tests were subsequently performed with a single input level.

A crude method was used in these initial tests to vary temperature. The ori-
ginal 1intent was to test the beams only at room temperature. However, as the
tests progressed, it was evident that the temperature should be varied to pro-
vide adequate data to evaluate the damping performance. This was accomplished
by varying the room air conditioner setting to obtain low temperatures and
using heat lamps to obtain higher temperatures. A thermocouple was taped to
the VEM portion of the beam to determine the test temperature. Using these
techniques, the temperature varied from approximately 55° to 100° F. The test
results are shown in Figure 17.

3.1.4 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The experimental results for the honeycomb sandwich beam cover a relatively
vide temperature range and indicate reasonable agreement with analytical pre-
dictions but with an apparent temperature shift. The measured fundamental
resonant frequency varied from 204 to 124 Hz which compares favorably with
analytical variations from 209 to 118 Hz. There appears to be a 4 to 8 degree
F shift in the resonant frequency curve but this could be caused by under-
estimating the cantilever beam stiffness (e.g. the analytical shear stiffness
of the honeycomb was lower than actual). This tends to be substantiated by the
asymptotic values. A similar shift in the temperature of maximum damping is
also evident. The maximum measured loss factor is within 1 to 17 percent of
predicted. The difference in the VEM properties obviously has a major effect on
the accuracy of the analytical predictions.

The results of these initial tests indicated the need to obtain more detailed
test data to evaluate performance and (v consider other damping materials.
The temperature was identified as a key parameter to correlate test and analy-
tical results. A wvide, wvell controlled temperature variation is needed to
provide data on the analytical adequacy by checking both glassy and rubbery
asymptotes, with more accurate measurements in the transition region. A test
of the basic undamped structure would be helpful to verify analytical model
accuracy. The observed peak damping was above the temjerature range of inter-
est indicating peak performance would require a different VEM material. Some
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of the differences between test and analysis can be attributed to the uneven
temperature distribution in the test article caused by the heat lamps.

3.2 END SUPPORTED BEAM ELEMENTS

Following the tests of the cantilever beam specimen, two end supported beams
vere fabricated and tested. The objective of these tests was to obtain better
analytical correlation by using end supported test articles and by using a
thermal chamber over the shaker so that the temperature could be controlled
more accurately. In addition, one beam used SMRD 100BSO which has a lower tran-
sition temperature than SMRD 100F90.

3.2.1 TEST CONFIGURATIONS

The end supported beam test configurations are shown in Figure 20. The beams
consisted of a 10 inch wide by 17 inch 1long 1/8 inch aluminum plate. Five
steel bars were bolted and bonded to the plate to provide chordwise stiffness
and beam resonance in the frequency range of interest. A single half inch wide
hat section was riveted to the center of the beam simulating a criteria III
stiffener. The viscoelastic material was bonded to the stiffener and a con-
straining layer of G/E with wuniaxial fibers was bonded to the VEM. The VEM
layers were 1/4 inch thick SMRD 100F90A and 0.10 inch thick SMRD 100B50C. The
beam was bolted with washer stand-offs to aluminum bars which were attached to
the 30 inch diameter head of an MB C-220 shaker. The end supported configura-
tion was felt to be more readily analyzed than the cantilever arrangement used
in the initial tests. The entire shaker head was enclosed in a small thermal
chamber which contained a heater, a blover and a thermostatic control. Liquid
CO, was vented into the chamber to cool the test article below ambient tempera-
tures. Thermocouples sandwiched within a block of SMRD and attached to the
outside of the block were used to determine vhen the temperature of the test
article had stabilized.

3.2.2 ANALYTICAL PREDICTIONS

The analyses of the end supported beams were performed using NASTRAN and the
MSE method described for the cantilever beam. The SUPERTAB plot of the FEM is
showvn in Figure 21. The model was finer than that used for the cantilever spe-
cimens having 18 elements in the spanvise direction and 9 elements chordwise.
The model used CQUAD4 elements with offsets for all but the steel bars and VEM.
The steel bars were modeled using CBAR elements with offsets. The VEM was
modeled using CHEXA elements as in the cantilever model. The modulus of the
VEM was varied in the NASTRAN analysis and the final results presented as a
function of temperature using material property curves as described previously.
An additional analysis was performed for the bare beam without the VEM to
correlate with test results.

The analytical predictions for the hat stiffened beam are shown in Figure 22.
The resonant frequencies of the first three modes are shown for both simply
supported and clamped boundary conditions. Because of the dependance of the
VEM model on that of the model for the basic stiffened beam, analysis and
testing of this configuration was performed. The analytical results for the
tvo damped beam configurations are shown in Figures 23 and 24 for tue 1/4 inch
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SMRD 100F90 and for the 0.10 inch SMRD 100B50 respectively. For the SMRD
100F90, analytical results are presented for both Lab A and Lab B material pro-
perty data. For the SMRD100B50, only one set of material property data was
available.

3.2.3 EXPERIMENTAL RESULTS

The experimental results are shown in Figures 22 to 24 for the various test
conditions. The tests vere performed in the same manner as the cantilever tests
except that the MB C-220 shaker was selected because of its larger head dia-
meter. The major change in the procedure was the use of the thermal chamber
over the test article which improved the accuracy and range of test tempera-
tures. The instrumentation consisted of three response accelerometers: two
at midspan at the center and edge and one at quarter span in the center. The
input wvas measured at one end of the beam. The response at the center mid-span
was circle fit to measure the fundamental resonant frequency and damping. The
other midspan accelerometer was checked for torsion which was found to be neg-
ligible at the fundamental resonance.

3.2.4 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The first step in correlating the analysis and test results was to compare
the resonant frequencies of the basic undamped beam, Figure 22. This was done
by plotting the ratio of the analysis to the test frequency for the first three
pending modes. This comparison showed that there is excellent agreement in the
fundamental resonant frequency when the analysis considers the beam to be
clamped at the bolt attachments. There are, however, significant differences
in the second and third resonant frequencies which were closer for pin con-
Stro.nts at the bolt attachments. In the interest of expediency, the results
were considered satisfctory for analytical predictions of fundamental mode res-
onant frequency and damping. The decision was made to proceed but to limit
comparisons to the fundamental mode only.

The analytical results for the beam with the 1/4 inch SMRD 100F90, Figure 23
agree reasonably well with test results for resonant frequency and temperature
of maximum damping when Lab A material properties are used. Using Lab A mater-
ial properties, the calculated temperature of maximum damping, 77° F, agreed
with the test within measurement accuracy with less than 5 percent difference
in the corresponding resonant frequency. The maximum damping, howvever, was 34
percent higher than measured. This agreement was considered to be partially
the result of the accuracy of the beam-stiffener model which agreed within 2
percent of the measured resonant frequency. Using the Lab B material proper-
ties, the calculated temperature of maximum damping was approximately 77° F
which was the same as predicted using Lab A properties. The analytical reso-
nant frequency also agreed reasonably well. However, the maximum calculated
damping was 21 percent higher than measured.

For the beam using the SMRD 100B50B, the analysis results agreed fairly well
wvith measured values although only one estimate of material properties wvas
available, Figure 24. The resonant frequency closely follows the measured
values but shows a higher calculated asymptotic value at high temperature; this
indicates a higher analytical stiffness of the basic beam than actual. The
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temperature of maximum damping was 6° F lower than measured with the maximum
calculated damping about 30 percent higher than measured. The resonant fre-
quency of maximum damping agreed closely.

The summary of the beam test data is given in Table 3 and Figure 25 comparing
the maximum loss factor and the corresponding temperature and resonant fre-
quency. The maximum 1loss factor appears to be the most error prone with 30
percent variations between analysis and test. Calculated resonant frequencies
and temperatures at the maximum damping point are generally within 15 percent
and 3° F, respectively. The table indicates a high sensitivity of results to
material properties. It will be noted that modeling errors of the basic
stiffened beam are 1included in the calculations and the variations should not
be considered to be solely VEM associated.

4.0  PANEL MODAL TESTS

4.1  TEST DESCRIPTION

The general arrangement of the modal tests is shown in Figure 26. The two
test panels were the undamped baseline panel and the lightweight honeycomb con-
figuration with a quarter inch layer of SMRD 100F90B between the inner aluminum
honeycomb stiffener and the outer graphite epoxy honeycomb constraining layer.
Each test panel had the simulated TWT’S installed and was bolted to a test
frame along its four sides. The frame, in turn, vas bolted to a massive rigid
base. The frame had numerous openings machined around it to permit air to flow
into the opening between the panel and the base fixture. (Initial tests indi-
cated that the air trapped between the panel and the mounting base stiffened
the test panel. After the openings were machined into the frame the fundamen-
tal panel mode was found to drop to nearly half the original test frequency.)
A single Unholtz Dickie 50 pound permanent magnet shaker was attached to one of
the TVWT’s through a flexible stinger which contained a piezoelectric force
transducer and accelerometer at the TWT attachment end. The shaker was attach-
ed at the outer edge of one TWT for tests of both the baseline undamped panel
and the damped panel. For the damped panel, a second shaker attachment at the
center of the middle TWT was also used. Analytical predictions prior to per-
forming the test indicated that these locations would effectively excite the
modes of the panel below 300 Hertz. The shaker was suspended from a bungee
sling attached to an overhead crane that could readily be positioned to align
the shaker with the panel.

The instrumentation for the undamped baseline panel was limited to three accel-
erometers while 14 accelerometers were used for the damped panel. All of the
accelerometers measured vibration normal to the panel except for two accelero-
meters mounted to the top of the center TWT on the damped panel. While a sin-
gle accelerometer at the top center of each TWT measured the undamped panel re-
sponses, four accelerometers mounted at the bottom corners of the TWI’s were
used to measure the out of plane TWT response on the damped panel. The temper-
ature of the damped panel was measured with a thermocouple attached directly to
the viscoelastic material.
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A portable air conditioning unit was used to control the temperature by direc-
ting a flow of cooling air over the test panel. Data were obtained at 70° F.
Endevco 2213 accelerometers and a Krystal force transducer were used to mea-
sure the response and excitation. Previous tests have shown negligible phase
shifts between the transducers at frequencies above 5 Hz.

A pure random shaker excitation was applied over the frequency range from 20 to
500 Hertz. The force Power Spectral Density had a 6 dB/octave roll-up to im-
prove the response signals in the higher modes. The transducer signals were
analog recorded using a Spectral Dynamics multiplex system and played back for
subsequent modal data processing. A shaker force of 8 pounds RMS was used to
excite both the undamped and damped panel. The force amplitudes were arbitrar-
ily selected to provide adequate response measurements.

The data were reduced using an HP5451B Fourier Analyzer with a University of
Cincinnati (UCMIE) software package. The analog data were digitized and trans-
fer functions generated using the Analyzer. The c¢oherence was checked to
assure accurate transfer function definition with zoom analysis performed to
improve accuracy where needed. A typical transfer function is shown in Figure
27 and indicates the coherence was very close to unity in the resonant fre-
quency range. Adequate frequency resclution was provided for both the undamped
and damped panels. The UCMIE software option used for extracting modal para-
meters was the Least Squares Multi-Mode curve fit routine. This was necessary
because of the large amount of modal overlap in the heavily damped modes as
well as those panel modes which had closely spaced resonant frequencies. The
mode shapes determined from the transfer functions were transferred by digital
tape to the large mainframe computer for comparison with analytical predic-
tions. Because of the limited number of measurements, the dot product between
the test and analysis modes was used for comparison.

4.2  ANALYSIS TEST CORRELATION

The first seven out-of-plane analytical modes of the undamped panel with fixed
edges are compared with the test results in Table 4. The modal dot products
were calculated using only the Z motions normal to the panel for both the test
and analysis modes. The dot products show good agreement between analysis and
test mode shapes with those modes dominated by Z motion having values greater
than 0.9. As would be expected, the agreement is not as good for modes having
a large amount of rocking or X and Y motion. The resonant frequencies agree
vith test values to within approximately 10 percent. The test panel vas
bolted directly to the base plate at all locations which should have given it a
nearly fixed boundary condition. The test loss factors were on the order of
0.03 or less showing the baseline structure to have relatively little damping.

The analytical predictions for the damped honeycomb panel are compared with the
test results in Table 5 for a temperature of 70°F. The analysis is based on
fixed boundary conditions along the four panel edges. As indicated in the
Table and shown graphically in Figure 28, the resonant frequencies of the first
four out-of-plane modes agree with test values within approximately 10X while
larger errors are apparent in the higher modes. The coarseness of the NASTRAN
model is believed to contribute to this error; however, it is apparent that the
error in the resonant frequencies of the two highest modes are significantly
greater than the error in undamped panel analysis. The model dot products are
compared in Figure 29 and show good agreement with only two of the damped panel
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modes showing values lower than those of the undamped panel. The ratio of the
measured to calculated loss factors is shown graphically in Figure 30. The
comparison indicates that the calculated values tend to be less than the mea-
sured values but that the measured values are generally greater than two-thirds
of the calculated values. The earlier element test results gave similar re-
sults with the agreement between calculated and measured loss factors being
closer when maximum values were used. Subsequent panel tests using the base
excitation method were performed over a wider temperature range to better cor-
relate the analysis and test results.

The damped panel was excited sinusoidally by exciting it through its base using
the MB C-220 shaker. The temperature was varied from approxmately 60° F to
90° F using the portable thermal chamber. The measured response was analyzed
digitally using an HP5423A Fourier Analyzer to provide circle fits to the
measured response. The input acceleration was used as the reference. Because
of the overlap of the modal responses, circle fit results were only obtained
for the fundamental mode. The results shown in Figure 31 agree with the pre-
vious test results and indicate that a maximum loss factor of 0.27 occurs at
approximately 77° F. This is in closer agreement with the analytical predicted
value of 0.35 but is shifted to a higher temperature.

The results of the modal test verify that a large amount of damping can be
introduced into the panel with the damped honeycomb stiffeners. Although the
maximum measured loss factors are less than the predicted values, the values
agree within approximately 30 percent. The test results indicate that another
viscoelastic material having a lower transition temperature would be more
effective in damping the panel.

5.0 CONCLUDING REMARKS

Damped DSCS III Transponder equipment panel designs were developed using con-
strained layer viscoelastic materials (VEM’s) on the panel stiffeners. Al-
though preliminary studies indicated integrally damped honeycomb panels would
be lighter and more effective, the damped stiffener design was selected because
of thermal constraints caused by the high heat dissipating TWTA’s. By using
design criteria that accounted for the load reduction achieved by the damping,
the weight impact was limited to 2 to 10 percent of the structural weight for
the highly damped panel final designs. NASTRAN finite element analyses using
Modal Strain Energy were used to systematically examine structural and VEM
parameters to optimize the design. The VEM properties were represented with
reduced frequency nomographs.

Reasonable agreement was obtained between analytical predictions and experimen-
tal results. Frequency and temperature vere shown to govern the damping and
resonant frequencies of VEM panel designs both analytically and experimentally.
Analytical and measured modes shape agreement for the damped panel was nearly
comparable to that of the undamped panel based on the dot product comparisons.
There appeared to be shifts in the predicted temperature of maximum damping on
the order of 3 to 10 degrees F. The resonant frequencies of the first seven
panel modes agreed with analysis prediction within about 12 percent which was
comparable to the agreement for the undamped panel. The maximum measured loss
factor was within approximately 30 percent of analytical preditions with some
values showving negligible variation. At specific temperatures, the measured
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loss factors were on the order of one half to two thirds of analytical predic-
tions for the final panel design. Material property variations were shown to
have a major effect on analytical predictions and could account for most of the
differences between analysis and test results. Boundary conditions and inac-
curacies in the finite element model of the basic structure also contribute to
the test/analysis difference.

Large reductions in resonant magnifications were achieved with the damped stif-
fener designs. The first mode magnification measured on the undamped baseline
parel was 26. The constrained layer damper design of the damped modal test
panel reduced this Q of 26 to only 4.3 at the temperature of the modal test,
(70° F) and to 3.7 at the temperature at which the peak loss factor was found
during subsequent temperature sweep testing. These values compare to the Q of
3.0 wvhich wvas calculated using NASTRAN MSE with VEM properties determined from
a reduced temperature nomogram.

Subsequent acoustic test results showed that the damped panels were highly
effective in reducing the random vibration environment. The initial goal of
6 dB reduction in the PSD was exceeded in the low frequency range by a large
amount.

The results of this study demonstrate the effective application of visco-
elastic material technology to the design of equipment panel structure.
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700 ¢
%0DE RESONANT FREQ | PERCENT | HOOAL | LOSS FACTOR(T)| 1L0SS | meAs
(HZ) FREQ VECTOR PACTOR | catc
ERROR | soT POT RATIO
i FIXED | TEST | FIXED | FIXED | FIXED | TEST | FIXED
ANAL. ANAL. | ANAL. ANAL. | ANAL.
1 60.7 | 62.1 - 1.3 .91 .18 } | s .66
2 9.8 | 879 | .33 20 | .261 | .19 1.3 n
2 1274 |10 | -9 a1 air | .o 1.47 .68
‘ 157.0 172 { - 937 as0 | .t 1.50 .67
s 192.6 | 2189 | -12.0 | L300 | an ) .036 2.69 EY)
) 216.5 [ 195.8 | 0.6 778 216 | .184 1.02 .28
’ 266.9 | 210.1 27,0 895 | .0e8 | .0%4 1.02 .98
{8 298.6 | 248.% £20.2 .978 136 | .09 1.14 .88
1.0 r
somz 200 He
32
e eteees. CURRENT LAAGE
SPACECRAFT
VIBRATION RYT)
SPECTRUM 01 -
(@3 /MHz) o= PAST SMALL
| SPACECRAFT
400 Ha
3 1
13 1
MAJOR EQUIPMENT GOAL FOR
AEASOMANCES cAMPED
o1 [ \ A SPACECRAFT
10 100 1000
FREQUENCY (Ha]

DAMPING COULD REDUCE SPECS FOR SHUTTLE
LARGE DIAMETER PAYLOADS TO SMALL DIAMETER LEVELS

g

Fig. 1 Equipment random vibration requirements
with 6 dB reduction goal

MACHINES MAGNESIUM-

THORIUM NORTH PANEL

LOWER LEVEL

INSTALLATIONS

MOOE FIXED TEST FIXED MODAL TEST %ODR
NO ANALYSIS FREQ FREQ ngg'rucr r:g:n DESCRIPTION
FREQ (Hz) ERROR FIxeo FACTOR
(Hz) n)
1 55.4 9.7 1.3 1.000 .038 2z
2 1.4 106.1 10.7 .892 016 ot l
3 123.4 110.3 1.9 947 .022 T-x
. 147.% 135.2 9.1 L1946 .04 z-x
S 210.6 3.5 - 14 604 .020 X2
6 247.9 251.% - 1.4 975 039 Y
! ? 9.8 270.3 3.5 .804 .07 X-2
[ 286.3 280.4 1 810 | o022 X-2
NOTE: NODAL DOT PRODUCTS INCLUDE ONLY Z uOTIONS

Fig. 2 DSCS-IlIl north equipment panel

JBC-17




STIFFENER/DAMPER

GRAPHITE CONSTRAINING LAYER
SMRO VISCOELASTIC MATERIAL

ALUMINUM HAT SECTION

ALUMINUM BASE PLATE

—a

] ) HONEYCOMB SANDWICH WITH
GRAPHITE FACE SHEETS

7, } SMRD VISCOELASTIC MATERIAL
h ; } HONEYCOMB SANDWICH WITH
il

| |

ALUMINUM FACE SHEETS

"X ALUMINUM BASE PLATE
294 GRIDS

Y /

0
’

'\

7

7
45,

[ [ [ /7

i

¢

[/

AVAVAY/).

Fig. 4 NASTRAN model-baseline undamped panel

TOTAL STRUCTURE TOTAL
PANEL DESIGN STIFFENER/DAMPER AND DAMPER PANEL

saseLINg unoamped [ Wicox Y N 100% =
DAMPED STIFFENER
CRITEMION |
CRITERION 1l
CRITERION 11

MAT AND G/E

CAITENION W
HONEYCOMD

78 DYNAMIC DOF
209 COUAC4 NASTRAN MSE USED TO ANALYZE THE DESIGNS_]
31 CHEXA

Fig. 5 Damped stiffener concept and parametric study
NASTRAN model

Fig. 7 SMRD100F90B Damped honeycomb stiffener panel

CRITERION Il PANEL WITH HONEYCOMB SANDWICH
STIFFENERS WEIGHS APPROXIMATELY THE SAME
AS BASELINE

Fig. 6 Preliminary design weight summary

STIFFENER/DAMPER

HONEYCOMEB SANDWICH WITH NE,
GRAPHITE FACE SHEETS S RO
RSN
} SMRD VISCOELASTIC MATERIAL | EI“'Ek;i.
HONEYCOMB SANDWICH WITH il'“ ! I
ALUMINUM FACE SHEETS ™ E;‘ |
T2 T=SITTTS ALUMINUM BASE PLATE : s!‘{li!..[
674 GRIDS i..!~!||
294 DYNAMIC DOF .Ilﬁ.i‘!'
512 CQUAD4 !||‘;..=I|
168 CHEXA \‘!..ll
\\!;

Fig. 8 NASTRAN model - damped modal test panel

JBC-18




DESIGN

POINT \

e
-
|

1ST MOOE

SMRD 100 F90P2 @ 659F
0.4” THICK HONEYCOMB STIFFENER &
CONSTRAINING LAYER

NASTRAN STRAIN ENERGY
(-] [~]
Y L
T 1

g
3

0 | ] ! 1 |
3.1 0.2 0.3 0.4 0.5
SMRD THICKNESS (IN)

Fig. 9 Damped modal test panel-NASTRAN model strain energy
vs VEM thickness

LOSS FACTOR VvS. FREQUENCY

PANEL 2

0.25” SMRD 100F908

HONEYCOMB SANDWICH STIFFENER AND
CONSTRAINING LAYER

os—
O 659F
04 BARS SHOW RANGE FOR
TEMPERATURES BETWEEN
609F & 709¢
Fig. 11 SMRD100B50A damped hat section stiffened panel
c 03 § with 3 subpanei dampers
2
Q
g
9 0.2 |~
2 ]
9
0.1 |~ 9 9
-]
0 L | | P J
0 100 200 300 400 500
FREQUENCY (HZ) DESIGN GOAL: Qc > .3 1st MODE
Flg 10 Damped modal test panel - 1 H'GHER PANEL MODES
preliminary design loss factors :
ist MODE FIRST 9 MODES
STRAIN LOSS
ENERGY DESIGN POINT FACTOR
® 65°F
4 L— BARS SHOW RANGE
3 rette) ron reurensune
-2s f AND 70°F
.20 3 -
l KT
f
2 | Wb e84 488 aus 9.0 402 .2 -
£ 5 ¢
.1
2 i f e
I L o ! I B
.1 .2 3 4 100 200 300 400
VEM THICKNESS (in.) FREQUENCY {Hz)
Fig. 12 VEM Strain energy vs. SMRD thickness Fig. 13 Loss factor vs frequency

JBC-19




Fig. 14 Cantilever beam test element
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RELSAT DAMPED EQUIPMENT PANELS - FABRICATION*
K. SCHMIDT, F. CURTIS, E. MUZIANI, L. AMORE

GENERAL ELECTRIC SPACE SYSTEMS DIVISION
VALLEY FORGE SPACE CENTER
P.0 BOX 8555, PHILADELPHIA, PA 19101

ABSTRACT

This paper discusses the material considerations and fabrication methods used
in the GE RELSAT program and describes the technology needed to produce
viscoelastically damped spacecraft equipment panels. Tests of the panels
presented elsewhere in these proceedings indicate the damping is predictable
and highly effective in reducing the vibroacoustic environment of electronic
packages. The materials technology described herein builds on more than 15
years of GE experience in damping spacecraft electronic packages and other
devices wusing a SMRD 100 viscoelastic epoxy. Material requirements are driven
by prelaunch thermal vacuum testing, launch temperature of 60 to 72 degrees F,
launch vibration frequency of 50 to 500 Hertz, and the need to survive 10 years
in orbit without contaminating the spacecraft. GE SMRD 100 materials were
selected that satisfied these requirements and were known to maintain their
excellent damping properties after 4 years in orbit. Modulus and loss factor
of candidate materials are compared at the temperature of interest for
frequencies from 10 to 10,000 Hertz. Standard panel fabrication methods are
used except for viscoelastic material (VEM) machining which uses diamond
tooling. Quality control methods needed to assure panel structural integrity
and damping performance rely on X-ray and and ultrasonic techniques to evaluate
bonding and resonant beam measurements to determine material properties.
Alternate fabrication methods that eliminate some bonding operations are
presented. Because current measurements of VEM properties have a large
variation, it 1is recommended that improved methods be investigated. Improved
property measurement should address experimental errors, relations used to
derive properties from test measurement, derivation of the reference
temperature used in the shift relation, and VEM formulation controls that
assure uniform properties.

*This work was performed for the Air Force Flight Dynamics Laboratory under the
RELSAT  (Reliability for Satellite Equipment in Environmental Vibration)
Contract.
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INTRODUCTICN

This paper presents the material considerations, basic fabrication techniques
and quality control measures critical to the fabrication of damped spacecraft
equipment panels. In conjunction with this paper, two others have been
written, which address the design and testing of Dynamic Test Article (DTA)
Panels.** The purpose of this effort, is to demonstrate the use of viscoelastic
damping to reduce vibroacoustic environments for satellite equipment mounting
structures in a launch environment. Research, testing and subsequent
evaluation have shown that the technology and material resources are available
to fabricate and implement constrained layer damping on spacecraft structures.

BACKGROUND

The formulation and application of viscoelastic materials in spacecraft has
been under development at GE-SSD for over 15 years. SMRD (Spacecraft Materials
Research and Development), a highly efficient damping compound developed by GE,
was first flown on Landsat I Earth Observation Satellite where avionics
reliability was enhanced by limiting relay panel vibrations.3 Subsequent
applications include Viking Lander, Acoustic Cannisters, Gimbals, and Camera
Mounts.* In addition, it 1is used extensively on printed circuit boards,
providing efficient damping and additional stiffening of the boards and/or
components. Figure 1 shows a typical constrained layer damping strip
installation. The board has a center strip extending from the edge to the
connector and an additional strip bonded to the connector. A minimum amount of
space is occupied by the strips which use unidirectional graphite epoxy
constraining layers.

The constrained layer fabrication is shown in Figure 2. The constraining
layers are bonded to the viscoelastic material (VEM). They are then machined
to the final dimensions. Typical damping strips wusing SMRD 100F90 with
unidirectional graphite epoxy constraining layers are shown in Figure 3 and can
be made in a wide variety of shapes and sizes. Sizes range from a few inches
to a few feet in length. The DSCS III spacecraft uses approximately 2000
damper strips. Most use unidirectional graphite epoxy constraining layers.
The keel member shown in Figure 4 employs the use of a large damper strip to
limit vibration levels so that vibration of adjacent packages stays within
specified limits. This &<eel damper was added after acoustic tests indicated
package qualification random vibration levels were being exceeded.

Currently, the concept of viscoelastic damping is being evaluated in relation
to reducing vibroacoustic environments for satellite equipment mounting
structures during launch. To date, testing has been conducted which has shown
the damping to be highly effective in attenuating vibroacoustic response. 1n
addition, the structural integrity of damped panels under static load,
sinusoidal load and creep effects under steady state load were measured. The
results of acoustic and shock tests, and the design, analysis and m?dal tests
are presented in two other papers included in the proceedingsﬁ’ This paper
discusses the viscoelastic material requirements and properties, material
selection, fabrication methods and quality control procedures.
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RELSAT PANEL DESIGN APPROACH

The approach used in the design of the damped panel configuration is shown in
Figure 5. The original panel design provided integrally machined stiffeners
with riveted flange sectinns to support the panel components. The damped panel
design uses a similar concept with a constrained layer damper added to the
flange section. Although the figure indicates the same size stiffener, the
damped panel designs actually used smaller stiffeners using the VEM and
constraining layers to provide added stiffness. With this concept, the thermal
design of the panel is unaffected. Heat 1is conducted through the panel
structures and the VEM effect is negligable.

MATERIAL CONSIDERATIONS

Requirements

Key requirements to be considered when selecting damping materials for
spacecraft applications include space compatibility, weight, strength,
stiffness and high damping in the frequency and temperature range of interest.
These requirements are summarized in Table 1 for the various flight phases.
Prior to launch, the material is subjected to thermal cycling for an extended
period of time during subassembly and spacecraft tests. In addition, a storage
capability of 2 years is also required. The launch conditions are critical for
the damping performance of the material which requires high damping from 60 to
72 degrees F in the 50 to 500 Hertz frequency range. High shear strengih is
required so that structural integrity is assured. A wide range of stiffness
values are acceptable although they influence the thickness of the damping
layer. During orbital flight, the VEM must not contaminate the spacecraft
during its 10 year life. This is reflected in the outgassing requirements of
ASTM E-595 vwhich requires less than 1 percent mass loss and less than 0.1
percent collectable Volatile Condensible Materials under elevated temperature
and vacuum conditions. By selecting the dampened panel stiffener approach,
thermal conduction requirements are precluded.

Candidate Materials

The properties of candidate materials are compared in Table 2. The material
density varies from .028 to .066 pounds per cubic inch which affects the weight
but is not critical because of the small amount of material used. The
outgassing results, hovever, do eliminate the AF32 (SMRD 100F90A is an
acceptable material although it slightly exceeds the outgassing values).

Aging Effects

It is imperative that materials used on the spacecraft withstand the thermal
vacuum conditions imposed without changing stiffness and damping properties,
i.e. stability of the viscoelastic material properties is essential. In
addressing this requirement, SMRD panels are post cured under vacuum for 96
hours as a stabilization process. To verify the stability of GE developed
SMRD, recent events have enabled ar evaluation of SMRD following four years in
space. The Solar Max Attitude Control Module launched in February of 1980 and
retrieved from space in April of 1984, used SMRD in its interior structure. A
sample recovered from the Attitude Control Electronics (ACE) package vas tested
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and found to have retained high damping properties after four years in space.
Figure 6 compares SMRD 100F90 retrieved from space to standard SMRD 100F90
data. The individual data points shown for the SMM material were obtained from
modified Oberst beam tests. The curves correspond to the original material
before extended space exposure. The comparison indicates that the properties
have not changed significantly. A maximum loss factor of approximately l.u was
measured for the SMM material. This value is in close agreement with the
maximum value for the corresponding curve. The data verify the stability of
the SMRD material. Similar data are not available for the other materials in
Table 2.

Damping and Stiffness Properties

This section addresses material characterization of VEM damping and stiffness.
This information can be readily displayed on Reduced Temperature Nomograms
(RTNs). Past research has shown that there is a definite correlation betwveen
many rheological materials 1in regard to behavioral similarities at different
temperatures and frequencies. Measurements of the stiffness, E or G, and loss
factor, 7L» as a function of frequency for various temperatures can be
obtained. Using a shift parameter, a7 , and the data derived above, stiffness
and loss factor information at various temperatures can be collapsed into a
single curve. As a result, modulus and loss gactor can then be plotted as two
curves on a Reduced Temperature Nomogram.9 This is illustrated in Figure 7.
Ultimately, this nomogram can be used to determine material properties for the
temperature and frequency of interest in a particular application. Figure 7
illustrates modulus and loss factor data at an average temperature of 65
degrees F, the temperature of interest, for various frequencies. Because the
RIN 1includes the shift parameter which is material dependent, material
comparisons and selections must be made using the material property curve shown
on the right of Figure 7 which is 1independent of the temperature shift
relation.

The accuracy of the material property measurements are also indicated by the
individual data points in Figure 7. The temperature shift relations can be
used to translate the properties from the RTN to the material properties at a
specific temperature, including the curves and the original data points. The
scatter in the data points provide an indication of the accuracy of the
property measurements. Although the scatter appears small on, the three cycle
log scale, the scatter is relatively large with factors of two or more for many
points. The scatter is particularly large for the loss factor.

In essence, the goal in searching for a good damping material is to find one
wvhose high damping properties coincide with the temperature and frequency
ranges of interest. In the specific case of DSCS III launch environment, the
temperature and frequency ranges of prime importance for the North Panel
Structure are 60 to 72 degrees F and 50 to 500 Hertz, respectively. In an
attempt to attain the required stiffness and damping under these conditions,
material formula variations were researched and tested. One way to evaluate
the difference in damping properties between the material candidates is to
compare them in relation to glass transition temperature. Modifications were
made to the standard material in an attempt to shift the tragsition
temperature, so that peak damping would occur in the desired temperature and
frequency range. Figure 8 shows that SMRD material properties can be altered
to meet specific requirements. Of the three materials shown in this graph,

JBD-4

o




SMRD 100F90C performed ideally for the RELSAT application. Peak damping
occurred for about 50 to 500 Hertz at 65 degrees F.

In addition to the GE-SSD material formulations, commercial damping materials
were investigated. Two materials selected for initial evaluation were DYAD 601
and 3M ISD112. Both materials satisfy the outgassing requirements, however, at
65 degrees F the peak damping for DYAD 601 was at a frequency above the range
of interest for the DSCS III panel. Measured material properties from beam
tests are shown in Figure 9. In addition, 1ISD112 properties were also
measured, Figure 10. It appeared to be too soft, and required very thin layers
to be effective. It did not have the required bond strength for the stiffener
aplication. UDRI 3 was also considered, but was rejected because its tacky
consistency posed fabrication problems and could cause contamination of the
spacecraft. The final selection of candidate materials for panel fabrication
and tests were four SMRD100 materials. The material properties are compared in
Figure 11. The four prime material candidates are described below:

SMRD 100F90B is a modified 100F90 formulation which
has significantly better outgassing characteristics
and a temperature of peak damping closer to the
ranges of interest than the original formulation.
It is relatively stiff with a low density, and has
been used by GE-SSD for electronic packages.

SMRD 100F90C is a further modification of 100F90,
formulated in an attempt to reduce the transitiion
temperature so that peak damping would occur in the
temperature and frequency ranges of interest.

SMRD 100BS50A has the damping properties which appear
ideally suited for DSCS III transponder panel
application. The material loss factor is high over
a relatively broad frequency range and is nearly
unity over the frequency range of interest. It has
the same base resin system as 100F90, however it is
modified by the addition of a conductive filler.
The temperature of maximum damping at 100 Hertz is
63 degrees F and lies within the desired temperature
range.

SMRD 100B50B - This is a modification of the
previous material which is stiffer. At 65 degrees
F, the frequency for peak damping is shifted to
about 200 Hz, and has high damping over the
frequency range of interest.

The decision to use the SMRD 100 materials was based on the fact that these
materials satisfy the outgassing, strength, stiffness and damping requirements
established. Refer to Table 3 for material selector parameters. In addition
past experience in viscoelastic damping facilitates the application of various
techniques used in damped printed wire boards to those for the damped
spacecraft equipment panels.

JBD-5




DAMPED EQUIPMENT PANEL FABRICATION

VEM Fabrication Process

Both SMRD 100F90 and 100B50 are cast and cured in teflon coated aluminum molds
in thicknesses ranging from 0.1" to 0.25". The sheets are stabilized and
outgassed under vacuum at 135 degrees C for 96 hours; see Figures 12 and 13.
The SMRD can be used as fabricated or milled to the desired dimensions. In the
past, an aluminum oxide cup wheel was used to mill the SMRD. Due to obvious
surface imperfections, diamond tooling replaced the former tool. Figure 14 is
a photograph of a diamond compax end mill used primarily for milling smaller
sections of VEM. The diamond flycutter shown in Figure 15 mills approximately
a two inch wvide strip per pass as compared to 1/2 inch strip produced with the
end mill. This tool is used in larger applications.

Surface Preparation

Once the materials are machined to size, the SMRD can be bonded to constraining
layers such as aluminum and graphite/epoxy laminates. To obtain optimum bond
strength, an effective method of surface preparation is employed. The SMRD and
constraining layers are abraded using 100 grit Aluminum Oxide paper. All
surfaces are thoroughly cleaned with isopropyl alcohol and allowed to air dry.

Adhesive Selection/Bondigg

Proper adhesive selection is essential in terms of space application. Once
again, outgassing requirements, in addition to strength under rigorous
environmental conditions are critical factors which must be considered. SMRD
100F90 and 100BSO can be bonded ta both graphite/epoxy laminates and aluminum
using epoxy adhesives such as amine or polyamine cured epoxy resin. The
adhesive selected for this application was Hysol EA9309.3 commercial grade
aerospace adhesive. This material offered adequate strength and rigidity in
addition to being compatible with the materials under consideration.

Finally, the actual bonding of the SMRD to the constraining layers is a simple
procedure. A thin film of adhesive is applied using a fingerprint roller. The
materials are mated in such a manner as to preclude excessive air entrapment.
The bonded sections are then cured under pressure.

Two damped panel configurations were designed and tested, one incorporated
aluminum honeycomb stiffeners and the other aluminum hat section stiffeners.
Figure 16 is representative of the honeycomb stiffener panel prior to
completion. Aluminum honeycomb stiffeners are bonded to SMRD which will
subsequently be bonded to a graphite/epoxy honeycomb constraining layer.
Traveling wave tube amplifier (TWTA) mass simulators are bolted 'to the aluminum
panel. Figure 17 shows a completed honeycomb panel prior to test. The
aluminum hat section stiffener panel shown in Figures 18 and 19 consists of
aluminum hat sections riveted to the aluminum base plate. A viscoelastic
damping layer is bonded directly to the hat, followed by a graphite epoxy
constraining layer. TVTA mass simulators are then added for dynamic testing.

The method of damping used on these panels simulates the predicted effect of
constrained layer damping on the transponder panel of the DSCS III spacecraft.




FUTURE DAMPED PANEL FABRICATION

Looking into the future of constrained layer viscoelastic damping, a technique
has recently been developed to eliminate the bond between the voscoelastic
material, in this case SMRD, and the graphite epoxy laminate. Figure 20
compares the interfacial bonds between the VEM and laminate for adhesive and
direct bond methods.

The new procedure incorporates the bonding process into the layup of the
graphite epoxy laminate. As in the current process, the SMRD must be abraded
and thoroughly cleaned. The graphite/epoxy prepreg is then layed up directly
onto the surface of the SMRD sheet and cured under vacuum. The damper strip
assemblies can then be machined to required dimensions. The benefits of this
new procedure include improved bond strength, elimination of the bonding step
and surface preparation of the graphite/epoxy laminate and most importantly, it
virtually eliminates the possibility of interfacial voids because of high resin
flow from the graphite/epoxy prepreg and the high pressure under which the
composite is cured.

QUALITY CONTROL PROCEDURES

VEM Properties Confirmation

To validate the material properties of the SMRD, several tests were conducted.
Hardness, using a Shore A durometer measured the materials resistance to
indentation. It is a simple and effective means of monitoring changes in
material stiffness. Density was determined through weight and dimensional
measurement. Finally, to determine the damping properties of the viscoelastic
material, the modified Oberst beam method of test was employed.6 Specifically,
the beams consisted of an aluminum layer sandwiched between two pleces of

viscoelastic material. A series of beams were then mounted to a shaker and
excited using base excitation. Damping properties of the materials under
consideration, were determined over a wide range of frequencies and
temperatures.

Structural Assessment

In addition to material property confirmation, non-destructive testing to
determine  structural integrity is critical. Delamination between the
constraining layers or panel and the damping medium could cause a significant
reduction in damping efficiency. As a result, it is important that
non-destructive inspection techniques be employed to insure structural
integrity. Three methods of test suggested are Ultrasonic Pulsed Echo
techniques, Ultrasonic Impedance Plane Analysis and Real Time Radiographic
Examination.

Ultrasonic and Contact Pulse Echo operates on the principle of pulsed
ultrasonic waves. The waves are monitored as they interact with the material
being inspected. A pulse ultrasonic beam is introduced into the part and the
returning echos are monitored. This test method gives information regarding
the type, size, location and depth of the defect. Figure 21 illustrates the
difference between a bonded area and one with a known void. The large peak
present on-the photograph on the left is the back reflection of the aluminum
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hat section. This peak diminishes when a voided area is contacted. Since this
signal will not transmit through air, the last material the signal detects is
the adhesive coated SMRD, signtfying a void or debond as indicated in the
photograph on the right.

Ultrasonic Impedance Plane Analysis using a Bonda Scope, is an alternate method
of Non-Destructive Evaluation. The acoustical impedance plane method use< a
small probe (o generate a standing vave across the material thickness. The
test frequency 1is selected to vibrate the laminate in such a fashion that the
response to bondline and anomaly size is enhanced. The standing wave, which
contains acoustical material information, affects the impedance value at the
material surface. This value is then transformed through the probe’s acoustic
impedance into its electrical impedence. It is this electrical impedence which
is subsequently processed for display on the acoustic impedance plane. Figure
22 illustrates a typical setup, where a bonded area appears as a dot located at
the center of the grid and a non-bonded area shows up as a dot in one of the
four quadrants depending upon depth and location of the anomaly.

Radiographic Examination or X-Ray, is another technique used to evaluate
structural integrity. X-Rays are directed through the part being inspected and
monitored with a screen or film sensitive to X-rays. Figure 23 shows an X-ray
evaluation of a debonded area. Since a void will absorb fewer X-rays than a
non-voided area, a dark spot will appear. Radiography can be performed through
the thickness to detect anomalies or tangentially to detect delaminations.

CONCLUSIONS

As a result of this research and development effort, the following conclusions
are made:
® The necessary technology is available to fabricate
damped panel structures.

® Performance can be enhanced by altering material
formulation to conform to application
requirements.

® Key outgassing requirements can be satisfied.

® SMM damping material retains high damping
properties after four years in space, verifying
material stability.

@ Standard fabrication methods can be used for all
operations except VEM machining.

@ Quality Control Methods are available to assure
properties of the panel.

® The variation in measured VEM properties should be
reduced.

® The VEM test method should be revised to reduce
experimental errors.
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@ The VEM temperature shift relations should be
improved.

® Material uniformity should be maintained within
close tolerances.
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Table 1. VEM Requirements for DSCS III North Panel

PRE-LAUNCH
¢ COMPONENT/SUBASSEMBLY THERMAL o SPACECRAFT THERMAL CYCLING
CYCLING
TEMPERATURE: -34 TO 71°C TEMPERATURE: -17 TO 80°C
VACUUM: 10"¢ TORR VACUUM: 10°7 TORR
TIME: 10 DAYS TIME: 23 DAYS
® STORAGE-COMPONENTS AS PART OF THE SATELLITE FOR 2 YEARS
LAUNCH
¢ TEMPERATURE (SHUTTLE BAY): 60 TO 72°F
o FREQUENCY OF HIGH DAMPING: S50 TO SO0 Mz
o SHEAR STIFFNESS: 100 TO 1000 PSI
o SHEAR STRENGTH: 100 TO 10000 PSI AT 100 Hz
ORBIT
& SURVIVE ORSITAL ENVIRONMENT FOR 10 YEARS WITHOUT LOSS OF
STRUCTURAL INTEGRITY OR CONTAMINATING THE SPACECRAFT
© OUTGASSING PER ASTM E-588
- TOTAL MATERIAL LOSS: 1%
= COLLECTIBLE VOLATILE CONDENSIBLE MATERIALS: <0.1X
o HEAT CONDUCTION: NOT A CONCERN BECAUSE OF DESIGN APPROACH

Table 2. Candidate Materials

OUTGASSING PROPERTIES AT PEAK DAMPING

DENSITY VCM  TML LOSS  TEMP (°F)
MATERIAL {LB/IN3) X % G(PS)) FACTOR @® 250 Hz
ISD 112 034 .02 .68 140 1.2 89
DYAD 801 .04 .01 .37 2.3K 1.0 3s
AF 32 .0382 48 1.97 76K 9 84
UDRI 3 .034 .03 058 8K 1.0 62
SMRD 100F90A .0288 .11 1.10 4.8K 1.0 98
SMRD 100F90B .0296 .08 .81 2.7 1.0 86
SMRD 100F90C .0208 .08 .83 3.7 1.0 71
SMRD 100BS0A .0813 .08 .57 4.1K 1.1 83
SMRD 1008508 .083s .10 1.17 4.2€ 1.2 70
SMRD 100850C .0662 .08 A7 3.8K 1.0 74

Table 3. Material Selection

130 112
o LOW SBOND STRENGTH
¢ FABRICATION DIFFICULTY

DYAD 601
* TEMPERATURE/FREQUENCY RANGE NOT MATCHED

AF 32
o EXCESSIVE OUTGASSING

UOR1 3
® FABRICATION DIFFICULTY (TACKY)
o CONTAMINATION

SMRD 100
¢ PROPERTIES CAN BE ALTERED TO MATCH APPLICATION
& FAMILIAR WITH FABRICATION METHODS
@ HIGH BOND STRENGTH
® GOOD OUTGASSING REQUIREMENTS
o STABLE AFTER INITIAL VACUUM “BAKE OUT™

SMRD MATERIALS USE GE-S8D TECHNOLOGY BASE
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Figure 1. Typical Damped Printed Figure 2. Constrained Layer
Wiring Board Damper Fabrication

4 .
stnana @ srecrase

Figure 3. Typical PWB Damper Figure 4. DSCS IIIl Application
Strips to JLE Panel
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DAMPED CONCEPT

Figure 5. RELSAT Damped Panel Design Approach

TEMPERATURE T DEG. F

103 0® 160120 80 40 O 08
102 105 / A ,//A 7Z 104
10" 104/ /A/A / / 103
SHEAR 7 7 '
Loss MODULUS / / / / FREQUENCY
F‘Eﬁ.‘;“ LB/IN / , FlHa)
10° XX2 10 7 / 10
10°} 102 N (/ / 7 10!
1072 10! / / 10°
[+] 2 4 [} 8 10 12

100 10° 100 100 100 10 49
REDUCED FREQUENCY FR Hz

GOOD DAMPING PROPERTIES AFTER 4 YEARS IN SPACE

Figure-6. Comparison of SMM and Current SMRD 100F90 Properties
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REDUCED TEMPERATURE NOMOGRAM MATERIAL COMPARISON

OF SMRD 100F90 TEMPERATURE = 65°F
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MATERIAL SELECTION MUST BE MADE USING
PROPERTIES AT TEMPERATURE OF INTEREST

Figure 7. Material Characterization
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GE MATERIAL PROPERTIES CAN BE ALTERED TO MEET SPECIFIC
REQUIREMENTS. SMRD100FS0C IS IDEAL FOR RELSAT.

Figure 8. Effect of SMRD 100F90 Formulation Changes
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(T = 65°F)

108
100r90C
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102 I 1 1 11014 Jl RN 1 I EEETH 1 2 EL4ld .AL 11 k11l 0.1
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FREQUENCY (Nz)

THE PEAK DAMPING FOR DYAD 601 1S ABOVE THE FREQUENCY RANGE
OF INTEREST. SMRD100F90C COMES CLOSER TO DESIRED RANGE.

Figure 9. Comparison of SMRD 100F90 and DYAD 601
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Figure 10. Comparison of SMRD 100F90 and ISD 112
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4 SMAD MATERIALS WERE SELECTED FOR PANEL FABRICATION & TEST

Figure 11. Properties of Selected Materials at 65 Deg F
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CAST AND CURED IN FLAT SHEETS

STASILIZED AND OUTGASSED UNDER
VACUUM AT 135°C FOFR 96 HOURS

BONDED TO CONSTRAINING LAYER

MACHINED TO FINAL DIMENSIONS

BONDED TO STRUCTURE

Figure 12. VEM Damper Strip Fabrication Process

TEFLON COATED ALUMINUM MOLD
PRIOR TO CASTING

e

CURED MATERIAL

Figure 13. SMRD Fabrication

Figure 14. SMRD 100F90 Milled with a Figure 15. SMRD 100F90 Milled
Diamond Compax End Mill With a Diamond Fly Cutter
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Figure 16. Honeycomb Stiffener Panel Figure 17. SMRD 100F90C Damped
Prior to Completion Honeycomb Stiffener Panel

Figure 18. SMRD 100B50C Damped Figure 19. Completed Hat Section
Hat Section Stiffener Panel Stiffener Panel
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Figure 20. Direct vs Adhesive Bonding of Graphite/Epoxy
Constraining Layer

BOND voID

Figure 21. Pulsed Echo Ultrasonic Method for
Assessing Bond
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BONDASCOPE

DETECTED VvOlID

Figure 22. Ultrasonic Impedance Plane Analysis

/ERTICAL

Figure 23.

GRAPHITE/EPOXY LAMINATE

VEM LAYER

/ )
ALUMINUM HAT SECTION

HORIZONTAL MAGNIFICATION

Bond Evaluation by Real Time X-Ray
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Prediction and Measurement of
Damping of a Laminated Beam with a
Constrained Viscoelastic Layer

D. J. Segalman
Applied Mechanics Division I
Sandia National Laboratories
Albuquerque, New Mexico 87185
(505) 846-1899

Lt. Philip Reamy
Air Force Weapons Laboratory/ARBC
Albuquerque, New Mexico 87117-6008
(505) 844-2019

Abstract

Analytic predictions ! for damped natural frequencies of a simple viscoelastic structure
are compared with measured values 2. The structure studied is an aluminum chan-
nel incorporating a constrained layer of highly viscoelastic polymer. The predictive
technique employs a general and systematic method for calculating damping and stiff-
ness matrices using only measured material properties and structure geometry. These
matrices are then used to predict the dynamic properties of the structure. This work
constitutes the first step in the experimental verification of the analytic method.

Agreement between the predicted and measured response of the structure studied is
very good, and indicating that the analytic technique used is a viable method for
modeling viscoelastically damped structures.

1The computational portion of this work was supported by Sandia National Laborato-
ries under contract to the U.S. Department of Energy (DE-AC04-76DP00789).

2The experimental portion of this work was funded under Laboratory Independent
Research Program 8722 of the Air Force Weapons Laboratory.
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1. Introduction

The Role and Importance of Damping

Viscoelastic damping is a traditional method of controlling vibration and noise in
structures and machinery. An example of this method of passive damping is the use of
high-loss grommets in the attachment of subsystems. More sophisticated applications
include the use of constrained layer damping treatments to reduce vibration in airplane
shells that had previously suffered fatigue damage. Yet more advanced applications
have been proposed, involving coupling viscoelastic damping with active controls in
space structures.

Advanced analysis methods, particularly finite element methods, can be used to
predict stresses, mode shapes, and natural frequencies adequately for guidance in the
design of complex elastic structures. The utility of these elastic analysis techniques has
been delineated by experimental as well as theoretical means. New methods, including
that of Segalman [4], have been developed to enable corresponding calculations for
viscoelastic structures. The work presented here is an experimental verification of that
method.

Analytic Prediction of Damping

Inducing damping response in an otherwise elastic structure through the use of
constrained viscoelastic layers is a technique that has been applied since the late 1950’s.
The work of Ross, Ungar, and Kerwin [1] marks the beginning of meaningful analytic
methods for prediction and design of damping treatments for simple structures. Such
methods are generally restricted to problems of beams and flat plates, for which closed
form expressions for frequency and mode shape can be derived.

A technique for addressing constrained layer damping of more general structures
was developed later as the “modal energy method” (2,3]. This method employs as-
sumptions analogous to those underlying the Ross, Kerwin, and Ungar method for
beams and plates, but generalizes them to forms that can be employed with finite
element solutions for frequency and deformed mode.

The above prediction methods are restricted to problems involving primarily elas-
tic structures with distinct viscoelastic regions. There is a further restrictive assump-
tion embedded in those methods that the damped modes are identical to corresponding
elastic modes. These restrictions sufficiently limit the application of those techniques
that it is necessary to examine more general methods.
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One more general method for prediction of damping in linearly viscoelastic struc-
tures was proposed by Segalman [4]. That work consisted of a purely formal derivation.
The purpose of the work presented below is to test a numerical implementation of that
method against measurements on a very simple viscoelastic structure. The results,
shown below, provide strong encouragement to the authors to address more complex
structures, for which the generality of the analytic method tested here can be demon-
strated.
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2. Analytic Method

2.1 Formulation

Formal Evaluation of Damping and Stiffness Matrices

The method presented in [4] begins with consideration of a nearly elastic structure,
possessing only a small amount of viscoelasticity. This “slightly viscoelastic” structure
consists of an underlying elastic system plus small contributions from the integral terms
associated with viscoelastic material response. A perturbation expansion yields formal
expressions for the complex modes and frequencies of the structure. (That expansion
involves the natural modes and frequencies of the underlying elastic structure, whose
elastic properties are those which would be measured in quasistatic experiments.)

A perturbation expansion is also performed on a similar but slightly damped,
nearly elastic structure. This “slightly damped” system consists of the same underlying
elastic structure plus small perturbations in the damping and stiffness matrices. Formal
expressions for the damping and stiffness matrices of the second structure are obtained
by requiring that the complex modes and frequencies of the two structures agree. The
formal process described above is represented by the chart of Figure 2.1.

The strategy outlined above results in the following expressions for the damping
and stiffness matrices:

C= f: Im ( ;1; (W) " ()7 ) @2.1)

modes n=1
and
N
K= Z Re(T*(w")z™ (z")7T) (2.2)
modes n=1

where I'™(w) is the complex structural stiffness matrix of the viscoelastic
structure evaluated at frequency w.

N is the number of elastic eigensolutions retained in the calcula-
tion.
and w" is the n’th eigenfrequency and z" is the n’th eigenmode of the

elastic structure. Together, w™ and z™ are the n’th eigen solution
to the equation:

[~ M + K] 2" =0 (2.3)
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FORMAL STRATEGY OF DERIVATION

Elasticity Elasticity
+ € Viscoelasticity + ¢ Damping
i l
Perturbation Expansion Perturbation Expansion

i i

Complex Modes Complex Modes

and Frequencies and Frequencies
N Ve

Formal Expressions for [C] and [K]

Figure 2.1. Outline of Strategy for Calculation of Damping and Stiffness Matrices
for Linearly Viscoelastic Structures
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The remaining quantities, 2" and K, are defined by:

K, =T"(0) (2.4)
=K, z" (2.5)

and
= fr () " (2:6)

(In Equations 2.1 and 2.2 and in what follows, expressions such as z" (2")7 are
matrix-valued outer products, and expressions such as (z")T 2" are scalar-valued inner
products.)

When the damping and stiffness terms are combined with inertial terms, a second
order system of equations results:

Mi(t) + C#(t) + Kz(t) = r(t) (2.7)

where M  is the structural mass matrix;
z(t) is the generalized (nodal) displacement vector;
and  r(t) is the corresponding force vector.

Some observations should be made at this point.
e The complex stiffness matrices I'*(w) could, in principle, be calculated in the
standard manner that elastic stiffness matrices are calculated, but using the com-

plex material properties evaluated at frequency w rather than the corresponding
elastic material properties.

e It is a result of classical linear viscoelasticity that K, above, is the stiffness matrix
that would be constructed using material properties obtained from quasistatic
measurements [5).

e The vectors z" and 2" form a biorthogonal set:
(24T ' = by @)
The above relationship was central to the derivation of (4].

o The elastic eigenmodes, z*, are determined at this point only up to an arbitrary
factor. They become uniquely defined when scaled so that

(5T MzF =1 (2.9)
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for each mode k. This is one of the standard forms of eigenvector normalization
and from substitution of the above equation into Equation 2.3, the eigenfrequen-
cies can be isolated:

()T £* = (W*)? (2.10)
This normalization becomes useful below in the extraction of complex eigenpairs
for the damped system.

e Though the damping and stiffness matrices (Equations 2.1 and 2.2) of Equation
2.7 are expressed as expansions involving z™ and w", these are eigensolutions of
the elastic problem, Equation 2.3, and not of the damped system, Equation 2.7.

e The matrices defined by Equations 2.1 and 2.2 are, in general, full and non-
symmetric. Though at first disconcerting, these features should not be unex-
pected: symmetric damping and stiffness matrices should be expected only where
there exist elastic strain energies and Rayleigh dissipation functions. Such po-
tentials do not exist for general viscoelastic materials.

FElastic Modal Coordinaies

In order to deal with a smaller system of equations, it is useful to express displace-
ments in terms of the elastic modal coordinates:

N

z(t) = }: a"(t)z" (2.11)

modes n=1

(The modal coordinates a™(t) are found by contracting the above equation with (2*)T
and invoking Equation 2.8 to obtain the following:)

o™(t) = (2")T z(t) (2.12)

Premultiplication of Equation 2.7 by (z*)T and substitution of Equation 2.11 for
z(t), generates the system equations in terms of the elastic modal coordinates.

Ta@t) + Cat) + K oft) = B(t) (2.13)

In the above, the vector o(t) is composed of the scalars a™(t), I is the N’th order
‘identity matrix, and the matrices C and K are defined by

Cri = (:I:k)T A (2.14)
and )
Ky = (z)T 4! (2.15)
JCA-8
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where .
h* = Im ( = I (w¥) ) z* (2.16)
and
= Re (I*(w*) ) * (2.17)

The components, 3"(t), of the vector 3(t) are the contraction of r(¢) with each of the
elastic eigenmodes:

Br(t) = (=")" r(t) (2.18)

It should be noted that the equations of [2] and (3] result if all off-diagonal terms
of Equation 2.14 for € are dropped and the term ¢' in Equation 2.15 for K is replaced
by f'. Such a reduction of Equations 2.14 and 2.15 to obtain those of [2] and [3] is
reflective of that method’s assumptions that elastic eigenmodes are preserved and that
strain energy is independent of frequency.

Frequency Response Matrices and Complex Eigenanalysis

Once the matrices C and K have been calculated, Equation 2.13 is recast as a first
order system of equations in state space and the complex eigenmodes and frequencies
are extracted. We have chosen to use the formalism of Newland [6] for these steps of

the calculation. Letting
a(t
s(t)={ dgt; } (2.19)

Equation 2.13 becomes

3(t) = As(t) + F(t) (2.20)
where .

A=[ —fg -(Z{ ] (2.21)
and

F(t)={ ﬂ‘()t) } (2.22)

The above state-space equation is diagonalized through introduction of a matrix,
U, whose columns are the complex right-eigenvectors of A:

AU=UA (2.23)

where A is a matrix whose diagonal terms are the complex eigenvalues, g, of A and
whose off-diagonal terms are zero. Since A is a 2N by 2N matrix, U and A are also of
dimension 2N. Both U and A are products of standard numerical eigensolvers.
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Each complex eigenpair, (Uk, A¢) and its conjugate, (U}, A;) combine to generate
real displacements:

s(t) = D e [cos(xt + 0) Re (Ux) — sin(ypxt +0) Im (Ug)] (2.24)

where ur = Re A\ is the damping factor for that mode, ¥, = Im A is the damped
natural frequency for that mode, and D and @ are indeterminate. The above expression
transforms, through Equations 2.11 and 2.19, to corresponding expressions in terms of
displacement coordinates:

N
z(t) = D e Z z" [cos(yxt +0) Re (Ur) — sin(ywt +60) Im (UP)]  (2.25)
modes n=1
and
N

#(ty=Dem* Y o™ [cos(ut +0) Re (UY*™) — sin(yut +8) Im (UN*")]
modes n=1

(2.26)
where U is the n’th component of the k’th complex eigenmode. From the above, it is
seen that when expressed in spatial coordinates, the k’th complex eigenmode, =¥, is:

N
k= > Up (2.27)

modes n=1

The complex frequency A; can also be expressed in the more common terms of
damping ratio £x and a nominal “undamped” frequency @w*:

A = ok [—gk + i,/l—gz] (2.28)

_ (Re A\i)?
S = \/(Re W)+ ’EIm )2 (2.29)

where

and

OF = —Re M\ /& (2.30)

In general, the nominal “undamped” frequency &* will not equal any of the natural
frequencies of the underlying elastic system, since the complex modes do not, in general,
equal any individual elastic mode.

Equation 2.23 is substituted into Equation 2.20 and the result is rearranged to
yield an uncoupled system of equations which can be integrated to yield s(t):

t
s(t)y=Uers(0) + U / AU F(r) dr (2.31)
0
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The quantity et is the diagonal matrix of terms e+,

In the case of harmonic excitation forces,

F(t)=Re{ ﬂog*‘“‘ } (2.32)

s(t) = Re (ﬂ(w) { ﬁog‘“‘ }) (2.33)

where I1 (w) is the frequency response matrix

Equation 2.31 becomes

Hw)=U d(w) U™? (2.34)
and
iwlAl 0 0
d(w) = 0 . 0 (2.35)
0 0 %
tw—AN

Since H is constructed from the eigenvectors and eigenvalues of A, and those
eigenquantitites occur in complex conjugate pairs, it is not surprising tha.t there is
some redundant information in H. Only the upper right-hand quarter of A (w),

HY(w) = P d(w) @ (2.36)

where P is the upper half of U and  is the right half of U1, is necessary for calculating
the displacement frequency response of the structure

a(t) = Re (ﬂl'z(w) Bo e“‘") (2.37)

Substitution of Equation 2.18 into Equation 2.37 and substitution of the result into
Equation 2.11 returns the frequency response matrix for the original displacement
vector z(t):

z(t) = Re (H(w)roe'*") (2.38)
where
H(w) = Pd(w)Q (2.39)
and N
Py = 5_: z} Poi (2.40)
modes n=1
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and

N
Qei= Y. Qunzl (2.41)

modes n=1

Evaluation of individual components H; ;(w) over ranges of w involves far fewer
calculations than would first appear since only individual rows of P and individual
columns of @ need to be evaluated and stored while the diagonal matrix d(w) is eval-
uated over the frequency range of interest.

2.2 Numerical Implementation

There are two parts to the numerical implementation of the formulation developed
above:

e the evaluation of the damping and stiffiness matrices occurring in Equation 2.13.

e the matrix operations associated with evaluation of complex mndes and frequen-
cies and the calculation of the frequency response matrix.

Fvaluation of Damping and Stiffness Matrices

Evaluation of € and K is done through the following steps:

1. Material properties for all constituent materials are tabulated — as functions of
frequency - in two distinct sets of tables: one for storage response (real part) and
one for loss response (imaginary part). (With the finite element code used in this
project, MSC NASTRAN [7], it is convenient to use the table formats which that
code associates with temperature-dependent material properties.) For the second
set of tables, the loss moduli are divided by w so that it is actually viscosity type
properties that are tabulated.

It is important that the tabulated material properties are tailored so that Lame’
constants calculated from them are the real and imaginary parts of the Lame’
constants of the material.

2. NASTRAN is used to formulate and solve the elastic eigenproblem of Equation
2.3. In this step, the stiffness matrix is constructed from the real part of the
material response in the limit of zero frequency. This step generates quantities
w™ and z" for the range of frequencies of interest.

NASTRAN is also used to evaluate A" and g" (Equations 2.16 and 2.17). For
each eigenpair (w",z"), two statics problems are directed to NASTRAN
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(a) for which the displacements are specified as " and the material properties
are selected from the first set of tables and evaluated at frequency w". The
resulting force vector is g".

(b) for which the displacements are specified as 2™ and the material properties
are selected from the second set of tables and evaluated at frequency w™.
The resulting force vector is h™.

The above calculations are done with procedures which are documented in the
MSC literature for the solution of problems involving temperature dependent
material properties.

3. C and I are evaluated in the manner indicated in Equations 2.14 and 2.15, by
taking inner products of vectors z* with vectors ¢’ and A, respectively. The
appropriate Fortran coding is reasonably straightforward.

Compler Modes and Frequencies, Damping Ratio, and Frequency Response

1. Matrix A of Equations 2.21 is constructed in the manner indicated, and its com-
plex eigensolutions are extracted using routines found in the SLATEC (8] library
of Fortran code. Some sorting and normalization of the complex eigenvectors Uy
is useful before printing. (In the case that the n’th elastic eigenrnode is preserved,
the associated complex =igenvector is zero in all but the n’th and N+n’th com-
ponents.) Damping ratios for each complex mode are calculated from Equation
2.29 and printed along with the corresponding complex eigenfrequency-eigenmode
pair.

2. Fortran code has also been written along the lines suggested by Equations 2.39
through 2.41 for the evaluation of complex frequency response functions for given
nodal-force/nodal-displacement pairs.

The above codes generate three quantities that can be compared to experiment: com-
plex mode shape, complex frequency (including damping ratio), and frequency response
functions.

Also, though it cannot be demonstrated in this media, Fortran code has been
written to evaluate Equation 2.25 to generate Patran (9] “.DIS” files which are then
used to create movies of the complex modes.
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3. The Experiment

AFWL/ARBC personnel performed experimental modal surveys on two test arti-
cles in support of this verification effort. The test articles were residual hardware from
a previous study on damping techniques [10]. The first test article was a 68” x 2" x 1/8”
aluminum C-channel extrusion. The second test article was an identical C-channel ex-
trusion treated with constrained layer damping. This treatment which was applied to
the backside of the beam, consisted of a layer of viscoelastic material(VEM), 3M ISD-
112, sandwiched between the beam surface and an aluminum constraining layer (see
Figure 3.1). Elastic properties for the aluminum and for the polymer are provided in
Table 3.1 and the viscoelastic properties of the polymer are provided in Tables 3.2 and
3.3. The test articles were suspended using elastic bands at the two ends to simulate
free-free boundary conditions in the modal testing.

This test utilized an Endevco model 23 triaxial accelerometer to measure motion
of the test article and an instrumented impact hammer to apply and measure the
input disturbance. The Endevco model 23 triaxial accelerometer is a very lightweight
piezoelectric motion sensor, and was chosen to avoid mass-loading issues, particularly
in the testing of the undamped beam. The outputs of this device were attached to
three B & K model 2635 charge amplifiers, which convert the accelerometer output to
a voltage and perform signal amplification. The input disturbance was provided by a
PCB model 086B03 impact hammer. This hammer has a force gage built into the tip
which measures the input disturbance. The output of this gage was attached to a PCB
model 480D06 power unit which amplified the sensor signal.

This amplified input signal and the three charge amplifier output signals were
input to the first four channels of the data acquisition system. The Modal Analysis
Data Reduction And Testing System (MADRATS) was the primary testing computer
for this program. This system is based on a Hewlett Packard A-900 computer, a multi-
user, real-time interrupt system. This system includes a 132 Mbyte hard disk, 3 Mbyte
memory and a complete data acquisition and analysis workstation. The system also
includes other support peripherals such as printers, plotters, and tape drives.

The system front end is a 64 channel DIFA SCADIS data acquisition system.
The DIFA SCADIS is fully programmable, either manually from the attached key-
pad or through the data acquisition software on the computer via an HP-IB interface.
This front end utilizes programmable gain pre-filter and post-filter amplifiers and pro-
grammable bandpass filters. The SCADIS samples all channels in parallel using sample
and hold buffers. This data is digitized by the SCADIS and then multiplexed into the
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Material | Shear Modulus Gy Poisson’c Ratio Density
(psi) (b sec?/in?)

Aluminum 3.76E6 0.33 2.54E-4

3M ISD-112 60.0 0.49 1.90E-4

Table 3.1. Elastic Properties of Aluminum and 3M ISD-112

A-900 computer memory via a parallel interface. This system has a frequency range
of 0.1 to 10,000 Hz and a dynamic range of 63 dB. The maximum throughput rate to
memory of the SCADIS is 350 kHz.

Data acquisition is accomplished through the Leuven Measurement Systems Fourier
Monitor (FMON) software package. Several modal testing techniques can be performed
using FMON, including forced response, power spectrum, and impact testing. Test-
ing can be set up and performed using menu-driven programs, user-defined command
stacks or manually. The test program covered in this report utilized the menu-driven
programs which allow test setups to be stored into and loaded from memory. Test
setups from memory were used, requiring changes only to transducer location for the
various test runs.

Data reduction is also performed on the MADRATS computer using the Leuven
Measurements Systems Super Modal Analysis Package (SMAP). SMAP computes the
modal parameters of a structure from the frequency response functions produced in
data acquisition. This software package has several available parameter estimation
techniques to tailor analysis to a specific test. The primary algorithm used in reducing
the data of this test program was the Least Squares Complex Exponential Time Domain
Method. In addition, a variety of curve fitters are available, including a real and
imaginary fitter, circle fitters, and a Least Squares multiple degrees of freedom fitter.
The least squares MDOF method was the most frequently used because of the modal
density involved in these tests. The specific applications of these methods will be
discussed in more detail in the Results section of this report.

The first tests were performed on the bare beam. Prior to testing, a test setup
file was generated and stored on the computer. The testing consisted of a 200 Hz
bandwidth, roving accelerometer impact test. The accelerometer was first attached
to the beam, and the point number and direction information was entered into the
computer. The structure was tapped by the impact hammer at a point at one end of
the beam, 0.5 inches from the centerline, in order to perform the autoranging of the
data acquisition channel amplifiers. A series of eight impacts was performed, and the
data was averaged and processed to provide frequency response and coherence functions
for each of the three axes at the data point. The power spectra of each impact, and
the frequency response functions for the response channels were each viewed prior to
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acceptance, and the resulting transfer functions were stored on the disk. This procedure
was repeated for each of the 36 data points on the bare beam, and for the 36 data points
on the damped beam whose data was stored under a different test identification.

The frequency response functions for the undamped beam exhibited high amounts
of spectral leakage, leading to poor coherence functions. Exponential windowing was
used on the response data for the undamped beam to reduce the leakage to acceptable
levels. This added damping by the window can be backed out of the modal parameters
calculated from data reduction. Windowing was not required or used in testing the
damped beam because the higher damping exhibited by this structure greatly reduced
leakage effects.
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Storage Modulus G'(f) = Gg * (1.0 + g(f))

frequency f (hz)  ¢(f)  frequency f (hz)  g(f)  frequency f (hz)  g(f)
.00E+00 .00E+00 .70E+01 .18E+00 31E+4+02 .68E+00
JA13E403  .19E+401 40E+03 .46E401 J4E+04 .11E+02
46E+04 .24E+02 14E+05 .58E402 S55E+05 .12E+403
20E+06 .24E+03 13E+07 .46E403 40E+07 .62E+403
22E+08 .81E+03 8TE+08 .98E403 49E+09 .12E+04
JA8E+10 .13E+404 54E+10 .15E+04 22E+11 .16E+404
39E+11  .17E+04

Table 3.2. Storage Modulus of 3M ISD-112
Loss Modulus G"(f) = 27 f * Go * h(f)

frequency f (hz)  h(f) frequency f (hz) A(f) frequency f (hz)  h(f)
.00E+00 .23E-01 23E+01 .16E-01 .67E+4+01 .11E-01
21E402 .81E-02 42E+02 .65E-02 J1E403 .46E-02
24E403 .35E-02 49E+403  .29E-02 .65E+03 .25E-02
J13E+04 .19E-02 31E+04 .14E-02 96E+04 .84E-03
28E+05 .49E-03 .64E+05 .30E-03 .25E+06 .11E-03
14E+407  .22E-04 JTE407  .39E-05 46E+08 .66E-06
33E+09 .93E-07 24E+10 .12E-07 J1E+11  .25E-08
41E+11 .63E-09 54E4+11  46E-09

Table 3.3. Loss Modulus of 3M ISD-112
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4. Experimental Results and Comparison with Experiment

Figure 4.1 shows the driving point frequency response functions for the two beams.
The driving point is at one end of the beam, 0.5 inches from the center line. The
sharpness in the peaks of the bare beam transfer function graphically demonstrate the
extremely low damping present in this beam. The shorter, more rounded peaks in the
frequency response function of the damped beam demonstrate graphically the effect of
the treatment both on the damping present in the beam and the magnitude of response
at the natural frequencies. These frequency response functions also demonstrate a
slight frequency shift due to the increased stiffness provided by the damping treatment.
Frequency response functions similar to the driving point response function were stored
on the disk for each data point on the two beams.

Data reduction was performed using the Super Modal Analysis Package (SMAP)
software residing on MADRATS. The data was reduced using a Least Squares Ex-
ponential method for parameter estimation and curve fitting. This data reduction
resulted in modal frequency and damping information, as well as displacement files for
each mode of the structure in the 0-200 Hz bandwidth. This procedure was repeated
for the data sets for each beam. Table 4.1 shows a comparison of the results from the
two test articles in terms of frequency and damping.

Figure 4.2 is a series of plots for the mode shapes of the damped beam. These
mode shapes were produced by combining the displacement files produced by the data
reduction with a geometry file. This data can also be animated to aid in the interpre-
tation of the mode shapes.

The damping results for the final mode were not included because they were
somewhat suspect. To prevent aliasing in the data, the data acquisition system filters
were set to roll off at 70% of the upper frequency of a test. This last mode was so close
to the upper frequency bound that most of its signal was likely below the noise floor,
making it impossible for the parameter estimator to determine the damping values.
This mode was retained simply as another frequency value for comparison with the
analytic results.

The results of the analytic modeling and experimental testing were compared in
three wavs. First. a qualitative comparison was drawn between the frequency response
functions developed analytically and through testing. Figure 4.3 shows an overlay of the
experimental and analytic driving-point frequency response functions for the damped
beam. The dashed curve is the experimental data. The impact hammer used to excite
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Figure 4.1. Driving point frequency response of damped and undamped beams
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Figure 4.2. Real and Imaginary components of complex modes of damped beam.
Imaginary components are essentially zero.
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Undamped Beam Damped Beam
Mode Frequency = Damping Frequency  Damping
(Hz) (% Critical) (Hz) (% Critical)
1st Bending 13.38 0.295 15.68 5.837
2nd Bending 37.00 0.190 39.78 8.069
3rd Bending 72.12 0.156 73.76 8.489
1st Bending
(in-plane) 99.77 0.278 101.95 0.204
1st Torsional 102.90 0.289 91.81 2.386
4th Bending 119.13 0.211 116.46 8.367
5th Bending 177.84 0.146 169.63 7.054
2nd Torsional 190.58 — 190.01 —

Table 4.1. Experimental Test Results

the experimental modes was uncalibrated, so the experimental curve is known only up
to a multiplicative constant, corresponding to a vertical translation in the semi-log plot
shown here.

Comparison of the frequency and damping information from the test data and
modeling results provides a more quantitative method of comparison. Tables 4.2 and
4.3 contain these results for the two test articles. Note that both prediction and
experiment for the damped beam show a reordering of the first torsicnal and the first
in-plane-bending modes.

The comparison of the first test article results was used to gain confidence in the
NASTRAN model of the beam prior to modeling the damping treatment. As one
can see from the results presented in this table, nearly identical results were achieved
through testing and modeling of the undamped beam, particularly in the bending
modes. The larger differences in the natural frequency values for the two torsional
modes have been attributed to fundamental torsional characteristics of the plate ele-
ments used in the modeling.

The second test article was compared using damping as well as natural frequency
results. As indicated in the table, the frequency values are again nearly identical,
with the largest variance being less than seven percent, and all of the bending modes
being within five percent. The damping results were not predicted as well as the fre-
quencies, but this is expected considering the relative difficulties in both measurement
and prediction. The agreement between measured and predicted damping values is
encouraging since they agree to within the uncertainty of viscoelastic properties of the
polymer.

The difference for the in-plane bending mode damping was the highest, but it is
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Figure 4.3. Overlay of the experimental and analytic frequency response functions
for the damped beam. The dashed curve is the experimental data.
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AFWL Measured Sandia Predicted % Diff.
Mode Frequency Frequency
(He) (Ha)
1st Bending 13.38 13.75 2.7
2nd Bending 37.00 37.82 2.2
3rd Bending 72.12 74.01 2.6
1st Bending
(in-plane) 99.77 100.70 0.9
1st Torsional 102.90 85.40 18.6
4th Bending 119.13 122.10 2.5
5th Bending 177.84 182.10 2.4
2nd Torsional 190.58 173.10 9.6

Table 4.2. Comparison of Undamped Beam Results

AFWL Measnred Sandia Predicted % Diff.
Mode Freq. Damp. Freq. Damp. Freq. Damp.
(Hz) (% Cr) (Hz) (% Cr.)
1st Bending 15.7 58 15.1 6.1 3.9 5.0
2nd Bending 39.8 81 38.0 11.3 4.6 33.0
3rd Bending 73.8 8.5 170.6 12.0 4.4 34.1
1st Torsional | 91.8 24 87.2 1.7 5.1 34.1
1st Bending
(in-plane) | 102.0 0.2 102.6 0.07 0.6 96.3
4th Bending | 116.5 8.4 1134 10.2 2.7 19.4
5th Bending | 169.6 71 166.8 9.2 1.7 25.8
2nd Torsional | 190.0 — 177.5 2.6 6.8 —

Table 4.3. Comparison of Damped Beam Results

important to note that the experimentally measured result is highly suspect due to the
difficulty in imposing a purely vertical impulse at the driving point.

A method known as Modal Assurance Criterion (MAC) was also used in comparing
the analytic and experimental results. MAC is a least squares approach to determining
the consistency of estimated modal vectors of a system. MAC is calculated using the
equation:

MACmq = |(=)7(42)"|" /1(=2) T (=7)" (w2) T (v7)"] (4.1)

where z7* is an estimate (in this case numerical) for the m’th complex eigenmode and
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y" is an estimate (in this case experimental) for the n’th complex eigenmode. A little
algebra will verify that

1 , \
1-MAC,,, = ———=——min|z]’ — ay] 4.2
oGy | (42)

MAC is a scalar constant between 0 and 1 relating the two modal vectors. (It may
be thought of as the square of the cosine between those vectors.) A MAC value of one
or nearly one will give confidence that the modal vectors represent the same modes. If
the MAC value is near zero, there is no linear relationship between the two estimates,
indicating two different modal vectors.

The eight experimental and eight analytic modal vectors were compared using the
MAC procedure. The results of this comparison are shown in Figure 4.4. The blocked-
in area of the chart indicates the results when the similar analytic and experimental
vectors were compared. These results, particularly the out-of-plane bending modes,
give confidence that these modal vectors describe the same mode, and are nearly iden-
tical.
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EXPER IMENTAL ANALYTIC

1 2 3 4 s ] 7 8 1 2 3 4 L e 7 8

1.0 0.00 0.05 0.00 0.00 0.02 0.03 O. .00 0.08 0.00 0.00 0.00 0.09 0.00 1
E
1.0 0.01 0.00 0.00 0.09 0.01 0.01 0.00\0.68°Q.00 0.00 0.00 0.08 0.00 0.00 2 X
P
1.0 0.01 0.00 0.03 0.04 0.01 0.08 0.00~0 Q.00 0.00 0.02 0.08 0.00 3 E
R
1.0 0.01 0.00 0.01 0.00 0.00 0.00 0.00nD.78°Q.01 0.00 0.00 0.00 4 1I
M
1.0 0.00 0.00 0.14 0.00 0.00 0.00 O. 0.00 0.00 5 E
N
1.0 0.03 0.01 0.02 0.10 0.01 0.00 0.00~Q .04 0.00 6 T
A
1.0 0.01 0.04 0.01 0.08 0.00 0.00 0.00 7L
1.0 0.00 0.01 0.00 0.00 0.22 0.00 8
1.0 0.00 0.11 0.00 0.00 0.00 1
1.0 0.00 0.00 0.00 0.12 0.00 0.00 2
A
1.0 0.00 0.00 0.00 0.12 0.00 3 N
A
Mode Number . Mode Description 1.0 0.00 0.00 0.00 0.00 4 t
1 | 1st Bending 1.0 0.00 0.00 0.00 5 T
L 1
2 9
-  2nd Bending 1.0 0.00 0.00 6 C
3 1 3rd Bending ,
4 ~ 1st Torsional 1.0 0.00
5 1st Bending (in-plane) 1.0 8
6 - 4th Bending
7 ' 5th Bending
8 ' 2nd Torsional

Figure 4.4. MAC parameters of experimental and analytic modal vectors for first
eight complex modes.

JCA-26




5. Conclusions

Though the structure employed in this study was very simple, this study does
demonstrate the predictive capability of the computational method of reference [4].
Though the structure had sufficient symmetries to preclude the existence of true com-
plex modes, it did have sufficient character in its frequency response functions and
damping parameters to permit some comparison of the desired sort.

Particularly encouraging was that the predicted and measured damping values for
the beam agree to within the uncertainty of the viscoelastic properties of the damping
polymer.

The study served its purpose in providing sufficient confidence in both the numer-
ical and experimental methods to facilitate future studies involving more sophisticated
structures.

Some further comments about the computational process are appropriate:

e Though the numerical implementation of the derivations of the second chapter
of this report did require writing much original computer code, the onerous work

of involving mesh generation, finite element eigen- and static analysis was done
with the aid of the commercial codes PATRAN and MSC-NASTRAN.

e With the exception of the finite element analysis, the calculations can be per-
formed with reasonably small matrices. This is achieved by using the elastic
modes as generalized coordinates and restricting attention to the frequency range
of interest.

o The complex modes can be assembled in a systematic manner from the mass,
damping, and stiffness matrices using the formalism of Newland [6]. The complex
modes can then be used, in the manner shown here, to calculate transient response
(Equation 2.31) and frequency response (Equation 2.38).
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A NEW APPROACH TO MODEL DETERMINATION
OF LARGE FLEXIBLE SPACE SYSTEMS

F.Y. Hadaegh, D.S. Bayard, Y. Yam and E. Mettler
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California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

ABSTRACT

The product moment matrix (PMM) is used for the estimation of linear model order
for flexible space structures from the input-output data. A new automated frequency
domain identification methodology is presented and experimentally verified for on-orbit
determination of transfer functions. The identification process is initiated by applying
stochastic inputs to the system giving rise to a nonparametric spectral estimate of the
structural parameters. The PMM algorithm obtains an initial estimate of the model order
and together with the initial parameter estimates, they provide an initializing transfer
function. The system transfer function is then obtained by curve fitting the spectral
estimates to a rational transfer function. This approach makes efficient use of the actuators
and sensors already available on the system for control applications and also demonstrates
that on-orbit identification capability is a realistic objective for the future space systems.
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1. Introduction

The mathematical modeling and identification of large flexible space systems have
been challenging tasks for several decades. The models for such systems should predict
the behavior of the actual system under restricted experimental conditions. Furthermore,
when correlated and tested against the actual data, they should explain the observed
behavior of the system through post-mission data analysis. In practice, the identification
problem is often separated into two parts: a) determination of the order for a linear model
and b) estimation of the parameter values of the resulting model. Clearly, in a linear
system the model structure is determined by the choice of the order. Hence, an incorrect
structural assumption may manifest itself in biased parameter estimates or may even lead
to erroneous conclusions on the results of the identification process (e.g., a large model order
leads to over parameterizations and identifiability problems; where as a small order may
result in a large bias in parameter estimates). This is of particular interest in the case of
on-orbit identification where model parameters have physical significance and the accuracy
of the parameter estimate is the primary objective of the system identification experiment.
On- orbit system identification enables on-line design of robust, high performance control
systems. This capability has the potential to improve the performance robustness and
control accuracy under operational constraints and environmental uncertainties far beyond
that attainable by using nominal system descriptions obtained from ground testing and
analysis alone.

This paper presents a new frequency domain system identification architecture de-
signed to operate with a high degree of autonomy and to restrict the “human in the loop”
requirements. This includes an automated estimation of model order in the preseice of
measurement noise; the main subject for discussion in this paper. Major theoretical and
experimental developments associated with this approach are discussed in [10]. Different
techniques for model order determination have been studied [1-9]. They include fit-error
statistics [1], Akaike’s criterion {2], Kalman filtering (3], likelihood ratio west [4], methods
based on pole-zero cancellation [7], statistical F-test [8], and Parzen’s criteria [9]. These
methods are often estimation based oriented and utilize statistical methods for extracting
information about a system model from the observed data. They often require normality
assumption on the measurement noise and furthermore, they involve processing of large
volumes of data. Here, the product moment matrix [5] approach is chosen for a variety
of reasons and in each case it proves advantageous over alternate methods. For example,
the PMM requires no a priori assumption on the model parameterization and form and it
requires no knowledge of density or distribution functions of unknown parameters or data.
This technique is applicable to both deterministic and stochastic systems. Finally, the
PMM algorithm is robust with respect to uncertainties and it produces meaningful results
even in the presence of significant additive measurement noise. A brief discussion of the
PMM algorithm follows.
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2. The Product Moment Matrix

The idea behind the PMM approach is to analyze the correlation function of the input-
output variables for a linear model of changing structure. This will subsequently lead to a
pronouniced dynamic behavior around the ”true” order of the system. This behavior may
be observed through the determinants or eigenvalues of the product moment matrix with
elements constructed as follows.

Let {ur} and {yi} be a set of observations of input and output respectively (data)
which are contaminated by measurement noise. Let us also assume that the input signal
is sufficiently rich such that it persistently excites all system modes of interest. A linear
system of order n has a system function which is given by

Y(z) _ E?-_-l B2i-12""

= = - 1
H(z) U(Z) 1 _ Z:’i=l 02;‘2_‘ ( )
letting
67(n) = (61, ...,62n] (2)
and
AT(k, n) = [uk—la Yk—1,Uk-2,Yk—2y.-. 3 Uk—n, yk—n] (3)

Then in time-domain, the measured system response is given by
ye = 87(n) A (K, 7) (4)

For N measurements, the “generalized Hankel matrix” H(N) is as follows.

Yo Yi= --- YN
Y1 Y2 ... YN A ..
H(N) = : : =Yit+j-2 4,3 >0 (5)
YN-1 YN YaN-2

Similarly, the generalized Hankei matrix for the N x N block matrices formed out of the
shifted sequence yr4¢ will be

H(N) = [yi+j+e-2]
If a finite-dimensional realization for the system exists, denoting n* as the rank of its
minimal realization, then [21]

n* = Rank H(N) (6)
Since n* is the dimension of a minimal realization of the system which is unknown, it
will subsequently be referred to as the “true” order of the system. Note also that the
ordering of components in the vectors A(k,n) and 6(n) are such that for a higher-order
model, additional components are simply added to the end of these vectors. The product
moment matrix of the system is defined by:

N
Qln, N = Q. & % 3 A(k,n) AT (k,n)
k=1
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;2;1 uf_, Zf:}vuk—lyk—l e Egzl Uk—1Yk-n
_1_ Ek:l Yk—1Uk—-1 21::1 yi-l T Ek=1 Yk—1Yk—n
N . .

(7)
N N N’
Zk:l Ye—nlUk-—1 Zk=1 Ye-nYk-1 " Ek:l yz-—n

where n is an assumed order for the system and NN is the number of data points. If the
data is noise free, then @, will become singular for all n > n* [6], and

Rank(Qa] = { C L. }for n { < } n* (8)

Hence, @, has the following properties:

det]Q,] = {’: g}forn{f}n* 9)

For an arbitrary value of N and an assumed value of n, the ratio

_ _det[@4]
Dn = det[Qn+1] (19)

is calculated for succeeding model orders n+1,...,n*, ..., npax. If the value of D, exhibits
a distinct increase compared to D,,_;, then n corresponds approximately to n*. In the
presence of noise however, the Det[@,] is usually non-zero for n > n*.

In practice, where the measurement noise is nonwhite, the enhanced PMM given by

Qn = Qn - Z (11)

n

is used. An estimate of ), the measurement noise contributions to the PMM, is obtained

n
by first collecting measurements from the system when the input to the system is identically
zero. Denoting the input measurement noise by n, and the output measurement noise by
ny, then ) is computed as
n

Z=Qn|y=nw“=nu
n

The @ product moment matrix henceforth referred to as enhanced product moment
matrix (EPMM) will reduce to the formulations (7) depending upon the nature of noise
in the data. The EPMM, although computationally less efficient, gives a better estimate
of the system order in the presence of measurement noise.

An alternative representation of PMM is given as follows:
Qn = Elanaj) (12)
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where
T _
a, = [Uo Yo U1 Y. --un—lyn—1]

and E is the statistical expectation operation. We will refer to Equation (12) as the
stochastic representation of PMM and the Equations (7) and (11) as the deterministic
representations of PMM.

When the underlying dynamical process is stationary, the correlations have the form:

Eluiy;] = Ruy(j ~ 1)
Eluiuj] = Ruu(j ~ 1) = Ruu(i — j) (13)
E[yiyj] = Ryy(j - i) = Ryy(i —-7)

Then by assuming that the process is ergodic, temporal averages are equivalent to ensemble
averages, and the product moment matrix given in (7) has the simple analytical form:

Jim Q(N.n) = Qu(n) (14)

QY . Qi
Qt(n)= (15)

Qgh,l) - Qg'z,n)

(i.5) _ | Ruu(j ~7) Ryu(j —1)
G Rl ~1) Rl - ) (16)

This explicitly gives the product moment matrix without requiring any additional pro-
cessing of the input and output data. Thus when correlations are available under these
circumstances, the product moment matrix can be constructed with considerable fewer
arithmetric operations than those required by the deterministic algorithms. The key prac-
tical issues are the validity of the assumptions regarding stationarity and ergodicity of
the signals and the means for calculating the correlation functions based on finite-time
data lengths. A brief description of modeling and identification algorithm architecture
and methodology follows.
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3. Functional Architecture, Modeling and Identification Description

The functional architecture is outlined schematically in Fig. 1. The flow of the various
processes is automated and controlled from a single human operator as described below.

a) The plant p(e’“T) is excited by one of a variety of possible input excitations
u(kT) of both stochastic (i.e., wideband or narrowband) or deterministic
(i.e., sine-dwell) types giving rise to plant output y(kT).

The wideband input is simply a random number generator which produces indepen-
dent uniformly distributed variates. The narrowband input is produced by digitally filter-
ing the wideband input according to desired spectral characteristics. The capability for
on-line digital filter design is provided as part of the system software. The sine-dwell inputs
are piecewise constant approximations to true sinusoids, consistent with the sample-and-
hold discretization.

Wideband signals are also constructed artificially using a technique which we call data
composition. This is done by designing a bank of bandpass filters to cover a wideband
portion of the frequency axis, and then running a separate experiment for each bandpass
process. The input and output sequences from all bandpass experiments are then composed
(i.e., added together respectively) to give data for what is effectively a single wideband
experiment. The realization of such a wideband excitation in a single experiment would
otherwise be impossible due to actuator power constraints.

b) The plant transfer function is identified nonparametrically by spectral esti-
mation (in the case of stochastic inputs) and by gain and phase estimation
in the case of sine-dwell inputs.

For experiments using stochastic input excitation, spectral estimation is invoked to
compute the correlations Ry, Ryy, Ruy and spectral estimates Py, Pyy, Py, from the input
and output data, as well as the plant transfer function estimate from the cross-spectral
estimate h = Pyy/Py,.

For experiments using sine-dwell input excitation, the gain, phase, real and imaginary
parts of p(e’“T) at sine-dwell frequencies are determined in real-time using a recursive
least squares estimator with exponential forgetting factor. This approach is particularly
well suited to provide accurate estimation using sampled-data sinusoidal responses and to
operate in the presence of low frequency resonances. The time constant for the forgetting
factor is typically chosen to be several cycles of the sine-dwell response. The sine-dwell esti-
mates of plant gain, phase and real and imaginary parts of p(e?“T) over several frequencies
can be stored for later use by the transfer function curve fitting routine.

c) Anticipating parametric curve fitting to follow, the model order is esti-
mated using a product moment matrix (PMM) test.
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To overcome much of the guessing and “human in the loop” efforts typically associated
with mode! order determination task, an initial estimate of the model order is obtained
by PMM test, and then followed by a search for the optimal order in the vicinity of this
estimate by a sequence of curve fits with varying orders. The quality of each fit is judged
by the output error profile.

The PMMD operates on raw data, and generates the PMM directly from the plant
input and output. The PMMS assumes statistical stationarity for the underlying process
and generates the PMM from the smoothed estimates of the auto and cross covariances
produced from the spectral estimation software.

d) The plant is identified parametrically by fitting transfer funct n coeffi-
cients tc the nonparametric data. Mndel order is determined by 1 sequen-
tial search starting at the PMM estimate.

A parametric transfer function estimate p is determined by curve fitting the coeffi-
cients of a rational transfer function to the nonparametric frequency domain data. The
data in this case is specified to be the spectral estimate h = P,,/P,, and/or sine-dwell
estimates. The model order is determined by successively increasing the number of modes
in the curve fit, starting at the PMM estimate, until an adequate output error profile is
observed. The curve fit involves the use of a least squares algorithm with a special iterative
reweighting technique which removes high frequency emphasis (typically associated with
equation error methods), and assures minimum variance estimation of the transfer func-
tion coefficients. Resonant frequencies and damping estimates are automatically found by
robustly factorizing the plant denominator polynomial with a special purpose routine.

e) The output error is determined to characterize the quality of the paramet-
ric transfer function estimate, and for later use in robust control analysis
and design.

The output error e = pu — pu is computed by subtracting the predicted output § = pu
from the measured data y = pu and then the additive uncertainty é,, = p — p is estimated
by the cross-spectral estimate A = P,/ .u. The nominal plant transfer function estimate
p and the estimate A of the additive uncertainty é,, can then be used directly for robust
control analysis and design. The motivation and usefulness of using the output error
characterization of additive uncertainty, and its role in robust control design is discussed
in [10].

4. Testbed Description

Experimental demonstration and verification of modeling and identification software
performance was conducted on the JPL/AFAL Flexible Structure Testbed. The design of
this 3-D antenna-like stiucture was adopted as it exhibits many characteristics of a typical
large space structure. These include many low frequency modes, densely packed modes,
low structural damping, and three-dimensional structural interaction among components.
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In this section, a brief description of the testbed facility is given. Detail description can be
found in [10]. The main component of the testbed facility is shown in Figure 2. It consists
of a central rigid hub to which are attached 12 ribs. The ribs are coupled together by two
rings of pretensioned wires.

Functionally, the wires are intended to simulate the coupling effects of a reflective
mesh installed over the rib frame in an actual antenna. The ribs are 2.25 m in length.
The hub is of radius 0.6 m, making the dish structure 5.7 m in diameter. The tensioning
wires are installed in two rings at approximate diameters of 3 m and 4.8 m. As intended
to achieve low modal freqencies, the ribs are very flexible. Stand along, they are unable
to support their own weight without excessive droop. To prevent structural collapse due
to gravity, each rib is supported at two locations along its free length by levitators. Each
levitator is constituted by a counterweight attached to the rib with a wire which passes
over a low-friction pulley. The support locations were calculated to minimize the rms shape
deviation along the rib from the root to tip. The calculations led to supporting the rib at
the 40% and 80% points which are 0.9 m and 1.8 m from the rib root, the same locations for
coupling wire attachments. A flexible boom is attached to the central axis of the hub and
has a mass at its lower end to simulate the feed horn of an antenna of the secondary mirror
assembly or an optical system. The original boom length was 3.6 m, but for the convenience
of conducting experiment at ground level, a second, 1 m long boom is being used for most
of the experiments. The feed mass is 4.5 kg. The hub is mounted to a backup structure
via a two-axis gimbal which allows rotational freedom about two perpendicular axes in the
horizontal plane. The gimbal bearings support roughly one quarter the weight of the ribs,
the entire weight of the hub, boom, and feed, and their respective sensing and actuation
devices. Each of the ribs can be excited dynamically by a single rib-root actuator with a
lever arm of about 0.3 m from the hub attachment point. Each rib-root actuator consists
of a speaker-coil type device which reacts against a mount rigidly attached to the hub. In
addition, two speaker-coil type actuators are mounted on the hub to provide controlled
torquing about the two gimbal axes. These hub torquers apply linear forces to the hub at
its outer circumference to yield the required torques about the axis of rotation. Together,
these 14 actuators are capable of controlling all flexible modes of the structure. Each of the
24 levitators is equipped with an incremental optical encoder which measures the relative
angular rotation of the levitator pulley. These angular measurements are then translated
into the vertical motion of the ribs at the levitator/rib attachment points, relative to the
backup structure. Additional linear variable differential transformers (LVDT) sensors are
provided to determine the rib displacement measurements at four evenly space rib root
actuator locations. Hub angular rotations about the two axes are measured by two rotary
variable differential transformers (RVDT) mounted directly at the gimbal bearings.
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Figure 2. JPL/ATFAL Flexible Structure Testbed.
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5. Case Study with Experimental Data

Results of a wideband excitation experiment are shown in Figures 3-A to H. The ex-
periment was performed on one of the two hub axes of the JPL/AFAL Flexible Structure
Testbed utilizing a collocated Lhub torquer and an RVDT angular sensor for instrumenta-
tion. The sampling frequency was 20 Hz. The experiment run time was 1638.4 sec. Figure
A shows the white noise input excitation w uniformly distributed between the range +£1.5
nt-m. The output response y is shown in figure B. Figure C shows the PMM test deter-
minant values as a function of the assumed model order. The test vielded a model order
estimate of 4 for the system. This estimate is based on a threshold used for singularity of
PMM. The particular threshold value used in this experiment was found to consistently
under estimate the final crurve fit model order which in this case is 6. Figure D presents
the transfer function spectral estimate h =,, /P,,. Transfer function curve fitting on
h was performed giving rise to the identified parametric model of Figure E. The identi-
fied frequencies and damping coefficients are 0.114 Hz, 0.637 Hz. and 2.75 Hz. and 0.4,
0.0364, and 0.00604, respectively. The frequency values agree well with those of the finite
element model of the structure for two axis of rotation as shown in figure 4. Figure F
shows the computed output y of the identified parametric model subjected to the same
excitation mnput u. Figure G shows the output error ¢ = y — j. which has a maximum of
2.6 mrad as compared to 10 mrad for y. Finally, the additive uncertainty spectral estimate
A = P,./P,, is shown in figure H. It has a maximum gain value of 11.38 db. Compared
with figure D, the value of A i1s 10 db less for the more heavily damped lowest mode, and
29 db less for the two lightly damped higher modes. This indicates that identification of
their modal dynamics to within 30% and 10%. respectively, was obtained. Interestingly,
there are two modes, apparent in figure D, that were not fitted. Figure H shows that error
resulted from omitting those modes is even smaller than the fitting error of the identified
modes. This indicates that the curve fitting algorithin has properly determined their omis-
sion and produced a reduced-order plant model which minimizes the additive uncertainty.
The transfer estimate h in figure E, and the additive uncertainty A in figure H are now
directly usable for robust control desigu.

6. Conclusions

An automated model order determination and frequency domain identification meth-
odology was presented for the identification and control of large flexible space structures.
The product moment matrix approach was used for the estimation of a lincar model order
to avoid statistical methods which are estimation based, often require processing of large
volumes of data and require major assnmptions on the nature of measurement noise. The
identification methodology was designed to operate with a high degree of autonomy in an
on-orbit environmnent, and was experimentally verified on a facility designed for emula-
tion of on-orbit testing and control scenarios. The experimental results indicated a close
agreement with those of the finite clement model of the structure. Furthermore, it demon-
strated that the identification algorithm developed produces reduced-order models which
minimize a uniform bound on the additive uncertainty. Although the present investiga-
tion considered identification of single-input single-output transfer functions, multi-input
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Identification Methodology.
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multi- output system identification would also be accommodated with the present scheme
by processing each input-output pair separately.
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The complex eigenvectors and eigenvalues of multi-degree-of-freedom system
with moderately nonproportional viscous damping are approximated by a
second-order perturbation method, in terms of the natural frequencies and
mode shapes of the counterpart undamped system and the actual
nonproportional damping matrix. Only the nonproportionality, not the
overall level of damping itself, is assumed to be either moderate or weak.
This new method can be particularly advantageous when designing, or when
identifying, the system damping. Either task requires reanalysis of an
eigenproblem of nonproportionally damped system each time that a different
damping matrix 1is considered. The proposed technique requires only the
smaller eigenproblem of counterpart undamped system to be analyzed
directly, and only once. All the necessary explicit formulas are listed.

1. PROPORTIONAL VS. NONPROPORTIONAL DAMPING

Representing the mass of the discretized system by matrix M, the stiffness
by K, and the damping by C, all of size nxn when there are n degrees of
freedom, the equation of non-gyroscopic motion subject to external forces
represented by vector f, may be set up as in Eq. 1 below.

Mx + Cx + Kx = ¢ (1)
It 1s assumed that the coordinates x have been so selected that the

matrices M and K are positive definite. Being considered are cases where
C is positive definite and the overall damping level may be high but still
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subcritical. The latter condition may be checked a priori, for instance,
by the criterion of Inman and Andry [1].

Counterpart Undamped System Were the system undamped and freely
vibrating (Eq. 2), the natural frequencies w, and mode_shapes yoj
(j=1,2,...,n) could be identified as in Eq. 3. Notd that 1 = y-1.
Mx + Kx = 0 (2)
xj = yoj exp(i wojt) (3)

Consideration of Eq. 3 1in Eq. 2 leads to the eigenvalue problem, or
eigenproblem, described by Eq. 4. In the latter context, wOj are
eigenvalues and yOJ are eigenvectors.

(_w0§ M+ K) Yog = o, j=1,2, ..., r, ...n (4)
sz M Yoj = djk (5)
ka K ¥o; = 0§ 65 (6)

It 1is assumed herein that the eigenvectors Yo; are normalized such that
the orthogonality properties are expressiblé as Eqs. 5-6. 6 is
Kronecker delta. Eq. 5 is &a very common and convenient chol%e of
normalization in computer implementation of classical modal analysis.

Counterpart Proportionally Damped System Were the system damped such
that € is of a form C_ that satisfies Eq. 7, which is Caughey and
0'Kelly's proportionality Periterion [2], the free damped vibration and
associated eigenproblem would be described by Eqs. 8-12:

-1y, -1

Cpnl K = KM Cp (7)
Mx + Cp x + Kx =0 (8)
xJ = yoj exp( Aojt) (9)
(Aoj M o+ AOjcp + K) ybj =0, §=1,2, ..., r, ...n, ...,2n (10)

AOj = - ”0j goj + i ”OJ J 1 - 503 . J=1,2, ..., r, ...n (11)
on = YEJ Cp Yoj / 2 Uojy (12)

v, in Eqs. 11-12 are the natural frequencies of the counterpart undamped
sygtem (Eq. 4). With M, K and C_ as specified after Eq. 1, each
eigenvalue X, is complex with ncga%tve real part; 1.e., both natural
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frequency w, and damping ratio &, are positive. An ordering is assumed
here such that the (n+r)-th eigenvalue is conjugate of the r-th.

The essence of damping proportionality is that the mode shapes y,, of
vhe counterpart undamped system (Eq. 4) are preserved as eigenvectors éven
of the damped system (Eq. 10). Vo4, and yoj are Identical, as a
consequence of the ordering of their regpgctive Aoj.

Complications due to Damping Nonproportionality From the above
introduction, it is apparent why the hypothesis of proportional damping is
convenient. Conceptually, it has the advantage that the real elgenvectors
have the familiar 1interpretation as mode shapes. Computationally,
iterative numerical algorithm to solve the quadratic eigenproblem of
Eq. 10 is wunnecessary; the eligenvalues and eigenvectors are directly
expressible in terms of ”03' yoj and C_, as pointed out in the preceding
two paragraphs. P

Much as the proportionality hypothesis is convenient, however, it has
to be abandoned in certain cases. For example, confidence in both
modelling and testing of structural elements or substructures in some
applications has grown to a level where the assembled or complete
structure, materially nonhomogenous as it is, cannot but be modelled with
nonproportional damping, unless C turns out to be actually proportional.
Also, when experimentally identifying the damping of existing structure,
it 1is more general and hence arguably better to hypothesize that C may be
nonproportional. Thirdly, when designing damping into the structure, the
optimally efficient distribution may correspond to a nonproportional C.

Foss (3] more than 30 years ago pointed out that a generalized modal

analysis can be applied to nonproportionally damped systems. The idea is
summarized below,

Were the nonproportionally damped system freely vibrating, the free
damped vibration and associated quadratic eigenproblem would be described
by Eqs. 13-15 below. Note the formal analogies between (9) and (14), and
between (10) and (15).

Mx + Cx + Kx = 0 (13)

= t

xj yJ exp(kJ ) (14)

(Aj M+ Ajc + K) y& =0, J=1,2, ..., r, ..., 0, ...,2n (15)
Like Eq. 10, Eq. 15 has 2n pairs of complex eigenvalue )\ and eigenvector

y. The same ordering is assumed here for both eigenproblems. Aj may also
be expressed in form analogous to Eq. 11:

JCC-3




A=-mj£j+1wj\/1-€jz (16)

J
By this analogy, w, may be called pseudo natural frequency, and £,, pseudo
damping ratio of” mode ]J. Unlike Eq. 10, however, the eigenveéctors of
Eq. 15 are complex and cannot be as readily interpreted as physical
shapes.

Computationally, the eigenproblem of Eq. 15 is much more demanding
than Eq. 10 [3]. Nevertheless, the complex eigenvectors provide a set ot
base vectors through which a coordinate transformation enables the
uncoupling of the second-order differential equations implied in Eq. 1,
into first-order differential equations. As pointed out by Foss, the
dynamic response x{(t). may be obtained by a generalized modal
superposition:

n
x(t) = 2Re | P.(t) Yy,
FE RS
n
= ¥ (2ReP)(Rey,) -(21InP)( Imy,) (17)
io1 ] ] j j
where Re and Im stand for "real part of" and "imaginary part of",

respectively. The scalar function P , Wwhich might be called modal
complex coordinate or modal participatioﬁ function, {is:

T t
PJ = ¥ exp (Ajt) [ fy f(t) exp (-%,1) dr +

AMx, + Cx, + Hio 171 fg ( 2x,M+ C) Y ] (18)

J J
where effects of initial displacement x, and velocity X, have been
included. Modal uncoupling is demonstrated by Eq. 18, whereby the complex
participation functions are obtained independently for each mode.

The generalized modal analysis method of Eq. 17, although
mathematically well established, did not find early extensive application
in structural engineering practice. Both computationally and
conceptually, it is more complicated than the classical modal analysis of
proportionally damped systems.

Many studies have since been published that assume the complex
eigenvectors and eigenvalues to be known and concentrate the efforts on
efficiently and accurately calculating the equivalent of Pj of Eq. 18.
That 1is not to forget, however, that the computational effort”required in

solving Eq. 15 1itself, can be much more than the requirement of the
eigenproblem of the counterpart undamped system (Eq. 4), and certainly
more than that of the counterpart proportionally damped system (Eq. 10).
While each of M, C and K is of size nxn, numerical algorithms to solve




Eq. 15 actually solve the eigenproblem of a 2nx2n matrix. Techniques of
reducing both storage and computing time should be much welcome,
particularly when designing or when identifying the system damping.
Either task requires reanalysis of a quadratic eigenproblem each time that
a different damping matrix is considered.

Some perturbation techniques have been proposed for lightly damped
systems [4-6] that may avoid increasing the eigenproblem size from nxn to
2nx2n. Chung and Lee [7], applying the technique of Meirovitch and Ryland
[6])], proposed to use a counterpart proportionally damped system as the
unperturbed system in obtaining the eigenproperiies. The present authors
recently proposed {8-10] a general second-order perturbation technique
assuming that the nonproportionality is moderate, and derived explicit
approximate formulas for the perturbations on frequencies, modal damping
ratios, and nonproportionally damped "modes”. The approach is equivalent
in order, but different in formulation from Chung and Lee's.

Details of the method are presented below and in the cited references.
Computational and conceptual advantages over "exact" solution of Eq. 15
are pointed out where most relevant.

2. MODERATE NONPROPORTIONALITY AS PERTURBATION

The eigenvalues w,. and mode shapes y,. of the counterpart undamped system
(Eqs. 4-6) are asgumed to be known. ﬂodal matrix Y, is defined such that
its j-th column is Transforming the damping matrix C using the
modal matrix Y, as in qu 19 below, and separating the diagonal and off-
diagonal elements it is possible to uniquely identify the counterpart
proportional damping matrix C (Eq. 20) and damping nonproportionality
matrix C (Eq 21):

T

Yo C Y, = diag [ 2 woy £, 1 + offdiag C (19)
. T

C, =Y, Mdiag [ 2 Wy £oj 1 MY, (20)

C = Y, Moffdiag C M Y, (21)

When the nonproportionality is moderate, as being considered here, the
norm of C_1is one order smaller than the corresponding norm of C The
quadratic e?genproblem of Eq. 15 may now be rewritten as:

(A}

where Cn is a perturbation due to damping nonproportionality.

M o+ Aj(cp+ Cn) + K) yJ = 0 (22)
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The Unperturbed System From Eq. 22, neglecting Cn, the unperturbed (or
zero-order perturbed) eigenproblem of Eq. 23 below is obtained, which is
identical to Eq. 10:

(A} M o+ )\jcp + K) yj = 0 (23)
with solutions known from Eqs. 4, 5, 11, 12, 24 and 25.

Ay = hog (24)

Yj = yoj {25)

in Eq. 12 need not be set up explicitly; it is replaced by C in actual
cglculation of (unperturbed) £, 0j: Note that the eigenvectors (Eq. 25) are
real, while the eigenvalues “(Eq. 24) are complex. Xj+n and Aj are
conjugates; Y0§+n and Yoy are identical.

Second-order Perturbations When the eigenproblem is perturbed by C_,
the eigenvalues and elgenvectors are assumed to be perturbed in tﬂe
following forms:

Aj T Ryt Ayt Ay (26)
g = y°j+ Vit Yoy (27)
Y1 kZ a5 (1 - 65,) Yo (28)
V2 =k§1bjk(1 - 85,) o (29)

where the first of two subscripts in Eqs. 26-27 indicates the order of
perturbation. In Egs. 28-29 for Yy, and y2 , it is not necessary to
include k=j, 1i.e. ¥y, 05" The vector sét .++» Ygq, constitutes a
complete vector space, in terms of whgch the expansi&h of y, can be
written; however yoj is already included in the expansion (Eq. 23J as the
first tern.

The perturbations and A,,, and perturbation coefficients a, and

are obtainable by: suﬁltitutloﬂ of Eqs. 26-27 into Eq. 22; groupf#g of
té?m of the same order of magnitude to yield three separate matrix
equations, namely zero-order (Eq. 30), first order (Eq. 31) and second-
order (Eq. 32); and application of ortho-normalization properties of
Eqs. 5-6 and expansions Eq. 28-29.

(AF5M + X C + K) ¥,
OF M+ X g€+ ) 7yy = = (2 352 M+ A G+ X 4C) o (31)

0 (30)
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(N35M ¢ Ao g€+ K) ¥y = = (2 3 h M+ Aljcp * 24Cy) ylj

((2 A ) M+ ), C

1j n) Yoy
(32)

0jtay * j

Eq. 30 1is identical to Eq. 10. As for Eq. 31, after some tedious but
straightforward matrix algebra, it can be reduced to formulas for A, and

a, ; likewise Eq. 32 yields formulas for ., and b Denotingjthe
eiements of C as c, ik’ the complex perturbations méy be eipressed as:
Cix = yEk C ¥y (33)
Aj = 0 (34)
My =" hoy kz ap (1 - 65) Ejk /2 Qg+ uy5 &j) (35)
a5, = koj c.k / (AOK— AOJ) (A0k+ 2wy Eop * Aoj) (36)

bjk - oj lz ajl(l - éjl) Ckl / (Aok— )‘Oj) (A0k+ 2w kgok Aoj (37)

The denominators of Egqs. 36 and 37 indicate that eigenvector
perturbations are particularly large when both woj= Wo 1 and Euj= Eok'

The approximated (perturbed) complex eigenvalues and eigenvectors may
be rewritten explicitly in terms of their respective real and imaginary
parts. The forms in Eqs. 38-40 below are so chosen that the real-valued
perturbations may take on some physical interpretation. For example, o
may be identified as nonproportionality-induced perturbation of natural
frequency.

e e

wy = ug v 1+ o (38)
& = &y v1+ B, (39)
n n
yj = yoj + kg Cjk Yoy * i kE:l njk Yok (40)
Re ¥ = ¥y * Z Bk Yok (40a)
)
Im y, = Ny Y, (40b)
)k IR K
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and are nonproportionality-induced perturbations of natural
f}equency ana modal damping, respectively. As for the eigenvector, Eq. 40
states that an eigenvector being complex is equivalent to damping-induced
"coupling” of natural modes. As the perturbations Cjk and njk are

generally not the same for all pairs of j and k, the relative values of
these perturbations indicate which natural modes of the counterpart
undamped system are significantly coupled due to damping
nonproportionality. This can be a useful new way of understanding the
complex eigenvectors.

The formulas for “j' Bj' Cjk and rﬁk are summarized below. For
compactness of expressions, Egqs. 41-45 are introduced as definitions.
Ooj = uoj £ (41)
R S (42)
= - 2 - -
Ry™ [{(0p= 0502 ¢ (%2 - % 2))q - (2(qy - ¢;)%; )%, 1M, (43)

[{foyy- 0y4)2 + (¢0l§ S %)%y (20, - g%, Ly I/, (44)
Dy= { (Gop= Goy)2 + (%f - %2) } 2 + ( 200qp 05000y} 2 (45)

n -—

Yy = kzzl CRy~ Ly oy / ®og) oy / 20y (46)
n -~

Ky = _k§1 ( Rjk %oy / %4 Ijk) Cj /2% (47)

w = 3 L (1o v)2 - (Lol (26 +xp) (48)

B = (vz+2 - )/ (1+q) (49)
~ n ~ -~

S Rkt B R ) e (50)
-~ n -~ ~

"k Tt L Rt TR e Ga (51)

3. FURTHER DISCUSSIONS

With Eqs. 4-5, 11-12 (using C in place of C_ ), 26-29, and 33-37, the
complex eigenvectors and eigenvalues of Eq. 15 have been expressed in
terms of the real eigenvectors, or mode shapes, and real eigenvalues, or
natural frequencies, of Eq. 4. Eqs. 38-51 give the explicit approximate




formulas for the perturbations on natursl frequencies, damping ratios, and
mode shapes.

The latter equations may appear cumbersome; but they are in fact
explicit formulas ready for computer coding. These may be added easily to
standard subroutines that are originally intended for the eigenvalue
problem of Eq. 4 subject to eigenvector normalization of Eq. 5. Unlike in
numerical algorithms to solve Eq. 15, no iterations are required except in
the solution of Eq. 4 {tself. This can mean a big reduction in the
required numerical calculations, especially when several eigenproblems
have to be analyzed with the same M and K, but different C's.

For two-degree-of-freedom (2DOF)} and three-degree-of-freedom (3DOF)
systems, even the solution of the counterpart undamped eigenproblem
(Eq. 4) can be obtained in closc? form, allowing completely explicit
approximate formulas for the pseudo natural frequencies, pseudo modal
damping ratios, and complex modes. Such explicit approximate formulas for
close-coupled 2DOF system have been reported by the authors [10].

Numerical examples and parametric studies are found in References [8],
{9], and {10], with discussions of the accuracy of the present method. It
has been shown through examples that the absolute values of the
perturbations aj, Bj. Cjk and rﬁk indirectly serve as indicator of

potential error due to the approximation inherent in the method.

It has also been shown through simple examples [8] that while the
nonproportionality being considered by the method Is moderate at most, the
response error due to disregard of such moderate nonproportionality can be
very significant.
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LIST OF SYMBOLS

Matrices

C = damping matrix
offdiagonal matrix from transformation of C by Y,
nonproportional part of C
proportional part of C
stiffness matrix
mass or inertia matrix
modal matrix where column j is mode shape yoj
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k=
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Vectors

f(t) = external force

x, = initial displacement
= initial velocity

X
;?t) = displacement

x(t) = velocity

x(t) = acceleration

y, = complex j-th eigenvector

ygj = j-th mode, mode shape, or real eigenvector

ylj = complex first-order perturbation on j-th mode
723 = complex second-order perturbation on j-th mode

Common scalars
= unit lmaginary numbe.

i
t time

JCC-10




Scalars pertaining to mode j

P.(t

Cte
L LI NS I 1}

Scalars
Ik
Rjk
ajk
pIK
ok

jk

) = complex coordinate or participation function
perturbation on natural frequency
perturbation on damping ratio
perturbation paired with «, (Eq. 46)
perturbation paired with YJ (Eq. 47)
complex perturbed elgenvalﬁe

complex unperturbed eigenvalue

complex first-order perturbation on eigenvalue
complex second-order perturbation on eigenvalue
damping ratio when proportionally damped
pseudo damping ratio

absolute value of real part of Aoj (Eq. 41)
imaginary part of Aoj (Eq. 42)

natural frequency
pseudo natural frequency

w n u u

(13 T ]

relating modes j and k

(Eq. 45)
(Eq. 44)
(Eq. 43)

element of C (Eq. 33)
Kronecker delta

[ [N NN R I L [ A L 1
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complex coefficient of first-order perturbation on j-th mode
complex coefficient of second-order perturbation on j-th mode

perturbation coefficient on real part of j-th mode
perturbation coefficient on imaginary part of j-th mode
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ABSTRACT

The dynamic response and vibration transmission
characteristics of structures are determined by three
inherent properties; mass, stiffness and damping. Of these,
damping is least understood and most difficult to model,
measure, and modify. Currently, the Complex Modulus test
method is the most widely used to predict the relative
effectiveness of a particular material. The one disadvantage
of the method is that it cannot predict how the material will
actually perform for a given application. In an effort to
analyze the performance of constrained layer damping on a
particular component, time averaged holographic
interferometry was employed. Interferometry allowed imaging
of the displacement amplitude field distribution of the
component resonant modes. The test method also established a
correlation between the interferometric modeshape results and
animated modal analysis. The following paper discusses the
interaction of these methodologies.

TEST TECHNOLOGY AND OPERATIONS OVERVIEW

This project which began mid-year 1988 was conducted by
the Test Technology & Operations group at the GM = Ce*P°C
Engineering Center as part of an effort to address noise,
vibration and durability goals of design and development
powertrain programs. Noise and vibration personnel utilize an
extensive amount of sophisticated engineering tools to reach
these targets. These tools provide the data acquisition and
processing capability to understand system dynamic
characteristics as they relate to steady state response, free
vibration, onset and decay of transients, and mode
instability/self-excited vibration. Damping plays a
significant role in addressing component fatigue 1life,
airborne and structural borne noise, as well as overall
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increased system impedance to provide greater vibration
isolation. The most important responsibility of the group is
to develop appropriate state of the art techniques to improve
overall vehicle characteristics related to powertrain
perfcrmance design criteria.

THE INTERACTION OF VIBRATION AND DAMPING

A vibrating structure at any point in the wvibration
cycle contains kinetic and potential (strain) energy
associated with modal mass and stiffness values. Realistic
behavior involves energy dissipation as well. The non-
conservative nature of mechanical energy conversion by
definition is "damping".

Unlike mass and stiffness, damping does not manifest
itself as a single phenomena. The mechanisms may include
interface friction, fluid viscosity, turbulence, acoustic
radiation, eddy currents, magnetic hysteresis, and mechanical
hysteresis (material damping).

The primary effects of increased panel damping are
reduction of vibration amplitude at the system resonance,
more rapid decay at onset of free vibration, decreased
spatial conduction of vibration (increased system impedance),
and increased isolation during steady state response.

Because damping incorporates several mechanisms to
manage the transport of energy many methods of measurement
are available including loss factor, damping capacity,
reverberation time, decay rate, logarithmic decrement, and
spatial decay rate. All of these interrelated methods
guantify the damping estimate with the degree of correlation
and accuracy dependent on the testing method employed, test
specimen, experimental control tolerance (i.e. frequency,
temperature, and vacuum), and the engineering interpretation
of data.

If damping measurements are carried out on a component
interacting with a larger structure, the parameter measured
is the "effective damping" accounting for the total system
effect. The more complex the modeshape, as well as
effectively controlling several modes with a single damping
design, presents a difficult optimization challenge because
of the need for intelligent and compromising selection of
attachment and coverage areas.

The loss factor associated with damping (the most
commonly used damping parameter) of most metals and
structural materials is usually quite low and relatively
independent of amplitude, temperature, and frequency provided
stress levels are under the fatigue limit, temperatures well
below the melting point, and excitation frequencies are low.

In contrast to this linear and stationary behavior,
viscoelastic compounds have elastic moduli and loss factors
strongly related to frequency, temperature, and amplitude.
These materials are characterized by three regions
illustrated in Figure 1 found on the following page.
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glassy region , transition region , rubbery region

T

modulus or loss factor

temperature increase —»

Figure 1: Loss factor and elastic moduli characteristics of
damping materials.

The rubbery region offers 1little reaction force in
generating any hysteretic loss to applied loads and no

dissipation. In the glassy range the material behaves
according to linear elastic theory with complete energy
conservation. In the transition range maximum gains of
damping occur with non-recoverable energy 1loss. This

behavior is typical of most polymers and elastomer materials.
The elastic modulus and loss factor can vary significantly
depending on bond site inhibiting plasticizers and bond
initiating fillers. The resulting change in dynamic
properties of two nominally identical samples from different
suppliers or different batches from the same source can
result in dramatically different damping effectiveness.
Bending of a panel, which has a number of layers of
damping materials, generally causes each layer to bend,
extend, and deform in shear. With each type of deformation
in each layer there is some storage of strain energy
associated with it as well as energy dissipation. It is
important to realize that when designing the matched
performance of a damping material, the effectiveness of the
materjial is dependent on the product choice, modeshape
characteristics, bond integrity, and the forcing function
excitation frequency in the operating environment. The
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material should undergo the same flexural strains as the
panel surface when fixed directly to the structure. The
method of bonding will affect the composite damping
performance, since any deformation/displacement taking place
within the adhesive 1layer will reduce the strain and
dissipation energy in the damping sheet.

Modal analysis of discrete and continuous systems
depends on solution of the characteristic equation of the
eigenvalue problem. The necessary assumption for solution is
no damping. By incorporating the approximation of mass
and/or stiffness 1linear proportionality to damping or a
lightly damped system (matrix cross terms are 2zero by
Basile's theorem) the damped response solution can be
obtained. The concept and convenience of damping expressed
by vibration theory is explained by Figure 2.

F = A sin wt 18
o 0 - e
30 555
‘ 0.|(? §’O' ©
Q.15
| s+ & é
m 20 ? l 0 1 ¢ -
' X «lo 0.378 Freauercy roto §,
x ]
0.50
LiJ 0 :
k C 1.0
o 70 35 30 a0 5C
; Frequency ot M
EQUATIONS:
(1) F sinw t = mx + cx + kx
[+
iwt
(2) e = cos wt + i sin wt
(3) X = F/k
2 2 2
(1= (ww ) ) + tzy (w/w )
n n
(4) tan@ = ZK (w/w ) Legend: I = damping factor= c/c:'=
n

2 ﬂ’ = phase angle
1 = (w/w )

Figure 2: Single degree of freedom oscillator theoretical
model and governing equations.
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The classical single degree of freedom oscillator with
damping has an equation of motion under steady state harmonic
forces described by equation 1. The response solution must
take a form of equation 2. If terms involving the sine and
cosine coefficients are equated after substitution of
equation 2 into eqguation 1 the amplitude and phase
relationship can be described by equations 3 and 4. The
response is characterized by a ratio of the excitation force
ratio to a combined stiffness involving the physical spring
element and damping term. At relatively low excitation
frequencies (relative to natural frequency) the displacement
depends only on the force oscillatory amplitude and the
spring constant. At high excitation frequencies the response
is determined by the force amplitude discrete mass value and
the excitation frequency squared. The system response is
then bounded by the physical elements of the mass and spring.
At or near resonance the loss factor plays a significant
role. As the frequency of excitation approaches the natural
frequency with no damping present the denominator approaches
zero with theoretically infinite response. With damping or
the loss factor present, the system "Q" application is not
infinite with the degree of response inversely proportional
to magnitude of damping. It is important that the 1loss
factor is also varying with the excitation frequency. The
overall damping design sensitivity is highly dependent on the
ratio of the excitation frequency to the natural frequency.

An alternative way of expressing classical vibration
modeling is by the use of complex stiffness notation. Most
techniques for measuring complex stiffness use a material
sample as a spring. The most widely used test method is the
frequency response method or the Complex Modulus test method
(American Standard Test Method E756-83). In this method, a
variable frequency sinusoidal force is applied to the test
sample and the amplitude of wvibration is plotted as a
function of frequency as shown in Figure 3 on the following
page. The test method is versatile in that it enables damping
measurements to be made over a range of frequencies as well
as temperatures. The actual test method can differ among
suppliers because of their different substrate bar size which
produces different results for a particular damping material.
Figure 4 on page 7 shows a schematic diagram of the Complex
Modulus test apparatus. The test procedure is relatively
simple. First, the damping material is bonded to the Oberst
bar in a manner suitable for the material. The bar is then
mounted into the test jig. The clamping force around the root
of the bar simulates a fixed boundary condition. The
transducers are positioned approximately 1lmm away from the
sample bar. Either a sinusoidal (sweep) or random (bandwidth)
signal can be applied to the excitation transducer by means
of a power amplifier/signal generator.

The frequency response of the bar is measured by the
displacement, velocity, or acceleration transducer and
recorded as a function of frequency and amplitude for a given
temperature. The "effective damping" is obtained by applying
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Figure 3: Example of data generated from Complex Modulus
Test (Reduced Frequency Nomogram) .

the half power bandwidth (3 dB down) at each resonant mode
and taking the ratio of the frequency band defined by the
half power points to the center resonant frequency to define
the loss factor value, The test method assumes linearity,
however high levels of excitation can generate non-
linearities in the response leading to unreliable data. The
amplitude of the force signal applied to the specimen is kept
constant as a function of excitation frequency. The 1loss
factor of the base metal is assumed to be zero (0.001) since
it is at least a magnitude less than the composite bar. The
material loss factor is then calculated from the composite
measurement compensated by the Oberst bar damping value.
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Figure 4: Schematic of Complex Modulus test apparatus.

DAMPING OPTIMIZATION AND TEST PROCEDURE

Base structure - The general flow and approach to damping
optimization is shown in Figure 5 on the following page.
The base component chosen is predicated on prior testing
of the overall system with results that suggest high
sensitivity of the component to damping modifications and
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Base »| Baseline | .| Selection of
Structure analysis damping materials
Design e Evaluation of -] Component
validation design modifications modifications

!

Figure 5: Flowchart of damping design optimization.

potential improvement of the dynamic¢ response
characteristics. For example, the transmission oil pan
(Figure 6) indicated a high degree of noise contribution
during various operating speeds based on sound intensity
measurements and sound power rankings of the overall
powertrain system.
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Figure 6: Data from semi-anechoic noise source testing.
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oo 0 St - tpon completion of the powertrain
' R : sting at the GM - CePeC ysemi-anechoirn
oo, ceoperimental  modal analysis and holograpnic
‘ . 13 were applied at the GM ~ C+*P+*C Optical

Tess o Db ram oy (Figure 7).

Sgure Jr Holographic setup in the Optical Test laboratory.
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No finite element analysis methods were used on this
project application due to the hardware component
availability. The modal analysis performed on the baseline
pan identified resonant frequencies of the o0il pan and
corresponding modeshapes associated with excitation speeds
identified by the signature analysis. The amount of baseline
"effective damping" was also calculated using the half power
bandwidth method on each resonant frequency.

The driving point frequency response function from the
modal analysis provided the necessary resonant frequency
information (Figure 8) to perform time averaged holographic
interferometry and image the modeshape amplitudes already
animated by modal analysis (Figures 9,10,11 on the following
pages) .

gﬁg rneo RESP W2 MAGC STORED MAIN Y, S3.@
LIN Xs 1200Hz
: °. 1. Sz LIN
s' TUP S10  #A S
- A " " A - " o '3 "
vwsde Mode 3
%0
Mode 2
Ya d2.0
43 Xo 91 4Mn
X
40
-
0
3
P i
i \ L\ .
10 Mode 1

] v - - N v
-] G 3 0, G Ot G Ok 1. Ok e 3N 1. 4k 1. Ok

THM 440 TRANSMISSION PAN DRIVING POINT FRF

Figure 8: Driving point frequency response function of the
baseline transmission oil pan.
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Figures 9, 10, 11: Animated modal analysis modeshape images
of baseline transmission o0il pan.

An in depth review of interferometric techniques will
not be discussed (reference 1), however a brief discussion is
essential to appreciate the value of this supplemental
method. The component to be imaged is placed on an isolation
table and fixtured with an excitation device (an
electromagnetic shaker placed normal to the pan surface) that
is decoupled (isolated) from the optical elements on the
table. The component is illuminated with a laser source (20mwW
632.8nm HE-NE) with the reflected object light recorded on a
high resolution photographic plate. Approximately 10% of the
illumination bear. is split to a second optical reference path
that simultaneocusly exposes the plate. The plate is then
developed by standard photographic technigques. Alternative
recording media may be used such as thermoplastic cameras
(used during this project). The choice is one of pure
convenience. The recording process requires a second
reconstruction or readout procedure to view and utilize the
holographic image. This is achieved by illuminating the
developed transparency plate with the original reference beam
while viewing the plate. The hologram imaged will be the
exact duplicate of the original component in three
dimensions. The basic steps in forming the hologram can be
used to record the time averaged (averaging of the maximum
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and minimum displacement over time) dynamic response of the
object with the difference being the harmonic excitation of
the component &t it's resonant frequency during expcsure. The
reconstructed hologram will then contain both the original
three dimensional image as well as displacement contours of
the component response corresponding to bright and dark
interference bands superimposed on the image. It is this
information that is interpreted in conjunction with modal
analysis. Time averaged interferometry images are shown for
three modes in Figures 12,13 and 14.

Figure 12 - Mode 1

Figure 13 - Mode 2
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Figure 14 - Mode 3

Figures 12, 13, 14: Holographic interferometry modeshape
images of baseline transmission oil pan.

Selection of Damping Materials - After the resonant mode
frequencies have identified along with environmental
temperatures, appropriate damping materials and assoclated
loss factors can be chosen from reduced frequency nomograms
established by the damping supplier. A major caution at this
stage of the development program is that the supplier test
specimen construction and geometry, along with the particular
specimen testing method, will generate nomogram data based on
resonant modes and test specimen dynamic characteristics
unrelated to tie product design. This deficiency can be
partially offset in the development cycle time by accurate
placement of the damping layer, optimized boundary
constraints, and secure bonding to the component.

Component Modifications - Tne animated modeshapes of the
baseline transmission o0il pan described the relative
amplitude and phase as well as an estimate of nodal
locations. The greatest shortcoming of this is the degree of
resolution that is defined by a discrete measurement
technique. The resolving capability 1is dctermined by the
number of frequency response functicn measurements on the
component surface. As the natural frequency/modeshape
complexity increases so does the requirement for more data.
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The interferometry method overcomes this limitation by the
inherent full field imaging characteristics. The overall
amplitude distribution, maximum displacement, and nodal
boundaries are completely described. The first step in
determining the component area to be treated is locating the
nodal boundary for the modeshape of interest. For a
combination of modeshapes the compromise involves their
superposition as well as effectively controlling the maximum
contribution mode. This can be done by careful analysis of
sound intensity data. Once the application boundary is

established the damping material and constraining layer can
be applied.

Evaluation of the Design Modification - The modified
component requires only a new driving point frequency
response function to calculate the increase in damping and
the changes in resonant frequencies associated with the
addition of mass, damping, and residual stiffness from the
constraining layer. Modal analysis is not required since the
remaining information is obtained by re-imaging the new
modeshapes with interferometry. Reductions in amplitude can
be verified by decreased fringe density. Any disbonding
between the damping material and structure will be evident by
abrupt discontinuities in contour shape between successive
fringes. A simple comparative fringe analysis can be
performed with the assumption of a unity sensitivity vector
(summation of the observation and illumination vector plane
directions) and all displacements normal to the component
surface. The fringe patterns are assigned and counted with
the Oth order fringe defined as the brightest fringe located
on the image. This is referred to as the first root of the
Oth order Bessel function and is the optical analog of
vibration nodes. Each successive dark to 1light fringe is
assigned an increasing root number. The displacement at any
point on the surface is then the root number x laser source
wavelength/2. For a component location of the 9th root fringe
at a wavelength of 632.8nm, the out of surface plane
displacement is 2,847.8EXP(-9) meters.

Design Validation - Design/release depends solely on
validation of the component. Assurance of meeting/exceeding
design and development targets can include noise and
vibration criteria, fatigue and durability goals, corrosion,
and other requirements of the system that maybe influenced by
the damping design. Regardless of the degree of design
optimization the final measure of success relies on the
integrated performance of the total system and the realistic
gains achieved. Very rarely does this approach theoretical
predictions and initial expectations. The final project
results comparing the baseline and modified oil pan are
summarized in Figures 15 thru 19, on the following pages,
showing the difference in driving point frequency response
functions, 4increase in damping, and decreased dynamic
response of the resonant modes.
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SUMMARY OF FIGURES

Figure 1 - Loss factor and elastic moduli characteristics of
damping materials.

Figure 2 - Single degree of freedom oscillator theoretical
model and governing equations.

Figure 3 - Example of data generated from Complex Modulus
Test (Reduced Frequency Nomogram) .

Figure 4 - Schematic of Complex Modulus test apparatus.

Figure 5 - Flowchart of damping design optimization.

Figure 6 - Data from semi-anechoic noise source testing.

Figure 7 - Holographic setup in the Optical Test lab.

Figure 8 - Driving point frequency response function of the

baseline transmission oil pan.
Figure 9,10,11 - Animated modal analysis modeshape images of
baseline transmission oil pan.
Figure 12,13,14 - Holographic interferometry modeshape images
of baseline transmission oil pan.
Figure 15 - Comparative frequency response functions between
baseline and modified transmission oil pan.
Figure 16 ~ Comparison of loss factor between baseline and
modified transmission o0il pan.
Figure 17,18,19 - Interferometric image comparison between
baseline and modified transmission oil pan.
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Abstrac

The strain amplitude dependent damping of binary aluminum-indium alloys containing
nominally 0.6 to 17.3 weight percent indium was studied. A DuPont Dynamic Mechanical
Analyzer model 983 was used to measure the damping capacity of these materials. Pure

aluminum (99.99%) exhibited strain dependent damping at strain values as low as 70 pe.
The addition of 0.6 weight percent indium reduced the strain independent damping by a
factor of 2, but the strain dependent damping was equivalent to that of the pure aluminum.
Binary aluminum-indium alloys containing 4, 8, 12, and 16 weight percent indium
exhibited a general increase in loss factor with increasing indium content; however, the
strain dependent damping was no greater than that of the pure aluminum sample. No
significant increase in damping was observed when the binary alloys were tested at
temperatures above the melting point of indium. Two damping peaks were observed near
the eutectic melting point when tested at 10 Hz and differential scanning calorimetry
verified both of these peaks as due to the melting of the indium inclusions. It was
concluded that the higher temperature damping peak was associated with smaller indium
inclusions and that the damping peaks were related to the solute segregation associated with
the binary eutectic reaction.
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Introduction

The typical structural aluminum (Al) has a high stiffness, but a low specific damping
capacity. The typical loss factor for a precipitation hardened Al- based alloy is between 10-3
and 104. Metal matrix composites have shown increased damping [1] but these materials
can not be considered high damping because they have loss factors less than 10-2 [2]. An
alternate approach to the development of a high damping composite would be by the
incorporation of a viscoelastic fiber in addition to the stiff fibers used for reinforcement.
Thus, the matrix would provide the structural stiffness and the various fibers would
provide the desired damping capacity and the added stiffness. Although the composite
material would show a lower stiffness than the stiff metal matrix composite, the increase in
damping capacity may be of greater importance.

Indium (In) is a viscoelastic metal with an ultimate tensile strength of 3.1 MPa (450 psi)
at room temperature.The loss factor of In has been reported to vary from 0.06 at room
temperature to 0.2 at 100°C [3]. The melting point of pure indium is 156 °C and when
combined with Al forms an immiscible alloy system, as shown in the phase diagram in Fig.
1. An alloy of 17.3 weight percent In will solidify by a monotectic reaction (L -> Al + L))
which produces a continuous Al-matrix with an In-rich (L2) entrapped liquid. At 156 "C,
the In-rich liquid will solidify by the eutectic reaction L) -> Al + In. This final eutectic
reaction will normally produce inclusions which are single-phase, i.e. pure indium. The
small weight fraction of Al produced during the eutectic reaction is "divorced" to the pre-
existing Al-matrix. The resulting microstructure will consist of an Al-matrix with a
dispersion of In inclusions.

It is the purpose of this paper to examine the effect of a viscoelastic inclusion, such as
In, on the damping capacity of Al It is expected that the composite microstructure will
demonstrate strain dependent damping as a result of micro-plasticity (dislocation motion)
within the inclusion. In addition, high temperature loss factor measurements will be used to
determine the damping associated with liquid inclusions. It is also expected that the first
order transformation (the eutectic reaction) at 156 °C will produce both an anomalous
modulus effect and a frequency dependent loss peak. The following formula from Nowick

and Berry[4] describes the relaxation time, T, as a function of the radius, r, of the second
phase particle for a two phase material during a first order transformation.

1=1r2/3DVf (1)

Where D is the diffusivity and Vf is the volume fraction of the second phase particle. It
should be noted that the relaxation time will be strongly dependent upon the size of the
second phase such that smaller particles would exhibit a shorter relaxation time.

Experimental Procedure
Binary Al-In alloys, with nominal compositions 0.6, 4, 6, 8, 12, and 16 weight percent
In, were arc-melted in an argon gas atmosphere. These alloys were prepared from In, and
Al, metals which each had a metallic purity better than 99.99%. The total weight of each
arc-melted button was below 10 g to assure a homogeneous melt. The Al-17.3% In alloy
was produced by induction melting in an argon gas atmosphere and was solidified at a slow
rate using a ceramic insulator to produce a coarse distribution of In particles. Each sample

was then cold-rolled 30%, annealed at a temperature of 532°C, and then cold-rolled and
annealed again to produce a nominal sample thickness of 1mm. Rectangular-beam coupons
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were cut from the rolled slab, using a diamond saw, to produce a sample shape with
nominal dimensions 40 mm x 10 mm x 1 mm.

A DuPont Dynamic Mechanical Analyzer (DMA) model 983 was used to measure the
damping response of the test coupons. At room temperature, and a fixed frequency of 0.1

Hz, the maximum strain amplitude was varied from 20 to 300 pe by changing the
oscillation amplitude and clamping distance between the pivot arms, see Fig.2. The driver
arm produces a sinusoidal displacement inducing both a shear and bending stress. The
damping capacity was measured as the loss factor which is equal to the tangent of the phase

angle, tan §, between the stress and the strain. Elevated temperature tests from 100 - 200°C

were conducted at a strain amplitude of 70 pe at both 1 Hz and 10 Hz. A heating ramp of 1
°C per minute and a helium gas atmosphere were used to minimize the temperature lag of
the sample with respect to the furnace-controlling thermal couple. The eutectic melting
temperature of the binary alloys was established using a Perkin-Elmer differential scanning
calorimeter model 7.

Metallographic samples were prepared by mechanical polishing and etching in a hot
aqueous solution of NaOH. Cross-sectional samples were cut to view the long transverse
microstructures of the binary alloys. Electron microscopy studies were performed at The
University of Michigan Electron Microbeam Analysis Laboratory. Thin foils for
transmission electron microscopy were prepared by twin jet electropolishing in a solution
of ?0% nitric acid (by volume) and methanol.

Results

The room temperature damping results for the pure-Al and binary Al-In alloys are
shown in Figs. 3 and 4. Each alloy exhibits a transition to a strain amplitude dependent

damping at approximately 70 pe. A comparison between the Al and the binary Al-0.6In
alloy (all compositions are in weight percent) is shown in Fig.3. The addition of 0.6 In
reduced the strain independent damping by a factor of 2, but the strain dependent damping
was equivalent to that of the pure Al. The strain independent damping of the pure Al was
also greater than the binary Al-In alloys, with the exception of the two highest In
concentrations, i.e. Al-12In and Al-16In. In general, the damping capacity of the Al-In
alloys increased with increasing In content, see Fig. 4. The microstructures exhibit
elongated stringers of indium aligned parallel with the rolling direction as shown in Fig. 5.

The results of a typical 1 Hz temperature scan are shown in Fig. 6 for an Al-6In alloy.
A first order transformation was observed between 160 and 170°C. The change in the
storage modulus with respect to temperature shows an anomalous behavior in this
temperature range. The eutectic melting temperature of 156 °C was verified by differential
scanning calorimetry (DSC). However, the DSC results also revealed a second melting
peak at 160 °C as shown in Fig. 7. Fig. 8 shows that both melting peaks were observed
with the DMA during a 10 Hz temperature scan. The loss factor associated with this
transformation did not vary significantly with respect to increasing the weight percentage of
In as shown in Fig. 9. Although the total damping appears to increase with In content, the
difference between the peak height and the background is nearly constant.

At the eutectic melting temperature, the binary alloys exhibit strain dependent damping
as demonstrated by the Al-17.3In alloy in Fig. 10. This particular alloy had a coarse
distribution on In particles due to its slow cooling rate from the melt. The temperature scan
in Fig. 11 shows a large damping peak to background ratio at lower frequencies for the Al-
17.3In alloy. When measuring the loss factor at the eutectic temperature for various
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oscillation frequencies, the relative height of the peak was observed to increase from values
of 0.002 at 1 Hz to 0.014 at low frequencies of 0.1 Hz.

Discussion

The strain dependent damping of the Al-In alloys appears to be associated with
dislocation motion in both the Al-matrix and the In-particles. Thus, the damping of the Al-
In alloys increases with increasing In content, but the total damping is less than that of the
pure Al. This may indicate that the damping contribution from the matrix decreases with
increasing In content. This effect may be explained if we associate the magnitude of the
matrix damping with a mean-free-path of dislocation motion. Upon the addition of second
phase particles, the mean-free-path of the dislocations will decrease in two ways: the In-
particles will inhibit the grain size during annealing and the In-particles will act as
dislocation traps. Both of these effects are a function of the volume fraction of the second
phase. Therefore, the damping contribution from the matrix would be expected to decrease
as the volume fraction of second phase is increased. A minimum would then be expected
for the Al-In alloys since the damping contribution from the In-particles would increase
with increasing volume fraction. This minimum is approximately at the Al-4In
composition.

The addition of In also affects the strain independent damping of the Al-matrix, as
shown in Fig. 3. Indeed, the addition of a very small amount of In (0.6%) reduces the loss
factor to one-half that measured for pure Al, but this effect appears to be related to
processing history. Electron microscopy studies have just begun to examine the differences
in structure which results from the addition of In and the subsequent processing. For
example, a second Al-0.6In alloy was processed with out annealing and the microstructure
is shown in Fig. 12. The microstructure shows a fine subgrain structure with In particles
on the subgrain boundary. However, this particular alloy shows a much higher loss factor.

In fact, the loss factor measured for this sample was constant, with tan d = 0.016, up to a

strain amplitude of 150 pe. Thus, further microstructural work is required before any
conclusions can be made with regard to the strain independent regime.

The damping peak observed between 160 and 170°C is believed to be related to the
eutectic melting temperature observed at 156°C by the differential scanning calorimeter. The
difference in temperature is a reflection in the thermal lag associated with the DuPont DMA.
The pivot arms are made of stainless steel and are in direct contact with the sample. Thus,
the pivot arms act as a thermal reservoir with respect to the sample. This effect was
minimized by flowing helium gas through the furnace as the temperature was ramped. The
thermal lag for the Al-In samples varied between 4 and 10 °C.

Equation 1 provides a means to calculate the test frequency at which peak damping
would be observed for a 2-phase microstructure going through a first order transformation.
In the present case, the reaction is a eutectic where the In alloys with the surrounding Al-
matrix to form a liquid. Self-diffusion of In in the liquid and in the solid state near the
melting point is approximately 10 -5 cm2/s and 10 -9 cm?/s, respectively [5). If the typical
diameter of the In inclusion is taken as 2 um, and a volume fraction of 0.02 is assumed,
relaxation times of 170 and 0.017 seconds are expected using the self-diffusion rates for In
in the solid and liquid states, respectively. This would correspond to test frequencies of
approximately 0.01 Hz and 60 Hz for the solid and liquid states, respectively. Resolution
of the damping peak was obtained at a test frequency of 0.1Hz, which would indicate an
intermediate diffusivity. The diffusion rate of Al in In would be expected to be higher than
the self-diffusion of In in the solid state since the atomic radius of Al is smaller than that of
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In. Thus, a diffusivity between 10-7 and 108 cm?2/s may be reasonable. In terms of order-
of-magnitude calculations, this would produce a relaxation time on the order of 10 seconds,
or a test frequency of 0.1 Hz. The peak observed at the higher test frequencies may then be
related to a smaller indium particle. It should be noted that the melting temperature of In is
size dependent [6]. This effect is easily demonstrated by differential scanning calorimetry
of an arc-melted Al-12In alloy, see Fig. 13. The moderate solidification rate will produce a
fine structure of In particles which melt at a higher temperature. Upon cold-working, and
subsequent annealing, the number of high melting In particles is reduced, as observed in
the DSC results reported in Fig. 7.

Conclusions

The addition of In to Al exhibited a general increase in loss factor with increasing In
content; however, the strain dependent damping was no greater than that of the pure Al
sample. A precipitation hardening alloy would be more appropriate for evaluating the
damping contribution resulting from the addition of a viscoelastic inclusion. No significant
increase in damping was associated with liquid metal inclusions, but a large damping peak
was observed which was associated with the eutectic transformation and the diffusion of Al
solute in the In inclusions.
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Fig. 1: Phase diagram of the Al-In binary system showing a liquid immiscibility gap.
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Fig. 3: Room temperature damping results of Pure Aluminum (99.99%) and
Al-0.6In for various strain amplitudes.
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Fig. 4: Room temperature damping results of Al-4In, Al-8In, Al-12In, and
Al-16In for several strain amplitudes.
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Fig. 6: Damping results from 100-200°C for the Al-6In alloy using a fixed
frequency of 1 Hz and a strain amplitude of 70 pe.
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Fig. 7: Differential Scanning Calorimetry results from the Al-17.3In alloy exhibiting two melting
peaks upon heating (S%p line) and three solidification peaks upon cooling (bottom line).
The smallest peak (140°C) is associated with solid nucleation of the finest indium particles.
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Fig. 8: Damping results for the Al-6In alloy at 10 Hz fixed frequency and
strain amplitude of 70 pe showing two distinct damping peaks.
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Fig. 11: DMA results for the Al-17.3In alloy at a frequency of 0.1 Hz demonstrating
a larger damping peak to background ratio at lower frequencies.

JDA1l

[=—— 1] E"(GPa)




Fig. 12: Bright field transmission electron micrograph of the Al-0.6In alloy
showing indium particles on a subgrain boundary.
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Fig. 13: DSC results for the Al-12In alloy indicating a second melting peak due to
a fine structure of indium particles which melt at a higher temperature.
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DAMPING CAPACITY OF ALUMINUM 6061-INDIUM ALLOYS.
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ABSTRACT

Type 6061 aluminum alloys containing between 0 and 5.2 volume percent indium
and pure indium samples were fabricated. Each sample was characterized by
metallographic and analytical electron microscopy and the damping capacity and
storage modulus was measured. The model proposed by L.G. Nielsen was used to
calculate the damping capacity and storage modulus of the alloys using the
damping capacity and storage modulus of the constituents. The damping
capacity of the Al1-6061-In-T6 alloys were higher than the Al1-6061-T6é alloy and
increased with increasing indium content. The Nielsen model gave a good first
approximation of the damping capacity and storage modulus of the alloys.
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ABSTRACT
Type 6061 aluminum alloys containing between 0 and 5.2 volume percent indium
and pure indium samples were fabricated. Each sample was characterized by
metallographic and analytical electron microscopy and the damping capacity and
storage modulus was measured. The model proposed by L.G. Nielsen was used to
calculate the damping capacity and storage modulus of the alloys using the
damping capacity and storage modulus of the constituents. The damping capacity
of the Al-6061-In-Té alloys were higher than the A1-6061-T6 alloy and increased
with increasing indium content. The Nielsen model gave a good first
approximation of the damping capacity and storage modulus of the alloys,

INTRODUCTION
An important characteristic of a structural material is it's damping capacity.
While metallic materials exhibit adequate stiffness for structural use, the
damping capacity may be quite low, having a typical loss factor on the order of

10™*. In contrast, polymeric materials will exhibit very high damping,
with loss factors on the order of one, but rather low stiffness. Their
stiffness can be increased with the use of fillers and fibers but the resultant
resin matrix composites exhibit lower damping properties, with loss factors on

the order of 1072, Attempts made to improve the damping response of the

resin matrix composite by adding rubber did not result in significant
improvements [1]. It was shown that synergistic effects from interactions
between the rubber and the resin were responsible for the lower than expected
damping behavior.

In the case of metal matrix composites, work by Ray, Kinra, Rawal and Misra has
shown that the damping of aluminum alloy 6061 is increased by the addition of
graphite fibers [2]. However, the increase in damping was low considering the
high volume fraction (0.34) of graphite. Recent work bty Diehm, Wong and Van
Aken has shown that the addition of a viscoelastic inclusion (indium) to pure
aluminum will produce high damping materials (3], but it was uncertain whether
the principal damping resulted from the matrix or the inclusion since both have
high damping capacities.

In the present paper the addition of indium to an age-hardening alloy, such as
6061 aluminum, was examined in order to discriminate between inclusion and
matrix damping. The dynamic properties of pure (99.99%) indium and 6061-T6
aluminum alloy were determined. The dynamic properties of the composite were
calculated by using the values of the monolithic material in the composite
model proposed by L.G. Nielsen [4,5] and directly compared with the
experimental results.
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NIELSEN MODEL
The model developed by Nielsen [4] predicts the complex modulus of isotropic
two phase materials with arbitrary phase geometry. It is based on a continuum
mechanics composite sphere assemblage model but is semi-empirical. The model
assumes that the alloy is isotropic, strained only in the elastic range, and
is phase symmetric, that is both the matrix and second phase geometries are
identical at equal respective volume concentrations. Equations 1-4 below,
from Nielsen's model [5], calculate Young's modulus of the alloy, E/;, using

the Young's moduli of the matrix, E;', and second phase, Eyi, and the volume
vi

(V¢ + V)
the volumes of the second phase and matrix respectively.

E, = eE’° eq.1l
where e is the relative Young's modulus of the alloy.

concentration, ¢. The volume concentration = where V! and V® are

_n+y+qy(n-1)

n+vy-c(n-1) €q.2

where n is the relative stiffness and y is the shape function.
i

n=- ? eq.3
q - %{p[l - el - m)] + {1 - e(1 - m)Pn(l - p) } eq.4
and p is the shape factor which is dependent on the morphology of the
composite.
The complex modulus of the matrix, E®, and second phase, E!, is defined as
follows.
E* = a* + ib® and E! = al + ib} eq.5

where a and b are the storage and loss modulus respectively and the
superscripts s and i refer to the matrix and second phase respectively. The
conversion from Young's modulus equations to complex modulus equations is
accomplished with the use of the correspondence principle. The complex moduli
from equation 5 are substituted for the Young’s moduli in equations 1 and 3
and the real and imaginary parts are separated. Starting with equation 3 we
have

_E' _a+ib' _ (al + 1b')(a® - ib%) _ _ala® + b'b® . i(a®®' - a'b®)

PR T a4 I (af + ibY)(a® - ibY) (a*)? + (b*)? (a*)? + (b%)?
Let n = A + Bi where A = M B = M— eq.6
(a®)? + (b*)? (a®)? + (b*)?

Now recalling equation 4

y=3{ol1 - cd - M)+ {21 - e - m)]Pnd - p) }
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Upon substituting equation 6 the first part of equation 4 becomes

p[l - c¢c(l -n)] =p - pc + pcn = p - pc + pcA + pcBi

The second part of equation 4 is »Jpz[l - el - n))%4n( - p)

[1-cl-n)]2=1- 2l -n) +c21 - n)?
=1-2c+ 22n + c® - 2¢%n + cn?
=1-2c+c?+ (2¢c - 2¢%)n + c2n?

since n? = (A + iB)(A + iB) = A% - B% + 2ABi
then {1 - c(1 - n)]?

(1 - 2¢ + ¢2) + (2c - 2c?)A + c2(A? - B?)
i[(2e - 2c2)B + 2c2AB]

+

therfore ap?[l - c(1 - n)]%4n(l - p)

~ {11 - 2c + ¢ + (2c - 21 + 2(A® - BD)]

1
+ ip?[(2¢ - 2c%)B + 2c%AB] + 4A(L - p) + 14B(L - p) }°

= {P[L - 2c + % + 2¢(L - c)A + c2(A? - BY)]

1
+ 4AQL - p) + i[p%2c(l - c)B + 2c?ABp? + 4B(L - p)] >

1
Let dp?[1 - c(1 - n)[%#4n(l - p) = [a + iB]?

where a = p?[(c - 1)% - 2c(c - 1)A + c2(A? - B®)] + 4A(L - p)
and B = p22c(l - c)B + 2¢2ABp? + 4B(1 - p)

In order to find the square root we change coordinates.
1
r = (a? + g2

§ = arctan (qg)

substituting equations 11 and 12 into equation 8 we have

o2l - c(1 - n))*#4n(l - p) = r'/%[cos(8/2)+isin(8/2)] = rl/2eif/2

Combining equations 7 and 13 gives the complex shape function, ¥*.

v = 2{pl1 - c(1 - B)] + pcBt + V%2 }
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Substituting the complex values of vy from equation 14 and the complex values
of n from equation 6 into equation 2 gives the complex relative modulus, e*.
DY+ Ye(n - 1) _n+ 9" +cny’ - y'c
n+4*-cn-1) n+9"-cn+c
_ A+ Re(y") - cRe(y") + c[ARe(y") - BIm(y")]
(A + Re(y*) - cA+c) + i(B + Im(y*) - cB)

i{B + In(v) - cIm(y") + c[AIm(y") + BRe(7")] }
(A +Re(y") - cA+c) + i(B + Im(y*) - cB)
Let £ = A + Re(7y") - cRe(y") + c[ARe(y") - BIm(7")] eq.16
and n = B + Im(y*) - cIm(y") + c[AIm(y*) + BRe(v")] eq.17
and substitute into equation 15.

. £ + ni
(A + Re(¥*) - cA+c) + i(B + Im(y™) - cB)
_ (6 + in)[(A+ Re(y") - cA+c) - i(B + Im(y") - cB)]
(A + Re(7*) - cA + ¢)2 +(B + Im(y") - cB)?
_§(A+Re(7") - cA+c) +n(B+ Im(y*) - cB)
(A + Re(7*) - cA - ¢)% + (B + Im(y") - cB)?
in(A + Re(¥") - cA + ¢c) - £(B + Im(y") - cB)
(A + Re(y") - cA - ¢)2 + (B + Im(y*) - cB)?

Finally the complex modulus of the alloy is found by combining
equations 1, 5 and 18.

eq.15

+

eq.18

E! = e*E® = Re(e*)a® - Im(e*) + i[Im(e*) + Re(e*)b®]
_a’[é(A+Re(y") - cA+c) +n(B+ Im(y") - cB)]

(A + Re(y*) - cA - ¢)?2 + (B + Im(y*) - cB)?
_b’[n(A + Re(y*) - cA+¢c) - £(B + Im(y") - cB)]
(A + Re(y") - cA - ¢)2 + (B + Im(y*) - cB)?

i{a"[r,(A + Re(y*) - cA +¢c) - £&(B + Im(y*) - cB)]
(A + Re(y") - cA - ¢)2 + (B + Im(y") - cB)?
+ b®[£(A + Re(y*) - cA + ¢c) + n(B + Im(y*) - cB)]
(A + Re(y*) - cA - ¢)2 + (B + Im(y*) - cB)?

Where the real of equation 19 is the storage modulus of the composite and the
imaginary part of equation 19 is the loss modulus.

+

eq.19
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EXPERIMENTAL PROCEDURE
Aluminum 6061 alloys with additions of 0 to 12 weight percent indium were
prepared by plasma arc-melting. The starting alloys were pure indium (99.99%)
and 6061 alloy. The chemical composition of the alloys were determined by
wet-chemistry. The volume fraction of indium was calculated using the weight
fraction and density of each alloy by assuming complete immiscibility
between aluminum and indium. The arc-melted ingot was then reduced 60 to 80%
in thickness, by repeatedly cold-working 20 to 30% and annealing, to produce a
flat sample with a nominal thickness of 1.5 mm. The alloys were given a T6
temper consisting of solution treatment at 532 °C (990 °F) and aging 193
oC (380 °F) for 7 hours. Samples of pure indium were likewise plasma
arc-melted and rolled.
Each sample was characterized by metallographic and analytical electron
microscopy. Electron microscopy studies were performed at the University of
Michigan Electron Microbeam Analysis Laboratory. Thin foils for transmission
electron microscopy were prepared by twin jet electropolishing in a solution
of 20% nitric acid (by volume) and methanol.
The damping capacity and modulus of the samples were measured with a Polymer
Laboratories Dynamic Mechanical Thermal Analyzer (DMTA) located at the Naval
Research Laboratory. The DMTA uses a fixed-guided cantilever arrangement
where the left clamp holds the sample to a stationary frame while the right
clamp attaches the sample to the drive shaft. A small sinusoidal mechanical
stress is applied to a cantilevered sample and the resulting sinusoidal strain
is transduced. Comparison of the amplitude of the stress, o, and strain, e,
signals yields the storage modulus, a, and the phase lag of strain behind the
stress gives the phase angle, §. The complex modulus, E, and loss modulus
b are calculated using the following equation:

a(l + itan §) = E=a + ib eq.20

where tan § is the loss factor. The frequency of the vibrations was cycled
between .1, 1 and 10 Hz while the temperature was increased one degree C per
minute from 20 °C (68 °F) to 100 °C (212 °F). Each sample was measured at
least twice to check the consistency of the measurements.

RESULTS
The measured chemical composition and the calculated volume fraction of indium
are presented in table 1. The volume percent varied from O to 5.2. The
microstructures of the indium containing alloys are shown in Fig. 1. A
uniform dispersion of indium particles was found in all the samples with the
individual areas of indium increasing in size and number with the increase in
volume percent. The micrographs show the indium phase to be roughly
spherical. Examination of the age-hardened matrix using transmission electron
microscopy revealed that the age-hardening process was affected by the
addition of indium. A typical 6061 T6 microstructure consists of a uniform
distribution of Guinier-Preston zones (GPZ) and B' (rod shaped HgQSi)

precipitates in the aluminum matrix as shown in Fig. 2a. The diffraction
conditions are optimized in Figs. 2a and 2b to show the g’
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precipitates. The aged microstructures of the alloys, containing 1.4, 1.7,
and 5.2 volume percent indium are shown in Figs. 2b to 2d. It is apparent
that the aging kinetics have been affected by the additions of indium. The
general trend is that the precipitation of B’ is inhibited and the volume
fraction of second phase is reduced. Only the GPZ's are observed in the 1.7
and 5.2% alloys.

The results of the DMTA testing are shown as plots of loss modulus, (tan §),
versus the storage modulus on logarithmic axis in order to eliminate
temperature and frequency measurement error from the data. As the temperature
was increased from 20 °C to 100 °C the loss factor increased as the

storage modulus decreased. The measurements of pure indium and the 6061 T6
alloy are shown in Fig. 3. For the temperature range tested, the storage
modulus of the 6061 T6 alloy did not vary significantly from 71 GPa while the
storage modulus of the indium varied from 2 GPa at room temperature to 0.9 GPa
at 100 °C. The loss factor of the 6061 T6 alloy was approximately 0.002
which is typical of precipitation hardened aluminum alloys. In contrast the
pure indium alloy exhibited high damping with the loss factor ranging from
0.06 to 0.2 at 100 °C. It was generally observed that the storage modulus
decreased and the loss factor increased with increasing addition of indium as
shown in Fig. 4. The storage modulus of the sample containing 5.2 volume
percent indium exhibited a more dramatic change than alloys containing less
than 3.2 volume percent indium, as illustrated in Fig. 4. The loss factor of
the 5.2 volume percent indium alloy at room temperature was measured to be
0.01. This was likely due to increased continuity of the indium phase.

The storage modulus and loss factor were calculated with the Nielsen model
using the data from the monolithic material in equations 19 and 20 and a shape
factor of one. A shape factor of one describes round second phase areas
completely surrounded by the matrix. The results of these calculations are
presented in Fig. 5. The calculated and measured values of the 0 volume
percent indium alloy are constrained to be equal. Comparing the calculated
values to the measured values as in Fig. 6 and 7 it is obvious that although
the calculated values show the same trends as the measured values, they
consistently overestimate both the measured storage modulus and the loss
factor of the alloys. For the alloys containing less than 3.2 volume percent
the storage modulus is only overestimated by 2% and the loss factor is
overestimated by 30%. However, in the case of the 5.2 volume percent indium
alloy the storage modulus was overestimated by more than 100% while the loss
factor was overestimated by 60%. These results may indicate a synergistic
effect such as the partitioning of alloying elements present in the 6061
material to the indium.

DISCUSSION
High damping aluminum alloys may be obtained by the addition of a viscoelastic
inclusion. In the present case a volume fraction of at least 0.05 is required
to produce an alloy with a loss factor greater than 0.01. However, there is a
significant loss of stiffness associated with the addition of the indium and
there appears to be a synergistic effect between the matrix and the inclusion.
The aged 6061-T6é microstructure shows a decreasing precipitate density with
increasing indium content and the measured loss factors are much less than the
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calculated values based on the damping capacities of the monolithic samples.
It is tempting to speculate that these observations are related. Indeed, the
solubility of magnesium in indium is greater than 30 atomic percent at the Té6
aging temperature used in this experiment [6]. Thus the low volume fraction
of precipitates may be related to the partitioning of magnesium to the indium
inclusions. Furthermore, the indium-magnesium inclusions may have a lower
damping capacity than the pure indium. If indeed the damping of the indium
inclusion is a strain dependent mechanism, such as dislocation motion, the
addition of solute atoms will result in a lower loss factor for a comparable
cyclic strain.

The Nielsen model failed to predict the dynamic properties of indium
containing 6061-T6 alloys, but did provide a good first approximation. Future
modeling of this system will use the dynamic properties measured from
monolithic indium-magnesium alloys to compensate for the synergistic effects
encountered and the shape factor will be varied in an attempt to compensate
for non-spherical inclusions.

CONCLUSIONS
Additions of indium, a viscoelastic second phase particle, to 6061-T6
aluminum, a stiff matrix, have resulted in an increased damping capacity while
still maintaining most of the stiffness of the matrix. The measured and
calculated values agree that damping capacity increases and the storage
modulus decreases with increasing indium content. The Nielsen model is a good
first approximation for both the prediction of the maximum damping capacity
and stiffness of a particular alloy system and the tailoring of alloys to
obtain the damping capacity and stiffness required by a given application.
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Table 1. Chemical Compositions of 6061-T6 Aluminum Alloys

Calculated | Measured
Volume Percent| Weight Percent
Indium |Indium Magnesium Chromium Silicon Copper Iron Aluminum
0.00 | 0.00 0.77 0.048 0.71 0.26 0.23 98 97
0.78 | 2.08 0.74 0.047 0.83 0.27 0.25 95.78
1.43 | 3.77 0.70 0.046 0.76 0.26 0.24 94.22
1.67 | 4.37 0.67 0.045 0.73 0.25 0.22 93.72
2.16 | 5.63 0.70 0.044 0.75 0.26 0.22 92.40
2.66 | 6.87 0.73 0.045 0.71 0.25 0.21 91.19
3.20 | 8.20 0.73 0.041 0.70 0.28 0.22 89.83
5.16 |12.80 0.70 0.042 0.64 0.23 0.20 85.39
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ABSTRACT

By pooling the resources of three laboratories, the damping in leaded brass and lead-free brass
has been explored over a wide range of variables, including frequency (0.03 Hz to 80 kHz), strain
amplitude (10-7 to 7 x 10-4), temperature (25 to 400°C), and vibrational modes (longitudinal and
flexure). For investigations at frequencies less than 50 Hz, cantilevered beams were tested, at
frequencies in the range 0.03 to 200 Hz, fixed guided beams (Dynamic Mechanical Thermal
Analyzer, DMTA) were used, while the high frequency (80 kHz) studies were performed with the
PUCOT (Piezoelectric Ultrasonic Composite Oscillator Technique). The results from the DMTA
experiments yielded an effective activation energy of about 1.67 eV/atom for the initiation of rapid
increases in damping a< a function of temperature. This value is close to the value of 1.7 eV/atom
found by Youssef for the short-range ordering process of Zn and Cu atoms these type of alloys.
The PUCOT results for the leaded brass revealed a strong damping peak near 327°C, the melting
point of the lead inclusions. This peak is denoted as transient liquid phase (TLP) damping. The
amplitude dependence data on leaded brass showed that the break away effect, where the amplitude
independent damping changed to amplitude dependent damping, was temperature dependent, with
a maximum break away stress of over 2 MPa near 270°C. This temperature was close to the
280°C value observed by Youssef for short-range ordering of Cu-Zn alloys. The PUCOT data
agreed well with the earlier results of Wolfenden and Robinson on similar alloys. On the other
hand, no damping peaks near 327°C were found for the lead-free brass. The results of this study
confirmed that TLP damping is a mechanism that offers possibilities of enhancing the level of
damping in alloys containing low melting point inclusions. Taking into consideration the
thermoelastic (Zener) effects for flexural damping, the damping data from the three laboratories
were compared to see if consistent and reliable results could be obtained.




INTRODUCTION

The search for materials with high stiffness and high intrinsic damping continues, driven by
the needs of the aerospace and space industries, and by developments within the US Department of
Defense. In this study, the intrinsic damping of materials is approached from a fundamental point
of view. There is no standard technique for the measurement of damping and, as a result, several
instruments that measure damping for different vibration modes over different ranges of
temperature, strain amplitude, and frequency have been developed. To assess the accuracy,
repeatability, and reliability of the experimental methods, specimens from the same stock have been
tested and the corresponding data compared. This research focussed on the following areas:
thermoelastic (Zener) damping, transient liquid phase (TLP) damping, dislocation break away
phenomena, and short-range ordering effects. The basic aim of the present research was to
measure and analyze the damping in brass as a function of temperature, frequency, strain
amplitude, lead content, and vibration mode.

MATERIALS

For this study, two types if brass alloys were used: 1) lead-free brass and 2) leaded (free-
machining) brass. The lead-free bar stock came in two compositions and thicknesses. Thick
samples (3.18 mm original thickness) had a composition by weight of 59.1% Cu, 38.1% Zn, and
less than 0.05% Pb. The thin bar stock (1.59 mm original thickness) had a composition of 68.8%
Cu, 29.0% Zn, and less than 0.05% Pb. The composition by weight of the leaded brass was
61.4% Cu, 35.4% Zn, with 2.65% Pb. Specimen sizes were tailored for the three instruments
used for the damping measurements.

INSTRUMENTATION

The three instruments used for the damping measurements were the Cantilevered Beam (CB),
the Dynamic Mechanical Thermal Analyzer (DMTA), and the Piezoelectric Ultrasonic Composite
Oscillator Technique (PUCOT). Details of these techniques have been reported elsewhere [1-5].
The typical sizes of the specimens used in the three instruments were 250 x 12 x 2.1 mm, 34 x 6 x
1 mm, and 50 x 2 x 1.6 mm, respectively. The CB technique performed damping measurements in
the frequency range of 15 to 50 Hz, in a vacuum environment, and at room temperature. The
DMTA was used for measurements at frequencies in the range of 0.03 to 200 Hz, at temperatures
in the 25°C to 340°C range, and in an air environment. The PUCOT operated at 80 kHz, covering
the temperature range of 25°C to 400°C, with the specimens in an air environment. The strain
amplitudes for the three techniques were 5 x 10-5, 5 x 10-4 to 8 x 104, and 10-7 to 104,
respectively. The CB and DMTA instruments used the flexural vibration mode, while the PUCOT
used the longitudinal vibration mode.

RESULTS AND DISCUSSION
1. CB Technique

Figures 1-6 show the damping as a function of applied frequency for leaded and lead-free
brass. There are numerous definitions for damping in current use. For the CB technique, the
applicable definition is:

¥ = AW/W, )
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where AW is the energy dissipated during one cycle and W is the maximum stored energy.
Furthermore, the three definitions used in this interlaboratory work are related by:

Y = AW/W =2ntan 8 =2 Q1, )

with tan & (6 is the loss angle) measured by the DMTA and Q-1, the internal friction, measured by
the PUCOT. The continuous curves in Figs. 1-6 is the thermoelastic damping due to the Zener
effect [6,7] that is given by:

¥/¥o = (01) / (1 + 0*12), 3)
Yo = (2r02ET) / (pCp), )]
T = (h?pCp) / (n2k), 5)

where ¥y is a characteristic damping, T is a characteristic time of the problem, ® is the circular
frequency, a is the coefficient of thermal expansion, T is the absolute temperature, p is the mass
density, Cp is the thermal capacity (at constant pressure) per unit mass, and k is the thermal
conductivity. These physical properties for the two types of brass used in this study are listed in
Table I. The total damping measured by the CB technique is thermoelastic damping plus the
intrinsic damping due to all other sources. Therefore, it is reassuring to note that the thermoelastic
damping serves as a lower bound for all measurements. The difference between the measured
values and the Zener curve is attributed to dislocation damping. In Figs. 5 and 6, the damping data
are plotted in accordance with the universal damping curve for brass (Eq. 3).

Table I - Physical properties of two types of brass at room temperature (21°C).

Lead-free Leaded
Coefficient of thermal expansion (K-!) 189 x 106 189 x 106
Young's Modulus (GPa) 103 103
Mass Density (g/cm?) 8.4 8.49
Specific heat (J kg-! K-1) 385 385
Thermal conductivity (W m'1 K-1) 144.1 144.1

2. DMTA Technique

Figures 7 and 8 show representative plots of damping (tand) as a function of temperature for
lead-free and leaded brass, respectively, at several frequencies. Figure 7 indicates that the damping
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is low and essentially constant up to temperatures near 200°C, where the damping levels begin to
rise. The temperature at which the damping begins to rise, called the activation temperature,
increases as the frequency increases. Similar trends are observed in Fig. 8 for leaded brass. The
curve for the test at 200 Hz seems to give anomalous behavior which is believed to be due to
improper equipment functioning at this frequency. Using temperature estimates from Figs. 7 and
8, plus data from other DMTA tests on the same material, the frequency dependence of the
activation temperature (T,) for these alloys was examined. It should be noted that there was no
significant difference in activation temperatures between the leaded and lead-free brass. Figure 9
shows the plot of the natural logarithm of the frequency versus the reciprocal of the activation
temperature. The data are approximately linear, suggesting that the frequency and temperature can
be related by an equation of the form:

f = foexp(-H/RT,), or (6)
In(f) = In(fp) - (H/R)(1/T,), ™

where H is an effective activation energy for the increase in damping with temperature, R is the gas
constant, and fp is a constant parameter. The slope of the plot yields an effective activation energy
of 1.67 eV/atom or 38.3 kcal/mole. This value is close to the value of 1.7 eV/atom found by
Youssef [8] for the short-range ordering process in Cu-Zn alloys, being equal to the activation
energy for Zn diffusion in coarse-grained Cu. These results suggest that a diffusion damping
mechanism causes the rise in damping in the frequency range covered by the DMTA.

Figure 10 shows the damping as a function of frequency for the leaded brass at 30°C. The
data indicate the trend typical of thermoelastic damping with a peak between 3 and 10 Hz. This
result is similar to those from the CB experiments, but the strain amplitudes used were an order of
magnitude higher with the DMTA. Thus, one would expect there to be increased dislocation
damping in specimens tested in the DMTA. This is the case for the data from this study (note that
values for CB need to be divided be 2r for direct comparison), as, for example, the peak value
from the DMTA is 2.5 times larger than the peak value from CB measurements. This difference is
greater than expected and indicates possible problems with the accuracy of the damping
measurements by the DMTA under the current testing procedures.

3. PUCOT

An Arrhenius plot of the damping data for leaded brass and lead-free brass is shown in Fig.
11. Clearly, there are significant differences in the damping curves for the two types of brass.
The lead-free brass shows smoothly increasing damping as temperature increases, with no sign of
damping peaks. On the other hand, the curves for the leaded brass show small peaks in damping
near 280°C and near 327°C. These results have been discussed earlier [4] in terms of the melting
of lead inclusions at and near the grain boundaries in the leaded brass. The strain amplitude
dependence of damping for leaded brass at several temperatures is given in Fig. 12. The curves
show the classical strain amplitude independent damping at low strains, and the amplitude
dependent damping at higher strains. This behavior, in terms of the Granato Liicke (GL)
dislocation damping theory [9], represents the break away of dislocations from their minor pinning
points, resulting in increases in damping. The break away stress needed to free dislocations from
their anchor points can be calculated from plots such as those in Fig. 12 by determining the break
away strain and converting it to a stress via the Young's modulus of the materials. Figure 13
shows a plot of the break away stress as a function of temperature for leaded brass with some
earlier data by Wolfenden and Robinson [4] on a similar material included. There is a pronounced
peak in stress at 270°C, which is near to the temperature of 280°C observed by Youssef [8] as the
short range order-disorder temperature in Cu-Zn alloys of similar composition to those used in this
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work. Thus, it appears that the details of the disordering process affect the ease with which
dislocations can break away from their pinning points under the application of a vibratory stress.

4. Comparison of Data

Figure 14 shows the damping data obtained from room temperature tests on the lead-free brass
and leaded brass. It is emphasized that the damping data from the CB have been corrected to
extract out the portion (=2/3) of the damping arising from thermoelastic (Zener) effects. For the
lead-free brass, the data from the CB and PUCOT techniques agree with each other to within a
factor of 1.3, while the results for leaded brass agree within a factor of two. These levels of
agreement are good, especially when considering the low damping levels present. The DMTA
results, not shown in Fig. 14, were considerably higher than those from the CB and PUCOT. Itis
felt that DMTA technique has not been sufficiently optimized to provide accurate measurements of
the damping levels when the damping is low, as is the case for these alloys at room temperature.
However, the activation temperature results from the DMTA testing, where the ability to detect
changes in damping as a function of temperature, are promising and further optimization of the
technique is in progress.

SUMMARY

From this interlaboratory study of the damping in lead-free and leaded brass the following
summary statements and conclusions can be listed:

1. The measurements of damping over the wide range of experimental variables used in this
study require the use of more than one instrument.

2. A comparison of the damping data from the three instruments (CB, PUCOT, and DMTA) for
the two types of brass measured at room temperature revealed that the CB and PUCOT techniques
gave essentially identical measurements of damping (when allowances were made for thermoelastic
damping), whereas the DMTA measured higher damping, possibly due to a systematic error.

3. The results from the DMTA instrument yielded an effective activation energy of 1.67 eV/atom
for the rapid increase in damping as a function of temperature for temperatures below 300°C. This
activation was close to that found by Youssef for the short-range disordering process of Zn and Cu
atoms in similar alloys.

4. The PUCOT results for the leaded brass revealed a strong damping peak (TLP camping) near
327°C, the melting point of lead.

5. The amplitude dependence study of damping with the PUCOT indicated that the break away
effect for dislocations was temperature dependent with a maximum break away stress of over 2
MPa near 270°C. This temperature was close to that observed by Youssef for the short-range
ordering of Cu-Zn alloys.
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In(f) = 41.736 - 19,278/ T (R*2 = 0.872)

In(f)

4 v T v T d T v T Y T Y
1.8 1.9 2.0 2.1 2.2 2.3 24

1000/T (1/K)

Fig. 9 - Arrhenius plot of the logarithm of the test frequency versus reciprocal temperature for lead-
free brass and leaded brass as measured by the DMTA. The data points correspond to the
activation temperatures where there was a rise in damping as shown in Figs. 7 and 8.
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Fig. 10 - Damping as a function of frequency for leaded brass at 30°C as measured by the DMTA.
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Fig. 11 - An Arthenius plot of the mechanical damping of leaded (open data points) and lead-free
(filled data points) brass as measured by the PUCOT at 40 kHz and at a maximum strain amplitude
of 10-7. (From [4].)
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Fig. 12 - Amplitude dependence of the mechanical damping of leaded brass at various temperatures
as measured by the PUCOT at 40 kHz. (From [4].)
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Abstract

A damping scheme combining the linear effects of a viscoelastic material and the non-
linear effects of an array of constraining plates was investigated. The damping material,
Poron, was applied to the surface of an aluminum beam and constrained by a layer of thin
aluminum segments. The segments were spaced so theat their edges would come into contact as
the beam deflected. At deflections smaller than those which cause segment contact, the linear
viscoelastic damping of the Poron was observed. At larger amplitudes, additional dissipation
was expected due to the impact of the segments. Several configurations of the beams were
tested in free fall in the ASTROVAC, a vacuum facility devoted to the testing of space
structures. Compared to theory, the results of the linearly damped beams showed good
correlation. The beams with contacting segments showed only a small amount of additional
dissipation

1. Introduction

There are many ways that damping can be added to a structure. The method that will
be discussed in this paper involves the use of a passive damping layer applied to the surface of
a structure. Unconstrained viscoelastic damping materials usually produce small increases in
linear damping. One way to increase damping is to add a layer of stiffer material to constrain
the viscoelastic layer (Ungar , 1966, Kerwin, 1959). The constraining layer causes the
viscoelastic material to shear, introducing additional energy loss. Because most of the shearing
occurs at the ends of a constrained viscoelastic layer, damping can be increased by segmenting
the constraining layer up so that there is more shear. In fact, the length of the constraints can
be optimized (Plunkett and Lee, 1970).

Further increases of damping might be achieved by exploiting non-linear effects. In
this project, an attempt was made to introduce non-linearities using the segmented constraint
layer of an existing damping scheme. A viscoelastic layer was applied to the surface of several
beams. This layer was then covered with a layer of constraining plates. The plates were
spaced so that when the beam vibration exceeded a certain amplitude, the constraints would
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impact. The objective was to give large, non-linear damping at high amplitudes and smaller
linear decay at low amplitudes.

2. Theoretical Background

The damping of a free viscoelastic layer applied to a beam in bending is due to losses
through the stretching and bending of the layer (see Fig. 2.1). The associated loss factor (equal
to twice the damping ratio { for light damping) for a beam treated on one side is given by,

B,
2
K+ B+ (M) [+ + B0
+

2 2 2
K1+ (r,/H,,) [(1+K)" + B,k) 1]

T‘:

1

M
where,
B,=Loss factor of viscoelastic layer

k=E{H,/E,H,=Ratio of extensional stiffnesses

ry=H; /V12=Radius of gyration of the beam

r,=H,/v12=Radius of gyration of the viscoelastic layer
H,,=(H;+H,)/2=Distance between neutral planes of the two layers
E;=Modulus of elasticity of the ith layer

H;=Thickness of ith layer

assuming a loss-less beam (Ungar, 1966). This loss factor is clearly related to the material and
geometrical properties of the beam and viscoelastic layer. Adding this prediction to the
material damping of the beam, due for example to transverse thermal currents, gives a
prediction for the system dampil.g ratio.

Viscoelastic _
Layer R

Beam \<

Figure1
Structure with free viscoelastic layer

When a constraining layer is added, shear effects must be included in the model (see
Fig. 2.2). These effects depend on the curvature of the structure which can be seen in the
governing equation (Kerwin, 1959),
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=E [ 4
b5l
dx (2)
where 1 is the modified loss coefficient of a system, E4 is the modulus of elasticity of the

constraining layer, Hj is the thickness of the layer, and 7' is defined as the unmodified loss
coefficient of a constrained structure given by,

4 l{sinh(A)sin(eﬂ)— sin (B)cos(e/z)]
=9y cosh(A) + cos(B)

3)

where,
tan-16=p>
B=w sin(B,/2)
W=L1 / BO
Bp=(tyt3E3/G)1/2
G=Shear modulus of viscoelastic material
t;=Thickness of ith layer

Equations 2 and 3 show the dependance of the damping on the shearing of the viscoelastic
layer, the bending of the base structure, and tne length of the constraining layer.

Constraining Layer

Viscoelastic

/ Layer

-3
'

t

-

Structure

Figure 2
Segmented Constrained Beam
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The relationship between the damping and the length of the constraining layer can be
exploited to increase the loss factor. Most of the shearing of the viscoelastic layer occurs at the
edges of the constraining layer. This effect can be seen in Figure 3. As a result, the number and
length of the segments of the top layer can be optimized (Plunkett and Lee, 1970). One can
further increase the loss of energy of a structure by extending the concept of viscoelastic
damping by using multiple layers. There is another way to increase the damping however, by
introducing non-linear damping.

Given the structure of a constrained viscoelastic damping layer, there are several ways
one can introduce non-linear phenomena. One of these ways is to cause the segments of the
constraining layer to impact (see Fig. 2.3). The impact would effectively add another energy
dissipation mechanism. The only requirement is the careful spacing of the segments so they
will touch. One drawback of this scheme is the difficulty of modeling the phenomena of impact
damping.

Constraining Layer

L / \
[T T IITIIIITIT ] w
Undeformed &_2

Deformed

Figure 3
Non-linear damping mechanism

3_Experimental Apparatus

A set of experimental specimens was built to explore the possibility of added inpact
damping. Six test specimens were constructed, each a beam (27" x 1" x 1/8") of 6061-T6
aluminum. Each beam was modified with a different damping mechanism, allowing the effect
of each different layer to be observed separately. The first was a beam to determine the
material damping without any damping treatment. Then a beam with a 1/16" thick free layer
of Poron damping material on both faces was tested. An untreated area was left in the center for
strain gauges. A third beam with a "continuous” constraining layer of 1/32" sheet aluminum
was tested and compared to the unconstrained beam. In fact, the constraining layer was broken
in the middle so that there were two segments. The length of the constraint segments was very
close to the optimal length. Two beams tested were treated with segmented constraining layers
which consisted of 10 2.625" segments cn each side (see Fig. 4). One specimen had the segments
separated by a small gap set by using a feeler gauge. This gap (.002") was chosen so that the
segments would touch when the tip deflections of the free-free beam reached 1/2". The other
beam had a gap of .01" - enough to guarantee separation. Finally, a beam with the same size
segments bonded to the surface without a viscoelastic layer was tested. The segments were
spaced so that they would touch when the tip deflection exceeded 1/2".




Figure 4
Test Specimen With Segmented Constrained Damping Layer

4. Experimental Procedure

Tests were performed in the ASTROVAC Space Simulation Facility at M..T. The
ASTROVAC consists of a vacuum chamber (14' tall, 10’ diameter), launcher, data acquisition
system, and shaker system adapted for use in vacuum (see Fig. 5).

VIDEO CAMERA >
AIR CONTROLS A
ASTROVAC "
I \ AN |
TTe ]
]
s
DATA & cHAMBER_/
CLEAN ROO
RETRIEVAL CONTROL
Figure 5

ASTROVAC Space Simulation Facility

Each test involved lofting a specimen in the ASTROVAC using the launcher (see Fig.
6). First, the specimen was set on the launch bed. Then the strain gauge wires were plugged into
the follower which kept the short, light, leak wires slack during the test. Next, the vacuum
chamber was evacuated to a pressure of 102 Torr and the beams were launched. While a beam
was vibrating in free fall, the data from the strain gauges was sent to a CAMAC Crate for
storage. Then the data was sent to an IBM XT for post-processing (Crawley, 1985).
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Figure 6
Launch of test specimen

5. Regults

The strain data from each launch was plotted vs time (see Fig. 7). Damping ratios were
obtained from plots using a log-decrement method.
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Sample plot of strain (volts) vs. time (seconds)

The damping ratios for each of the specimens is shown in Table 1 for an average of 6
launches. The beam with no damping layer showed the lowest damping while the beam with
the segments of optimal length showed the largest damping increase. Comparing the results of
the segmented constrained layer with linear and non-linear spacing, there was only a slight
increase in damping. However, this increase was within the range of the scatter of the data.
In addition, the damping ratio of the non-linear specimen showed little variation with
amplitude.

_Table 1 - Experimental Damping Results

Damping Ratio, { (%)

Aluminum Beam .08
Free damping layer .10
2 segment constraining layer 3.99
10 segment constraining layer 1.97

002" gap width
10 segment constraining layer 2.15

01" gap width
10 segment bonded layer 46

6. Conclusions

The comparison of experimental vs. theoretical results showed good correlation with
theory (see Fig. 8). Damping ratio increase for the constrained segmented specimens,
represented by CC and SCL ( two element constraining layer, and 10 element constraining layer
respectively) followed the pattern predicted by theory. The non-linear specimens represented
by SCN and NNN ( constrained damping layer and bonded layer with non-linear spacing
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respectively) showed little damping increase compared to their linear counterparts. This
smaller than expected increase was probably due to several factors, the principle being
manufacturing problems which made it difficult to accurately control the gap between the
segments. Another possibility was that the plates did touch and the impact was too small to be
significant.

B Experimental
B Theoretical

Damping Ratio (%)
w
.

None Poron (49 SCL NNN N

Figure 8
Experimental vs. theoretical damping ratios
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Vibration Reduction via Constrain Layer Damping Techniques
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Abstract

Experimental methods to extract loss factors in constrain layer damped beams
are compared. Comparison of integral and additive damping treatments are
considered. Investigation of partial coverage treatment relation between appli-
cation length and effective damping ratio for isotropic beams is performed. Re-
sults indicate that optimum length exist for cantilever first mode, while the other
modes of investigation, clamped/clamped first and second and cantilever second,
show consistent increase in effective damping with increase in application length.
Integrally damped composite beams show significant increase in damping ratio
without reduction in bending stiffness. Log decrement appears to be the best
method for measuring damping values for cantilever first mode. Real and Im-
aginary components extract data that agree well with each other, while forming
an upper bound for the log decrement method.
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Introduction

Structural vibration is a recurring problem in such diverse fields from machinery
silencing in mining equipment to response attenuation in composite aerospace
structures. In current aerospace design, use of composite materials allows the
engineer to tailor a material to meet application requirements of mass and
stiffness. Vibrations, which cause cyclic loading of a structure, considerably re-
duce fatigue life thereby increasing failure rate. The use of viscoelastic materials
to attenuate response of structures through increasing the composite damping has
gained popularity in recent years. Discussions on the use of viscoelastics are
presented by Mar ! .

The evaluation of one damping technique is often done through experimentation.
A comparison of several techniques will be presented. Evaluation of partial cov-
erage and integrally damped structures will also be pursued.

Passive damping seems the most effective technique for structures that have lim-
ited number of modes of concern. One major technique is Constrain Layer
Damping (CLD). This method involves sandwiching a viscoelastic medium be-
tween two stiff outer layers. The viscoelastic, a rubber-like compound, dissipates
energy via shear deformation. The two outer layers undergo the significant
bending and extensional loads while the central withstands the shear forces. The
incorporation of viscoelastic materials into existing structures (via CLD) has been
thoroughly investigated by numerous researchers?-!5 .

Viscoelastic damping is incorporated in one of two ways; 1.) additive damping
tape or 2.) integrally incorporated damping central layer. The additive damping
tapes have been used in an ad-hoc method to solve existing vibration problems.
Partial coverage with damping tapes allows the treatment to be applied in the
area and amount to effect the desired result for some applications. Integrally
damped structures are a relatively new phenomena. The damping layer is often
sandwiched between two symmetric constraining layers. Two sets of boundary
conditions, cantilever and clamped/clamped, are investigated for the partial cov-
erage treatment on an isotropic beam. The integrally damped beams are sub-
jected to cantilever investigation only.

The rationale behind investigating partial coverage treatments is twofold; first,
determine level of damping treatment will meet design criteria, and second, in-
vestigate possibility of an optimum length of treatment for a given mode and
structure. The driving force behind investigation of integrally damped beams is;
to determine effect of damping incorporated within design of beam and located
in center of symmetric beam. It is obvious that integrally damped beams involve
additional steps in manufacture and design. In the beams investigated here, the
two additional steps of; 1.) special lay-up with pre-cured graphite/epoxy com-
posite and 2.) pressure bonding of the damping material to the composite, were
required. Another design consideration in the incorporation of additive damping
is weight, compared with graphite epoxy the density is about equal, with the
damping tape on isotropic aluminum beam the density is also about the same (the
backing is the significant factor). Experimental method comparisons are neces-
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sary because it is not always feasible to run the best suited test. Citing this, it
must be known how test results correlate with actual values.

The principle objectives of this paper are to investigate different experimental
methods to extract damping values for beams with simple boundary conditions
and to evaluate partial coverage and integrally damped beams. This survey will
be useful to designers and analysts of advanced aerospace structures where fa-
tigue is a significant problem. The two boundary conditions considered are a
fixed/fixed (spar-like) beam and a cantilever member (similar to wings and other
rotary wing structures) (refer Figure 1.a,.b). The research is conducted using ex-
perimental results which can later be compared with analytical and finite element
models.

Experimental Methods and Formulations

The two basic frameworks that most structural dynamics experimentation are
performed in are; 1.) time domain and 2.) frequency domain. Frequency domain
techniques such as a Fast Fourier Transform (FFT) to develop a Frequency Re-
sponse Function (FRF) are often used. This function, FRF, then is used to ex-
tract modal information of natural frequency, modes shapes, damping and other
frequency dependent structural properties. This technique assumes linear
damping. The primary technique in the time domain is the Log Decrement Time
History (LDTH). This model does not assume linear damping but can not give
mode shape information readily.

Frequency Response Methods

Three basic FRF methods used in this investigation are; 1.) Real component of
the FRF (Re(FRF)), 2.) Imaginary component of the FRF (Im(FRF)), and 3.)
Circle Fit of Nyquist plot data. Looking at the imaginary part of the accelerance
FRF (ref Figure 2.a), for a single degree of freedom system (SDOF),

2L =n
(1 —(-cz,—”)z)z+(zc%"—)2

where w, = | /—&- , w is the driving frequency and { is the damping ratio. It can
be shown that the maximum response, or resonance, is near the natural frequency
(within 1-3 %) for moderate damping ({ < .05), and has a magnitude of,

Im(FRF) =

(1)

Im(FRF), 3‘(— =m % (2.)

where X , F, and m are the acceleration, magnitude of the driving force and ef-
fective mass. By looking at a point, b, near resonance a relation for relative
magnitudes can be developed;
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2% X
Im(FRF), = b ——= Xb 21{ . 3)
<l _( wz )2)2+ <2C wrx )2 r
Let
P
wn =D ; "b =R. (4.a,-b)
b X

By incorporating equations 4.2 and 4.b into equation 3. and restructuring the
result, it can be seen;

1 ~D?
(= ﬁ L. 5)
i
2, D( 1 —D)
Looking at the real part of the accelerance FRF (ref Figure 2.b), SDOF,
Wy \2
1-(5")
Re(FRF) = (6.)

Wy, V2)2 Wy \2 ’
(1 - (To') ) +(24—w‘)
where w,, @ and { are defined as before. The point at which this function crosses
the zero axis is the natural frequency w,. It can also be shown that

<_w"_>2=1i2( , (wc::';x )2=li2{ , (7.a,.b)

WDmin

where w,;, and w,,, are the frequencies of maximum and minimum values of re-
sponse. While one will occur one each side of the crossing frequency, which will
have a higher frequency is dependent of the mode shape of response. From this

it is obvious that;

W, 2 W, 2

C_l;(wmax> lq:(wmin)
- 2 ’ 2 )
Circle fit theory is of a much more complicated nature and can be referenced in
Ewins'® and Luk and Mitchell’” . Basically it involves constructing a plot of the
real versus imaginary components of the FRF into a Nyquist plot. It can then
be shown that the developed circle has a diameter inversely proportional to the
damping constant, { . This plot is only truly a circle for the mobility FRF for
viscous damping and the dynamic compliance FRF for structural damping. In
the case if light damping, less than 1 percent 1nost models work well. Two other

frequently used methods are the magnitude of the total FRF and the phase angle
of the FRF (refer Figure 3.a,.b).

(8.a,.b)
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Log Decrement Method

The log decrement method entails exciting a structure and measuring the decay
of the cyclic vibration when the exciter is removed. From the relative amplitude
of successive cycles of vibration and period of damped vibration, z,, the damped
natural frequency, w, damping ratio, and natural frequency, w,, can be ex-
tracted. The log of relative amplitudes of successive cycles is called the log dec-
rement, 6 and is defined as;

o=1 — = —In —— 9.
n X o In Xon 9.)
where, x,, x,,,, and x,,, are amplitude of response at those points in time. From
this, for light damping ({ < .03), it can be shown;

=357T , wd=-2—" (10.a,.b)

Through plotting, log decrement results, on semi-log paper one can determine
easily (often visually) if the damping is indeed linear or of another relation.

Experimental Results

Looking first at the results of the partial coverage experimentation, (refer Figure
4.a,.b and 5.a,.b), the structure tested here was a isotropic beam of Aluminum
6061-T6 with damping treatment of ISD-112 (from 3M), a viscoelastic material.
The physical dimensions were; for the base beam 9.00 (1) by .875 (w) by .125 (1),
the damping treatment was .875 (w) by .005 (t) for the viscoelastic and .010 (t)
for the aluminum backing material (all dimensions inches). The application
length, A, of the treatment was varied in 25 percent increments of total length,
L, (A/L = 0,25,50,75,100%).

The cantilever first mode shows good agreement between real and imaginary
FRF techniques. The log decrement graph reports lower damping values and an
earlier peak than the FRF methods. The circle fit data, though in a loosely re-
lated pattern, doesn’t provide useful information about this mode. It appears
that the FRF methods bound the log decrement methods from above. Both show
a peak in the neighborhood of 50 % (A/L). This is in agreement with previous
authors wurk. The circle fit data discrepancy is due in part to the moderate
damping values, decision to use viscous damping model, and the use of
accelerance FRF.

The cantilever second mode shows good agreement between real, imaginary, and
circle fit methods up to 75 % (A/L). This graph also shows that there is a con-
tinual gain in damping with increasing application length.

The fixed/fixed first mode shows less than ten percent deviation for the entire test
between all methods used. It also shows that the damping ratio increases con-
sistently with increasing treatment in an almost linear fashion.
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The fixed/fixed second mode shows significant deviation in the methods This
difference reaches a maximum of 40 % at and application length of 50 % be-
tween the Re(FRF) and circle fit methods. The complement of the test has more
reasonable 20 % or less deviations. The main cause in this error is attributable
to the low resolution of this high frequency mode.

The time domain approach, as previously mentioned, compared well with the
frequency response methods for the cantilever first mode. For the integrally
damped beams the effects are not as readily apparent. The first beam was a 3-ply
graphite-epoxy laminate [90/0/90] (refer Figure 6.a). This beam was used as a
building block for the successive beams. By extracting the damping of this
structure, future beams could be thought of a three layer beams with this as one
of the layers. The second beam was constructed of two of these laminates sur-
rounding a 10 mil layer of polyproplene (refer Figure 6.b) . This increased the
bending moment of inertia thereby increasing the relative bending stiffness. The
next beam replaced the polyproplene with damping material (ISD-112 from 3M)
of equal thickness (refer Figure 7.a). This was designed to increase damping
while not effecting stiffness significantly. The final beam was constructed two of
the laminates, similar to the third beam, subsisted of sandwiching a 10 mil thick
layer of polyproplene (refer Figure 7.b).

The first beam had a damping constant of 1.2%. The second beam reported a
value of .4% damping, this is in part due to the increased moment and the slight
stiffening the polyproplene gives the beam. The third beam reports a value of
11% damping, demonstrating the significant effect integral damping can achieve.
Note also that the natural frequency did not change greatly, indicating that the
bending stiffness was not adversely effected. The last beam reports the same
value for damping as the third. The natural frequency of the forth beam is much
less than the third which may show that the central layers are not adding much
stiffness mainly weight. The plot of integrally damped beam rcsponse on semi-log
format shows a nearly linear relation, indicating close to linear damping, (refer
Figures 8.a,.b).

Conclusions

The partial treatment shows an optimum for the first mode cantilever in there
neighborhood of 50 % (A/L) application length. The second modes of
clamped/clamped and cantilever in addition to first mode clamped/clamped show
consistently increasing damping with increasing application length.

The incorporation of damping material in the central part of the structure ap-
pears to be the most efficient method to increase damping.

The frequency domain techniques of the Real and Imaginary components of the
FRF agree reasonably well with each other for the light damping investigated
here, but care must be taken to assure sufficient spectral resolution of test. They
also appear to be an upper bound for the log decrement method. The circle fit
data must be re-evaluated using a mobility FRF model.
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The log decrement tests show that damping is fairly linear for all the beams
tested. Also the test showed peaks in the expected region for the case of
cantilever first mode.
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DAMPING BEHAVIOUR OF FLEXIBLE LAMINATES

by

V.A. Coveney, A.H. Muhr & A.G. Thomas

Malaysian Rubber Producers' Research Association
Tun Abdul Razak Laboratory
Brickendonbury,
Hertford SG13 8NL
England

ABSTRACT

Formulae for the mechanics of flexing of laminates of a viscoelastic
material, such as an elastomer, and an inextensible material, such as
steel, have been derived and compared to experiment. In particular,
equations for the profile, stiffness and partition of energy between
elastomer and metal are given.

The effect of an axial load on the lateral stiffness of laminar struts
is investigated both theoretically and in experiments on free
oscillation. As the axial 1load approaches the buckling load, the
apparent damping level to lateral oscillations becomes very large.
Conversely for an axial tension the lateral stiffness is enhanced and
the damping to lateral oscillations is diminished. Other examples of
this phenomenon, which is not peculiar to the laminates, are given.
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1. TINTRODUCTION

A characteristic of rubber springs is that they have relatively high
damping, and within limits the rubber compound can be chosen to give the
required level of damping. Each type of conventional rubber spring has
a characteristic force-deformation behaviour which may be convenient for
a particular application. In this work the properties of an
unconventional rubber spring will be described, which lends itself to
control of the damping level, and may have other advantages for some
applications. The spring consists of a sandwich structure of metal and
rubber (Figure 1). Attention will be concentrated on the flexing mode
of deformation {analogous to that of a leaf spring).

The mathematical expressions for the mechanical properties of the
laminate are relatively simple, so the properties can be readily

calculated. While this is a desirable state of affairs for an
engineering component, it also means that physical insight is not
obscured by mathematical complexity. For example, not only is the

effect of an axial load on the stability and apparent damping level (to
lateral oscillations) easy to investigate for the laminates, but the
effect also helps provide ingight into a general phenomenon.

2. MECHANICS OF FLEXING OF RUBBER-STEEL LAMINATES

It is assumed that:

(i) there is no strain normal to the plane of flexure (so all forces
etc. will be taken per unit breadth of laminate)

{ii) the rubber is incompressible.

Thin, inextensible metal layers

Then, if the further assumption is made that the metal layers are
inextensible and much thinner than the rubber layers (t<<h}, it follows
that the state of deformation of the rubber is simple shear and the
metal layers deform to have a cowmmon centre cf curvature. This is
demonstrated in Figure 2, from which it may be readily concluded that
the volume of the element PQRS is constant provided:

6v = hé8 (1)
which is the condition of inextensibility.
Since the element PQRS is not necessarily initially in a state of zero
shear, &v may be identified with the increase in shear movement of one
metal layer relative to the other. Thus the angle of shear 7 is related

to the slope 8 of the laminate by:

d(tanr)/d® = 1 (2)
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Equation (2) may be integrated and for the case that the deflection y of
the laminate 1is small so that all the angles are small, simplified to
give:

tan v = 8 + constant = dy/dx + constant {3)

where the co-ordinates (x,y) are defined in Figure 2. Throughout the
rest of this paper the choice of co-ordinates allows the constant term
in (3) to be dropped, since it can in each case be seen that tany=0 when
dy/dx=0. Only in relating 8 to dy/dx has the assumption of small angles
(and hence large radius of curvature of the laminate and small strain in
the rubber) been made, equations (1) and (2} being of more general
validity.

The shear in an element of rubber imposes an increment SF in compressive
force per unit breadth on one metal layer and a corresponding increment
in tensile force on the other layer:

6F = G 6x.tany {4)

where G is the shear modulus of the rubber. Integration of equation
{4), wusing appropriate boundary conditions, yields the compressive {or
tensile} force F as a function of x.

The differential equation describing the profile of the flexed laminate
can be derived by consideration of the forces on an element, as depicted
in Figure 3. The total shear force S per unit breadth borne by the
laminate is distributed between the shear force S, borne by the rubber
layer and the shear forces Sl and 82 borne by the metal layers.

S =8 +8§,+ 5 (S)

Relating S to the shear in the rubber and §

Y

and S to the curvature

gradient in the metal (S, = —dMl/dx, S, = 2/dx where Ml and M, are

the bending moments in t%e metal layers?, equation %5) can be writtén as
S = Ghtanr - d(Ml + MZ)/dx

- Ghtany - K(doy/dx°) (6)

where it has been assumed that the radius of curvature is large compared
to the laminate thickness and K is given by
3 3
K = kl + k2 = (Elt1 + E2t2 }/12 (7)

where k., k2 are the bending stiffnesses of the metal layers, E,, E, are
their Y%ung s moduli and tl' t2 are their thicknesses {in the  rest of
this paper E, = E_,, £, = t2 80 that the subscripts will be dropped}.
Inserting (3% intg (6% gives

S = Gh{dy/dx) - K{dSy/dx%) (8)
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whi_i, 18 applicable for the case that t<<h and the metal layers are
inextensible.

The local strain energy density in the rubber is just O.SG(tam')2 80
that the total strain energy (per unit width) UR stored in the rubber is

Up = O.Sth(dy/dx)de (9)

where use has been made of equation (3).
The energy stored in the metal layers can similarly be calculated as

Uy - 0.5K/(d°y/dx ) %dx {10}

The total energy stored is U‘ + UM

Geometric effect of thick metal layers

If the metal layers have an appreciable thickness the assumption that
t<<h must be relaxed. However, to a small angle approximation
agsumptions (i) and (ii} are satisfied if the deformation is such that
the central lines of the metal layers have a common centre of curvature.
The rubber is not then just deformed in simple shear but suffers some
compression and extension on the surfaces bonded to the metal in regions
of curvature. However, the effect is still an increment Sv to the shear
movement, given this time by:

6v = (h + (t,+t,)/2)68 (11}
Thus equation (3} becomes:

2h+t +t2

tany = _—_2h_

(dy/dx)

A further modification required for thick metal layers is that the shear
stress in the laminate falls from Gtany in the rubber to zero across the
thickness of the metal layers, so that the shear term SR in equation (5)
becomes:

SR = Gtanr(h + (tl+t2)/2)

Thus equation (8) becomes:

(2het +t,)% dy a3y
S = G————"— — - K— {12)
4h dx dx

Equation {(12) has the same form as equation (8) but the geometric effect
of the thick metal layers enhances the magnitude of the shear term from
the rubber core. Hence in most of the work below the results are derived
from (8}, but the results gre valid for thicker metal layers provided Gh
is replaced by G(2h+t1+t2) /4h.




Effect of extension of the metal layers

Under the actions of the forces given by equation (4) the metal layers
will suffer some longitudinal extension. The neutral axes will no
longer coincide with the centre lines, and equations {l) and {1l1l) will
not be accurate. Mead and Markus™ have allowed for this effect by means
of an additional term involving the longitudinal extensions. This leads
to an additional differential equation to their analogue of equation (8)
or (12). Elimination of the longitudinal extensions from the pair of
differential equations yeilds a fifth order differential equation
analogous to (8} or (12).

This complication is not addressed in our work. As a consequence, the
limits as h»0 {(but G is kept fixed) correspond to metal layers which are
allowed to slip at the interface, instead of metal layers which are
bonded at the interface (which then becomes the common neutral axisj).
Thus there ig an implicit assumption that as h is reduced to zero, so G
is reduced to 2zero. A criterion for the validity of our equations is
derived below.

3. THREE-POINT BEND GEOMETRY

Profile

The three point bend geometry, shown in Figure 4, is a convenient
deformation for experimental measurement of the dynamic properties of
the laminate on a servohydraulic test machine. It is necessary to treat
the laminate in two parts, O0<(x<% which covers the central region, and
-3¢(x<0 which covers the overhanging region. It can be shown that in the
two extreme cases of G=0 and of K=0 that the overhanging region does not
influence the force-deflection behaviour, but it does have to be
considered in the general case.

The profile will be gymmetrical about x=2, so it is only necessary to
solve the problem for x<(%.

Considering first the portion of the laminate for 0<x<%, the bending
moment B exerted on a portion of laminate to the left of the point (x,y)
ia given by

B = -Wx {13)
B is reiated to the shear force S in the beam by

s = -dB/dx (14)
ingserting (14} into equation (8}, and making use of (13) gives

W = Gh(dy/dx) - K(dsy/dxs) {15)

The differential equation describing the profile in the region -a(x<0 is
the same as (15) but with W set to zero.
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These differential equations are required to be solved subject to the
boundary conditions

(1) at x = -a, d2y/dx2 = 0 since the bending moment in the metal here
must be zero as it is a free end

{ii) at x = 0, y = 0 while dy/dx and dzy/dx2 must be the same for both
equations

(iii) at x = &, dy/dx = 0 as required by symmetry.

The solutions are

For -a<x<0, y = A, (e®*-1) + B, ("% 1)

2
for O¢x<® y = Ay (e%%-1) + Bl(e—ax-l) + Wx/Gh

where a2 Gh/K

2_]1_2pg2
{W/aGh) %TilsgggT (16)

>
L}

T
[

A, + (W/2aGh)

o
0

p(Alp + W/aGh)

o
]

2

al aa
e

p = » q =8

It has been reported previously2 that equation (16) is in good agreement
with experimental observation of the profile. The deflection Y at x = &
can be found from (16) and this leads to an expression for the stiffness
of the laminate in the 3-point bend geometry:

2a{1+p2g?)
2a%(1+p2g2)+(1-p)(3-q2-p+3pq?)

(2W/Y}(%/2Gh) = (17)

The quantity 2/2Gh represents the compliance in the limit of af + o, and
is equal to that of a rubber spring undergoing simple shear. The
quantity @ 1is a non-dimensional measure of the relative importance of
rubber and metal, and it is convenient to expreas all the results as
functions of a% {as in equation (17}).
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Stored energy in 3-point bend

Inserting equation (16} into the integral expression (9} the energy
stored in the rubber is given by

Gh o 2
URl overhang = ; fa (dy/dx)"dx
Gha
2 2, 22 2
-;— {Az(l-l/q )-Bz(l-q )-4aaA282} (18)
Gh 2 2
U,., central section = — [ {dy/dx)"dx
R? s O

Gha

= — (a2 (p?-1)-BZ(1/p%-1)-402A B
4

171

N 2(W/Gh)22/a+(4W/aGh)(Alp+Bl/p-Al-Bl)} (19)

Since the energy loss associated with deforming rubber (per unit of
stored energy) greatly exceeds that of metals (for strains helow the
yield point} the energy loss associated with deforming the laminate will
be proportional to U = U +UR . A plot of UR/(UR+U }) versus af is
given in Figure 5 wigh vagﬁes gf a/% as a parameter. IP is apparent that
that the overhang region (-a<x<o) only makes an appreciable difference
for values of af such that the total energy is fairly evenly partitioned
between rubber and metal. This effect is investigated further in Figure
6 where U /(UR+U ) is plotted against a? with a/f as a parameter. At
small vaEﬁes of 52 the simple theory predicts a significant fraction of
the deformation energy to be stored in the rubber in the overhang
regiorn. This is a manifestation of the effect of a constrained layer on
the damping of panels since it suggests that a constrained layer
covering a large region of a panel will have a useful damping effect on
a local deformation.

Forces in the metal layers

It follows from equations (4) and {11), and from the fact that the axial
force in the metal layer at x = -a is zero, that the compressive force
per unit width in the top metal layer is

2h+t1+t2
F o= G—-—EE——- (y—Ya) (20)

where Ya = y{x= -a).
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It is apparent from (20) that F rises to a maximum value of F-G(Y+Ya)
at x=2. If this maximum value is sufficiently large the metal layer can
buckle in a manner similar to an Eulerian strut, (althgugh the
constraint of bonding to the rubber must be taken into account™). This
has the effect of limiting the permissible deflection Y.

The force in the bottom metal layer will, according to the boundary
condition, be equal and opposite to that in the top layer. A further
significance of these forces is that the resultant strain in the metal
layers may lead to a departure from the assumption of inextensibility
which was used to derive equation (1}.

The condition of inextensibility of the metal layers may be expressed as

Je dx <<0.5 Viax - 0.5(h+(tl+t2)/2)(dy/dx) {21)

max
where the left hand side is the change in length of one metal layer due
to its axial strain and the right hand side is the shear displacement
predicted by equation (11) (reduced by a factor of one half since it is
‘shared' between the metal layers). The axial strain € is just F/Et,
which using {20) gives

G (2h+t,+t,)

©=B  2n ¥ (22)

For the extreme case of large af%, y={x/%)Y {with y=0 in the overhang) so
that (21) becomes

G/E << ht/2° (23)

while for the extreme case that af is small, y=(W/2K)(22x—x3/3) (with
dy/dx constant in the overhang) so that (21) can be recast as

G/E<<ht/(a%32a+522/6) (24)

For rubber G » 1MPa while §9r steel E = 210GPa, so the left hand side of
(23) or (24) is about 5x10 . This means that provided the length to
thickness ratio of the laminate is less than 100, a ratio of up to 100
between t and h is allowable. Thus for the system studied here
equations (8) or (12) have a very broad range of validity. They may
also be applicable to many cases of composite beams with a core layer of
viscoelastic material other than rubber.

4. LAMINAR STRUTS SUBJECTED TO AN AXIAL FORCE

Profile

Interconnecting the metal layers of the laminate depicted in Figure 7
leads to the following boundary conditions:

at x=0 y=0
at x=0,% dy/dx=0 } (25)
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where the second condition expresses the fact that the radius of
curvature of the metal layer is finite.

The total bending moment B applied by the laminate on the right hand
side of position x to the laminate on the left hand side is

B = M+W(R-x) + P(Y-y) (26)
where Y is the deflection at y=%. |
Proceeding as for the three-point bend geometry then leads to

W = (Gh-P)dy/dx - K(doy/dx’) (27)
Integrating the equation once gives

d2y/dx2 - a2y = -Wx/K + C {28)
where a2 = {Gh-P)/K

Since a is imaginary for P>Gh it is convenient to express the solution
of (28} in hyperbolic functions rather than exponentials:

Wx c
Y = Asinhax + Bcoshax - —5 + > {29)

Ka2 Q

Using the boundary conditions {25) to find values for the integration
constants A, B and C gives

y = W/Ka3 [pcoshax - sinhax + ax - p] }

where «® = {Gh-P)/K } (30)
p = tanh{(af%/2) }

Stiffness

The stiffness W/Y may be found from {30) by setting x=%. Algebraic
simplication then leads to

W Gh P al
Y "8 (1- EH"aE—Zp) (31)

The quantity Gh/2 has been isolated in equation (31) because it is the
value that W/Y takes for zero P and infinite a%, and is equivalent to a
rubber siQple shear spring. A plot of (W/y}{%/Gh}) for P=0 versus c°2
(where a, =Gh/K) is given in Figure 8.
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The effect of P on the stiffness is of interest. When P>Gh, equation
{31) becomes

W _GhP_ B

Y~ 3 ‘6n ‘l’ﬁq-ez ’ (32)
where 82 = (P-Gh)/K

g = tan(B/2)

Using equation (31) when P<(Gh and equation (32) when P>Gh, the
non-dimensional gtiffness (W/Y){%/Gh) can be plotted against the
non-dimensional normal load P/Gh. The results are given in Figure 9,
with a02 as a parameter.

Stability

As B2 > m, g% so that, from equation (32}, the stiffness falls to zero.
This is the point of instability, and the stability criterion may be
expregased as

* —
8*2 =1

= P = Gh{l+(n/a_2)?)

(33)
For Gh = 0, this reduces to the usual Eulerian buckling relation.

Elastic energy stored in the flexed laminate

Equation (30) may be used to evaluate dy/dx and hence UR' using equation
(9). This gives

U, = (GhW’/2k%’) (3a%/2 -~ 3p - plen/2) (34)
Substituting for w2 using equation (31) gives
2 1,Gh.. 1. 2 al .2
In the case the P>Gh, [35) becomes
2 1Gh, 1 2 g .2
U/Y" = 513 ) gg (382/2-3q+q 82/2}(82_2q) (36)

The term 0.5{(Gh/%) may be identified as the energy stored in a rubber
simple shear spring at unit deflectiog {ie. the limit as a02+n). A plot
of the non-dimensional energy UR/(Y Gh/2%) versus P/Gh is given in
Figure 10 with a % as a parameter. For P/Gh=1 the profile will be
independent of % 2, thus explaining why all the plots in the Figure
coincide at that pgint, since the energy in the rubber (U_) depends on
the profile. In all cases U, exceeds the value for rugber in uniform
simple shear (GhY2/2). This ig because the profile departs from a
straight line configuration, for which the shear energy in the rubber is
a minimum, when K is non zero.
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It is also of interest to consider the ratio E, of the energy stored in
the rubber to the work done by the lateral torce in deflecting the
strut:

ER = UR/O.SWY
A plot of E§ versus P/Gh is given in Figure 11 with aoz as a parameter.
The magnitude of Eq determines the degree of damping experienced by
lateral oscillationsg, as discussed below.

Forces in the metal layers

There are three contributions to the axial loading F in the metal - the
imposed axial load P, the imposed moment M and the contributions &F from
the shear in the rubber (equation (4}). This makes the domain of
validity of the equations less broad than implied by equations (23) or
{24). However, the values of P and M applied in the experiments were so
modest as to not greatly affect the earlier conclusions regarding
validity.

S. EXPERIMENTAL

Experimen&as checks of some aspects of the theory have been reported
prevously™’~ and where appropriate these results have been entered as
points on the diagrams, thus allowing comparison with the theory.

Of particular interest here are the experimental measurements of the
fraction of energy stored in the rubber, U /(UR+UM) (Figure 5). The
dynamic behaviour of the laminates was measureg using a servohydraulic
test machine. There were initial problems regarding the method of
support of the laminate in three point bend configuration, since the
metal layer tended to slide over the supports as the laminate was bent,
causing frictional energy loss. This was overcome by bonding to the
supports small resilient rubber pads which could deform very easily in
shear, but themselves dissipate very little energy. In this manner a
reliable measurement of the loss angle &, of the laminate could be made.
The fraction of deformation energy of t%e laminate stored in the rubber
can be found from 62 and an independent measurement of the loss angle 6r
of the rubber:

UR/(UR +UM)-= 51n62/31n6r {37)
where it has been assumed that the loss in the metal is negligible.
Further experimental work has now been undertaken to check the theory
for the effect of axial load on the stiffness and damping of struts
consisting of laminates with the metal layers interconnected at each

end. These laminates were constructed by bonding (during vulcanization)
nominal 0.25mm spring steel strips to each side of an unfilled natural
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rubber compound. The spring steel layers were separated at each end by
mild steel blocks, through which bolts passed which served as both a
means of attaching the struts and to prevent relative shear
displacements {at the ends of the strut) between the metal layers. The
shear modulus of the rubber was measured using a separate testpiece
{double shear) on a servohydraulic machine, giving a value of G =
0.52MPa. The logarithmic decrement of the rubber was determined from
free torsional oscillation of the double shear testpiece at 9.3Hz. This
gave a value of 0.0729, and there was very little frequency dependence.
The pertinent laminate dimensions were £ = 257mm (measured from the
inside edges of the mild steel end blocks), width of rubber = 44mm,
width of spring steel = 57mm, K = 0.74Nm (calculated from the measured
thickness of steel, 0.27mm, and adjusted according to the excess width
cf steel}.

The axial load was applied by means of weights as depicted in Figure 12.
The stiffness W/Y and damping of the combined laminates were calculated
from the frequency f and logarithmic decrement A of the natural
oscillations of the structure according to

W/Y = M{2nf )° (38)
an{A_/A )
A = —2 0 (39}
n-m
where A is the amplitude of the nth cycle. M is taken as the mass of

the welights plus that of half of the total (unladen) structure, since
the structure was symmetrical about the mid point of the laminates. For
tensile axial loads the structure was hung from the top board and
weights were placed on the lower board.

On the assumption that only the rubber 1is responsible for energy
diasipation, A may be related to UR by

A = mtans(Up/0.5YW) {40)

gince the fraction of energy lost on a full cycle (positive and negative
shear straing) is 2ntand for low to moderate values of the loss angle 6§.

The results are compared to the predictions of the theory in Figures 13
and 14.

6. DISCUSSION

It has been shown here that provided a % is sufficiently large then most
of the deSormation energy is stored inthe rubber. It has been shown
elsewhere” that provided a % is neither large nor too small the springs
can undergo larger deflectfons than conventional metal leaf aprings of
the same length, a compromise value of a & being around 10. It thus
appears that the laminated springs have uSeful characteristics and are,
in essence, rubber springs. The sole function of the metal layers is to
constrain the deformation of the rubber to be simple shear.
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An additional feature of the gpring is that by wusing a multilayer
construction, rubbers of different levels of damping can be used
together in a parallel deformation. This may allow layers of very high
damping elastomer to be used, as analogues to oil-filled dampers, in
combination with a layer of highly elastic rubber. Elastomers with very
high damping are seldom used in conventional rubber springs because, on
their own, they generally suffer from unacceptably high creep. Most
conventional rubber springs do not lend themselves to parallel
deformation of two separate elastomers.

The effect of axial load on lateral stiffness, stability and damping of
the laminar struts is close to that predicted. Considering that there
are no fitting parameters available (all parameters having been
determined by independent experiments) the agreement may be taken as
satisfactory.

Figure 14 suggests that in fact the predicted load for instability is
slightly in error, which may be due, for example, to some uncertainty in
the rubber modulus. The deviation of the experimental results below the
theoretical values for tensile P may arise from imperfections in the
clamping at the ends of the struts, which might progressively come to
resemble pin joints as the tension increases. This would act to reduce
the lateral stiffness towards P/%. The theoretical result in Figure 14
can, in fact, be interpreted as the provision by the flexing stiffness
of the strut of an almost constant extra lateral stiffness, of magnitude
Gh/%2, over and above the axial force term {for a pin-jointed rod} of
P/2.

As the axial load approaches the buckling load the apparent level of
damping to horizontal vibrations increases asymptotically. The
explanation of this phenomenon is that the apparent damping 1is
determined by the ratio of the energy dissipated in a lateral deflection
(of the given magnitude) to the energy required to achieve the
deflection. The dissipated energy depends primarily on the deflection
and is comparatively insensitive to the axial load (see Figure 10]). In
particular, the dissipated energy remains finit