. DI fitE COPY

AD-A223 086

FO 06 U 0fs

CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Guideline to Select,
Configure, and Use an Ada Runtime
Environment =~ F
‘G L’L r-’f [n

A

MAY 2 -

'bt/ ‘:“

4 IG»VCH Q!
NG (-""f v .

l’ ,./-'.‘ R
Depa Fl 0 oo i,
’ i W C JeE mcsi‘ Y

CIN:; C02 092LA 0001
15 FEBRUARY 1989

\

.."*T’u i <y [;:': ""‘*‘-—-—-«-w -
/ f r\ HI (’}‘ 1 Al \\ w e ?d

L 90 002070

R e

S
PATMA Qe ey

GUIDELINE TO SELECT, CONFIGURE, AND USE

AN ADA RUNTIME ENVIRONMENT

FINAL REPORT

PREPARED FOR:
U.S. Army HQ CECOM
Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

PREPARED BY:

LabTek Corporation
8 Lunar Drive
Woodbridge, CT 06525

DATE:
30 September 1988

Accession For i
NTIS GRA&T
DTIC TAB ‘

Unannou:iced O

Justification_________;

By.

Availability Codes
Aveil nud/or

Dist Special

Al |

Ada-86 is a trademark of SofTech Inc.

ARTK is a trademark of Alsys.

DDC-I Ada Compiler System and DACS-80x86 are trademarks of DDC-I, Inc.
DEC, VAX V. LN, MicroVAX and VMS are trademarks of Digital Equipment Corp
IBM is a trademark of International Business Machines Corp.

Intel and iSBC, ASM86, LIB86, LINK86, and LOC86 are trademarks of Intel Corp.
M68000, MC68881, MC68010, and MC68020 are trademarks of Motorola Corp.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

TeleSOFT and TeleGen 2 are trademarks of TeleSOFT.

UNIX is a trademark of Bell Laboratories.

VADS is a registered trademark of VERDIX Corp.

VRTX, VRTX32 are trademarks of Ready Systems.

EXECUTIVE SUMMARY

VThe Ada Language has incorporated many features such as tasking, dynamic storage
management, and exception handling that require substantial execution-time support. Most
of these features were not previously available in commonly used real-time languages, but
were instead provided by an separatea;xecutive . The inclusion of these features into the
language expands the possibility for transportable and reusable software, but complicates
the software development process to some degree. Engineers. that previously had
familiarity with their own executives, now are forced to accept the code of a compiler
vendor for the execution-time support. This guide has been written to help software
developers in the difficult task of selecting, configuring, and using a runtime that will meet

the needs of their application. ~.

!

The wide variety of applications for which Ada is used necessitates considerable flexibility
within the implementation of the runtime code. Different algorithms for tasking, storage
management, interrupt handling, and exception propagation can radically effect the
behavior of real-time programs. Variations among compilers for the same processor can be
as great as a factor of six in runtime size and a factor of eleven in tasking performance. It is
therefore essential that software developers completely understand the characteristics of
the available runtimes prior to selecting one for use on a project.\Due to the cost and time
involved in a compiler procurement (runtime source code can cost'as much as $250,000), it
is ofien difficult to change to a new compiler implementation aftef’ a poor choice has been
made. Unfortunately, a compiler that is good for one applicatinr} may not necessarily be
proper for other applications. Therefore, it is more a matter bf matching a compiler

implementation to an appuication rather tnan simply finding "the best compiler”,

This guide lists all of the known (validated) Ada compilers that are developed for use in
embedded applications. For each compiler, the supplier was contacted and asked specific
questions about their implementation. As much information as possible was obtained from
the suppliers to be summarized in the report. Performance benchmarks are included as a
rough efficiency comparison among many of the implementations. The difficulty in
obtaining this information cannot be overstated. Frequent letters with follow-up phones
calls were necessary to obtain answers to even a few questions. Just as with the compiler
implementations, substantial variation exists among compiler vendors in their willingness to
provide detailed literature. The effort that went into collecting this information convinced
the researchers that such a guide was worthwhile. For each individual project to go through
a collection effort is a tremendous expenditure of effort and is unlikely to be as complete as

this guide.

Finally, guidance is provided on how 10 proceed with the selection process, what questions
to ask once the the choice of compilers is narrowed down to one or two, and what to do
after the compiler and runtime have been selected. Special attention is paid to areas that

experience has shown to be particularly troublesome. These include:

1.) Maintaining configuration control over variations in the runtime; insuring that new
device drivers which are configured into the runtime do not violate runtime
conventions, especially with the processor state (privilege, interrupt level, memory

management registers, etc.); and,

2.) Taking care not to extend the worst-case interrupt latency by allowing interrupts to

be disabled for an extended period.

" These types of problem usually do not manifest themselves in obvious ways, but rather
result in working but unreliable systems. They may pass the acceptance testing and operate

properly for months only to fail in a catastrophic fashion during a critical moment.

It is hoped that this guide will assist software developers through some of the problems in
adopting Ada for real-time embedded projects. By providing information on how Ada
implementations operate, there will be a reduction in the uncertainty associated with
switching from assembly language executives, where every aspect is provided in minute

detail, to Ada where the executive functions appear as a black box (or magic).

Table of Contents

1. Introduction

1.1 Backgrdund

1.2 Purpose and Intent

1.3 Definitions ...

1.4 Organization of Document

1.5 How to Best Utilize This Document

2. Approach . .-

3. Ada Runtime Features

3.1 Dynamic Memory Management

3.2 Processor Management

3.3 Interrupt Managementc.cceeevuvunnnes

3.4 Time Management

3.5 Exception Management .

3.6 Rendezvous Management

3.7 Task Activation

3.8 Task Termination

3.9 1/O Management

3.10 Commonly Called Code Sequences

3.11 Target Housekeeping Functions

4. Bare Machine Targets

4.1 PIWG Benchmarks

4.2 Vendor Address Listing

Table 1. Bare Machine Targeted Compilers by Processor ...
1750A

Table of Contents

BOXBOcuorrecnssnesnsersassnasesnanssnsssssssnsssssssssassnssssnssssssssssossasasessasessasssansssssassessssersassensassss 19
680x0 . ceeestsasssasas et aas sne Rt s s s eRas Rt b s s et es 22
32032 .25
VAX PTOCESSOTS .evererearnanesssssasersasssssstssosnssssassssssssassassassssssssesssssssonsasassssssssssssssassasssses 25
CAPS/AAMP seesesases s sase e n s as s bttt anes 26
POWETNOAE ..couecercicriine crrrmsssssssssestnnsissnsassssmsanimssasecsssassassssassasessasessassassssns 26
Table II. Bare Machine Targeted Compilers by Vendorscocovevvueceescaccnceccance. 27
Vendor Supplied Information reessserrerttsssssessesetsasasasasasesasaeRersasesesasres 28
AlTech Software Engineering, Ltd.ccocoiennivncnnsncnrescinsscsissesnns 28

ALSYS .oeceeeenesesesrsrassinncnessssasessssstsrassssssrassssssansssaesssenessstnnsasstsnsnestsseaasessnes 36

CAP Industry, Ltd.coevevecrinncccennnnee . veresnenaensd9
DDC-1 SRUROOON
Digital Equipment Corp. setsesasenssasne et asps bt e et sensanes 81
Gould, Inc. . treeseessersressessnesaesseraresseressseaseraessasanrennes 83
Intermetrics, INC. ...ccconeecenncenccnssnnncesencnsssncnsesesencaens . 85
RaAtiONalceeeeeereeecrreiscssasanessssncsssssssessssssnsssossessssssssanssssssssssessnsnsens 91
SofTech, Inc. w126
System Designers Software, Inc. vererseneenss 148
Tartan Laboratories, Inc. . .162
TeleSOft, INC. uveeerererrercreeraneenssssnessenssesnassssssnesessessssessssensasessrsonsane 174

TLD Systems, Ltd. reeessnesassssseasasasasas 189
VErdix COTP.ccocoiinrnenssecnsnensssssisscscssssssssasasssssesassasasasssssssssssassasasass ..196
Vendor Information Not Available .. crasserensasss st nsasasaassaes 219
Advanced Computer Techniques COrp.crnisisinsesiensessssssaensesansens 219
Harris Corp. 220
Rockwell International crssessasssnsasnsasastsestsaane 221

«1i-

Table of Contents

System Designers Software, Inc. 222
TeleSoft/Intel Corp./Tele LOGIC ... 223

TeleSoft, Inc. 224

Verdix Corp. 227

S. Application Characteristics w229
5.1 ElectroniC WATTAreccoovinineecnennsnscsssessssacnsesssessasssssssasnssnsssssssasasnsasssssessssssssasassss 230
5.1.1 Radar Systems ..230

5.1.2 Electronic Counter Measures (ECM)ccccvvuuuenene. 231

5.1.3 SigNal PrOCESSING ..cucuvrcrninreesnsessmssnsssnsssasensasessassssessasessssassssensessnsssssssssssssssssssens 231

5'.2 Weapon GUIAANCEccovevirsiunenennsessnenssassssessassssssssssssaseasessnsesssssasnsssssssssssnssssssssses 231
5.3 FIT€ COMLIOL ..ueueeiercecrininsnncuscssttnanesssesessssnessssasensessanssnsmasssssssssssssssssssassassassasssssssens 232
5.4 SIMUIAtION SYSLEMScovueiuireencirninnesenssnsesosssssssssessssssssssressrssnsassassassessssssasnssssssasssssssense 232
5.5 C3I Systems 232
5.6 Operating Systems 232
5.7 Navigation Systems 233
5.8 Artificial Intelligence 233
5.9 RODOtICS /Process CONLIOLcuvuueurireeerersecnrecnecssssssesesssssesrssessssossossssssasssces 233
6. Guidelinesccccorreeervrrecreccrscsnsserrannns 234
6.1 To Select a Runtime Environment 234
6.1.1 DOCUMENLALIONcoruiueirercrernnrcnsenssensssssessnssssnsesssassasssnessssssssssesssssssasssessossssens 234

6.1.2 Degree of Configurability 234

6.1.3 ChaPLEr 13 ...oucoeecierectcensirnensnssesssssesssssassssssessesssnssasassssssssessssssssssssessessessassssases 235

6.1.4 Appendix F 235

6.1.5 Target Dependent Information 236

6.1.6 Target Initialization 236

6.1.7 Target I/O 236

-iii-

Table of Contents

6.1.8 TArZet TIMETcooueerreirrrnrnrnaessscnsasasscsnsersssssssssassesssssssnsssassssssssssssensasseses 237

6.1.9 Data Representationcoscerrsnceosenn. cersesensssssnrnssasensnesersnans 237

6.1.10 Implementation of Tasking Ceruereres et R s s R ae R ne s e e 238

6.1.11 Interrupt/Handler/Interrupt Vectors cersesasensasersaresanassesases 239

6.1.12 Storage Managementcccvccrninrvsiscusessmsessesencssisnsessasesssssssssssesesscnsins 239

6.1.13 Subroutine Call and Parameter Passing Conventionsccececveececunne 240

6.1.14 Saving Machine State During a Context Switchooveerivcsrnnrercicnee, 240

6.1.15 Exception Handlingcccoueeueeee. ettt e b Rt s b as b 240

6.1.16 Unhandled EXCEPUIONSccoccvveireviniinccninenitsiiniscsnanessssasescssasesssssssssescases 241

0.1.17 GENETICS .o.cureceiereveccraennennsrsscsscssssnsesssssssssssssassssosessssssssasensasssssasssssssssassassonss 241

6.1.18 I/O INLETTACEScceererrrrenrcrcrerernersssssssessssnsssessnssssssssesssssassssssssnenssssssstessesssess 242

6.1.19 Compiler Capacity and Tool Availabilitycccccoenrrsnirirecnrcenniccnnnnnnns 242

6.2 To Configure a Runtime EnvifONMENtcccceevsrsecceirnscrsrnesessessesssssnnssssassssnsesssess 243

6.2.1 BOOLSIIAPPINE ...cocrrecncnrinirrnnrnensssssssssessisisssssssasisensessassssosssssssssssssssssssessasassasssssss 243

6.2.2 Interrupt Vector .. rerasesseebs bR bR SRR AR RS bR e s R R0 244

6.2.3 User-Configurable Module Dependenciesccecorserirscsceasesennnseenns 244

6.2.4 TImer INEITUPLuecriirecrirecencsininnsisnsassssisssesntsessnsssesssessssnasssessessasasssinssss 244

6.2.5 Linker Options reressssb s bene 244

6.3 To Use a Runtime Environment ... 245

7. Effects of Runtime Issues on the Development of Reusable Softwarecccccoeuureeee. 247
8. Summary reesresensersesaensataettenerentetassaeneanas e s eaanent s nsaanenestessunssasasane reseerenesessnansasninte 248
9. References rrseeseent st s renebensrsaessas e sasesaeres 249
10, APPENAIX Aoueeeeeitireceerirenseeresessssssssessssstsassessssstossassensassssssnsssssssesatessasstsssasssnssssassassossss 252

-iv-

1. Ada Runtime Environment (RTE)ceeu....

2. Runtime Environment Components

3. The Application Domain

List of Figures

List of Tables

1. Bare Machine Targeted Compilers (listed by target)
2. Bare Machine Targeted Compilers (listed by vendor)

--

Guideline to Select, Configure, and Use an Ada Runtime Environment

1. Introduction
1.1 Background

An extensive effort is underway by the DoD to transition Ada technology into the real-time
embedded application domain. Much work has been done to determine why the transition
to the Ada programming language is not, in actuality, as smooth as originally anticipated. A
yrimary reason for the difficulty, cited in LabTek’s 1987 report, titled "Software Engineering
ssues on Ada Technology Insertion for Real-time Embedded Systems", is the incorporation of
a substantial runtime environment into the compilation system.

An Ada compilation system, in addition to generating the code for the semantics of the Ada
language, also supplies the code that was previously provided by a separate executive or
operating system. It provides an extensive runtime which other traditional compilers did
not. Therefore, application developers, who previously built their own executives, have to
sacrifice some otP the ability to configure the executive to suit the application when
transitioning to Ada. This report will detail the extent of configurability available in Ada
runtime environments today.

1.2 Puipose and Intent

The runtime environment of the Ada compilation system must always comply with the rules
of the Ada language as defined by the Ada standard, ANSI-MIL-STD-1815A-1983. [5] Yet
the Ada standard provides significant flexibility in how the runtime environments support
the language definition. The runtime environment is thus allowed to exhibit different
gerformance characteristics (that may reflect the needs of the application) for the same
eatures or combination of features. In fact, Ada provides the pragma construct as one
method to help the Ada compilation system determine the performance characteristics that
the runtime environment should provide for an application. Thus, the runtime environment
of an Ada compilation system may be able to accommodate an arbitrary number of
interpretations of an application in Ada that comply with the Ada language standard.
These interpretations can be guided by the pragma construct or by other mechanisms
provided by the Ada compilation system.

It is the purpose and intent of this rerort to produce a guideline to select, configure and use
an Ada runtime environment. It will detail the options available to application developers
who must contend with Ada runtime environments. A view of the current state of the
technology for bare machines will be presented.

1.3 Definitions

Following are the definitions for terms found throughout this report.

ARTEWG: The Ada RunTime Environment Working Group, is a grou? sponsored by the
Association for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda),
whose purpose is to address the problems encountered in Ada runtime environments.

AVO: The Ada Validation Orianization provides administrative and technical support to

ensure that Ada compilers faithfully implement the Ada programming language standard
(ANSI/MIL-STD-1815A-1983). [4]

Guideline to Select, Configure, and Use an Ada Runtime Environment

Base Compiler: An Ada compiler for which a current validation certificate exists. [4]

Base Configuration: The specific configuration on which the base compiler is tested by an
Ada Validation Facility (AVF) as part of the validation process. [4]

Ada Compiler. A system (in a loadable or executable code form) which translates Ada
source programs into object code that, when loaded with the target run-time system,
executes on a tar’ﬁt:t computer in a manner that is in compliance with the Ada programming
language. [4] Throughout this report the phrase compilation system will be used

synonymously.

Configure an RTE: To configure an RTE is the ability to select various software
components when building the application software. Components may be selected from the
following categories: dynamic memory management, processor management, interrupt
management, time management, exception management, rendezvous management, task
activation, task termination, I/O management, and miscellaneous support functions.
Configuring an RTE is different than tailoring an RTE (see tailor an RTE).

Derived Compiler: One of the following:
1. A base compiler on an equivalent configuration.
2. A maintained compiler on a base configuration.

3. A maintained compiler on an equivalent configuration, where any of these
pairs originates from a base compiler and base contiguration pair. [4]

Equivalen. Configuration: Any configuration of the same computer architecture(s) and
operating system for which compliance is achievable using the same ACVC (Ada Compiler

alidation Capability) version used in the validation of the base compiler on the base
configuration. [4]

Host Architecture: The computer architecture on which the compiler resides.

Maintained Compiler: A base compiler which has been changed in any way generally
accepted by the software profession to constitute "maintenance” - usually meaning minor
change. Complete replacement or addition of some major component of a base compiler is
not considered "maintenance”. [4]

PIWG: The Performance Issues Working Group, is a group sponsored by the Association
for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda), whose
purpose is to write benchmark programs which can be executed on different Ada
compilation systems and provide performance information.

Runtime Environment (RTE): Consists of three functional areas: abstract data structures,
code sequences, and predefined subroutines. It includes all of the runtime sug)port routines,
the conventions between the runtime routines and the compiler, and the underlying virtual
machine of the target computer. "Virtual" is used in the sense that it may be a machine with
layered software (a host operating system). An RTE does not include the application itself,
but includes everything the application can interact with. Each layer has a protocol
between it and the layer underneath it for interfacing. In the event that there 1sn’t any

2-

—————————————————————————————

Guideline to Select, Configure, and Use an Ada Runtime Environment

operating system layer (the bare-machine target), the runtime includes those low-level
functions found in an operating system. See Figure 1.

Tailor an RTE: To tailor an RTE is the actual modification of the source code to achieve
the requirements of the application.

(Taliet) Runtime System or Runtime System (RTS): The set of subprograms, which may be
invoked by linking, loading, and executing object code generated by an Ada compiler. If
these subprograms use or depend upon the services of an operating system, then the target
runtime system includes those portions of that operating system. [4] These predefined
subroutines are chosen from the gwn‘zm e Library for that Ada compilation system.

Target Architecture: The computer architecture used for execution of object code generated
by an Ada compiler. [4]

VAXELN is a real-time operating system for DEC VAX line of computers.

APPLICATION

Ada RUNTIME

Ado RTE

fEPERATING SYSTEM

HARDWARE \j

Figure 1. Ada Runtime Environment (RTE)

1.4 Organization of Document

Section one of this report contains the introductory information as well as the definitions of
terms found in the report.

Section two of this r:Fort details the approach used to gather the information and the
criteria used for its evaluation.

Section three of this report details the components of a runtime environment. The reader is
referred to the document "4 Framework for Describing Ada Runtime Environments",

-3-

Guideline to Select, Configure, and Use an Ada Runtime Environment

proposed by the ARTEWG, October 15, 1987. [2] This document details the evolution of
runtime environments, and provides a taxonomy of the components of a runtime
environment.

Section four of this report provides a complete list of the Ada compilation systems that were
available for bare machine targets at the time of this writing. For each implementation it
contains: 1) the degree of configurability of the runtime, 2% storage requirements of the
runtime system, and 3) efficiency information.

Section five of this report categorizes the application domain into distinct areas. For
example, a C3I application requires different runtime features than a signal processing
application. The purpose of section five is to subdivide the application domain and detail
the runtime features needed for each subdivision.

Section six of this report provides detailed guidance for selecting, configuring and using Ada
runtime environments.

Section seven details the effects that runtime issues will have on the development of
reusable software for Mission Critical Computer Resources (MCCR) applications.

Section eight contains a summary of lessons learned.
Section nine contains the reference materials used in the creation of this report.

Appendix A of this report contains two versions of the "Survey of Runtime Environment
Components”. These surveys were used to obtain information about the bare machine
target compilation systems from the compiler vendors. Throughout the period of
performance of this contract the survey was fine-tuned, thus producing a second version.

1.5 How to Best Utilize this Document

This guideline can be utilized as a reference guide or as a process for selecting an Ada
runtime environment.

For quick reference guide usage, turn to Table I, titled "Bare Machine Targeted Compilers".
This table details what compilers are available for the target of interest. Refer to the pages
listed in the right column for details on those implementations. A table of compiler vendor
names and addresses (with phone numbers) is also provided in section 4.2. Please consuit
with the compiler vendors to answer any additional question you may have regarding a
specific implementation.

To use this guideline as a process for selecting an Ada runtime environment, the following
is a suggested method:

1.) Determine your system requirements. Review section five of this report, titled
"Application Characteristics” for a general description of the requirements that can be
imposed upon the application software.

2.) Review section three of this report, titled "Ada Runtime Features". For the most

part, runtime environments can be broken down into these components and it
provides a basis for further discussion.

4.

Guideline to Select, Configure, and Use an Ada Runtime Environment

3.) Review section six, titled "Guideline to Select, Configure, and Use a Runtime
Environment”. This section contains the questions to ask before selecting a specific
implementation. The list should be fine-tuned for the particular application.

4.) Review section four for details on specific compiler implementations.

5.) Contact the compiler vendor (see section 4.2 for phone numbers) to resolve any
additional questions you may have regarding a specific implementation. If
appropriate, purchase the documentation only for the compiler of interest and review
it before making a commitment to use a particular runtime implementation.

Guideline to Select, Configure, and Use an Ada Runtime Environment

2. Approach
The approach used to obtain the information in this report was:

1. The current literature, especially the ARTEWG documents, was reviewed for material
relevant to this task. [2], [3]

[Zisiklcz:gllnprehensive list of the validated bare machine target compilers was produced. [6],

3. A Survey of Runtime Environment Components was prepared to obtain pertinent runtime
information for the compilers of interest (determined in step two above). A copy of this
survey can be found in Appendix A. The survey was updated on an iterative basis. As
vendors/users responded, it was fine-tuned and used from that point onward. The final
version (V2.0) can also be found in Appendix A.

4. The compiler vendors were contacted and asked to respond to the survey produced in
step 3 above.

The survey was concerned with obtaining the following information: a.) degree of
configurabulity, b.) the storage requirements (overhead) associated with using a particular
runtime feature, and c.) performance information.

Since most compiler vendors had the PIWG benchmarks available for their products, they
were asked to supply the results, along with the speed of the processor and wait-state of the
memory. dThe intent was to provide performance information that could be compared and
contrasted.

5. The AVO was contacted in order to obtain copies of the validation report summaries for
each bare machine target. Of particular interest was the Implementation Del?endent
Characteristics (Appendix F of the Ada Reference Manual) and the Language Features
Supported section. This turned out not to be as useful as originally expected, for two
reasons: 1.) It was not easy to obtain copies of the validation reports. It had to be ordered
through NTIS (National Technical Information Services), which was backlogged, and did
not (at the time) have copies of the recently validated compilers ready for distribution.
Typically there was a one year lag between the time a compiler was validated, and the time
the validation report was available through NTIS. 2.) The validation reports do not contain
configurability information.

6. Compiler documentation, for a few selected compilers (Tartan Laboratories, Systems
Designers Software, DDC-I, and Verdix), was reviewed for usefulness and completeness.
Special attention was paid to the sections describing runtime configurability. Some vendors
were not selected because a.) they would not sell the documentation separately without
licensing the compiler, or b.) the cost for documentation exceeded our guidelines for
purchase of it.

7. The Info-Ada bulletin was utilized to obtain a database of users who could provide the
necessary information when gaps existed in vendor supplied information.

8. A mailing to a large group of people (approximately 3603 concerned with Ada runtimes
was performed. The purpose was to see if anyone had specific information regarding a bare

-6-

Guideline to Select, Configure, and Use an Ada Runtime Environment

machine implementation and could provide input into this report. Those who respond
favorably were contacted either by electronic mail or phone and sent a survey.

9. The ARTEWG meetings and the SIGAda meetin_lgs, which fell during the period of
performance of this contract, were attended by LabTek personnel. Informal interviews
were held, contacts were made and surveys were distributed.

10. The input material obtained from steps 1-9 above was analyzed, and this report was
produced.

Guideline to Select, Configure, and Use an Ada Runtime Environment

3. Ada Runtime Features

This section contains a taxonomy of Ada runtime environment components (see Figure 2.)
with a description of each. Again, the reader is referred to the ARTEWG document, 4
Framework for Describing Ada Runtime Environments. The taxonomy is provided here to
clarify the components referenced in the size breakdown of each runtime in section 4.

Ada Runtime
Components
Dynamic Target
Memory Housekeeping
Management Functions
Procéssor Commonly
M 1 Called Code
anagemen Sequences
Interrupt I/0
Management Management
Time Task
Management Termination
Exception Rendezvous Task
Management Management Activation

Figure 2, Runtime Environment Components
3.1 Dynamic Memory Management
Dynamic Memory Management is responsible for allocation and deallocation of storage at
runtime. It also detects when a request for storage cannot be fulfilled, and for raising the
exception STORAGE_ERROR as appropriate.
3.2 Processor Management
Processor Management implements the assignment of the CPU (or CPUs) to tasks that are

"logically executing”. The processor management function is invoked by other components
of the runtime environment, in order to block and unblock tasks. It keeps a list of those

8-

Guideline to Select, Configure, and Use an Ada Runtime Environment

tasks which are "logically executing” and uses this list, in conjunction with the priorities of
tasks, to select which task (or tasks) should physically execute. This component is often
called the "scheduler”.

3.3 Interrupt Management

Interrupt Management is responsible for initialization of the interrupt mechanism of the
underlying computing resource, and it is also responsible for resetting that mechanism after
an interrupt has occurred, if the architecture of the underlying computing resource requires
such resetting.

3.4 Time Management

Time Management consists of all those portions of the runtime environment that will
su;:Eort the predefined package CALENDAR and the implementation of delay statements.
If the underlying computing resource offers enough functionality, the support of package
CALENDAR is trivial.

3.5 Exception Management

Exception Management implements Ada semantics for excegtions: that is, it determines
whether there is a matching handler for the exception at hand, and if there is one, it

transfers control to the handler. If there is no matching handler, it invokes the Task
Termination function to terminate the task at hand or the main program.

3.6 Rendezvous Management

Rendezvous Management implements the semantics of the Ada rendezvous model. In
order to do so, it utilizes variables that are internal to the runtime environments. These
variables reflect, among other things, which tasks are blocked because they are waiting to
rendezvous with other tasks, and what the exact circumstances of these wait states are. The
rendezvous management function cooperates with the interrupt management function in
the implementation of interrupt rendezvous, if the interrupt rendezvous is supported by the
runtime environment.

3.7 Task Activation

At some ‘foint after the task object has been created, the execution of the new task has to
be started. This is effected by the task activation function. This function is invoked by the
creator of a new task in order to start the new task’s activation (which is defined as the
execution of the declarative part of the task’s body). It may also be invoked by the new task
in order to signal the completion of that task’s activation.

3.8 Task Termination

Tfask Esennination implements the set of rules for the completion, term:nation, and abortion
of tasks.

Guideline to Select, Configure, and Use an Ada Runtime Environment

3.9 I/0 Management

I/O Management consists of all those portions of the runtime environment that are
provided for the mgg)ort of input and output. This includes in particular all those functions
that support predefined packages from Chapte: 14 of the Ada Reference Manual.

3.10 Commonly Called Code Sequences

Commonly Called Code Sequences is a "catchall” category. It includes runtime routines in
the classical sense: commonly called sequences of code. Typical examples are operation
for multi-word arithmetic, block moves and string operations. Ada attribute calculations
also fall into this category.

3.11 Target Housekeeping Functions

Target Housekeeping Functions are associated with the start up and termination of the
execution environment of an Ada program. Such actions include determination of the
particular hardware and software execution environment, setting of variables identifying
same, Processor and interrupt initializations, and so on. Similarly, if a program terminates,
control is typically returned to some surrounding software whose state must be reset upon
program exit.

-10-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4. Bare Machine Targets

There are currently seventy-one validated Ada compilers which generate code for the bare
machine target. These compilers are produced by eighteen vendors.

The information in this chapter will be provided in two formats:

1.) by Target Processor Type (Table I). This section, indexed by processor type,
contains a page reference to Table II, where the detailed information for that
compilation system can be found.

2) bl); Compiler Vendor (Table II). This section, indexed by compiler vendor, details
the host/target combination, dc;%ree of configurability, PIWG benchmark results,
storage requirements in graphical form, Package SYSTEM, Package STANDARD,
and the vendor responses to pertinent questions that were considered critical to
real-time programming. The information contained in Table II is explained more
fully beginning on page 27.

In addition to the two tables described aboved, chapter 4 contains a brief description of the
PIWG benchmarks (4.1), and a list of vendor contacts (4.2).

-11-

Guideline to Select, Configure, and Use an Ada Runtime Environment

This page intentionally left blank.

-12-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4.1 PIWG Benchmarks

Benchmarks are used as part of the compiler selection process. Therefore, the Performance
Issues Working Gr?&) &IWG) benchmarks are supplied in Table II. The following is a
description of the PIWG benchmarks taken from the PIWG test suite itself.

TEST DESCRIF 7TON

A000091 DHRYSTONE Benchmark. Contains Ada statements in a
distribution considered representative: 53% assignments, 32%
control statements, 15% procedures, function calls. 100 statements
are dK?anﬁcally executed. The program is balanced with respect to
the three aspects: statement type, operand type (for simple data
types), and operand access (operand global, local, parameter, or
constant). The combination of these three aspects is balanced only
approximately. All variables have a value assigned to them before
they are used as a source operand.

A000093 WHETSTONE Benchmark. Ada version of the Whetstone
’ Benchmark Program. Reference: "Computer Journal®, February
1976, pages 43-49 for description of benchmark and ALGOL60

version. Note: Procedure POUT is omitted.

C000001 Task create and terminate measurement, with one task, no entries,
when task is in a procedure, using a task type in a package, no select
statement, no loop.

C000002 Task create and terminate time measurement, with one task, no
entries when task is in a procedure, task defined and used in
procedure, no select statement, no loop.

C000003 Task create and terminate measurement. Task is in declare block
of main procedure, one task, no entries, task is in the loop.

D000001 Dynamic array allocation, use and deallocation time measurement.
Dynamic array elaboration, 1000 integers in a procedure, get space
and free it in the procedure on each call. '

D000002 amic array elaboration and initialization time measurement,
allocation, imtialization, use and deallocation, 1000 integers
initialized by others greater than 0. equal to one.

D000003 Dynamic record allocation, and deallocation time measurement,
elaborating, allocating and deallocating record containing dynamic
array of 1000 integers.

D000004 Dynamic record allocation, and deallocation time measurement,

elaborating, initializing by (Dynamic_Size,(others = > 1)) record
containing a dynamic array of 1000 integers.

Guideline to Seleét, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)

TEST DESCRIPTION

E000001 Time to raise and handle an exception. The exception is defined
locally and handled locally.

E000002 Exception raise and handle timing measurement when exception is
in a procedure in a package.

E000003 Exception raise and handle timing measurement, when exception is
raised nested three deep in procedure calls.

E000004 Exception raise and handle timing measurement, when exception is
nested four deep in procedures.

E000005 Exception raise and handle timing measurement when exception is
in a rendezvous. both the task and the caller must handle the
exception.

F000001 Time to set a boolean flag using a logical equation. A local and a
global integer are compared. compare this test with FO00002.

F000002 Time to set a boolean flag using an "if* test. A local and global
integer are compared. Compare this test with FO00001.

G00000S TEXT_I0.Get an INTEGER from a local string, timing

measurement. Use TEXT_IO to convert 1..100 to a string, then use
TEXT_IO.GET to get the number back.

G000006 TEXT_IO.Get getting a floating point fraction from a local string.
Timing measurement on .001 to .01 range of numbers. Compare,
approximately, to G0O0000S for INTEGER vs. FLOAT.

H000001 Time to perform standard BOOLEAN operations on arrays of
BOO . For this test the arrays are PACKED with the pragma
PACK The operations are performed on the entire array.

H000002 Time to perform standard BOOLEAN operations on arrays of

BOOLEAN. The arrays are not PACKED with pragma PACK. The
operations are performed on the entire array.

H000003 Time to perform standard BOOLEAN operations on arrays of
BOOLEAN. The arrays are PACKED with the pragma PACK. The
operations are performed on components in a loop.

H000004 Time to perform standard BOOLEAN operations on arrays of

BOO . The arrays are not PACKED with the pragma PACK.
The operations are performed on components in a loop.

-14-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)
TEST DESCRIPTION
HO000005 Time to move one INTEGER object to another INTEGER object

using UNCHECKED_CONVERSION. This may be zero with
good optimization.

H000006 Time to move 10 floating Lg;oint array objects to a 10 component
floating point record using UNCHECKED_CONVERSION.
H000007 The time to store and extract bit fields that are defined b

representation clauses using both BOOLEAN and INTEGE
record components. Consists of twelve accesses, five stores, one
record copy.

1000001 Simple "for" loop time. For I in 1..100 loop. Time is reported for
once through loop.

L000062 Simple "while" loop time. While I is less than or equal to 100 loop.
Time is reported for once through the loop.

L000003 Simple "exit" loop time. Loop I:=I + 1; exit when I greater than
100; end loop; Time is reported for once through the loop.

L000004 Measure the compilers’ choice to UNWRAP a small loop of five

iterations when given the pragma OPTIMIZE(Time). An execution
time less than .05 microseconds indicates the unwrap occurred.

L000005 Measure the compilers’ choice to UNWRAP a small loop of five
iterations when given the pragma OPTIMIZE(Space). An
executi(‘)in speed less than .05 microseconds indicates the unwrap
occurred.

P000001 Procedure call and return time (may be zero in automatic inlining).
Procedure is local with no parameters.

P000002 Procedure call and return time. Procedure is local with no
parameters, when procedure is not inlineable.

P0O00003 Procedure call and return time measurement. Procedure is in a
separately compiled package. Compare to P000002.

P000004 Procedure call and return time measurement. Procedure is in a
Wely compiled package. Pragma INLINE used. Compare to
1.
P00000S Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, in INTEGER.

-15-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)
TEST DESCRIPTION

P000006 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, out INTEGER.

P000007 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, in out INTEGER.

P000010 Procedure call and return time measurement. Ten parameters, in
INTEGER. Compare to P0O0000S.

P000011 Procedure call and return time measurement. Twenty parameters,
in INTEGER. Compare to PO0000S, P000010.

P000012 Procedure call and return time measurement. Ten parameters, in
MY_RECORD, a three component record. Compare with P000010
(discrete vs. composite parameters).

P000013 Procedure call and return time measurement. Twenty composite ’in’
parameters, the composite type is a three component record.

T000001 Minimum rendezvous, entry call and return time measurement. One
task, 1 entry, task inside procedure, no select.

T000002 Task entry call and return time measurement. One task active, one
entry in task, task in a package, no select statement.

T000003 Task entry call and return time measured. Two tasks active, one
entry per task, tasks are in a package. No select statement used.

T000004 Task entry call and return time measured. One task active, two
entries, tasks in a package, using select statement.

T000005 Task entry call and return time measured. Ten tasks active, one
entry per task, tasks in a package, no select statement.

T000006 Task entry call and return time measurement. One task with ten
entries, task in a package, one select statement, compare to
T00000S.

T000007 Minimum rendezvous, entry call and return time measurement,

using one task, one entry, and no select statement.

T000008 Measures the average time to pass an integer from a producer task
through a buffer task to a consumer task.

Guideline to Select, Configure, and Use an Ada Runtime Environment

4.2 Vendor Address Listing

Advanced Computer Techniques Corp.
(InterACT)

16 East 32nd Street

New York New York 10016

(212) 696 - 3600

AlTech Software Engineering Ltd.
1250 Oakmead Parkway

Suite 210

Sunnyvale California 94086

(408) 720 - 9400

Alsys, Inc

1432 Main Street

Waltham, Massachusetis 02154
(617) 890 - 0030

CAP Industry Ltd.

Trafalgar House

Richfield Avenue

Reading Berkshire RG18QA
Englan

+44 734 508961

DDC-], Inc.

P.O. Box 32220

11024 North 28th Drive
Suite 200

Phoenix, Arizona 85064
(602) 863 - 6910

Digital Equipment Corporation
40 Old BE&ton Road P

Stow, Massachusetts 01775
(617) 496 - 8740

Gould, Inc.

Computer Systems Division

6901 West Sunrise Boulevard

P.O. Box 9148

Fort Lauderdale, Florida 22210 - 9148
(305) 797 - 5509

Harris Corporation

2101 West Cyress Creek Road
Fort Lauderdale, Florida 33309
(305) 974 - 1700

Intermetrics, Inc.

733 Concord Avenue
Cambridge, Massachusetts 02138
(617) 661 - 1840

Rational

3320 Scott Boulevard

SantaClara, California 95054-3197
(408) 496-3600

Rockwell International

400 Collins Road North East
Cedar Rapids, Iowa 52498
(319) 395 - 1729

SofTech Inc.

460 Totten Pond Road

Waltham, Massachusetts 02154 - 1960
(617) 890 - 6900

System Designers Software Inc.
101 Main Street

Cambridge, Massachusetts 02142
(617) 499 - 2000

Tartan Laboratories Inc.

461 ll\)del;vho%d Averlme 15213
Pittsburgh, Pennsylvania

(412) 621 - 2210

TeleSoft, Inc

5959 Cornerstone Court West

San Diego, California 92121 - 9891
(619) 457 - 2700

TLD

21235 Hawthorne Boulevard
Suite 204

Torrance, California 90503
(213) 316 - 1516

Verdix Corporation
Sullyfield Business Park
14130 - A Sullyfield Circle
Chantilly, VA 22021

(703) 378 - 7600

-17-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Table 1. Bare Machine Targeted Compilers
(Listed By Target Processor)

The following table is a list of bare machine targeted compilers which are listed in order by
target processor (1750, 80x86, 680x0, 32032, etc.i The table includes the host processor that
the compiler executes on and the vendor who produces the compiler. Listed under each
vendor are reference gages which refers the reader to the proper pages in Table II
concerning the detailed configuration, runtime size, and benchmark information for the

corresponding compiler.

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
1750A, ECSPO RAID VAX-11/785 Intermetrics, Inc.
simulator CX-04.001 (under VMS 4.2) (Ref. pages 85 - 90)
(bare machine)

1750A, ECSPO RAID MicroVAX 11 TeleSoft, Inc.
MIL-STD-1750A simulator (under VMS, (Ref pages 174 - 180)

version 4.0 executing
on the host (bare machine)

version 4.6)

1750A, Fairchild VAX-11/785 Advanced Computer
9450/1750A (under VMS 4.4) Techniques Corp.
in a HP 64000 (Ref. page 219)
workstaion
(bare machine)
1750A, Fairchild F9450 VAX-11/750 Tartan Laboratories, Inc.
(bare machine) (under VMS 4.1) (Ref. pages 162 - 173)
1750A, Fairchild 9450 MicroVAX 11 Verdix Corp.
under Tektronics (under VMS (Ref. pages 196 - 201)
emulation (bare machine) Version 4.7)
1750A, Ferranti DEC VAX-11/7xx, Systems Designers
Computer System VAX 8xx, VAX Software, Inc.
100A Station, and (Ref. pages 148 - 149)
(bare machine) MicroVAX series
* Derived * (under VAX/VMS 4.5

or MicroVMS 4.5)
1750A, Mikros VAX-11/750 Tartan Laboratories, Inc.
MKS1750/SO (bare machine) (under VMS 4.1) (Ref. pages 162 - 173)
1750A, MIL-STD-1750A Rational 1000 Rational
(bare machine) (Ref. pages 91 - 109)

-18-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
1750A MIL-STD-1750A VAX-11 VMS TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)
1750A MIL-STD-1750A HP9000 - 350 TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)
1750A MIL-STD-1750A DG AOS/VS TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)
1750A, Tektronix 8540A Harris HCX-7 series Harris Corporation
(bare machine) (under HCX/UX, V.2.2) (Ref. page 220)
1750A, Tektronix 8540A Harris H1200 Harris Corporation
(bare machine) (under VOS, 6.1) (Ref. page 220)
1750A, Unisys $1636- VAX-11/750 Tartan Laboratories, Inc.
MIL-STD-1750A (under VMS 4.1) (Ref. pages 162 - 173)
(bare machine)
8086, Intel iSBC 86/05A DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
8086, Intel iSBC 86/35 DEC VAX-11/7xx, DDC-1
(bare machine) VAX 8xxx,VAX Station, (Ref. pages 65 - 80)
Derived and MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)
8086, Intel iAPX 8086 VAX-11/780 and SofTech, Inc.
(bare machine) VAX 11/785 (Ref. pages 126 - 147)

(under VAX/VMS 4.5)
8086, Titan SECS 86/20 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80186, Intel itAPX 80186 VAX-11/780 and SofTech, Inc.
(bare machine) VAX 11/785 (Ref. pages 126 - 147)

(under VAX/VMS 4.5)
80186, Intel iSBC 186/03A DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80186, Intel iSBC 186/03A DEC VAX-11/7xx, DDC-1
(bare machine) VAX 8xx,VAX Station, (Ref. pages 65 - 80)
Derived and MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)

-19-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
80286, Intel iAPX 80286 MicroVAX I1 CAP Industrsy, Ltd.
rotected mode (under MicroVMS 4.6) (Ref. pages 59 - 64)
bare machine)

80286, Intel iAPX 80286 VAX-11/780 and SofTech, Inc.
real mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)
80286, Intel iAPX 80286 VAX-11/780 and SofTech, Inc.
protected mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)
80286, Intel iSBC 286/14 IBM PC/AT Alsys
(bare machine) (under PC/DOS 3.2) (Ref. pages 36 - 49)
80286, Intel iSBC 286/12 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxx,VAX (Ref. pages 65 - 80)
Derived Station, and

MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)
80286, Intel iSBC 286/12 DEC VAX-11/7xx, DDC-I
Protected mode VAX 8xxx, VAX (Ref. pages 65 - 80)
(bare machine) Station, and
Derived MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)
80286, Titan SECS 286/20 DEC MicroVAX I DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80386, Inte! 80386 on VAX 8530 (under TeleSoft/Intel
an Intel 386-100 VMS, version 4.6) Corg. /TeleLOGIC
board (bare machine) (Ref. page 223)
80386, Intel iAPX 80386 VAX-11/780 and SofTech, Inc.
compatibility mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)

-20-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
80386, Intel iISBC 386/21 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80386, Intel iSBC 386/21 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxx, VAX (Ref. pages 65 - 80)
Derived Station, and
MicroVAX series
(under VAX/VMS 4.6
or MicroVMS 4.6)
80386, Intel iSBC 386/21 DEC VAX-11/7xx, DDC-I
Protected mode VAX 8xx,VAX (Ref. pages 65 - 80)
(bare machine) Station, and
Derived MicroVAX series
(under VAX/VMS 4.6
) or MicroVMS 4.6)
80386, Intel iSBC 386/20P MicroVAX 11 Verdix Corp.
using file-server (under MicroVMS, (Ref. pages 202 - 206)
support from the Host Version 4.4)
(bare machine)
80386, Intel iSBC 386/20P MicroVAX I Verdix Corp.
using file-server (under MicroVMS, (Ref. pages 202 - 206)
support from the Host Version 4.7)
(bare machine)
80386, Intel iSBC 386/20 Intel system 320 Verdix Corg.
(bare machine) (under UNIX system (Ref. page 227)
version release 3.0)
80386, Intel iSBC 386/20P VAX 8800, 87000 Verdix Corp.
using file-server 8650, 8600, 8500, (Ref. pages 202 - 206)
support from the Host 8300, 8200
(bare machine) VAX 11/785, 782, 780,
* Derived * 750, 730, & MicroVAX II
(under VMS 4.4)
80386, Intel iSBC 386/20P Sequent Symme Verdix Corp.
using file-server S-2q7(under DYI*}?X, (Ref. pagergz7)
support from the Host release 3.0)
(bare machine)
80386, Force CPU-386 DEC MicroVAX II DDC-1
VMEDbus (under MicroVMS 4.4) (Ref. pages 65 - 80)
(bare machine)
21-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
680x0, MC680x0 IBM PC/AT, Compagq 386, Alsys
(bare machine) SUN-3, HP-300, VAX/VMS (Ref. pages 50 - 58)
68000, MC68000/10 DEC VAX-11/7xx, Systems Designers
implemented on VAX 8xx, VAX Software, Inc.
the MVME 117-3FP Station, and (Ref. page 222)
board (bare machine) MicroVAX series
* Derived * (under VAX/VMS 4.5

or MicroVMS 4.5)
68000, MC68000/10 DEC VAX-11/7xx, Systems Designers
implemented on VAX 8xxx, VAX Software, Inc.
the MVME 117-3FP Station (under VMS 4.6) (Ref. pages 222)
board (bare machine) and MicroVAX Series
* Derived * (under MicroVMS 4.5)
68000, MC68000 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 224 - 226)
Motorola MVME (under Sun UNIX
101 board (ba:< machine) version 4.2, release 3.2)
68000,MC68000 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3 Workstations, (Ref. pages 224 - 226)
Motorola MVME Models: 260, 180, 160,
101 board 150, 140, 110, 75, 60,
(bare machine) 50 and 52 (with soft-
Derived ware floating point);

SOME and 52 + 152A (with

MC68881 FPC) (under Sun

UNIX version 4.2,

Releases 3.2 & 3.4)
68000, MC68000 MicroVAX II TeleSoft, Inc.
implemented on a (under VMS, (Ref. pages 224 - 226)
Motorola MVME version 4.6)
101 board (bare machine)
68000, MC68000 DEC VAX family TeleSoft, Inc.
implemented on a MicroVAX, VAX station, (Ref. pages 224 - 226)
Motorola MVME AX server, VAX 8xxx, &
101 board VAX-11 models)
(bare machine) * Derived* (under VMS 4.5 and 4.6)

22-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
68010, MC68010, DEC VAX 8600 Systems Designers
implemented on (under VMS 4.5) Software, Inc.

the MVME 117-3FP (Ref. pages 150 - 153)
board (bare machine)

68010, MC68010 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 224 - 226)
Motorola MVME (under Sun UNIX

117-4 board (bare machine) version 4.2, release 3.2)

68010, MC68010
implemented on a
Motorola MVME
1174 board

(bare machine)
Derived

68010, MC68010
implemented on a
Motorola MVME

117-4 board (bare machine)

68010, MC68010
implemented on a
Motorola MVME
117-4 board

(bare machine)

* Derived®

68010, MC68010
implemented on a
Motorola MVME
133A-20 board
with a MC6881
floating point
coprocessor

(bare machine)
derived

Sun Microsystems

Sun-3 Workstations,
Models: 260, 180, 160,

150, 140, 110, 75, 60,

50 and 52 (with soft-

ware floating point);

SOME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,

Releases 3.2 & 3.4)

MicroVAX 11
(under VMS,
version 4.6)

DEC VAX famil
(MicroVAX, VAX station,
VAX server, VAX 8xxx, &
VAX-11 models)

(under VMS 4.5 and 4.6)

Sun Microsystems

Sun-3 Workstations,
Models: 260, 180, 160,

150, 140, 110, 75, 60,

50 and 52 (with soft-

ware floating point);
SOME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,

Releases 3.2 & 3.4)

TeleSoft, Inc.
(Ref. pages 224 - 226)

TeleSoft, Inc.
(Ref. pages 225 - 226)

TeleSoft, Inc.
(Ref. pages 225 - 226)

TeleSoft, Inc.
(Ref. pages 225 - 226)

Guideline to Select, Conﬁgure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
68020, MC68020 Micro VAX 11 AlTech Software
Motorola MVME 133 board (under MicroVMS v .4.5) Engineering Ltd.

(bare machine) (Ref. pages 28 - 35)
68020, MC68020 Rational 1000 Rational

(bare machine) (Ref. pages 110 - 125)
68020, MC68020, DEC VAX 8600 Systems Designers
implemented on the MVME (under VMS 4.5) Software, Inc.

133 board with a MC68881
floating point coprocessor
(bare machine)

68020, MC68020,
implemented on the

MVME 133 board with a
MC68881 floating point
coprocessor

(bare machine)

68020, MC68020,
implemented on

the MVME 133

board with a MC68881
floating point
COProcessor

(bare machine)

68020, MC68020
implemented on a Motorola

E 133A-20 board with a
MC68881 floating point
COprocessor

68020, MC68020
implemented on a Motorola
MVME 133A-20 board with a
MC68881 floating point
coprocessor

DEC VAX-11/7xx
VAX 8xxx, VAX
station, and Micro
VAX series (under
VAX/VMS 4.5 or
MicroVMS 4.5)

DEC VAX-11/7xx
VAX 8xxx, VAX
station (under VMS
4.6), MicoVAX series
(under MicroVMS 4.5)

DEC VAX famil
MicroVAX VAX station
AX server. VAX 8xx
models) (under VMS
4.5 and 4.6)

MicroVAXII
(under VMS 4.6)

(Ref. pages 154 - 161)

Systems Designers
Software, Inc.
(Ref. pages 154 - 161)

Systems Designers
Software, Inc.
(Ref. pages 154 - 161)

TeleSoft, Inc.
(Ref. pages 181 - 188)

TeleSoft, Inc.
(Ref. pages 181 - 188)

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
68020, MC68020 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 225 - 226)
Motorola MVME 133-A-20 (under Sun UNIX

board with a MC68881 version 4.2, release 3.2)

floating point coprocessor

(bare machine)

68020, Microbar GBC68020 Sun Microsystems Verdix Corp.

(bare machine)
using file-server
support from the Host

68020, Microbar
GPC-68020
(bare machine)

68020, Microbar
GPC-68020
(bare machine)

32032, National DB32000
(NS32032) (bare machine)
using file-server

support from the Host

32032, National DB32000
(NS32032) (bare machine)
using file-server

support from the Host

* Derived *

32032, National DB32000
(NS32032) (bare machine)
using file-server

support from the Host

MicroVAX II

grunder VAXELN
oolkit, Version

3.0 in Combination

with VAXELN Ada,

Version 1.2)

Sun-3/160
(under Sun UNIX
4.2, Release 3.2)

MicroVAX II
(under UNIX 4.2 BSD)

MicroVAX 11
(under MicroVMS 4.4)

MicroVAX 11
(under MicroVMS,
Version 4.4)

VAX 8800, 87000

8650, 8600, 8500,

8300, 8200

VAX 11/78S, 782, 780,
750, 730, & MicroVAX II
(under VMS 4.4)

SYS32/20
under OpusS (UNIX
YS V), release 2.0)

VAX 8800
(under VAX/VMS,
Version 4.7)

(Ref. pages 207 - 218)

Verdix Corp.
(Ref. pages 207 - 218)

Verdix Corp.
(Ref. pages 207 - 218)

Verdix Corg.
(Ref. page 228)

Verdix Corg.
(Ref. page 228)

Verdix Corg.
(Ref. page 228

Digital Equipment Corp.

(Ref. pages 81 - 82)

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
Any of the following All members of the Digital Equipment Corp.
configurations: VAX family: (Ref. pages 81 - 82)
MicroVAX I & IT; MicroVAX I, VAXstation I,

rtVAX 1000; KA620 MicroVAX II, VAXstation II,

(rtVAX 1000 processor VAXstation 2000 (under

board); MicroVAX 3500 & MicroVMS, version 4.7);

3600; VAX-11/730 & 750 MicroVAX 3500 & 3600;

and VAX 8500, 8530, 8550,
8700, & 8800 (under
VAXELN Toolkit, version
3.0 in combination with
VAXELN Ada version 1.2)
* Derived *

CAPS/AAMP
(bare machine)

CAPS/AAMP
(bare machine)

Gould PowerNode
Model 6080
or SelConnection)
bare machine)

VAXserver 3500, 3600, &
3602; and VAXstation 3200,

3500 (under VAX/VMS version

4.7A); VAX-11/730, 750, 780,

782, 785, VAX 8200, 8250,

8300, 8350, 8530, 8550, 8600,

8650, 8700, and 8800 (under
VAX/VMS, version 4.7)

VAX-11/8650
(under VMS,
Version 4.5)

DEC VAX 8650
(under VMS,
Version 4.7)

Gould PowerNode
Model 9080
(under UTX/32
Version 2.0)

26-

Rockwell Int’l.
(Ref. page 221)

Rockwell Int’lL.
(Ref. page 221)

Gould, Inc.
(Ref. pages 83 - 84)

Guideline to Select, Configure, and Use an Ada Runtime Environment

Table I1. Bare Machine Targeted Compilers

The following table is a list of bare machine compilation systems listed in alphabetical order
by vendor. The compiler vendor, host processor, target processor (grouped by machine
family), and compiler version aie presented in a banner heading each new host/target
combination page. Following each banner is the following information:

1.) Degree of Configurability - The survey found in Appendix A was used to obtain this
information. The sources of information were: the compiler vendors, the appropriate
compiler docuruentation, and users. Item VI. under this section describes the source(s) of
information for the information reported. Some vendors provided a technical summary and
this was included as appropriate.

2.) PIWG Benchmarks - These benchmarks were included to provide some feeling for the
efficiency of the implementation. Each compiler vendor had their own subset of the PIWG
benchmarks which they supplied as input. A description of the tests can be found in section
4.1. Processor speed and wait-state of the memory is provided to properly compare the
results; Users are encouraged to contact the PIWG directly for the benchmark results of
new compiler releases.

3.) Histogram - This is a graphical display of the runtime component sizes, and most of the
runtime sizing information was supplied by the vendors. Since this information did not
conform to a standard format the data represented on the graphs is displayed in the same
format as it was received it from the vendor. To change this Information to conform to a
standard format (sec survey in Appendix A) might have resulted in misrepresentation of the
compiler/vendor.

IT SHOULD BE NOTED that it is NOT advisable to compare the different compilers with
just the aid of the graphs themselves. For an accurate overview of each compiler, ALL
documentation provided for a particular compiler must be taken in account.

The graphs DO NOT show inter-dependencies of each component with respect to the other
components. The sizes shown represent each individual component alone and do not take in
account the fact that in order to use one component (component-A), two other components
(components-B & C) might also have to be loaded to make component-A functional. This
obviously adds to the size needed to use the component.

The %raphs display maximums (and minimums when supplied) and does not express
granularity of the components. The actual sizes may depend upon the features of the
application code. For example, component-A’s maximum size may be 10,000 bytes, but
depending upon the language construct used, only part of the component may be loaded.

The graphics package that was used to draw the graphs scaled the information to fit within a
fixed size window. Therefore, depending on the amount of information to be displayed
within this fixed size window, some graphs appear smaller than others. This has nothing to
do with the vendors or their products. It’s simply a function of the graphics package used.

4.) Package SYSTEM and Package STANDARD specification, when provided the vendor.

27-

Guideline to Select, Configure, and Use an Ada Runtime Environment

5.) Response to Critical Questions. As the surveys (see Appendix A) were returned, they
were fine-tuned. A later survey (V2.0, also found in Appendix A), asks the vendors/users to
respond to additional questions that are important to know if one is developing real-time
software. These were limited to 10 questions because a limit had to be placed on the length
of lth(;: gurvey to realistically expect people to answer it. The responses received are
included.

Note that while most compiler vendors were willing to provide at least some of the
requested data, not all responded to the survey. When this was the case, it was so stated.

Finally, a vendor’s validation certificate for a particular compilation system remains in
effect for one year. The period of performance for this contract spanned nine months and
during that time some compiler versions became obsolete. The information presented is as
up to date and accurate as possible for the compiler version presented. Because the
implementations are changing so rapidly, it is suggested that a potential customer contact
the vendor for newer release information. However, this report provides a substantial
anlmunt of basic information that probably would not change drastically from release to
release.

.

-27.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
AlTech Software VAX/VMS MC68020, Motorola
Engineering Ltd. (bare machine)
Con‘z‘%ler version:

AI-ADA/020 V2.1

DEGREE OF CONFIGURABILITY
I Linker Capability:
- Any part of a library unit being required loads the entire unit.
IL. Customization of the Runtime:

- By linker switches
- By modifying the source to the entire runtime (after purchasing it)

IIL. Documentation provided to help user configure runtime:
- This information was not supplied by the vendor.
IV. Services to customize the runtime:
- Provided by AITech
- Cost: Engineerin%l services are provided, subject to negotiation between the
customer and AlTech.
V. Cost of runtime source code:

- The price of the runtime source code is subject to negotiation.

V1. Source of Information: Vendor Input.

Guidelines to Select, Configure and Use an Ada Runtime Environment

AlTech Systems Ltd. PIWG results for MVME133 board, 68020 + 638881. Clock : 20MHz,

one wait state, and cache enabled.
PIWG Test Description Micro -
Name seconds
C000001 Task creation/terminate, task type declared in package. 546.9
C000002 Task creation/terminate, task type declared in procedure. 550.8
C000003 Task creation/terminate, task type declared in block. 554.7
T000001 Minimum rendezvous, entry call and return. 183.6
T000002 Task entry call and return (one task, one entry). 177.8
T000003 Task entry call and return (two tasks, one entry each). 201.2
T000004 Task entry call and return (one task, two entries). 1934
T000005 Active entry and return (ten tasks, one entry each). 187.5
T000006 Task entry call and return (one task, ten entries). 226.6
T000007 Minimum rendezvous, entry call and return. 139.6
TO000008 Parameter pass from producer task through buffer task to 464.9
Runtime System Overhead Measurements
Measurement Description Micro -
seconds
Interrupt from interrupt signal to first 81

Response Time

Interruft Response
for Null Rendezvous

Rendezvous Initiation
Overhead

Rendezvous Termination
Overhead

Clock Interrupt
Overhead

Context Switch

instruction in the rendezvous body

from interrupt signal until a user task 67
(the interrupted one or another) is resumed

from arrival of second partner to first 65
instruction in the rendezvous body

from end of rendezvous body 77
until the user task is resumed

time spent handling one clock 3.8
one clock interrupt

from last instruction in one user task to "first 44

instruction in another user task (measured on the
statement: delay 0.0;)

-29.

BYTES

Guidelines to Select, Configure and Use an Ada Runtime Environment

Aitech Software Engineering Ltd.

Host VAX / VMS
Target: MC68020

Version: AI-ADA/020 Va.l
4000

3500
3000

2600

2500

2000
) 2000

2000
1500

1400

o
S
Y

1000

500

N 500

%

—_

1/0 Mgmt AN

Time MgmiARRHhRRR
HousekeepingRYNRRX

C.CC. SequencesR\

Q
-+
=]
<
£
C
W
—
X
n
=]
—

Task ActivationRNNR

Interrupt MgmtARRRHHHHHR
Exception MgmtAKllHhHt

Processor Mgnt TN

-+
£
D
=
n
3
(8]
>
N
L]
Kol
[=
Y]
o

Dynamic Memory Mgmt A RHHHiHhhm

- Sum Of All Components = 23,700 bytes

¥ Component supplied by vendor.

Common RTS utiizes xRl

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
A1l: Currently 10 microseconds, but it can be configured to suit the application.

Q2: How long, and for what reasons are interrulgts disabled?
A2: Maximum of 100 Microseconds when the RTS is handling some global data structures,
and during context switches.

Q3: What rendezvous optiimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: The following are rendezvous mechanisms that are highly optimized:

1.) Efficient handling of the select statement.
2. i‘a)aecial handling of synchronization rendezvous.
3.) Very low context switch overhead.

See PIWG results.

Q4: What are the restrictions for representation clauses?
A4: Representation clauses will be supported in the next version.

QS: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.

AS5: Priority driven preemptive scheduling with optional time slicing among tasks of equal
priority.

Q6: What are the restrictions on pragma INLINE?
A6: Version 2.1 does not support pragma INLINE.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

Q9: What object types are supported by pragma SHARED?
A9: Only scalar objects (integers, real numbers, etc.).

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Maximum number of tasks (No limit)
- Task time slice default

- Timer resolution

- Exception trace

- Default stack sizes

- Fast interrupt entry

- Default task priority

- Terminal I/

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MC68020

package SYSTEM is

type ADDRESS is private;

subtype PRIORITY is INTEGER range 0 .. 23;
~-- Priority 0 is reserved for the Null Task
~-- Priority 24 is reserved for System Tasks
-- Priorities 25 .. 31 are for interrupts

type NAME is (M68020, M68000);

SYSTEM_NAME : constant NAME := M68020;
STORAGE_UNIT : constant := 16;
MEMORY_SIZE : constant := 2048 * 1024;
MIN_INT ¢ constant := -2_147_483_647 - 1;
MAX_INT ° : constant := 2_147_483_647;
MAX DIGITS : constant := 18;
MAX MANTISSA : constant := 31;
FINE_DELTA : constant := 2#1.04E-31;
TICK : constant := 0.000_001;

private

type ADDRESS is new LONG_INTEGER;

end SYSTEM;

<32-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Description of Package STANDARD for AITech MC68020 Bare Machine Target

Integer Types

Three predefined integer types are implemented, SHORT_INTEGER, INTEGER, and

LONG_INTEGER.

They have the following attributes:

SHORT_INTEGER'’FIRST = -128
SHORT_INTEGER’/LAST = 127
SHORT _INTEGER’SIZE = 8
INTEGER’FIRST = =32_768
INTEGER’LAST = 32_767
INTEGER’SIZE = 16

LONG_INTEGER’FIRST
LONG_INTEGER’LAST
LONG_INTEGER’SIZE

Floating Point Types

-2_147_483_648
2_147_483_647

32

Three predefined floating point types are implemented, SHORT_FLOAT, FLOAT,
and LONG_FLOAT. They have the following attributes:

SHORT_FLOAT’DIGITS
SHORT_FLOAT’EPSILON
SHORT_FLOAT'FIRST
SHORT_FLOAT'’ LARGE
SHORT_FLOAT'LAST
SHORT_FLOAT’MACHINE_EMAX
SHORT_FLOAT’MACHINE_EMIN
SHORT_FLOAT’MACHINE_MANTISSA
SHORT_FLOAT’MACHINE_OVERFLOWS
SHORT_FLOAT’MACHINE_RADIX
SHORT_FLOAT’MACHINE_ROUNDS
SHORT_FLOAT’MANTISSA
SHORT_FLOAT’ SAFE_EMAX
SHORT_FLOAT’SAFE_LARGE
SHORT_FLOAT'’SAFE_SMALL
SHORT_FLOAT’SIZE

6
-16#0.FFFF_FF#E32

1640.FFFF_FF#E32
127
-126
23
TRUE
2
TRUE

125
42535275582707704281251401981719740416.0
0.1175494350822287507968736537222245677E-37
32

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for AITech MC68020 Bare Machine Target (Continued)

FLOAT’DIGITS = 15

FLOAT’EPSILON =

FLOAT'’FIRST = -16#0.FFFF_FFFF_FFFF_F8#E256
FLOAT'’ LARGE =

FLOAT'’LAST = 164FFFF_FFFF_FFFF_F8#E256
FLOAT’MACHINE_EMAX = 1023

FLOAT’MACHINE_EMIN = =1022
FLOAT‘MACHINE_MANTISSA = 52
FLOAT'MACHINE_OVERFLOWS = TRUE

FLOAT’MACHINE_RADIX = 2

FLOAT‘MACHINE_ROUNDS = TRUE

FLOAT’MANTISSA
FLOAT’SAFE_EMAX
FLOAT’SAFE_LARGE
FLOAT’SAFE_SMALL
FLOAT’SIZE

1021
224711641857789388674147672112637508883611472.0E262
0.2225073858507201383090232717332404064219216E-307
64

LONG_FLOAT’DIGITS 18
LONG_FLOAT’EPSILON
LONG_FLOAT'’FIRST
LONG_FLOAT'’ LARGE

LONG_FLOAT’ LAST

-16158503035655503648605529934797844443001542.0E573

16158503035655503648605529934797844443001542.0E573

LONG_FLOAT’MACHINE_EMAX = 16383
LONG_FLOAT’MACHINE_EMIN = -16382
LONG_FLOAT’MACHINE_MANTISSA = 63
LONG_FLOAT’MACHINE_OVERFLOWS = TRUE
LONG_FLOAT’MACHINE_RADIX =2
LONG_FLOAT’MACHINE_ROUNDS = TRUE

LONG_FLOAT’MANTISSA
LONG_FLOAT’ SAFE_EMAX
LONG_FLOAT’ SAFE_LARGE
LONG_FLOAT’SAFE_SMALL
LONG_FLOAT’SIZE

2047
1615850303565550364334980470618644983134.0E573
0.3094346047382578275480183369971197853892E-616
80

Fixed Point Types

Three kinds of anonymous predefined fixed point types are implemented,
named SHORT_ FIXED, FIXED, and LONG_FIXED. Note that these names are
not defined in package STANDARD, but only used here for reference.

8 bits are used for the representation of SHORT_FIXED types,
16 bits are used for the representation of FIXED types, and
32 bits are used for the representation of LONG_FIXED types.

For each of SHORT_FIXED, FIXED and LONG_FIXED there exists a virtual

predefined type for each possible value of SMALL. The posible values
of SMALL are the powers of two that are representable by a LONG_FLOAT value

34-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Pachge STANDARD for AITech MC68020 Bare Machine Target (Continued)

The lower and upper bounds of these types are:

lower bound
upper bound
lower bound
upper bound
lower bound
upper bound

of
of
of
of
of
of

A user defined
SHORT_FIXED, FIXED, or LONG_FIXED type which has the largest value
of SMALL not greater than the user-specified DELTA, and which has
the smallest range that includes the user-specified range.

SHORT_FIXED types
SHORT_FIXED types
FIXED types

FIXED types
LONG_FIXED types
LONG_FIXED types

-128 * SMALL

127 * SMALL

-32_768 * SMALL

32_767 * SMALL
-2_147_483_648 * SMALL
2_147_483_647 * SMALL

0 tuan

fixed point type is represented as that predefined

Any fixed point typeT has the following attributes:

T/MACHINE_OVERFLOWS
T/MACHINE_ROUNDS

TRUE
TRUE

The Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION’AFT =5

DURATION'’DELTA = DURATION’SMALL
DURATION'’FIRST = =131_072.00000
DURATION’ FORE =7

DURATION'’LARGE = 1.31071999938965E05
DURATION’LAST = 131_071.00000
DURATION’MANTISSA = 31
DURATION’SAFE_LARGE = 1.31071999938965E05
DURATION'’SAFE_SMALL = DURATION’SMALL
DURATION'’SIZE = 32

DURATION’SMALL = 6.10351562500000E-05 = 2#1.0#E-14

.35-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Alsys IBM PC/AT 80286, Intel iSBC 286/14
Compiler version 3.21 (under PC/DOS 3.2) (bare machine)

DEGREE OF CONFIGURABILITY
L. Linker Capability:

- Subprograms are loaded if used. Package data is always loaded if the package is in a
context clause.

I1. Customization of the Runtime:

- By the use of compiler switches.

- By linker switches.

- Modifying/Replacin the source to selective runtime routines provided with the
purchase ot the compiler (i.e. Device Drivers).

- By modifying the source to the entire runtime (after purchasing it).

The target runtime system for the cross-compiler consists of the following sections:

Ada Runtime Executive - performs various high-level services (e.g., exception and
interrupt handling). For typical (;gerating system functions, the executive invokes the
Bare-Machine Kernel. The Ada Runtime Executive is provided by Alsys.

Bare-Machine Kernel - invokes the Hardware Interface to perform any operations
specific to the particular hardware in the system. The Bare-Machine Kernel is
provided by Alsys. :

Hardware Interface - is the interface to the specific hardware in the system. It is
unique to each specific system and must therefore be supplied by the user. The user
must provide configuration routines, configuration parameters and configuration
tables. These are written in assembly language. They are linked into the runtime
system.

Hardware Setup - contains the following routines and configuration parameters
for performing hardware housekeeping operations of the system.

Configuration Routines:

An initialization routine which is used to initialize the peripheral chips on
the board and install any specialized interrupt handlers.

A routine to return the processor to real mode.

-36-

Guidelines to Select, Configure and Use an Ada Runtime Environment
A routine to perform any necessary cleanup of the hardware or operating
environment and return control to the operating system.

A routine to return in the DX:AX register pair the 32 bit address of the
end of the memory area reserved for the heap.

Configuration Parameters:
The keyboard (or serial input channel) interrupt number.
The timer interrupt number (level).
The frequency at which the timer interrupts occur.
XON/XOFF protocol specification.

Input and Output Routines:

A routine to handle keyboard interrupts. It collects the incoming character and
clears the interrupt from the interrupting device.

v

A routine to write a character to the console output device.

A routine to handle timer interrupts. It updates the real-time clock and clears
the interrupt from the interrupting device.

Device Drivers - perform the various input/output functions. They are unique to each
specific system and must therefore be supplied by the user. The user must provide
configuration routines, configuration parameters and configuration tables. These are
written in assembly language. They are linked into the runtime system.

Configuration Tables:

A table which contains the list of names corresponding to the devices in
the system.

A table which contains a list of 16-bit values, one for each device in the
above table. Each value specifies whether the corresponding device is
the console input, console output, some other device, or a file.

é\ table containing the names of initialization routines, one for each
evice.

A table containing the names of necessary cleanup routines (such as
flushing buffers), one for each device.

A table containing the names of routines which allow the user to
maintain a file position so that direct I/O could be performed on the
device, one for each device.

Guidelines to Select, Configure and Use an Ada Runtime Environment
A table containing the names of routines which allow a sequence of
characters to be sent to the device, one for each device.
Configuration Routines:

A procedure must be specified for each routine named in the above
tables. ' ‘

Useful External Routines - These routines are provided for use in the Hardware
Interface and Device Specifications.

A routine to put a character into the input buffer so that it can be fetched by
the Ada program.

A routine to update the real-time clock.
A routine to get a character from the console-input device.
A routine to output a character to the console-output device.

A routine which will cause the program to be restarted (start of the bare-
machine kernel).

Tools:
The Intel 8086 toolset is used, namely: ASM86, LINK86, LOC86, LIB86.
Transfer Tools - A tool which allows cross loading.

80x86AdaProbe - cross debugging version of AdaProbe. It is an IBM PC
AT-hosted program viewer/debugger that works with other components of the
cross-compiler to debug code that executes on any Intel i80x86-family
processor.

It supports all three execution modes provided by the cross-compiler:

- In cross mode the code executes on a remote target with no operating
system. 80x86 AdaProbe runs on the host, communicating with the target
over a serial link or equivalent.

- In simulated mode the code executes on the host machine but without
making any calls to the operating system.

- In native mode the code runs on the host taking full advantage of DOS
and BIOS. '

L]

-38-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Technical Summary for Alsys Cross Compilation Systems for Intel 80x86 (V. 3.21)

Alsys provides a document titled "Technical Summary for Alsys Cross Compilation Systems
for Intel 80x86 (version 3.21)", dated July 11, 1988. [16] It's purpose is to aid prospective
purchasers of Alsys cross compilation systems for Intel 80x86 microprocessors in their
evaluations of the technical characteristics of the products. It addresses the more common
concerns of real-time and embedded applications developers when selecting an Ada
compilation system. Following is an index of the information contained in it.

A. Components & Applicability of Product.
1. Compilation System Components.
2. Documentation Set.
3. Available Hosts.
4. Supported Targets.
5. Software and Hardware Requirements.
6. Validation Status.
B. Compilation System.
1. Capacities & Robustness.
2. Speed/Throughput.
3. Library Facilities.
4. Code Quality.
5. Error Messages.
6. Ease of Use, Convenience, Flexibility.
7. Implementation Dependent Features.
8. Target Specific Features.
9. Optimizations.
C. Runtime System.
1. Capacities and Robustness.
2. Performance/Resource Usage.
3. Configurability Support.
4. Tailorability.
5. Extensions.
6. Source Code Availability & Implementation Language.
7. Certifiability.
8. Features.
D. Development Tools.
1. Debugger Support.
2. Profiler.
3. Support for Logic Analyzers and Emulators Independent of Debugger.
4. Cross Referencer.
5. Source Formatter.
6. Language Sensitive Editor.
7. Source Configuration Control.
8. Communications Support.
9. Test Case Generators.
1G. Support for Deveiopment of Independent Tools.
E. Documentation.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Use of System.

Implementation Dependencies.
Configurability.

Installation Guide.

Project Development Guide.
Command Reference.

Index.

Applications Development Guide (tips, etc.).
. Runtime System Guide.

10. Bug Lists.

11. Change Bars on Succeeding Revisions.

ORNRANARWN -

The following excerpts are from the section titled "Runtime System".
1. Capacities and robustness.

a. Max active tasks. Bounded by available memory. Task representation is approximatel;
160 bytes, plus 500 bytes stack overflow buffer, plus the designated task stack size.
Programs have been executed with 500 simultaneously active tasks.

2. Performance/resource usage.
a. PIWGs and other benchmarks. Can be found following this section.

b. Size. The size of the runtime environment varies from approximately 14 K bytes to 28K
bytes, depending on features used.

3. Configurability support. The compilation system offers comprehensive configurability
support. .Conﬁguration customization of the runtime environment is effected via
configuration files and user defined hook routines. The areas under user control include:

- Size and location of the Ada heap for dynamic memory management.

- Designation of default task stack size.

- User supplied routines to initialize and handle the timer, and designation of its
period (the effective TICK of the application).

- Facilities for integrating I/O devices.

4. Tailorability. One aspect of tailorability, aside from the configuration facilities listed
abgve, is that the system supports unused subprogram elimination for both user and RTE
code.

5. Extensions. No runtime environment extensions are currently implemented.

6. Source code availability & implementation language. The compiler and a large part of
the RTE are implemented in Ada. Some portions of the RTE are implemented in assembly
language.

Source code for the RTE is available through a separate arrangement (AlsysARTE).

7. Certifiability. Alsys is willing to enter into special arrangements should a project require
special certification of portions of the RTE.

-40-

Guidelines to Select, Configure and Use an Ada Runtime Environment

8. Features.,

a Interrupt support. Not supported in this release, but will be available beginning
November 1988.

b. Scheduler Characteristics.
1) Preemptive. The scheduler is fully preemptive and interrupt driven. Scheduling
actions are load-insensitive: the num%er of simultaneously active tasks does not affect
the time to perform scheduling actions.

2) Priority levels & treatment of undefined priority. -Priorities may be defined in the
range 1.. 16. An undefined priority is considered to be lower than any defined value.

3) Consideration of hardware interrupt priority levels. Interrupt entries may have up to 8
priority levels beyond type System.Priority.

4) Time slicing. Time slicing may be set via a binder command option. Granularity for
specifying the quantum is 1 millisecond.

3) Suppont for rate monotonic scheduling. Rate monotonic scheduling is not
implemented in the current version.

6) Load sensitivity. All scheduling and inter-task operations are load insensitive. They
are not affected by the number-of simultaneously active tasks.

7) Deadlock or permanent blocking detection & support for actions on same. When the
RTE detects a permanent blocking situation, it terminates the application by
transferring control to the user written termination hook.

¢. Time support.

1) Clock resolution. Clock resolution is determined by the user definition of the basic
real-time clock period.

2) DURATION characteristics.
DURATION’DELTA = .001 seconds
DURATION’SMALL = 2**.10 seconds
DURATION’FIRST = -2_097_152.0 seconds
DURATION’LAST = DURATION’LARGE = 2_097_151.999 seconds

3) TICK SYSTEM.TICK = 1/18 seconds, but is unused. The effective TICK is
designated by the application builder in the configuration file.

4) Clock call overhead. Not currently determined.

5) Typical time to reschedule when highest priority task times out. On the order of 80
microseconds on an 8 MHz, 0 wait state 80286.

6) Time operations overhead. Not currently measured.

41-

Guidelines to Select, Configure and Use an Ada Runtime Environment

7) Configurability. As described in the conﬁg;:lrability section, the user designates the
basic period of the real-time clock used to drive all time based operations. The user
also provides timer initialization and interrupt handler routines, as well as
initialization of date and time.

d. Dynamic memory management approach.

Several classes of objects are allocated on the heap. These include objects created by the
execution of an Ada allocator, task stacks, arbitrarily large objects and compiler generated
temporaries. Special representations within the heap are used when objects are 32 bits or
smaller, and when dynamic objects have global scope.

When an access type is defined in a task or subprogram, all objects of the type are
automatically deallocated when the scope definin, tllzqe_rzpe is exited. This implementation
has the same effect as explicitly applying pragma éO OLLED to each access type in the
application. Compiler generated temporaries are reclaimed as soon as they are no longer
needed. A task’s stack is reclaimed as soon as the task terminates.
UNCHECKED_DEALLOCATION reclaims an access object immediately.

In order to &rovide better management of stacks and global data areas, which are currently
limited to 64 K bytes each, binder options are provided to set threshold values for the
maximum size oinects to be allocated 1n each of these areas. If an object is larger than the
pertinent threshold value, it is allocated on the heap instead.

e. Exception management approach.

The exception management implementation follows the philosophy described in the Ada
Rationale document, which considers exceptions to be exceptional, and not a normal
method for transferring flow of control. The language designers felt that there should be no
overhead at subprogram linkage related to exception management. Alsys has followed this
philosophy by using a table driven, interpretive approach to exception management, which
do_esdnot penalize subprogram linkage sequences for the possibility of an exception being
raised.

f- Support for multiprocessor configurations.

There is no explicit support for multiprocessor configurations in the current release, but it is
possible to build systems with stand-alone Ada programs on each processor which
communicate with each other.

g Support for multiprogramming.

There is no explicit support for multiprogramming in the current release, but it should be
possible for a user to build such a system, provided that careful attention is given to correct
setup of interrupt vectors.

h. Rendezvous implementation.

The rendezvous implementation uses the "naive” _?%proach to execution of accept bodies:

on the stack of the callee, executed by the callee. This approach requires less overhead for
nested rendezvous implementation than alternative approaches.

42-

Guidelines to Select, Configure and Use an Ada Runtime Environment
The synchronization rendezvous case, where there is an empty statement list for the accept
body, is optimized and involves no context switches.

The selective wait statement is made reasonably "fair" in selection of among multiple open
entries by varying the starting point for processing of open alternatives for selection.

Rendezvous algorithms are load-insensitive: they do not depend on the number of active
tasks.
I11. Documentation provided to help user configure runtime:
- As %art of a standard product: Cross Development Guide
- As RTE technology transfer (ALSYARTE), all design documentation, a week long
course and consulting services.

IV. Services to customize the runtime;

- Not for particular applications, but Alsys occasionally does custom work for projects
of Sufficient scope.

V. Cost of runtime source code:
- Approximately $250,000, but it is dependent upon the specific situation.

V1. Source of Information: Vendor input and relevant compiler documentation supplied by
the vendor. .

43-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for iSBC286. Clock : 8MHz, iSBC286/12, Multibus I, zero wait-states
(tests were compiled with Checks off, Optimizations on). PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
A000093 Whetstone benchmarks* ’ 160**
C000001 Task creation/terminate, task type declared in package. 1747.1
C000002 Task creation/terminate, task type declared in Broce ure. 1912.5
C000003 Task creation/terminate, task type declared in block. 1734.3
D000001 Dynamic array, use and deallocation. 116.4
D000002 Dynamic array elaboration and initialization. 7200.9
D000003 Dynamic record allocation and deallocation. 150.8
D000004 Lynamic record elaboration and initialization. 7598.9
E000001 Raise and handle an exception locally. 374.2
E000002 - Raise and handle an exception in a package. 732.0
E000004 Raise and handle an exception nested 4 deep in procedures. 1289.2
F000001 Set a BOOLEAN flag using a logical equation. 3.6
F000002 Set a BOOLEAN flag using an "if" test. 4.1
G00000S TEXT_I0.Get an INTEGER from a local string. 540.8
G000006 TEXT_10.Get a FLOAT from a local string. 1850.0
L.000001 Simple "for" loop. 3.9
L.000002 Simple "while" loop. 3.9
L000003 Simple "exit" loop. 3.9
P000001 Procedure call and return (inlineable), no parameters. 0.0
P000002 Procedure call and return (not inlineable), no parameters. 4.8
P000003 Procedure call and return (compiled separately). 6.0
P000004 Procedure call and return (Pragma INLINE used). 0.0
P000005 Procedure call and return (one parameter, in INTEGER). 6.6
P000006 Procedure call and return (one parameter, out INTEGER). 7.5
P0O00007 Procedure call and return (one parameter, in out INTEGER). 1.5
P000010 Procedure call and return (ten parameters, in INTEGERE 16.4
P000011 Procedure call and return (twenty parameters, in INTEGER). 26.0
P000012 Procedure call and return (ten parameters, in record_t{e). 29.1
P000013 Procedure call and return (twenty parameters, in record_type). 52.0
T000001 Minimum rendezvous, entry call and return. 416.4
T000002 Task entry call and return (one task, one entry). 411.7
T000003 Task entry call and return (two tasks, one entry each). 417.6

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for iSBC286 (continued). Clock : 8MHz, iSBC286/12, Multibus I, zero
wait-states (tests were compiled with Checks off, Optimizations on). PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
T000004 Task entry call and return (one task, two entries). 741.4
T00000S Active entry and return (ten tasks, one entry each). 411.9
"T000006 Task entry call and return (one task, ten entries). 1905.3
T000007 Minimum rendezvous, entry call and return. 2539

* Using standard internal math routines.
b ETSTONE : units are in KWIPS not in microseconds.

Guidelines to Select, Configure and Use an Ada Runtime Enﬁro_nment

Alsys, Inc.

PC 7/ AT

Host:

Intel 80x86

Target:
Versiom 3.2

008

0011/

5 /¢ &\

-~
o
"D n
a4 o =)
M ™ -

N *TAVINY LS 260>420g
N ¥WILSAS 3603204

N008 I xBunis 0] SNoauONaISIK

% SNOAUD)3ISIW

Suidaa»asnoy

sanuanbas ‘9]

3+wBW 0/1

N N0 Juoryouwaay xsoy

002€ R

NN UOI3 DAI}OY XSO}

'3wby snoazapuay

Y w6 uoiydasx3
&

‘ awbp awil

N0 [2wBW 3dnauazyr

‘3wl JO0Ssa0Uy

Sum of ALL components = 14,650 - 79,930

% Component was supplied by vendor.

ww Component supplied by vendor, see next page for details

Guidelines to Select, Configure and Use an Ada Runtime Environment

Vendor supplied component description

The minimum RTE including data is 14,650 bytes. The maximum RTE, including
instantiations of all I/O packages and use of all possible RTE functions and I/O routines is

79,930 bytes.

A typical contribution of the RTE with usual 1/O :

Processor
Management

Interrupt
Management

Time
Management

Exception
Management

Rendezvous
Management

Task
Activation

Task
Termination

1/0 Management:
Subcomponent
Text_10
10_Exceptions
Direct_1
Sequential_1O

C.C.C. Sequences

No tasking : approximately 22,000 - 24,000 bytes.
Tasking : approximately 25,000 - 30,000 bytes.

1. No tasking - 0 bytes;
2. Tasking - 1900 bytes.

1. No tasking - 0 bytes.
2. Tasking component not used - 600 bytes.
3. Tasking used (maximum) - 700 bytes.

1. Calender not in context clause, no tasking - 0 bytes.

2. Calender in context but not called, no tasking - 200 bytes.
3. Calender in context clause (maximum) - 2,500 bytes.

4. Tasking timer component - 1,200 bytes.

Always present - 1000 bytes.

1. No tasking - 0 bytes.
2. Tasking, rendezvous not used - 100 bytes.
3. Tasking, all types used (maximum) - 3,200 bytes.

1. No tasking - 0 bytes
2. At least one task defined - 1,200 bytes.

1. Abort not used - 0 bytes.
2. Abort used - 600 bytes.
3. Dependency maintenance - 2,000 - 2,100 bytes.

Not in context In context, not used, Maximum (all
instantiated routines called)

0 bytes 2400 bytes 25,800 bytes

0 bytes 30 bytes 30 bytes

0 bytes 200 bytes 2,800 bytes

0 bytes 200 bytes 1,900 bytes

Arithmetic and block moves 1,200 - 1,500 bytes.

Miscellaneous category is additional to the above components, but implements some of the
above functionality (including I/O, memory management, exception handling, tasking, etc.)

47-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

As surveys were returned, the original survey was fine-tuned based on comments received
(see Survey, V. 2, in Appendix A). It was decided to comprise a list of ten important issues
the user should obtain the answers to before selecting a compilation system for a particular
application. Below are questions asked and answers receivedp for this implementation.

Q1: What is the resolution of the clock used for delay statements?
Al: User configured.

Q2: How long, and for what reasons are interrupts disabled? '
A2: Interrupts are only disabled in user written interrupt service routines.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Based upon past implementations using Habermann-Nassi and Order of Arrival
schemes for rendezvous execution, Alsys has abandoned these "optimizations" because they
incur too much bookkeeping overhead. Accept bodies with empty statement lists are
optimized tq avoid context switching.

Q4: What are the restrictions for representation clauses?
A4: All representation clauses are currently supported to the byte level, except:

- bit level representation clauses (V4.1)
- pragma PACK (V4.1) -
- chan%e of representation for derived record types
- T’SIZE for types declared in a generic unit
* - TSMALL for fixed point types must be a power of 2, and the absolute value of the
exponent must be less than 31
- enumeration clauses are not allowed if there is a range constraint on the parent
subtype
- address representation clauses (the ADDRESS attribute is fully supported).
- the STORAGE_SIZE representation clause for reserving memory for task
activation.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Preemptive, round-robin within priority level. Time slicing, under user control.

Q6: What are the restrictions on pragma INLINE?
A6: No direct or indirect recursion.

Q7: Is code "ROM"able?
AT: Yes, code, constants and initial values for global variables.

Q8: Are machine code inserts supported?
A8: No.

-48-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q9: What object types are supported by pragma SHARED?
A9: Scalars.

Q10: What items are configurable for the runtime system?
A10: The items listed below are configurable for the runtime system.

- Max. No. of Tasks

- Task Time Slice Default

- Timer Resolution

- Exception Trace

- Default Stack Sizes

- Terminal I/O

- Optional Numeric Co-processor

Also see Technical Summary preceding this section.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Alsys Apollo, IBM PC/AT, MC680x0
Compiler version 3.5 Compaq 386, SUN-3, (bare machine)

HP-300, VAX/VMS

DEGREE OF CONFIGURABILITY
I. Linker Capability:

Any part of a library unit being required loads the entire unit. This changes with
Version 4.2, October 1988.

I1. Customization of the Runtime:

- By the use of compiler switches.

- By linker switches.

- Modifying/Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).

- By modifying the source to the entire runtime (after purchasing it).

Technical Summary for Alsys Cross Compilation Systems for Motorola M680x0 (V. 3.5)

Alsys provides a document titled "Technical Summary for Alsys Cross Compilation Systems
for Motorola M680x0 (version 3.5)", dated July 11, 1988. [17] It's purpose is to aid
prospective purchasers of Alsys cross compilation systems for Motorola M680x0
microprocessors in their evaluations of the technical characteristics of the products. It
addresses the more common concerns of real-time and embedded applications developers
when.se}ieg:tipg an Ada compilation system. Following is an index of the information
contained in it.

A. Components & Applicability of Product.
1. Compilation System Components.
2. Documentation Set.
3. Available Hosts.
4. Supported Targets.
5. Software and Egardware Requirements.
6. Validation Status.

B. Compilation System.

Guidelines to Select, Configure and Use an Ada Runtime Environment

1. gapagi/ﬁﬁs & Robustness.
2. Spee roughput.
3. L?brary Facilities.
4. Code Quality.
S. Error Messages.
6. Ease of Use, Convenience, Flexibility.
7. Implementation Dependent Features.
8. Target Specific Features.
9. Optimizations.
C. Runtime System.
1. Capacities and Robustness.
2. Performance/Resource Usage.
3. Configurability Support.
4, Tailorability.
5. Extensions.
6. Source Code Availability & Implementation Language.
7. Certifiability.
8. Features.
D. Development Tools.
1. Debugger Support.
2. Profiler.
3. Support for Logic Analyzers and Emulators Independent of Debugger.
4. Cross Referencer.
5. Source Formatter.
6. Language Sensitive Editor.
7. Source Configuration Control.
8. Communications Support.
9. Test Case Generators. .
10. Support for Development of Independent Tools.
E. Documentation.
Use of System.
Implementation Dependencies.
Configurability.
Installation Guide.
Project Development Guide.
Command Reference.
Index.
Applications Development Guide (tips, etc.).
. Runtime System Guide.
10. Bug Lists.
11. Change Bars on Succeeding Revisions.

OONAN S W

The following are excerpts from the section titled "Runtime System".
1. Capacities and robustness.

a. Max active tasks. For VRTX and VRTX32 (Ready Systems’ real-time executives) it is 255.
For ARTK (Alsys’ real-time executive), as bounded by available memory.

2. Performance/resource usage.

-51-

Guidelines to Select, Configure and Use an Ada Runtime Environment

a. PIWGs and other benchmarks. See following pages.

b. Size. The runtime environment size is aps)roximately 36 K Bytes in the current version.
Further reductions will be implemented in V4.1.

3. Configurability support.

The compilation system offers comprehensive conﬁfurability support. Configuration
customization of the runtime environment is effected via configuration files and user
defined hook routines. The areas under user control include:

- Size and location of the Ada heap for dynamic memory management.

- Designation of default task stack size and interrupt stack size.

- Designation of maximum number of interrupts allowed to be simultaneously active
or pending, and the maximum number of Ada interrupt entries defined over a
pr{)}gram. ese values are used to tailor internal data structures of the RTE.

- User supplied routines to initialize and handle the timer, and designation of its
period (the effective TICK of the application).

- Facilities for integrating 1/O devices.

4. Tailorability. Another aspect of tailorability, aside from the configuration facilities listed
above, is that the Ada binder selects between a tasking and non-tasking runtime

environment based upon the presence of tasking constructs in the application. V4.1 will
support unused subprogram elimination for both user and RTE code.

5. Extensions. Package USER_IO is supported under ARTK. As an alternative to the
address clause method of specifying interrupt entries, package INTERRUPT_HANDLER
is provided. This package supports designation of the persistence of interrupts, and the use
of a parameter.

6. Source code availability & implementation language. The compiler and a large part of
the RTE are implemented in Ada. Some portions of the RTE are implemented in assembly
language.

Source code for the RTE is available through a separate arrangement (AlsysARTE).

7. Certifiability. Alsys is willing to enter into special arrangements should a project require
special certification of portions of the RTE.

8. Features.
a Interrupt support.

1) Timing. Interrupt entries have roughly 150 microseconds overhead associated with
them on a 20 MHz 68020.

2) Latency. Not yet measured for ARTK, but initial estimates of the maximum are in
the range of 20 - 30 microseconds under certain infrequent conditions.

Ready Systems publish their interrupt latency figures for VRTX and VRTX32.

-52-

Guidelines to Select, Configure and Use an Ada Runtime Environment

3) Fast Interrupts. The system does not currently implement a special “fast interrupt”
pragma, but note the time for interrupt entry rendezvous in 1) above.

4) Types supported (e.g. persistence). The system supports both persistent
(unconditional) and nonpersistent (conditional) interrupts. Interrupt entries are
executed as special software priority levels corresponding to the hardware priority
level of the particular interrupt.

5) Parameter support. Parameters are not supported when using the address clause
mechanism for interrupt entries. A single parameter of mode in, of discrete or access
typc:i1 is supported when using the alternative package INTERRUPT_HANDLER
mechanism.

b. Scheduler Characteristics.

1) Preemptive. The scheduler is fully preemptive and interr_lgtp(t driven. Scheduling
actions are load-insensitive under VRTX32 and ARTK: the number of
simultaneously active tasks does not affect the time to perform scheduling actions.

2) Priority levels & treatment of undefined prionity..

For ARTK, 24 user definable priority levels are available. The undefined priority
value is considered to be less than any defined priority. Seven software priority levels
are reserved for interrupt servicing. (See next section).

For VRTX and VTX32, users may define priorities in the ran%e 1..248 for Ada tasks.
Priorities 249 .. 255 are reserved for interrupt entries as described in the next section.
Undefined priority is lower than any defined priority.

3) Consideration of hardware interrupt priority levels.

Under ARTK seven priority levels (25-31) are reserved for interrupt entry processing.
Each level corresponds to a hardware interrupt level. Note that execution of accept
bodies for interrupt entries does not take place at the hardware interrupt level,
because interrupts are not disabled during execution of an accept body. A task
executing an interrupt entry may be preempted by another task executing an interrupt
entry for an interrupt at a higher hardware interrupt level.

An analogous scheme is used for VRTX and VRTX32, using priority values 249 -255.
4) Time slicing. Time slicing will be implemented for ARTK in V4.1

Time slicing is currently implemented for VRTX and VRTX32.

J3) Support for rate monotonic scheduling. Rate monotonic scheduling is not
implemented in the current version.

6) Load sensitivity. All scheduling and inter-task operations are load insensitive for
VRk'g'X32 and ARTK. They are not affected by the number of simultaneously active
tasks.

-53-

Guidelines to Select, Configure and Use an Ada Runtime Environment

7) Deadlock or permanent blocking detection & support for actions on same. Not
supported when interrupt entries are used in the application.

c. Time support.

1) Clock resolution. Clock resolution is determined by the user definition of the basic
real-time clock period.

2) DURATION characteristics.
Type DURATION is delta 2.0**(-14) range -86_400.00 .. 86_400.0;

3) TICK TICK has the value 1.0, but is unused. The effective TICK is designated by the
application builder in the configuration file.

4) Clock call overhead. 68 microseconds, for a 12 MHz, VME130 with 4 wait-states.

5) Typical time to reschedule when highest priority task times out. On the order of 30-40
microseconds.

6) Time operations overhead. Not currently measured.

7) Configurability. As described in the conﬁgurability section, the user designates the
basic period of the real-time clock used to drive all time based operations. The user
also provides timer initialization and interrupt handler routines, as well as
initialization of date and time.

d. Dynamic memory management approach.

Several classes of objects are allocated on the heap. These include objects created by the
execution of an Ada allocator, task stacks, arbitranly large objects and compiler generated
temporaries. Special representations within the heap are used when objects are 32 bits or
smaller, and when dynamic objects have global scope.

When an access type is defined in a task or subprogram, all objects of the type are
automatically deallocated when the scope defining the type is exited. This implementation
has the same effect as explicitly applying pragma CO OLLED to each access type in the
application. Compiler generated temporaries are reclaimed as soon as they are no longer
needed. A task’s stack is reclaimed as soon as the task terminates.
UNCHECXED_DEALLOCATION reclaims an access object immediately.

e. Exception management approach..

The exception management implementation follows the philosophy described in the Ada
Rationale document, which considers excr;tions to be exceptional, and not a normal
method for transferring flow of control. The 1anguage designers felt that there should be no
overhead at subprogram linkage related to exception management. Alsys has followed this
philosophy by using a table dniven, interpretive approach to exception management, which
do_esdnot penalize subprogram linkage sequences for the possibility of an exception being
raised.

-54-

Guidelines to Select, Configure and Use an Ada Runtime Environment

f. Support for multiprocessor configurations.

There is no explicit support for multiprocessor configurations in the current release, but it is
possible to build program per processor systems.

g Support for multiprogramming.

There is no explicit support for multiprogramming in the current release, but it should be
possible for a user to build such a system, provided that careful attention is given to correct
setup of interrupt vectors.

h. Rendezvous implementation..

The rendezvous implementation uses the "naive” approach to execution of accept bodies:
on the stack of the callee, executed by the callee. This approach requires less overhead for
nested rendezvous implementation than alternative approaches. Parameters are always
passed in a parameter area, and are never copied into the context of the accept body.

The synchronization rendezvous case, where there is an empty statement list for the accept
body, is optimized and involves no context switches, unless the tasks are of unequal priority.

The selective wait statement is made reasonably “fair” in selection of among multiple open
entries by varying the starting point for processing of open alternatives for selection.

Rendezvous algorithms are load-insensitive: they do not depend on the number of active
tasks.
I11. Documentation provided to help user configure runtime:

For off-the-shelf product, Cross Development Guide As technology transfer, full
design documentation, 1 week training course and, consultant services.

IV. Services to customize the runtime:
No.
V. Cost of runtime source code:
Approximately $250,000.00, but it depends upon the specific situation.

VL. Source of Information: Vendor input and relevant compiler documentation supplied by
the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A.

Clock: 20MHz, M68020, 1 Megabyte on board DRAM: 32 bit address and data access;
1 wait state. Checks ON, Optimizations ON, Timer configured to 1024 Hz TICK.
PIWG test suite 1987.

PIWG Test Description Micro -
Name _ seconds
A000091 Dhrystone 334
A000092 Whetstone benchmarks, using manufacturer’s math routines 558*
A000093 Whetstone benchmarks, using standard math routines 310*
C000001 Task creation/terminate, task type declared in package. 1372.8
C000002 Task creation/terminate, task type declared in procedure. 1457.3
C000003 Task creation/terminate, task type declared in block. 1450.6
D000001 Dynamic array, use and deallocation. 8.1
D000002 Dynamic array elaboration and initialization. 6034.0
D000003 Dynamic record allocation and deallocation. 38.5
D000004 . Dynamic record elaboration and initialization. 9456.1
E000001 Raise and handle an exception locally. 1044.4
E000002 Raise and handle an exception in a package. 318RK.7
E000003 Raise and handle an exception nested 3 deep in procedures. 5554.6
E000004 Raise and handle an exception nested 4 deep in procedures. 6242.8
E00000s Raise and handle an exception in a rendezvous. 10098.5
F000001 Set a BOOLEAN flag using a logical equation. 4.8
F000002 Set a BOOLEAN flag using an "if" test. 5.2
G000005 TEXT IO.Get an INTEGER from a local string. 334.2
G000006 TEXT_10.Get a FLOAT from a local string. 1822.6
H000001 BOOLEAN operations on entire PACKed array. 41.8
H000002 BOOLEAN operations on entire array (not packed). 41.8
H000003 BOOLEAN operations on components of a PACKed array. 235.1
H000004 BOOLEAN operations on components of an array (not packed). 235.1
HO000005 Move INTEGER to INTEGER (Unchecked Conversion). 4.0
H000006 Move array of 10 Floats to record (Unchecked_Conversion) 3.8
H000007 Store and extract bit fields, defined by representation clauses. (1)
L000001 Simple "for" loop. 4.1
L000002 Simple "while" loop. 5.3
L.000003 Simple "exit" loop. 5.1
L.000004 Loop of 5 iterations with pragma OPTIMIZE (Time). 5.0
L00000S Loop of § iterations with pragma OPTIMIZE (Space). 5.0
P000001 Procedure call and return (inlineable), no parameters. 0.2
P000002 Procedure call and return (not inlineable), no parameters. 6.7
P000003 Procedure call and return (compiled separately). 6.3
P000004 Procedure call and return (Pragma INLINE used). 0.0

-55.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A (Continued). Clock: 20MHz, M68020, 1 Megabyte on
board DRAM: 32 bit address and data access; 1 wait state. Checks ON, Optimizations ON,
Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
P000005 Procedure call and return (one parameter, in INTEGER). 7.2
P000006 Procedure call and return (one parameter, out INTEGER). 8.6
P000007 Procedure call and return (one parameter, in out INTEGER). 9.0
P000010 Procedure call and return (ten parameters, in INTEGER). 19.6
P000011 Procedure call and return (twenty parameters, in INTEGER). 344
P000012 Procedure call and return (ten parameters, in record_type). 20.9
P000013 Procedure call and return (twenty parameters, in record_type). 359
T000001 Minimum rendezvous, entry call and return. 163.8
'T000002 Task entry call and return (one task, one entry). 169.0
T000003 Task entry call and return (two tasks, one entry each). 228.3
T000004 Task entry call and return (one task, two entries). 3279
T000005 Active entry and return (ten tasks, one entry each). 2138
T000006 Task entry call and return (one task, ten entries). 711.6
T000007 Minimum rendezvous, entry call and return. 103.6
"T000008 Passing an integer from producer to consumer 616.6

* WHETSTONE : units are in KWIPS not in microseconds.
(1) Uses bit level record representation clauses. Bit level representation clauses are not

supp;)rted in version 3.5, but will be implemented for version 4.1 of the compiler (October
1988).

-55.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A. Clock: 20MHz, M68020, 1 Megabyte on board
DRAM: 32 bit address and data access; 1 wait state. Stack overflow checking only enabled.
Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
A000091 Dhrystone ‘ 280
A000092 Whetstone benchmarks, using manufacturer’s math routines 542*
A000093 Whetstone benchmarks, using standard math routines 296*
C000001 Task creation/terminate, task type declared in package. 1377.1
C000002 Task creation/terminate, task type declared in groce ure. 1463.5
C000003 Task creation/terminate, task type declared in block. 1454.3
D000001 Dynamic array, use and deallocation. 11.6
D000002 Dynamic array elaboration and initialization. 2432.8
D000003 Dynamic record allocation and deallocation. 37.8
D000004 Dynamic record elaboration and initialization. 24497
E000001 Raise and handle an exception locally. 1038.3
E000002 Raise and handle an exception in a package. 3201.6
E000003 Raise and handle an exception nested 3 deep in procedures. 5545.3
E000004 Raise and handle an exception nested 4 deep in procedures. 6219.3
E000005 Raise and handle an exception in a rendezvous. 10095.8
F000001 Set a BOOLEAN flag using a logical equation. 0.0
F000002 Set a BOOLEAN flag using an "if" test. 0.0
G000005 TEXT 10.Get an INTEGER from a local string. 305.5
G000006 TEXT _I0.Get a FLOAT from a local string. 1704.3
H000001 BOOLEAN operations on entire PACKed array. 44.0 (1)
H000002 BOOLEAN operations on entire array (not packed). 44.0
H000003 BOOLEAN operations on components of a PACKed array. 104.8 (1)
H000004 BOOLEAN operations on components of an array (not packed). 104.8
HO000005 Move INTEGER to INTEGER (Unchecked_Conversion). 0.0
H000006 Move a1 -ay of 10 Floats to record (Unchecked_Conversion) 0.0
HO000007 Store and extract bit fields, defined by representation clauses. (2)
L.000001 Simple "for" loop. 23
L000002 Simple "while" loop. 3.2
L000003 Simple "exit" loop. 3.4
L000004 Loop of S iterations with pragma OPTIMIZE (Time). 2.9
L.000005 Loop of § iterations with pragma OPTIMIZE (Space). 2.9
P000001 Procedure call and return (inlineable), no parameters. 0.0
P000002 Procedure call and return (not inlineable), no parameters. 6.6
P000003 Procedure call and return (compiled separately). 9.0
P000004 Procedure call and return (Pragma INLINE used). 2.9

-55.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A (Continued). Clock: 20MHz, M68020, 1 Megabyte on
board DRAM: 32 bit address and data access; 1 wait state. Stack overflow checking only
enabled. Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
P00000S Procedure call and return (one parameter, in INTEGER). 10.0
P000006 Procedure call and return (one parameter, out INTEGER). 11.6
P000007 Procedure call and return (one parameter, in out INTEGER). 13.0
P000010 Procedure call and return (ten parameters, in INTEGER). 18.4
P000011 Procedure call and return (twenty parameters, in INTEGER). 38.1
P000012 Procedure call and return (ten parameters, in record_t?e). 19.6
P000013 Procedure call and return (twenty parameters, in record_type). 40.9
T000001 Minimum rendezvous, entry call and return. 162.6
T000002 Task entry call and return (one task, one entry). 169.0
T000003 Task entry call and return (two tasks, one entry each). 2279
TO00004 | Task entry call and return (one task, two entries). 330.3
T000005 Active entry and return (ten tasks, one entry each). 2134
T000006 Task entry call and return (one task, ten entries). 720.8
T000007 Minimum rendezvous, entry call and return. 102.8
T000008 Passing an integer from producer to consumer 622.9

* WHETSTONE : units are in KWIPS not in microseconds.

(1) Tests the effects of boolean operations on packed arrays. This feature is not
implemented in version 3.5, but will be implemented for version 4.1 (October 1988).

(2) Uses bit level record representation clauses. Bit level representation clauses are not

supp())rted in version 3.5, but will be implemented for version 4.1 of the compiler (October
1988).

Guidelines to Select, Configure and Use an Ada Runtime Environment

RUNTIME STORAGE REQUIREMENTS

It depends on which executive is used (VRTX, VRTX32, or ARTK), but in general,
these approximations apply:

Max Sequential, approximately 25 K Bytes
Max Tasking, approximately 35 K Bytes
Max I/0O, +20 K Bytes.

Ql:
Al:

Q2:
A2:

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

What is the resolution of the clock used for delay statements?
Determined by user.

How long, and for what reasons are interrupts disabled?
Max approximately 20-30 microseconds for critical code.

Q3: What rendezvous optimizations are performed? For example, when can the called
task ogcrate in the same context as the calling task?
A3:

ased upon past implementations using Habermann-Nassi and Order of Arrival

schemes for rendezvous execution, Alsys has abandoned these "optimizations" because they
incur too much bookkeeping overhead. Accept bodies with empty statement lists are
optimized to avoid context switching.

Q4:
Ad:

Qs:

What are the restrictions for representation clauses?
All representation clauses are currently supported to the byte level, except:

- bit level representation clauses (V4.1)

- pragma PACK

- change of representation for derived record types

- T'SIZE for types declared in a generic unit

- TSMALL for fixed point types must be a power of 2, and the absolute value of the
exponent must be less than 31

. %numeration clauses are not -allowed if there is a range constraint on the parent
subtype

- adtgxl')ess representation clauses for program units

- address clauses for interrupt entries are only supported when there are no
parameters for the task entry. An alternative mechanism is supplied for entries with a
single parameter.

What scheduling algorithms are supported? For example, time slicing, dynamic

priorities, run-until-blocked, etc.

AS:

Qé6:

A6:

Q7:

AT:

Q8:
AS8:

Preemptive, round-robin with time slicing option.

What are the restrictions on pragma INLINE?
Routines must be non-recursive.

Is code "ROM"able?
Yes.

Qre machine code inserts supported?
o.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q9: What object types are supported by pragma SHARED?
A9: Scalars.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Max. No. of Tasks

- Task Time Slice Default

- Timer Resolution

- Exception Trace

- Default Stack Sizes

- Terminal I/O

- Optional Numeric Co-processor

Also see Technical Summary preceding this section.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
CAP Industry, Ltd. MicroVAX 11 80286, Intel iAPX 80286
Compiler version 2.1 (under MicroVMS 4.6) protected mode

(bare machine)

DEGREE OF CONFIGURABILITY

L Linker Capability:
- Any part of a library unit being required loads the entire unit. (Unoptimized)
- Individual subprograms and/or data objects may be extracted from packages only.
(Optimized)

I1. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).
I11. Documentation provided to help user configure runtime:

- CAPTACS - E286 Users Guide (Contains chapters such as "Programming Guide",
"Configurability", and "Nonstandard Programming Interfaces").

IV. Services to customize the runtime:

- CAP Industry Ltd. does not provide services to customize the runtime for a
particular application.

V. Cost of runtime source code:
- $60,000

V1. Source of Information: Vendor Input

-59-

Guidelines to Select, Configure and Use an Ada Runtime Environment

CAP Industry Limited

Hostt MicroVAX (VMS 4.6)

Target: Intel 1APX 80286 (protected mode>
Versiom 2.2

30500/l/

A
30000

30500

28000
26000
24000
22000
20000

v 18000

+
3 16000

::;I:?ﬁ\; 19500

14000
12000
10000

8000 | A 7
e000 | LA

4000 | V4 VA V] Vs G Vs
2000 | WA VA Vi Vod Vi Vi

- Included in Processor Management
- Included in Processor Management

+
£
[s)}

b

a

~N

—

Time Mgmt. R
Task Activation
Task Termination
CLC Seguences MR H H TSI’ T’

+
€
]

x
c
0

4+
Q
@
U
x

LJ

Processor Mgn‘t
Interrupt Mgnt \

Debugger Supportxg 00

Dynamic Memory Mgmt, N

Sum of ALL components = 143,000 bytes
* Component was supplied by vendlor.
»x Plus Driver {approximately 2,000 bytes)

-60-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 976.6 microseconds, configurable

Q2: How long, and for what reasons are interrupts disabled? _
A2: Intermdpts are disabled in order to protect the scheduler and memory manager while
they are updating data structures.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Synchronization rendezvous: If the accepting task has a null accept and equal or lower
priority, the calling task will not stop, but the accepting task will become active.

Interrupts can be handled in the environment of the interrupted task if no interactions with
other tasks occur during the rendezvous.

Q4: What are the restrictions for representation clauses?
A4: ﬁl; Representation clauses are not supported for derived types.
2) Enumeration representation clauses are not supported for CHARACTER and
BOOLEAN types.
(3) Record representation clauses are supported with the following constraints
a. word alignment is mod 16
b. the ordering of bits within a byte is right to left.
(4) Length clause is supported:
a. for the attribute ’storage_size for task types.
b. for the attribute ’size. The value specified is checked to be sufficient but
otherwise ignored.
c. for the attribute ’small.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Round-robin algorithm for tasks with the same priority.

Q6: What are the restrictions on pragma INLINE?
A6: None.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

Q9: What object types are su%ported by pragma SHARED?
A9: The restrictions on shared variables are only those specified in the LRM.

Q10: What items are configurable for the runtime system?
Al10: The items below are configurable for the runtime system.

-61-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Maximum number of tasks (Heap space/Table space)
- Timer Resolution

- Default stack sizes

- Default task priority

- Optional numeric co-processor

- Fast interrupt entry

- Terminal I/O

Additional items:

- Device drivers

- Startup, normal and exception termination
- Number and type of interrupt devices

- Task lockup handling

-62-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the Intel 80286

package SYSTEM is

type SEG_OFFSET is new INTEGER;
type SEG_COLLECTOR is new INTEGER;

type ADDRESS is private;

type SUBPROGRAM_VALUE is private;
type NAME is (CAPTACS_E286);
type SYSTEM_NAME : constant NAME := CAPTACS_E286;

STORAGE_UNIT : constant

1= 8;

MEMORY_SIZE : constant := 2%%*24;

-- System-dependent declarations:

MIN_INT : constant
MAX INT ¢ constant
MAX DIGITS : constant
MAX MANTISSA : constant
FINE_DELTA : constant
TICK ¢ constant

-(2**31);

(2%%31) - 1;

15;

31;

1.0/ (2%* (MAX_MANTISSA - 1));
1.0/ (2%*10) ;

oe o0 a0 se 00 oo

-- Otiier system-dependent declarations:

subtype PRIORITY is INTEGR range 0 .. 15;

private

-- Types ADDRESS and SUBPROGRAM_VALUE are private

end SYSTEM:;

-63-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the Intel 80286

Package STANDARD is not specified in Ada by CAPTACS. They provided
information that indicates the following numeric types are supported.

long_integer is a predefined 32 bit integer type

float is a predefined 32 bit twos compliment floating point type,
with 24 bits in the mantissa and an exponent range of -125 to +128

long_float is a predefined 64 bit twos compliment floating point type,
with 53 bits in the mantissa and an exponent range of -1021 to +1024

short_fixed is a predefined 16 bit twos compliment fixed type

fixed is a predefined 32 bit twos compliment fixed type

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
DDC-I DEC MicroVAX II 8086, Intel iSBC 86/05A,
Compiler version 4.2 (under MicroVMS 4.4) 8086, Titan SECS 86/20,

Compiler version 4.2

DEC-VAX-11/7xx

80186, Intel iSBC 186/03A
80286, Titan SECS 286/20
80386, Intel iSBC 386/21,
(All bare machines)

8086, Intel iSBC 86/35

VAX-8x0ax,VAX station, 80186, Intel iSBC 186/03A
& MicroVAX Series (under 80286, Intel iSBC 286/12
VAX/VMS 4.6 or 80286, Intel iSBC 286/12
MicroVAX/VMS 4.6) protected mode)
0386, Intel iSBC 386/21
80386, Intel iSBC 386/21
rotected mode)
All bare machines)
All Derived
Compiler version 4.2 DEC MicroVAX I 80386, Force CPU-386
(under MicroVMS 4.4) VMEbus
(bare machine)
DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Only data objects that are referenced are allocated memory.

I1. Customization of the Runtime:

- By pragmas

- By compiler switches

- By Modifying-Replacing the source to selective runtime routines provided with
the purchase of the compiler (i.e. Device Drivers).
The runtime system is divided into two parts:

The permanent part that is independent of the execution environment.

The user conﬁ%urable part which consists of user configurable code and data. The
e

user configurab

code 1s typically a set of assembly language routines, called from the

permanent part of the runtime system and generated Ada code.

-65-

Guidelines to Select, Configure and Use an Ada Runtime Environment

In the permanent part of the runtime system, when a module is not needed, it is not
included during the linking process. In the user configurable code, it is up to the user
to eliminate code that is not used. Eliminating unneeded user configurable modules
can have a large effect in reducing the overall size of the RTS (it also reduces the
number of modules in the permanent part as well), since the user configurable code
makes calls to the permanent part.

There are two RTS versions supported: a tasking version and a non-tasking version.
Ada Linker Options:

- Maximum Number of Tasks

- Task Time Slice Default

- Timer Resolution

- Default Stack Sizes

- Default Task Priority

- Optional Numeric Co-processor

RTS Extension:

- Dynamic Task Priority

- Semaphore Operations

- Exception Trace

- Fast Interrupt Entry

- Terminal I/O

- ROMable Code .

- RTS variant implements strict priority scheduling and priority inheritance.

Real-time Features Supported:

- Address Clauses

- Record Representation Clauses

- Length Clauses

- Enumeration Representation Clauses
- Interrupt Entries

- Machine Code Insertions

- Pragma Interface

- Pragma Inline

- All Chapter 13 Features

Tools: (Allows Standard Intel Tool Usage)
- In-circuit emulation
- Performance Analyzer
- Assembler, Linker, Locator
- Debuggers
- Powertul Symbolic Debugger (Q4 1988)
II1. Documentation provided to help user configure runtime:

- Run-Time System detailed design for DACS-80x86 - DDC-I 5801/RPT/70 issue 1

-66-

Guidelines to Select, Configure and Use an Ada Runtime Environment

IV. Services to customize the runtime:

- Provided by DDC-I via training classes and consulting services.
- Cost: Daily consulting rates and expenses.

V. Cost of runtime source code:
- $30,000 to $50,000
VL. Source of Information: Vendor Input, Compiler Manuals, User Input.

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 8086. Clock : 8MHz, 1 wait-state, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description ' Micro -
Name seconds
A000091 "Dhrystone" benchmark 1684.5
A000093 "Whetstone" benchmark 119*
C000001 Task creation/terminate, task type declared in package. 2328.0
C000002 Task creation/terminate, task type declared in procedure. 1816.0
C000003 Task creation/terminate, task type declared in block. 1812.7
D000001 Dynamic array, use and deallocation. 40.0
D000002 Dynamic array elaboration and initialization. 32227.0
DO000003 Dynamic record allocation and deallocation. 100.5
D000004 Dynamic record elaboration and initialization. 40830.0
E000001 Raise and handle an exception locally. 3729
E000002 Raise and handle an exception in a package. 559.1
E000004 Raise and handle an exception nested 4 deep in procedures. 653.1
F000001 Set a BOOLEAN flag using a logical equation. 9.9
F000002 Set a BOOLEAN flag using an "if" test. 11.1
L000001 Simple "for" loop. ® 109
L000002 Simple "while" loop. 10.4
L000003 Simple "exit" loop. 104
P000001 Procedure call and return (inlineable), no parameters. 224
P000002 Procedure call and return (not inlineable), no parameters. 224
P000003 Procedure call and return (compiled separately). 19.9
P000004 Procedure call and return (Pragma INLINE used). 17.6
P0O0000S Procedure call and return (one parameter, in INTEGER). 249
P000006 Procedure call and return (one parameter, out INTEGER). - 247
P000007 Procedure call and returr. one parameter, in out INTEGER). 29.6
P000010 Procedure call and return (ten parameters, in INTEGER). 60.3
P000011 Procedure call and return (twenty parameters, in INTEGER). 99.3
P000012 Procedure call and return (ten parameters, in record_tme). 120.2
P000013 Procedure call and return (twenty parameters, in record_type). 239.0
T000V01 Minimum rendezvous, entry call and return. 430.3
T000002 Task entry call and return (one task, one entry). 426.6
T000003 Task entry call and return (two tasks, one entry each). 444.9
T000004 Task entry call and return (one task, two entries). 712.9
"T000005 Active entry and return (ten tasks, one entry each). 416.3
T000006 Task entry call and return (one task, ten entries). 1102.5
T000007 Minimum rendezvous, entry call and return. 285.3

* A000093 : units are in KWIPS not in microseconds.

Guidelines toSelect, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80186. Clock : 8MHz, zero wait-states, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
A000091 "Dhrystone" benchmark. 974.3
A000093 "Whetstone" benchmark. 145*
C000001 Task creation/terminate, task type declared in package. 14343
C000002 Task creation/terminate, task type declared in procedure. 1054.7
C000003 Task creation/terminate, task type declared in block. 1054.7
D000001 Dynamic array, use and deallocation. 249
D000002 Dynamic array elaboration and initialization. 219922
D000003 Dynamic record allocation and deallocation. 62.6
D000004 Dynamic record elaboration and initialization. 24101.6
E000001 Raise and handle an exception locally. 245.1
E000002 Raise and handle an exception in a package. 373.8
E000004 Raise and handle an exception nested 4 deep in procedures. 432.7
F000001 Set a BOOLEAN flag using a logical equation. 7.2
F000002 Set a BOOLEAN flag using an "if" test. 7.8
L.000001 Simple "for" 1oop. 6.9
L.000002 Simple "while" loop. 6.2
L000003 Simple "exit" loop. 6.6
P000001 Procedure call and return (inlineable), no parameters. 13.0
P000002 Procedure call and return (not inlineable), no parameters. 13.0
P000003 Procedure call and return (compiled separately). 10.6
P000004 Procedure call and return (Pragma INLINE used). 8.3
P00000S Procedure call and return (one parameter, in INTEGER). 13.5
P000006 = Procedure call and return (one parameter, out INTEGER). 15.6
P000007 Procedure call and return (one parameter, in out INTEGER). 174
P000010 Procedure call and return (ten parameters, in INTEGERE 343
P000011 Procedure call and return (twenty parameters, in INTEGER). 58.4

P000012 Procedure call and return (ten parameters, in recorthme). 80.

P000013 Procedure call and return (twenty parameters, in record_type). 159.3
T000001 Minimum rendezvous, entry call and return. 2559
T000002 Task entry call and return (one task, one entry). 2534
T000003 Task entry call and return (two tasks, one entry each). ' 264.3
T000004 Task entry call and return (one task, two entries). 414.1
TO000005 Active entry and return (ten tasks, one entry each). 2473
T000006 Task entry call and return (one task, ten entries). 617.2
T000007 Minimum rendezvous, entry call and return. 168.0

*A000093 : units are in KWIPS not in microseconds.

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80286. Clock : 8MHz, zero wait-states, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
A000091 "Dhrystone" benchmark. ’ 483.9
A000093 "Whetstone" benchmark. 172*
C000001 Task creation/terminate, task type declared in package. 731.2
C000002 Task creation/terminate, task type declared in procedure. 557.3
C000003 Task creation/terminate, task type declared in block. 555.4
D000001 Dynamic array, use and deallocation. 10.6
D000002 = Dynamic array elaboration and initialization. 10839.8
D000003 Dynamic record allocation and deallocation. 28.5
D000004 Dynamic record elaboration and initialization. 11445.3
E000001 ‘Raise and handle an exception locally. 144.2
E000002 Raise and handle an exception in a package. 214.2
E000004 - Raise and handle an exception nested 4 deep in procedures. 219.6
F000001 Set a BOOLEAN flag using a logical equation. 32
F000002 Set a BOOLEAN flag using an "if" test: 35
L000001 Simple "for" loop. 3.8
L.000002 Simple "while" loop. 3.3
L.000003 Simple "exit" loop. 3.8
P000001 Procedure call and return (inlineable), no parameters. 6.7
P000002 Procedure call and return (not inlineable), no parameters. 6.7
P000003 Procedure call and return (compiled separately). 6.4
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in GER& 74
P000006 Procedure call and return (one parameter, out INTEGER). 8.9
P000007 Procedure call and return (one parameter, in out INTEGER). 9.3
P000010 Procedure call and return (ten parameters, in INTEGER). 17.0
P000011 Procedure call and return (twenty parameters, in INTEGER). 28.0
P000012 Procedure call and return (ten parameters, in record_l{e). 315
P000013 Procedure call and return (twenty parameters, in record_type). 58.5
T000001 Minimum rendezvous, entry call and return. 136.6
T000002 Task entry call and return (one task, one entry). 134.

T000003 Task entry call and return (two tasks, one entry each). 1416
T000004 Task entry call and return (one task, two entries). 2278
TO000005 Active entry and return (ten tasks, one entry each). 1322
T000006 Task entry call and return (one task, ten entries). 350.6
T000007 Minimum rendezvous, entry call and return. 93.9

* A000093 : units are in KWIPS not in microseconds.

-70-

Guidelir..s to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80386. Clock : 16MHz, zero wait-states, real- mode, (all
tests compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
A000091 "Dhrystone" benchmark. 240.6
A000093 "Whetstone" benchmark. 776*
C000001 Task creation/terminate, task type declared in package. 343.6
C000002 Task creation/terminate, task type declared in procedure. 265.2
C000003 Task creation/terminate, task type declared in block. 264.1
D000001 Dynamic array, use and deallocation. 5.1
D000002 Dynamic array elaboration and initialization. 5605.5
D000003 Dynamic record allocation and deallocation. 15.5
D000004 Dynamic record elaboration and initialization. 6303.7
E000001 Raise and handle an exception locally. 64.4
E000002 Raise and handle an exception in a package. 97.2
E000004 Raise and handle an exception nested 4 deep in procedures. 104.9
F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.4
1000001 Simple "for" loop. 1.7
- 000002 Simple "while" loop. 1.6
1000003 Simple "exit" loop. 1.7
P000001 Procedure call and return (inlineable), no parameters. 4.3
P000002 Procedure call and return (not inlineable), no parameters. 43
P000003 Procedure call and return (compiled separately). 4.0
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in INTEGER). 4.5
P000006 Procedure call and return (one parameter, out INTEGER). 5.0
P000007 Procedure call and return (one parameter, in out INTEGER). 5.3
P000010 Procedure call and return (ten parameters, in INTEGER). 94
P000011 Procedure call and return (twenty parameters, in INTEGER). 14.1
P000012 Procedure call and return (ten parameters, in record_t{e). 17.6
P000013 Procedure call and return (twenty parameters, in record_type). 33.2
T000001 Minimum rendezvous, entry call and return. 67.8
T000002 Task entry call and return (one task, one entry). 67.7
T000003 Task entry call and return (two tasks, one entry each). 70.6
T000004 Task entry call and return (one task, two entries). 110.0
T000005 Active entry and return (ten tasks, one entry each). 66.2
T000006 Task entry call and return (one task, ten entries). 164.
T000007 Minimum rendezvous, entry call and return. 45.7

* A000093 : units are in KWIPS not in microseconds.

71-

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-1I, Inc.

VAX / VMS

Host:

Target:

Intel 8086, 80186, 80286, 80386

4.2

Version:

0ooL

ooﬂ..onmmsammxmmzox

000S

.u%mzooayg
NN 00¢ &.pamz

saduanbas ‘99)

0/1

FuawaBoUD UOSSID0Ud Ul PIPNDU] - [UOI} DUIWUB | SO

yudwabouvy JU0SS3I0U4 Ul PSPNDU] — [UOILDAIRDY SO

juswaboudyy 40SS310uUd Ul PIPNIDUT - |uwbly

00ST |) [3ubp

"3Wbp

'3 w6

O 3uwbN

] 3ubn

7000
6500
6000
5500
S000
4500

W 4000
3500

M 3000
2500
2000

SNOAZ3pUaY
uot3danx3
auwl)
3dnuuazu]
J0SS330uy

AJouwap Diwouhg

- Sum Of All Components

700 - 20200 bytes

72-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes
The following excerpts are taken from the DDC-I Ada Compiler System User’s Guide. [10]
Representation Clause Restrictions
The DACS-80x86 fully supports the "SIZE representation for derived types.
Length Clause

When using the SIZE attribute for discrete types, the maximum value that can be
specified is 16 bits.

SIZE is only obeyed for discrete types when the type is a part of a composite object,
e.g. arrays or records, for example:

e byte is range 0..255;
or byte’size use 8;

v

sixteen_bits_allocated : byte; -- one word allocated
eight_bit_per_element : array (0..7) of byte; -- four words allocated

type rec is
record
cl, c2 : byte; -- eight bits per component
end record;

Using the STORAGE_SIZE attribute for a collection will set an upper limit on the
total size of objects allocated in this collection. If further allocation is attempted, the
exception STORAGE_ERROR is raised.

When STORAGE_SIZE is specific in a length clause for a task, the process stack
area will be of the specified size. The process stack area will be allocated inside the
“standard" stack segment.

Enumeration Representation Clause

Enumerdtion representation clauses may specify representations in the range of
INTEGER’FIRST + 1.INTEGER’LAST - 1.

Record Representation Clauses

When :',epresentation clauses are applied to records the following restrictions are
imposer..

- the component type is a discrete type different from LONG_INTEGER

- the component is an array with a discrete elemeat different from
LONG Glilt?xype d pe

73-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- the storage unit is 16 bits

- a record occupies an integral number of storage units

- a record may take up a maximum of 32K storage units

- a component must be specified with its proper size (in bits), regardless of
whether the component is an array or not

- if a non-array component has a size which equals or exceeds one storage unit
(16 bits) the component must start on a storage unit boundary, i.e. the
component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1,...) from the beginning
of the record, and M the require number of storage units (1, 2, ...)

- the elements in an array component should always be wholly contained in one
storage unit '

- if a component has a size which is less than one storage unit, it must be wholly
contained within a single storage unit:

component at N range X..Y;
where N is a s in previous paragraph,and 0 <= X <=Y <= 15,
When dealing with PACKED ARRAY the following should be noted:
- the elements of the array are packed into 1, 2, 4 or 8 bits

If the record type contains components which are not covered by a component clause,
they are allocated consecutively after the component with the value. Allocation of a
record component without a component clause is always aligned on a storage unit
boundary. lBloles created because of component clauses are not otherwise utilized by
the compiler.

Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the outermost level in a
library package, any alignment is accepted.

- If the record declaration is done at a given static level (higher than the
outermost library level, i.e., the permanent area), only word alignments
are accepted.

- Any record object declared at the outermost level in a library ‘Eackage
will be aligned according to the alignment clause specified for the type.
Record o Jiects declared elsewhere can only be aligned on a word
boundary. If the record type has been associated a different alignment,
an error message will be issued.

- If a record type with an associated alignment clause is used in a
composite type, the alignment is required to be one word; an error
message is issued if this is not the case.

-74-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Implementation-Dependent Names for Implementation-Dependent Components
None defined by the compiler.
Address Clauses

This section describes the implementation of address clauses and what types of entities may
have their address specified by the user.

Objects

Address clauses are supported for scalar and composite objects whose size can be
determined at compile time.

Task Entries

The implementation supports two methods to equate a task entry to a hardware
interrupt through an address clause:

1.) Direct transfer of control to a task accept statement when an interrupt
occurs (requires use of the pragma INTERRUPT_HANDLER).

2.) Mapping of an interrupt onto a normal conditional entry call, i.e., the
entry can be called from other tasks without special actions, as well as
being called when an interrupt occurs.

Fast Interrupt Entry

Directly transferring control to an accept statement when an
interrupt occurs requires the implementation dependent pragma
INTERRUPT. DLER to telf the compiler that the task is an
interrupt handler. By using this pragma, the user is agreeing to
place certain restrictions on the tasi in order to speed up the
software response to the hardware interrupt. Consequently, use of
this method to capture interrupts is much more efficient than the
general method.

The following constraints are placed on the task:
1.) It must be a task object, i.e., not a task type.

2.) The pragma must appear first in the specification of the
task object.

3.) All entries of the task object must be single entries with
no parameters.

4.) The entries must not be called form any task.
5.) The body of the task object must not contain anything
other than simple accept statements (potentially enclosed in

-75-

Guidelines to

Unchecked Conversions

Select, Configure and Use an Ada Runtime Environment

a loop) referencing only global variables, i.e.,, no local
variables. In the statement list of a simple accept statement,
it is allowed to call normal single and parameterless, entries
of other tasks, but no other tasking constructs are allowed.
The call to another task entry, in this case, will not lead to an
immediate task context switch, but will return to the caller
when complete. Once the accept is completed, the task
priority rules will be obeyed, and a context switch may occur.

Normal Interrupt Entry

Mapping of an interrupt onto a normal conditional entry call puts
the following constraints on the involved entries and tasks:

1.) The affected entries must be defined in a task object only
(not a task type).
2.) The entries must be single and parameterless.

Any interrupt entry, which is not found in an interrupt handler (first
method), will lead to an update of the interrupt vector segment at
link time. The interrupt vector segment will be updated to point to
the interrupt routine generated by the compiler to make the task
entry call. The interrupt vector segment is part of the user
configurable data and consists of a segment, preset to the
"standard” interrupt routines (e.g., constraint_error).

Unchecked conversion is only allowed between objects of the same "size".

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the DACS-80X86

package SYSTEM is

type Word is new Integer:

type LongWord is new Long_Integer:
type UnsignedWord is range 0..65535;
for UnsignedWord’/SIZE use 16;

subtype SegmentId is UnsignedWord:;
type Address is record
offset : UnsignedWord;
segment : SegnentId;
end record;
subtype Priority is Word range 0..31;

type Name is (iAPX86, iAPX1826, iAPX286, iAPX386);

System_Name : constant Name := iAPX186;
Storage_Unit : constant = 16;

Memory_Size : constant :t= 1_048_576;

Min_Int : constant t= -2_147_483_647 - 1;
Max_Int : constant := 2_147_483_647;

Max Digits : constant = 15;

Max_Mantissa : constant 1= 31;

Fine_Delta : constant t= 2.0 / MAX_INT:;

Tick : constant := 0.000_000_125;

type Interface_Language is (PIM86, ASM86) ;

type ExceptionlId is record
unit_number : UnsignedWord;
unique_number : UnsignedWord;
end record;

type TaskValue is new Integer:
type AccTaskValue is access TaskValue;

type Semaphore is

record
countar : UnsignedWord:;
first : TaskValue;
last ¢ TaskValue;
end record;
Initsemaphore : constant Semaphore’(l, 0, 0):

end SYS.EM;
-71-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Description of Package STANDARD for DACS 80X86 Bare Machine Target

Integer Types

Three predefined integer types are implemented, SHORT_INTEGER, INTEGER, and

LONG_INTEGER.

They have the following attributes:

Real Address Mode and

SHORT_INTEGER’FIRST
SHORT_INTEGER’LAST
SHORT_INTEGER’SIZE

INTEGER'FIRST
INTEGER’LAST -
INTEGER’SIZE

LONG_INTEGER’FIRST
LONG_INTEGER’LAST
LONG_INTEGER'’SIZE

386 Protected Mode:

SHCRT_INTEGER’FIRST
SHORT_INTEGER’LAST
SHORT_INTEGER'’SIZE

INTEGER’FIRST
INTEGER’LAST
INTEGER’SIZE

LONG_INTEGER’FIRST
LONG_INTZGER’LAST
LONG_INTEGER’SIZE

Floating Point Types

Two predefined floating
They have the following

FLOAT’DIGITS
FLOAT’EPSILON
FLOAT'’FIRST

FLOAT’ LARGE
FLOAT’LAST
FLOAT/MACHINE_EMAX
FLOAT’MACHINE_EMIN

286 Protected Mode:

=128
127
16

-32_768
32_767
16

-2_147_483_648
2_147_483_647
32

-32_768
32_767
16

-2%%3]
2%*31-1
32

-2%%63
2**63-1
64

attributes:

6
9.53674316406250E~07
~3.40282366920938E+38
1.93428038904620E+25
3.40282366920938E+38
126

=127

point types are implemented, FLOAT and LONG_FLOAT.

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package STANDARD for DACS 80X86 Bare Machine Target (Continued)

FLOAT’MACHINE_MANTISSA = 24 ‘
FLOAT'/MACHINE_OVERFLOWS = TRUE
FLOAT’MACHINE_RADIX = 2
FLOAT’MACHINE_ROUNDS = TRUE

FLOAT’/MANTISSA = 21

FLOAT’/SAFE_EMAX = 126
FLOAT'’SAFE_LARGE = 8,50705917302346E+37
FLOAT’SAFE_SMALL = 5.87747175411144E-39
FLOAT’SIZE = 32

LONG_FLOAT’DIGITS 15

LONG_FLOAT’EPSILON
LONG_FLOAT’ FIRST

8.88178419700125E-16
-1.7976931348623157E+308

LONG_FLDAT'LARGE 2.57110087081438E+61
LONG_FLOAT’LAST 1.7976931348623157E+308
LONG_ —_FLOAT’MACHINE _EMAX = 1023

LONG_ FLdAT’MACHINE EMIN -1023

4.49423283715579E+307
2.22507385850720E-308
64

LONG_FLOAT'’SAFE_LARGE
LONG_FLOAT’SAFE_SMALL
LONG_FLOAT'SIZE

IDNG_FLOAT’MACHINE_MANTISSA = 53
LONG_FLOAT’/MACHINE_OVERFLOWS = TRUE
LONG_FLOAT/MACHINE_RADIX = 2
LONG_FLOAT’MACHINE_ROUNDS = TRUE
LONG_FLOAT’MANTISSA = 51
LONG_FLOAT’SAFE_EMAX = 1023

Fixed Point Types

Two kinds of anonymous predefined fixed point types are 1mplemented named
FIXED and LONG_FIXED. Note that these names are not defined in package
STANDARD, but only used here for reference.

16 bits are used for the representation of FIXED types, and 32 bits are
used for the representation of LONG_FIXED types.

For each of FIXED and LONG_FIXED there exists a virtual predefined type
for each possible value of SMALL. The posible values of SMALL are the
powers of two that are representable by a LONG_FLOAT value.

The lower and upper bounds of these types are:

lower bound of FIXED types
upper bound of FIXED types
lower bound of LONG_FIXED types
upper bound of LONG_FIXED types

-32_768 * SMALL
32_767 * SMALL

-2_ 147 483_648 * SMALL
2 147_ ~483_ _647 * SMALL

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package STANDARD for DACS 80X86 Bare Machine Target (Continued)

A user defined fixed point type is represented as that predefined FIXED
or LONG FIXED type which has the largest value of SMALL not greater than
the user-specified DELTA, and which has the smallest range that includes
the user-specified range.

Any fixed point typeT has the following attributes:

T/MACHINE_OVERFLOWS
T’MACHINE_ROUNDS

TRUE
FALSE

The Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT =5

DURATION'/DELTA = DURATION’SMALL
DURATION’/FIRST = =131_072.00000
DURATION'’FORE =7

DURATION’LARGE = 1.31071999938965E05
DURATION’LAST = 131_071.06000
DURATION’MANTISSA = 31
DURATION'’SAFE_LARGE = 1.31071999938965E05
DURATION’SAFE_SMALL = DURATION’SMALL
DURATION’SIZE = 32 .
DURATION’SMALL = 6.10351562500000E-05 = 2**(-14)

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Digital Equipment Corp. VAX 8800 MicroVAX 11
Compiler version 1.5 (under VAX/VMS, (under VAXELN
Version 4.7) Toolkit, Version
3.0 in Combination
with VAXELN Adas,
Version 1.2)
Compiler version 1.5 All members of Any of the following
the VAX family: configurations:

MicroVAX I, VAXstation, MicroVAX I & 1II;
MicroVAX II, VAXstation I, rtVAX 1000; KA620
VAXstation 2000 (under (rtVAX 1000

MicroVMS, version 4.7); processor board);
MicroVAX 3500 & MicroVAX 3500 & 3600;
3600; VAXserver 3500, VAX-11/730

3600, & 3602; and & 750; and VAX
VAXstation 3200, 8500, 8530, 8550,

3500 (under VAX/VMS 8700, & 8800

version 4.7A); VAX-11/730, (under VAXELN Toolkit,
750, 780, 782, 785, VAX version 3.0 in

8200, 8250, 8300, 8350, combination with
8530,8550, 8600, 8650, VAXELN Ada version 1.2)
8700, and 8800 (under *Derived*

VAX/VMS, version 4.7)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
- Any part of a library unit being required loads the entire unit.
II. Customization of the Runtime:
- By Fragmas
i

- By linker switches

y modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler(i.e device drivers, etc).

I11. Documentation provided to help user configure runtime:

- The "VAXELN Ada User’s Manual" and "VAX Ada Run-Time Reference Manual".

-81-

Guidelines to Select, Configure and Use an Ada Runtime Environment

IV. Services to customize the runtime:

- Services to customize the runtime are not available by DEC.
V. Cost of runtime source code:

- The runtime source code is not for sale.

VI. Source of Information: Vendor Input.

-81.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Digital Equipment Corp.
VAX

Target: Micro VAX (under VAXELN toolkit)

Version: 1S

-81.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 10 milliseconds

Q2: How long, and for what reasons are interrupts disabled?
A2: VAXELN Ada runtime does not disable interrupts.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: The runtime uses inlined mutual exclusion operations to control access to resources
needed during rendezvous. It also performs deferred task switching. When an interrupt
arrives for a task that is the same priority as the active task, no switching occurs until the
current task becomes blocked.

Q4: What are the restrictions for representation clauses?
Ad: Generally, VAXELN Ada supports all implementation-dependent facilities of chapter
13 that have useful and desirable interpretation in the VAXELN environment.

Pragma‘PACK is supported. For a size specification for a discrete type, the given size must
not exceed 32 bits; the given size becomes the default allocation for all objects and
components of that tyge. or all other types, the given size must equal the size that would
apply in the absence of a size specification.

For a collection size specification, the given size becomes the initial and maximum size of
the collection. In the absence of a collection size specification, or for a size specification of
zero, no storage is initially allocated for a collection, and the collection is extended as

needed (until all virtual memory for the process is exhausted). If the value is less than zero,
CONSTRAINT_ERROR is raised.

For a task storage specification, the given size becomes the initial and maximum size for the
task activation Fthe task stack size). In the absence of a specification, or for a specification
of zero, a default size is used. In either case the task stack size is fixed at activation and is
not extendible. If the value is less than zero, CONSTRAINT_ERROR is raised.

For the specification of SMALL for a fixed point type, the given value must be a power of
2.0 (2.0**N, where -31 <= N <= 31) that is less than or equal to the delta of the type, and
that also satisfies the specified range of the type.

The implementation defined pragma TASK_STORAGE allows the specification of guard
pages for a task stack. (Guard pages form an area of memory which has no read or write

access and which thus helps in the detection of stack overflow (STORAGE_ERROR) when
non-Ada code is called from a task.

The implementation defined pragma MAIN_STORAGE allows the specification of a fixed
size stack and guard pages for the main program. In a VAXELN Ada program, the main
%ogram stack is always fixed and is not extended as needed. Thus Pragma

AIN_STORAGE is intended in particular to allow VAXELN Ada task stack sizes to be

adjusted and to allow the simulation of the VAXELN task stack implementation on a
VAX/VMS system.

-81.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Enumeration representation clauses are supported. Signed and unsigned representation in
the range MIN_INT .. MAX_INT are allowed.

Record representation clauses are supported. The value in an alignment clause must be a
power of 2 (2**N, where 0 <= N <= 0). For stack objects, the alignment must not exceed
4 (longword alignment). For statically and collection- allocated (heap-allocated) objects,
alignments up to 512 are supported.

VAXELN Ada distinguishes between types that are bit-alignable and those that are byte
alignable. Components of bit-alignable types can be allocated beginning at arbitrary bit
offsets in component clauses, while components of byte alignable types must be allocated at
byte (addressable storage) boundaries. Generally, discrete types, and record types whose
size is 32 bits or less are bit-alignable while other types are not.

VAXELN Ada supports address representation clauses for variables, but does not support
address representation clauses for constants, subprogram, package, or task units, or single
entries.

The representation attributes ADDRESS, SIZE, POSITION, FIRST_BIT, LAST_BIT, and
STORAGE_SIZE are supported. The implementation-defined attribute BIT yields the bit
offset within a storage unit of the first bit allocated to an object (a value from 0 to 7). The
implementation attribute MACHINE_SIZE yields the actual size that is allocated for a
variable of a type or subtype, taking into account the storage alignment and padding
conventions of the VAX Ada compiler.

The floating point representation attributes MACHINE_RADIX,
MACHINE_MANTISSA, MACHINE_EMAX, MACHINE_EMIN,
MACHINE_ROUNDS, and MACHINE_OVERFLOWS are also supported.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.

- AS: The VAXELN Ada RTE supports a "run-until-blocked with higher priority
preemption” scheduling algorithm. This algorithm lets a task run until it is either blocked or
a task of a higher priority becomes runable.

Q6: What are the restrictions on pragma INLINE?
A6: Pragma INLINE can be used to explicitly e)épand inline a subprogram declaration ,
hody, or generic subprogram provided it meets the following conditions:

1. Neither its parameters or (in the case of functions) its result can be of type task
type or of a composite type that has components of a task type.

2. For functions, the function result cannot be an unconstrained array type or an
unconstrained type with discriminants.

3. The body of the subprogram cannot contain any of the following:
1A subﬁrogram body, task or generic declaration or body stub.
2. A package body.

3. An exception declaration.
4. An access type declaration.

-81.4-

Guidelines to Select, Configure and Use an Ada Runtime Environment

S. An array or record type declaration.

6. Any dependent task. o

7. Any subprogram call that denotes the given subprogram or any containing
subprogram, either directly or by means of renaming.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?

A8: Machine code inserts are not supported. However VAXELN Ada does provide
routines to read and write to processor and device registers. VAXELN Ada also provides
routines to access VAX interlocked machine instructions.

Q9: What object types are supported by pragma SHARED?

A9: VAXELN does not support pragma SHARED. It does support the implementation

defined pragma VOLATILE, which guarantees that a variable is allocated in main memory

from which the value is fetched and to which the value is updated on each use. Unlike
ragma SHARED, pragma VOLATILE does not force synchronization. Pragma

OLATILE can be used with variables of any type, including composite variables.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Terminal I/O
- Task stack size
- Sharable or nonsharable runtime

-81.5-

pa

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada.

ckage SYSTEM is
type Name is (VAX_VMS, VAXELN);

System_Name : constant Name := VAX_VMS

Note that because ADDRESS
the function "=" and "/="
do not have to be explicitly defined.

generic

type TARGET is private;

function FETCH_FROM_ADDRESS (A :

generic

type TARGET is private;

function ASSIGN_TO_ADDRESS (A

is a private type
are already available and

Storage_Unit : constant := 8;

Memory_Size : constant := (2**31) - 1;

Min_Int : constant := - (2**31);

Max_Int : constant := (2**31) - 1;

Max_Digits : constant := 33;

Max_Mantissa : constant := 31;

Fine_Delta : constant := 2.0 ** (-31);

Tick : constant := 10.0 ** (-2);

subtype Priority is Integer range 0 .. 15;

Address type

type ADDRESS is private;

ADDRESS_ZERO : constant ADDRESS;:
function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "+" (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
functicn "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function "/=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function "<" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT,RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT,RIGHT : ADDRESS) return BOOLEAN;

ADDRESS) return: TARGET;

ADDRESS; T : TARGET) ;

-81.6-

-- VAX Ada floating point type declaration for the VAX
-- hardware floating-point

Gui.- unes to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

type F_FLOAT is (digits 6):
LOAT is (digits 9);

type D_F
type G_F
type H_F

LOAT is (digits 15)
LOAT is (digits 33)

data types

type TYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS) ;

-= AST handler type

type AST_HANDLER is limited private;

NO_AST_HANDLER : constant AST_ HANDLER;

Non-Ada

exception

NON_ADA_ERROR : exception;

VAX hardware-oriented types and functions

type
pragma

subtype
subtype
subtype
subtype

type UNS

for UNSIGNED_ BYTE’SIZE

function
function
function
function

BIT_ARRAY is array (INTEGER range

PACK (BIT_ARRAY) ;

BIT_ARRAY 8

BIT_ARRAY_16
BIT_ARRAY_ 32
BIT_ARRAY_64

IGNED_BYTE

"not" (LEFT

Yand" (LEFT,
Yor" (LEFT,
"xor" (LEFT,

is
is

BIT_ARRAY (0..7);
BIT_ARRAY (0..15);

is BIT_ARRAY (0..31);
is BIT_ARRAY (0..63);
is range 0..255;

use 8:;

:UNSIGNED_BYTE) return
RIGHT :UNSIGNED_BYTE) return
RIGHT :UNSIGNED_BYTE) return
RIGHT :UNSIGNED_BYTE) return

-81.7-

<>) of BOOLEAN;

UNSIGNED_BYTE;
UNSIGNED_BYTE;
UNSIGNED_BYTE;
UNSIGNED_BYTE;

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

function TO_UNSIGNED_ BYTE (X : BIT_ARRAY_8) return UNSIGNED_BYTE:;
function TO_BIT_ARRAY_8 (X : UNSIGNED_BYTE) return BIT_ARRAY 8;

type UNSIGNED BYTE_ARRAY is array(INTEGER range <>) of UNSIGNED_BYTE:;
type UNSIGNED_ WORD is range 0 .. 65535;

for UNSIGNED_WORD’SIZE use 16;

function "not" (LEFT :UNSIGNED_WORD) return UNSIGNED_WORD;

function "and" (LEFT, RIGHT :UNSIGNED_WORD) return UNSIGNED_WORD;
function "or" (LEFT, RIGHT :UNSIGNED_WORD) return UNSIGNED_WORD;
function "xor" (LEFT, RIGHT :UNSIGNED_WORD) return UNSIGNED_WORD:

function TO_UNSIGNED_WORD (X : BIT_ARRAY 16) return UNSIGNED_WORD;

function TO_BIT ARRAY 16 (X : UNSIGNED_WORD) return BIT_ ARRAY_16;
type UNSIGNED_WORD_ARRAY is array(INTEGER range <>) of UNSIGNED_WORD
type UNSIGNED_LONG_WORD is range MIN_INT .. MAX_INT;

for UNSIGNED WORD’SIZE use 32;

function "not" (LEFT :UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD

function "and" (LEFT, RIGHT:UNSIGNED:LONGWORD) return UNSIGNED_LONGWORD
function "or" (LEFT, RIGHT:UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD
function "xor" (LEFT, RIGHT:UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD

function TO_UNSIGNED_LONGWORD(X :BIT_ARRAY 32) return UNSIGNED_LONGWORD
function TO_BIT_ ARRAY 32 (X :UNSIGNED_LONGWORD) return BIT_ARRAY 32

type UNSIGNED_ LONGWORD_ARRAY is
array (INTEGER range <>) of UNSIGNED_LONGWORD;

type UNSIGNED_QUADWORD is record
LO : UNSIGNED_LONGWORD;
Ll : UNSIGNED_LONGWORD;

end record;

-81.8-

P

Guidelines to Select, Corfigure and Use an Ada Runtime Environment

function
function
function
function

function
function

Package SYSTEM for VAXELN Ada (Continued).

"not" (LEFT :UNSIGNED_QUADWORD) return
"and" (LEFT, RIGHT:UNSIGNED_QUADWORD) return
"or" (LEFT, RIGHT:UNSIGNED_ QUADWORD) return
“xor" (LEFT, RIGHT:UNSIGNED_ QUADWORD) return

TO_UNSIGNED_QUADWORD (X :BIT_ARRAY_ 64)

TO_BIT_ARRAY_64

return

UNSIGNED_QUADWORD;
UNSIGNED_QUADWORD:
UNSIGNED_QUADWORD;
UNSIGNED_QUADWORD;

UNSIGNED_QUADWORD:;

(X :UNSIGNED_QUADWORD) return BIT:ARRAY_64;

type UNSIGNED_QUADWORD_ARRAY is

array (INTEGER range <>)

function
function
function

function
function

function

TO_ADDRESS
TO_ADDRESS
TO_ADDRESS

TO_INTEGER

TO_UNSIGNED LONGWORD (X

TO_UNSIGNED_LONGWORD (X

(X
(X
(X

INTEGER)

(X

Conventional names for static subtypes of

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

UNSIGNED_1
UNSIGNED_2
UNSIGNED_3
UNSIGNED_4
UNSIGNED_5
UNSIGNED_6
UNSIGNED 7
UNSIGNED_8
UNSIGNED_9
UNSIGNED_10
UNSIGNED_11
UNSIGNED_12
UNSIGNED 13
UNSIGNED 14
UNSIGNED_15
UNSIGNED_16
UNSIGNED_17
UNSIGNED_18
UNSIGNED_19
UNSIGNED_20
UNSIGNED_21
UNSIGNED 22

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD

-81.9-

UNSIGNED_LONGWORD)
{universal integer)) return ADDRESS;

of UNSIGNED QUADWORD,

return ADDRESS:;

return ADDRESS:

:ADDRESS) return INTEGER;
:ADDRESS) return UNSIGNED_ LONGWORD;

:AST_HANDLER) return UNSIGNED_LONGWORD;

type UNSIGNED_ LONGWORD

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

[*NeNoNeoNaoNoNoNeNoNoNoNeNaloNoRNoNoNoloNoNe el

2% %
2% %
2% %
2% %
2% %
2% %
2% %
2**
2%k 9-1;
2%%10-1;
2%%11-1;
2%%}2-1;
2%%13-1;
2*%14-1;
2%%}15-1
2%%k16-1;
2%%17-1;
2%*18-1;
2*%%19-1;
2%*20-1;
2%%21-1;
2%%22-1;

1-1;
2-1;
3-1;
4-1;
5-1;
6-1;
7-1;
8-1;

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

|

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

UNSIGNED 23
UNSIGNED_24
UNSIGNED_ 25
UNSIGNED_26
UNSIGNED_ 27
UNSIGNED 28
UNSIGNED_29
UNSIGNED_30
UNSIGNED_31

is
is
is
is
is
is
is
is
is

UNSIGNED_LONGWORD range 0 .. 2%*23-1;
UNSIGNED_LONGWORD range 0 .. 2%%24-1;
UNSIGNED_LONGWORD range 0 .. 2**25-1;
UNSIGNED_LONGWORD range 0 .. 2*%26-1;
UNSIGNED_LONGWORD range O .. 2%%27-1;
UNSIGNED_LONGWORD range 0 .. 2*%%28-1;
UNSIGNED_LONGWORD range 0 .. 2*%*29-1;
UNSIGNED_LONGWORD range 0 .. 2**30-1;
UNSIGNED_LONGWORD range O .. 2*%*31-1;

-- Function for obtaining global symbol values

function IMPORT_VALUE (SYMBOL : STRING) return UNSIGNED_LONGWORD;

-- VAX device and process register operations

function READ_REGISTER (SOURCE
function READ_REGISTER (SOURCE
function READ REGISTER (SOURCE

UNSIGNED_BYTE) return UNSIGNED_ BYTE:
UNSIGNED_WORD) return UNSIGNED_WORD:
UNSICNED_ LONGWORD)

return UNSIGNED_LONGWORD;

procedure WRITE_REGISTER (SOURCE
procedure WRITE REGISTER (SOURCE

procedure WRITE_REGISTER (SOURCE

function MFPR (REG_NUMBER

UNSIGNED_BYTE;

out UNSIGNED_BYTE) ;
UNSIGNED_WORD;

out UNSIGNED_WORD) ;
UNSIGNED_LONGWORD;

out UNSIGNED_LONGWORD) ;

TARGET

TARGET

TARGET

INTEGER) return UNSIGNED_LONGWORD;

Procedure MFPR (REG_NUMBER : INTEGER;
SOURCE :

UNSIGNED_LONGWORD) ;

-~ VAX interlocked-instruction procedures

procedure CLEAR_INTERLOCKED (BIT : in out BOOLEAN;

procedure SET_INTERLOCKED (BIT

type ALIGNED_WORD is

record

VALUE : SHORT_INTEGER

end recosrd;

for ALIGNED_WORD use

record

at mod 2;
end record;

OLD_VALUE : out BOOLEAN) ;
in out BOOLEAN;
out BOOLEAN) :

OLD_VALUE

(i
o

-81.10

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for VAXELN Ada (Continued).

procedure ADD_INTERLOCKED (ADDEND

type INSQ_STATUS

type REMQ_STATUS

procedure INSQHI

procedure REMQHI

procedure INSQTI

procedure REMQTI

private

-= Not shown

end SYSTEM:;

: in SHOT_INTEGER;
AUGEND : in out ALIGNED_WORD;
SIGN : out INTEGER) ;

is (OK_NOT_FIRST, FAIL_NO_LOCK, OK_FIRST);
is (OK_NOT_EMPTY, FAIL_NO_LOCK,

OK_EMPTY, FAIL WAS_EMPTY) ;
(ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);
(ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out REMQ_STATUS) ;
(ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);
(ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out REMQ STATUS):

-81.11-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada

Package STANDARD is
type BOOLEAN is (FALSE, TRUE):;
-- The predefined relational operators for this type are as follows:

-- function "=" (LEFT, RIGHT
-- function "/=" (LEFT, RIGHT
~- function "<" (LEFT, RIGHT
~- function "<=" (LEFT, RIGHT
~- function ">" (LEFT, RIGHT
~- function ">=" (LEFT, RIGHT

BOOLEAN) return BOOLEAN;
BOOLEAN) return BOOLEAN;
BOOLEAN) return BOOLEAN;
BOOLEAN) return BOOLEAN;
BOOLEAN) return BOOLEAN;
BOOLEAN) return BOOLEAN;

e o8 os 00 s o

~- the predefined logical operators and the predefined logical negation
~- operator are as follows:

~—- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
~- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
~- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
~- function "not" (RIGHT : BOOLEAN) return BOOLEAN;

type (universal integer) is {(range unbounded .. unbounded}:;

type INTEGER is (range -2_147_483_648 .. 2_147_483_647);

-- The predefined operators for this type are as follows

-- function "=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
~- function "<" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "+" (RIGHT : INTEGER) return INTEGER;

-- function "-" (RIGHT : INTEGER) return INTEGER;

-- function "abs" (RIGHT INTEGER) return INTEGER;

-- function "rem" (LEFT, RIGHT
-- function "mod" (LEFT, RIGHT

INTEGER) return INTEGER:
INTEGER) return INTEGER;

-- function "+" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "-" (LEFT, RIGHT : INTEGER) return INTEGER:;
-— function "% (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "/" (LEFT, RIGHT : INTEGER) return INTEGER:

-81.12-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada (Continued).

-- function "k*x% (LEFT : INTEGER;
- RIGHT : INTEGER) return INTEGER:;

An implementation may provide additional predefined integer types.
It is recommended that the names of such additional types end

with INTEGER as in SHORT_INTEGER or LONG_INTEGER. The specification
of each operator for the type universal integer, or for any
additional predefined integer type is obtained by replacing
INTEGER by the name of the type in the specification of the
corresponding operator of the type INTEGER, except for the right
operand of the exponentiating operator.

type SHORT_INTEGER is (range -32_768 .. 32_767});
type SHORT_ SHORT INTEGER is (range -128 .. 127};
type (universal real) is {range unbounded .. unbounded);

’

type FLOAT is (digits 6};

-- The predefined operators for this type are as follows

-- function "=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "<" (LEFT, KIGHT : FLOAT) return BOOLEAN;
-~ function "<=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "> (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "+" (RIGHT : FLOAT) return FLOAT:;

-- function "-" (RIGHT : FLOAT) return FLOAT;

-- function "abs" (RIGHT : FLOAT) return FLOAT;

-- function "“+" (LEFT, RIGHT : FLOAT) return FLOAT:;
-- function "-¢ (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "an (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "/» (LEFT, RIGHT : FLOAT) return FLOAT;
-- function “*xn (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

An 1mp1ementatlon may provide additional predefined FLOAT types.

It is recommended that the names of such additional types end
with FLOAT as in SHORT_FLOAT or LONG_FLOAT. The specification

of each operator for the type universal _real, or for any
additional predefined floating point type is obtained by replacing
FLOAT by the name of the type in the specification of the
corresponding operator of the type FLOAT.

type LONG_FLOAT is (digits 15);
type LONG_LONG_FLOAT is (digits 33);

-81.13-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada (Continued).

-- in addition, the following operators are predefined for universal types:

-- function "*" (LEFT {universal_integer);

RIGHT : (universal_real}) return {universal_real}:
-- function "*" (LEFT : {(universal_real}: '
RIGHT : {universal_integer)) return (universal_real);

-- function "/" (LEFT {universal real};

-- function {universal_fixed) is
{delta unbound range unbounded .. unbounded};

-- The type universal_fixed is predefined. The only operators declared
-- for this type are:

-=- function "#" (LEFT : {any_fixed_point_type);
, RIGHT : (any_fixed_point_type}) return (universal_fixed};
-~ function "/" (LEFT : {(any_fixed_point_type};
RIGHT : (any_fixed_point_type}) return (universal_fixed):
type CHARACTER is
(‘nul’, ... ’‘del’);
-- for CHARACTER use -- 128 ASCII character set without holes
-- (0, 1, 2, 3, 4, 5, ..., 125, 126, 127);
for CHARACTER’SIZE use 8;
-- The predefined operators for the type CHARACTER are the same
-- as for any enumeration type.
package ASCII is
end ASCII;
-- Predefined subtypes:

subtype NATURAL is INTEGER range O .. INTEGER’LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST;

-- Predefined string type:

type string is array(POSITIVE range <>) of CHARACTER:;
pragma PACK(STRING) ;

-81.14-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for VAXELN Ada (Continued).

-~ function "= (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : STRING) return BOOLEAN;
~- function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
~- function "“">=" (LEFT, RIGHT : STRING) return BOOLEAN;
~-~- function "&" (LEFT : STRING;

RIGHT : STRING) return STRING:;
~-- function "&" (LEFT : CHARACTER;

RIGHT : STRING) return STRING;
~-- function "&" (LEFT : STRING;

RIGHT : CHARACTER) return STRING;
-- function "&" (LEFT : CHARACTER;

RIGHT : CHARACTER) return STRING;

type,K DURATION is (delta 1.0e-4 range =-131_072.0 .. 131_072.9999};

-- The predefined operators for the type DURATION are the same as for
-- any fixed point type.

-- The predefined exceptions:

CONSTRAINT_ERROR : exception:;
NUMERIC_ERROR : exception;
PROGRAM_ERROR : exception;
STORAGE_ERROR : exception;
TASKING_ERROR : exception;

end STANDARD;

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Gould, Inc. Gould PowerNode Gould PowerNode '
Compiler version Aplex2.1 Model 9080 Model 6080 (or SelConnection)
(under UTX/32 (bare machine)
Version 2.0)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
Individual subprograms may be extracted from packages only.

II. Customization of the Runtime:

- By pragmas
- %y compiler switches)
- By modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler (i.e. device drivers, etc.)
- By modifying the source to the entire runtime (after purchasing it)
II1. Documentation provided to help user configure runtime:

nplex" (Gould Ada Compiler) Bare Machine Ada Runtime Library Reference
anual.

IV. Services to customize the runtime:
None.
V. Cost of runtime source code:
Interested users must call the home office to obtain a quote.
VL. Source of Information: Vendor.
PIWG RESULTS

This information was not supplied by the vendor.

Guidelines to Select, Configure and Use an Ada Runtimé Environment

Gould

o o
o o
o Q
o 0
~ v

000000000000
000000000000
000000000000
ooooooooooooo
55555555555

G . delines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Intermetrics, Inc. VAX-11/785 1750A, ECSPO-RAID
Compiler version 202.08A (under VMS 4.2) Simulator CX-04.001

(bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
- Individual subprograms and/or data objects may be extracted from packages only.
IL Qustomization of the Runtime:

- By pragmas
- By l)inker switches

- By modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler (i.e. device drivers, etc.)

III. Documentation provided to help user configure runtime:
- PQ1750A Compilation System User’s Manual
- Retargetigg Guide
- RTS BS/CS5 Specs

IV. Services to customize the runtime:

- Intermetrics provides services to customize the runtime. _)
- Cost: Will do the work or help customers on a Time and Materials basis.

V. Cost of runtime source code:
- Comes as part of the product.
VI. Source of Information: Vendor input.
PIWG RESULTS

This information was not supplied by the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Intermetrics Incorporated

Host VAX11-785 / VMS 45
Target + 1750A ECSPO-RAID Simulator CX-04.001

Version '+ 202.08A

16800

\
L
N
§ 16800

) l) An TR

-
5500

o
(=]
<
wn
777

5000
4500
. 4000

“ 3500

~ 3000

>

o 2500

2200

2000 | V77

N
J 2000

coc. SequencesRNRR

1500 A/ £
1000 /A S

+
£
(o)

x

HousekeepingMMtliAR

Time

- Sum of ALL Components = 31,200 bytes

* Tasking includes ' 1, Rendezvous Management
2. Task Activation

3. Task Termination
4, Processor Management

-86-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 100 microseconds on 1750A using timer-B

Q2: How lorig, and for what reasons are interrupts disabled?
A2: Less than 100 cycles (e.g., 10 microseconds on a 10MHz chip) for the
timer-B interrupt processing.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?)
A3: Accepter always runs on caller’s stack, thus avoiding many scheduling points.

Q4: What are the restrictions for representation clauses?

A4: There are two restrictions at present time, one will be removed next release:
1; Length and Address clauses fully supported in Fall, 1988.
2) Subcomponent of a record must fit in a single word.

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.

AS: Run-until-blocked. Priority queue is implemented as a heap. Pre-emption in some
cases (semi-custom).

Q6: What are the restrictions on pragma INLINE?
A6: Subprogram bodies must be compiled before, and can’t be recursive.

Q7: Is code "ROM"able?
AT: Yes (code and read-only data).

Q8: Are machine code inserts supported?
A8: Pragma INTERFACE to assembly code.

Q9: What object types are supported by pragma SHARED?
A9: Pragma D is not supported.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Timer Resolution

- Default stack sizes

- Semaphore operations

- Exception trace

- Terminal I/O

- Memory size, number of page-registers

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL_STD-1750A

package SYSTEM is

type ADDRESS is private; -- "=",6 "/=" defined implicitly;
type NAME is (UTS, MVS, CMS, MIL _STD_1750A):

SYSTEM_NAME : constant NAME := MIL_STD_1750A;

STORAGE_UNIT : constant := 16;
MEMORY_SIZE : constant := 2%#*15;
-~ In storage units

-- System-Dependent Named Numbers:

MIN_INT : constant := INTEGER’POS (INTEGER’FIRST) :;
MAX INT : constant := INTEGER'’POS(INTEGER’LAST)
MAX DIGITS : constant := 9;

MAX_MANTISSA : constant := 31:

FINE_DELTA : constant := 2.0%*(-31);

TICK : constant := 0.0001;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

NULL_ADDRESS : constant ADDRESS;
-~ Same bit pattern as "null" access value
-- This is the value of ’ADDRESS for named numbers.
-- The ‘ADDRESS of any object which occupies storage
-- is NOT equal to this value.

ADDRESS_SIZE : constant := 16; .
-- Number of bits in ADDRESS objects, = ADDRESS’/SIZE, but static.

-- ADDRESS_SEGMENT_SIZE : constant := 2#%%16;
-=- Number of storage units in address segment

type ADDRESS_OFFSET is new INTEGER; -- Used for address arithmetic

type ADDRESS_SEGMENT is new INTEGER; -- Always zero on targets with
-- unsegmented address space.

subtype NORMALIZED_ADDRESS_OFFSET is ADDRESS_OFFSET;
-- Range of address offsets returned by OFFSET_OF

-88-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL_STD-1750A (Continued)

function "+"(addr : ADDRESS; offset : ADDRESS_OFFSET) return ADDRESS;
function "+" (offset : ADDRESS_OFFSET; addr : ADDRESS) return ADDRESS:
-- Provide addition between addresses and
-- offsets. May cross segment boundaries on targets where
-- objects may span segments.
-- On other targets, CONSTRAINT ERROR will be raised when
-- OFFSET_OF(addr) + offset not in NORMALIZED_ADDRESS_OFFSET.

function "-"(left, right : ADDRESS) return ADDRESS_OFFSET;
-~ May exceed SEGMENT_SIZE on targets where objects may
-- span segments.
-- On other targets, CONSTRAINT_ERROR
-- will be raised if SEGMENT_OF(left) /= SEGMENT_OF(right).

function "-"(addr : ADDRESS; offset : ADDRESS_OFFSET) return
ADDRESS;
-- Provide subtraction of addresses and offsets.
-=- May cross segment boundaries on targets where
-- objects may span segments.
-- On other targets, CONSTRAINT_ERROR will be raised when
-- OFFSET_OF(addr) - offset not in NORMALIZED_ADDRESS_OFFSET.

function OFFSET_OF (addr : ADDRESS) return NORMALIZED_ADDRESS_OFFSET;
-=- Extract offset part of ADDRESS
-- Always in range 0..seg_size ~ 1

function SEGMENT_OF (addr : ADDRESS) return ADDRESS_SEGMENT;
-=- Extract segment
-- part of ADDRESS
~-- (zero on targets with
-- unsegmented address space)

function MAKE_ADDRESS (offset : ADDRESS_OFFSET;
segment : ADDRESS_SEGMENT := 0) return ADDRESS;
-- build address given offset and segment.
-- Offset may be > seg_size on targets where
-- objects may span segments, in which case it is equivalent
-- to "MAKE_ADDRESS (0, segment) + offset".
-~ On other targets, CONSTRAINT_ERROR will be raised when
-- offset not in NORMALIZED_ADDRESS_OFFSET.

type Supported_Language_Name is (-~ Target dependent
-- The following are "foreign" languages:

AIE_ASSEMBLER, =-- NOT a "foreign" language - uses AIE RTS
UNSPECIFIED_LANGUAGE)

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL_STD-1750A (Continued)

-- Most/least accurate built-in integer and float types

subtype LONGEST_INTEGER is STANDARD.INTEGER;
subtype SHORTEST_ FLOAT is STANDARD.FLOAT;

private

type ADDRESS is access INTEGER;
-~ Note: The designated type here (INTEGER) is irrelevant.
- ADDRESS is made an access type simply to guarantee it has
- the same size as access values, which are single addresses.
-- Allocators of type ADDRESS are NOT meaningful.

NULL ADDRESS : constant ADDRESS := null;

v

end SYSTEM:;

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Rational Rational 1000 1750A,MIL-STD-1750A
Compiler version 2.0.122 (bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Any part of a library unit being required loads the entire unit. . _
- Link Time Dead Code Elimination (LTDCE) is currently under development. It is
not available in the current release product, but is scheduled to be available in the
fourth quarter.

I1. Customization of the Runtime:

- By pragmas ,

- By compiler switches

- By linker switches

- By Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).

- By modifying the source to the entire runtime (after purchasing it).

The following are excerpts from Rational’s "Technical Specification” for the Rational R1000
to MIL-STD-1750A Cross-Development Facility. [20]

Cross-Compiler Performance

The runtime performance is comparable to that of code generated by a mature optimizing
JOVIAL compiler. Runtime performance is measured in terms of both size of object code
and speed of execution.

Optimizations

- Elimination of common subexpressions: Detects redundant expressions and

uses knowledge of the target machine, expression context, loop depth, and
“expression frequency to determine which of the feasible common subexpression

repiacements are desirable.

- Code redistribution.

- Strength reduction: Replaces muitiplication involving loop counters with

apgropriate additions.

- Compile-time constant arithmetic and conversions, value folding: Performs

arithmetic and logical computations at compile time, and removes dead code.

- Code straightening: Eliminates jumps to jumps.

- Elimination of dead code: Eliminates code that can never be reached by the

program.

91-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Branch optimization.

- Global register assignment: Allocates frequently referenced locals to
machine registers.

- Peephole optimization: Includes removing redundant loads, stores, and
comparisons and replacing general-case code sequences with shorter or faster
special-case idioms.

- Elimination of constraint checks: Eliminates unnecessary constraint checks
for efficiency. Consider the following constraint checks:

- When assigning a scalar value to a variable, check that the value is within
the declared (subtype) range.

- When accessing a component of an array, check that the index is within the
declared array index range.

- When selecting a component of a record controlled by a discriminant, check
that the discriminant has the correct value.

- \ﬁlhen dereferencing an access object, check that the access value is non-
null.

Although these checks can be very expensive, they are essential if the object
code is to be safe; the Suppress pragma is supported, but it is better to retain
the checking code where it is necessary. The compiler eliminates checks that it
can prove unnecessary. Ada programs provide explicit subtype information that
can be used to eliminate many runtime checks. In general, a substantial
percentage of the checks can be eliminated by one or more of these techniques:

-a}lfglue tracking: The value to be checked is known, and it is known to be
valid.

- Range tracking: The ran%? of the value can be computed, and it is contained
within the required range. Note that the ranges of expressions can be
synthesized from the ranges of their operands.

- Equivalence propagation: The range of the value is not known numerically,
but it is known algebraically, and the check can be proven satisfied by
d¥brﬂc identity.

- Truth propagation: The value is known to be within range because it is a
precondition of the code.

- Store suppression: Deletes an assignment to a variable when it is not
followed by any subsequent reference to the variable before another assignment
or before the variable passes out of scope.

Controlling Optimization

The debugger provides varying dg;%rees of capability depending on optimizations
performe the code generator. The code generator permits the user to specify the
degree of <()1ptimization on a unit-by-unit basis. The following optimization levels can
be specified:

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Level 0: Performs only constant folding and algebraic transformations.

- Level 1: Adds peephole optimization and common subexpression elimination on
basic blocks; also optimizes the evaluation ordering of expressions.

- Level 2: Adds everything else except those optimizations expressly called

out in higher levels.

- Level 3: Adds strength reduction.

- Level 4: Adds in-line expansion.

Code Generation Strategy
Many decisions about the runtime representation of program entities are critical to

the performance of an Ada system. The cross-compiler performs extensive analysis so
that common special cases can be implemented efficiently. For example:

- Runtime atlylpe descriptors (such as array dope vectors) are created only when

they are really needed.

- Record fields are reordered so as to minimize wasted space, satisfy

alignment requirements, and remain efficiently addressable.

- The size of a constrained discriminated record object is determined by the
“sizes of active fields in the object, not by the sizes of the fields in the

larlgest possible object of the unconstrained type.

- Record objects are always allocated contiguously; individual fields are

never allocated on the heap. Record assignment and comparison are performed

using block operations,

- Record and array parameters are passed by reference; array slices are

treated as references rather than copies.

;‘ Local objects of dynamic size are allocated on the stack rather than on the

eap.

Runtime Library

The runtime library provides an efficient implementation of Ada language features,
including exception handling, tasking support, and storage management. Source code for
the runtime library is provided, with rights to an object code sub-license for delivery to third
parties. This ensures that development teams can modify the runtime hbrary if
rfmimance-critical sections of their applications require it or to interface to a specific
ernel.

Exceptions

The exception-handling facilities are designed so that little or no cost is incurred in
subprograms that have no exception handler. When an exception is raised, the
processing cost depends on whether the exception is propagated out of a rendezvous,
the number of reraises, and the complexity of the handlers.

Tasking Model
Tasking is implemented by the Ada runtimes. Entry parameters are passes as if they

were subprogram parameters. No copying of parameters or argument lists is
performed by the runtime library.

-93.

' Guidelines to Select, Configure and Use an Ada Runtime Environment

Stack storage for a task is allocated when a task is activated and is never subsequently
extended. The amount of space allocated can be controlled by the ’Storage_Size
attribute. The stack is deallocated when the task terminates.

The accuracy of the realtime clock and the delay statement is 5 milliseconds.
Storage Management

Access objects are allocated from an access object storage area for which storage is
allocated at the time that the access type declaration is elaborated and deallocated
when the access tyspe declaration passes out of scope. This area is extended as needed
unless a Storage_Size representation clause has been specified for the type, in which
case the size of the collection is fixed.

Unchecked_Deallocation is supported; an efficient algorithm adds the deallocated
storage to a list of free cells that are available for subsequent allocations.

Runtime Library Size

The runtime library is packaged to prevent loading unused modules as well as
unnecessary control sections. Storage management occupies less than 1.0 K words,
tasking services about 6.0 K words, and exception handling less than 0.5 K words.
Although the complete library would occupy 7‘.)5 K words, many applications require
only a fraction of the complete capability and thus use much less space.

Real-time Kernel

The real-time kernel provides the support necessary to run programs on a bare 1750A with
or without extended memory. In addition to process initiation and scheduling, it provides a
number of services for use by application programs. These services are described in the
"Kernel Services" subsection below.

Two kernels are provided: a single-process kernel and a multiprogramming kernel. The
single-process kernel provides a small, efficient set of services on top of which a single
;H:)gram can be run; the linker loads only those parts that are required by the application.

e multiprogramming kernel provides an environment on top of which several programs
can be run; a single copy of this configurable kernel is shared by all programs.

Kernel Interface

The majority of kernel code is written in Ada; performance-critical regions are
written in assembly language. An Ada package is provided to give a user program
access to all services provided by the kernel. Subprograms in this Ada package are
responsible for extensive validity checks on parameters. After validity checks are
performed, a lower layeg,;containing the actual kernel service is called. This structure
permits bypassing the validity-checking layer and directly calling the lower-level
service when increased performance is essential.

Source code is provided for both the Ada and assembly-language portions of each
kernel, with rights to an object code sub-license for delivery to third parties.

94-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Kernel Services
Clock Services

The kernel maintains a real-time clock. The real-time clock is initialized at
system startup and can be read or modified by application programs. The
kernel utilizes the two 1750A hardware timers; one of them can be optionally
allocated to an application program.

Dynamic Memory-Management Services

In addition to Ada’s memory-management facilities, other programmatic
services are provided. Applications can:

- Request the assignment of additional memory in 4 K word increments.

- Release memory in 4 K word increments.)

- Define an already allocated page as a shared one and associate a name with
it.

- Gain access to a shared page by name.

- Relinquish a previous association with a shared pa%e.

- Utilize the block protect facilities if they are available.

Interlock Services

Interlocks are low-level primitives that can be used to implement a variety of
chronization, reservation, or communication algorithms among programs.
ples are monitors, critical regions, and semaphores.

Interrupt Handling
A number of methods are provided for servicing interrupts:

- Using address clauses associates a task entry with an interrupt.

- Invoking a system service identifies an Ada subprogram (or assembly-language
subroutine) as a call target when a specified interrupt occurs. Restrictions

ap&ly when the routine is an Ada subprogram.)

- Invoking a system service puts a program into a wait state until the

specified interrupt occurs.

Input/Output Services and Device Drivers
This group of functions addresses I/O beyond the standard Ada facilities:

- Frame input and output either read or write one frame from a TTy-like
device. This device can be connected through either the console interface or
an RS232 interface. A frame is defined to be any rumber of bits (up to 16)
that can be transferred in a single I/O operation. The exact number is user
definable.

-hA uselr program can be suspended until a frame arrives from a specified
channel.

- In addition to the language-defined I/O packages, a file I/O package is

-95-

Guidelines to Select, Configure and Use an Ada Runtime Environment

rovided that can be adapted to most mass storage or data transfer devices.
e primitive operations for reading a block, writing a block, and checking on
the I/O status must be filled in by the user for the specific device.
- Kernel services are available to enable an application program to control
devices. This includes services to handle interrupts, access device registers,
:lla;it on interrupts, and execute privileged instructions. The application can
o:

- Clear or set a named bit in a discrete register.

- Read a named bit from a discrete register.

- Read or write a full word of a discrete register.

- Check a named discrete bit and, if its status is not as expected, suspend
the program until the bit changes its status.

- Facilities are also provided for a user to install a device driver in the kernel.
Real-time Kernel Size

The single-process kernel varies in size form 0.5 to 1.7 K words, depending on which

parts are required by the application and loaded by the linker. The

multiprogramming kernel is configurable to suit specific application requirements; it

gﬁmpies 24 K words if all functions are used. A single copy of this kernel is shared by
programs.

Debugger

The host/target debugiger allows users to debug applications executing on 1750A hardware
or a simulator. Several modes are supported:

- Debugging on the R1000 using an instruction-level simulator.
- Debugging on the target hardware with a small resident debug monitor.
- Debugging on the target hardware using an in-circuit emulator.

These modes will be discussed in turn, because they r?resent in somewhat chronological
order the way in which an application might be debugged.

Simulator

An instruction-level simulator executes the MIL-STD-1750A instruction set. From
the information provided to it by the linker, the behavior or a particular
implementation of MIL-STD-1750A can be simulated.

In addition to the features described below in the "Debugging Capabilities” section,
these features are supported by the simulator:

Guidelines to Select, Configure and Use an Ada Runtime Environment

- The simulator is configurable to simulate the particular implementation of

the 1750A required. The simulator can also be configured with instruction
timing data.

- The memory in the simulator is loaded with the load module output by the
linker. The simulator can also write the contents of its memories (that is,

the physical memory, the page registers, the memory-protect RAM, and the
startup ROM) at another address. This state can be compared to the contents of
a range of memory addresses and the variances listed.

- The simulator can write its entire current state into a file for later

restarting. From this file, the simulator can regain all attributes of its

condition at the point where the state was saved and carry on.

- Individual registers, memory locations, and the real-time clock can be
monitored and their values output when certain values are obtained or the value
changes. The real-time clock can be used as a breakpoint.

Host/Target Communications

To be able to make use of host/target debugging facilities offered by the Rational
Environment, the target computer must be made accessible to the host R1000.
“Download capability for particular 1750A implementations or configurations is
provided as necessary. Downloading can be done to 1750A hardware, to an in-circuit
emulator, or to an industry-standard PROM programmer. The standard s(l)xgported
protocols are Ethernet with TCP/IP or RS232 operating up to 19,200 baud.
Customers with other communications requirements should contact a Rational
representative.

It may be necessary to install a small debug monitor on the target computer,
depending on the degree of hardware support.

User Debugging Model

The host/target debugger allows users to debug programs running on the 1750A from
within the Rational Environment. All the facilities that are available when debugging
a program executing on an R1000 carry over to host/target debgfging on the 1750A.
Because host/target debugging is integrated into the Rational Environment, the
interface is the same as when debulgging a program executing on the R1000. The user
benefits from a multiwindow display containing debugger information, source code
corresponding to program location, and the output of the program itself. In this
situation, input and output from the program running on the 1750A are redirected to
the Environment. When this redirection is inconvenient - when a different type of
dlsglay is recﬁxired, for example - a terminal can be connected as the 1750A console
and used as the program’s I/O device. In some applications, there will be no console.

The user must compile the Ada unit with the debug switch set in order to do
source-level host/ta.rfet debugging. Code generated with debugging enabled can be
nﬁn without the debugger; the generated code has the same performance
charact eristics.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Executing and Debugging a Program on the Target 1750A

The debugger has two components, an R1000 part and a part that resides on
the target 1750A. Application program execution can be initiated from the
Rational Environment or directly on the target 1750A. In either case, the
application running on the 1750A can be started with or without debugger
control. When initiated from the R1000 under debugger control, the
ag’glication waits for a command before elaboration. When initiated on the
1750A under debugger control, it also stops before elaboration and awaits a
command. The R1000 part of the debugger can then be started and attached to
the 1750A-resident portion. Debugging then proceeds as in the first case.

Debugging After Program Initiation

Even if the application was initiated without debugging, it is possible to invoke
the R1000 host debugger and have it subsequently control the application
executing on the 1750A.

Debugging a Memory Image

Additional debugger facilities permit high-level interrogation of the memory
image of a program that has terminated abnormall{. A typical use would be to
examine the program state after an unhandled exception has caused
termination of the program.

Multiprogramming Debugging

Muitiple-program debugging is supported. Two or more separate debugger
jobs can ge run at the same time, each controlling a different 1750A process
and each having its own window on the R1 terminal. The programs
themselves can be run on the same or different target 1750As.

Debugging Capabilities

The 1750A host/target debugger provides the following capabilities:

- Display of task call stacks.

- Display of task state.

- Task control. The debugger provides two task control models:
- Separate control: A single task can stop at a breakpoint or exception event
while others continue to run.

- t{nchronous control: A breakpoint or exception event causes all the tasks
in the program to stop.

-98-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Display and modification of program data values.

- Display of processor registers and mcm(c))?r.

- Display of location in source program code.

- Ada and machine-level breakpointing.

- Ada and machine-level stepping.

- Controlling the catching and propagation of exceptions.
- Display of program history.
- Performance monitoring.

- Tracing.

- Disassembly.

Levels of Debugging

The debugger provides varying degrees of capabili depending on the optimizations
performed by the code generator; the precision with which the debugger can located
objects decreases as code is more hifh y optimized. To ensure adequate flexibility in
the development and debugging of [arge applications, the optimization level can be
specified on a unit-by-unit basis, as described in the "Optimizations" subsection.

" The degree of optimization can also be controlled by specifying one of three levels of
debugging:

- None: No debug tables are created and no attempt is made to limit
optimizations.

- Partial: The ability to display the value of formal parameters is

preserved. There are no restriction on optimizations; the ability to display
objects and determine program locations is reduced in an amount determined by
the optimization setting,

- : Optimizations that prevent accurate evaluation of objects or
determination of source location are inhibited. Automatic in-lining is

disabled, and there is no code motion across statement boundaries and no
reduction of object lifetimes.

Support for In-Circuit Emulators

The host/target debugger also supports debugging through a Tektronix 8540 in-circuit
emulator, e 1750A is controlled by the emulator, and R10 host debugger
commands are translated for the 8540, which in turn passes results back to the R1000.
Thus the interaction can proceed using the R1000 high-level debugging model, or it
can be treated at a lower level by using the emulator locally. In both cases, the
emulator enables the developer to run the 1750A application at speed on the
processor.

The host/target debugging design allows some flexibility in the choice of in- circuit
emulators. Minimal ~changes to the software allow support for other
industry-standard emulators. Customers with other models should contact a Rational
representative for more details.

Other Components

-99.

Guidelines to Select, Configure and Use an Ada Runtime Environment

To facilitate the production of real-time applications, an assembler and a linker are
provided. These facilities enable developers to construct mixed-language applications.

Assembler

The assembler provides pro%a{xfuners with a powerful set of pseudo-operations,
including a macro capability. STD-1750A mnemonics are supported.

The macro facility is integrated with the assembler itself as opposed to a
preprocessigf facility. It allows the passing of arguments and the definition of default
argument values. A submacro directive is also available for defining a local macro for
use within a macro body. The assembler also offers a pseudo-operation set providing
programmers with a powerful capability to control the assembly process. Assembler
directives include:

- Block conditional assembly

- Forward or backward branching to a label at assembly time
- Loopinf

- Unconditional exit from a loop

- Support for base registers

- Control section definition

- User-invoked origin

- Listing of control directives

Linker

The linker collects object module outputs into a load module potentially covering the
entire physical address space, including the page registers, the memory-protect RAM,
and the initial address state. The problem of switching address states is handled
automatically by the linker through the insertion of transit routines.

Directives permit the inclusion of entire object files, specified modules, or all modules
except those specified. Any object file can be searched as a library to satisfy external
references. The target memory configuration can be described to the linker so that
allocation is compatible with the memory size, number of page registers, and reserved
areas of the target.

The extended-memory linker generates an alphabetical symbol list, a symbol
cross-reference, and an allocation map. The map shows the instruction and operand
external symbols for each module, the date/time of translation of each module, and
the name/version of its translator (Ada, JO or assembler). A symbol table file
is produced.

The linker has the capability of collecting several modules and producing either an
absolute load image or a new relocatable module with user-specified entry-points and
external references exposed from the contained modules. The linker optionally
Eroduces a relocatable module that contains only the entry points resulting from a
ink (either a new relocatable or lad image link). The linker also optionally produces
a map of the storage allocated by cluster and control section; each 1s described with a
starting address, an ending address, and a length.

-100-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The cross-compiler translates relocatable modules for packages such that each
top-level subpro‘gram within the package is contained in a separate control section.
This permits selective loading only if the subprogram is required. The compiler
distinguishes control sections as containing instructions, data, or literals. The
compiler supports control sections up to 64 K words each and supports calls, using the
above-mentioned transit routines provided by the linker, to control sections from
other compilation units that reside in an address state other than that containing the
current module.

The linker supports both memory-resident and auxiliary device-resident overlays. It
supports multiple control section modules, each of which can have independent
attributes, entry points, or external references.

By default, control sections are clustered by attribute, but control sections can be
combined by name, module, or control section attribute. clusters, control sections,
and modules can be placed at a user-specified location. The linker permits
specification of clusters that are to be shared across address states.

Other features include:

- Extended-memory links (greater than 64 K words) and out-of-state references
for code are supported.

- Multiple address state programs, multiple programs per address state, and
multiple program in multiple address states are supported.

- A hmiting address can be defined; exceeding this address causes a warning
diagnostic to be issued at link time.

- All locations, values, and space sizes can be specified by relocatable or
absolute expressions.

- Memory protection is supported. Protection attributes can be defined by
control section and cluster.

- The linker optionally generates checksums/CRC values to permit load
validation, periodic memory-destruction tests, and swap-out elimination.

Reusable Software Components

Rational provides a library of packages that reduce implementation, test, and
debugging time by providing reusable parts when working on the R1000. As part of
the 1/50A Cross-Development Facility, a source license is provided so that these
components can be incorporated in the applications running on a 1750A that are
developed on the R1000. These packages and procedures include:

- Bounded_String

- Concurrent_Map_Generic
- List_Generic

- Map_Generic

- Queue_Generic

- Set_Generic

- gtacl;gfnené

- String_Map_Generic

- String_Table

- String_Ultilities

-101-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Table_Formatter

- Table_Sort_Generic
- Time_Utilities

- Unbounded_String

Relation to Other Products

The 1750A can be connected to the R1000 using an RS232 port without obtaining
otl:lci’,lrb roducts. If an Ethernet connection is desired, Rational Networking is
available.

For projects requiring code delivery with some other compiler, the 1750A
Cross-Development Facility can be used during the development phase for efficient
hostétarget debugging and rapid turnaround. Actual code delivery can be done with
the Rational Target Build Utility, which enables the downloading of Ada source to
another system tor compilation. The Target Build Utility provides a complete
change-tracking history on the R1000 so that the minimum number of umnits is
downloaded and recompiled. In addition, a compilation and link script is downloaded
for batch submission on the other system.

II1. Documentation provided to help user configure runtime:
- Rational MIL-STD-1750A Cross_development Facility Manual

IV. Services to customize the runtime:
Rational offers an implementation program with each CDF. The lglan ically
includes installation, training, and site specific customization of the CDF e plan
can be expanded to include runtime customization. The cost of the implementation
plan for the MIL-STD-1750A CDF for a R1000 model 20 is $15,000.

V. Cost of runtime source code:

- The runtime source code is provided with the CDF product. The cost of the
MIL-STD-1750A CDF for a R1000 model 20 is $49,000.

V1. Source of Information: Vendor Input

-102-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Rational

Host : Rational R1000
Target @ MIL-STD-1730A

Version : 2.0.122

%
¥
O
™ 7777
aJ S S
9IP% % s) s
NS * S SR VS
77 /'y o S SN VS
S $IHA o S L
+ + + + + * \n
£ £ £ £ £ u
@) @) o o s) Q <
> = = = = < S
> C w c n n %
S-S - -
.P
£ n = a S 3
L w o N .
> U U) Q
g ®) X g O
¢ L -
o
C
>
a

- Sum of ALL Components = 6,402 bytes**

¥ Includes task creation, oactivation,
and termination

¥ See next page

Note: the actual granularity is much finer
thon represented here.

-103-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Vendor Supplied Component Description

These components of the runtime for the MIL-STD-1750A have been broken down into

further storage requirements for code, data, and constant.

Processor Management

Exception Management

Rendezvous Management

Commonly Called Code Sequences

The maximum RTE including data :

614 bytes code
162 bytes constant
236 bytes data

98 bytes code
92 bytes constant

1234 bytes code
2 bytes data

1376 bytes code
4 bytes constant
84 bytes data

5822 bytes code
258 bytes constant
322 bytes data

All sizes are in bytes. The actual granularity is much finer than represented here.

-104-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 100 microseconds

Q2: How long, and for what reasons are interrupts disabled?

A2: Interrupts are disabled in time critical sections of the runtime. This is an important and
complicated area and Rational would welcome the opportunity to discuss your needs in this
area. For additional information please contact the Rational sales representative for your
area.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Rational make optimizations which reduce the number of context switches required to
perform a rendezvous in which the accepter’s accept statement or accept alternative (in the
case of a select wait) contains no associated statements. For example:

begin
accept e;
end;

begin
accept e(P1: T1; P2:T2; ...);
end;

or

‘or
select
accept e;
or
accept el(P1: T1; P2: T2; ...);

end select.

Note that depending on the path the selective wait takes, it is the form of that arm which is
being taken which determines if this optimization can be performed.

Q4: What are the restrictions for representation clauses?
A4: The MIL-STD-1750A cross-compiler supports the following representation clauses
(the following are excerpts from Appendix F, Rational MIL-STD-1750A [23]):
(F.1.5.) Representation Clauses
- Length clauses:
for Access_Type’Storage_Size use X;
If X is static and equal to zero, no collection is allocated. An: attempt to evaluate an

allocator will raise the predefined Storage_Error exception. (Other values of X, which
need not be static, are honored.)

-105-

Guidelines to Select, Configure and Use an Ada Runtime Environment

for Discrete_Type’Size use X

for Task_Object’Storage_Size use X;
for Task_Type’Storage_Size use X;
for Fixed_Type’Small use X;

- Record representation clauses: The compiler supports both full and partial representation
clauses for both discriminated an undiscriminated records.

- Enumeration representation clauses.

(F.1.6.) Restrictions on Array and Record packing and Record Representation Clauses

- Arrays: Packed arrays of discretes (Integer and Enumeration types, including Booleans)
are supported. Components of packed arrays occupy the minimum possible number of bits,
which may range from 1 through 16.

- Records: A record field can consist of any number of bits between 1 and 16, inclusive;
otherwise, it must be an integral number of words. '

- Change of representation: Change of representation is supForted wherever it is implied by
support for representation specifications. In particular, implicit or explicit type conversions
between array types or record types may cause packing or unpacking to occur; conversions
between related enumeration types with different representations may result in table
lookup operations.

The following example shows support for a change of representation of an array:

type Arr is array (1..10) of Boolean;

type Brr is new Arr;

pragma Pack (Brr)

X : Arr:= (1..10 = > false); Y : Brr : = Brr (X);

Change of representation occurs in the type conversion to Brr.
(F.1.7.) Names Denoting Implementation_Dependent Components
- There are no user-visible implementation names.
(F.1.8.) Interpretation of Expressions That Appear in Address Clauses
- Address clauses are not supported at this time.
(F.1.9.) Unchecked Conversion

- The target type of an unchecked conversion cannot be unconstrained array type or an
unconstrained discriminated type.

Guidelines to Select, Configure and Use an Ada Runtime Environment

(F.1.10.) Machine Code
- Machine-code insertions are not supported at this time.

QS: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Preemptive scheduling.

Q6: What are the restrictions on pragma INLINE?
AG6: Subprograms that require elaboration checks will not be inlined.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?

A8: Machine code insertion is not supported at this time.
Q9: What object types are supported by pragma SHARED?
A9: Pragma SH}\ylgED is supported f‘cl)r 16 bit discrete and fixed point types and access
types.

Q10: What items are configurable for the runtime system?

A10: The items below are configurable for the runtime system.

Default stack sizes: Yes
Semaphore operations: Yes
Exception trace: Under control of the debugger
Fast interrupt entry: Yes
Terminal I/O: Output only
Additional items:
- Heap size.

-107-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A

package SYSTEM is

type Name is (MIL-STD-~1750A);
System Name : constant Name := MIL-STD-1750A;

Storage_Unit
Memory_Size :

: constant := 16;
constant := 2 ** 16;

Min_Int : constant := =-(2 ** 15);
Max_Int : constant := +(2 ** 15) -~ 1;
Max_Digits : constant := 9;

Max_Mantissa
Fine_Delta :

: constant := 31;
constant := 2.0 %% (-31);
Tick : ‘constant := 1.0E-04;

subtype Priority is Integer range 1 .. 254;

type Address is private;

Address_Zero

: constant Address;

function "+" (Left : Address; Right : Integer) return Address:
function "+" (Left : Integer; Right : Address) return Address:;
function "-" (Left : Address; Right : Address) return Integer;
function "-" (Left : Address; Right : Integer) return Address:;
function "<" (Left, Right : Address) return Boolean;
function "<=" (Left, Right : Address) return Boolean;
function ">" (Left, Right : Address) return Boolean;

function

function
function

private

end System;

ne="

(Left, Right : Address) return Boolean;

To_Address (X :
To_Integer (X :

Integer) return Address;
Address) return Integer:;

-108-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MIL-STD-1750A

package STANDARD is

type
type
type
type
type
type
type

type

Universal_Integer is [universal_integer] ...

Universal_Real is [universal real] ...

Universal_Fixed is [universal_fixed] ...

Boolean is (False, True);

Integer is range ~32_768 .. 32_767;

Float is digits 6 range -1.70141183460469E+38 .. 1.70141163178060E

Long_Float is digits 9 -1.70141183460469E+38 .. 1.70141183460160E+
range

Duration is delta 6.10351562500000E-05
range -1.31072000000000E+05 .. 1.3107999938965E+05;

subtype Natural is Integer range 0 .. 32_767;
subtype Positive is Integer range 1 .. 32_767;

type

String is array (Positive range <>) of Character:;

Pragma Pack (String):
Package Ascii is

end Ascii;

Constraint_Error : exception;

Numeric_Error : exception:;
Storage_Error : exception;
Tasking_Error : exception:;
Program_Erxror : exception;

type

Character is ... ;

end Standard;

-109-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Rational Rational 1000 68020, Motorola 68020
Compiler version 2.0.30 (bare machine)

DEGREE OF CONFIGURABILITY
I Linker Capability:

- Any part of a library unit being required loads the entire unit.

- Link Time Dead Code Elimination (LTDCE) is currently under development. It is
not available in the current release product, but is scheduled to be available in the
fourth quarter (88).

I1. Customization of the Runtime:

- By pragmas

- By compiler switches

- By linker switches

- By Modifg'ing-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).

- By modifying the source to the entire runtime (after purchasing it).

The following excerpts are from Rational’s "Technical Specification" for the Rational R1000
to M68000 Family Cross-Development Facility. [19]

Cross-Compiler Performance
The runtime performance is comparable to that of code generated by a mature optimizing
FORTRAN compiler. Runtime performance is measured in terms of both size of object
code and speed of execution.

Optimizations

1. Machine-independent optimizations: The cross-compiler performs these
traditional machine-independent code transformations:

- Values and variables: These transformations affect the handling of values and
variables:

-110-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Context determination: Determines context-dependent information that is

used to guide optimization policies in later optimization phases.

- Lifetime analysis: Creates a conflict graph to identify which variables

must exist sim taneousrlgl.

- Constant fuiving: Pertorms arithmetic and logical computations at compile

time and removes dead code.

- Algebraic transformations: Simplifies certain algebraic or logical

expressions and transforms expressions into standard formats for more efficient

processing in later optimization phases.

- Value tracking: Substitutes a value for a reference to a variable where the

variable is known to have a specific value. This value can then participate in

constant folding.

- Elimination of assignment of unreferenced values: Deletes an assignment to

a variable when it is not followed by any subsequent reference to the variable

before another assignment or before the variable passes out of scope.

- Elimination of dead variables: Does not allocate storage for unused

variables. The cross-compiler recognizes when two variables can share the

same storage sbecause they are never simultaneously active), and it recognizes
, when a vanable is temporarily dead.

- Code motion: These transformations move code, a process that is more difficult in
Ada than in other languages because of the rules governing the interaction between
code motion and exceptions; in general, code motion can be done only in conjunction
with range tracking.

- Flow and call graph construction: Constructs a flow graph for each
subgrogram and a call graph for the entire compilation unit.

- Elimination of common subexpressions: Detects redundant expressions and
uses knowledge of the target machine, expression context, loop depth, and
expression frequency to determine which of the feasible common subexpression
replacements are desirable.

- Cross-jumping: Identifies identical code sequences and trades off the use

of a jump for a smaller sequence of instructions.

- Elimination of dead code: Eliminates code that can never be reached by the
program.

- Loop strength reduction: Replaces multiplication involving loop counters

with appropriate additions.

i Tail recursion elimination: Replaces tail recursion with the appropriate
00p.

2. Elimination of constraint checks: Efficiency dictates the elimination of
unnecessary constraint checks. consider the following constraint checks:

- When assigning a scalar value to a variable, check that the value is within
the declared (subtype) range.

- When accessing a component of an array, check that the index is within the
declared array index range.

- When selecting a component of a record controlled by a discriminant, check
that the discriminant has the correct value.

- When dereferencing an access object, check that the access value is nonnull.

-111-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Although these checks can be very expensive, they are essential if the object code is to
be safe; the Suppress pragma is supported, but it is better to retain the checking code
where it is necessary. The compiler eliminates checks that it can prove unnecessary.
Ada programs provide explicit subtype infcrmation that can be used to eliminate
many runtime checks. In general, a substantial percentage of the checks can be
eliminated by one or more of these techniques:

-a}l{glue tracking: The value to be checked is known, and it is known to be
valid.

- Range tracking: The ran%}: of the value can be computed, and it is contained
within the required range. Note that the ranges of expressions can be
synthesized from the ranges of their operands.

- Equivalence propagation: The range of the value is not known numerically,
but it is known algebraically, and the check can be proven satisfied by
al%‘ebraic identity.

- Truth propagation: The value is known to be within range because it is a
precondition of the code.

3. ©680x0-Specific Optimizations: The cross-compiler performs these additional
machine-specific optimizations where appropriate:

- Mapping of local variables onto registers: Allocates frequently referenced
locals to machine registers.

- Register targeting: Organizes the intermediate results in a way that will
cause the final result to be computed directly in the apprc;priate register when
the result of a computation must be in a certain register (for example, a
parameter or result register).

- Determination of evaluation order: Minimizes the temporary register
reguirements of expressions.

- Short-circuit evaluation: Minimizes the number of tests in compound Boolean
expressions without side effects.

- Peephole optimizations: Include removing redundant loads, stores, and
comparisons; replacing general-case code sequences with shorter or faster
special-case idioms; an eliminatin§ jumps to jumps.

- Elimination of entry/exit protocol for simple procedures: Simplifies in the
following ways: if a procedure does not declare dKnamic locals, no stack frame
pointer is needed; if it declares no locals, the stack need not be moved; if it
contains no inner calls, the static link can be left in a register.

- Automatic in-linin% of static subprogram calls: Expands in-line
(independent of the Tnline pragmag subprogram calls within a compilation unit
where time/space tradeoffs warrant.

Controlling Optimization

The debugger provides varying degrees of capability depending on optimizations
performedggy the code generator. T%lre code generator Fermits the user to srecify the
e

degree of ?timization on a unit-by-unit basis. The following optimization levels can
be specified:

-112-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Level 0: Performs only constant folding and algebraic transformations.

- Level 1: Adds peephole optimization and common subexpression elimination
within basic blocks; also optimizes the evaluation ordering of expressions.

- Level 2: Adds everything else except those optimizations expressly called

out in higher levels. ‘

- Level 3: Adds strength reduction and tail recursion removal.

- Level 4: Adds in-line expansion.

Code Generation Strategy
Many decisions about the runtime represertation of program entities are critical to

the performance of an Ada system. The cross-compiler performs extensive analysis so
that common special cases can be implemented efficiently. For example:

- Runtime type descriptors (such as array dope vectors) are created only when

they are really needed.

- Record fields are reordered so as to minimize wasted space, satisfy

alignment requirements, and remain efficiently addressable.

- The size of a constrained discriminated record obliect is determined by the

sizes of active fields in the object, not by the sizes of the fields in the

larl%est possible object of the unconstrained type.

- Record objects are always allocated contiguously; individual fields are

never allocated on the heap. Record assignment and comparison are performed

using block operations.

- Record and array parameters are passed by reference; array slices are

treated as references rather than copies.

in Local objects of dynamic size are allocated on the stack rather than on the
eap.

Runtime Library

The runtime library provides an efficient implementation of Ada language features,
including exception handling, tasking support, and storage management. Source code for
the runtime library is provided, with rights to an object code sub-license for delivery to third
parties. This ensures that development teams can modify the runtime library if

rformance-critical sections of their applications require it or to interface to a specific

ernel.
Exceptions

The exception-handling facilities are designed so that little or no cost is incurred in
subprograms that have no exception handler. When an exception is raised, the
processing cost depends on whether the exception is propagated out of a rendezvous,
the number of reraises, and the complexity of the handlers.

Tasking Model
Tasking is implemented by the Ada runtimes. Entry parameters are passes as if they

were subgrogram parameters. No copying of parameters or argument lists is
performed by the runtime library.

-113-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Stack storage for a task is allocated when a task is activated and is never subsequently
extended. The amount of space allocated can be controlled by the ’Storage_Size
attribute. The stack is deallocated when the task terminates.

Storage Management

Access objects are allocated from an access object storage area for which storage is
allocated at the time that the access type declaration is elaborated and deallocated
when the access ?e declaration passes out of scope. This area is extended as needed
unless a Storage_Size representation clause has been specified for the type, in which
case the size of the collection is fixed.

Unchecked_Deallocation is supported; an efficient algorithm adds the deallocated
storage to a list of free cells that are available for subsequent allocations.

Real-time Kernel

Rational supplies a kernel interface - an Ada specification - providing all facilities required

by the runtime library. Many customers already have hardware configurations and kernel

operating systems in place, either developed as proprietary products or obtained from

third-party vendors. To develop applications for a specific kernel with the M68000 Family

Cross-Development Facility, the user provides a body for the kernel services specification.

']{'his ll)ody implements the semantics and issues calls appropriate to the specific user’s
ernel.

Because source code for the runtime library is provided, customization of the runtime
library for a specific kernel is also possible. Rational provides implementat.-n and
consulting assistance in tailoring the Cross-Development Facility to specific kernels.

Debugger

The host/target debugger allows users to debug applications executing on 680x0 hardware.
Debugging can be done on "bare" target hardware with a small resident debug monitor, or
an in-circuit emulator can be used.

Host/Target Communications =

To be able to make use of host/target debugging facilities offered by the Rational
Environment, the target computer must be made accessible to the host R1000.
Download capability for particular 680X0 implementations or configurations is
provided as necessary. Downloading can be done to 680X0 hardware, to an in-circuit
emulator, or to an industry-standard PROM programmer. The standard s(t)xgported
protocols are Ethernet with TCP/IP or RS232 operating up to 19,200 baud.
Customers with other communications requirements should contact a Rational
representative.

It may be necessary to install a small debug monitor on the target computer,
depending on the degree of hardware support.

User Debugging Model

-114-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The host/target debugger allows users to debug programs running on the 680X0 from
within the Rational Environment. All the facilities that are available when debugging
a program executing on an R1000 carry over to host/target dcbnaxfging on the 680X0.
Because host/target debugging is integrated into the Rational Environment, the
interface is the same as when debu§ging a program executing on the R1000. The user
benefits from a multi-window display containing debugger information, source code
corresponding to program location, and the output of the program itself. In this
situation, input and output from the program running on the 680X0 are redirected to
the Environment. When this redirection is inconvenient - when a different type of
display is required, for example - a terminal can be connected as the 680X0 and used
as the program’s I/O device.

The user must compile the Ada unit with the debug switch set in order to do
source-level host/target debugging. Code generated with debugging enabled can be
run without the debugger; the generated code has the same performance
characteristics.

Executing and Debugging a Program on the Target 680X0

" The debugger has two components, an R1000 part and a part that resides on
the target 680X0. Application program execution can be initiated from the
Rational Environment or directly on the target 680X0. In either case, the
application running on the 680X0 can be started with or without debugger
control. When initiated from the R1000 under debugger control, the
gglication waits for a command before elaboration. When initiated on the

X0 under debugger control, it also stops before elaboration and awaits a
command. The RI%O part of the debugger can then be started and attached to
the 680X0-resideni portion. Debugging then proceeds as in the first case.

Debugging After Program Initiation

Even if the application was initiated without debugging, it is possible to invoke
the R1000 host debugger and have it subsequently control the applicatior
executing on the 680X0.

Debugging a Memory Image

Additional debugger facilities permit high-level interrogation of the memory
image of a program that has terminated abnormall{. A typical use would be to
examine the program state after an unhandled exception has caused
termination of the program.

Multiprogramming Debugging

Multiple-g;ogram debugging is supported. Two or more separate debugger
jobs can be run at the same time, each controlling a different 620X0 process
and each having its own window on the R1 terminal. The programs
themselves can be run on the same or different target 680X0s.

Debugging Capabilities

-115-

Guidelines to Select, Configure and Use an Ada Runtime Environment

The 680X0 host/target debugger provides the following capabilities:

- Display of task call stacks.
- Display of task state.
- Task control. The debugger provides two task control models:

- Separate control: A single task can stop at a breakpoint or exception event
while others continue to run.

- &‘nchronous control: A breakpoint or exception event causes all the tasks
in the program to stop.

- Display and modification of program data values.

- Display of processor registers and memory.

- Display of location in source program co?'e.

- Ada and machine-level breakpointing.

- Ada and machine-level stepping.

- Controlling the catching and propagation of exceptions.
- ::_?Iay of program history.

- Performance monitoring.

- Tracing.

- Disassembly.

Levels of Debugging

The debugger provides varying degrees of capability depending on the optimizations
performed by the code generator; the precision with which the debugger can located
objects decreases as code is more hiFh y optimized. To ensure adequate flexibility in
the development and debugging of large applications, the optimization level can be
specified on a unit-by-unit basis, as described in the "Optimizations” subsection.

The degree of optimization can also be controlled by specifying one of three levels of
debugging: .

- None: No debug tables are created and no attempt is made to limit
optimizations.
- Partial: The ability to display the value of formal parameters is
preserved. There are no restriction on optimizations; the ability to display
objects and determine program locations is reduced in an amount determined by
the ‘:)Ktinuza' tion setting,

: Optimizations that prevent accurate evaluation of objects or
determination of source location are inhibited. Automatic in-lining is
disabled, and there is no code motion across statement boundaries and no
reduction of object lifetimes.

Support for In-Circuit Emulators

The host/target debugger also supports debuggi So(t)hrough an in-circuit emulator.
The 680XO0 is controlled by the emulator, and R1000 host debugger commands are
translated for the emulator, which in turn passes results back to the R1000. Thus the
interaction can proceed using the R1000 high-level debugging model, or it can be

-116-

Guidelines to Select, Configure and Use an Ada Runtime Environment

treated at a lower level by using the emulator locally. In both cases, the emulator
enables the developer to run the 680X0 application at speed on the processor.

The host/target debugginﬁ design allows some flexibility in the choice of in- circuit
emula(tlors. tomers with other models should contact a Rational representative for
more details.

Other Components

To facilitate the production of real-time applications, an assembler and a linker are
provided. These facilities enable developers to construct mixed-language applications.

Assembler

The assembler provides programmers with a powerful set of pseudo-operations,
including a macro capability. Features include:

- Macro expansion capability

" - Number of arguments function
- Automatic creation of local symbols
- Argument concatenation

- Multiple relocatable program sections

- List files available on demand

- Conditional assembly

- Macro construct for statement iteration (looping)
- Local symbols

- Absolute and relocatable assembly

- Code and data alignment

Linker

The linker collects object modules produced by the code generator or assembler into
a load module. This load module is a memory image of some portion of the logical
address space for the program. A set of linker commands enables the user to specify
the alignment and ordering of program sections and modules. Both absolute and
relocatable load modules can be produced. The linker is structured to provide
flexibility in the format of the final load module. This allows adaptation of the load
module to the requirements of a particular customer’s loader and operating system
kernel. List files produced include a memory map, a symbol table file, and a
cross-reference.

Reusable Software Components

Rational provides a library of packages that reduce implementation, test, and
debw time by providing reusable parts when working on the R1000. As part of
the 0 Cross-Development Facility, a source license is provided so that these
components can be incoxﬁrated in the applications running on a 680X0 that are
developed on the R1000. These packages and procedures include:

-117-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Bounded_String

- Concurrent_Map_Generic
- List_Generic

- Map_Generic

- Queue_Generic

- Set_Generic

- Stack_Generic

- String_Map_Generic
- String_Table

- String Utilities

- Table_Formattcr

- Table_Sort_Gcneric
- Time_Utilities

- Unbounded_String

Relation to Other Products

The 680X0 can be connected to the R1000 using an RS232 port without obtaining
o‘t,h;;‘.lrb roducts. If an Ethernet connection is desired, Rational Networking is
available.

For projects requiring code delivery with some other compiler, the M68000 Family
Cross-Development Facility can be used during the develogment phase for efficient
host/target debugging and rapid turnaround. Actual code delivery can be done with
the Rational Target Build Ultility, which enables the downloading of Ada source to
another system for compilation. The Target Build Utility provides a complete
change-tracking history on the R1000 so that the minimum number of units is
downloaded and recompiled. In addition, a compilation and link script is downloaded
for batch submission on the other system.

II1. Documentation provided to help user configure runtime:
- Rational MC68020 Cross_Development Facility Manual

IV. Services to customize the runtime:
Rational offers an implementation program with each CDF (Cross Development
Facility). The plan ically includes installation, training, and site specific
customization of the CDF. The plan can be expanded to include runtime
customization. The cost of the implementation plan for the MC68020 for a R1000
model 20 is $15,000.

V. Cost of runtime source code:

- The runtime source code is provided with the CDF product. The cost of the
MC68020 CDF for a R1000 model 20 is $49,000.

V1. Source of Information: Vendor Input

-118-

Guidelines to Select, Configure and Use an Ada Runtime Environment

RaTional

Host : Rational R1000
Target : Motorola 68020
Version : 2.0.30

2839 **

*
*
wn
I~
J
(V]

Y 1816

Tasking * NN
.
C.LL. SeguencesfiiifiiiiniRK

v
™
Ip)

N

Time Mgmt.

Processor Hont I
Exception Mgmt.
Rendezvous Mgmt AR

Dynamic Memory Mgmt. N\

— Sum of ALL Components = S144 bytesX**

¥ Includes task creation, activation,
and termination

*% See next page.
Note: the actual granularity is much finer

than represented here.

-119-

Guidelines to Select, Configure and Use an Ada Runtime Environment
Vendor Supplied Component Description
These components of the runtime for the Motorola 68020 have been broken down into
further storage requirements for code, data, and constant.
Processor Management 1770 bytes code
129 bytes constant
376 bytes data

Exception Management 142 bytes code
88 bytes constant

Commonly Called Code Sequences 2044 bytes code
711 bytes constant
84 bytes data
The maximum RTE including data : 7756 bytes code
‘ 928 bytes constant
460 bytes data

All sizes are in bytes. The actual granularity is much finer than represented here.

-120-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 8 microseconds

Q2: How long, and for what reasons are interrupts disabled?

A2: Interrupts are disabled in time critical sections of the runtime. This is an important and
complicated area and Rational would welcome.the o;;gortunity to discuss your needs in this
area. For additional information please contact the Rational sales representative for your
area.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Rational makes optimizations which reduce the number of context switches required to
perform a rendezvous in which the operator’s accept statement or accept alternative (in the
case of a select wait) contains no associated statements. For example:

begin
accept e;
end;

be

or

ggcl:ept e(P1:T1;P2:T2;..);
end;
or
select
accept e;
or
acceptel(P1:T1; P2:T2;..);

end select.

Note that depending on the path the selective wait takes, it is the form of that arm which is
being taken which determines if this optimization can be performed.

Q4: What are the restrictions for representation clauses?
A4: The MC68000 cross-compiler supports the following representation clauses:

(F.1.5.) Representation Clauses
- Length clauses:
for Access_Type’Storage_Size use X;
If X is static and equal to zero, no collection is allocated. Any attempt to evaluate an

allocator will raise the gredeﬁned Storage_Error exception. (Other values of X, which
need not be static, are honored.)

-121-

Guidelines to Select, Configure and Use an Ada Runtime Environment

for Discrete_Type’Size use X;
for Fixed_Type’Small use X;

' for-TasLObject’Storage_Size use X;
for Task_Type’Storage_Size use X;

- Record representation clauses: The compiler supports both full and partial representation
clauses for both discriminated an undiscriminated records.

- Enumeration representation clauses.

- Address clauses for objects.

(F.1.6.) Restrictions on Array and Record packing and Record Representation Clauses

- Arrays: Packed arrays of discretes (Integer and Enumeration types, including Booleans)
are supported. Components of packed arrays occupy the minimum possible number of bits,
which may range from 1 through 24.

- Records: A record field can consist of any number of bits between 1 and 32, inclusive;
otherwise, it must be an integral number of words.

- Change of representation: Change of representation is supported wherever it is implied by
support for representation specifications. In particular, implicit or explicit type conversions
between array types or record types may cause packing or unpacking to occur; conversions
between related enumeration types with different representations may result in table
lookup operations.

The following example shows support for a change of representation of an array:

type Arr is array (1..10) of Boolean;

Brr is new Arr;
pragma Pack (Brr)

X : Arr ;= (1..10 => false);
Y : Brr := Brr (X);

Change of representation occurs in the type conversion to Brr.
(F.1.7.) Names Denoting Implementation_Dependent Components
- There are no user-visible implementation names.
(F.1.8.) Interpretation of Expressions That Appear in Address Clauses
- Address clauses can be used with statically allocated objects.
(F.1.9.) Unchecked Conversion

-122-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- The target tm; of an unchecked conversion cannot be unconstrained array type or an
unconstrained ated type.

(F.1.10.) Machine Code
- Machine-code insertions are not supported at this time.

QS: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Preemptive scheduling.

Q6: What are the restrictions on pragma INLINE? '
A6: Subprograms that require elaboration checks will not be inlined.

Q7: Is code ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Machine code insertion is not supported at this time.

Q9: What objemes are supported by pragma SHARED?
A9: Pragma S ED is supported tor 16 bit discrete and fixed point types and access

types.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent

Default stack sizes: Yes
Default task priority: Yes
Optional numeric coprocessor: Yes
Semaphore operations: Yes
Exception trace: Under control of the debugger
Fast interrupt entry: Yes
Terminal 1/0: Output only
Additional items:
- Heap size.

-123-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MC68000

package SYSTEM is

type Name is (Motorola_68K);

System_Name : constant Name := Motorola_68K;

Storage Unit : constant := 8;
Memory Size : constant := 2 #*% 31 - 1;

Min_Int
Max_Int

constant := -(2 ** 31);
constant := +(2 ** 31) - 1;

Max_Digits : constant := 15;
Max_Mantissa : constant := 31;
Fine_Delta : constant := 2.0 ** (-31):
Tick : constant := 1.0E-03;

subtype Priority is Integer range 1 .. 254;

type Address is private;

Address_Zero : constant Address;

function "+" (Left : Address; Right : Integer) return Address;

function
function
function
function
function
function
function
function
function
private

end System;

"+" (Left : Address; Right : Address) return Integer;

".% (Left : Address; Right : Address) return Integer:

"-" (Teft : Address; Right : Integer) return Address:

“<" (Left, Right : Address) return Boolean;
w<=" (Left, Right : Address) return Boolean;
">" (Left, Right : Address) return Boolean;
"<=" (Left, Right : Address) return Boolean;
To_Address (X : Integer) return Address;

To_Integer (X : Address) return Integer;

-124-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MC68020

package STANDARD is

type
type
type
type
type
type
type
type

type
type

Universal_Integer is ...
Universal_Real is ...
Universal_Fixed is ...
Boolean is (False, True):;
Integer is range -2_147_483_648 .. 2_147_483_647;
Short_short_Integer is range -128 .. 127;
Short_Integer is range -32_768 .. 32_767;
Float is digits 6
range -3.40282346638529E+38 .. 3.40282346638529E+38;
Long_Float is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;
Duration is delta 6.10351562500000E-05
range -1.70141183460469E+38 .. 1.70141183460469E+38;

subtype Natural is Integer range 0 .. 2_147_483_647;
subtype Positive is Integer range 1 .. 2_147_483_647;

type

String is array (Positive range <>) of Character;

Pragma Pack (String):;
Package Ascii is ...

Constraint_ Error : exception;

Numeric_Error : exception;
Storage_Error : exception;
Tasking_Error : exception;
Program_Error : exception;

type Character is ...

end Standard:;

-12§-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR

TARGET PROCESSOR

SofTech, Inc. VAX-11/780 and

Compiler version 2.0 VAX 11/785

(under VAX/VMS 4.5)

8086, Intel iAPX 8086
80186, Intel iAPX 80186
80286, Intel iAPX 80286
(real mode)
80286, Intel iAPX 80286
(protected mode)
80386, Intel iAPX 80386
§compatibility mode)
All bare machines)

DEGREE OF CONFIGURABILITY

L. Linker Capability:

- Individual subprogram extraction from packages only. The linker process is done in
two steps. To prepare an object module, link and export are needed. There is a
ELIMINATE option of the exporter. If used, not all
the downloaded module. Actual amounts would depend upon the features of the

application code.

I1. Customization of the Runtime:

- Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers)

II1. Documentation provided to help user configure runtime:

- Runtime Support Library Guide
IV. Services to customize the runtime:

- Provided by SofTech

- Cost: Charges are negotiated for each case, depending on the complexity of the

customization.
V. Cost of runtime source code:

- $50,000

VL. Source of Information: Vendor input.

e overhead would appear in

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 8086/8087. Clock : 8MHz, 2 wait-states. PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone” benchmark. 2092.0
Whetstone "Whetstone" benchmark. 103*
C000001 Task creation/terminate, task type declared in package. 7259.5
C000002 Task creation/terminate, task type declared in procedure. 7302.2
C000003 Task creation/terminate, task type declared in block. 72571
D000001 Dynamic array, use and deallocation. 777.6
D000002 Dynamic array elaboration and initialization. 65554.2
D000003 Dynamic record allocation and deallocation. 833.3
E000001 Raise and handle an exception locally. 15.8
E000002 = Raise and handle an exception in a package. 4917.6
E000004 Raise and handle an exception nested 4 deep in procedures. 9215.1
F000001 Set a BOOLEAN flag using a logical equation. 11.5
F000002 Set a BOOLEAN flag using an "if" test. 11.2
1000001 Simple "for" loop. 11.6
1000002 Simple "while" loop. 115
L.000003 Simple "exit" loop. 11.5
P000001 Procedure call and return (inlineable), no parameters. 20.7
P000002 Procedure call and return (not inlineable), no parameters. 335
PO00003 Procedure call and return (compiled separately). 21.1
P000004 Procedure call and return (Pragma INLINE used). 0.1
P00000S Procedure call and return (one parameter, in INTEGER). 26.3
P000006 Procedure call and return (one parameter, out INTEGER). 28.5
P000007 Procedure call and return (one parameter, in out INTEGER). 29.0
P000010 Procedure call and return (ten parameters, in INTEGER). 67.1

P000011 Procedure call and return (twenty parameters, in INTEGER). 111.5

P000012 Procedure call and return (ten parameters, in record_tme). 124.5
P000013 Procedure call and return (twenty parameters, in record_type). 2274
T000001 Minimum rendezvous, entry call and return. 3807.4
T000002 Task entry call and return (one task, one entry). 3765.4
T000003 Task entry call and return (two tasks, one entry each). 3802.0
T000004 Task entry call and return (one task, two entries). 5589.6
T000005 Active entry and return (ten tasks, one entry each). 3758.4
T000006 Task entry call and return (one task, ten entries). 13984.6
T000007 Minimum rendezvous, entry call and return. 32103

* WHETSTONE : units are in KWIPS not in microseconds.

-127-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 8086/8087. Clock : 8MHz, 2 wait-states (Tests were compiled
with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone" benchmark. 2092.0
Whetstone "Whetstone" benchmark. 103*
C000001 Task creation/terminate, task type declared in package. 7259.5
C000002 Task creation/terminate, task type declared in procedure. 7302.2
C000003 Task creation/terminate, task type declared in block. 7257.1
D000001 Dynamic array, use and deallocation. 777.6
D000002 Dynamic array elaboration and initialization. 65554.2
D000003 Dynamic record allocation and deallocation. 833.3
E000001 - Raise and handle an exception locally. 15.8
E000002 Raise and handle an exception in a package. 4917.6
E000004 Raise and handle an exception nested four deep. 9215.1

F000001 Set a BOOLEAN flag using a logical equation. -
F000002 Set a BOOLEAN flag using an "if" test.

1000001 Simple "for" loop.
L000002 Simple "while" loop.
L.000003 Simple "exit" loop.

ek b

(W] NN [S S S
HNWOROEWO =
N O WL M= thnon [\ AV,]

P000001 Procedure call and return (inlineable), no parameters.
P000002 Procedure call and return (not inlineable), no parameters.
P000003 Procedure call and return (compiled separately).

P000004 Procedure call and return (Pragma INLINE used).
P000005 Procedure call and return (one parameter, in INTEGER).

P000006 Procedure call and return (one parameter, out INTEGER). 28
P000007 Procedure call and return (one parameter, in out INTEGER). 29
P000010 Procedure call and return (ten parameters, in INTEGER). 67
P000011 Procedure call and return (twenty parameters, in INTEGER). 111
P000012 Procedure call and return (ten parameters, in record_t)c'ﬁe). 124.5
P000013 Procedure call and return (twenty parameters, in record_type) 2274
T000001 Minimum rendezvous, entry call and return. 96.1
T000002 Task entry call and return (one task, one entry). 94.6
T000003 Task entry call and return (two tasks, one entry each). 1303
T000004 Task entry call and return (one task, two entries). ~ 1303
T00000S Active entry and return (ten tasks, one entry each). 85.8
T000006 Task entry call and return (one task, ten entries). 85.8

* WHETSTONE : units are in KWIPS not in microseconds.

-128-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80186/8087. Clock : SMHz, 2 wait-states. PIWG test suite 1988.

PIWG Test Description

Name

Dhrystone
Whetstone

000001
C000002
C000003

D000001
D000002
D000003
E000001
E000002,
E000004

F000001
F000002

L000001
L000002
L.000003

P000001
P000002
P000003
P000004
P00000S
P000006
P000007
P000010
P000011
P000012
P000013

T000001
'T000002
T000003
T000004
T000005
T000006
T000007

"Dhrystone” benchmark.
"Whetstone" benchmark.

Task creation/terminate, task type declared in package.
Task creation/terminate, task type declared in groce ure.
Task creation/terminate, task type declared in block.

Dynamic array, use and deallocation.
Dynamic array elaboration and initialization.
Dynamic record allocation and deallocation.

Raise and handle an exception locally.
Raise and handle an exception in a package.
Raise and handle an exception nested four deep.

Set a BOOLEAN flag using a logical equation.
Set a BOOLEAN flag using an "if" test.

Simple "for" loop.
Simple "while" loop.
Simple "exit" loop.

Procedure call and return (inlineable), no parameters.
Procedure call and return (not inlineable), no parameters.
Procedure call and return (compiled separately).

Procedure call and return (Pragma INLINE used).

Procedure call and return (one parameter, in INTEGERI){.
Procedure call and return (one parameter, out INTEGER).
Procedure call and return (one parameter, in out INTEGER).
Procedure call and return (ten parameters, in INTEGER).
Procedure call and return (twenty parameters, in INTEGER).

Procedure call and return (ten parameters, in recorthEe).)
rd_type).

Procedure call and return (twenty parameters, in reco

Task entry call and return (one task, one entry).

Task entry call and return (two tasks, one entry each).
Task entry call and return (one task, two entries).
Active entry and return (ten tasks, one entry each).
Task entry call and return (one task, ten entries).

Minimum rendezvous, ent? call and return.

Minimum rendezvous, entry call and return (one task, one entry).

* WHETSTONE : units are in KWIPS not in microseconds.

-129-

Micro -
seconds

1593.4
118*

6408.0
6443.8
6409.9

629.3
52302.9
669.7

14.2
3908.1
7367.6

Pk
oS
-

— D) =
NN E=ROoWnI N0)
NN OAAO = = p N . o

E A S Y

11543.5
2716.1

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80186/8087. Clock : 8MH2, 2 wait-states.(Tests were compiled
with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone" benchmark. 1593.4
Whetstone "Whetstone" benchmark. 118*
C000001 Task creation/terminate, task type declared in package. 6408.0
C000002 Task creation/terminate, task type declared in procedure. 6443.8
C000003 Task creation/terminate, task type declared in block. 6409.9
D000001 Dynamic array, use and deallocation. 629.3
D000002 Dynamic array elaboration and initialization. 52302.9
D000003 Dynamic record allocation and deallocation. 669.7
E000001 . Raise and handle an exception locally. 14.2
E000002 Raise and handle an exception in a package. 3908.1
E000004 Raise and handle an exception nested four deep. 7367.6
F000001 Set a BOOLEAN flag using a logical equation. 104
F000002 Set a BOOLEAN flag using an "if" test. 9.6
1000001 Simple "for" loop. 8.4
L000002 Simple "while" loop. 7.4
L.000003 Simple "exit" loop. 1.4
P000001 Procedure call and return (inlineable), no parameters. 154
P000002 Procedure call and return (not inlineable), no parameters. 27.1
r000003 rrocedure call and return (compiled separately). 154
P000004 Procedure call and return (Pragma INLINE used). 0.1
P000005S Procedure call and return (one parameter, in GER). 18.0
P000006 Procedure call and return (one parameter, out INTEGER). 21.6
P000007 Procedure call and return (one parameter, in out INTEGER). 222
P000010 Procedure call and return (ten parameters, in INTEGER). 47.5
P000011 Procedure call and return (twenty parameters, in INTEGER). 77.9
P000012 Procedure call and return (ten parameters, in record_t{e). 97.3
P000013 Procedure call and return (twenty parameters, in record_type). 178.9
T000001 Minimum rendezvous, entry call and return. 87.2
T000002 Task entry call and return (one task, one entry). 86.5
T000003 Task entry call and return (two tasks, one entry each). 116.2
T000004 Task eutry call and return (one task, two entries). 1154
T000005 Active entry and return (ten tasks, one entry each). 78.9
T000006 Task entry call and return (one task, ten entries). 71.9

* WHETSTONE : units are in KWIPS not in microseconds.

-130-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Sgsfgech PIWG results for 80286P/80287. Clock : 10MHz, 0 wait-states. PIWG test suite
1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone” benchmark. 602.3
Whetstone "Whetstone" benchmark. 183*
C000001 Task creation/terminate, task type declared in package. 2675.5
C000002 Task creation/terminate, task type declared in procedure. 2674.9
C000003 Task creation/terminate, task type declared in block. 2656.6
D000001 Dynamic array, use and deallocation. 380.7
D000002 Dynamic array elaboration and initialization. 16019.3
D000003 Dynamic record allocation and deallocation. 398.5
E000001 Raise and handle an exception locally. 53
E000002 Raise and handle an exception in a package. 1580.3
E000004 Raise and handle an exception nested 4 deep in procedures. 2940.1
F000001 Set a BOOLEAN flag using a logical equation. 3.0
F000002 Set a BOOLEAN flag using an "if" test. 3.1
L000001 Simple "for" loop. 2.8
L000002 Simple "while" loop. 2.3
L.000003 Simple "exit" loop. 23
P000001 Procedure call and return (inlineable), no parameters. 7.9
P000002 Procedure call and return (not inlineable), no parameters. 129
P000003 Procedure call and return (compiled separately). 7.9
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in INTEGER). 9.1
P000006 Procedure call and return (one parameter, out INTEGER). 9.8
P000007 Procedure call and return (one parameter, in out INTEGER). 8.9
P000010 Procedure call and return (ten parameters, in INTEGERE 16.6
P000011 Procedure call and return (twenty parameters, in INTEGER). 24.1
P000012 Procedure call and return (ten parameters, in record_tme). 39.3
P000013 Procedure call and return (twenty parameters, in record_type). 70.6
T000001 Minimum rendezvous, entry call and return. 1313.1
T000002 Task entry call and return (one task, one entry). 13129
T000003 Task entry call and return (two tasks, one entry each). 1323.9
T000004 Task entry call and return (one task, two entries). 1834.6
T00000S Active entry and reiurn (ten tasks, one entry each). : 1309.7
T000006 Task entry call and return (one task, ten entries). 4155.1
T000007 Minimum rendezvous, entry call and return (one task, one entry). 1089.1

* WHETSTONE : units are in KWIPS not in microseconds.

-131-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80286P/80287. Clock : 10MHz, 0 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone" benchmark. 602.3
Whetstone "Whetstone" benchmark. 183*
C000001 Task creation/terminate, task type declared in package. 2675.5
C000002 Task creation/terminate, task type declared in procedure. 2674.9
C000003 Task creation/terminate, task type declared in block. 2656.6
D000001 Dynamic array, use and deallocation. 380.7
D000002 Dynamic array elaboration and initialization. 16019.3
D000003 Dynamic record allocation and deallocation. 398.5
E000001 . Raise and handle an exception locally. 53
E000002 Raise and handle an exception in a package. 1580.3
E000004 Raise and handle an exception nested four deep. 2940.1
F000001 Set a BOOLEAN flag using a logical equation. 3.0
F000002 Set a BOOLEAN flag using an "if" test. 3.1
L000001 Simple "for" loop. 2.8
L000002 Simple "while" loop. 2.3
L000003 Simple "exit" loop. 23
P000001 Procedure call and return (inlineable), no parameters. 79
P000002 Procedure call and return (not inlineable), no parameters. 12.9
P000003 Procedure call and return (compiled separately). 79
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in INTEGER). 9.1
P000006 Procedure call and return (one parameter, out INTEGER). 9.8
P000007 Procedure call and return (one parameter, in out INTEGER). 8.9
P000010 Procedure call and return (ten parameters, in INTEGERL_.{ 16.6
P000011 Procedure call and return (twenty parameters, in INTEGER) 24.1
P000012 Procedure call and return (ten parameters, in RECORD). 39.3
P000013 Procedure call and return (twenty parameters, in RECORD). 70.6
T000001 Minimum rendezvous, entry call and return. 68.3
T000002 Task entry call and return (one task, one entry). 68.4
T000003 Task entry call and return (two tasks, one entry each). 80.1
T000004 Task entry call and return (one task, two entries). 80.1
T000005 Active entry and return (ten tasks, one entry each). 65.4

T000006 Task entry call and return (one task, ten entries). 65.4
* WHETSTONE : units are in KWIPS not in microseconds.

-132-

Guidelines to Select, Configure and Use an Ada Runtime Environment

fgsfgech PIWG results for 80286R/80287. Clock : 10MHz, 0 wait-states. PIWG test suite

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone” benchmark. 463.1
Whetstone "Whetstone" benchmark. 192*
C000001 Task creation/terminate, task type declared in package. 1884.7
000002 Task creation/terminate, task type declared in procedure. 1891.7
C000003 Task creation/terminate, task type declared in block. 1878.7
D000001 Dynamic array, use and deallocation. 183.0
D000002 Dynamic array elaboration and initialization. 14303.6
D000003 Dynamic record allocation and deallocation. 1944
E000001 . Raise and handle an exception locally. 3.0
E000002 Raise and handle an exception in a package. 1106.6
E000004 Raise and handle an exception nested four deep. 2087.3
F000001 Set a BOOLEAN flag using a logical equation. 2.0
F000002 Set a BOOLEAN flag using an "if" test. 31
1000001 Simple “for" loop. 2.9
L.000002 Simple "while" loop. 2.3
- Lo00003 Simple "exit" loop: 23
P000001 Procedure call and return (inlineable), no parameters. 54
P000002 Procedure call and return (not inlineable), no parameters. 8.9
P000003 Procedure call and return (compiled separately). 54
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in INTEGER). 5.0
P000006 Procedure call and return (one parameter, out INTEGER). 6.9
PO00O07 Procedure call and return (one parameter, in out INTEGER). 6.1
P000010 Procedure call and return (ten parameters, in INTEGERE 13.6
P000011 Procedure call and return (twenty parameters, in INTEGER). 224
P000012 Procedure call and return (ten parameters, in record._!{e). 24.8
P000013 Procedure call and return (twenty parameters, in record_type). 443
T000001 Minimum rendezvous, entry call and return. 991.6
T000002 Task entry call and return (one task, one entry). 991.1
T000003 Task entry call and return (two tasks, one entry each). 999.1
T000004 Task entry call and return (one task, two entries). 1417.8
T00000S Active entry and return (ten tasks, one entry each). 988.6
T000006 Task entry call and return (one task, ten entries). 3340.5
T000007 Minimum rendezvous, entry call and return. 8319

* WHETSTONE : units are in KWIPS not in microseconds.

-133-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80286R/80287. Clock : 10MHz, 0 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone” benchmark. 463.1
Whetstone “"Whetstone" benchmark. 192*
C000001 Task creation/terminate, task type declared in package. 1884.7
C000002 Task creation/terminate, task type declared in procedure. 1891.7
C000003 Task creation/terminate, task type declared in block. 1878.7
D000001 Dynamic array, use and deallocation. 183.0
D000002 Dynamic array elaboration and initialization. 14303.6
D000003 Dynamic record allocation and deallocation. 194.4
E000001 - Raise and handle an exception locally. 3

E000002 Raise and handle an exception in a package. 1106

E000004 Raise and handle an exception nested four deep. 2087

F000001 Set a BOOLEAN flag using a logical equation.
F000002 Set a BOOLEAN flag using an "if" test.

L000001 Simple "for" loop.
. 1000002 Simple "while" loop.
L000003 Simple "exit" loop.

P000001 Procedure call and return (inlineable), no parameters.
P000002 Procedure call and return (not inlineable), no parameters.
P000003 Procedure call and return (compiled separately).

P000004 Procedure call and return (Pragma INLINE used).

P000005 Procedure call and return (one parameter, in INTEGER&.
P000006 Procedure call and return (one parameter, out INTEGER).
P000007 Procedure call and return (one parameter, in out INTEGER).
P000010 Procedure call and return (ten parameters, in INTEGER}i
P000011 Procedure call and return (twenty parameters, in INTEGER).
P000012 Procedure call and return (ten parameters, in record_tge).
P000013 Procedure call and return (twenty parameters, in record_type)

T000002 Task entry call and return (one task, one entry).
T000003 Task entry call and return (two tasks, one entry each).
T000004 Task entry call and return (one task, two entries).
T000005 Active entry and return (ten tasks, one entry each).
T000006 Task entry call and return (one task, ten entries).

* WHETSTONE : units are in KWIPS not in microseconds.

T000001 Minimum rendezvous, entrg call and return.

wooprow Wwopowovcooror W Lo Wwoo

N W (] (WO N S R
PROESRR RRRNGoouvouvmu pRp wn

-134-

Guidelines to Select, Configure and Use an Ada Runtime Environment

%gech PIWG results for 80386P/80287. Clock : 16MHz, 0 - 3 wait-states. PIWG test suite

PIWG Test Description ' Micro -
Name seconds
Dhrystone "Dhrystone” benchmark. 426.8
Whetstone "Whetstone" benchmark. 531*
C000001 Task creation/terminate, task type declared in package. 1968.1
C000002 Task creation/terminate, task type declared in procedure. 1940.6
C000003 Task creation/terminate, task type declared in block. 1939.0
D000001 Dynamic array, use and deallocation. 248.3
D000002 Dynamic array elaboration and initialization. 10022.6
D000003 Dynamic record allocation and deallocation. 260.4
E000001 Raise and handle an exception locally. 2.9
E000002 Raise and handle an exception in a package. 1063.9
E000004 Raise and handle an exception nested four deep. 1972.6
F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.6
L.000001 Simple "for" loop. 1.7
L000002 Simple "while" loop. 1.6
L000003 Simple "exit" loop. 1.6
P000001 Procedure call and return (inlineable), no parameters. 59
P000002 Procedure call and return (not inlineable), no parameters. 9.1
P000003 Procedure call and return (compiled separately). 5.9
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in INTEGER). 6.4
P000006 Procedure call and return (one parameter, out INTEGER). 6.5
P000007 Procedure call and return (one parameter, in out INTEGER). 6.5
P000010 Procedure call and return (ten parameters, in INTEGERE 114
P000011 Procedure call and return (twenty parameters, in INTEGER). 17.9
P000012 Procedure call and return (ten parameters, in record_t)(rte). 28.1
P000013 Procedure call and return (twenty parameters, in record_type). 512
T000001 Minimum rendezvous, entry call and return. 865.9
T000002 Task entry call and return (one task, one entry). 855.5
T000003 Task entry call and return (two tasks, one entry each). 874.3
T000004 Task entry call and return (one task, two entries). 1134.4
T000005 Active entry and return (ten tasks, one entry each). 8A5.2
T000006 Task entry call and return (one task, ten entries). 2336.1
T000007 Minimum rendezvous, entry call and return. 708.8

* WHETSTONE : units are in KWIPS not in microseconds.

-135-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80386P/80287. Clock : 16MHz, 0 - 3 wait-states. (Tests were -
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone" benchmark. 426.8
Whetstone "Whetstone" benchmark. 531*
C000001 Task creation/terminate, task type declared in package. 1968.1
C000002 Task creation/terminate, task type declared in procedure. 1940.6
C000003 Task creation/terminate, task type declared in block. 1939.0
D000001 Dynamic array, use and deallocation. : 248.3
D000002 Dynamic array elaboration and initialization. 10022.6
D000003 Dynamic record allocation and deallocation. 260.4
E000001 - Raise and handle an exception locally. 2.9
E000002 Raise and handle an exception in a package. 1063.9
E000004 Raise and handle an exception nested four deep. 1972.6

F000001 Set a BOOLEAN flag using a logical equation.
F000002 Set a BOOLEAN flag using an "if" test.

L.000001 Simple "for" loop.
1.000002 Simple "while" loop.
L.000003 Simple "exit" loop.

P000001 Procedure call and return (inlineable), no parameters.
P000002 Procedure call and return (not inlineable), no parameters.
P000003 Procedure call and return (compiled separately).

P000004 Procedure call and return (Pragma INLINE used).

P000005 Procedure call and return (one parameter, in INTEGERI)?\.
P000006 Procedure call and return (one parameter, out INTEGER).
P000007 Procedure call and return (one parameter, in out INTEGER).
P000010 Procedure call and return (ten parameters, in INTEGER).
P000011 Procedure call and return (twenty parameters, in INTEGER).
P000012 Procedure call and return (ten parameters, in recorth{e).
P000013 Procedure call and return (twenty parameters, in record_type)

Pk o

B 2BONoocoounon mee me
[() N=,OLEUNMNANLEOOO (o Yo X | [« Q¥]

w W
Pt

T000001 Minimum rendezvous, entry call and return.

T000002 Task entry call and return (one task, one entry). 52.3
T000003 Task entry call and return (two tasks, one entry each). 60.5
T000004 Task entry call and return (one task, two entries). 61.2
T00000S Active entry and return (ten tasks, one entry each). 49.5

T000006 Task entry call and return (one task, ten entries). 50.6
* WHETSTONE : units are in KWIPS not in microseconds.

-136-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80386R/80287. Clock : 16MHz, 0 - 3 wait-states. PIWG test suite
1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone" benchmark. 330.1
Wlllxrg:stone "Whhrgtitone" benchmark. 593*
C000001 Task creation/terminate, task type declared in package. 1421.0
C000002 Task creation/terminate, task type declared in procedure. 1405.5
C000003 Task creation/terminate, task type declared in block. 1402.7
D000001 Dynamic array, use and deallocation. 120.8
D000002 Dynamic array elaboration and initialization. 8503.4
D000003 Dynamic record allocation and deallocation. 127.8
E000001 Raise and handle an exception locally. 2.3
E000002 Raise and handle an exception in a package. 745.5
E000004 Raise and handle an exception nested four deep. 1401.2
F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.6
1000001 Simple "for" loop. 1.7
L.000002 Simple "while" loop. 1.6
L000003 Simple "exit" loop. 1.6
P000001 Procedure call and return (inlineable), no parameters. 4.2
P000002 Procedure call and return (not inlineable), no parameters. 6.5
P000003 Procedure call and return (compiled separately). 4.2
P000004 Procedure call and return (Pragma INLINE used). 0.0
P000005 Procedure call and return (one parameter, in INTEGER). 4.6
P000006 Procedure call and return (one parameter, out INTEGER). 4.9
P000007 Procedure call and return (one parameter, in out INTEGER). 49
P000010 Procedure call and return (ten parameters, in INTEGER). 9.8
P000011 Procedure call and return (twenty parameters, in INTEGER). 16.2
P000012 Procedure call and return (ten parameters, in record_t{e). 17.1
P000013 Procedure call and return (twenty parameters, in record_type). 30.6
T000001 Minimum rendezvous, entry call and return. 671.5
T000002 Task entry call and return (one task, one entry). 662.0
T000003 Task entry call and return (two tasks, one entry each). 678.9
T000004 Task entry call and return (one task, two entries). 888.6
T000005 Active entry and return (ten tasks, one entry each). 674.0
T000006 Task entry call and return (one task, ten entries). 1888.1
T000007 Minimum rendezvous, entry call and return (one task, one entry). 5549

* WHETSTONE : units are in KWIPS not in microseconds.

~-137-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech PIWG results for 80386R/80287. Clock : 16MHz, 0 - 3 wait-states. (Tests were
compiled with FAST TASKING pragmas). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
Dhrystone "Dhrystone" benchmark. 330.1
Whetstone "Whetstone" benchmark. 593*
C000001 Task creation/terminate, task type declared in package. 1421.0
C000002 Task creation/terminate, task type declared in procedure. 1405.5
C000003 Task creation/terminate, task type declared in block. 1402.7
D000001 Dynamic array, use and deallocation. 120.8
D000002 Dynamic array elaboration and initialization. 8503.4
D000003 Dynamic record allocation and deallocation. 127.8
E000001 - Raise and handle an exception locally. 2.3
E000002 Raise and handle an exception in a package. 745.5
E000004 Raise and handle an exception nested four deep. 1401.2
F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.6
L.000001 Simple "for" loop. 1.7
L000002 Simple "while" loop. 1.6
L000003 Simple "exit” loop. 1.6
P000001 Procedure call and return (inlineable), no parameters. 4.2
P000002 Procedure call and return (not inlineable), no parameters. 6.5
P000003 Procedure call and return (compiled separately). 42
P000004 Procedure call and return (Pragma INLINE used). 0.0
P000005 Procedure call and return (one parameter, in INTEGER). 4.6
P000006 Procedure call and return (one parameter, out INTEGER). 4.9
P000007 Procedure call and return (one parameter, in out INTEGER). 49
P000010 Procedure call and return (ten parameters, in INTEGER). 9.8
P000011 Procedure call and return (twenty parameters, in INTEGER). 16.2
P000012 Procedure call and return (ten parameters, in record_!me). 17.1
P000013 Procedure call and return (twenty parameters, in record_type) 30.6
T000001 Minimum rendezvous, entry call and return. 20.1
T000002 Task entry call and return (one task, one entry). 204
T000003 Task entry call and return (two tasks, one entry each). 27.2
T000004 Task entry call and return (one task, two entries). 27.1
T000005 Active entry and return (ten tasks, one entry each). 18.5
T000006 Task entry call and return (one task, ten entries). 18.6

* WHETSTONE : units are in KWIPS not in microseconds.

-138-

Guidelines to Select, Configure and Use an Ada Runtime Environment

SofTech, Inc.

VAX/VMS

Host

Target: APX 8086, 80186, 80286R, B80286P, 80386

Versiom 2.0

ozevt R

% |

Y.

0291

N

0522 %r . WM 203 0pW07)
orey RN R Noudaaxnasnop
N T o o
N N NRHURINNRY .- N . |
NW%VW,%WV N AN e aousnbas ‘37D
WYY AR o ARIRRR AR Q
> NN NN NN \ \ N
X /M"m %nn 0 RN N won 0/1
cwmn W.. uummmmﬂ/. NNuon ouniva) sy
0292 “ﬂn NUOIROAR DY HSO|
. % X R e
00s8 ‘/NV- N N N - TR 4uB) SNOAZIPURY
"//. W N vN X
08S. R R N NN RRHHON 1013 dadx3
ol S
08ve M N N 3Oy 2wy
occy RN . an
R RN FWOH 3dnaud3up
0821 //W,/.Hﬂvv WOl JOSSID0
R /.. W i Jud

AR Ay p——

m/f

14370

FEEIRIRERER

Sum of ALL components = 83730 bytes

Fiome
e

-~ ~rg for the moximum overhead

~h
fasy

lone

e

(Refer to Degree of Configurabiity / Linker capability on previous page)

» Comdata was descibed by the vendor as the combined

read/write area for all of the Ada libraries.

-139-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes

The followix;ﬁ excerpts are taken from the Ada Compiler Validation Summary Report for

SofTech Ad

6 Version 1.34. [29]

Representation Clause Restrictions

Address Clauses

Address clauses are supported for the following items:

1. Scalar or composite objects with the following restrictions:
(a) The object must not be nested within a subprogram or task directly or
indirectly.
(b) The size of the object must be determinable at the time of compilation.

2. Subprograms with the following restrictions:

ﬁag The subprogram can not be a library subprogram (LRM requirement).

b) Any subprogram declared within a subprogram having an address clause
will be placed in relocatable sections.

3. Entries - An address clause may specify a hardware interrupt with which the entry
is to be associated. '

Length Clause

T'STORAGE_SIZE for task type T specifies the number of bytes to be allocated for
the runtime stack of each task object of type T.

Enumeration Representation Clause
In the absence of a representation specification for an enumeration type T, the
internal representation of TFIRST is 0. The default SIZE for a stand-alone object of
enumeration type T will be the smallest of the values 8, 16, or 32, such that the
internal representation of T'’FIRST and T'LAST both fall within the range:
2**(T'SIZE - 1) .. 2**(T'SIZE - 1) - 1.
Length specifications of the form:
for T'SIZE use N;
and/or enumeration representations of the form:

for T use aggregate

Are permitted for N in 2.32, provided the representations and the SIZE
conform to the relationship specitied above, or else for N in 1..31, provided that

-140-

Guidelines to Select, Configure and Use an Ada Runtime Environment

‘the internal representation of TFIRST >= 0 and the representation of
TLAST = 2**(T'SIZE)-1.

for components of enumeration types within packed composite objects, the
smaller of the default stand-alone SIZE and the SIZE from a length
specification is used.

In accordance with the rules of Ada, and the implementation of package
STANDARD, enumeration representation on es derived from the
predefined type BOOLEAN are not accepted, but length specifications are
accepted.
Record Representation Clause
A length specification of the form
for T'SIZE use N;

. Will cause arrays and records to be packed, if required, to accommodate the
length specification.

The PACK Fragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type representation
to be chosen such that storage space requirements are minimized at the
possible expense of data access time and code space.
A record type representation specification may be used to describe the
allocation of components in a record. Bits are numbered 0..7 from the right.
(Bit 8 starts at the right of the next higher-numbered byte).
The alignment clause of the form:

atmod N

can specify alignment of 1 (byte) or 2 (word).

-141-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode

package SYSTEM is

type WORD is range 0..16#FFFF#;
for WORD’SIZE use 16;

type BYTE is range 0..255;
for BYTE’/SIZE use 8;

subtype REGISTER is SYSTEM.WORD;
subtype SEGMENT REGISTER is SYSTEM.REGISTER;
subtype OFFSET_REGISTER is SYSTEM.REGISTER;

type ADDRESS is
record -
SEGMENT: SYSTEM.SEGMENT_REGISTER;
OFFSET : SYSTEM.OFFSET_REGISTER;
end record;

for ADDRESS’SIZE use 32;
for ADDRESS use
record
OFFSET at 0 range 0..15;
SEGMENT at 2 range 0..15;
end record;
NULL_ADDRESS : constant SYSTEM.ADDRESS := (0,0):
subtype TO_ADDRESS is SYSTEM.REGISTER:;

type ABSOLUTE_ADDRESS is range 0..16#FFFF#;
for ABSOLUTE_ADDRESS’SIZE use 20;

type NAME is (VAX780_VMS, iAPX86, iAPX186, iAPX286R):

SYSTEM_NAME : constant SYSTEM.NAME := (SYSTEM.iAPX286R);
--Intel 80286 in real address mode.

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := (2#%%20)-~1;
MIN_INT : constant := - (2*%*31);
MAX_INT ¢ constant := (2%*31)-1;
MAX_DIGITS ¢ constant := 15;

-142-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

MAX_MANTISSA

¢ constant
FINE_DELTA :

31
constant 4.

656_

612_873_077_392_578_125E-10;

type INTERRUPT_TYPE_NUMBER is range 0..255;

DIVIDE_ERROR_INTERRUPT : constant := 0;
SINGLE_ STEP__ INTERRUPT : constant := 1;
NON_MASKABLE_INTERRUPT : constant := 2;
OVERFLOW_INTERRUPT : constant := 4;
RSIL_CLOCK_INTERRUPT : constant := 64;

DELAY_ EXPIRY_INTERRUPT

NUMERIC_PROCESSOR_INTERRUPT

-- for iAPXS86,
-~ for iAPX186,

: constant := 8;

iAPX286R

it is 18

-- for iAPX186 only

: constant := 16;

-~ for iAPX286 only

-~ for iAPX86 it is 71

-~ for iAPX186 it is 15
DISPATCH_CODE_INTERRUPT : constant := 32;
CHECK_ STACK INTERRUPT : constant := 48;
ENTER_ SUBPROGRAM WITHOUT_LPP_ INTERRUPT : constant := 49;
ENTER_SUBPROGRAM_INTERRUPT : constant := 50;
PROGRAM_ERROR _INTERRUPT ¢ constant := 53;
CONSTRAINT_ERROR_INTERRUPT : constant := 54;
NUMERIC_ERROR_INTERRUPT ¢ constant := 55;
ALLOCATE_OBJECT_INTERRUPT : constant := 56;
BOUND_EXCEPTION_INTERRUPT : constant := 05
UNDEFINED_OPCODE_EXCEPTION_INTERRUPT : constant := 6;
PROCESSOR_EXTENSION_NOT_ AVAILABLE_INTERRUPT : constant := 7;
ENTER_INNOCUOUS_CRITICAL REGION_INTERRUPT ¢ constant := 33;
LEAVE_INNOCUOUS_CRITICAL_REGION_INTERRUPT : constant := 34;

type ENTRY_KIND is
(ORDINARY_ INTERRUPT ENTRY,

PROMPT
SIMPLE_QUICK
NO_NDP_SIMPLE_ QUICK
SIGNALLING_QUICK
NON_MASKABLE
NO_NDP_NON_MASKABLE

.- W W™ % W

ordinary interrupt entry
fast interrupt entry

quick interrupt entry

quick interrupt entry

quick interrupt entry
non-maskable interrupt entry

non-maskable interrupt entry):

666_667E-6;

TICK ¢ constant := 6.510_415_666_666_666_
-- for iAPX86 only
TICK : constant := 0.000_015; -- 15 microseconds

-=- for iAPX186 only

-143-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

TICKS_PER_SECOND : constant

:= 20163.93442_62209_52836_06557;
-- approximate
-- for iAPX286 only

type DIRECTION_TYPE is (AUTO_INCREMENT, AUTO_DECREMENT) ;

type PARITY TYPE is (ODD, EVEN);

type FLAGS_REGISTER is
record
NESTED_TASK

IO_PRIVILEGE_ LEVEL

OVERFLOW
DIRECTION
INTERRUPT
TRAP
SIGN
ZERO
AUXILIARY
PARITY
CARRY

end record:;

for FLAGS_REGISTER use

record
NESTED_TASK
IO_PRIVILEGE_LEVEL
OVERFLOW
DIRECTION
INTERRUPT
TRAP
SIGN
ZERO
AUXILIARY
PARITY
CARRY

end record;

9 86 60 55 00 00 08 s o0

BOOLEAN

NATURAL range 0..3

BOOLEAN
SYSTEM.DIRECTION_TYPE
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

SYSTEM.PARITY_TYPE

BOOLEAN

at
at
at
at
at
at
at
at
at
at
at

O0O0OO0OO0OO0OOOOOO0O

range 14..14;
range 12..13;
range 11..11;
range 10..10;

range
range
range
range
range
range
range

-144-

9..9;
8..8;
7..7;
6..6;
4..4;
2..2;
0..0;

!
L}

e 06 88 04 60 0 90 oe b
1 T A I O O

FALSE;

for iAPX286 only
0;

for iAPX286 only
FALSE;
SYSTEM.AUTO_INCREMENT;
TRUE;

FALSE;

FALSE;

TRUE;

FALSE;
SYSTEM.EVEN;
FALSE;

for iAPX286 only
for iAPX286 only
for iAPX286 only
for iAPX286 only

for
for
for
for
for
for
for

iAPX286 only
iAPX286 only
iAPX286 only
iAPX286 only
iAPX286 only
iAPX286 only
iAPX286 only

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

NORMALIZED_FLAGS_REGISTER constant SYSTEM.FLAGS_REGISTER :=

(NESTED_TASK => FALSE, -- for iAPX286 only
10_PRIVILEGE_LEVEL => 0, -- for iAPX286 only
OVERFLOW => FALSE,

DIRECTION => SYSTEM.AUTO_ INCREMENT,
INTERRUPT => TRUE,

TRAP => FALSE,

SIGN => FALSE,

ZERO => TRUE,

AUXILIARY => FALSE,

PARITY => SYSTEM.EVEN,

CARRY => FALSE);

subtype PRIORITY is INTEGER range 1..15;

UNRESOLVED_REFERENCE : exception;
SYSTEM__ ERROR : exception;

function EFFECTIVE_ADDRESS
(A : in SYSTEM.ADDRESS)
return SYSTEM.ABSOLUTE_ADDRESS;

function FAST EFFECTIVE_ADDRESS
(A : in SYSTEM.ADDRESS)
return SYSTEM.ABSOLUTE_ADDRESS;

function TWOS_COMPLEMENT_ OF
(W : in SYSTEM.WORD)
return SYSTEM.WORD;

procedure ADD_TO_ADDRESS
(ADDR ¢ 1in out SYSTEM.ADDRESS;
OFFSET : in SYSTEM.OFFSET_REGISTER)

procedure SUBTRACT_FROM_ADDRESS
(ADDR : in out SYSTEM.ADDRESS;
OFFSET : in SYSTEM.OFFSET_REGISTER):
function INTERRUPT TYPE_NUMBER_OF

(A : in SYSTEM.ADDRESS)
return SYSTEM.INTERRUPT_TYPE_NUMBER;

procedure GET_ADDRESS_FROM_INTERRUPT_ TYPE_NUMBER

(A : out SYSTEM.ADDRESS;
ITN : in SYSTEM.INTERRUPT_TYPE_NUMBER)

-145-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the iAPX286 Operating in Real Address Mode (Continued)

function GREATER_THAN
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS)
return BOOLEAN;

function MINUS
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS)
return LONG_INTEGER;

function ">"
(A1 : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS)
return BOOLEAN renames SYSTEM.GREATER_THAN;

functior. #-%
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS)
return LONG_INTEGER renames SYSTEM.MINUS;

procedure ADJUST_FOR_UPWARD_GROWTH
(OLD_ADDRESS : in SYSTEM.ADDRESS ;
ADJUSTED _ADDRESS : out SYSTEM.ADDRESS):
-- Transforms the given SYSTEM.ADDRESS into a representatlon
-- yielding the same effective address, but in which the
-- SEGMENT component is as large as possible.

procedure ADJUST_FOR_DOWNWARD_ GROWTH
(OLD_ADDRESS : in SYSTEM.ADDRESS ;
ADJUSTED_ADDRESS : out SYSTEM.ADDRESS);:
-- Transforms the given SYSTEM.ADDRESS into a representation
-- yielding the same effective address, but in which the
-- OFFSET component is as large as possible.

procedure ELAB_SYSTEM;

end SYSTEM;

-146-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the iAPX286 Operating in Real Address Mode

The followin Paclﬁge STANDARD contains definitions in addition to those specified in
Annex C of

package STANDARD is

for BOOLEAN’SIZE use 1; =-- immediately following BOOLEAN
-- type declaration

type INTEGER is range -32_768 .. 32_767;
for INTEGER'’SIZE use 16;
type LONG_INTEGER is range -2_147_483_648 .. 2_147_483_647;
type FLOAT is DIGITS 6 RANGE
-(2#1.111_1111_1111 1111_1111 1111_1#E+127) ..
(2#1.111 1113 1111 1111 1111 1111 1#E+127)
type LONG_FLOAT is DIGITS 15 RANGE
-2#1.111_1111 1111 1111_1111_ 1111_1111 1111_1111 1111
1111 1111 1111#E+1023 .o
2#1.111_1111_1111_ 1111 1111 1111 1111_11311_1111_1111
_111171111_1111¥E+1023

for CHARACTER’SIZE use 8;
type DURATION is DELTA 2.0 ** (-14) RANGE -131_072.0 .. 131_072.0

end STANDARD;

-147-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Systems Designers DEC VAX-11/7xx, 1750A, Ferranti
Software, Inc. VAX 8xcx, VAX Computer System
Compiler version 2B.00 Station, and 100A

MicroVAX series (bare machine)

(under VAX/VMS 4.5 * Derived *

or MicroVMS 4.5)

DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
See following pages.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-148-

Guidelihes to Select, Configure and Use an Ada Runtime Environment

System Designers Software PIWG results for 1750A (Fairchild 9450). Clock : 15MHz.
PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
000001 Task creation/terminate, task type declared in package. 3150
C000002 Task creation/terminate, task type declared in procedure. 3549
C000003 Task creation/terminate, task type declared in block. 3574
D000001 Dynamic array, use and deallocation. 40
D000002 Dynamic array elaboration and initialization. 33399
D000003 Dynamic record allocation and deallocation. 4074
D000004 Dynamic record elaboration and initialization. 40600
E000001 Raise and handle an exception locally. 67
E000002 Raise and handle an exception in a package. 114
E000003 Raise and handle an exception nested 3 deep in procedures. 184
F000001 Set a BOOLEAN flag using a logical equation. 7
F000002 Set a BOOLEAN flag using an "if" test. 7
L000001 Simple "for" loop. 7
1000002 Simple "while" loop. 9
L000003 Simple "exit" loop. 6
P000001 Procedure call and return (inlineable), no parameters. 27
P000002 Procedure call and return (not inlineable), no parameters. 30
P000003 Procedure call and return (compiled separately). 27
P000004 Procedure call and return (Pragma INLINE used). 27
P000005 Procedure call and return (one parameter, in INTEGER). 30
P000006 Procedure call-and return (one parameter, out INTEGER). 35
P000007 Procedure call and return (one parameter, in out INTEGER). 38
P000010 Procedure call and return (ten parameters, in INTEGER). 52
P000011 Procedure call and return (twenty parameters, in INTEGER). 75
P000012 Procedure call and return (ten parameters, in record_t{e). 72
P000013 Procedure call and return (twenty parameters, in record_type) 115
T000001 Minimum rendezvous, entry call and return. 687
T000002 Task entry cali and return (one task, one entry). 650
T000003 Task entry call and return (two tasks, one entry each). 681
T000004 Task entry call and return (one task, two entries). 1068
T000005 Active entry and return (ten tasks, one entry each). , 655
T000006 Task entry call and return (one task, ten entries). 2730

-149-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Systems Designers DEC VAX 8600 68010, MC68010
Software, Inc. (under VMS 4.5) implemented on
Compiler version 2C.00 the MVME 117-3FP

board (bare machine)

DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
See following pages.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied bj the vendor.

-150-

Guidelines to Select, Configure and Use an Ada Runtime Environment

System Designers Software PIWG results for Motorola MC68010. Clock : 10MHz, 1
wait-state. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
C000001 Task creation/terminate, task type declared in package. 4844
C000002 Task creation/terminate, task type declared in procedure. 7382
C000003 Task creation/terminate, task type declared in block. 8867
D000001 Dynamic array, use and deallocation. 18
D000002 Dynamic array elaboration and initialization. 32578
D000003 Dynamic record allocation and deallocation. 7570
D000004 Dynamic record elaboration and initialization. 47734
E000001 Raise and handle an exception locally. 48
E000002 Raise and handle an exception in a package. 78
E000003 Raise and handle an exception nested 3 deep in procedures. 119
F000001 Set a BOOLEAN flag using a logical equation. 6
F000002 Set a BOOLEAN flag using an "if" test. 7
L000001 Simple "for" loop. 8
L000002 Simple "while" loop. 9
L000003 Simple "exit" loop. 8
P000001 Procedure call and return (inlineable), no parameters. 30
P000002 Procedure call and return (not inlineable), no parameters. 34
P000003 Procedure call and return (compiled separately). 32
P000004 Procedure call and return (Pragma INLINE used). 32
P00000S Procedure call and return (one parameter, in INTEGER). 36
P000006 Procedure call and return (one parameter, out INTEGER). 39
P000007 Procedure call and return (one parameter, in out INTEGER). 42
P000010 Procedure call and return (ten parameters, in INTEGER). 61
P000011 Procedure call and return (twenty parameters, in INTEGER). 90
P000012 Procedure call and return (ten parameters, in record_t{e). 87
P000013 Procedure call and return (twenty parameters, in record_type). 141
T000001 Minimum rendezvous, entry call and return. 791
T000002 Task entry call and return (one task, one entry). 791
T000003 Task entry call and return (two tasks, one entry each). 815
T000004 Task entry call and return (one task, two entries). 1406
T000005 Active entry and return (ten tasks, one entry each). 777
T000006 Task entry call and return (one task, ten entries). 3469

-151-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the System Designers MC68010 Bare Machine Target

package SYSTEM
type ADDRESS
type NAME is

SYSTEM_NAME
STORAGE_UNIT
MEMORY_SIZE
MIN_INT
MAX_INT
MAX_DIGITS
MAX_MANTISSA
FINE_DELTA
TICK

is
is private

(MC68000, MC68010) ;

¢ constant NAME := MC68010;

: constant t= 87

: constant s= 1677721;

: constant t= =2147483648;
: constant t= 2147483647
: constant 2= 6

: constant := 31;

: constant := 2#1.0E-30;

: constant := 2#1.0#E-7;

subtype PRIORITY is INTEGER range 0..15;

type UNIVERSAL_INTEGER is range MIN_INT..MAX INT;

subtype EXTERNAL _ADDRESS is STRING;

subtype BYTE is INTEGER range -128..127;

type LONG_WORD is array (0..3) of BYTE;

pragma PACK(LONG_WORD) ;

function CONVERT_ADDRESS (ADDR : EXTERNAL_ADDRESS)
return ADDRESS;

function CONVERT_ADDRESS (ADDR : ADDRESS)
return EXTERNAL_ADDRESS;

function CONVERT_ADDRESS (ADDR : LONG_WORD)
return ADDRESS;

function CONVERT_ADDRESS (ADDR : ADDRESS)
return LONG_WORD;

function "+%

(ADDk : ADDRESS; OFFSET : UNIVERSAL_INTEGER)

return ADDRESS:;

private

-- type ADDRESS is system-dependent

end SYSTEM;

-152-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the System Designers MC68010 Bare Machine Target

package STANDARD is
type BOOLEAN is (FALSE, TRUE);

type INTEGER is range
=-2147483648..2147483647;

type FLOAT is digits 6 range
-16#FFFFFF#E32..16#0.FFFFFF4E32;

type CHARACTER is

for CHARACTER use

package ASCII is

end ASCII:;

-- Predefined subtypes:

subtype NATURAL is INTEGER range O..INTEGER’LAST;

subtype POSITIVE is INTEGER range 1l..INTEGER'’LAST;

-- Predefined string type:

type STRING is array (POSITIVE range <>) of CHARACTER;

type DURATION is delta 2#1.0E-7 range -16777216.0..16777215.0;
-- The predefined exceptions:

LR]

end STANDARD;

-153-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Systems Designers DEC VAX 8600 68020, MC68020,
Software, Inc. (under VMS 4.5) implemented on
Compiler version 2C.00 the MVME 133
board with a MC68881
floating point
CO-processor
(bare machine)
Compiler version 2C.00 DEC VAX-11/7xx 68020, MC68020,
VAX 8xxx,VAX implemented on
station, and the MVME 133
MicroVAX series board with a MC68881
(under VAX/VMS 4.5 floating point
or MicroVMS 4.5) co-processor
(bare machine)
Compiler version 3A.00 DEC VAX-11/7xx 68020, MC68020,
VAX 8xx,VAX implemented on
station (under VMS 4.6), the MVME 133
MicroVAX series board with a MC68881
(under MicroVMS 4.5) floating point

CO-processor
(bare machine)

The software supplied is configured for the standard hardware, but it is supplied in source

DEGREE OF CONFIGURABILITY

form to enable users to reconfigure it for their own target hardware.

The following is a list of the common target differences and what is affected:

Target Timer

A macro definition file defines symbols and macros used to control the timer device
of the SD standard MC68020 target. This file must be modified for targets using a

different timer or one located elsewhere.

Target I/0

A macro definition file is used to provide symbols and macros dependent upon the
location and type of I/O device used for the host/target link. As supplied, it is

-154-

Guidelines to Select, Configure and Use an Ada Runtime Environment
configured for the standard MC68020 target and may require modification for targets
using a different I/O device.

Target Initialization

A macro file is provided for certain target-dependent actions that may be required to
initialize the target following a "reset" or "power-up".

Context Switching

A macro file is gmvided which will allow the user the option of saving/not saving the
entire MC68020 register set and floating point coprocessor context when context
switching occurs as the result of an interrupt.

Interrupt Vectors

With the software as supplied, all unused interrupt vectors are initialized to pass
control to the handler UNEXPECTED_INTERR , which reports the interrupt
and then raises PROGRAM_ERROR. The user can place interrupt vectors at a
specific location, but a particular module must be specifically located there when the
program is built. The user can also modify a module which handles unexpected
interrupts as required.

Unhandled Exceptions

A catchall handler is provided for exceptions that are propagated out of an Ada
program.

Deadlock

If the tasking system detects a deadlock situation, a module is called to output a
deadlock message. This routine should be changed to perform the required actions.

PIWG RESULTS
See next page.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-155-

Guidelines to Select, Configure and Use an Ada Runtime Environment

System Designers Software PIWG results for Motorola MC68020. Clock : 12.5MHz, zero
wait-states. PIWG test suite 1987.

PIWG Test Description Micro -
Name ' seconds
C000001 Task creation/terminate, task type declared in package. 8089
C000002 Task creation/terminate, task type declared in procedure. 8125
C000003 Task creation/terminate, task type declared in block. 8125
D000001 Dynamic array, use and deallocation. 13
D000002 Dynamic array elaboration and initialization. 12500
D000003 Dynamic record allocation and deallocation. 1689
D000004 Dynamic record elaboration and initialization. 17734
E000001 Raise and handle an exception locally. 31
E000002 Raise and handle an exception in 2 package. 47
E000003 Raise and handle an exception nested 3 deep in procedures. 67
F000001 Set a BOOLEAN flag using a logical equation. 9
F000002 Set a BOOLEAN flag using an "if" test. 9
1.000001 Simple "for" loop. 4
1000002 Simple "while" loop. 3
L000003 Simple "exit" loop. 4
P000001 Procedure call and return (inlineable), no parameters. 8.8
P000002 Procedure call and return (not inlineable), no parameters. 10.9
P000003 Procedure call and return (compiled separately). 21.9
P000004 Procedure call and return (Pragma INLINE used). 17.3
P000005 Procedure call and return (one parameter, in INTEGER). 18.3
P000006 Procedure call and return (one parameter, out INTEGER). 20.7
P000007 Procedure call and return (one parameter, in out INTEGER). 25.9
P000010 Procedure call and return (ten parameters, in INTEGER). 29.6
P000011 Procedure call and return (twenty parameters, in INTEGER). 51.2
P000012 Procedure call and return (ten parameters, in record_t{e). 30.5
P000013 Procedure call and return (twenty parameters, in record_type). 56.2
T000001 Minimum rendezvous, entry call and return. 191
T000002 Task entry call and return (one task, one entry). 189
T000003 Task entry call and return (two tasks, one entry each). 202
T000004 Task entry cail and return (one task, two entries). 317
T000005 Active entry and return (ten tasks, one entry each). 188
T000006 Task entry call and return (one task, ten entries). 539

-156-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes

The following excerpts are from System Designers Ada-Plus VAX/VMS = > MC68020
compiler documentation. [12]

Restrictions on Representation Clauses
Length Clauses
Attribute SIZE

The value specified for SIZE must not be less than the minimum number of bits

re&ulred to represent all values in the range of the associated type or subtype.
Otherwise, a compiler restriction is reported.

Attribute SMALL
There are no restrictions for this attribute.
Attribute STORAGE_SIZE

For access tyEes the limit is governed by the address raxg of the target
machine and the maximum value is determined by SYSTEM.ADDRESS’LAST.

For task types the limit is also SYSTEM.ADDRESS'LAST.

Record Representation Clauses
Alignment Clause
The static_simple_expression used to align records onto storage unit
boundaries must deliver the values 0 (bit aligned), 1 (byte aligned), 2 (word
aligned) or 4 (long word aligned).
Component Clause
Non-scalar types must be aligned and sized correctly.
The component size defined by the static range must not be less than the
minimum number of bits required to hold every allowable value of the
component. For a component of non-scalar type, the size may not be larger
than that chosen by the compiler for the type.

Address Clauses

Address clauses are implemented as assignments of the address expressions to objects
of an appropriate access type.

An object being given an address is assumed to provide a means of accessing memory

external to the Ada program. An object declaration with an address clause is treated
by the compiler as an access object whose access type is the same as the type of the

-157-

Guidelines to Select, Configure and Use an Ada Runtime Environment

object declaration. This access object is initialized with the given address at the point
of elaboration of the corresponding address clause, for example:

X :INTEGER;

for X’ ADDRESS use at CONVERT_ADDRESS("FF00");
is equivalent to:

type X_P is access INTEGER;
X: X_P;

X := new_AT_ADDRESS(X_P, "FF00");
-- where function new_AT_ADDRESS claims no store but
- returns the address given.

Note: The expressions in an address clause for an object are interpreted as addresses
absolute addresses on the target. Address clauses for subprograms, packages and
tasks are not implemented.

It is the responsibility of some external agent to initialize the area at a given address.
The Ada program may fail unpredictably if the storage area is initialized prior to the
elaboration of the address clause. The access object can be used for reading from and
writing to the memory normally, but only after the elaboration of the address clause.

Address clauses can only be given for objects and task entries. Address clauses are
not supported for other entities.

Unchecked storage deallocation will not work for objects with address clauses.
Object Addresses
For objects with an address clause, a pointer is declared which points to the
object at the given address. There is a restriction however that the object
cannot be initialized either explicitly or implicitly (i.e. the object cannot be an
access type).
Subprogram, Package and Task Unit Addresses

Address clauses for subprograms, packages and task units are not supported by
this version of the compiler.

Entry Addresses

Address clauses for are supported; the address given is the address of an
interrupt vector.

-158-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Example:
task INTERRUPT_HANDLER is
entry DONE,; .
for DONE use at SYSTEM.CONVERT_ADDRESS (“7C");
end INTERRUPT_HANDLER;
Note that it is only possible to define an address clause for an entry of a single task.
Implementation-Generated Names

There are no implementation-generated names denoting implementation-dependent
components.

Interpretation of Expressions in Address Clauses

The expressions in an address clause are interpreted as absolute addresses on the target.
Address clauses for subprograms, packages and tasks are not iniplemented.

Unchecked Conversions
im?lementation imposes the restriction on the use of the generic function

The
UNCHECKED_CONVERSION that the size of the target type must not be less than the
size of the source type.

-159-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the SD Ada - MC68020

package SYSTEM is
type ADDRESS is private;
type NAME is (MC68020);

SYSTEM_NAME constant NAME := MC68020;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2%#32;
MIN_INT : constant := -(2**31);
MAX_ INT ¢ constant := (2*%%*31)-1;
MAX_DIGITS ¢ constant := 15;

MAX MANTISSA : constant := 31;
FINE_DELTA : constant := 2#1.0E-31;
TICK : constant := 2#1.04E-7;

subtype PRIORITY is INTEGER range 0 .. 126;
type UNIVERSAL_INTEGER is range MIN_INT .. MAX_INT;
subtype EXTERNAL_ADDRESS is STRING;

function CONVERT_ADDRESS (ADDR t EXTERNAL_ADDRESS)
return ADDRESS:;

function CONVERT_ADDRESS (ADDR : ADDRESS)
return EXTERNAL_ADDRESS;

function "+" (ADDR : ADDRESS;

OFFSET : UNIVERSAL_INTEGER)
return ADDRESS;
private

-- Implementation-dependent type ADDRESS
end SYSTEM:;

-160-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MC68020

package STANDARD is
type BOOLEAN is (FALSE, TRUE);

type SHORT_INTEGER is range
-128 .. 127;

type INTEGER is range

type LONG_INTEGER is range
-2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-16#0.FFFFFF#e32 .. 16#0.FFFFFF#E32;

type LONG_FLOAT is digits 15 range
~ 16#0.FFFFFFFF_FFFFFFF#E44 ..
16#0.FFFFFFFF_FFFFFFF#E44;

type DURATION IS DELTA 2#1.0#E-7 range
- 16_777_216.0 .. 16_777_215.0;

end STANDARD;

-161-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

Tartan Laboratories Inc. VAX-11/750 1750A, Fairchild F9450

Compiler version V9 (under VMS 4.1) 1750A, Mikros MKS1750/SO
1750A, Unisys S1636-

&MIL—STD-USOA)
all bare machines)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
- Components are linked selectively and are only included if required.
I1. Customization of the Runtime:

- By the use of pragmas

- By the use Compiler Switches

- Modifying-Replacing the source to selective runtime routines provided with the
purchase og the compiler (i.e. Device Drivers)

- By modifying the source to the entire runtime (after purchasing it)

Storage Layout - The main memory of a 1750A computer running an Ada program is
divided into four regions: static code and data (low memory), a stack for the main
program, a stack for interrupt handlers (high memory), and all remaining free
storage. The exact layout of the static area is determinedr%y the linker control file.

User-Defined Actions - This is a collection of small procedures that are invoked by
the runtime when unusual conditions arise. It consists of the following:

System Idle

Program Termination

Abnormal Termination Diagnostics
Lowest Level Output

Text I/O Routines

Simple I/O Routines

Interrupts - The Ada runtime handles the floating-point overflow, fixed-point
overflow, floating-point underflow, and timer B interrupts of the MIL-STD- 1750A.
The remaining interrupts are available for application use. There are several ways in
which handling of a particular interrupt may %e added to the runtime:

- An assembly code handler may be used that transparently services the
interrupt and returns to the point of interruption.

-162-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- A handler may be added to the Ada runtime. Such a handler, following a
standard template, can share the runtime interrupt stack and invoke runtime
task scheduling and interrupt services. The body for such a handler may be
written in Ada.

- A task entry may be connected to an interrupt.

Interrupt Vectors - There is a file which statically initialized the interrupt vectors.
Users may add their own vector initialization to this file.

Transparent Interrupt Handlers - Interrupts which occur very frequently and require
rapid service may be serviced by transparent interrupt handlers. Such a handler is
divorced from the Ada runtime data structures. The handler is written in assembly
code. Runtime tasking and interrupt services may not be called.

Standard Interrupt Handlers - A less restrictive form of interrupt handler may be
constructed using the template code provided. Standard handlers share the runtime’s
interrupt stack and have access to runtime tasking and interrupt services. The body of
a standard interrupt handler may be written in Ada as a normal procedure. The
following restrictions should be observed:

- No Ada tasking operations should be done.

- Access types should not be declared nor allocations done. Doing so would
cagsﬁel invocation of storage manager functions with the potential for lock
conflicts.

- Up-level addressing of nonstatic objects cannot be done. Interrupt service
should be done by outer level routines.

Direct Connection of Task Entries - A task entry may be directly connected to some
hardware interrupts by use of an address clause. The direct connection of an entry to
a hardware interrupt requires the alteration of the appropriate interrupt vector by the
runtime when the task is created.

'[12'1;? following excerpts are from Tartan’s User Manual for the Runtime Client Package.

Tartan provides a Client package which is a "sideways" interface to the Ada runtime’s
tasking mechanism. The Client package allows the Ada programmer to access the tasking
data structures and operations that are used to implement the Ada language requirements.
The access is directly into the runtime support, therefore providing considerably greater
power and generality than is available from the ordinary language operations. It also places
greater responsibility upon the user to insure that these operations are used correctly.

In general, the following capabilities are provided by the Client package:

- It allows the user to examine and modify the control block associated with each task,
* or to associate additional user-defined data structures with a given task.

- It allows the user to define nested global critical sections within which all context

switching is disabled.

-1t ka;llows the user to suspend, resume, delay, abort, or force exceptions into arbitrary

tasks.

-163-

Guidelines to Select, Co.nfigure and Use an Ada Runtime Environment

Use of these capabilities in combination allows the user to implement a variety of executive
control functions in a multiple task application.

Runtime Tasking Data Structures (which the user has access to):

- Task Control Block. This is a data structure that is created when the corresponding
task is elaborated.

- Major States of a Task - Not Used, Await Dependents Termination, Caller Await
Rendezvous, Caller In Rendezvous, Child Activating, Delayed, Executing, Finished,
I/O Wait, Not Started, Waiting To Accept.

- TCB Extension. This field may be used to store whatever scalar or pointer
information the particular application wishes.

- Priorities of the Task. - static and dynamic priority fields

- Parent TCB. This field contains the TCB of the task on which this task is
dependent.

- Exception ID. This field contains the exception code for an exception that is to be
raised in a currently non-executing task.

- Execution Context.

Critical Sections

A critical section is a sequence of code in which context switches (such as task switching or

interrupts) must be prohibited due to the nature of the operations being performed.

Usuallf', is is done to prohibit corruption of some data structure by "simultaneous” access

ll?_;y multiple tasks. The beginning of a critical section is indicated by a call to the procedure
nter_Critical_Section; the end of the critical section is indicated by a call to the procedure

Leave_Critical_Section.

Critical sections may be nested. The runtime software has the notion of a critical section
level global to all executing tasks on a single processor.

Tasking Interactions

The Client Fackage supplies a number of procedures that allow the user to affect the
scheduling of tasks. -

Scheduling Policy

The runtime contains a replaceable "scheduling" module. The default is a
preemptive, priority-based algorithm that uses order of arrival to break ties. Variants
of this module may use other criteria such as round-robin, fairness, or cyclic
time-slicing.

Context Switch

The context switch function fperfon'ns the actual swap of processor state. In essence,
it implements the decision of the scheduling policy module.

Tasking Control Procedures and Functions

The following are individual procedures related to tasking control:

-164-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Reschedule. This procedure causes the scheduler to reexamine the set of runnable
tasks and dispatch one based on the scheduling policy currently in effect. Usually the
task with the highest priority is dispatched.

The current task will be treated like any other runnable task by the scheduler unless

the task has been suspended by procedure Suspend. If and when the current task

rResunﬁcss(s1 execution, control returns to the task immediately after the call to
eschedule.

- Suspend. This procedure causes the task T to be removed from the set of runnable
tasks. The effect of Suspend is undone by a call to Resume. Calling Suspend does
not cause a context switch; the current task continues to execute until such time as a
reschedule is done explicitly or implicitly.

- Suspend and Reschedule. This procedure suspends the task T and can cause a
context switch to occur.

- Suspend Current Task and Reschedule. This procedure suspends the current task
and causes a context switch to occur.

- Suspend Current Task. This procedure suspends the current task.

Execution of the current task continues until a context switch occurs, which will
happen if Reschedule is called but may hanen asynchronously if an interrugt occurs.
Therefore if this procedure is used in preference to SuspendMe_and_Reschedule, it
. should probably be called only within a critical section.

- Resume and Reschedule. This procedure cancels the effect of a previous Suspend
on task T; that is, makes task T runnable. In addition, the scheduler makes a new
selection of a runnable task, a selection in which T will participate. If task T has
higher priority than the current task, and if the scheduler is implementing a
priority-driven policy, the current task is preempted.

- Resume. This procedure cancels the effect of a previous Suspend on task T; that is,
it makes task T runnable.

Unlike procedure Resume_and_Reschedule, procedure Resume does not cause a
context switch and therefore the current task will continue to run until the scheduler
regains control via a call to Reschedule or through the receipt of an external
interrupt. If this procedure is called in preference to Resume_and_Reschedule, it
should either be called from within a critical section or the caller should know that
thii)task will not be preempted (e.g., because it has a higher priority than any other
task).

- Resume after Delay. This procedure cancels the effect of Suspend on task T, if any,
and places it on the delay queue as if a delay statement had been executea by the
task. No context switch is made in conjunction with this procedure unless task T is
the current task.

It is possible that task T is the current task, in which case the effect is exactly as if a
delay statement had been executed.

-165-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Set Priority. This procedure alters the priority of the specified task. This interface is
procedural because a scheduler policy decision must be made based upon the new
priorities. However, no context switch is performed. In the absence of interrupts,
return will always be to the calling task.

- Set Priority and Reschedule. This procedure acts like Set_Priority except that a
context switch may occur after T's priority is changed.

- Abort Task. This procedure aborts task T as if an Ada abort statement had been
executed on it.

- Set Exception. This procedure posts an exception in the indicated task. Any
previously posted exception is superseded. The exception will be raised when the task
reaches a synchronization point, that is, the next time it is dispatched.

- Identify Current Task. This function returns the TCB (task control block) of the
current task.

- Entry Caller for a Task. This function returns the TCB for the task engaged in a
rendezvous with the current task. It should be called only from within an accept body.
If nested rendezvous are in progress, the task corresponding to the innermost
rendezvous is returned.

- Runnable. This function returns TRUE if the task T can be executed immediately,
that is, if it is in the scheduler’s "ready queue”. A suspended task is not runnable. To
avoid a possible race condition, call this function only from within a critical section;
otherwise the status of task T could change unpredictably.

- Suspended. This function returns TRUE if task T has been suspended. To avoid a
race condition, call this function only from within a critical section.

'[12'%4]: following excerpts are from Tartan’s User Manual for the Expanded Memory Package.

The following modules may be customized to a particular application.
User-Defined Actions

This is a collection of small procedures that are invoked by the runtime when unusual
conditions arise.

- System Idle

- Program Termination

- Abnormal Termination Diagnostics
- Lowest Level Output

- Text I/O Routines

- Simple I/0 Routines

Interrupts

Guidelines to Select, Configure and Use an Ada Runtime Environment

There are several ways in which handling of a particular interrupt may be added to the
runtimes:

- An assembly code handler may be used that transparently services the interrupt and
returns to the point of interruption.

- A handler may be added to the Ada runtime. Such a handler, following a standard
template, can share the runtime interrupt stack and invoke runtime task scheduling and
interrupt services. The body for such a handler may be written in Ada.

- A task entry may be connected to an interrupt.

Interrupt Vectors

Files are used to statically initialize the interrupt vectors by the runtime. Users can
add their own vector initialization to this file.

Transparent Interrupt Handlers

Interrupts that occur very frequently and require rapid services may be serviced by
transparent interrupt handlers. Since such a hangler is divorced from the Ada
runtime data structures, entry and exit code can be kept to a minimum. The handler
is written in assembly code in the usual manner except that it must obey the following
restrictions:

- During interrupt service, certain interrupts should be masked (ie.
PREEMPTER_MASK in EXDEFS.ASM).

- Return from interrupt must be to the point of interruption.

- Runtime tasking, interrupt, and storage allocation services may not be called.

Standard Interrupt Handlers

A less restrictive form of interrupt handler may be constructed using the template
code. Standard handlers share the runtime’s interrupt stack and have access to
runtime tasking and interrupt services.

The body of a standard interrupt handler may be written in Ada as a normal
procedure. Pragma Linkage_Name can be used to provide a tractable name for the
entry of the procedure. The comdpiled procedure is then called from the interrupt
handler stub. When Ada procedures are used in such a manner, the following
restrictions should be observed:

- No Ada tasking operations should be performed. The tasking control
operations in the package ARTClient may be used.

- Access types should not be declared nor allocations done. Doing so would
cause invocation of storage manager functions with the potential for lock
conflicts.

- Up-level addressing of nonstatic objects cannot- be done. Interrupt service
should be done by outer-level routines.

Direct Connection of Task Entries

-167-

Guidelines to Select, Configure and Use an Ada Runtime Environment
A task entry may be directly connected to some hardware interrupts by use of an
address clause.

The direct connection of an entry to a hardware interrupt requires the alteration of
the appropriate interrupt vector by the runtimes when the task is created.

Software Interrupts

The user may cause an interrupt entry call to occur to an associated task entry by use
of the Dolnterrupt runtime routine.

II1. Documentation provided to help user configure runtime:

- TADA (Tartan Ada Manual)
- Runtime Implementers Guide (with source code purchase)

IV. Services to customize the runtime:

- Provided by Tartan
- Cost: To be negotiated, approximately $100.00/Hour.

V. Cost of runtime source code:
- $50,000
- Expanded memory option: Between $3,000.00 - $10,000.00 Depending on host.

VL. Source of Information: Vendor input and compiler manuals.

-168-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Tartan Laboratories Inc. PIWG results for 1750A, Fairchild.
Clock : 16MHz, zero wait-states. PIWG test suite 1988.

PIWG Test Description
Name

A000091 Dhrystone benchmarks.
A000093 Whetstone benchmarks.

C000001 Task creation/terminate, task type declared in package.
C000002 Task creation/terminate, task type declared in grocedure.
C000003 Task creation/terminate, task type declared in block.

D000001 Dynamic array, use and deallocation.
D000002 Dynamic array elaboration and initialization.
D000003 Dynamic record allocation and deallocation.
D000004 Dynamic record elaboration and initialization.

E000001, Raise and handle an exception locally.

E000002 Raise and handle an exception in a package.

E000003 Raise and handle an exception nested 3 deep in procedures.
E000004 Raise and handle an exception nested four deep.

E000005 Raise and handle an exception in a rendezvous.

F000001 Set a BOOLEAN flag using a logical equation.
F000002 Set a BOOLEAN flag using an "if" test.

GO000005 TEXT_IO.Get an INTEGER from a local string.
G000006 TEXT_10.Get a FLOAT from a local string.

H000001 BOOLEAN operations on entire PACKed array.

H000002 BOOLEAN operations on entire array (not gacked).

H000003 BOOLEAN operations on components of a PACKed array.
H000004 BOOLEAN operations on components of a array (not packed).
H000005 Move INTEGER to INTEGER (Unchecked_Conversion).
H000006 Move array of 10 Floats to record (Unchecked_Conversion).
H000007 Store and extract bit fields, defined by representation clauses.

L000001 Simple “for" loop.

L000002 Simple "while" loop.

1000003 Simple "exit" loop.

L000004 Loop of § iterations with pragma OPTIMIZE 2Time).

L.000005 Loop of § iterations with pragma OPTIMIZE (Space).
P000001 Procedure call and return (inlineable), no parameters.
P000(:02 Procedure call and return (not inlineable), no parameters.

P000003 Procedure call and return (compiled separately).
P000004 Procedure call and return (Pragma INLINE used).

-169-

Micro -
seconds

662.0
482*

1106.5
1106.5
1091.8

14.0
7297.7
25.1
8534.8

11.6
31.1
18.5
18.5
120.4

2.1
2.5

3403
950.1

N
o

573.0

295.

2
8

—
—
~]
oo
(¥}

WOLES DNNNNN O=o
Moo NDbhbhownn oboo

Guidelines to Select, Configure and Use an Ada Runtime Environment

Tartan Laboratories Inc. PIWG results for 1750A, Fairchild (Continued). Clock : 16MHz,
zero wait-states. PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
P00000S Procedure call and return (one parameter, in INTEGER). 10.7
P000006 Procedure call and return (one parameter, out INTEGER). 11.5
P000007 Procedure call and return (one parameter, in out INTEGER). 12.1
P000010 Procedure call and return (ten parameters, in INTEGER). 22.0
P000011 Procedure call and return (twenty parameters, in INTEGER). 36.0
P000012 Procedure call and return (ten parameters, in record_tme). 333
PO00013 Procedure call and return (twenty parameters, in record_type). 53.3
T000001 Minimum rendezvous, entry call and return. 150.5
T000002 Task entry call and return (one task, one entry). 149.2
T000003 Task entry call and return (two tasks, one entry each). 159.3
T000004 Task entry call and return (one task, two entries). 371.8
T00000S . Active entry and return (ten tasks, one entry each). 146.9
'T000006 Task entry call and return (one task, ten entries). 1022.9
T000007 Minimum rendezvous, entry call and return 150.5
T000008 Parameter pass from producer task through buffer task to

consumer task 726.7

* WHETSTONE : units are in KWIPS not in microseconds.

-170-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Tortan Laboratories Incorporated

VAX~Unix

Host

1750A Mikros, Fairchild, or Unisys

V9

Target !

0L6€E R

Version

PEEE

1wl U0SSaD0Ud U pPIPN)DUT--

NNy wew

'3uby

"3ubW

N3 W6

'3WbpW

4000

3500

m#m# SN . AN N NN\ .PE@Z
o o o o o o
o o o O o o
o Ip} o n () Ip]
m [aV) V] ~— ~—
S31Ad

NNty sasuanbas a9
N #46KW 0/1
UolpouUUd | HSO|

UOI3OAIFDY XSO]

SNOAZAPUIY

uo|3dadx3

au).

3rdnuuajul

10553004 d

AJowap Diwoulq

12,692 bytes

- Sum of ALL Components

-171-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes
The following excerpts are from User Manual for Tartan Ada VMX/1750A. [11)
Restrictions on Representation Clauses
Length Clauses

A length clause to T'SIZE is permitted for any type or first subtype T for which
the size can be computed at compile time. A length clause for a composite type
cannot be used to force a smaller size for components than established by the
default the mapping or by length clauses for the component types.

There are no restrictions on other forms of length clauses except the
restrictions specified in LRM 13.2. The size specified for TSTORAGE_SIZE
of an access type or task type T is assumed to include a small amount of hidden
administrative storage.

Enumeration Representation Clauses

All integer codes in the representation aggregate must be between
INTEGER’FIRST and INTEGER’LAST.

Record Representation Clauses

Record representation clauses are permitted only for record types all of whose
components have a size known at compile time.

Representation specifications may be specified for some components of a
record without supplying representation specifications for all components. The
compiler will freely allocate the unspecified components.

Address Clauses

When aplﬂlicd to an object, an address clause becomes a linker directive to
allocate the object at the given logical address. For any object not declared
immediately within top-level library package, the address clause is meaningless,
with the possible exception of objects declared inside a task, if the target
permits a task to run in a separate address space.

Address clauses applied to local packages are not supported by Tartan Ada.

Address clauses applied to subprograms and tasks are implemented according
to the LRM rules.

When applied to an entry, the specified value identifies an interrupt in a
manner customary for the target. Immediately after a task is created, a runtime
call is made for each of its entries having an address clause, establishing the
proper binding between the entry and the interrupt.

-172-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750a

package SYSTEM is
type ADDRESS is new integer;:;
type NAME is (VAX, MIL_STD_1750A, MC68000);

system_name constant name := MIL STD_1750A;

storage_unit : constant := 16;
memory_size : constant := 1000000;
min_int ¢ constant := -max_int - 1;
max_int : constant := 32767;
max_digits : constant := 9;
max_mantissa : constant := 31;
fine_delta : constant := 2#1.0E-14;
tick ° : constant := 0.0001;

subtype priority is integer range 10 .. 200;
default_priority : constant priority := priority’first;
runtime_error : exception;

end SYSTEM;

-173-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft, Inc. MicroVAX 11 1750A, MIL-STD-1750A

Compiler version 3.22 (under VMS, ECSPO RAID simulator
version 4.6) version 4.0 executing

on the host (bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
This inf?nnation was not supplied by the vendor.
II. Customization of the Runtime:

- By compiler switches
- By linker switches

II1. Documentation provided to help user configure runtime:
-TeleGen2 VAX/1750A Users Guide
IV. Services to customize the runtime:

-TeleSoft has a custom products division geared toward assisting the customer,
customizing the runtime and/or compiler.

V. Cost of runtime source code:
-$50,000

VL. Source of Information: Vendor input, selected compiler documentation.

-174-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TeleSOFT Inc. PIWG results for F;airchild 1750A. Clock : 15SMHz, zero wait-states, (Tests
were compiled with OPTIMIZE pragma). PIWG test suite 1986.

PIWG Test Description Micro -
Name ' seconds
A000091 Dhrystone benchmarks. 1050.2
A000093 Whetstone benchmarks. 450*
C000001 Task creation/terminate, task type declared in package. 2961.1
C000002 Task creation/terminate, task type declared in procedure. 2965.7
C000003 Task creation/terminate, task type declared in block. 2930.9
D000001 Dynamic array, use and deallocation. 16.7
D000002 Dynamic array elaboration and initialization. 23576.7
D000003 Dynamic record allocation and deallocation. 3135
D000004 Dynamic record elaboration and initialization. 24776.0
E000001 Raise and handle an exception locally. 9.1
L000001 Simple "for" loop. 5.6
L.000002 Simple "while" loop. 5.5
L000003 Simple "exit" loop. 4.9
P000001 Procedure call and return (inlineable), no parameters. 0.0
P000002 Procedure call and return (not inlineable), no parameters. 358
P000003 Procedure call and return (compiled separately). 34.7
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in GER). 34.7
P000006 Procedure call and return (one parameter, out INTEGER). 354
P000007 Procedure call and return (one parameter, in out INTEGER). 354
P000010 Procedure call and return (ten parameters, in INTEGER). 37.7
P000011 Procedure call and return (twenty parameters, in INTEGER). 54.1
P000012 Procedure call and return (ten parameters, in record_tme). 447
P000013 Procedure call and return (twenty parameters, in record_type) 71.2
T000001 Minimum rendezvous, entry call and return. 961.4
T000002 Task entry call and return (one task, one entry). ' 959.9
T000003 Task entry call and return (two tasks, one entry each). 978.9
T000004 Task entry call and return (one task, two entries). 1177.5
T000006 Task entry call and return (one task, ten entries). 1770.7
T000007 Minimum rendezvous, entry call and return. 617.9

* WHETSTONE : units are in KWIPS not in microseconds.

-175-

BYTES

Guidelines to Select, Configure and Use an Ada Runtime Environment

TeleSoft, Inc,

Host : VAX - VMS
Target : 17350A

Version : TeleGen2 3.22

11000

%
o
3000

§ 10850

2300
2000
1300
1000

200

10 Mgmt A i i
I i ’

Housekeepingh\Y

*
@)
k=
X
n
S
-

Interrupt Mgmt X
Time Mgmt. X
Exception Mgmt.§138

Dynamic Memory MgmtJSE
Processor Mgmt N\

- Sum of ALL Components = 16,000 bytes
¥ Tasking includes : 1. Rendezvous Management

2. Task Activation
3. Task Termination

-176-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: The 1750A uses 10KHz timer (Timer B).

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled during runtime structure update.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: (1) Function mapped interrupts - All processing associated with handling the interrupt
occurs during the rendezvous (in the body of the accept statement) and no interactions with
other tasks occur during the rendezvous. (2) Simple rendezvous.

Q4: What are the restrictions for representation clauses?]
ﬁg]) For the 1750A (the following are excerpts from TeleGen2 User Guide documentation

(LRM 13.1) This release supports a limited use of pragma Pack.

(LRM 13.2) Telegen2 allows user specification of storage for a task activation using
the Storage_Size attribute in a length clause. The default stack size is 768 words.

(LRM 13.5) For address clauses applied to objects, a simple expression of type
Address is interpreted as a position within the linear address space of the 1750A.
Unchecked_Conversion to the private type System.Address must be used to specify
address constants.

(LRM 13.5.1) For interrupt entries, the address of a TeleSoft-defined interrupt
descriptor can be given. Address clauses for subprograms, packages, tasks, and literal
constants are not supported.

(LRM 13.6) Changes of representation are not supported for types with record
representation clauses.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Event driven (interrupts included) and Run-until-blocked or pre-empted.

Q6: What are the restrictions on pragma INLINE?

A6: The following are excerpts from TeleGen2 User Guide documentation. [25

The optimizer supK;)rts inlining of calls to subprograms that the user identifies through
pragma INLINE. As specified by the Ada langua%e reference manual, the pragma must be
placed in the same declarative region as the declaration of the subprogram to be inlined
and must follow the subgro am declaration. In the following example the package
Drag_Coef is placed after the declaration of the function:

-177-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package Drag_Calc is
type Plane_Type is (B707,B727,B747);

function Drag_Coef (Plane: Plane_Type) return float;
Pragma INL&E (Drag_Coef);

end Drag_Calc;

The inlining of subprograms is transitive. For example, if inlined subprogram A is called by
inlined subprogram B, and B is called by subprogram C, then optimization will result in A
being inlined in B and then B being inlined in C. -

The one exccttgtion to the rule is that a subprogram will not be automatically inlined into a
subprogram that itself marked for inlining using pragma INLINE. Autoinlining is inhibited
to ensure that the user has full control over the inlining process. This feature prevents any
significant and undesired overhead introduced by the automatic inlining of a called
su ﬁro am. Any subprogram that is to be inlined into another inlined subprogram must be
explicitly rharked with Pragma INLINE.

Inline expansion is the one type of optimization currently implemented for which a

time/space tradeoff is an issue. A subprogram that the user has marked for inline expansion

and that is called from more than one place can cause object code to be larger after

optimization than before, if the inlined subprogram has significant size. Subprograms

identified for inlining should be small enough so that expansion takes little if any additional

space than the call it replaces. Inline subprogram designations will be honored regardless of
e space the code uses. It is the users responsibility to evaluate potential tradeoffs.

The following conditions must be met for a subprogram to be inlined:

1. The subprogram must be designated in an INLINE pragma or be subject to automatic

2. The unit containing the subprogram to be inlined must be optimized.
3. The units that call the inlined subprogram must be optimized.

Conditions two and three indicate that both the called subprogram and the code that
calls it must be optimized for inlining to take place.

4. Full intermediate code forms of the unit containing the subprogram to be inlined must be
present in the Ada library.

The Optimizer works on the intermediate code forms of compiled units. The
compiler,/NOSQUEEZE qualifier must be used to ensure that these forms are
stored in the Ada library when compilation is complete.

5. A unit that contains the body of an inlined subprogram must be compiled before the
compilation of any units that call the inlined subprogram.,

-178-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Inlining consists of inserting the code for the inlined subprogram into the calling
program. The code for the inlined subprogram must already exist for the insertion to
occur.

If any of these conditions are not met, inlining will not take place and a normal call to a
non-inlined copy of the subprogram will take place.

Inlining may create new unit dependencies. The user needs to anticipate the consequences
of inlining certain subprograms with a given configuration. '

Due to the possibility that a caller has been compiled prior to compilation and optimization

of an inlined body, the optimizer will always create a callable body for a pragma INLINE

program that is externally visible. Generation of a callable body can be avoided by declaring

the subprogram where it is not externally visible (i.e. in the body of a package) or by

g:ﬁignaﬁng the unit a hidden unit of a collection that includes all of the subprogram’s
ers.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Yes. .

Q9: What object types are supported by pragma SHARED?
A9: None.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Dynamic Task Priority

- Timer Resolution

- Exception Trace

- Default Stack Sizes

- Fast Interrupt Entry

- Optional Numeric Co-processor

-179-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the TeleSoft 1750A Target

The current specification of package System is provided below. Note that the named
number Tick is not used by any component of the Ada compiler or runtime system.
Similarly, Memory_Size is not used.

package SYSTEM is

type Address is private;
Null Address : constant Address;

type Physical_Address is private;
type Subprogram_Value is private:;

type Name is (TeleGen2):;
System_Name : constant Name := TeleGen2;

Storage_Unit : constant := 16;
Memory_Size : constant := 65536;

Min _Int : constant := - (2%%*31);

Max_Int : constant := (2 ** 31) - 1;

Max_Digits : constant := 6; .

Max_Mantissa : constant :=31;

Fine Delta : constant := 1.0 / (2 ** (Max_Mantissa - 1));
Tick : constant := 0.0001;

subtype Priority is Integer range 0..15;

Max_Object_sSize : constant := Max_Int;

Max_Record_Count : constant := Max_Int;

Max_Text_Io_Count : constant := Max_Int-1;
: constant := 1000;

Max_Text_Io_Field
private

type Address is Access Integer;
Null_Address : constant Address := null;

type Physical_Address is range 16#0#..16#7FFFFFFF#;
type Subprogram_Value is record
Logical_Address : Target_Logical_Address:;
Address_State : Target_Address_sState;
Static_Base ¢ Target_Logical_Address;
end record:;
end SYSTEM:;

-180-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
TeleSoft, Inc. DEC VAX famil 68020, MC68020
Compiler version 3.22 (MicroVAX VAX station, implemented on a
VAX server, VAX 8xxx, Motorola MVME 133A-20
models) (under VMS board with a MC68881
4.5 and 4.6). floating-point coprocessor
(bare machine)
Compiler version 3.22 MicroVAX 11 68020, MC68020
(under VMS 4.6) implemented on a
Motorola MVME 133A-20
board with a MC68881

floating-point coprocessor
(bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
This information was not supplied by the vendor.
II. Customization of the Runtime:

- By compiler switches
- By linker switches

III. Documentation provided to help user configure runtime:
- TeleGen2 VAX/68K Users Guide
IV. Services to customize the runtime:

-TeleSoft has a custom products division geared toward assisting the customer,
customizing the runtime and/or compiler.

V. Cost of runtime source code:
-$50,000

VI. Source of Information: Vendor input, user input, selected compiler documentation.

-181-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TeleSoft Inc. PIWG results for Motorola MC68020/68881. Clock : 20MHz, one wait-state,
cache enabled, global optimization used, no suppresses, 68020 code generation option
selected. PTWG test suite 1986.

PIWG Test Description Micro -
Name seconds
A000091 Dhrystone benchmarks. 320.0
A000092 Whetstone benchmarks®. 769*
C000001 Task creation/terminate, task type declared in package. 846.7
C000002 Task creation/terminate, task type declared in procedure. 860.3
C000003 Task creation/terminate, task type declared in block. 849.6
D000001 Dynamic array, use and deallocation. 10.5
D000002 Dynamic array elaboration and initialization. 5632.7
D000003 Dynamic record allocation and deallocation. 910.2
D000004 Dynamic record elaboration and initialization. 7890.5
E000001 - Raise and handle an exception locally. 16.6
E000002 Raise and handle an exception in a package. 64.2
E000004 Raise and handle an exception nested 4 deep in procedures. 424.3

1000001 Simple "for" loop.
1000002 Simple "while" loop.
L000003 Simple "exit" loop.

P000001 Procedure call and return (inlineable), no parameters.
P000002 Procedure call and return (not inlineable), no parameters.
P000003 Procedure call and return (compiled separately).
P000004 Procedure call and return (Pragma INLINE used).
P00000S Procedure call and return (one parameter, in INTEGER).
P000006 Procedure call and return (one parameter, out INTEGER).
P000007 Procedure call and return (one parameter, in out INTEGER).
P000010 Procedure call and return (ten parameters, in INTEGER).
P000011 Procedure call and return (twenty parameters, in INTEGER).
P000012 Procedure call and return (ten parameters, in recorth{e).
I

—

N Y
WaARNANRWOUNW OO
CON~JONO =IO O =t

P000013 Procedure call and return (twenty parameters, in record_type). 239
T000001 Minimum rendezvous, entry call and return. 279.3
T000002 Task entry call and return (one task, one entry). 281.3
T000003 Task entry call and return (two tasks, one entry each). 283.9
T000004 Task entry call and return (one task, two entries). 4399
T000005 Active entry and return (ten tasks, one entry each). 277.7
T000006 Task entry call and return (one task, ten entries). 843.7
T000007 Minimum rendezvous, entry call and return. 187.5

* This version of the WHETSTONE uses manufacturers’ math routines. WHETSTONE :
units are in KWIPS not in microseconds.

-182-

BYTES

Guidelines to Select, Configure and Use an Ada Runtime Environment

Host :

TeleSoft, Inc.

VAX - VMS

Target : MVME 133 (68020

Version : TeleGen2 3.22

§ § 19688
§ 9350

Dynamic Memory Mgmt.[\

Taskinz MMty

NN
Time Mgmt.§848

[/0 ManzgemenflMihhhiitiinnmni

Interrupt Mgmt.
Exception Mgmt MMM

Processor Hgr: i

- Sum of ALL Components = 34,667 bytes
* Tasking includes

1.

2
3.
4

Rendezvous Management

. Task Activation

Task Termination

. Housekeeping (Includes unchecked conversion)

-183-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: For thc MC68000 it is hardware dependent.

Q2: How long, and for what reasons are interrupts disabled?
A2: Interrupts are disabled during runtime structure update.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: (1) Function mapped interrupts - All processing associated with handling the interrupt
occurs during the rendezvous (in the body of the accept statement) and no interactions with
other tasks occur during the rendezvous. (2) Simple rendezvous.

Q4: What are the restrictions for representation clauses?
A4: For the MC68000 (the following are excerpts from TeleGen2 User Guide [26]):

(LRM 13.1) Records that are packed using pragma PACK follow these conventions:

1. The allocated size of each component is always a power of two (1,2,4...).

2. Components of records may cross word boundaries,

3. Components that are composite types (arrays and records) are always allocated on
a System.Storage_Unit (8-bit or wox%? boundary.

(LRM 13.2) Teleg:n2 allows user specification of storage for a task activation by use
of the 'STORAGE_SIZE attribute in a length clause. The default stack size is 5000
storage units (bytes). 'STORAGE_SIZE is not supported for collections.

(LRM 13.3) Enumeration representation clauses on BOOLEAN types are not
supported.

(LRM 13.4) Record representation clauses are supported, within the following
constraints :

1. Each component of the record must be specified with a component clause.

2. The alignment of the record is restricted to mod 2, word alignment.

3. The ordering of bits within a byte is right to left.

4. Components may cross word boundaries.

5. Any object of a discrete type of size larger than 8 bits requires a sign bit. In
the ;xample below, the type Actually_11_bits appears to be representable in
ten bits:

type Actually_11_bits is new Integer range 0..2°*10-1;
Small_rec is record
sit_10_Bits : Actually_11_bits;
end record;
for Small_Rec use record at mod 2;

Isit_10_Bits : at 0 range 0..9; —-error! Invalid size.
end record;

-184-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Since Actually_11_bits are used because of the sign bit, the component clause
in the example is illegal.

There are no implementation-dependent names to denote
implementation-dependent components.

l(-‘LRM 13.5) Address clauses for subprograms, packages, and tasks are not S?Jaorted.
or address clauses applied to objects, a simple expression of type Address is
interpreted as a position within the linear address space of the MC680x0.
Unchecked_Conversion to the private type System.Address must be used to specify
address constants.

(LRM 135.1) For interrupt entries, the address of a TeleSoft-defined interrupt
descriptor can be given.

(LRM 13.6) Changes of representation are not supported for types with record
representation clauses.

(LRM 13.7) Pragmas System_Name, Storage_Unit, and Memory_Size are not
supported.

(LRM 13.7.2) ’Address is not supported for packages or labels.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Event driven (interrupts included) and Run-until-blocked or pre-empted.

Q6: What are the restrictions on pragma INLINE?
AG6: (The following are excerpts from TeleGen2 User Guide [26])

The optimizer supK;)rts inlining of calls to subprograms that the user identifies through

INLINE specified by the Ada language reference manual, the pragma must be
placed in the same declarative region as the dec%aration of the subprogram to be inlined
and must follow the subgrogram declaration. In the following example the package
Drag_Coef is placed after the declaration of the function:

Package Drag_Calc is
type Plane_Type is (B707,B727,B747);

function D%Coef (Plane: Plane_Type) return float;
Pragma INLINE (Drag_Coef);

end Drag_Calc;
The inlining of subprograms is transitive. For example, if inlined subprogram A is called by
inlined subprogram B, and B is called by subprogram C, then optimization will result in A
being inlined in B and then B being inlined in C.

The one exception to the rule is that a subprogram will not be automatically inlined into a
subprogram that itself marked for inlining using pragma INLINE. Autoinlining is inhibited

-185-

" Guidelines to Select, Configure and Use an Ada Runtime Environment

to ensure that the user has full control over the inlining process. This feature prevents any
si%'u'ficant and undesired overhead introduced by tﬁe automatic inlining of a called
su Er(_)&ram. Any subprogram that is to be inlined into another inlined subprogram must be
explicitly marked with Pragma INLINE.

Inline expansion is the one type of optimization currently implemented for which a
time/space tradeoff is an issue. A subprogram that the user has marked for inline expansion
and that is called from more than one place can cause object code to be larger after
optimization than before, if the inlined subprogram has significant size. Subprograms
identified for inlining should be small enough that expansion takes little if any additional
- space than the call it replaces. Inline subprogram designations will be honored regardless of
the space the code uses. It is the users responsibility to evaluate potential tradeoffs.

The following conditions must be met for a subprogram to be inlined:

}mTl;c subprogram must be designated in an INLINE pragma or be subject to automatic
inlining.

2. The unit containing the subprogram to be inlined must be optimized.
3. The units that call the inlined subprogram must be optimized.

Conditions two and three indicate that both the called subprogram and the code that
calls it must be optimized for inlining to take place.

4. Full intermediate code forms of the unit containing the subprogram to be inlined must be
present in the Ada library.

The Optimizer works on the intermediate code forms of compiled units. The
compiler,/NOSQUEEZE qualifier must be used to ensure that these forms are
stored in the Ada library when compilation is complete.

S. A unit that contains the body of an inlined subprogram must be compiled before the
compilation of any units that call the inlined subprogram.

Inlining consists of inserting the code for the inlined subprogram into the calling
program. The code {or the inlined subprogram must already exist for the insertion to
occur.

If any of these conditions are not met, inlining will not take place and a normal call to a
non-inlined cupy of the subprogram will take place.

Inlining may create new unit dependencies. The user needs to anticipate the consequences
of inlining certain subprograms with a given configuration.

Due to the possibility that a caller has been compiled prior to compilation and optimization

of an inlined body, the optimizer will always create a callable body for a pragma INLINE

program that is externally visible. Generation of a callable body can be avoided by declaring

the subprogram where it is not externally visible (i.e. in the body of a package) or by

ccl:ﬁignating the unit a hidden unit of a collection that includes all of the subprogram’s
ers.

-186-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: Yes.

Q9: What object types are supported by pragma SHARED?
A9: None.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Dynamic Task Priority

- Timer Resolution

- Exception Trace

- Default Stack Sizes

- Fast Interrupt Entry

- Optional Numeric Co-processor

-187-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the TeleSoft Embedded MC680X0 Targets
The current specification of package System is provided below. Note that the named

number Tick is not used by any component of the Ada compiler or runtime system.
Similarly, Memory_Size is not used.

package SYSTEM is
type Address is access integer;
type Name is (TeleGen2);
System_Name : constant Name := TeleGen2;

Storage_Unit : constant := 8;
Memory_Size : constant := (2*%*31) - 1;

-- System-~-Dependent Named Numbers:

Min_Int : constant := - (2*%%31);
Max_Int : constant := (2%%31) - 1;
Max_Digits : constant := 15;
Max_Mantissa : constant := 31;

constant

Fine_Delta :
constant :

Tick

-- Other System-Dependent Declarations:

subtype Priority is Integer range 0..63;

Max_Object_sSize : constant := Max_Int;
Max_Record_Count : constant := Max_Int;
Max_Text_Io_Count : constant := Max_Int - 1;
Max_Text_Io_Field : constant := 1000;

-= Other TeleSoft Declarations:
private

type Subprogram_Value is private;
RECORD
Proc_addr : Address;
Static_link : Address;
Global_frame : Address;
END_RECORD;

end SYSTEM;

-188-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
TLD Systems Ltd. VAX-11 VMS 1750A, MIL-STD-1750A
Compiler version 1.3.2 (bare machine)
Compiler version 1.3.2 HP9000 - 350 1750A, MIL-STD-1750A
(bare machine)
Compiler version 1.3.2 DG AOS/VS 1750A, MIL-STD-1750A

(bare machine)

DEGREE OF CONFIGURABILITY
L. Linker Capability:
- Package bodies are loaded as needed, procedures and functions are always loaded.

II. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By modifying the source to the entire runtime
I11. Documentation provided to help user configure runtime:
- Interface Control Document
IV. Services to customize the runtime:
- Provided by TLD
- Cost: Charges arc negotiated for each case, depending on the complexity of ihe
customization.
V. Cost of runtime source code:
- The runtime source code is included in the price of the compiler.

VL. Source of Information: Vendor Input.

-189-

Guidelines to Select, Configure and Use an Ada Runtime Environment

TLD Systems Ltd. PIWG results for MDC281. Clock : 15SMHz.

PIWG Test
Name

A000091
A000092
A000093

C000001
C000002
C000003

D000001
D000002
D000003

E000001
E000002
E000003
E000004
E000005

F000001
F000002

L000001
L000002
L000003
L.000004
L00000S

P000001
P000002
P000003
P000004
P00000S
P000006
P000007
P000010
P000011
P000012
P000013

T000001
T000002
T000003

Description

Dhrystone benchmarks.
‘Whetstone benchmarks.
Whetstone benchmarks.

Task creation/terminate, task type declared in package.
Task creation/terminate, task type declared in procedure.
Task creation/terminate, task type declared in block.

Dynamic array, use and deallocation.,
Dynamic array elaboration and initialization.
Dynamic record allocation and deallocation.

Raise and handle an exception locally.

Raise and handle an exception in a package.
Raise and handle an exception nested 3 deep in procedures.
Raise and handle an exception nested 4 deep in procedures.

Raise and handle an exception in a rendezvous.

Set a BOOLEAN flag using a logical equation.
Set a BOOLEAN flag using an "if" test.

Simple "for" loop.

Simple "while" loop.

Simple "exit" loop.

Loop of § iterations with pragma OPTIMIZE éTime).
Loop of 5 iterations with pragma OPTIMIZE (Space).

Procedure call and return (inlineable), no parameters.
Procedure call and return (not inlineable), no parameters.
Procedure call and return (compiled separately). -
Procedure call and return (Pragma INLINE used).
Procedure call and return (one parameter, in INTEGER).
Procedure call and return (one parameter, out INTEGER).

Procedure call and return (one parameter, in out INTEGER).
Procedure call and return (ten parameters, in INTEGERER)

Procedure call and return (twenty parameters, in INTEG
Procedure call and return (ten parameters, in rgcord_tge).
Procedure call and return (twenty parameters, in recor

Minimum rendezvous, entry call and return.

Task entry call and return (one task, one entry).
Task entry call and return (two tasks, one entry each).

-190-

type).

Micro -
seconds

1429.9
255*
262*

4848.6
4832.2
4811.4

370.2
19279.8
383.8

w
~
o

hinthiotn anthoolnin Lnoy B =l

\D =t =t

[y
N ooy BR®

[R T
PRRON I

F-UN)
=000
F- I -

93.
484
104.8

1078.3
1078.1
1125.6

Guidelines to Select, Configure and Use an Ada Runtime Environment

TLD Systems Ltd. PIWG results for MDC281. Clock : 15SMHz.
PIWG Test Description

Name

T000004
T00000S
T000006
T000007
"T000008

Task entry call and return (one task, two entries).

Active entry and return (ten tasks, one entry each).

Task entry call and return (one task, ten entries).
Minimum rendezvous, entry call and return.

Parameter pass from producer task through buffer task to

* WHETSTONE : units are in KWIPS not in microseconds.

-191-

Micro -
seconds

1856.8
1070.3
3816.7

461.5
3541.7

Guidelines to Select, Configure and Use an Ada Runtime Environment

TLD Systems Ltd.

HHHHHHHH - ll/VMSl HP9000_350) DG ADS/VS

-192-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 100 microseconds.

Q2: How long, and for what reasons are interrupts disabled?)
A2: Maximum of 200 Microseconds to 1.)update queues, pointers, and other runtime
system global variables and 2.) handle interrupts and change context.

Q3: What rendezvous optimizations are performed? For example, when can the called
task %perate in the same context as the calling task?
A3: Parameterless, bodyless rendezvous’ are optimized. (See T000001)

Q4: What are the restrictions for representation clauses?)
Ad: "SMALL is not supported. Nested representation specifications are not supported.

QS: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Preemptive priority based scheduling with optional time slicing.

Q6: What are the restrictions on pragma INLINE?
A6: Pragma INLINE is not implemented.

Q7: Is code "ROM"able?
AT7: Yes.

Q8: Are machine code inserts supported?
A8: Yes.

Q9: What object types are supported by pragma SHARED?
A9: Scalars types are not supported by pragma SHARED.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Maximum mlx(mbg:r of tasks (No limit) |
- Dynamic task priori

- Task time slicep defaglt J
- Default stack sizes :
- Default task priority

- Terminal I/

-193-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MIL-STD-1750A

package SYSTEM is

-- Note: The order of the elements in the OPERATING_SYSTEMS and NAME

-- enumerations cannot be changed--they must correspond with the values

-- in the CONFIG.CFG file.

type operating_systems is (unix, netos, vms, os_x, msdos, bare):

type NAME is (none, nsl16000, vax, afl1750, z8002, z8001, gould, pdpll,
m68000, pe3200, caps, amdahl, i8086, 180286, 180386, 280000,
ns32000, ibmsl, m68020, nebula, name_x, hp):

system_name : constant name := name’target;
Oos_name ° : constant operating_systems := operating_systems’system;

subtype priority is integer range 1..16#3FEE#; -- one is default priority
subtype interrupt priority is integer range 16#3FFO0#..16#3FFF#;

pragma put_line(’>’, ’>’, ’>’, ' !, system_name,
’ ” '/” (4 " os—name' ’ ’, '<’, '<I, l<');

type address is range 0..65535;
for address’size use 16;

for unsigned is range 0..65535;
for unsigned size use 16;

-- Language defined constants

storage_unit : constant := 16;

memory_size : constant := 65535;

min_int : constant := -2#%%31;

max_int : constant := 2%*31-1;

max_digits : constant := 9; -- 11 digits internally

max_mantissa : constant := 31;

fine_delta : constant := 2,0%%(-31);

tick : constant := 1.0/10_000.0; -- Clock ticks are 100 usecs.

rtc_tps : constant := 10_000; -- # of counts in one second
-~ for systems rtc

min_delay ¢ constant := rtc_tps * tick;-- Minimum value of Ada delay

address_0 : constant address := 0; -~ Zero address

end SYSTEM;

-194-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the MIL-STD-1750A

pragma runtime;
package STANDARD is

Package ascii is
end ascii;

subtype Natural is Integer range 0 .. Integer’Last;
subtype Positive is Integer range 1 .. Integer’Last;

type String is array (Positive range <>) of Character;
-- Pragma Pack (String);

-- 32 bits with 12 bits for fractional part.
type duration is delta 2.0**(-14) range -86_400.0..86_400.0;
constraint_error : exception;
numeric_error : exception;
storage_error : exception;
tasking_error : exception;
end Standard;

Notes: Float is 6 digits, Long_Float is 9 digits.
Integer is 16 bits, Long_Integer is 32 bits.

-195-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Verdix Corp. MicroVAX 11 1750A, Fairchild 9450
Compiler version 5.5 (under VMS under Tektronics

Version 4.7) emulation (bare machine)

DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Any part of a library unit being required loads entire unit.
- Available 6/89: Individual subprograms and/or data objects may be extracted from
packages only.

II. Customization of the Runtime:

- by pragmas
- by compiler switches
- by linker switches :
- by modifying/replacing the source to selective runtime routines provided by the
Verdix with purchase of the compiler (i.e. device drivers, etc).
- by modifying the source of the entire runtime (after purchasing it)
III. Documentation provided to help user configure runtime:
VADS User Manual, Configuring VADS <versions number >
IV. Services to customize the runtime:
Verdix supplies support for runtime configuration as part of level 1 and level 2
support contracts. The support is usually by tel?hone, but for large customers or
where the problems may be a fault of Verdix, Verdix may come on site.
V. Cost of runtime source code:
$25,000 to $50,000

VL. Source of Information: Vendor input.

PIWG RESULTS

This information was not supplied by the vendor.

196

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix Corporation

VAX - VMS

Host !

00S Budaaxasnoy

AN X NN .2'30‘“ qu.u

..\\x\\\\\\...”.....””.m o,

000S2 &M\\

RN 3wOW 0/1

.. Juoiy Duwaa) HSD)

30AI3OY %SOy

.,...,.“...T:o: SNOAZIPUIY

.,.; W N Wl uorydasxy

R Wl auy

3w 3dnaaazur

XN\3ulN sossadoud

Version 1 Verdix 5.5@

Target 1+ 1750A

Y . /-, o S99 LS IIIIIL S ...R.. / / A o/ /Ay -..\ o/ .
T A o AR AR H I N .v.‘Oz AJOudp DIWOUAQ
/ / 7 A LA AT IATSY, s £ 7 A AN

- Sum of ALL Components = 29,000 - 80,000 bytes
= 4,000 bytes + S-104 of program for tables.

am Text_10 = 25,000 bytes

Sequential_ID = 8,00 bytes
un# Component was supplied by vendor.

Direct_IO0 = 8,000 bytes

RS232 = L000 bytes

-197-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: For V5.7 1750A 'Timer B’ is used.

Q2: How long, and for what reasons are interrupts disabled?
A2: Not available.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Pragma PASSIVE - Rendezvous is implemented as procedure call protected by semaphores

Pragma PASSIVE(Interrupt) - Rendezvous implemented as direct hardware interrupt
handler protected by interrupt masking hardware.

Simple (trivial) accepts are implemented as "resumes’.

Other specific optimizations are also detected.

Q4: What are the restrictions for representation clauses?
Ad4: Array element sizes are packed only to power-of-two bits, below 16 bits.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Time slicing, Run-until-blocked,dynamic priorities (Only after next addition to pending
uetg:%), or priority-inheritence. Time slicing may be applied to individual tasks. Queues are
y priority.

Q6: What are the restrictions on pragma INLINE?

A6: None. However if nobody is available then a call will be generated. A gragma
INLINE_ONLY will suppress generation of an out-of-line body, but will force availability of
the inline body.

Q7: Is code "ROM"able?
A7: Yes. It is not yet position-independent however, and so must be relinked to be moved.

Q8: Are machine code inserts supported?

AS8: Verdix has complete assembler-level machine code for all cross and self- hosted VADS
products. In addition, tools such as the optimizer and debugger can operate on machine
code (Pragma IMPLICIT_CODE(OFF)) wiil inhibit optimization and prologue/epilogue
Ada support, for "What you see is what you get" machine code.

Q9: What objeclt{%{.s are supgorted by pragma SHARED?
A9: Pragma S ED inhibits the representation of variables in registers or other
non-write-through memory. Only scalars and other register-sized values are affected.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent

Task time slice default: Max clock value

Timer resolution: Min clock value or about 10 microseconds
Default stack sizes: Memory dependent

Default task priority: 0-99

-198-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Opticnal numeric coprocessor: unknown

Dynamic task priority: 0-99
Semaphore operations: Yes
Exception trace: Unhandled interrupts
Fast interrupt entry: Yes
Terminal I/O: RS232
Runtime system variations: Yes
Additional items:
- Mailboxes
- Delay-Until
- User-su&pliable memory management
- Timed Semaphores
- Suspend/Resume
- Dynamic task priority/Time-slice
- User-supplied task/program creation,'switch/destroy "Call Outs”
- Multi-program support
- Multi-processor squort (Remote semaphores, Suspend/Resume, Signal, Memory
mapping, Memory allocation, Cataloging)
- Emulator support

- Target debug monitor support

-199-

Guideline to Select, Configure, and Use an Ada Runtime Environmeni

Package SYSTEM for the MIL-STD-1750A

package SYSTEM is
type NAME is (ml1750a):

SYSTEM_NAME
EXTENDED_MEMORY
STORAGE_UNIT
MEMORY_SIZE

constant NAME := ml750a ;
BOOLEAN := FALSE:;
constant := 16;

constant := 2097152;

-- System-Dependent Named Numbers

MIN_INT : constant := -2_147_483_648;
MAX_INT : constant := 2_147_483_647;
MAX DIGITS ¢ constant := 9;

MAX MANTISSA : constant := 31;

FINE_DELTA : constant := 2.0%*(-31);
TICK ¢ constant := 0.01;

== Other System-dependent Declarations
subtype PRIORITY is INTEGER range 1..99;

MAX REC_SIZE : integer := 1%1024;
type SHORT_ADDRESS is private;
type ADDRESS is private;

NO_ADDR : constant ADDRESS;

NO_SHORT_ADDR : constant SHORT_ADDRESS;

subtype SEGMENT is INTEGER range 0..INTEGER’LAST;

function PHYSICAL_ADDRESS (I : INTEGER) return ADDRESS;
function ADDR_GT (A, B: ADDRESS) return BOOLEAN;

function ADDR_LT (A, B: ADDRESS) return BOOLEAN;

function ADDR_GE (A, B: ADDRESS) return BOOLEAN;

function ADDR_LE (A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF (A, B: ADDRESS) return INTEGER;

function INCR_ADDR (A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR_ADDR (A: ADDRESS; DECR: INTEGER) return ADDRESS;

function
function
function
function
function
function
function

“>" (A, B: ADDRESS) return BOOLEAN renames ADDR_GT;

"<" (A, B: ADDRESS) return BOOLEAN renames ADDR_LT;

">=" (A, B: ADDRESS) return BOOLEAN renames ADDR_GE:

W<=" (A, B: ADDRESS) return BOOLEAN renames ADDR_LE;

"-" (A, B: ADDRESS) return INTEGER renames ADDR_DIFF;

"4+" (A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR_ADDR;
" " (A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADDR;

-200-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM fer the MIL-STD-1750A (Continued)

function OFFSET_OF(A : ADDRESS) return SHORT_ADDRESS;

function SEGMENT_OF (A : ADDRESS) return SEGMENT;

function SEGMENT OF return SEGMENT;

function MAKE_ADDRESS (A : SHORT_ADDRESS; SEG : SEGMENT) return ADDRESS;

function PHYSICAL_ADDRESS(I : LONG_INTEGER) return SHORT_ADDRESS;

function ADDR GT(A, B : SHORT_ADDRESS) return BOOLEAN;

function ADDR_LT(A, B : SHORT_ADDRESS) return BOOLEAN;

function ADDR_GE(A, B : SHORT_ADDRESS) return BOOLEAN;

function ADDR_LE(A, B : SHORT_ADDRESS) return BOOLEAN;

function ADDR_DIFF(A, B : SHORT_ADDRESS) return INTEGER;

function INCR_ADDR(A : SHORT_ADDRESS; INCR : INTEGER) return SHORT_ADDRESS;

function decr_ADDR(A : SHORT_ADDRESS; DECR : INTEGER) return SHORT_ADDRESS;

function ">" (A, B: SHORT_ADDRESS) return BOOLEAN renames ADDR_GT:;

function M"<" (A, B: SHORT_ADDRESS) return BOOLEAN renames ADDR_LT;

function ">=" (A, B: SHORT_ADDRESS) return BOOLEAN renames ADDR_GE;

function "<=" (A, B: SHORT ADDRESS) return BOOLEAN renames ADDR_LE;

function "-" (A, B: SHORT_ADDRESS) return INTEGER renames ADDR_ DIFF;

function "+" (A: SHORT_ADDRESS; INCR: INTEGER) return SHORT_ADDRESS
renames INCR_ADDR;

function "_" (A: SHORT_ADDRESS; DECR: INTEGER) return SHORT_ADDRESS
renames DECR_ADDR;

pragma inline (ADDR_GT):;

pragma inline (ADDR_LT);

pragma inline (ADDR_GE);

pragma inline (ADDR_LE);

pragma inline (ADDR_DIFF):

pragma inline (INCR_ADDR) ;

pragma inline (DECR_ADDR);

pragma inline (OFFSET_OF):;

pragma inline (SEGMENT_OF):

pragma inline (MAKE_ADDRESS) ;

pragma inline (PHYSICAL_ADDRESS) ;

private

type ADDRESS is new integer:;

type SHORT_ADDRESS is new address;
for ADDRESS’size use 16;

for SHORT_ADDRESS’size use 16;

end SYSTEM;

-201-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Verdix Corp. MicroVAX I 80386, iSBC 386/20P
Compiler version 5.5 (under MicroVMS, Intel using file-
Version 4.4) server support from the
Host (bare machine)
Compiler version 5.5 MicroVAX II 80386, iSBC 386/20P
(under VMS, Intel using file-server
Version 4.7) support from the Host
(bare machine)
Compiler version 5.5 VAX 8800, 87000 80386, iSBC 386/20P
8650, 8600, 8500, Intel using file-server
8300, 8200 support from the Host
VAX 11/785, 782, 780, (bare machine)
750, 730, & MicroVAX 11 *Derived*
(under VMS 4.4)

DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Any part of a library unit being required loads entire unit.
- Available 6/89: Individual subprograms and/or data objects may be extracted from
packages only.

II. Customization of the Runtime:

- by pragmas

- by compiler switches

- by linker switches

- by modifying/replacing the source to selective runtime routines provided by the
Verdix with purchase of the compiler (i.e. device drivers, etc).

- by modifying the source of the entire runtime (after purchasing it)

I11. Documentation provided to help user configure runtime:
VADS User Manual, Configuring VADS <versions number >
IV. Services to customize the runtime:
Verdix supplies suggort for runtime configuration as part of level 1 and level 2

support contracts. The support is usually by tel?hone, but for large customers or
where the problems may be a fault of Verdix, Verdix may come on site.

202-

Guidelines to Select, Configure and Use an Ada Runtime Environment

V. Cost of runtime source code:
$25,000 to $50,000
V1. Source of Information: Vendor input.

PIWG RESULTS

This information was not supplied by the vendor.

203-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix Corporation

VAX - VMS

Target ' Intel 80386
Version ¢ Verdix 550

Host !

A s o1w0u 00aap 420y

AN
NRXPudasxasnoy

R OO NN OO N NN NN OO O O RN NN RN OO NN NN SN AN N\ NN ANNNNNN
NN A . R NN G Ysasuanbasg -39

i 90 R 290 01

mmyry,:ss,: s ssss=
S R T TN TR 7

\ NN B \ NN \
NN ANAONRK N
NN NONNIRGUOIL DAY S0 g
DS SN NN

w0 SNOAZapuay

MNRRNNNRN N N NN
S
R s g 3wON uoizdasxy

\3ubn awy

00S %A 3By 3dnaasjug

00C Www NJ2W0W JoSsI30uy

NN

S
o

,.u N f% JWOH Auousy Diwouiq

~ Sum of ALL Components = 29,000 - 80,000 bytes
% 4,000 bytes + 5-104 of program for tables.

un Text_10 = 25,000 bytes

25000

TEEE

Direct_I0 = 8,000 bytes

Sequential _I0 = 8,00 bytes
nsd Component wos supplied by vendor,

RS232 = L000 bytes

-204-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
A1: Intel configurable, interrupt service chip, 10 microseconds.

Q2: How long, and for what reasons are interrupts disabled?
A2: Not available.

Q3: What rendezvous optimizations are performed? For example, when can the called
task gerate in the same context as the calling task?
A3: PASSIVE - Rendezvous is implemented as procedure call ﬁrotected by semaphores
Pragma PASSIVE(Interrupt) - Rendezvous implemented as direct hardware interrupt
handler protected by interrupt masking hardware.
Simple (trivial) accepts are implemented as "resumes".
Other specific optimizations are also detected.

Q4: What are the restrictions for representation clauses?
A4: Not supplied.

QS: What scheduling algorithms are supported? For example, time slicing, dynamic

priorities, run-until-blocked, etc.

AS: Time slicing, Run-until-blocked,dynamic priorities (Only after next addition to pending

glﬁgt(l)e%,yor priority-inheritence. Time slicing may be applied to individual tasks. Queues are
priority. ' _

Q6: What are the restrictions on pragma INLINE?

A6: None. However if nobody is available then a call will be generated. A pragma
INLINE_ONLY will suppress ger:eration of an out-of-line body, but will force availability of
the inline body.

Q7: Is code "ROM"able?
AT7: Yes. It is not yet position-independent however, and so must be relinked to be moved.

Q8: Are machine code inserts supported?

A8: Verdix has complete assembler-level machine code for all cross and self- hosted VADS
products. In addition, tools such as the optimizer and debugger can operate on machine
code (Pragma IMPLICIT_CODE(OFF)) will inhibit optimization and prologue/epilogue
Ada support, for "What you see is what you get" machine code.

Q9:" What objecms are sup‘]))orted by pragma SHARED?
A9: S ED inhibits the representation of variables in registers or other
non-write-through memory. Only scalars and other register-sized values are affected.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent

Task time slice default: Max clock value

Timer resolution: Min clock value or about 10 microseconds
Default stack sizes: Memory dependent

Default task priority: 0-99

-205-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Optional numeric coprocessor: unknown

Dynamic task priority: - 099
Semaphore operations: Yes
Exception trace: Unhandled interrupts
Fast interrupt entry: Yes
Terminal I/O: RS232
Runtime system variations: Yes
Additional items:

- Mailboxes

- Delay-Until

- User-su&pliable memory management

- Timed Semaphores

- Suspend/Resume

- Dynamic task priority/Time-slice

- User-supplied task/program creation/switch/destroy "Call Outs"

- Multi-program support

- Multi-processor s:lli)port (Remote semaphores, Suspend/Resume, Signal, Memory
mapping, Memory allocation, Cataloging)

- Emulator support

- Target debug monitor support

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Verdix Corp. Sun Microsystems 68020, Microbar GBC68020
Compiler version 5.5 Sun-3/160 using file-server
(under Sun UNIX support from the Host
4.2, Release 3.2) (bare machine)
Compiler version 5.5 MicroVAX 11 68020, Microbar
under UNIX 4.2 GPC-68020
SD) (bare machine)
Compiler version 5.5 MicroVAX 11 68020, Microbar
(under MicroVMS 4.4) GPC-68020

(bare machine)

DEGREE OF CONFIGURABILITY

L. Linker Capability:

- Any part of a library unit being required loads entire unit.
- Available 6/89: Individual subprograms and/or data objects may be extracted from
packages only.

II. Customization of the Runtime:

- by pragmas

- by compiler switches

- by linker switches

- by modifying/replacing the source to selective runtime routines provided by the
Verdix with purchase of the compiler (i.e. device drivers, etc).

- by modifying the source of the entire runtime (after purchasing it)

RTS Configuration Parameters

The following excerpts are from Verdix Ada Development System VADS
documentation. [13]

ALLOWED_WASTE - Heap memory management parameter. This parameter
pecifies how much larger the space allocated to a memory request can be than the
1ze of the request.

DISABLE_MASK - The mask used to disable the interrupts when in a critical region
in the runtime ?'stem. This mask will be stored in the status register when a critical
region is entered.

-207-

Guidelines to Select, Configure and Use an Ada Runtime Environment

ENABLE_MASK - The mask used to initialize the status register. The
CONFIG_INIT routine should place this value in the status register.

HEAP_BASE - This is the start address of the heap. The heap will grow from this
address toward high memory. The heap is the storage area from which memory is
obtained during the execution of an Ada allocator.

HEAP_TOP - This is the address of the last storage unit in the heap. If, during the
execution of an Ada allocator, there is not enougﬁ space in the heap to allocate an
object, the exception STORAGE_ERROR will be raised.

MAX_TIME_SLICED_PRIORITY - The range of priorities a task can have is defined
by the subtype PRIORITY in the package SYSTEM.
MAX_TIME_SLICED_PRIORITY must be in this range.

Any task with a priority higher than MAX_TIME_SLICED_PRIORITY will not be
preempted by a time slice.

CAUTION: This configuration _lfiarameter may be eliminated in a future release.
Verdix recommends that MAX_TIME_SLICED_PRIORITY not be changed.

NUM_SMALL_BLOCK_SIZES - Heap memory management parameter. This
parameter declares the number of small object sizes to be handled by subpools.

SMALL_BLOCK_SIZES - Heap memory management parameter. For each small-
block subpool, this array gives the size of blocks in the pool. The sizes must be in
ascending order and each size must be a multiple of eight. When the user allocates a
small object, the heap memory management routines will use a block from the
smallest small-block subpool large enough to handle the request.

STACK_BASE - This parameter defines the initial value of the stack pointer. The
stack grows from this address toward low memory.

STACK_LIMIT - The value of this variable is the lowest address the stack pointer
may assume. This onl apglies taghe stack of the main program; each task will have
its own STACK_BASE and STACK_LIMIT. The size of a task stack can be specified
using the TSTORAGE_SIZE length clause.

TIME_SLICING_ENABLED - If TIME_SLICING_ENABLED is true, then tasks
will be preempted by time slicing. If false, then each task will keep the processor until
it executes a delay, enters a rendezvous, or is preempted by an interrupt.

TIME_SLICE_MSECS - This is an array of integers. It must be declared exactly as it
is shown in the default configuration package, except that the upper bound may be
different and the initial values may be different, but must be static. The upper bound
must be at least as large as MAX_TIME_SLICED_PRIORITY. If time slicing is
enabled, this array is consulted by the RTS to determine the length of a timeslice for
a task having a priority in the range 1.. MAX_TIME_SLICED_PRIORITY. Tasks
whose priorities are greater than MAX_TIME_SLICED_PRIORITY will not be
timesliced. The value of an element of the array is the number of milliseconds in a
timeslice for a task having that priority.

-208-

Guidelines to Select, Configure and Use an Ada Runtime Environment

CAUTION: This configuration parameter may be eliminated in a future release.
Verdix recommends that MAX_TIME_SLICED_PRIORITY not be used.

VECTOR_BASE - The value of this variable is the £hysical address of the 680x0
interrupt vector. On the 68000, this will be 0. On the 68010 and 68020, this should be
the value the VBR register will contain during the execution of the program.

The RTS uses the fbllowing three interrupt vectors:

number 5, offset 014 hex, used for zero divide
number 6, offset 018 hex, used for CHK, CHK2 instruction
number 7, offset 01C hex, used for ccTRAPcc, TRAPcc, TRAPYV instructions

The RTS initializes these vectors to convert these interrupts into Ada exceptions.
RTS Configuration Subprograms

Configuration routines for which user implemented routines may be substituted are:
AA_POOL_NEW - Allocates space from the named pool.

COMPACT - Compaction is expensive: it amounts to a sort of a pool free list by
address followed by a traversal to coalesce all adjacent memory areas. Compaction
can remedy fragmentation. It is called automatically if storage is exhausted. Users
may wish to it explicitly if they want to avoid a random long dclay when an
arbitrary allocation exhausts memory.

CONFIG_INIT - This procedure is called very early during the initialization of the
RTS environment after the stack pointer has been initialized and after necessary
ROM has been copied into . CONFIG_INIT is called by the RTS startup
g{hocedure before any of the configuration parameters are used by the runtime system.
erefore, it is capable of setting the values of RTS configuration variables, if this is
desirable (i.e., the configuration variables do not have to be defined statically).

CREATE_POOL - CREATE_POOL creates an internal data structure for a pool and
returns a descriptor or identifier for the pool. Pools generally use contiguous memory
where possible to prevent fragmentation.

CURRENT_POOL - Returns the pool identifier for the current pool.

CURRENT_TIME - This function returns the current time in milliseconds since the
INIT_CLOCK procedure was called. The package CALENDAR calls this function to
determine the current time. See The Clock-Timer below.

DEALLOCATE_POOL - DEALIL OCATE_POOL causes all blocks of storage that
have been obtained for the named pool to be returned to the heap’s free list. Such
memory is no longer reserved for that pool and may be used for any heap activity.
The heap pool can never be deallocated.

-209-

Guidelines to Select, Configure and Use an Ada Runtime Environment

GET_MEMORY - The GET_MEMORY procedure defined in the configuration
package is called by the RTS when the heap memory becomes exhausted.

HALT - HALT is called at the very end of the program, after the main Ada
subprogram has returned. The default HALT procedure clears the register DO and
then performs a TRAP 1S instruction.

HEAP_POOL - Returns the pool identifier for the heap pool. It may be desirable to
use the HEAP_POOL when allocating objects that must persist.

INIT_CLOCK - INIT_CLOCK s called from the RTS during initialization. The RTS
passes in the address of a routine that must be called by the clock-handling code
whenever the clock interrupts. This routine is also responsible for initializing the
current time for the routine CURRENT_TIME. See also The Clock-Timer below.

PANIC - PANIC is called when an unhandled exception is detected. It is also called if
an internal inconsistency is discovered in the runtime system or if a tasking deadlock
is detected. A string parameter is passed into PANIC. If an unhandled exception is
being reported, the parameter will contain the following message.

MAIN PROGRAM ABANDONED -- EXCEPTION "name" RAISED

name is the name of the exception. For the exceptions defined by the Ada RM (11.1)
these names will be the following:

CONSTRAINT_ERROR
NUMERIC_ERROR
PROGRAM_ERROR
STORAGE_ERROR
TASKING_ERROR

SCHEDULE_ALARM - The SCHEDULE_ALARM procedure is called by the RTS
to arrange for a clock interrupt at a specified number of milliseconds in the future.
See The Clock-Timer below.

SWITCH_POOL - At system startup, the heap is the current pool. However, by
calling SWITCH_POOL, a program can select an arbitrary pool as the current pool.

TURN_OFF_ALARM - Turn off the next scheduled alarm.
The Clock-Timer
The VADS RTS uses the clock for delays, calendar, and, if enabled, timeslicing.
A timer driver package must be written to control the system’s clock device. The
bod?' of TIMER_SUPPORT depends on the following types, constants, and routines
declared in a package named TIMER.

constant COUNTS_PER_MSEC - number of times the clock ticks per

millisecond. This should be a positive integer value as close to 1 as possible.
(More ticks per millisecond only serve to decrease the time between clock

210-

Guidelines to-Select, Configure and Use an Ada Runtime Environment

maintenance interrupts, since the minimum time-slice or delay time is 1
millisecond).

constant MAX_MSECS - Maximum number of milliseconds for which the clock
can be set.

constant MAX_COUNTS - The product COUNTS_PER_MSEC *
MAX_MSECS. MAX_MSECS should be selected to provide a value of
MAX_COUNTS slightly less than the absolute maximum the clock can
represent, so that CURRENT_TIME can detect overrun.

type COUNTER_T - Type used to represent a quantity of clock ticks.

procedure INIT_TIMER - Initializes the timer hardware. The timer should be
initialized to MAX_COUNTS. The address passed to this routine should be
written to the clock’s interrupt vector.

procedure SET_TIMER - Sets the timer to interrupt after a specified number of
clock ticks.

procedure READ_TIMER - Returns the number of ticks until the next clock
interrupt.

Clock Operation

The default implementation of the TIMER_SUPPORT package assumes that a single
countdown interval timer is used to support both the runtime system’s time
requirements (delays and time-slicing), and the calendar package. If this type of time
smg:e i:d?gaicllable and acceptable, the TIMER_SUPPORT package migtg? not have
to be modified.

package CONFIG

This package provides definitions for objects used by the RTS and provides hooks
into the R lowing the user to replace or modify target board dependent routines.

Packq e MA'I'H in verdixlib provides mathematical constants, exponential,
logarithmic, circular trigonometric, inverse circular trigonometric, hyperbolic
trigonometric, polar conversion, bessel functions. It is not configurable.

ITI. Documentation provided to help user configure runtime:

VERDIX Ada Development System VADS Version 5.41 for SUN-3/UNIX = > Motorola
68000 Family Processors.

IV. Services to customize the runtime:

Verdix supplies support for runtime configuration as part of level 1 and level 2
support contracts. The support is usually by tel?hone, but for large customers or
where the problems may be a fault of Verdix, Verdix may come on site.

-211-

Guidelines to Select, Configire and Use an Ada Runtime Environment
V. Cost of runtime source code:
$25,000 to $50,000

VL. Source of Information: Vendor input and compiler documentation.

-212-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization with supervisor task enabled,
time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -

Name A seconds
A000091 Dhrystone benchmarks* 398.0
A000093 Whetstone benchmarks* 580**
C000001 Task creation/terminate, task type declared in package. 1068.8
C000002 Task creation/terminate, task type declared in procedure. 1068.8
C000003 Task creation/terminate, task type declared in block. 1062.5
D(000001 Dynamic array, use and deallocation. 16.0
D000002 Dynamic array elaboration and initialization. 1350.0
D000003 Dynamic record allocation and deallocation. 3750.0
D000004 Dynamic record elaboration and ivitialization. 5050.0
E000001 Raise and handle an exception locally. 318.8
E000002 Raise and handle an exception in a package. 725.0
E000003 Raise and handle an exception nested 3 deep in procedures. 1018.8
E000004 Raise and handle an exception nested 4 deep in procedures. 987.5
E000005 Raise and handle an exception in a a rendezvous 1212.5
F000001 Set a BOOLEAN flag using a logical equation. 0.0
F000002 Set a BOOLEAN flag using an "if" test. 0.0
G000005 TEXT_IO.Get an INTEGER from a local string. 2129
G000006 TEXT_IO.Get a FLOAT from a local string. 1343.8
H000001 BOOLEAN operations on entire PACKed array. 16.0
H000002 BOOLEAN operations on entire array (not %acked. 165.6
H000003 BOOLEAN operations on eomponents of a PACKed array. 600.0
HO000004 BOOLEAN operations on components of an array (not packed). 179.7
HO000005 Move INTEGER to INTEGER (Unchecked_Conversion). 0.0
H000006 Move array of 10 Floats to record (Unchecked_Conversion). 20.9
H000007 Store and extract bit fields, defined by representation clauses. 33.6
L000001 Simple "for" loop. 0.9
L000002 Simple "while" loop. 1.1
L000003 Simple "exit" loop. 1.1
L000004 Unwrap of loop of S iterations with pragma OPTIMIZEéTime). 1.3
L000005 Unwrap of loop of S iterations with pragma OPTIMIZE(Space). 1.3
P000001 Procedure call and return (inlineable), no parameters. 3.2
P000002 Procedure call and return (not inlineable), no parameters. 5.6
P000003 Procedure call and return (compiled separately). 5.9
P000004 Procedure call and return (Pragma INLINE used). 0.0

-212.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization with supervisor
task enabled, time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
P000005 Procedure call and return (one parameter, in INTEGER). - " 6.4
P000006 Procedure call and return (one parameter, out INTEGER). 6.3
P0O00007 Procedure call and return (one parameter, in out INTEGER). 7.3
P000010 Procedure call and return (ten parameters, in INTEGER). 15.2
P000011 Procedure call and return (twenty parameters, in INTEGER). 273
P000012 Procedure call and return (ten parameters, in record_type). 20.1
P000013 Procedure call and return (twenty parameters, in record_type). 36.3
T000001 Minimum rendezvous, entry call and return. 267.2
T000002 Task entry call and return (one task, one entry). 270.3
T000003 Task entry call and return (two tasks, one entry each). 2719
T000004 Task entry call and return (one task, two entries). 337.5
T000005 Active entry and return (ten tasks, one entry each). 270.0
T000006 Task entry call and return (one task, ten entries). 417.5
TO000007 Minimum rendezvous, entry call and return. 182.8
T000008 Measures time to pass integer from producer to consumer task. 775.0

* Using standard internal math routines.
** WHETSTONE : units are in KWIPS not in microseconds.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suppress checking entorced with
supervisor task enabled, time-slicing disabled, priority-inberitance disabled. PIWG test
suite 1987.

P000003 Procedure call and return (compiled separately).
P000004 Procedure call and return (Pragma INLINE used).

PIWG Test Description Micro -
Name : _ seconds
A000091 Dhrystone benchmarks* 289.0
A000093 Whetstone benchmarks* 606**
C000001 Task creation/terminate, task type declared in package. 1075.0
C000002 Task creation/terminate, task type declared in procedure. 1068.8
C000003 Task creation/terminate, task type declared in block. 1062.5
D000001 Dynamic array, use and deallocation. 113
D000002 Dynamic array elaboration and initialization. 1137.5
D000003 Dynamic record allocation and deallocation. 3775.0
D000004 Dynamic record elaboration and initialization. 4875.0
E000001 Raise and handle an exception locally. 318.8
E000002 Raise and handle an exception in a package. 725.0
E000003 Raise and handle an exception nested 3 deep in procedures. 1018.8
E000004 Raise and handle an exception nested 4 deep in procedures. 981.3
E000005 Raise and handle an exception in a a rendezvous 12125
F000001 Set a BOOLEAN flag using a logical equation. 1.6
F000002 Set a BOOLEAN flag using an "if" test. 15
G000005 TEXT_I0.Get an INTEGER from a local string. 216.8
G000006 TEXT_10.Get a FLOAT from a local string. 1343.8
H000001 BOOLEAN operations on entire PACKed array. 15.0
H000002 BOOLEAN operations on entire array (not %acked. 162.5
H000003 BOOLEAN operations on eomponents of a PACKed array. 578.1
H000004 BOOLEAN operations on components of an array (not packed). 170.3
H000005 Move INTEGER to INTEGER (Unchecked_Conversion). 0.0
H000006 Move array of 10 Floats to record (Unchecked_Conversion). 17.6
HO000007 Store and extract bit fields, defined by representation clauses. 33.6
L000001 Simple "for" loop. 0.9
L000002 Simple "while" loop. 0.9
L000003 Simple "exit" loop. 0.8
L000004 Unwrap of loop of § iterations with pragma OPTIMIZEéTime). 1.3
L00000S Unwrap of loop of § iterations with pragma OPTIMIZE(Space). 1.3
P000001 Procedure call and return (inlineable), no parameters. 5.6
P000002 Procedure call and return (not inlineable), no parameters. 7.%

1.

0.0

-212.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced with supervisor task enabled, time-slicing disabled, priority-inheritance
disabled. PIWG test suite 1987. :

PIWG Test Description Micro -
Name seconds
P0O0000S Procedure call and return (one parameter, in INTEGER). 31
P000006 Procedure call and return (one parameter, out INTEGER). 4.0
P000007 Procedure call and return (one parameter, in out INTEGER). 4.6
P000010 Procedure call and return (ten parameters, in INTEGER). 11.1
P000011 Procedure call and return (twenty parameters, in INTEGER). 234
P000012 Procedure call and return (ten parameters, in recorthEe). 16.2
P000013 Procedure call and return (twenty parameters, in record_type) 313
T000001 Minimum rendezvous, entry call and return. 270.3
T000002 Task entry call and return (one task, one entry). 2703
T000003 .Task entry call and return (two tasks, one entry each). 270.3
T000004 Task entry call and return (one task, two entries). 337.5
T000005 Active entry and return (ten tasks, one entry each). 265.0
T000006 Task entry call and return (one task, ten entries). 420.0
T000007 Minimum rendezvous, entry call and return. 181.3
T000008 Measures time to pass integer from producer to consumer task. 775.0

* Using standard internal math routines.
b ETSTONE : units are in KWIPS not in microseconds.

-212.4-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suptﬁress checking enforced, register
variables used (when register variables are not present, that includes both user code and
kernel). Supervisor task enabled, time-slicing disabled, priority-inheritance disabled.
PIWG test suite 1987.

PIWG Test Description Micro -
Name ' seconds
A000091 Dhrystone benchmarks* 241.0
A000093 Whetstone benchmarks* 631**
C000001 Task creation/terminate, task type declared in package. 987.5
C000002 Task creation/terminate, task type declared in procedure. 993.8
C000003 Task creation/terminate, task type declared in block. 987.5
D00GS1 Dynamic array, use and deallocation. 5.9
D000002 Dynamic array elaboration and initialization. 1125.0
D000003 Dynamic record allocation and deallocation. 3725.0
D000004 Dynamic record elaboration and initialization. 4875.0
E000001 Raise and handle an exception locally. 390.6
E000002 Raise and handle an exception in a package. 603.1
E000003 Raise and handie an exception nested 3 deep in procedures. 868.8
E000004 Raise and handle an exception nested 4 deep in procedures. 1225.0
EQ000005 Raise and handle an exception in a a rendezvous 1125.0
F000001 Set a BOOLEAN flag using a logical equation. 34
F000002 Set a BOOLEAN flag using an "if" test. 33
G000005 TEXT_I0.Get an INTEGER from a local string. 199.2
G000006 TEXT_1O.Get a FLOAT from a local string. 1140.6
H000001 BOOLEAN operations on entire PACKed array. 15.2
HO000002 BOOLEAN operations on entire array (not %ackcd. 164.1
H000003 BOOLEAN operations on eomponents of a PACKed array. 490.6
H000004 BOOLEAN operations on components of an array (not packed). 124.2
HO000005 Move INTEGER to INTEGER (Unchecked_Conversion). 25
H000006 Move array of 10 Floats to record (Unchecked_Conversion). 14.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6
L000001 Simple "for" loop. 2.1
L000002 Simple "while" loop. 24
L000003 Simple "exit" loop. 24
L000004 Unwrap of loop of § iterations with pragma OPTIMIZE(Time). 0.2
L00000S Unwrap of loop of 5 iterations with pragma OPTIMIZE(Space). 0.2
P000001 Procedure call and return (inlineable), no parameters. 3.0
P000002 Procedure call and return (not inlineable), no parameters. 4.2
P000003 Procedure call and return (compiled separately). 29
P000004 Procedure call and return (Pragma INLINE used). 1.7

-212.5-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced, register variables used (when register variables are not present, that
includes both user code and kernel). Supervisor task enabled, time-slicing disabled,
priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name : seconds
P00000S Procedure call and return (one parameter, in INTEGER). 4.0
P000006 Procedure call and return (one parameter, out INTEGER). 4.1
P000007 Procedure call and return (one parameter, in out INTEGER). 4.9
P000010 Procedure call and return (ten parameters, in INTEGERE 10.9
P000011 Procedure call and return (twenty parameters, in INTEGER). 14.5
P000012 Procedure call and return (ten parameters, in record_tyfe). 10.2
P000013 Procedure call and return (twenty parameters, in record_type). 21.1
T000001 Minimum rendezvous, entry call and return. 262.5
T000002 Task entry call and return (one task, one entry). 264.1
T000003 Task entry call and return (two tasks, one entry each). 265.6
T000004 Task entry call and return (one task, two entries). 3313
T00000S Active entry and return (ten tasks, one entry each). 257.5
T000006 Task entry call and return (one task, ten entries). 400.0
T000007 Minimum rendezvous, entry call and return. . 175.0
T000008 Measures time to pass integer from producer to consumer task. 7375

* Using standard internal math routines.
** WHETSTONE : units are in KWIPS not in microseconds.

-212.6-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, supgress checking enforced, register
variables used (when register variables are not present, that includes both user code and
kernel), pragma passive (interrmts) used. Supervisor task enabled, time-slicing disabled,
priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description | _ Micro -
Name seconds
A000091 Dhrystone benchmarks* 241.0
A000093 Whetstone benchmarks* _ 631**
C000001 Task creation/terminate, task type declared in package. 987.5
C000002 Task creation/terminate, task type declared in procedure. 993.8
C000003 Task creation/terminate, task type declared in block. 987.5
D000001 Dynamic array, use and deallocation. 59
D000002 Dynamic array elaboration and initialization. 1125.0
D000003 Dynamic record allocation and deallocation. 3725.0
D000004 Dynamic record elaboration and initialization. 4875.0
E000001 Raise and handle an exception locally. 390.6
E000002 Raise and handle an exception in a package. 603.1
'E000003 Raise and handle an exception nested 3 deep in procedures. 868.8
E000004 Raise and handle an exception nested 4 deep in procedures. 1225.6
E00000S Raise and handle an exception in a a rendezvous 1125.0
F000001 Set a BOOLEAN flag using a logical equation. 34
F000002 Set a BOOLEAN flag using an "if" test. 33
G000005 TEXT_IO.Get an INTEGER from a local string. 199.2
G000006 TEXT_10.Get a FLOAT from a local string. 1140.6
H000001 BOOLEAN operations on entire PACKed array. 15.2
HO000002 BOOLEAN operations on entire array (not %acked. 164.1
HO000003 BOOLEAN operations on eomponents of a PACKed array. 490.6
H000004 BOOLEAN o%erations on components of an array (not packed). 124.2
HO000005 Move INTEGER to INTEGER (Unchecked_Conversion). 25
HO000006 Move array of 10 Floats to record (Unchecked_Conversion). 14.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6
L.000001 Simple "for" loop. 2.1
L.000002 Simple "while" loop. 2.4
L000003 Simple "exit" loop. 24
L000004 Unwrap of loop of § iterations with pragma OPTIMIZE(Time). 0.2
L00000S Unwrap of loop of § iterations with pragma OPTIMIZE(Space). 0.2
P000001 Procedure call and return (inlineable), no parameters. 3.0
P000002 Procedure call and return (not inlineable), no parameters. 42
P000003 Procedure call and return (compiled separately). 29
P000004 Procedure call and return (Pragma INLINE used). 1.7

212.7-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced, register variables used (when register variables are not present, that
includes both user code and kernel), pragma passive (intem\:gts) used. Supervisor task
enabled, time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.

PIWG Test Description Micro -
Name ' seconds
P00000S Procedure call and return (one parameter, in INTEGER). 4.0
P000006 Procedure call and return (one parameter, out INTEGER). 4.1
P000007 Procedure call and return (one parameter, in out INTEGER). 4.9
P000010 Procedure call and return (ten parameters, in INTEGER). 10.9
P000011 Procedure call and return (twenty parameters, in INTEGER). 14.5
P000012 Procedure call and return (ten parameters, in record_tge). 10.2
P000013 Procedure call and return (twenty parameters, in record_type). 21.1
T000001 Minimum rendezvous, entry call and return. 262.5
'T000002 Task entry call and return (one task, one entry). 46.9
T000003 Task entry call and return (two tasks, one entry each). 47.7
T000004 Task entry call and return (one task, two entries). 50.0
TO00000S Active entry and return (ten tasks, one entry each). 434
T000006 Task entry call and return (one task, ten entries). 60.6
TO000007 Minimum rendezvous, entry call and return. 175.0
T000008 Measures time to pass integer from producer to consumer task. 184.4

* Using standard internal math routines.
** WHETSTONE : units are in KWIPS not in microseconds.

-212.8-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix PIWG results for Motorola MVME 133A-20. Clock: 20MHz, MC68020/MC68881,
Memory Wait States not supplied. Full optimization, suptﬂres.f) cllleckin enforced, register
at inc

variables used (when register variables are not present, udes both user code and
kernel), pragma passive (interrupts) used, pragma passive (semalghores) used. Supervisor
task enabled, time-slicing disabled, priority-inheritance disabled. PIWG test suite 1987.
PIWG Test Description . , Micro -
Name . ‘ seconds
A000091 Dhrystone benchmarks®* 241.0
A000093 Whetstone benchmarks* 631**
C000001 Task creation/terminate, task type declared in package. 987.5
C000002 Task creation/terminate, task type declared in procedure. 993.8
C000003 Task creation/terminate, task type declared in block. 987.5
D000001 Dynamic array, use and deallocation. 5.9
D000002 Dynamic array elaboration and initialization. 1125.0
D000003 Dynamic record allocation and deallocation. 3725.0
D000004 © Dynamic record elaboration and initialization. 4875.0
E000001 Raise and handle an exception locally. 390.6
E000002 Raise and handle an exception in a package. 603.1
- E000003 Raise and handle an exception nested 3 deep in procedures. 868.8
E000004 Raise and handle an exception nested 4 deep in procedures. ‘ 1225.0
E000005 Raise and handle an exception in a a rendezvous 1125.0
F000001 Set a BOOLEAN flag using a logical equation. 3.4
F000002 Set a BOOLEAN flag using an "if" test. 3.3
G00000S TEXT_I0.Get an INTEGER from a local string. 199.2
G000006 TEXT_10.Get a FLOAT from a local string. 1140.6
H000001 BOOLEAN operations on entire PACKed array. 15.2
HO000002 BOOLEAN operations on entire array (not %acked. 164.1
H000003 BOCLT AN cperations on eompcenents of a PACKed array. 490.6
H000004 BOOLEAN operations on components of an array (not packed). 124.2
H000005 Move INTEGER to INTEGER (Unchecked_Conversion). 25
H000006 Move array of 10 Floats to record (Unchecked_Conversion). 14.6
H000007 Store and extract bit fields, defined by representation clauses. 33.6
L000001 Simple "for" loop. 2.1
L000002 Simple "while" loop. 24
L.000003 Simple "exit" loop. 2.4
L000004 Unwrap of loop of § iterations with pragma OPTIMIZE(Time). 0.2
L00000S Unwrap of loop of § iterations with pragma OPTIMIZE(Space). 0.2
P000001 Procedure call and return (inlineable), no parameters. 3.0
P000002 Procedure call and return (not inlineable), no parameters. 4.2
P000003 Procedure call and return (compiled separately). 2.9
P000004 Procedure call and return (Pragma INLINE used). 1.7

-212.9-

Guidelines to Select, Configure and Use an Ada Runtime Environment

" Verdix PIWG results for Motorola MVME 133A-20 (Continued). Clock: 20MHz,
MC68020/MC68881, Memory Wait States not supplied. Full optimization, suppress
checking enforced, register variables used (when register variables are not present, that
includes both user code and kernel), pragma passive (interrupts) used, pragma passive

(semaphores) used. Supervisor task enabled, time-slicing disabled, priority-inheritance
disabled. PIWG test suite 1987.

PIWG Test Description ' Micro -
Name seconds
P00000S Procedure call and return (one parameter, in INTEGER). 4.0
P000006 Procedure call and return (one parameter, out INTEGER). 4.1
P000007 Procedure call and return (one parameter, in out INTEGER). 4.9
P000010 Procedure call and return (ten parameters, in INTEGER). 10.9
P000011 Procedure call and return (twenty parameters, in INTEGER). 14.5
P000012 Procedure call and return (ten parameters, in record_tﬁe). 10.2
P000013 Procedure call and return (twenty parameters, in record_type) 21.1
T000001 Minimum rendezvous, entry call and return. 262.5
T000002 Task entry call and return (one task, one entry). 46.9
T000003 Task entry call and return (two tasks, one entry each). 48.0
T000004 Task entry call and return (one task, two entries). 49.6
T000005 Active entry and return (ten tasks, one entry each). 444
T000006 Task entry call and return (one task, ten entries). 61.9
T000007 Minimum rendezvous, entry call and return. 175.0
T000008 Measures time to pass integer from producer to consumer task. 184.4

* Using standard internal math routines.
b WI—iETSTONE - units are in KWIPS not in microseconds.

-212.10-

Verdix Corporation

VAX - VMS

MC 68020

Guidelines to Select, Configure and Use an Ada Runtime Environment
Host

MM
ARRRRRRRGER AR ARRRRRRRRRRS
R R iR R
NP udaasasnoy
T TS N ™ N Nsaouanbag -
20z AR R T T RRRRRRRR S 339
U NN A AN, A RS
N N Y e oot IR
00052 L/ ¢s @\m\\m: i \\W\\mx AR L ACAALLLLLLLLL 0001 BN » 30N 0/1
o4 \N\\ AL A T A AT AL 2207 A A AL LA AAAAASAINNNNRN
000¥ m N R ANVNM_Mr \ R WJB| HS
SRREREERRNN R Syuersouuaal nsoy
AR
OO % NN N b
200 ARy var oy 3s0)
R KR R NN SRR
RS RS A AAN#/A/.. QoK
0009 R ;4;4;/%%/*/.!%% FawOM SNOAZIDUI
T R Y pudy
AR &VMMW//K i ./Amm.ﬂ.ld.
o N NN ///M/n NN NN WS dacx
20 R R R 2uon uon dadx3

00S % AWl aw)

- Sum of ALL Components = 29,000 - 80,000 bytes

® 4,000 bytes + 5-104 of program for tobles.

we Text_10 = 25,000 bytes

7
5 00S / wBy jdnauayy
D N 391
v
>
- 008 RXJIWOH J0SS900ud
m 7 \\« R A A A 2R 2 7 .\%&\ OO PRI A
00008 Lo A A s P2 8001 AN wBw £
V") \n.“wnxunn I S AR \‘&...k\\\\«\\&\\\f NG 2ON Avouan dwouig

Target

N\
E g\ FEFEFEEEFEfEgEgEaE
B g

o «© ~N O v [T

23

-213-

Sequential_I0 = 8,00 bytes
=u% Component was supplied by vendor.

RS232 = 1,000 bytes
Direct_I0 = 8,000 bytes

Guidelines to Select, Configure and Use an Ada Runtime Environment

Verdix Corporation

Host : VAX - VMS
Target '+ MC 68020

Version + Verdix 5.5Q

o

N 2876

Y
s}
™

%

N 2664

/0 Mgnt R
HousekeeplngQEEEEEEEEEEEEEEEE;}

Time Mgmt RN
Semaphore 200

CLEL. SequencesNNRNNR

Task Termna for KRR

Rendezvous Mgmt.i;};}:_5;5;E;E;E;E;Z;E;E;E;E;E;E;E;E;Egi;i;
Task Activation

Exception Mgmt AR
Rl

Dynamic Memory Mgmt NN
Processor Mgnt Attt
Interrupt Mgmt AERRHH HHI I nHnneg

= Sum of ALL Components = 26,332 bytes
NOTE: User supplied information for o particular implementation.

214-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: For V5.7 68020 the duration is 1 millisecond. Clock is user configurable.

Q2: How long, and for what reasons are interrupts disabled?
A2: For V5.7 68020 the user can configure what interrupt level is disabled while in kernel
at:

1. Adding/Deleting from PENDING queue 5+5*N/2, Where N = number of tasks on

nding queue.
. Adjusting clock - (User configurable)

3. Leave kernel and return to user - (Approximately: 1 microseconds)

4. In passive interrupt tasks - (User configurable)

5. Interrupt handler as it enters the kernel - (Approximately: 3 microseconds)

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: Pragma PASSIVE - Rendezvous is implemented as procedure call protected by semaphores
Pragma PASSIVE(Interrupt) - Rendezvous implemented as direct hardware interrupt
handler protected by interrupt masking hardware.
Simple (trivial) accepts are implemented as "resumes".
Other specific optimizations are also detected.

Q4: What are the restrictions for representation clauses?

Ad4: Array element sizes are packed only to power-of-two bits, below 16 bits. Thus a five bit
element will be packed as 8 gits, a 1 bit element is packed as 1 bit. Record fields must be
extractable entirely in one machine register, unless the hardware supplies bit field
instructions (in that case, the instruction restrictions apply). Thus a field of 31 bits must
begin on bit 0 or bit 1 for a 680x0, while a 7 or even 25 bit field may begin anywhere

Q5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Time slicing, Run-until-blocked,dynamic priorities (Only after next addition to pending
ueue), or priority-inheritence. Time slicing may be applied to individual tasks. Queues are
FO by priority.

Q6: What are the restrictions on pragma INLINE?

A6: None. However if no body is available then a call will be generated. A gragma
INLINE_ONLY will suppress generation of an out-of-line body, but will force availability of
the inline body.

Q7: Is code "ROM"able?
A7 Yes. It is not yet position-independent however, and so must be relinked to be moved.

Q8: Are machine code inserts supported?

A8: Verdix has complete assembler-level machine code for all cross and self- hosted VADS
products. In addition, tools such as the optimizer and debugger can operate on machine
code (Pragma IMPLICIT_CODE(OFF)) will inhibit optimization and prologue/epilogue
Ada support, for "What you see is what you get" machine code.

Q9: What object types are supported by pragma SHARED?

-215-

Guidelines to Select, Configure and Use an Ada Runtime Environment

A9: Pragma SHARED inhibits the representation of variables in registers or other
non-write-through memory. Only scalars and other register-sized values are affected.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

Maximum number of tasks: Memory dependent)
Task time slice default: Max clock value
Timer resolution: Min clock value or about 10 microseconds
Default stack sizes: Memory dependent
Default task priority: 0-99
Optional numeric coprocessor: 68881, soon WEITEK
Dynamic task priority: 0-99
Semaphore operations: Yes
Exception trace: Unhandled interrupts
Fast interrupt entry: Yes
Terminal 1/O: RS232
Runtime system variations: Yes
Additional items:
- Mailboxes
- Delay-Until
- User-su&pliable memory management
- Timed Semaphores
- Suspend/Resume

- Dynamic task priority/Time-slice

- User-supplied task/program creation/switch/destroy "Call Outs"

- Multi-program support

- Multi-processor sui)port (Remote semaphores, Suspend/Resume, Signal, Memory
mapping, Memory allocation, Cataloging)

- Emulator support

- Target debug monitor support

-216-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM for the MC68000 Operating

package SYSTEM is
type NAME is (mé8k):
SYSTEM NAME : constant NAME := mé68k ;
STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 16_777_216;

-= System-Dependent Named Numbers

MIN_INT : constant := -2_147_483_648;
MAX_INT : constant := 2_147_483_647;
MAX DIGITS ¢ constant := 15;

MAX MANTISSA : constant := 31;

FINE_DELTA ¢ constant := 2.0%%(-30);
TICK : constant := 0.1;

== Other System-dependent Declarations
subtype PRIORITY is INTEGER -‘ange 1..99;
MAX_REC_SIZE : integer := 64*1024;

type ADDRESS is private;

NO_ADDR : constant ADDRESS;

function PHYSICAL_ADDRESS (I : INTEGER) return ADDRESS;

function ADDR_GT (A, B: ADDRESS) return BOOLEAN;

function ADDR_LT (A, B: ADDRESS) return BOOLEAN;

function ADDR_GE (A, B: ADDRESS) return BOOLEAN;

function ADDR_LE (A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF (A, B: ADDRESS) return INTEGER;

function INCR_ADDR (A: ADDRESS; INCR: INTEGER) return ADDRESS;

function DECR_ADDR (A: ADDRESS; DECR: INTEGER) return ADDRESS;

function ">" (A, B: ADDRESS) return BOOLEAN renames ADDR_GT;

function "<" (A, B: ADDRESS) return BOOLEAN renames ADDR_LT;

function ">=" (A, B: ADDRESS) return BOOLEAN renames ADDR_GE;

function "<=" (A, B: ADDRESS) return BOOLEAN renames ADDR_LE;

function "-" (A, B: ADDRES<) return INTEGER renames ADDR_DIFF;

function "+" (A: ADDRESS; .NCR: INTEGER) return ADDRESS
renames INCR_ADDR:;

function "_" (A: ADDRESS; DECR: INTEGER) return ADDRESS
renames DECR_ADDR;

217-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package SYSTEM for the MC68000 Operating

pragma inline (ADDR_GT):;

pragma inline (ADDR_LT);

pragma inline (ADDR_GE);

pragma inline (ADDR_LE);

pragma inline (ADDR_DIFF):;
pragma inline (INCR_ADDR) ;
pragma inline (DECR_ADDR) ;
pragma inline (PHYSICAL_ADDRESS) ;

private

type ADDRESS is new integer;
NO_ADDR : constant ADDRESS := 0;

end SYSTEM:

-218-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Advanced Computer VAX-11/785 1750A, Fairchild
Techniques Corp. (under VMS 4.4) 9450/1750A in a
(InterACT) HP 64000 workstation
Compiler version 2.1 (bare machine)

DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
This information was not supplied by the vendor.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-219-

Guidelines to Select, Configure and Use an Ada Runtime Environment .

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Harris Corporation Harris HCX-7 Series 1750A, Tektronix 8540A
Compiler version 1.0 (under HCX/UX, (bare machine)
Version 2.2)
Compiler version 1.0 Harris H1200 1750A, Tektronix 8540A
(under VOS, (bare machine)
Version 6.1)

DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
This information was not supplied by the vendor.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Rockwell Int’l, VAX-11/8650 CAPS/AAMP
Compiler version 1.0 (under VMS, (bare machine)
version 4.5)
Compiler version 2.0 DEC VAX 8650 CAPS/AAMP
(under VMS, (bare machine)
version 4.7)

This compiler is not for sale to the general public, therefore the information was not
providgd.
DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
This information was not supplied by the vendor.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-221-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR

HOST PROCESSOR

TARGET PROCESSOR

Systems Designers
Software, Inc.
Compiler version 2C.00

Compiler version 3A.00

DEC VAX-11/7xx,
VAX 8xxx, VAX
Station, and
MicroVAX Series
(under VAX/VMS 4.5
or MicroVMS 4.5)

DEC VAX-11/7xx,

VAX 8xxx,V

Station, (under VMS 4.6)
and MicroVAX Series
(under MicroVMS 4.5)

68000, MC68000/10
implemented on

the MVME 117-3FP
board (bare machine)
* Derived *

68000, MC68000/10
implemented on

the MVME 177-3 FP
board

(bare machine)

* Derived *

Note: Although a response was not provided for these targets, a response for a bare
MC68020 was provided, and it is reasonable to expect similar capabilities (excluding
performance) for these implementations. Refer to System Designers’ bare MC68020 target

Processor response.

DEGREE OF CONFIGURABILITY

This information was not supplied by the vendor.

PIWG RESULTS

This information was not supplied by the vendor.

RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

-222-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
TeleSoft /Intel VAX 8530 (under 80386, Intel 80386
Corp./TeleLOGIC VMS, version 4.6) on Intel 386-100
Compiler version board (bare machine)

No information was provided due to the recent validation. Time did not permit inclusion of
this in the report. Please contact the vendor for further information.

DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
This information was not supplied by the vendor.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
TeleSoft, Inc. Sun Microsystems MC68000,
Compiler version 1.2 Sun-3/280 Workstation implemented on a

(under Sun UNIX Motorola MVME

version 4.2, release 3.2) 101 board (bare machine)
Compiler version 1.2 Sun Microsystems MC68000,

Sun-3 Workstations, implemented on a

Models: 260, 180, 160, Motorola MVME

150, 140, 110, 75, 60, 101 board

50 and 52 (with soft- (bare machine)

ware floating point); *Derived*

S5OME and 52 + 152A (with

MC68881 FPC) (under Sun

UNIX version 4.2,

Releases 3.2 & 3.4)
Compiler version 3.2 MicroVAX II MC68000,

(under VMS, implemented on a

version 4.6) Motorola MVME

101 board (bare machine)

Compiler version 3.2 DEC VAX famil MC68000,

(MicroVAX, VAX station, implemented on a

VAX server, VAX 8xx, & Motorola MVME

VAX-11 models) 101 board

(under VMS 4.5 and 4.6) (bare machine) * Derived*
Compiler version 1.2 Sun Microsystems MC68010,

Sun-3/280 Workstation implemented on a

(under Sun UNIX Motorola MVME

version 4.2, release 3.2) 117-4 board (bare machine)
Compiler version 1.2 Sun Microsystems MC68010,

Sun-3 Workstations, implemented on a

Models: 260, 180, 160, Motorola MVME

150, 140, 110, 75, 60, 117-4 board

(Continued on next page)

50 and 52 (with soft-

ware ﬂoating 2point ;

SOME and 52 + 152A (with
MC68881 FPC) gmder Sun
UNIX version 4.

Releases 3.2 & 3.4)

-224-

(bare machine)

- *Derived*

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR

TeleSoft, Inc. MicroVAX II MC68010, implemented on a
Compiler version 3.2 (under VMS, Motorola 117-4 board

version 4.6 1174 board (bare machine)
Compiler version 3.2 DEC VAX family MC68010,

(MicroVAX, VAX station, implemented on a
VAX server, VAX 8xxx, & Motorola MVME

VAX-11 models) 117-4 board
, (under VMS 4.5 and 4.6) (bare machine) * Derived*
Compiler version 1.2 Sun Microsystems MC68010,
Sun-3 Workstations, implemented on a
Models: 260, 180, 160, Motorola MVME
150, 140, 110, 75, 60, 133A-20 board
50 and 52 (with soft- with a MC68881
ware floating point); floating point

SOME and 52 + 152A (with coprocessor
MC68881 FPC) (under Sun (bare machine)

UNIX version 4.2, *Derived*
Releases 3.2 & 3.4)

Compiler version 1.2 - Sun Microsystems MC68020, implemented on a
Sun-3/280 Workstation Motorola MVME 133-A-20
(under Sun UNIX board with a MC68881
version 4.2, floating-point
release 3.2) coprocessor (bare machine)

Note: Although a response was not provided for these targets, a response for a bare
MC68020 was provided, and it is reasonable to expect similar capabilities (except
performance) for these implementations. Refer to TeleSoft’s bare MC68020 target
processor response.
DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS

This information was not supplied by the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

RUNTIME STORAGE REQUIREMENTS
This information was not supplied by the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Verdix Corp. Sequent Symetry 80386, iSBC 386/20P
S-27(under DYNIX, Intel(bare machine)
release 3.0) using file-server
support from the Host
Intel system 320 80386, iSBC 386,20
(under UNIX system Intel(bare machine)
Vrel 3.0)

Note: Although a response was not provided for these host/target combinations, a response
for a bare 80386 (with a different host) was provided, and it is reasonable to expect similar
capabilities for these implementations. Refer to Verdix’s bare 80386 target processor
response.
DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
This information was not supplied by the vendor.
RUNTIME STORAGE REQUIREMENTS

This information was not supplied by the vendor.

227-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Verdix Corp. MicroVAX 11 32032, National DB32000
Compiler version 5.42 (under MicroVMS, (NS32032) using file-
Version 4.4) server support from the
Host (bare machine)
Compiler version 5.42 VAX 8800, 87000 32032, National DB32000
8650, 8600, 8500, (NS32032) using file-server
8300, 8200 support from the Host
VAX 11/78S, 782, 780, (bare machine)
750, 730, & MicroVAX II *Derived*
(under VMS 4.4)
Compiler version 5.42 S$YS32/20 32032, National DB32000
‘ under Opus5 (UNIX (NS32032) using file-
ystem Vg, release 2.0) server support from the

Host (bare machine)

DEGREE OF CONFIGURABILITY
This information was not supplied by the vendor.
PIWG RESULTS
This information was not supplied by the vendor.
RUNTIME STORAGE REQUIREMENTS -

This information was not supplied by the vendor.

Guideline to Select, Configure, and Use an Ada Runtime Environment

S. Application Characteristics

The first part of this section describes requirements that can be imposed upon application
software. The requirements can be chosen from the following list:

1). Real-time Response,

. Hardware Interfacing,

. Fault-tolerance,

. Distributed Processing,
. Multi-level Security,

. Concurrency,

. Periodic Processing,

. Numeric Accuracy,

. Continuous Operation,
10). Message Processin

11). High Throughput Rate,
12). Program/Data Size Limitations.

O 00~ LhH Wi

The second part of this section will partition the apglication domain into various classes.
The classification is not meant to exhaustive, but rather characteristic. Then, the
requirements outlined above can be mapped into the classes, along with the runtime
components necessary to implement each one. This list will be prioritized based upon:

1. LabTek’s experience.

2. Interviews with application engineers. (LabTek performed extensive
interviews with application engineers under a previous contract. [1])

3. ARTEWG’s, First Annual Survey of Mission Critical Application
Requirements for Runtime Environments. [3]

4. Current literature.

Figure 3., "The Application Domain", presents the classes of applications that will be
covered in detail. For each class of application the following information will be provided:

1. Brief description of the class.
2. Typical system requirements for an application of this nature.

3. A prioritized list of the runtime environment features needed for this class of
applications.

-229.

Guideline to Select, Configure, and Use an Ada Runtime Environment

Application Domain

| -
Electronic Warfare Operating Systems
L
Weapon Guidance Navigation Systems
Fire Control Artificial Intelligence
Simulation Systems Roboté(grs‘éﬁglcmess

C3I Systems

Figure 3. The Application Domain
5.1 Electronic Warfare
Brief description: EW systems are used to transmit and/or receive electronic or
electro-optical radiation, usually for observation or communication; or to deny an adversary
use of their electronic systems.
System requirements: Refer to subheadings below.
Runtime Environment Features Required (Prioritized): Refer to subheadings below.
5.1.1 Radar Systems
Brief description: Transmission of electronic signals which reflect off of objects and return
to a sensor for the purposes of detecting and locating objects.

-230-

Guideline to Select, Configure, and Use an Ada Runtime Environment

System requirements: Real-Time Response, Hardware Interface, Distributed Processing,
oncurrency, Periodic Processing, Numeric Accuracy, Message Processing (see also "Signal
Processing” below).

Runtime Environment Features Required (Prioritized): Interrupt Management, Rendezvous
Management, Time Management.

5.1.2 Electronic Counter Méasures (ECM)

Brief description: ECM systems vary considerably. In general, they are designed to deny an
adversary use of their communications or surveillance systems by transmitting radiation
which "jams" the adversary receivers. They may be used in conjunction with Electronic
Support Measures (ESM) which is used to receive and classify the adversary’s transmissions.
Electronic Counter Counter Measure (ECCM) systems in-turn are used to nullify the effect
of ECM systems.

System requirements: Real-Time Response, Hardware Interface, Distributed Processing,
oncurrency, Periodic Processing, Numeric Accuracy, Message Processing (see also "Signal
Processing” below).

Runtime Environment Features Required (Prioritized). Interrupt Management, Rendezvous
Mauagement, Time Management.

5.1.3 Signal Processing

Brief description: Signal Processingrsystems are used to process the raw (digitized) return
data received from sensor inputs. Typically data is received at rates exceeding one million
bytes per second (1MB/s) and must be processed in very short periods of time. Custom
g_rocessors are used to implement quick Multiply/Accumulate operations in support of Fast

ourier Transforms (FFTs), Convolutions, and other algorithms used to reduce or
transform input data to meaningful values.

System requirements: High Throughput, Real-Time Response, Distributed Processing,
Periodic Processing.

Runtime Environment Features Required (Prioritized): Processor Management, Commonly
Called Code Sequences.

5.2 Weapon Guidance

Brief description: Weapon guidance can be autonomous (self-guided) or in conjunction with
latform-based support. In either case, the intent is to direct the in-flight weapon to a
ssibly moving) target. Target tracking and prediction, attitude control, and servo loop
processing are included as major portions of the s{stem. If the system includes a platform
component, message processing would also be involved.

System requirements: Real-Time Response, High Speed Interface, Concurrency, Periodic
Processing, Program/Data Size Limitations, Message Processing.

Runtime Environment Features Required (Prioritized): Interrupt Management, Time
Management, Rendezvous Management, I/O Management.

-231-

Guideline to Select, Configure, and Use an Ada Runtime Environment

' 5.3 Fire Control

Brief description: Fire Control systems determine the elevation, azimuth, and range values
for ballistic trajectories. In fully automatic systems, it includes controlling actuators to
position the weapon aimpoint.

System requirements: Real-Time Response, Numeric Accuracy.

Runtime Environment Features Required (Prioritized): Interrupt Management, I/O
Management, Commonly Called Code Sequences, Time Management.

S.4 Simulation Systems

Brief description: Simulation systems (or more correctly, emulators) are used to provide the
actions of the systems ﬂé:_{ emulate without having the expense or schedule delay of the real
system. They are typically used to test equipment that would normally connect to the
simulated device, or to provide early feedback to designers on how a system will behave
under controlled circumstances.

System requirements: Real-Time Response, H/W Interface, Distributed Processing,
oncurrency, Periodic Processing, Numeric Accuracy, Message Processing, Hig
Throughput.

Runtime Environment Features Required (Prioritized): Time Management, Interrupt
Management, Rendezvous Management, I/O Management, Dynamic Memory
Mabagement, Processor Management.

5.5 C3I Systems

Brief description: Command, Control, Communications, and Intelligence systems typically
arﬂe’_:i used to assist in battle management at various levels, from front-line troops to top-level
officers.

System requirements: Fault Tolerance, Distributed Processing, Multi-Level Security,
oncurrency, Continuous Operation, Message Processing. Space based C3I systems
frequently have Program/Data Size Limitations as well.

Runtime Environment Features Required (Prioritized): 1/O Management, Rendezvous
Management, Dynamic Memory Management, Time Management, Exception
Management, Task Activation, Task Termination.

5.6 Operating Systems

Brief description: Operating Systems control the execution of programs running on one or
Mmore processors.

System rements: H/W Interface, Fault Tolerance, Distributed Processing, Multi-level
Security, Concurrency, Message Processing.

Runtime Environment Features Required (Prioritized): Processor Management, 1/0
Management, Dynamic Memory Management, Task Activation, Task Termination, Target

232-

Guideline to Select, Configure, and Use an Ada Runtime Environment
Houéekeeping Functions, Exception Management, Interrupt Management, Time
Management.

5.7 Navigation Systems

Brief description: Navigation systems determine the current position, direction, velocity, and
acceleration of the vehicle in which they are contained. v

System requirements: Real-Time Response, Periodic Processing, Numeric Accuracy,
Message Processing.

Runtime Environment Features Required (Prioritized): Interrupt Management, Rendezvous
Management, I/O Management, Commonly Called Code Sequences.

5.8 Artificial Intelligence

Brief description: Al systems mimic human behavior to a greater degree than typical
computer based systems.

System requirements: High Throughput, Distributed Processing.

Runtime Environment Features Required (Prioritized): Dgamic Storage Management,
Commonly Called Code Sequences, I/O Management for Data Base driven systems, and
Processor Management for parallel systems.

5.9 Robotics/Process Control

Brief descn'ﬁtion: Robotics and Process Control systems are characterized by having the
ability to physically manipulate the environment in which the are located.

System requirements: Real-Time Processing, H/W Interface, Distributed Processing,
ncurrency, Numeric Accuracy, Continuous Operation, Message Processing.

Runtime Envirnonment Features Required (Prioritized): Interrupt Management, Rendezvous

Management, I/O Management, Processor Management, Time Management, Exception
Manageme-it.

-233-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6. Guidelines

This guideline contains the following three sections: To Select a runtime environment, To
Configure a runtime environment, and To Use a runtime environment.

6.1 To Select a Runtime Environment

This section contains a checklist of questions an application developer should consider
before actually making the commitment to use a particular runtime environment for a given
application. Once the checklist has been refined to address the system requirements, the
compiler vendor should be approached for the specifics. The "Ada-Europe Guidelines for
Ada Compiler Specification and Selection” (7] was used as a starting point for this
information. It was augmented to include additional considerations specific to real-time
applications.

6.1.1 Documentation

Complete and accurate documentation is essential for real-time systems development.
Often predictability is just as important as performance. A software managers’ greatest fear
is discovering an undocumented "feature” of some vendor supplied software which prevents
progress. Projects can be delayed weeks or even months while trying to isolate subtle
interactions of an executive and finding a solution once the anomaly is understood. Typical
documentation may consist of a selection of the following:

a.; Installation Guide
b.) Appendix F of the reference manual
c.) User Reference Manual
d.; Target Reference Manual
e.) and/or Runtime Configuration
f.) Runtime Libraries
g. Program Libraries
.) Implementation Details
i.) Ada Compiler Validation Summary Reports (usually not supplied by the
compiler vendor, available through S)

Which documents listed above are available to the user?
Is there a séparate charge for specific documentation?
6.1.2 Degree of Configurability

Before actually selecting the compilation system to be used for a particular application it is
important to know its degree of configurability.

Questions to ask:

What features are configurable (ie. interru';)ts, runtime initialization, runtime libraries,
tasking algorithm, timer resolution, et’_cl.‘). A more extensive list of configurable
components is provided under the section "To Configure a Runtime Environment" below.

Can the runtime system be configured by the user through a linker?

-234-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Are there any tools or components available which assist in customizing the runtime
library?

Is the configurable data used by the linker provided to the user for review, modification,
and configuration management?

Is the implementation of the runtime features organized so that some modules of the
runtime can be excluded from the application’s execution image if the application does not
require features implemented by those modules?

Is the documentation adequate?
6.1.3 Chapter 13

It is important to find out to what extent features of Chapter 13 are implemented by the
compiler on the target machine.

Questions to ask:

Are there any restrictions on the representation clauses and implementation dependent
features such as:

a.) Length Clauses
b.) Enumeration Representation Clauses
¢.) Record Representation Clauses
d.; Address Clauses
e.) Interrupts (entry address clauses)
f.) Size Representation Attributes
ﬁ; Fixed Point SMALL Attributes
.) Machine Code Insertions
i.g Interface to Other Languages
{'; Unchecked Storage Deallocation
.) Unchecked Type Conversions

Does the compiler support fast interrupts (i.e., restricted interrupt entries)?
6.1.4 Appendix F

The reference manual of each Ada implementation must include an asppendix (called
Appendix F) that describes all implementation-dependent characteristics. [5]

Questions to Ask:

What is the form, allowed places, and effect of every implementation-dependent pragma?
Wh-~t are the names and types of every implementation-dependent attribute?

What is the specification of the package SYSTEM?

What conventions are used for any implementation-generated names denoting
implementation-dependent components?

-235-

Guideline to Select, Configure, and Use an Ada Runtime Environment
What is the interpretation of expressions that appear in address clauses, including those for
interrupts?
Are there any implementation-dependent characteristics of the input-output packages?
6.1.5 Target Dependent Information
Target dependent information is needed by the semantic analysis part of an Ada compiler.

bE;:amples include the size of INTEGER type, and the memory model. It can be supplied

a.; recompiling packages STANDARD and/or SYSTEM
b.) a parameter file, or command line options

c.; incorporating a package which is linked into the compiler,
d.) being built into the compiler.

Questions to ask:

How is target dependent information supplied to the compiler?

How easy is it to change for a new target?

What is the specification for package STANDARD?

6.1.6 Target Initialization

Target dependant actions might be required to initialize the target following power-up or a

reset-sequence. This would be modified for targets that have different initialization
requirements. Some requirements might pertain to:

b.) Interrupt Enable
¢.) Memory Management Setup
d.) Co-processor Setup

Questions to ask:

What configuration parameters are supplied with the compiler?

a.§ Processor Mode

What assumptions (if any) are made about the target’s state before initialization?
What default declaration, and purpose, does each parameter have?
What steps are followed when initializing the target machine?

Does the Ada runtime depend upon static initialization (parameters fixed at link time), and
if not how does this effect ROM and RAM?

Are there configuration routines for which user implemented routines may be substituted?

6.1.7 Target1/O

-236-

These types of problem usually do not manifest themselves in obvious ways, but rather
result in working but unreliable systems. They may pass the acceptance testing and operate

properly for months only to fail in a catastrophic fashion during a critical moment.

It is hoped that this guide will assist software developers through some of the problems in
adopting Ada for real-time embedded projects. By providing information on how Ada
implementations operate, there will be a reduction in the uncertainty associated with
switching from assembly language executives, where every aspect is provided in minute

detail, to Ada where the executive functions appear as a black box (or magic).

C ey mﬁ'- - e

Guideline'to Select, Configure, and Use an Ada Runtime Environment

Target 1/O might be modified when targets use a different I/O device than originally
supplied by the compiler. Devices which may vary for different targets are:

a.; Serial ports
b.) Parallel ports
c.) Monitors
d.) Disk drivers
Questions to ask:
What I/O devices does the compiler support? (i.e. Serial I/O, Parallel 1/0O)

Are the standard I/O devices and file systems functional on embedded systems without
change? If so, what packages are affected by this and what are their limitations?

Is there a facility available which allows the I/O packages to give a program running on the
target system access to the host file system?

6.1.8 Target Timer
The target timer might be modified when targets use a different timer device or the timer
device is located elsewhere than the compiler originally supplied. Timer devices might vary
in the following way:
a.; Configuration
b.) Timer interrupts
¢.) Tick Interval
Questions to ask:
Is the timer configuration necessary on the bare machine?

If no references to time are made within an application, can all time-related runtime code
be eliminated?

How is the timer interrupt routine declared and is it capable of modification?
6.1.9 Data Representation

The compiler vendor should provide details as to how the various Ada types are
represented. This is especially important if other languages are to be used with Ada or if

cial I/O routines are to be written. Data representation can be categorized under the
ollowing headings:

a.) Addressing Structure (segmented, linear, paged)
b.) Alignment Restrictions (word; byte)

¢.) Type Implementation (i.e. Character, Integer, Boolean, Floating Point,
Enumeration, Access, and Record)

237-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Questions to ask:

What is the mapping of scalar types and subtypes?
What is the mapping of arrays (column major order)?
What is the mapping of records without discriminants?
What is the mapping of records with discriminants?

What is the effect of having arrays depending on discriminants? (Is the heap used for such
objects under certain circumstances?)

What is the mapping of access types?
What is the effect of pragma PACK?
What predefined types are supported (i.e. LONG_INTEGER, SHORT_INTEGER)?

What are the rules governing the conversion to and from floating point types (i.e.,
rounding)?

Whatd;are the calling conventions of subprograms and how are non-scalar parameters
passed?

6.1.10 Implementation of Tasking

A task logically operates in parallel with other parts of a program. It is written as a task
specification (which specifies the name and formal Farameters of its entries), and a task
body which defines its execution. A task unit is one of the kinds of program unit. A task type
is a type that permits the subsequent declaration of any number of similar tasks of the tvpe.
A value of a task type is said to designate a task. [5] Some facilities which are provided tor
the implementation of tasking are:

a.) Task Creation
b.) Queuing

¢.) Timing

d.) Scheduling

e.) Task Dispatching
f.) Rendezvous

g.) Termination

Questions to ask:

What is the storage management techni%ue used (e.g. acquisition of stack and heap space
for a new task) in a multitasking program?

What is the method of implementing the Ada rendezvous mechanism? For example, an

Ada runtime kernel or monitor may be defined, or the implementation may rely on target
operating system facilities.

-238-

Guideline to Select, Configure, and Use an Ada Runtime Environment
In the absence of latencies due to application software, what is the guaranteed accuracy of
the delay statement, and what application characteristics can alter this basic accuracy?
Is tasking supported on multiprocessor architectures?

What is the method used for associating external interrupts with task entries?

.Jﬂzat.&ﬂsgnga tigyzagiens are possible and what are the circumstances under which they
* can be ac evecf?? w

6.1.11 Interrupt Handler/Interrupt Vectors

External events and incoming data are typically handled by interrupt handlers. The
interrupt vector directs the transfer of control to the appropriate handler.

Questions to ask:

What mechanisms are supported for application software to handle an interrupt?
How do the interrupt vectors used by the runtime get initialized?

Are software interrupts (traps) supported in the same way as hardware interrupts?

What restrictions are imposed on interrupt handlers with regard to accessing data outside
the local scope of the handler?

6.1.12 Storage Management

The following are four classes of storage allocation classifications for a typical Ada
program.

a. Access - an access value is either null or refers to an object created by an
allocation (storage is typically allocated from the heap).

b.) Local - used for objects that are declared in subprograms or in gackages
nested with}? subprograms. Local storage is typically allocated from the
runtime stack.

c.) Static Allocation - Used for objects only when they exist throughout the
ENTIRE execution of the program which contains the objects.

d.) Temporary - Used for non-scalar values resulting from expressions or

functions. Such storage is allocated from the runtime stack or heap when
needed and released once the value is discarded or assigned.

Questions to ask:

What is the primary stack management technique being used? (Main program stack.)

Is there a secondary stack management being used? (Dependent task stacks.)

-239-

Guideline to Select, Configure, and Use an Ada Runtime Environment

What is the method of allocating and deallocating storage for tasks?
How are access type collections managed?

How is the heap managed?

What is the storage reclamation (garbage collection) technique used?
What is the runtime system storage size?

6.1.13 Subroutine Call and Parameter Passing Conventions

The method used for passing parameters (especially for calling non-Ada subprograms) must
be known. Some calling conventions and parameter handlings are:

a.) Call Site - An example is when the responsibility lies on the user to strip
parameters from the stack upon a return. (calling conventions)

b.) Stack Frame & Prologue/Egilog Conventions - This pertains to the
direction that the stack grows, the position of the frame pointer, and the
position of the stack pointer. (calling conventions)

¢.) Descriptor Block - parameters are accessed indirectly through a descriptor
table (parameter passing convention).

d.) The representation of Boolean, Fixed Point, and Floating Point arguments.
(parameter passing conventions)

Questions to ask:
What is the parameter passing method used?

What is the mechanism used for returning results from a function (especially where the
result is a record or unconstrained array type)?

6.1.14 Saving Machine State During a Context Switch

Depending on the application, rc‘fisters and floating point coprocessor context may or may
not be saved and must be changed as required.

Questions to ask:

Under what circumstances do the registers get saved in a context switch, especially floating
point registers?

6.1.15 Exception Handling
To raise an exception is to abandon normal program execution so as to draw attention to

the fact that the corresponding situation has arisen. Executing_l§home action, in response to
the arising of an exception, is called handling the exception. The compiler vendor should

-240-

Guideline to Select, Configure, and Use an Ada Runtime Environment

describe the mechanism for finding the appropriate handler when an exception is raised. [5]
Exception handling is comprised of the following:

a.) Raise Action - Result of a raise statement or failed runtime check (i.e.
overflow)

b.) Trap Action - A hardware initiated exception

c.) Exception Propagation

Questions to ask:

What is the exception identification scheme used? (How are exception numbers
allocated?)

What is the mechanism used for exception handling?

What is the overhead associated with using exception handling?

What is the relationship with hardware and host operating system exceptions?

6.1.16 Unhandled Exceptions

A procedure which is a "last resort” handler should be provided for exceptions that are

propagated out of an Ada program. This provides a useful debugging tool with compilation
systems that provide a sparce-level trace back.

Questions to ask:

Does the compiler provide debugging and diagnostic messages when an exception causes
program termination?

6.1.17 Generics

A generic unit is a template either for a set of subpmfram: or for a set of packages. A
subprogram or package created using the template is called an instance of the generic unit.
A generic instantiation is the kind of declaration that creates an instance. A generic unit is
written as a subprogram or package but with the specification prefixed by a generic formal
part which may declare generic formal parameters. A generic formal parameter is either a
bype, a subprogram, or an object. A generic unit is one of the kinds of program unit. (5]

The compiler vendor should describe the runtime implications of generics.
Questions to ask:

What.ar.e the girc;umstances under which it is possible to share code between two different
generic instantiations? Is any user control available?

Is there any additional object code or data requirements imposed by the use of generics
(especially when code sharing is in use)?

Are there any limitations to the compilation of generic units?

-241-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6.1.18 1/0 Interfaces

The compiler vendor should describe the I/O which the runtime supports. The facilities that
would be supported would be found in:

a.g Package Direct_10

b.) Package Sequential_ IO

33 Il;gz]l:ggz Eﬁgveuo

Questions to ask:

What is the functionality of the above listed I/O packages with nonstandard I/O devices?
What are the limitations of the above listed I/O packages with nonstandard I/O devices?
Is an interface to the target provided for Low_Level_10?

Is formatted 1/O available?

Is binary I/O available?

Are there any restrictions on types that can be instantiated for input-output?

6.1.19 Compiler Capacity and Tool Availability

When selecting a compilation system it is important to investigate the other tools available,

such as: design tools, library management, configuration management, and debugging. An
integrated toolset is best.

Questions to Ask:

What are the capacities of the compiler (i.e. number of nested loops, number of nesting
levels in procedures which are separately compiled, number of variables allowed)?

What are the known compiler deficiencies?

Are design tools provided?

Are configuration management tools provided?

Are library management tools provided?

Are debugging tools provided?

Are test support tools provided?

What process must be followed for the inclusion of the runtime system into an application?
Are there any tools or components available which assist in customizing the runtime

library?

-242-

Guideline to Select, Configure, and Use an Ada Runtime Environment

6.2 To Configure a Runtime Environment

Although the instruction set of a particular architecture provides a level of standardization,
features such as main memory size, method of I/O, memory management, floating point
coprocessors, and power up sequences are necessarily machine dependent. For this reason,
the user will probably need to make certain alterations to the runtime support provided to
fit a particular environment.

This section will present the features that may be configured into a runtime. However, not
all vendors provide the same degree of configurability, or provide the same methods of
configuring the components. For example, there are essentially three configuration
mechanisms:

1. User modifies vendor supplied runtime routines (and recompiles, reassembles, as
necessary). Usually there are two parts to the runtime, a part the user can configure,
which is referred to as user-configurable, and a permanent part, or non-configurable
Fart of the runtime. The user-configurable code is typically a set of assembly
anguage routines, called from the permanent part of the RTS and generated code.
Calls to the user-configurable code can be made directly from an Ada program via
pragma INTERFACE. [10] A set of rules or conventions must be followed to ensure
compatibility between the user-configurable and non-configurable parts of the
runtime,

2. Linker options. These are switches on the link phase and can span the gamut from
very simple to complex. They will be discussed in more detail below.

3. Vendor supplied pragmas.

Configuration of the RTE takes place after the application developer has selected a
compilation system. Hopefully, the compiler selection was performed with the system
requirements in mind. Section five of this report details typical system requirements. The
list is representative rather than exhaustive, therefore, any given system will most likely
have some combination of the requirements detailed there.

It is important to obtain all of the documentation for the selected compilation system.
Vendors provide a separate manual titled "Target Handbook", or "Runtime System
Configuration Guide". A technical person to contact at the vendor site is often very helpful.
This may require a maintenance contract with the vendor, which is generally recommended.

Features that typically need configuring are: bootstrap (power up) sequences, timers,
interrupt vectoring, main memory configuration parameters, and method of doing I/O.
These are typically machine-dependent and the user will probably need to make certain
alterations to the runtime support to fit a particular environment.

6.2.1 Bootstrapping
The start up code (or bootstrap code) is the module (or modules) invoked when the system
is reset. Its primary function is to initialize the stack, transfer control to the RTS execution

code, and possibly terminate the program upon completion. Other initializations performed
at this time may include:

-243-

Guideline to Select, Configure, and Use an Ada Runtime Environment

- Initialization of the main program stack.

- Initialization of primitive storage management data structures.
- Hardware initialization.

- Initialization of I/O routines.

6.2.2 Interrupt Vector

The interrupt vector table must be established before the execution of Ada code begins.
The table can be initialized by:

- Placing the preset values of the interrupt vector with user values (via a table).

- Explicitly initializing the values with user written code. This code must be called or
executed by the start up code.

- Speci?indg address clauses for task entries in the Ada program.

- Provide default handlers for all vectors.

The first method is typically used in a bare system, the second method used with an
underlying operating system.

6.2.3 User-Configurable Module Dependencies
For each user-configurable module, the following must be known:

- Its name as known to the non-configurable runtime modules.
- Any input parameters required.

- Auy output parameters returned.

- Any side effects resulting from its usage.

- Any user-configurable runtime module dependencies.

- Any non-configurable runtime module dependencies.

Special care should L¢ made to preserve registers, especialiy the interrupt status.
6.2.4 Timer Interrupt
The timer interrupt has many uses. Depending on how it is implemented, it can be used:

- to allow user direct access to the timer interrupt

- by package CALENDAR

- by taskin%/ time-slice scheduling

- by the delay statement in a program that uses tasking.

Resolution of timer interrupts is usually programmable. Be advised that if timer interrul?ts
are set to occur frequently that the overhead for this function could be substantial. For
cxample, if interrupts are programmed for evel?' millisecond, and the clock interrupt
routine takes 300 microseconds, 30% of the CPU time will be spend servicing the timer
interrupts. Since timer interrupts are often a high g‘riority, care must be taken to insure that
lower level interrupts will not be deferred beyor« their deadline by a timer interrupt.

6.2.5 Linker Options

Linker switches/parameters could be used to spec:fy:

-244-

Guideline to Select, Configure, and Use an Ada Runtime Environment

- whether or not a floating point coprocessor is to be used in the system.

- the total amount of memory available.

- the amount of storage to be allocated to the system heap.

- the amount of storage allocated to the collection area.

- the amount of storage allocated to the stack area.

- the minimum size of an element on the heap.

- the maximum number of active tasks. This would be used to determine the amount
of storage required by the task control blocks.

-a Eointer which designates the beginning of the task control block area.

- whether time-slicing is to be enabled.

- the lenfgth of time for the time-slice interval.

- the default size of a library task stack. A library task is a task where the task body is
declared in a package at the outermost level.

- the main l)rogram stack size.

- the default priority for all tasks, that can be overridden by the pragma PRIORITY.

- the length of time between timer interrupts and the resolution of the delay timer.

- the lowest interrupt permitted in the Ada code for standard interrupt tasks, i.e., an
interrupt entry defined in an address clause.

- the highest interrupt accessible in the interrupt vector table for Ada code using
standard interrupt tasks. i.e., an interrupt entry defined in an address clause.

- the range of words reserved for the interrupt vector table used for Ada standard
interrupt tasks, i.e., and interrupt entry defined as an address clause.

Special care must be taken to insure that the switches used during linking are maintained by
corfiguration management. Typically this is achieved by performin% the link by using a
command file which is placed under configuration management control.

6.3 To Use a Runtime Environment

There are two essential aspects to using an Ada RTE. These are communicating tne
characteristics of a configured RTE to the software designers and maintaining the
configuration for future releases. Since the behavior of an Ada program can vary
tremendously based on the composition of the RTE, it is crucial that the dependencies
between the application program and the RTE be well documented.

The documentation of the configured RTE should be in the form of a user’s guide which
would provide details on how RTE features are supported, and Ada source comments
which indicate the dependence on those features within the application program. The
user’s guide should be required reading for all software designers, and should assist them in
their aralysis and program architecture. For example, if the RTE implements a time-sliced
based scheduler, this design decision is likely to have a major impact on the software
architecture of a real-time system.

Once the software is designed, the dependencies on the particular underlying RTE should
be well documented in the form of regular comments that can be automatically extracted
from the source code. Typical methods suigest the use of specific keywords in the
embedded PDL (program design language) such as:

"--/Requires: Automatic Storage Reclamation", or

"--/Assertion: Priority-based preemption guaranteed within S00 microseconds".

-245-

Guideline to Select, Configure, and Use an Ada Runtime Environment

These dependencies should obviously be summarized in the "Software Detailed Design
Document (SDDD)".

The second aspect: RTE configuration management, imposes very serious considerations
on an Ada software development. Issues such as validation, reliability, maintainability, and
liability, complicate real-time applications that require modifications to the RTE. The main
overriding concern is guaranteeing that subsequent "builds” of a system have the proper
RTE composition. At a minimum, this implies that the RTE generation/configuration
process is somewhat automated and the RTE is generated using this process prior to critical
system builds.

Ideally, the RTE build Frocess should: a.) document all of the configuration parameters
(including versions of all included components), b.) provide a unique serial number for the
documentation file, ¢.) and incorporate the serial number in the binary image of the RTE.
This would permit backtracking of binary to the source level composition.

The configuration issue is further complicated by design changes that require different RTE
composition and/or new maintenance releases of the vendor supplied RTE. The scope of
all RTE changes must be well understood, and reviewed with respect to the application
program RTE dependency summary discussed above.

The interaction between application programs and the Ada RTE can introduce anomalies
that manifest themselves in insidious ways. This dictates extreme care when making anK
RTE modifications. Experience has provided numerous examples of programs that cras
after several days of seeminfly flawless execution; or programs that deadlock at apparently
random intervals because of small changes made to the RTE. Clearly, RTE management
should be performed only by the most competent personnel on the development team.

-246-

Guideline to Select, Configure, and Use an Ada Runtime Environment

7. Effects of Runtime Issues on the Development of Reusable Software

The flexibility allowed in Ada runtime implementations makes it possible to solve a wide
variety of problems with the Ada language. However, this flexibility usually introduces
serious compatibility problems when attempting to reuse software, especially in real-time
embedded applications. These applications have stringent timing requirements which make
their correct execution much more sensitive to the implementation approach. For example,
a queue manager may depend on access types or the raising of an exception on an access
check. The overhead associated with allocating and deallocating storage, and in raising
exceptions can vary substantially among different runtime configurations. The impact is
that a "reusable" software component that works well on one runtime configuration may
have very poor performance on another configuration.

In cases where storage for allocators is not reclaimed (for performance reasons), some
software components may cause the entire system to fail unexpectedly due to a storaﬁe
error. The error may even occur in another subprogram that ran out of storage because the
"reused” component allocated too much storage. This make isolating the problem very
difficult because many subprograms share a commcn resource (heap memory).

The clear implication is that “reusable” components may not use any implementation
dependent features of the language. This is, of course, impossible to achieve if efficiency is
a concern. What is required instead is "configurable reusable components". This can be
achieved tg' fproviding a large collection of components, where the appropriate version can
be selected for each particular application. Given the number of variants in the runtime, it
is impractical to supply all possible permutations, but rather some mechanism should be
suE‘p ied to combine characteristics of components. To a large extent, this may be
achievable using generics. It may also be useful to have a tool which would "build" the
correct component based on supplied specifications of requirements. That is, by supplying
thé tool with the characteristics of the configured runtime, it could select the combinations
of reusable components that match the runtime capability. In the above example where no
storage reclamation is done, the component "build" tool would not select a reusable
component that is likely to allocate and deallocate storage continuously throughout
program execution.

Reusability for real-time software is generally improved as the available processing capacity
%’ncludin memory size) greatly exceeds what is required for an optimal implementation.

is tends to eliminate the fine tuning that is typically required in real-time applications.
To the extent that the cost effectiveness of reusing software outweighs the additional cost of
hardware (processors/memory), future systems may find reuse more attractive for
embedded systems. Clearly, design approaches which allow additional processing capacity
to be effectively utilized (the addition of more processors) lend themselves to being able to
accept some performance penalty for using non-custom software. In return for the
additional hardware cost, the development and maintenance costs are likely to be far less.
The tradeoff must be made on a case by case basis and will depend largely on the number
of systems to be produced.

-247-

Guideline to Select, Configure, and Use an Ada Runtime Environment

8. Summary

The period of performance for this contract spanned nine months. The information
contained in this report represents the state of tﬁc technology at the time it was issued.
Reports of this nature can become outdated if not maintained, but it is felt that even though
a particular version of the compiler presented may become obsolete, important information
can be learned from the contents of this report for at least the next few years. For example,
the guidelines section will not change dramatically until the tcchnology changes
dramatically. It is believed this section will remain valid for about five years.

A repert <f this nature was necessary because oc the void of information suppiieu by

vendors regarding the runtime specifics. Users were having difficulty getting detailed

information on Ada implementations. As a result, they frequently selected compilation

iiv]stems that did not match their application requirements. The difficulties they had, due to
e poor match, produced a bad image for Ada, in general.

Providing information on compilers will help alleviate the problems and promote the wide
use of Ada, and that was the intent of this report. For the most part, it was difficult to
obtain the runtime information from the vendors. Although it is recognized that their main
function is to produce a "production quality" compiler, this information must be readily
accessible for the user to choose a compiler implementation which suits a given application.
Often it took repeated phone calls and contact with a technical person to get the proper
answer. In fairness to the vendors, some were very helpful and informative.

Compilation systems are maturing, and this can be seen from the issues the compiler
vendors are now addressing. A few years ago, the push was towards validation. Now that
validation has been achieved for most vendor products, optimizations and Chapter 13
features are being addressed, as well as tasking problems and runtime system variants. A
runtime system variant may contain such desired features as semaphores, mailboxes,
different tasking schedulers, etc., which are not part of the Ada language standard, but are
often required in real-time applications.

In general, configurability of the runtime system is being addressed by the vendors, runtime
sizes are decreasing, generated code quality (due to optimizations) is improving, and
Chapter 13 features are being implemented. All of these are features that users have
waited years for with great anticipation.

Other difficulties included obtaining the AVO reports for a given compilation system. The
current mechanism to obtain validation reports is unworkable. Because of multiple
validation sites and long delays between validation and the availability of the report from
the National Technical Information Service (NTIS), it is extremely difficult to obtain the
reports on compilers of interest. One way to avoid this might be to have all information
contained in the validation report maintained in machine readable form in a very regular
format. This information should be forwarded io the Ada Information Clearinghouse,
which would then be responsible for placing it in a directory on the AJPO host.

Finally, a serious potential customer should contact the AdalC directly to obtain the most

recent validation information, rather than relying solely on the published AdalC listing of
validated compilation systems. The AdalC listing changes monthly and the printed listing

-248-

Guideline to Select, Configure, and Use an Ada Runtime Environment

lags behind the actual validated compiler status. The AdalC listing does provide a number
for the user to call to check on the most recent status.

-248.1-

Guideline to Select, Configure, and Use an Ada Runtime Environment

9. References

1] "Software Engineering Issues on Ada Technology Insertion for Real-time
mbedded Systems", final report delivered to Center for Software Engineering,
CECOM, by LabTek Corporation, September 30, 1987.

[2] Ada Runtime Environment Working Group of ACM SIGAda, "A Framework for
Describing Ada Runtime Environments", October 15, 1987.

[3] Ada Runtime Environment Working Group of ACM SIGAda, "First Annual Survey
of Mission Critical Application Requirements for Runtime Environments",
December 1, 1987.

[4] Ada Letters, "Ada Compiler Validation Procedures and Guidelines", ACM
SIGAda, Volume VII, Number 2, March, April 1987.

S} ANSI/MIL-STD-1815A-1983. "Reference Manual for the Ada Programming
guage", American National Siandards Institute, Inc., 1983.

[6] The Info-Ada Newsletter, Volume 2, Issue 2, February 1988, Volume 2, Issue 3,
March 1988, Vol. 2, Issue 8, August 1988.

[7] Nissen, PJC, Wichmann, BA, and others, "Ada-Europe Guidelines for Ada
Compiler Specification and Selection", Ada Letters, Volume III, Number S,
March, April 1984.

[8] "An Approach to Tailoring the Ada Runtime Environment", interim report
dglsigered to Center for Software Engineering, CECOM, by IIT Research Institute,
1988,

9] -“Real Time Performance Benchmarks for Ada", interim report delivered to
genter fggs Software Engineering, CECOM, by Technical Management and Service
orp., 1988.

10] DDC-I Ada Compiler S{stem, Run-Time System Configuration Guide for DACS-

0x86, Document No: DDC-I 5801/RPT/66 Issue 3, DDC-I Ada Compiler System User’s
Guide for DACS-80x86, Document No.: DDC-I 5801/RPT/62, Issue 9, DDC-I, Inc.,
Phoenix, AZ, 1988.

[1;] User Manual, Tartan Ada VMS/1750A, Version Number V1.0, Tartan
boratories Inc., Pittsburgh, PA, 1987.

BZ] System Designers’ Ada-Plus VAX/VMS, MC68020 Vol 1, 2, and 3, Reference:
.A.REF.AF[BC-MH], Issue 3.0, System Designers, Cambridge, MA, 1988.

13] Verdix Ada Develogment System VADS, Version 5.41 for SUN-3/UNIX =>

otorola 68000 Family Processors, Document No. VAda-040-13125, Verdix Corp.,
VA, 1987. :

-249-

Guideline to Select, Configure, and Use an Ada Runtime Environment

(14] Performance Issues Working Group of ACM SIGAda, PIWG Test Suite dated
January 1988.

[15] Alsys PC AT Ada Cross-Compiler for the Intel iAPX86 Famiily, "Cross
Il)ges\f;sl%l)sment Guide, Appendix F, Ada Probe User’s Guide", Version 3.2, August
, Alsys.

(16] Technical Summary for Alsys Cross Compilation System for Intel 80x86,
Version 3.21, July 11, 1988, Alsys.

[17] Technical Summary for Alsys Cross Compilation Systems for Motorola M680x0
(Version 3.5), July 11, 1988, Alsys.

[18] AdalC Newsletter, Vol. VI, No. 2, July 1988. AdalC Newsletter, March
1988, AdalC Newsletter, December 1, 1987.

g9] Technical Specification, Rational R1000 to M68000 Family Cross-
Rc:v_eloplrnent Facility, Document Control Number: 6001, Rev. 0, November 1986,
ational.

[20] Technical Specification, Rational R1000 to MIL-STD-1750A Cross-
Ip?e\(eloplment Facility, Document Control Number: 6000, Rev. 0, November 1986,
ational.

[12918]6 Technical Summary, Ada-86, Document: 6027-1, SofTech Inc., Waltham, MA,

22] "4th Annual Directog of Validated Ada Compilers", Defense Science &
lectronics, February 1988.

[23] Appendix F, Implementation-Dependent Language Features, Rational MIL-STD-
1750A Cross Development Facility, 6/15/88.

[24] Appendix F, Implementation-Dependent Language Features, Rational M68000
Cross Development Facility, 4/15/88.

[25] TeleGen2 User Guide for VAX/VMS to 1750A Targets, UG-1030N-V1.7
(VAX.1750A), TeleSoft, January 1988.

[26] TeleGen2 User Guide for VAX/VMS to Embedded MC680X0 Targets, UG-1002N-
V (VAX.E68), TeleSoft, November 1987.

27] User Manual, Tartan Ada Runtime Client Package, Draft 880229.1559,
ersion 1.0, Tartan Laboratories Inc., 1988

(28] User Manual, Tartan Expanded Memory Package, Draft 880325.0905, Version
1.0, Tartan Laboratories Inc., 1988

Guideline to Select, Configure, and Use an Ada Runtime Environment

[29] Ada Compiler Validation Summary Report: SofTech, Inc., VAX 11/780 and
11/78S host for Intel iAPX 8086, Intel iIAPX 80186, Intel iAPX 80286 real mode,
and Intel iAPX 8086 protected mode targets. Ada joint program office 1987.

30] Ada Com&i)lgr Validation Summa i(;?ort: System Designers, SD VAX x
9<§160rola M68000/10 Ada-Plus, 2A.00 8600 host for MC68010 target, June
1986.

{31] Ada Compiler Validation Summary Report: CAP Industry Ltd., CAPTACS-E286,
V1.0 DEC VAX 8800 host for Intel 80286 target, December 1986.

[32] Ada Compiler Validation Summary Report: TeleSoft, TeleGen2 E68, Version

3.11 MicroVAX 1I host for Motorola 68020, 68010, and Tektronix 8540 (M68010
CPU) target, September 1986. ,

2251-

Guideline to Select, Configure, and Use an Ada Runtime Environment

10 Appendix A

The following pages contain the survey submitted to the compiler vendors listed in section 4

of this report.

252-

Guideline to Select, Configure, and Use an Ada Runtime Environment

SURVEY OF RUNTIME ENVIRONMENT COMPONENTS

Instructions: Attached is a list of eleven components of a runtime environment as defined
by the Ada RunTime Environment Working Group (ARTEWG) of SIGAda. Please
indicate the storage overhead associated with each feature, in K bytes. Sizes should include
both code and data, not just code storage. We would prefer it it you could adhere to our
breakdown of runtime environment components, but if your breakdown is significantly
different, use a szparate sheet of paper and list each category with its storage requirement.
We are interested in the bare machine targets only. If your company provides more than
one bare machine target compiler, we would appreciate a response for each target. Just
duplicate the questionnaire as needed. Following the runtime environment components
section are seven additional questions.

Your responses will be used in a runtime environment study. The purpose of the study is to
provide information to the U.S. Army on how to configure a runtime environment. A copy
of the report will be placed in the public domain and will be provided to you upon request.
All compiler vendors of bare machine targets are being asked for tﬁcir input. Your
response is appreciated.

2 2 R s R SRR R R R R R R R R 222 R R SRR 2R 2 R R R 2 2222 22222 22 R R RER R R R R

HOST TARGET COMPILER DATE
VERSION

[3R 2 R R R R 2 R R R E R 2R R R R R R R RS R RS RREER2 222222 2222 R 2 2 R R R R R R 22 2

.253-

Guideline .0 Select, Configure, and Use an Ada Runtime Environment

For each of the following components of your runtime, indicate the storage requirements
§b0$ code and data). If your runtime does not support one of the features below, enter 0
cr the size.

DYNAMIC MEMORY MANAGEMENT — Kbytes

Responsible for allocation and deallocation of storage at runtime. Also detects when a
request for storage cannot be fulfilled, and for raising the exception STORAGE_ERROR
as appropriate.

PROCESSOR MANAGEMENT — Kbytes

Implements the assignment of physical processors to tasks that are "logically executing".
The processor management function is invoked by other components of the runtime
environment, in order to block and unblock tasks. It keeps a list of those tasks which are
"logically executing” and uses this list, in conjunction with the priorities of tasks, to
determine which task or tasks should be assigned to processors.

INTERRUPT MANAGEMENT — Kbytes

Responsible for initialization of the interrupt mechanism of the underlying computing
resource, and it is also responsible for resetting that mechanism after an interrupt has
occurred, if the architecture of the underlying computing resource requires such resetting.

TIME MANAGEMENT — Kbytes

Consists of all those portions of the runtime environment that will support the predefined
package CALEND and the imglementation of delay statements. If the underlying
comgluting resource offers enough functionality, the support of package CALENDAR is
trivial.

EXCEPTION MANAGEMENT — Kbytes

Function implements Ada semantics for exceptions: that is, it determines whether there is a
matching handler for the exception at hand, and if there is one, it transfers control to the
handler. If there is no matching handler, it invokes the Task Termination function to
terminate the task at hand or the main program.

RENDEZVOUS MANAGEMENT - Kbytes

Implements the semantics of the Ada rendezvous model. In order to do so, it utilizes
variables that are internal to the runtime environments. These variables reflect, among
other things, which tasks are blocked because they are waiting to rendezvous with other
tasks, and what the exact circumstances of these wait states are. The rendezvous
management function cooperates with the interrupt management function in the

-254-

Guideline to Select, Configure, and Use an Ada Runtime Environment

implementation of interrupt rendezvous, if the interrupt rendezvous is supported by the
runtime environment.

TASK ACTIVATION — Kbytes
At some J)oint after the task object has been created, the execution of the new task has to
be started. This is effected by the task activation function. This function is invoked by the
creator of a new task in order to start the new task’s activation (which is defined as the
execution of the declarative part of the task’s body). It may also be invoked by the new task
in order to signal the completion of that task’s activation.

TASK TERMINATION — Kbytes

Implements the set of rules for the completion, termination, and abortion of tasks.

1/0 MANAGEMENT o Kbytes

Consists of all those portions of the runtime environment that are provided for the support
of input and out%ut. This includes in particular all those functions that support predefined

packages from Chapter 14 of the Ada Reference Manual.
COMMONLY CALLED CODE — Kbytes
SEQUENCES

A "catchall” catzgory. It includes runtime routines in the classical sense: commonly called
sequences of code. Typical examples are operation for multi-word arithmetic, block moves
and string operations. Ada attribute calculations also fall into this category.

HOUSEKEEPING FUNCTICNS — Kbytes

Associated with the start up and termination of the execution environment of an Ada
program. Such actions include determination of the particular hardware and software
execution environment, setting of variables identifying same, processor and interrupt
initializations, and so on. Similarly, if a program terminates, control is typically returned to
some surrounding software whose state must be reset upon program exit.

IS ANY COMPONENT MISSING? —— Kbytes

lI)J¢sle th;s space to indicate what you feel is not covered by the above components. (Explain
ow.

.255-

Guideline to Select, Configure, and Use an Ada Runtime Environment

ADDITIONAL QUESTIONS CONCERNING RUNTIME ENVIRONMENTS

1. What is the granularity of the linker in selecting objects to load? (Check only one).
—ALL objects are always loaded.
—Any part of a library unit being required loads the entire unit.
—Individual subprograms may be extracted from packages only.
—Data objects that are referenced are allocated memory.
2. Is any user customization of the runtime possible? (Check all that apply).
——Yyes, by pragmas
—Yyes, by compiler switches
—yes, by mocglf}'ing/reglacing the source to selective runtime routines provided
the compiler vendor with the purchase of the coxanipiler (i.e. device drivers, etc.).
—yes, by modifying the source to the entire runtime (after purchasing it)
—no

3. What documentation is provided to help the user configure the runtime? (Title or titles
of manuals).

4. Does the compiler vendor provide services to customize the runtime for a particular
application?

—Yyes, —_no

If yes, what charges are associated with these services? (Explain as necessary).

5. What is the price for the source code for the runtime environment?

s , Of not for sale

Guideline to Select, Configure, and Use an Ada Runtime Environment

6. Can we contact you for any follow up questions or clarification of discrepancies?
——Yyes, —_no

If yes, Name:
Phone Number:

7. State any important questions which you feel should have been included in this survey.

257-

Guideline to Select, Configure, and Use an Ada Runtime Environment

SURVEY OF RUNTIME ENVIRONMENTS (Vv2.0)

LabTek Corp. is collecting information on Ada compilation systems to assist users in

selecting, configuring, and using Ada runtime environments. This work is sponsored by the

govclaimment, and the resulting catalogue is expected to be available to the public at cost of
uplication.

Thank you for responding to our request for information, which we were having some
difficulty obtaining from the compiler vendors. Your reply to the following questions will
be greatly appreciated. If you do not have information on a particular question, please skip
it and go on to the next one. If you have more than one target, we are primarily interested
in "bare" targets at this time.

Please return this form to:
LabTek Corp.
8 Lunar Drive
Woodbridge, CT 06525
Attn: Tom Griest

Thank you for your time and input.

Please indicate the "bare” machine compiler this survey pertains to, below:

SRS EXLES SR AL LEEEXLELSEL LS EEREL LS LSS ERSEEEELELSEE XL EBEXEE XL ESXXERRESES

HOST TARGET COMPILER DATE
VERSION
Your Name: Phone Number:

SESSELLLLEELS L L LESEELSEEEEVELEEEESRELLLERESESLELAEEEELXSEEEELEELEELERLEEBRNRS

s

Guideline to Select, Configure, and Use an Ada Runtime Environment

DEGREE OF CONFIGURABILITY OF THE RUNTIME ENVIRONMENT

1. What is the granularity of the linker in selecting objects to load? (Check only one).

—ALL objects are always loaded.

__A:(ljy part of a library unit being required loads the entire unit.

_El-ln ividual subprograms and/or data objects may be extracted from packages
only.

2. Is any user customization of the runtime possible? (Check all that apply).

——.by pragmas

—by compiler switches

—Dby linker switches

—by modifying/replacing the source to selective runtime routines provided

by the compiler vendor with the purchase of the compiler (i.e. device drivers, etc.).

——Dby modifying the source to the entire runtime (after purchasing it)
—not configurable

3. What documentation is provided to help the user configure the runtime? (Title or titles
of manuals).

4. Does the compiler vendor provide services to customize the runtime for a particular
application?

—_Yyes, __no

If yes, what charges are associated with these services? (Explain as necessary).

5. What is the price for the source code for the runtime environment?

$, OT not for sale

<259.-

Guideline to Select, Configure, and Use an Ada Runtime Enviromﬁent

6. The following questions are considered to be the "TOP 10" questions that must be asked
before deciding to use a runtime for real-time software.

6.1 a.) What is the resolution of the clock used for delay statements?

6.1 b.) How long, and for what reasons are interrupts disabled?

6.2. What rendezvous optimizations are performed? For example, when can the called task
operate in the-same context as the calling task?

6.3. What are the restrictions for representation clauses? (Attach separate sheet if
necessary).

6.4. What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.

6.5 What are the restrictions on pragma INLINE?

6.6 Is code "ROM"able?

Guideline to Select, Configure, and Use an Ada Runtime Environment

6.7 What is the specification for package STANDARD? (Attach separate sheet).

6.8 What is the specification for package SYSTEM? (Attach separate sheet).

6.9 Are machine code inserts supported?

6.10 What object types are supported by pragma SHARED?

7. Check the items below that are configurable for your runtime system. Fill in additional
items not found on the list in the spaces provided.

— Maximum No. of Tasks —— Dynamic Task Priority

—— Task Time Slice Default ——Semaphore Operations

—Timer Resolution —Exception Trace

—Default Stack Sizes —Fast Interrupt Entry

—Default Task Priority —Terminal I/O

—Optional Numeric Co-processor —Runtime System Variations (i.e. priority
inheritance)

-261-

Guideline to Select, Configure, and Use an Ada Runtime Environment

8. For each of the following components of the runtime, indicate the storage requirements
(both code and data). If the runtime does not support one of the features below, enter 0 for
the size. (See supplement for definitions, if needed).

DYNAMIC MEMORY MANAGEMENT — Kbytes
PROCESSOR MANAGEMENT — Kbytes
INTERRUPT MANAGEMENT — _ Kbytes
TIME MANAGEMENT ———Kbytes
EXCEPTION MANAGEMENT Kbytes
RENDEZVOUS MANAGEMENT — _ Kbytes
TASK ACTIVATION Kbytes
TASK TERMINATION — Kbytes
1/0 MANAGEMENT — Kbytes
ggaduh%%Nclég CALLED CODE — Kbytes
HOUSEKEEPING FUNCTIONS — Kbytes
IS ANY COMPONENT MISSING? (please Kbytes

list)

9. The name of a good technical contact at the compiler vendor?

Name:

Phone:

Thank -Yon!

262-

Guideline to Select, Configure, and Use an Ada Runtime Environment

SUPPLEMENT TO SURVEY V2.0
DESCRIPTION OF RUNTIME ENVIRONMENT COMPONENTS
AS DETERMINED BY THE ARTEWG

DYNAMIC MEMORY MANAGEMENT - Responsible for allocation and deallocation of
storage at runtime. Also detecis when a request for storage cannot be fulfilled, and for
raising the exception STORAGE_ERROR as appropriate.

PROCESSOR MANAGEMENT - Implements the assignment of physical processors to
tasks that are "logically executing”. The processor management function is invoked by other
components of the runtime environment, in order to block and unblock tasks. It keeps a list
of those tasks which are "logically executing" and uses this list, in conjunction with the
priorities of tasks, to determine which task or tasks should be assigned to processors.

INTERRUPT MANAGEMENT - Responsible for initialization of the interrupt mechanism
of the underlying computini resource, and it is also responsible for resetting that
mechanism after an interrupt has occurred, if the architecture of the underlying computing
resource requires such resetting.

TiIME MANAGEMENT - Consists of all those portions of the runtime environment that
will support the predefined package CALENDAR and the implementation of delay
statements. If the underlying computing resource offers enough functionality, the support
of package CALENDAR is trivial.

EXCEPTION MANAGEMENT - Function implements Ada semantics for exceptions: that
is, it determines whether there is a matching handler for the exception at hand, and if there
is one, it transfers control to the handler. If there is no matching handler, it invokes the
Task Termination function to terminate the task at hand or the main program.

RENDEZVOUS MANAGEMENT - Implements the semantics of the Ada rendezvous
model. In order to do so, it utilizes variables that are internal to the runtime environments.
These variables reflect, among other things, which tasks are blocked because they are
waiting to rendezvous with other tasks, and what the exact circumstances of these wait states
are. ‘The rendezvous management function cooperates with the interrupt management
function in the implementation of interrupt rendezvous, if the interrupt rendezvous is
supported by the runtime environment.

TASK ACTIVATION - At some point after the task object has been created, the execution
of the new task has to be started. This is effected by the task activation function. This
function is invoked bK the creator of a new task in order to start the new task’s activation
(which is defined as the execution of the declarative part of the task’s body). It may also be
invoked by the new task in order to signal the completion of that task’s activation.

TASK TERMINATION - Implements the set of rules for the completion, termination, and
abortion of tasks.

-263-

Guideline to Select, Configure, and Use an Ada Runtime Environment

1/O0 MANAGEMENT - Consists of all ihose portions of the runtime environment that are
provided for the su&port of input and output. This includes in particular all those functions
that support predefined packages from Chapter 14 of the Ada Reference Manual.

COMMONLY CALLED CODE SEQUENCES - A "catchall” category. It includes runtime
routines in the classical sense: commonly called sequences of code. Typical examples are
operation for multi-word arithmetic, block moves and string operations. Ada attribute
calculations also fall into this category.

HOUSEKEEPING FUNCTIONS - Associated with the start up and termination of the
execution environment of an Ada program. Such actions include determination of the
particular hardware and software execution environment, setting of variables identifying
same, Frocessor and interrupt initializations, and so on. Similarly, if a program terminates,
control is typically returned to some surrounding software whose state must be reset upon
program exit.

IS ANY COMPONENT MISSING? - Use this space to indicate what you feel is not
covered by the above components. (Explain below.)

