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1. Introduction

The aralvtical downward continuation (ADC) is widely used in the solving of the geodetic
boundary value problem. One example is the use of the ADC for the solving of Molodensky's
problem (Moritz, 1980, Section 45). Recently, the airborne and satellite gradiomeury have been
getting substantial improvement and they will supply a huge gravity gradient data for the
determination of the Earth's gravity field. To process such data the ADC method has to he ns=d
and sone reference surface, such as the sea level, the ellipsoid, aiay oe chosen. The topographic
effect is becoming an important problem in the use of the gradient data. This study is addressed on
the problem of the topographic effect on the using of the ADC method.

In Chapter 2 the classic topographic reductions - the Bouguer reduction and the Heimert
second condensation will be introduced into the airbome gradiometry. The reductions are studied
in the space domain and the frequency domain. The reduction in space domain is tedious but they
S'vc aclear view of the physical meaning. In the frequency domain, this problem becomes much
easier to solve.

In Chapter 3 iiic topographic effect for the use of the analytical downward continuation
method ts studied. The remove-restore of the mass above the ellipsoid is used. The goal of the
study is to find the topographic corrections, in another word, to find the difference between the
disturbing potential on the sea level and disturhing potential which is downward continued to the
sea level from the outside of the earth.

In Chapter 4 we study the topographic effect on the solving of the Molodensky's problem. It
was proved that the ADC solution is equivalent to the Molodensky's solution (ibid, p. 388). In
this chapter we show that the topographic effect still exists in the solution of Molodensky's
problem by using the ADC method, even if this effect is very small. The topographic effect on the
determination of the coefficients of the spherical harmonics of the geopotential by using the ADC
method is also considered.

[3%)

Topographic Correction on the Gravity Gradient Data Measured by an
Airborne Gradiometer

[ 8]

.1 Introduction

In this chapter e consider the topographic correction on the gravity gradient data measured
by an airbomne gradiometer. We assume that the airborne flights are at a constant altitude above the
sea level. In comparison with the satellite gradiometry the airborne flights are much lower and can
sense much higher frequencies of the gravity field. It is well known that the gravity gradient
depends strongly on the roughness of the topography. Because the airborne gradiometer flies

close to the topography, we will try to eliminate the topography effect directly from the measured
gravity gradient data.

The topographic correction for airborne gravity and gradient data has been discussed
extensively in the literature; e.g., Chinnery (1961), Parker (1972), Dorman and Lewis (1974),
Hammer (1076). Recently an algorithm was developed for eliminating the "topographic noise"
(Tziavos et al., 1988). The fast Fourier transformation was used and this algorithm is very
efficient to compute the topographic effect on the gravity and gradient data.

Now we want to make the statement "eliminating the effect of the topography" more clear.




Tziavos et al., (17988) developed an algorithm to compute the gradient of the attraction of the
topography. The topographic effect was considered as “topographic noise” (ibid) and subtracted
trom the measured gradient data.

Actually the topographic effect is a part of the gravitational potential of the earth and cannot be
simply eliminated by subtracting its contribution from the measured gravity and gradient data.
Before we consider the effect of the earth's topography, we must ask ourselves, what is the goal
and what will be determined by using the gravity gradient data or the reduced data. This is very
important for the start of the topography reduction procedure.

If the contribution of the topography is subtracted from the gravity and gradient data, it means
the topography mass is removed, then the disturbing potential and its derivatives are harmonic
above the sea level and can be analytically downward continued to the sea level without any
theoretical difficulty. Obviously, the reduced gravity anomaly is the Bouguer anomaly and the
topography reduction is the Bouguer reduction.

In this chapter, we assume that the geoid and the deflections of the vertical will be determined
in a2 mountain area by using the aerial gravity gradient data. The topographic effect will be
eliminated from such data. For this purpose an instinctive action is to expand the Bouguer
reduction and the Helmert's second condensation into the airbome gradiometry.

2.2 Topographic Correction Studied in Space Domain
2.2.1 Bouguer Reduction

The Bouguer reduction in airborne gradiometry is to eliminate the “topographic noise" by
subtracting the contribution of the topography to the gravity and gradient data (e.g., Tziavos et al.,
1988). The airbome gradiometry is taken in a local area. For such area a plane approximation for
the computation is suitable ‘Jekeli et al., 1985).

The geometry of the computation of the topographic effect in the airbome gravity gradiometry
1s illustrated in Fig. 1.
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Fig. 1. Geometry of the Computation of the Topographic Correction




We define the local coordinate svstem: whose origin is located at sea level and the x axis points
to the north and y axis points to the east.

The potential of the mass above the sea level at the point Q is given by:

vQ=fo‘ fo"%dzdxdy o

with

LZ=S:+(ZO-Zj2 (2-2)

A

where G is the gravitational constant and the density of the topography p (x, y. z) is a functionﬁof
the location of the current point, T is a 2D plane which coincides with the local sea level and s- =
(x-xQ)* + (y-yQ)®. At first we assume that the density p is a constant. Notice that

2 2
S +zp22z92-2 (2-3)

then eq. (2-1) can be expanded by

2
Vo= Gp ff —I'}dxdy+%6p ff fo"%‘-—dwdw

3Pa ff fb(,‘?zﬂz'z-) Nt A
8 (10 JJ‘ ja ‘5 jorsonex

L (2-4)

L

’ 2 . . . .
where L' 2 = s2 + z, is the distance between the point Q and the current point on the sea level T.

The equation (2-4) gives the potennial of the topugraphy at the point Q. The rermc whick
contain the inverse of the power of L' higher than 5 are omitted. In the next discussion we
separate the topography into a Bouguer plate with thickness hy and a terrain undulation around the
point P.

The Bouguer plate generates a potential at the point Q:

VS:Gp ff‘ foﬁ'%dxdy

R
= lim 2nGph s - 2nGp{z h - + 2)
Sinm nGph s 7tGp\z0hp 2hp 2-5)
where V8 denotes the potential of the Bouguer plate. The first term in (2-5) becomes infinite when
s—eo. This infinity is due to the plane approximation. In spherical approximation this term is a
constant (cf. Moritz, 1968). From (2-5) we can see that the potential of the Bouguer plate is a
function of the flight altitude, zy. Obviously, the potential of the Bouguer plate is not a regular




potential because it does not vamsh at infimty. The terrain undulation has the contribution to the
geopotennal at the point

Vo= Gp ff f ‘;‘ dady
_prf d\dy+—prf J- -zozz dxdy

(2-6)
where V denotes the potential of the terrain undulation around the point Q.
Now we consider the first and second denvatives of the potential of the topography.
The vertcal denivatuve of the potential of the topography is given by
aV
v,=—2=Gp ff f *-dzdxdv
820
=V, +V, . (2.7
with
=Gp ff f —_— dzdxd\
0 ()L() (2-8)
\ =Gp ff f ~———dzdxdv
(2-9

Obviously, V is the contribution of the Bouguer plate and V is the contribution of the terrain
undulation. Notice that

ff ’— d\(dv— s def s
/ 4 /
s *’{Zu Z() a

=2rlim s-2n(z, ~
§—3 oo (O

(2-10)

where a > () is a parameter, then we obtain

=Gp j; { %)i '(])dedy
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= C)D j [ r*:_l_:;:;" d\d)

Z(~ ’\ S +'1 h ‘

=-21tGphp (2_1])

This is nothing else than the attraction of the Bouguer plate, where the computation point is not
only on the Bouguer plate but also at the flight altitude. Equation (2-11) means that the attraction
of a Bouguer platc 1s a constant on and above the Bouguer plate and it does not change with the
flight altitude 2g.

The effect of the terrain undulation is given by

o £ 1yh
\I‘C"’f} ‘L’ h 4o
t P
szﬁff ded» -prf dedv

The attraction of the mass above the sea level at the point Q is then

V,=-21Gph --Gpj/

In & mountainous area the first term in (2-13) is the principal value and much bigger than the last
term in eq. (2-13).

22ih- h;,} (h -h ) by

(2-13

In the same way we can get the horizontal derivatives of the potential of the topography. The
honzontal denvatives of the potential of the topography are

8\/
——*G ~~—d1d~<d\

(2-14
oV
-a——Q—G ff f ——-dmxdv
Yp dy, L (2-15)
We define the horizontal derivatives of the potential of the Bouguer plate as:
1 p
- dzdxdy = dzdxdy
ax
(2-16a)




dxdy

[ f - d?u\d\. = ff f
0 ()V (27480

It is easy to prove that the Bouguer plate has no etfect on the horizontal denvatives:

Introduce the polar coordinate sysieny

X=x-xp=scosb
Y =y-yp=ssint (2-17
so thut have
” X-Xp | ‘ ’ a ) Y-
- drdxdy = dz cos 8 d8 i S
A 0 0 0 LS‘*’(Q)‘Z)"]“
=) (2-1%,
In the sarie way we have
f{ / "pdzd\(d»:f)
(2-19)
Therefore the horzontal derivatives of the potential of the topography are given by
. (( hhy ' 3 - h2zpz-27
Vo=0p j] {x-xpjdxdy + 5 Gp jf f ——— [x-x | dzdxdy
. 1 - ' g
' oL (2-20)
<h 2
' ) h-h, 3 2zg2-2
V.=Gp ff —=={y-ydxdy + 5 Gp ff j - (y-y ) dzdxdy
‘1 < h S
L oL (2-21

Furthermaore, we consider the second derivatives of the potential of the topography at the point Q
It is easy to show that a Bouguer piate has no effect on the gravity gradient. As shown above, the
hornzontal derivatives of the potential of al Bouguer plate are zero. Therefore, the derivatives such

sVB VE VP,. V;’,, VB are equal to zero. The superscript B denots the effect of the Bouguer
p])tc‘

{tis also not difficult to prove the derivatives vhis equal to zero:

ff —— = dzdxdy
0




Based on the above discussion we can see that the Bouguer plate has no effect on the gradient
data. Therefore, it is not possible to recover the effect of the Bouguer nlate on gravity and the
potential by processing the aerial gravity gradient data only.

By using eqgs. (2-18) and (2-22) we have the second derivatives of the potential of the
topcgraphy

V= =_prf -dxdy+3prf } dzdxdy

(2-23)
azv h
XgYp « 7h L (2-24)
E) \%
Voy Q——prf ] —dxdy+"Gp]f f - yP’ dzdxdy
(2-2%5)
82 n
\% .
szz Q :—BGp ff f %‘i’dw‘dy
20 o L (2-26)
3V by —
Vyz = Q =-3 Gp jf f wggﬁ dzd‘dy
dy 9z ¢ Zh, L (2-27)
= - (20'
=~Gp ——dxdy +3Gp dzdxdy
(2-28)

Bct:ccn the six components Vyy, Vxy, .... there are five independent components. A strict
condition is

Vix + Vyy + V5, =0 (2-29)




The derivation of the formulas are routine and tedious, but it helps us to understand bctter the
physical meaning of the reduction and helps us to figure out the role of the Bouguer plate and the
terrain undulation in the airborne gravity gradiometry.

Next we consider a more general case where the density of the topography is not a constant.
We separate the density function into a constant part and a variable part:

plx.y,z=py+dplx.y.2 (2-30)

where pg is a constant and 8p is the variable part of the density of the topography which is
sometimes called the density anomaly (Forsberg, 1984). We assume that this density function is
known. For the constant densitv pg all formulas derived above remain valid. Therefore we need
only to consider the potential caused by the vanable part of the density.

The potential caused by ¢ density anomaly 8p is given by

AV Q—fo f dzdxdy

(2-31)
2
AV -Gf[ f % 1,1 z"zzz dzdxdy
L (2-32)
Define the new functions
h
5pM=f dpix,y.zldz
0 (2-33)
h
2
8pN=f (22(-,2- z )Bp(x. y.z)dz
0 4 (2-34)
Then (2-32) can be written as
1 1 1
AVQZGS‘/M"'— 5 BDN -
L 2 3
L (2-35)

where "*" denot:s the convolution of two functions. Therefore the numerical evaluation of (2-35)
can be done by’ using the efficient fast Fourier transformation. The first derivatives of the potential
AV are giver by:

0AV
————Q—fo p8pM(x y)dxdy + 5 fo pSpN(x y) dxdy
(2-36)

R



——

aav
—0Q. fo y——--Slex y}dxdy+—ij ———SPN‘X y) dxdy

aAVQ
AVZ'—: ='Gloff
sz 1

d )
p’M dxdy - 20 zof/ ————p? dxdy
L’ ) T L

If the dersity is not a constant, then the secord derivatives of the Bouguer plate is no longer

equal to zero. Therefore we have:

0 AV (x -xpj
AVK f[ Sp\f '__+3 dXdV+

2
+— fo -——+15{-%p) dxdy
L7

(2-38)

(2-39)

(2-40)

(2-41)

(2-42)
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1 (2-43)
d AV 1 o
aZO T L L
1 3 22
+-fo s op dxdy
3 ‘3
- + L L L (2-44)

The inverse of the higher powers of the distance L” appearing in the formulas means that the
derivatives, such as AVyx, AVyy, ..., depend strongly on the value of the innermost zone. The
effect of the remote zone is very small and vanishes very fast. In the numerical computation the
integration region can be taken small, but the data should be dense enough around the computation
point, in order to ensure the computation accuracy.

The higher power of the inverse of the distance L” are omitted in the above formulas. These
higher power terms contain very high frequencies of the potential. In the numerical computation
the omitted terms may not cause serious error in the results,

The formulas derived above are in convolution form and the efficient numerical computation
method - fast Founer ransformation can be used.

2.2.2 Helmert's Second Condensation

Itis a well-known fact that the indirect effect of the Bouguer reduction on the geoid is very
large (Heiskanen and Moritz, 1967, p. 142) and it is not suitable for the determination of the geoid.

In this paragraph we introduce the Helmert's second condensation into airborne gradiometry
reduction. The Helment's second condensation is to press the topographic mass onto the geoid, or,
in a good approximation, onto the sea level.

We assume the density is constant, so that the density of the condensed layer is ph.

The potential of the condensed layer at the point Q is given by (cf. Figure 1):

wo=6 [ [ P ixdy
oL

First we consider the condensation of a Bouguer plate with thickness hp into a layer.

(2-45)
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The density of the layer condensed from a Bouguer plate is p-hp and its potential at the point Q

=2nGphpsh_n)1ws— 21tzohp (2-46)

Combining (2-5) and (2-46) we obtain the variation (change) of the potential of the Bouguer
plate due to Helmert's condensation:

B
B B
8V o= - Vo+ Wg

=-nGph, (2-47)

The variation of the potential SV is independent of the flight altitude and is a constant above
and on the Bouguer plate. Eq. (2-4 %) means that if a Bouguer plate is pressed into a layer, the
potennal will change at point Q a constant - nGphp. This term is small. If we take p = 2.67
g/cm3, hp = 1000 meters, the term - 1thph2 causes a geoid undulation change of 5 cm.

Roughly speaking, the condensed Bouguer layer generates almost the same potential as the
Bouguer plate does. The difference nGph is a small quantity and it can be neglected for the first
approximation. But if the geoid is ne:edfcdJ to be precisely determined, this term is also important
and cannot be omitted.

Equation (2-45) can be written as

Wq=Gp ff P dxdy + Gp ff dxdy
_WQ+Gp ff P dxdy

Combining egs. (2-5), (2-6) and (2-46), (2-48) we get the change (at point Q) of the potential of
the topography after Helmert's condensation:

(2-48)

SVQ= - VQ+ Wc

%“zﬁ) &33)
=—npohp 2G ff dxdy

The last term in (2-49) is one order smaller than the first term and can be neglected except in some
extreme cases.

(2-49)
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Now let us consider the vanation of the derivatives of the potential due to the Helmert's
second condensation.

The vertical derivative of the potential of the condensed topography at point Q is

BW
Q_ f f L dudy
(2-50)
We separate (2-50) into
B T
=W, +W, (2-51)
with
szofj d\d»
(2-57)
szoff dedy
(2-53)

Obviously (2-52) is the attraction of the condensed Bouguer plate and (2-53) is the attraction of the
condensed terrain variations with respect to the Bouguer piate.

Notice that
. 2 oo
]f —l—dxdyzfndef __id:f'_}_/_z
3
T 0 0 (524-2(2))
2n
) ;‘; - (2-54)
we have
= - 2nGph, (2-55)

Comparing (2-55) with (2-11), we find that the condensed Bouguer plate layer generates the same
attraction as the Bouguer plate does.

Therefore the attraction of the condensed topography is given by combining (2-51), (2-53)
and (2-55):

h-h,
= - 2nGph, - szoff
S
L

dxdy ,
(2-56)
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and the difference in attraction between the actual potential and tne potential of the condensed
topography is

dV,=-V,+W, =—G ff

It is interesting to compare (2-57) with the result of Vanicék and Kleusberg (1987, 2q. (14)). They
are almost the same. The difference is just due to the location of the computation point. If the
computation point Q on the flight altitude is down to the point P on the topography, then eq. (2-57)
is reduced to the Vanicék-Kleusberg result. If the computation point Q is down to the condensed
layer, 8V, is reduced to the classic terrain correction (cf. Wang and Rapp, 1989).

(2-57)

Because we have:

ff pdxdy f cos@d@f =0,
o

* s +zo)

- 2n
[f y—?lﬂdxdy=f sxnedef =0,
T L3 0 2 2

S +ZO

(2-58)

(2-59)

then we have the horizontal derivatives of the potential of the condensed topography can be written

prf (x X p dxdy

oW h-h
Wy=—Q= prf _’Jp {y-y p dxdy
! (2-61)

Combining eqs. (2-20) and (2-21) with (2-60) and (2-61) we get the change (actual topography
minus condensed) of the horizontal derivatives:

(2-60)

hZh2)- = (n’n?
SV;='Vx+Wx='%GPfj; ZO( p)'53( p) (x-x o dxdy
L

(2-62)

hhl)- = (h’h
8vy=-vy+wy=-—pr[ 70( ) ( ){y-yp)dxdy

(2-63)

AR W
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The variations are one order smaller than the horizontal derivatives of the potential of the
topography. It is easy to show that the condensed Bouguer plate has no effect on the gradient data.

From eqs. (2-58) and (2- 59) we kn%w that the second derivatives of the potential of a
condensed Bouguer plate, such as wh W.y, ..., defined by

2
3
Wf,‘:prf hp— —ljdxd','
T axp L

(2-64a)
= prf hy ~——dxdy
P ax ay L (2-64b)
are equal to zero.
For the component WB we have
a2
B 1
Wu=prf h, —- — dxdy
T az(z) L .
2n
=-Gph,— def —~—dxdy
aZO
d
=-2nGp h,— (1)=0
i (2-65)

Here we need to point out that the elevation hp is considered as a constant in all integrals.
Obviously, hp is a function of the point P, therefore the order of the elevation hp with the partial
differential, such as it is in (2-643) and (2-64b), cannot be changed. By way of exception the
vertical differential 0/0z and 02/97 are changable with the hp because the elevation hp (xp, yp) is

not a function of the flight altitude zy. The second dcnvatwes of the potential of the condensed
topography are given by

2
d h-h h-h
W”=-—2—WQ=-prf ': dxdy+3prf —;E(x-xp}zdxdy
axp TL T L

(2-66)

2 h-h
W,,= wQ=3pr£ 2 g fy-y, dxdy

(2-67)

g
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W, =——WQ— prf pdxdy+3prf p(x xp) dxdy

%,

(2-68)
82 h-h
W,,= Wq=-3Gp z ff ———-’SP (x-xp) dxdy
axpazo T L (2-.69)
82 h-h
Wy = I Wo=-3Gp Zoff —fb"yp’ dxdy
%0 L (2-70)
8 hp
W, = —-—2 0= prf dxdy + 3prf ——zodxdy

92g (2-71)

By combining the above formulas (2-66) - (2-71) with the second derivatives of the potential of the

topography, eqs. (2-23) - (2-28), we obtain the change of the second derivatives of the potential
due to the topography condensation:

3 H
8\/”‘=-— xx ¥ xx=§prf “—dXdy G ff ( dedv

(2-72)
15 H
8ny= “ Vet W, =- Tprj: ——:’-[x-xp)(yypjdxdy
L (2-73)
| 3 byl
Svyy=*V yy=§ Pf —-—dxd prf —:——dedy
L (2-74)
vaz=_vxl+wu='—opjf p(xx)dxdv+
G ff {Zo(h o(hs'hi)*' %(h“-h:)} dxdy
(2-75)

8V, ==V, + W, -“G ff p(x -x p dxdy +
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2ol =

[zo hihl) - zo{n*h0) + lz(h“-hg)}dxdy

(2-76)
SV, =-V %prf 310 (h%n2) +
-r(h3 )dxd --—prf 4zo(h h)
-8z2(h*n )+ s20(n*h) - (hs-hg)] dxdy 277
with
H=fh<"zozz)dz—(h 1)+ {nn)
Ry (2-78)

The above formulas are complicated. But they can be wntten in the convolution form and the fast
computation methed - fast Fourier transformation can be applied. Now wc consider the case in
which the density of the topography is not a constant.

Following eq. (2-30) we separate the density of the topography into a constant part and a
varaiable part. We consider only the effect of the variabie density. Using Helmert's second

condersation we condense the topography whose density varies into the sea level with the surface
density dpm defined by eq. (2-33). Then the potential of this layer at point Q is

S
AWQ=GH 2PM xdy
¢ L (2-79)

Comparing (2-79) with (2-32) we find the change of the potential due to the condensation is

A5VQ= - AVQ+ AWC

=0 = ff ~—p§dxd\

where dpM, dpn where defined by (2-33) and (2-34). Here we need to point out that the attraction
of a Bouguer plate with a variable density is no longer a constant above the Bouguer plate and the
second denvatives of the Bouguer plate are no longer zero.

(2-80)

If the density anomaly 8p is a function of the variable x and y, only, then egs. (2-33) and (2-
34) become:
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dpm =h - 8p (x.y) (2-81)

5 h®z )8
Pn= ( 0- 3 p(x )’} (2-82)

Just as in the above derivations we give the corrections to the first and second derivatives of the
potential which were generated by the density anomaly 8p:

a -
8Avx=___AvQ=-%fo 5—_’}’-5;)N dxdy
ox,, T L (2-83)
sav. =2 av =-30f Y8 80, dxdy
y a Q 2 . ‘s pN J
Yp L (2-84)

3AV, ———~AV —fo f zop|x,y, z)dz———dxdy

-—G ff {Zzoz- ){zo—z)Sp dz dxdy

(2-85)
Similar to egs. (2-72) - (2-77) we have
3 Spy 15 [xy)
BAVXX=—fo TdXdy-—z—fo . SpN dXdy
2 T L T L 7 (2-86)
8AV”————G ff ————(x xp{y-y 4 dxdy
(2-87)
sav, -—Gf ~—d ay -G f BYel 55 axay
7
tL (2-88)

. h
SAVu=—3fo x?(pf z dp dz dxdy +
T L 57
15 X-Xp (N 2
+TG,[,/: ?3_/; (2202-2)‘20-2}5pdz dxdy

(2-89)
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. . . h
AV =—3ij :V—'VB/ 28p dz dxdv +
i 5 <o
L
- h
+12§fo xxpf (2201-12)‘20—2]8de dxdy
k4 L’7 0
5V =2 G L (" 22+ 27 8p dz axdy +
lz—f —-S‘f SLZZt+Z p dz axay
T L 0

. eh 2
+—1,)£G ff —le ‘Zz(,z-z"(zo-z)Sp dz dxdy
“ T L 7Y0

(2-90)

(2-91)

If the density anomaly is known everywhere, then we can compute the change of the potennal
and its derivatives at the flight altitutde by using the formulas as denived above. For the airbome
gradiometry case, the second dernivatives of the potential of the topography can be computed by
using the Bouguer reduction or the Helmert's second condensation and are added to the measured
gradient data to obtain terrain corrected gradients. By using the gradient data, the gravity
disturbance (anomalies) can be recovered. The disturbing potential on the ground then can be
determined by using the recovered gravity data. The bias problem - which occurs in the airborne
and satellite gradiometry, can be solved by combining other data.

2.2.3 Indirect Effect
Now we consider the indirect effect on the potential of the topography reduction to the geoid.
Basically, the topography reduction in this report is the same as the topography reduction in
anv textbook. Therefore, the indirect effect is the same as it is described in (Heiskanen and Monitz,

1967, p. 142, Wichiencharoen, 1982).

In the Bouguer reduction the mass above the sea level is removed and the indirect effect is
very large.

The indirect effect of Helment's condensation is given by (Vanicek and Kleusberg, 1987):

2_ 2
; 2 dxdy
S (2-92)

, 2 1 ~ o oh
8\[:-nGphp-ngjj
T

2 2

where s = ‘/(x X HY -y

the distance between computation point P and current point on the sea level.

Compare (2-92) with (2-49), we find that the change of the potential due to the Helmert's

condensation has the same magnitude order as the indirect effect. If the geoid is determined
precisely. the indirect effect must be carefully considered.
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2.3 Topographic Correction Studied in the Frequency Domain
2.3.1 Bouguer Reduction

The derivation of the formulas for the Bouguer reduction and Helmert's second condensation
for airborne gradiometry in the space domain is time consuming. If the reductions are studied in
the frequency domain, the problem becomes easier.

We define the 2-D Fourter transformation and its inverse as follows:

G(u.v)=F{f€x.y)>=ff fix,y)cznm“yv)dxdy
= (2-93)

f(x.y)=F'1<G(u,v):=ff Gm_v)e‘z“”‘”’”’dudv
- (2-94)

where F and F-! denote the Fourer transformation and its inverse and u, v are frequency variables.
This definition is a little different from its definition in most text books (e.g., Papoulis, 1968,
Bracewell, 1965), but it is more convenient for the numerical computation if the subroutines are
written for the discrete Fournier transformation which is defined similarly as (2-93) and (2-94).

Applying 2-D Fourier transformation to eq. (2-1) we obtain the Fourier ransform of the
potential Vq (cf. Parker, 1972):

- il o
F {VQ} - Gc-Lnuu,, 1 Z (-Tf(l))

2nw (2-95)

here we assume p = p (x, y), is a function of the variables x, y, and the circular frequency
w=(u2+v2)1/2; 5 is the flight altitude of the airborne above the sea level. If the density p is
assumed to be a constant it can be taken out from the Fourier transformation, and eq. (2-95) is
reduced to Parker's solution.

As it was shown (Parker, 1972) that the series convergent with a convergence rate better than

(hmax/20)", where hpay is the maximum of the elevaton of the topography. The physical meaning
of the senes is very clear. Wniting (2-95) in the form

1 / 2ras(z, - 2mme
F|Vg=G ZF\P(eZ (2o-h) ﬂ)}

2w

1 o (an)n | n n
=G zngi y Eyp(h-zo -p(-zg }!
2nw (2-96)

and taking the first two terms, we get



20

J

F{\’Ql‘“:G wF\hp,\vnf \ h!”h)p‘:l

(2-G7)

Assuming that the density of the topography is constant, then eq. (2-97) is nothing other than the
Fourier transformation of the potential of a Bouguer plate with thickness h plus a correction due to
the variation of the heights. We show this in the following.

Taking the inverse Fourier transformation of eq. (2-97) it gives

FUEVY) =6 f [ ° 2 axdy - xGp [22qh - 0]

—Gp/f ded» nGp"’z(,h h* +prf P dxdy
_v0+opfj pdxdy

where s is the distance between the computaton point and current point on the sea level.
Here we have used the relationship:

ff = dx dv --F{f;

and the density p is assumed to be a constant.

(2-98)

Therefore the terms n>2 1n eq. (2-96) represent the terrain effect. The terrain effect is smaller
than the effect of the Bouguer plate, but it is rough when the topography is rugged.

Above computations ure retferenced to the sea level. In order to speed the convergence of the
series (2-95), reference surfaces other than sea level can be chosen. One of the choices is the mean
elevation level, z = hy, so that eq. (2-95) becomes

Fivy =Ge ™ L Z(”‘_("_F\(h ot p i i p}

2nw (2:99)
Because we have

F ‘{mnF{g»th"}}

=F! {0)n1- hm)nﬁ(u, v}}
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y n 2 U+
= ]} w | hm)nﬁ{u, v)e'”m‘x : ’dudv
T

=0, n=1,2,. (2-100)

where we have used the property of the & - function

ff f{u, v)8{u. vidudv = (0, 0},

then we can build up an artificial formula to replace eq. (2-98) if the density p is also a constant:

(2-101

FIVg).=Gp e‘z""‘{""“"*{l— Fih+nk{h’2nh }+
(6]

=

2nw (7_102)

-

The function F {VQ]¢ is not exactly the Fourier transformation of the potential of the topography
with a constant density. Based on (2-1(X}), the Fourier transformation of (2-102) gives the same
potential Vq as the equation (2-99) does. If the density p is not a constant, then eq. (2-95) has to
be used. The advantage of eq. (2-102) is that the series in equation converges faster than the series
in €q. (2-94).

The parameter by in (2-102) is defined as the mean elevation in the area. Based on Parker
{1972) the parameter hy = 1/2 (hmax - Dmin), where hmax and hpyin is the maximum and minimum
elevation in the area, can be the best choice for the convergence of the series in (2-102). But, if the
series converges very fast, the choice of hn as a mean elevation or the average value of the
difference between the maximum and mimmum elevation should not play an important role.

In the similar way as Parker did (ibid) one can show that the convergence rate of the series in
(2-102) 1s better than the series

n

Z‘H)'

Z(rhm

where H = max ((hpmax - bm), - (hmin - hm)).

The vertical derivative of V() is easy to get by spectral analysis. As in many text books (e.g..
Bracewell, 1965) the relationship between the differential operators and the spectra are given in the
following:

— =j2nu
ox
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d
— = j2nv
dy
— =-2nw
dz (2-103)
an
o) + n p
:{-I)ij S(Zn) a v
k s n
dx dy oz .
wheren =k + s + p. k.s,p=1,2, 3., and j is unit imaginary number.

The Fourier transformation of the attraction of the topography is given by
F{Vyl = 2noF [V (2-104)
Insert eq. (2-96) into eq. (2-104) and taking the first term:

FIV,l =- 2nGF {ph}

(2-105)
The inverse Fourier transformation of (2-105) is
VO-F YRV, \=.27Gph
2 VF{Vaol P (2-106)

Itis nothing else but the auraction of a Bouguer plate with thickness h.

By using eq. (2-103) we get the Fourier transformation of the first derivatives of the potential
at the flight altitude:

FINVG = 2nub Vel (2-107)
FIVoL = 2nvE [Vl (2-108)
where F (Vo) is defined by eq. (2 99) or (2-102).

In the same way we obtain the Fourier tzansformation of the second derivatives of the potential
at the flight altitude:
FIV, . =-{2ru) F{vg) (2-109)

F(Ve,|= (2n) uvF [V (2-110)
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=-(2rv) F vy
= -j(Zrt) uwF [ V)
F (V] =-j(2n) voF Vg
2

F{V,,)=(2n0) F (Vg
Obviously we have

FIVLA+F[V I +F [V, 1=0
so that there are five independent second derivatives of the potential.

2.3.2 Helmert's Second Condensation

(2-111)

(2-112)

(2-113)

(2-119

(2-119)

It is also easy to apply the Fourier transformation to the Helmert's second condensation.

Applying the Fourier transformation to eq. (2-45), we get

-2nwz,

F {ph)

e
F{WQ}=G -

(2-116)

This is the Fourer transform of the potential generated by the condensed topography layer on the
sea level. Obviously, the Fourier transform of the change of the potential due to the Helmert's

second condensation is (cf. egs. (2-49) and (2-95)):

F{8V}=F (- Vo+ Wy)

The first term of the series in (2-118) is (m=0, n=2)

-GnF/ph?

(2-11

(2-118)
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and its inverse Founer transformation is
2
-Gnrph

which is nothing else than the first term in eq. (2-49). Therefore we can expect that the terms
(n>3) in eq. (2-117) may be ignored in most computations. This agrees with our earlier study in
space domain.

If the topography is condensed on the sea level, then the first derivatives of the geopotential
changes at the flight altitude by

sv,=F ' {j2mu F {8V}}

sv,=F " {j2nv F {5V} (2-119)
§v,=F ' {-2no F {8v})

where 8V, 8Vy, 8V, are the change of the first derivatives of the geopotential, 8V is given by eq.

(2-117). The effect of the Helmert's second condensation on the gravity gradient data is also easy
to get by

yy (2-120)

. F“{-j(zn)zumF{sv}}

(4]
<
i

al 2 \
8V, ,=F 11-](21!) vwF{SV}[

6Vu=F"{sz))2 F{SV}}

In comparison with eqgs. (2-66) - (2-71), eq. (2-120) is simple and easy to use for the computation.

3. Effect of Topography on Determination of the Geoid by Using Analytical
Downward Continuation

3.1 Introduction

In the preceeding chapter we studied the effect of the topography on the airborme gradiometry:
some corrections are added to the aerial gradient data to eliminate the topographic effect. Now we
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consider the topography effect in satellite gradiometry. This situation is different from airborne
gradiometry because a satellite flies much higher and the high frequencies of the gravity field,
which mostly come from the terrain variation of the earth, become small or negligable at the
satellite flight altitude. In this chapter we want to find out a topography correction which is not
related to the flight altitude of an airbome or a satellite.

In processing the satellite gravity gradient data one can ignore the mass above the reference
surface (e.g., the ellipsoid) at first, the gravity disturbance is recovered on the reference surface by
using the analytical downward continuation. If such recovered gravity data are used to determine
the coefficients of the spherical harmonics of the earth's gravitational potential, no topographic
correction is needed. This is the same as the analytical downward continuation of the free-air
anomaly from the earth's surface to the ellipsoid for the determination of the coefficients of the
spherical harmonics cxpansion. If these recovered data are used for determination of the geoid, the
topographic effect has to be considered. The question is what is the difference between the
analytically downward continued potential and the true one on the ellipsoid. In other words: What
is the difference between the geoid determined by analytically downward continuation and the true
one? :

The following work is addressed on this aspect and we focus our attention on the topographic
correction to the geoid which is determined by using the analytical downward continuation which
1s the method used in the processing of the aerial gravity gradient data.

3.2. Remove-Restore Technique - Its Physical Meaning and Mathematical Formulation

In the following we will find the topographic correction to the geopotential which is

determined by using the analytical downward continuation procedure. In order to do this, we

remove the mass above the reference surface first, then add it back. This technique is called
remove-restore technique. This technique is illustrated in the following.

Z Q Tq= VqQ+ 8Tq
4 /I/ T Flight altitude

Topography

v

8T Ellipsoid

Figure 2. Geometry of computation of the disturbing potential

The disturbing potential T at the flight altitude Q consists of the gravitational potential (V) of

ﬂ]\;; ma_zs above the ellipsoid and the potential (81) caused by the density anomaly under the
ellipsoid.
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7 Q STQ =Tq-VQ
_ . — — — Topography
-~
7
X } L
_
— ”~
5Tp0

Figure 3. Removal of the mass above the ellip

soid

Py
RSSO\

The mass above the ellipsoid is removed. The residual disturbing potential 8TQ=TQ-Vq is
harmonic above the ellipsoid and can be analytically downward continued to the ellipsoid without
any theoretical problem. 8Tp is the downward continued residual potential on the ellipsoid.

Q

Flight alatude

—

Topography

Figure 4. Restoration of the mass above the ellipsoid.

~ The mass above the ellipsoid is added back. The disturbing potential at point Pq located on the
ellipsoid is Tp, = 8Tp, + Vp, , where Vp, is the gravitational potential of the mass above the

ellipsoid at point Py.
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Now we assume that the disturbing potential Tq is analytically downward continued to the
ellipsoid: Tpo = 8Tp, + Vpy, where Tp, and Vf,"o are the downward continued potentials of the Tq.
VqQ at the ﬂig?u altitude, respectively.

Compare Tf,"o with the disturbing potential Tp, which is the original disturbing potential on the
ellipsoid, we get

)Y =TP0’T.P0=8Tpo+vpo'8Tpo_V;>o

== Vp,+Vy, (3-1)

Obviously, 8V defined by (3-1) is the difference between the true gravitational potential of the
topographic mass at point Pg and an artificial potential V;’," which is the gravitational potential of
the topographic mass at point Q (outside the Earth's surface) analytically downward continued to
point Pg.

From the above short description of the remove-restore technique we can see, 8V is
independent of the flight altitude; therefore it is suitable for computation of the topographic effect
on the determination of the geoid by using analytical downward continuation. For instance, the
disturbing potential TQ can be computed by processing the satellite or the airborne gravity gradient
data analytically downward continued onto the ellipsoid. So the disturbing potential Tp, can be
obtained by adding the 8V,and at the same time the geoid is also determined from Brun's equation.

We still call 8V the topographic correction because it comes from the earth's topography. If
the earth is exactly an ellipsoid which coincides with the reference ellipsoid, then 8V is equal to
zero.

Before we compute the topographic correction 8V, we first consider the correction of a
spherical Bouguer plate.

3.3 Effect of A Spherical Bouguer Plate on the Analytical Downward Continuation

We approximate the ellipsoid by a sphere with the radius R, the mean radius of the earth. A
spherical Bouguer plate has the boundaries r = R and r = R + hp, hp 1s the thickness of the
Bouguer plate.

The geopotential of the Bouguer plate, just like a point mass or a homogeneous sphere, is

given by

Vo= 5o—
Q R+ZO (3_2)

where Vq is the geopotential of the Bouguer plate at the flight altitude and zg is the flight altitude
above the ellipsoid; G is the gravitational constant and M is the mass of the Bouguer plate which is
given by

M=;—7tp[{R+hp|3-R3]

smShem.




28

=d4np thp+Rh§+;—h3)

(3-3)
where we have assumed that the density of the Bouguer plate is a constant.

If we analytically downward continue the potential V@ from the flight altitude to the ellipsoid,
we obtain

=

3
- 2,.2p
Po T—-‘lTCGp (th+hp+ 3 R) (3-4)

| —

where Vp'b is the downward continued potential on the ellipsoid at Po.

At the same time, the gravitational potential of the Bouguer plate at point Py is given by

, 2 2
V,,= 2nGp[(R +h)°-R }

2
= AKGPR hp + ZKGphp (3_5)

The mean radius of the earth, R, is much larger than the thickness of the Bouguer plate. For
example, if we take the maximum thickness of the Bouguer plate as hpax = 10 km, then the ratio of
the thickness of the Bouguer plate and the mean radiis of the earth is

=

10 -3
P =
R< 3 1.6 x 10

6.4x 10 (3-6)

Therefore the third term (ZnGph%) in (3-3) is one thousand times smaller than the second onc.
Comparing  (3-4) with (3-5), we find the potential difference

8V =-V, +V, =-2rGph, (3.7)

The term on the order of hp/R in 8V is neglectea.

Therefore the analytically downward continued geopotential of a Bouguer plate from outside
onto the ellipsoid differs from the original geopotential by - 2rnGp h. This result has been known
from many previous publications (e.g., Wichiencharogn, 1982, p. 16, Table 1). Here we
emphasize the fact that the potential difference -2hGphy is due to the use of the analytical
downward continuation.

3.4 Topographic Effect on the Determination of to the Disturbing Potential on the Ellipsoid by
Using Analytical Downward Continuation

Now we consider the topographic effect on the disturbing potential which is analytically
downward continued from outside earth's surface onto the ellipsoid. The geometry of the
computation of the potential of the topography is drawn in Figure §.
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Figure 5. Geometry of the Computation of the Potential of the Topography

The gravitational potential of the mass above the ellipsoid at the flight altitude is given by (cf.
Moritz, 1968):

Va=0oR" f ] foh%dc (3-8)

where the density p 1s assumed to be a constant, Lg is the distance between the point Q and the
current point inside the topography; G is the unit sphere and R is the mean earth radius.

The potential Vg can be separated into
VQ= V] +V2 . (3-9)

with

h
2 »dz
V,=GpR ff — do
oj(; Lw
V=GpR2ff fhg-z-do
? o] h,Lw

where V| is the potential of the spherical Bouguer plate and V3 is the effect of the terrain around
point P. Without loss of accuracy (3-11) can be approximated by a plane approximation

h
V2=Gpﬁﬁ j; drzdxdy
T [

(3-10)

3-1DH

(3-12)

o -
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where T is the tangential plane of the ellipsoid at point Py, and

L2=S:+(ZO-Z)2 (3-13)
where L and s were previously defined (p. 3). Now we analytically downward continue VqQ to the
ellipsoid to get the potential difference 8V. Based on last section the potential difference of a

Bouguer plate is -2nGphg. In the following we consider only the terrain effect V.

We assume that the potential V3 is analytically downward continued to the ellipsoid by the
Taylor's series:

2 3
. oV 1 20V 1 39V
V2=V2.'Zo—3+§lo*——}—-6'20 32
aZO a “ a
%o Zo (3-14)
For this series we have
a 1 Zo'Z
S L .3
9z L (3-15)
2
8 1_ 1, sl
822 Lo L’
0 (3-16)
3
9 1 g%, (L)
3L 5 7
oz L L
0 (3-17)

where 0 (L-7) denotes the term contains L-7. Putting (3-15), (3-16), (3-17) and (3-12) into (3-14)
we get

. h
V.=Gp ff f dz. dxdy
T hp

L

(3-18)
with

2 3 2.2
1 1 2g9-2zz 3 -zpz+zg2
= + —

—+
L L 2L3 2 LS

(3-19)

Because we have always




s
2 2 2zgz -2

sT+zp>2z52-2 or ———— <1
S +2Zy

one can write

1_1),, 12022 +3(Zzoz-2“)
DY) L R R
L L L2 LA
3 2z -zZ

el T
19 L3 -~ L2
_I__:__l__‘r]+f

S 5" N

L L
with

L2=sz+z(2)

Insert (3-21), (3-22) and (3-23) into (3-19), we obtain

22 2 4
] [y vz | 3-zpz+z

1
Lo ot

and the potential V3 is given by

. ’ h : r h ZZ'Z:
V,=Gp ff f Ldzdxdy + % Gp f} f : 9— dzdxdy +
T hp I" d 1 T‘p L‘ 3

3 h -22(2,22“‘1
+ ngff f ———— dzdxdy
T hp L'S

{3-2M

(3-21)

(3-24)

(3-26)

Here we need to point out that the quantity V3 has no physical meaning. If we say it has a
meaning, it means that it is a fictitious potential created by analytically downward continuing the

potential of the terrain from outside the earth onto the ellipsoid.

The potential of the topography at point Py is given by
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0.= GPR ff ——dc

(3-27)
where L{p is the distance between the point Py and the current point ins,de the topography.
The potential Vp, can be split into
vpvz VPo+ VPo (3-28)
with
: h,
Vo= Gpszf f) LA
[+] {
ot (3-29
V;chpszf f £ do
(3-30)

The potential V,I,O is the potential of the spherical Bouguer plate, but the computation point pg is
under the Bouguer plate on the ellipsoid. Therefore (3-29) is the same as eq. (3-5). For the

potenual V;ﬂ we take the plane approximation:

—prf f (lzd dv
(3-3h

with
S2=3s2 422 (3-30)
We expand (3-31) into a series:
h Z() Z
‘—Cpff ~d/dxd\ +-(prj f ——A-dzd(d\+
+ > Gp ff f dzdxdy
(3-3)

putting (3-33) and (3-26) together, we get

5V2= - V2+ Vpo
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h-h
= sz 73[[ E dxdy
8 I
L

Completely we have the potential difference 8V is a sum of the 3V and a term -21:Gphf, which is
from the downward continuation of the potential through a Bouguer plate:

(3-34)

203 3 h-h
8V=-2nGphp+§szoff 2 dxdy
* L (3-39)

The potential difference 8V represented by (3-35) is a function of the flight altitude 2. This is in
contradiction with our earlier statement that the potential difference dV is independent of flight
altitude zg. This contradiction comes from the approximation used in the derivation of §V. In
frequence domain the problem can be studied without approximation, and we can get the 8V
independent of flight alttude as expected (cf. next section).

Equation (3-35) gives the potential difference in space domain approximately. For this
equation we have two more things to say:

1. The expression of dV is an approximation, the integrals which contain terms higher than S-5
were omitted. The flight altitude is assumed above the topography. The above derivations are also

valid, if the computation point is chosen on the topography of the Earth. In this case, eq. (3-35)
becomes:

. h-h
8V = -2nGph3 + % Gphy Jj ———’pﬁ dxdy
‘ e [s2+hgf (2 26)

2. The last term in (3-36) is a very small quantity. A numerical test (Wang, 1989) showed that the
last term in (3-36) contributed 1o the geoid at the millimeter level in a rough mountain area so that it
can be neglected in most cases:

The change of the geoid caused by 8V s then given by the Brun's formula:
%
ON = —
Yo
where g is the normal gravity on the ellipsoid.

. The first term in (3-36) is primary and its contribution to the geoid can reach 1-2 meters in
high mountains, therefore the topogriphic correction is significant and cannot be neglected.

Now we consider the effect of the topography to the deflections of the vertical.

It is well known that 2 Bouguer plate with constant density has no contribution to the
deflection of the vertical. Here an implicit assumption is made that the elevation hp is a constant.

-
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Therefore hy can be viewed as a constant in eq. (3-36) 100, when the denvatives are applied. The
corrections to the detlections of the vertical due to the 8V are given then

IOV
S
YO aXp
15 Gp [ h-hp
*T_MJ oy R eldedy
S ¥ f ] (stend) (3-38)
aév
§n=. . %0Y
To 9Yp
- b h,
:lilfp'hé’f j ~-h—~‘77 (y - vp)dx dy
& Yo - (s2end) (3-39)

3.5 Topographic Correction in the Frequency Domain

Now we study the topographic correction studied in frequency domain.

The geometry of the computat:on of the topographic correction is drawn in Figure 6.
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Figure 6 Geometry of the computation of Topographic Correction
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In the plane approximation the gravitatior i potential of the topography at points Q and Py 15
given by:

: h
VQ=fo p((,y)f %dedy
1 0 o (3-40
h
dz
foij: p(x,y)fo T dxds

Here we have assumed the density of the topography is a function of the the horizontal vanables x.
v, and the distances between the current point and the computation points Q and Pg are

(3-4)

L2352+(ZO-Z)2

S R SZ + Z:
They were previously defined.

Applving 2 D Founer transformation 1o (3-40), we get (cf. Schwarz et al., 1989):

Lo [ | 2nwl 2nwz
r (VQ =G 2 Flp (e nw(zgh) e 'tmz%
2nw
2wz, | f aoh
~Ge - Fiple™". !,
27w (342

Analytical dc wnward continuing the potential Vg onto the ellipsoid, then its Founer transformation
ic given by:

) 1

f ( rok |
7 F lp € - 1)[
Yerp
210 (3-43)
In the same manner we obtain the Fourier transformaton of Vpﬂ.

2neh l‘!\’
T

f
FIVo)=-G ] 3 )p(c

.

Inw (3-44)

Combine eqgs. (3-43) and (3-44) we get the Founer transtorm of the potential ditference 8V:

F{SV}:F{-V;)JfVm}
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2niwoh -2ne \
-.G 1 {IJ e-n r+c m)h"))[;

(3-45)

Eq. (3-45) is independent of the altitude z) as expected. Expanding (3-45) into a series, then we
get

hadll b}
F{sv)=-G 2 ’“’” eyt
27m) n=l
(’nw / 2n\
2 By Fyph™y
2 &= {2n)!
{ (') )Zn [ )
2 l b 4-7{(1) n
=-2GF{ph |-G 22‘2 Ga F AP
nw (3-46)

The inverse Fourier transformatior i the first term of eq. (3-46)
- 2rG F {ph2) (3-47)

is equal to -27Gph? which is nothing other than the correction of a Bouguer plate (cf. eq. (3-7)).

Clearly the magnitude of the series in (3-46) depends very strongly on the roughness of the
.opographv if the topography is smooth, the series has little contribution to the change of the
potentiai ¢V, if h = constant, the series in (3-46) has no contribution to 8V.

The iast sum in (3-46) supplies mostly very high frequencies in §V, therefore it is not
important to 8V which is assumed that the very high frequencies have few contribution. This
agrees with our zdriier study in space domain.

If we compute (3-46) and its inverse Fourier transformation, the discrete Fourier
transtormation has to be used. In this case the influence of aliasing and leakage becomes a very
serious problem, because both phenomenan have the most effect on high frequencies. If such

wrong high trequencies are amplified by w®, then results will not be reliable. Therefore the low
pass filters is needed for such computation.

The first denvatives of 8V is given by

8V =jnF ' {ur{sV}}

(3-47)

oV, =-2n F'{wF {SVH
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where F {8V} is given by eq. (3-46).

In the above discussion we have not considered whether the analytical downward continuation
is convergent. We believe the above derivation is justified based on the assumption that the series
in eqgs. (3-46) is at least numerical convergent. We cannot guarantee that the series in eq. (3-45) is
convergent. The terms (n22) in the series may be very rough, but they could be very small after
some smoothing. Ignoring the terms (n>2) in eq. (3-45) may not cause serious error in the
computation.

In the next section we will study the convergence problem of the analytical downward
continuadon under planar approximation.

3.6 Convergence Study of the Analytical Downward Continuation Under Planar Approximation

Even though the convergence problem of analytical downward continuing a harmonic function
into the mass does not have too much meaning on the practical point of view, it is still interesting to
know the mathematical property of the analytical downward continuation under planar
approximation,

Equation (3-46) is directly related to the convergence or divergence of the analytical
downward continuation of the gcopotenual inside the earth. If (3-46) is convergent, then the
analytical downward continuation is also convergent. Obviously the convergence problcm
depends very strongly on the roughness of the topography. If h=0, then F {8V]}=0; if h =

constant, then F'! (F{8V}) = - 2nGph?, the topographic correction of a Bougucr plate with
thickness h. In both cases we do aot have any divergence problem.

o)

we assume that the Fourier transformation of ph?%/n! exists, it means, the following condition
holds:

ff e

From eq. (3-45) we have

in

feuli. G — (an)
[F{av}|= 2§(n+l)(n+2},..2n

(3-48)

dxdy = M <o
(3-49)
From (3-49) one can get
2n+2
ph m&l ph
M =
n+l f./; (n+1)! n+l f dxdy
2
- hmax Mn

n+l (3-50)

——
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This means that the following inequality holds:

\1ﬂ+1 < hﬂ)dX
Mo o+l (3-51)
For the Fourier transformation of the quantity ph?"/n! we have
’ 2n h2n
E \ph' - ff e?.nj (xu+yv) P : dxdy
n! ‘ n!
2n
h
< ff P — [dxdy = M,
b (3-52)
therefore for eq. (3-48) we have
- ( )ln
- G 2nw
Vi< .M
,F\S }, Zg(n+l)(n+2)...2n "
nw (3-53)

The convergence radius of the series in (3-53) is easy to get by using D'Alembert’s criterion

2n+2
o (a+D+2.2n  Qro) -~ My
d= Im

- . | (n+D(n+2)...(2n+2) (an)2n M,

2 2
. (27[(1)) hma)(
< hm :
Noeo 20+2 n+1

(3-54)
Therefore the Fourier transformation of the potential difference potential 8V is convergent in the
frequency domain O<w<eo. Note that the infinitive point w=ee is not included in the convergence
domain. In the same way we can show that the inverse Fourier transformation of eq. (3-46) is
convergent, provided the infinite point wx=s is not included in F {V}.

We assume the maximum frequency of the Fourier transformation of 8V is wy, where wqg can
be an arbitranly large number, but not equal to infinity. From eq. (3-46) we have

[SVHF"F {5\/}[

:9_ ff c-JZR(x'u*y'v’
n T

ol

w n
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. vy 2n
ff c'bn‘xu Y )ph dxdy dudv
1

= | a2n 9 flxxtuslyy)v] (an) P
<G Y f' dot fo o ’ J(m»mn+2) f f dXdy

n=1 0
2n-1

Do (21((»
< 21G ?_‘,f f ol zm 4o Mr

2n-1

N
(n+1}{n+2} .2n.2n "

i (20,
n= (3-55)

Here we have used the polar coorcinates system in the frequence domain. The relationship
between the frequences variable u, v and the polar coordinates system is defined as:

u=wcosao
v=0sina (3-55a)

The convergence radius of the series in (3-61) is given by

d = lim (n+1)(n+2)_”2n.2n (an0)2n+2 Mnﬂ
noe (n+1)(n+2)..(20+1)2n+2) (2rnw)™ M,
2 2
— hm ( nmﬂ) hmax
- 0 2 n+1
B2 (2n +2) 556

From eq. (3-56) we know that the series in (3-55) is convergent for all wg: 0<g<oo.

From the above derivation we can say that the Fourier transformation of the 8V and the
potential difference 8V are convergent everywhere, except at the point w=e. That means the
analytical downward continuation (ADC) of a harmonic function into the earth is also convergent,
except at the point w=ece. This result is slightly a surprise, because the ADC may be assumed
(considered) as divergent (Sjoberg, 1977). We have shown that the analytical downward
continuation of the external potential into the earth is almost convergent everywhere! Here "almost
everywhere” means the infinite point w=e is not included.

Indeed, the convergence of analytical downward continuing the geopotential outside the
earth’s surface into the mass of the earth is a delicate problem. From egs. (3-43) or (3-46) one can
see that the convergence problem dcpends on the roughness of the topography. Based on the
above derivation we know that the series in (3-46) is covnergent for all ®: 0<w<so. At the infinite
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point w=eo, the convergence of (3-46) is not defined. Obviously, the series is convergent at the
infinite point w=eo, only if

lim |(210)""? F{ph?" Ji<eo

w0 (3-57)
exists.
Note that the Laplace operator in spectral domain is corresponding to
3* | o? 2
A= —+—>=-(2nw)
xE 3yt (3-58)
the eq. (3-57) is equivalent to
lim F{(=1)" """ {ph?" )} <o
Jim Bl e pn); (3-59)

where AM-l = AAA A (n - | times).-

Eq. (3-59) indicates that the function ph2® must be an analytical function (an analytical function has
infinite derivatives). This is not the case for the real earth, because there are steep cliffs and
overhanging rocks on the earth's surface. In this meaning the ADC is devergent.

But one has to keep in mind that the real world can only be approximated by some
mathematical models. If the elevation h is approximated by an analytical surface, or, more
practical, be approximated by point or mean blocks values, whose Fourier transformation has finite
frequencies, then (3-46) is convergent. Let us now imagine in the future: during the developement
of the technology the topography of the earth is measured more and more in detail, we get more
and more elevation data which includes high and very high frequencies of the topography. But the
number of the data is always limited and its Fourier transformation has always finite frequencies.
In this case, eq. (3-46) is always convergent. Therefore we will sa_- that the ADC is convergent
for all practical use.

The above conclusion is also important for geopotential modeling. If the ADC is convergent,
we can expand the spherical harmonics of the geopotential up to high and very high degree and
order without any theoretical problem. In practice the geopotential can be modeled with a finite
degree and order which correspond to a certain frequency ® = uy, therefore the ADC can be
considered as convergent for modeling the spherical harmonic of the geopotential.
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4. Effect of the Topography on Solving Molodensky's Problen_\ and the
Determination of the Coefficients of the Spherical Harmonics of the
Geopotential

4.1 Loooducuon

In solving Molodensky's problem and the determination of the coefficients of the spherical
harmonics of the gravitational potential of the earth the analytical downward continuation (ADC) is
widely used. Moritz (1980, section 45) used ADC to continue the gravity anomaly to the point
level and the disturbing potential is determined by using the Stokes' integral. Rapp et al., (1986)
also used ADC to continue the gravity anomaly to the ellipsoid for the determination of the
coefficients of the spherical harmonics. It is always assumed that ADC is correct for the
determination of the disturbing potential on the earth's surface. The disturbing potential on the
earth's surface and outside the earth can also be represented by the spherical harmonic expansion
determined by using ADC of the gravity anomaly to the ellipsoid. In this chapter we will look at
this problem in more detail. We wish to answer the questions: Can the spherical harmonic
represent the disturbing potential on and outside the earth exactly? This problem is different from
the divergence or convergence of the spherical harmonics on the earth's surface. Based on the
derivation in chapter 3 we assume that an spherical harmonic expansion of the geopotential, such
as used by Rapp (1984, eq. (1)), be convergent on the earth's surface and even so on the ellipsoid.
This assumption may be argued. But we think it is reasonable for the practical use. The
convergence or divergence of the series is meaningless in practice because a small "grain of sand”
can make a series divergent (Moritz, 1980, p. 64), and the potential of a grain of sand is so small
that it can never be included in a gravity model related to the earth's gravity field. Now the
question is: does the expansion (ibid) represent the gravity field of the earth on and outside the
earth’s surface well? This problem is important for today's gravitational modeling. Up to now we
have various geopotential models (e.g., GEMTI1, OSU89, ...) generated by different groups and
by using different data sets. If the spherical harmonics defined by (Rapp, 1984, eq. (1))
represents the geopotential on and outside the earth's surface exactly, then the geopotential
modeling can be expanded into high and very high degree and order. An explicit example: if the
sphencal harmonics is expanded in degree and order 10000, then the geopotential is modeled with
resolution 2 km. This model will represent a global uniform detailed gravity field. But if the
spherical harmonics (ibid) do not represent the geopotential on and outside the earth's surface well,
then such expansion is meaningless, because the high degree and order of the spherical harmonics
may be totally wrong.

In practice the high degree and order of the spherical harmonics are effected mostly by
different errors and are not as reliable as the lower degree and order. But if the expansion (ibid)
gives the geopotential on and outside the earth’s surface as weli as we wish, one can expect that the
more and more gravity data will be gathered with more and more better accuracy and data
coverage, during the development and improvement of the high technology and space technology.
and an expansion of spherical harmonics to high degree and order will approximate the
geopotential on and outside the earth's surface to a great extent.

In the following we will study the effect of the topography on solving the Molodensky's
problem and determination of the coefficients of the spherical harmonics of the earth's gravitational
potential. More exactly, to study the error of the analytical downward continuation for solving
Molodensky's problem and the determination of the coefficients of the spherical harmonics. A
similar study on “error of the analytical downward continuations” was given by Sjoberg (1977,
1980). The error was studied on a sphere earth and the spherical harmonics were used for the
study. Here we will study this problem for a flat earth. The planar approximation should not
cause serious problem for our study. Note that we use the term "effect of the topography” instead
the “error of the downward continuation”, in the following.
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4.2 Analytical Downward Continuation for Solving Molodensky's Problem

ANC was used for snlving the Molodensky's problem (Moritz, 1980 section 45). This
method corresponds to the analytical continuation of the externa! potential T into the earth’s interior
(ibid, p. 378) on the point level.

Now let us look at this problem in more detail. This method is illustrated in Figure 6.

Z

A
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Figure 7. Geometry of Solving Molodensky's Problem by Using Analytical Downward
Continuation

Gravity data are given on the earth's surface and then analytically downward to the point level.
The disturbing potential at the point P is then determined by using Stokes' integral. This method is
equivalent tn the analytical downward continuation of the external potential down to the point level

so that the effect of the topography in this procedure can be obtained from the derivation in Chapter
3.

Based on the description in section 3.2, the difference between the disturbing potential
determined by using the ADC and the onginal one is given by

8\/‘)=-VP+Vp @-1)

where V;, Vp are the potential determined by using ADC and the potential of the mass above the
point level respectively.

Comparing Figure 7 with Figure 6, we get the V;,, Vp similar to egs. (3-43) and (3-44):

F{v;)=6—1F (o ez 1))

2RW (4-2)
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F{Vpl=-G ,F\p(e " “‘-1),
210 (4-3)
with
e [hh, hoh,
| 0 hsh, o
Combining (4-2) and (4-3) we obtain
- | _ 1 f 2mwdh | -2mwah \
F{8V,}=-G SEp L™ ve 2)
2nw
o ( )Zn "
n
--G 1 z 2nw F{p(Ah) }
2= (2n}!
nw "7 (4-5)

(4-5) shows the difference between the potential obtained by using ADC and the true one.
Obviously, (4-5) is the effect of the topography which is neglected in the solving of the
Molodensky's problem by using the ADC.

Theoretically, (4-5) plays a role of the convergence of the ADC of a harmonic function onto
the earth. It is clear that the convergence of the series in (4-5) depends on the roughness of the
topography. Asis shown in section 3.5, one can show that the topographic correction 8V, and its
Fourier transformation are convergent almost everywhere except at the infinite point of tf[\)c circle
frequency @ = oa. Obviously, the 8V, could be rough, but if some kinds of smoothing are taken,
(4-5) could be very small and be neglected. This is also the reason why we assume that the ADC
is always carrect for the practical using. Approximately we take the first two terms in (4-5):

Flev \<. 2 GF{ (Ah):}—zo ’ 2F{ (Ah)4>
\OVpy=--TOF1p FUT @ FLp (4-6)

For point P on the topographic surface, the first term has no contribution to dVp. We have then

5 3 4

SV ~-=G r‘l 2F{ (xn)}]‘
=-=0Un b ¢
P73 |@ Fip { -7

This term should be very small after the <moothing and can be omitted.

Therefore we can say. The using of the ADC to solve the Molodensky's problem is
reasonable and correct. The topography effect 8Vp in this procedure represents very high
frequency in the disturbing potential and in practice it can be neglected.
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4.3 Analytical Downward Continuation for Determination of the Spherical Harmonics of the
Earth's Gravitational Potential

I we analyucaily dowuward conunue the gravity anomaly to the ellipsoid and this reduced
gravity anomaly is used for the determination of a spherical harmonic function, we always assume
that this spherical harmonic function represents the disturbing potential on and outside the earth
very well. In the following we will show that this spherical harmonic function gives the disturbing
potential above and on the Briilcuin sphere (Moritz, 1980, p. 431) exactly if this series is
convergent. There is an effect of the topography in the vicinity of the earth's surface (the space
between the topography surface and the Brillouin spher=) to the geopotential represented by this
spherical harmonic expansion. This means that a single spherical harmonic expression for the
representation of the disturbing potential outside the earth’s surface is not enough. The attempt to
include the topographic effect in a series for the representation of the disturbing potential in the
whole space can be found in (Petrovskaya, 1976, 1977). This method seems not so promis:ng for
the practical use.

Here we assume we have a sphencal harmonic expansion determined by using ADC and we
intend to find the topogranhic effect near by the earth's surface.

In the first place we will show that if the analyrical downward continuation of the spherical
harmonics to the ellipsoid exists (convergent), and if the point P is on the Brillouin sphere, then the
downwcra coniinued spherical harmonics represent the disturbing potential at point P exactly.

We denote the radius of the Brillouin sphere by Rp, and the semimajor axis of the ellipsoid by
a. On the Brillouin sphere the spherical harmonic expansion of the disturbing potential is
convergent (no mass above the Brillouin sphere):

® n
Tg= % Z 2 (Cnm cosmA + S, sin ml) '}snm((sin o)
n=2m=0
(4-8)
where Tp is the disturbing potential on the Brillouin sphere, kM is the gravitational constant times

the earth’s mass; Cnhm and Spm are-fully normalized potential coefficients. If we analytically
downward continue the Tg to a sphere with radius a, then we have

Tr, ¢, k)=—k¥— i i (6nmcos mA + S sin ml) ‘?

n=2m=0

n+! a n+1
H P, .{sin o)

+1

g z Z (—(f;,mcos mA + §;,m sin ml) : (%) an(sin q))

n=2m=0

(4-9)
where

/Enm\{ } /6,,,,,} {RB)"*‘

5.1 \Swm/l2

is""’/ 1 (4-10)
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It is difficult to say whether the series in (4-9) is divergent or covergent. If the series in (4-9) s
convergent, on the Brillouin sphere we have r=Rg, and (4-9) returns to (4-8).

For the points above the Brillouin sphere we have the same conclusion.

Therefore, the spherical ha-monic expansion determined by using the ADC method represents
the disturbing potential on and above the Brillouin sphere (the bounding sphere) exactly, provided
the downward continued potential is convergent. Even if the series in (4-9) is divergent, based on
the Runge's theorem, we can find a spherical harmonic expansion similar to (4-9) to approximate
the disturbing potential as well as we wish (cf. Moritz, 1980, p. 67).

Now we are going to find out the difference betwe=n the true gravitational potential at point P
and the gravitational potential represented by a sphericai harmonic expansion like eq. (4-9). If
point P is on the earth’s surface, the point level separates the mass of the earth into two parts - one
1s under the point level and one is above the point level. Based on the above discussion the
disturbing potential generated by the mass under the point level can be represented exactly at point
P by an expansion similar to (4-9) provided the downward continued potential is convergent. The
potential of the mass above the point level cannot be represented exactly by an expansion like (4-
9).

[n urder to simplify this problem, we take the planar approximation. Obviously, the potential
of the mass above the ocint level continued downward to the ellipsoid is given by (cf. eq. (4-2)):

V::Fil fGe2nwhp 1 2 F{p(CZRmAh_ 1)}\

5
\ =n (4-11)
where Ah is defined by eq. {4-4); V¢ denotes the potential on the ellipsoid.

Upward continue the V. to the point level, we obtain

- I orrwan W
VIZF G g plemen. H/\
k o= )
R 0] / (4_12)

[t1s the same aseq t4.2) At the same time the potential of the mass above the point level is given
by eq. (4-3). The difference between the Vp and Vp is given by eq. (4-5). Therefore, the
disturbing potenudl on the point level (which 1s partly inside the earth) represented by a spherical
harmonics like eq. (4-9) differs the true disturbing potential by a quantity 60V which is given by eq.
{4-5). Therefore the representation of the disturbing potential by an expansion of spherical
harmonics, which is determined by using the gravity anomalies downward continued from outside
Earth's surface or from Earth's surface to the ellipsoid, is just as good as solving the
Molodensky's problem by using the ADC procedure.

The effect of the topography on the computation of the geoid from a spherical harmonic
expansion, such as eq. (4-9), is referenced to Wang (1989).




46

5. Conclusion

The earth’s surface is | comnplicated swface. It is not suitable for the computaticns of the
physical geodesy. Therefore the different reference surfaces such as the sphere, the ellipsoid or the
point level have been used for solving the geodetic boundary value problem. Itis clear, if such
reference surfaces are chosen, the analytical downward continuation has to be used and the effect
of the topography has to be considered. Up to date the airbome and satellite gradiometry have
been reaching great improvement and will supply a huge gravity gradient data for the geodetic
boundary value problem. To process such data the reference surface has to be chosen and the
ADC method has to be used. Therefore the effect of the topography must be taken into
consideration.

In Chapter 2 the topographic correction to the airbome gravity gradient data was considered.
In this chapter the Helmert's second condensation was introduced into the airborne gradiometry.
This is much more complex than it is in the classical meaning because the gravity gradient has six
compenents, the computations of the topographic correction to it needs much more computation
effort. It was found that the Bouguer plate has no contribution to the gravity gradient. The
topographic correction is mostly due to the terrain of the earth.

In Chapter 3 we introduced the remove-restore technique. Our focus was still on how the
geoid inside the earth can be determined by using the method of the analytical downward
continuation. A simple way to do this is to obtain the disturbing potential at the flight altitude by
processing the aenal gradient data, and then downward continue it to the sea level. Obviously,
such potential is not the original one. Some correction has to be considered. By using the remove-
restore technique we found that the topographic correction consists mostly by a term -21*..'Gph2 and
a terrain effect which can be very small after the smoothing. The first term is important fgr the
determination of the geoid in a mountain area and the terrain effect (eq. (3-34)) is very rough and
becomes small when some kind of smoothing are applied. Because the remove-restore technique
does not change the location of the mass of the topography, the indirect effect is equal to zero. In a
planar approximation the change of the potential 8V and its Fourier transformation was shown
convergent almost everywhere, except at the infinite point of the circle frequency w=eo. This
means that the ADC is also convergent almost everywhere. This is important for developing the
geopotential into harmonic series up to high or very high degree and order.

In Chapter 4 the topcgraphic effect on the solution of Molodensky's problem by using the
ADC was considered. Theoreiically, the topographic effect still exists, even if the analytical
downward continuation solution is equivalent to the Molodensky's solution which is considered
theoretically perfect. Because the topographic effect (eq. (4-7)) can be very small after smoothing.
this effect can be neglected in the practical computations.

The same topographic effect exists also for the geopotential represented by a spherical
harmonic expansion. One should not be surprised about this because the ADC is used in the
solving of Molodensky's problem and the determination of the spherical harmonics. The
discussion in Chapter 4 shows that a simple spherical harmonic function, like eq. (4-9), cannoi
represent exactly the disturbing potential nearby the earth and on the earth's surface. By using the
ADC method we can obtain a spherical harmonic function, it represents exactly the disturbing
potential on and above the boundary sphere of the earth, provided such a spherical harmonics
exists (convergent); it represents practically well the disturbing potential nearby the earth and on the
earth’s surface, even though the topographic effect (correction) exists.

In practice the spnerical harmonic expansion is taken to a finite degree and order and some
kind of smoothing are always involved in the practical computation. Therefore the topographic
effect can be very small, even though it looks very rough and unstable. Here we must not be
confused by the word "topographic effect”. The topographic effect is defined as the difference of
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the true geopotental on the point level und the potential determined by using analytical downward
continuation. Because the ditference is caused by the topography of the earth, we call this
differenee topograpric effect (correction). This etfect is totally different from the classic
topography-reduction or the topographic correction o the sphericul harmonic expansion of the
geopotential which has been done by Sjoberg (1988).

Theoretically, the topographic effect is important, because it gives the idea of how good a
spherical harmonics represents the disturbing potential on and outside the earth. The equivalent
problem is how good can the disturbing potential on the earth's surface be determined by using the
ADC method.

There s only one gravity field but it can only be approximated by using the numerically
computed different gravity models. Based on the results in Chapter 4 we should not worry about
the expanding of the spherical harmonics into a high degree and order, if the gravity data are dense
enough and accurate enough for the needs. In such a case the spherical harmonic expansion of
high degree and order will represent the disturbing potential better than one in lower degree and
order. If the accuracy of the spherical harmonic representation is so high that the topographic
effect has to be taken into account, the topographic effect can be computed with a proper
smoothiny.

Note that the analytically downward continuation of a spherical harmonics into the earth is
assumed. Theoretically it is difficult to prove this series convergent or divergent in a spherical case
even though it was shown in Chapter 3 that the ADC is convergent almost everywhere in a plane
approximation case. As Moritz (1980) pointed out, such a problem is meaningless in practice. We
can still believe that a spherical harmonic expansion, like eq. (4-9), can represent the gravity field
as well as we wish. The derivation in Chapter 3 helped us to heighten our confidence.

s -
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