
May IM9 TIC FILE COPY UU-ENG--2214

COORDINATED SCIENCE LABORATORY
College of Engineering

I AD-A222 808

1 SINGLE-PASS
* MEMORY SYSTEM
* EVALUATION FOR

MULTIPROGRAMMING
U WORKLOADSI
I

Thomas M. Conte
Wen-mei W. Hwu DT1C

ITI

m .. I'IIELECTEj,

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

AMroved for Publ Rle.. Disug.os Unl teW.4

00 06 1 9 141

SECURITY CLASSIFICATION Of THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. .'qTRICTIVE MARKINGS

Unclassified Ae

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILAIIUTY OF REPORT
none Approved for public release;

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE distributiot unlimited
none

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2214 CSG-122 none

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab J (N &ppl&b) NSF, NCR, NASA, ONR
University of Illinois N/A I

6. ADDRESS (t, State, and ZIP Code) 7b. ADORESS (Oy State, end ZIP Code)
1101W. Springfield ANSF:1800 G Street, Washington, DC 20552

SW. SpdAvenue NCR:Personal Computer Div.-Clemson
Urbana, IL 61801 1150 Anderson Dr., Liberty, SC 29657

3 a. NAME OF FUNOINGSPONSORING Ob. OFFICE SYMBOL . PR NUMBER
ORGANIZATION (If applicable) NSFIIM
same as 7a. jN/A NASA: NASA NAG 1-613 ONR:N00014-88-K-0656

Sc. ADDRESS (CRt, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

same as 7b ELEMENT NO. NO. NO. ACCESSION NO.

I 1. TITLE (Include Security Clasfication)

Single-Pass Memory System Evaluation For Multiprogramming Workloads

12. PERSONAL AUTHOR(S)
Conte, Thomas M. Hwu, Wen-mei W.

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF RPPORT (Year, Month, Day) uS. PAG COUNT
Technical I FROM -TO I1990 May 21

16. SUPPLEMENTARY NOTATION
none

17. COSATI CODES I 18. SUBJECT TERMS (Contme on ,rvers if neceuary and identif by bc numbr)
FIELD GROUP SUB-GROUP memory system, cache performance, stack-based method

*i I multiprogramming

i9. ABSTRACT (Cotinue on reverse if necesary and idesfr by bock "wmberi
modern memory systems are composed oTeveis otcacntie memories, a virtual memory system, and
a backing store. Varying more than a few design parameters and measuring the performance of
such systems has traditionally be constrained by the high cost of simulation. Models of cache
performance recently introduced reduce the cost simulation but at the expense of accuracy of
performance prediction. Stack-based methods predict performance accurately using one pass
over the trace for all cache sizes, but these techniques have been limited to fully-
associative organizations. This paper presents a stack-based method of evaluating the per-
formance of cache memories using a recurrence/conflict model for the miss ratio. Unlike
previous work, the performance of realistic cache designs, such as direct-mapped caches, are
predicted by the method. The method also fncludes a new approach to the problem of the
effects of multiprogramming. This new technique separates the characteristics of the indi-
vidual program from that of the workload. The recurrence/conflict method is shown to be
practical, general, and powerful by comparing its performance to that of a popular traditional
cache simulator. The authors expect that the availability of such a tool will have a large/

20. DISTRIBUTION IAVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
]UNCLASSIFIEDAJNLIMITED C3 SAME AS RPT. C3 OTIC USERS Unclassified)

22a. NAME OF RESPONSIBLE INDIVIDUAL I22b. TELEPHONE (nlude Area Code 22c. OFFICE SYMBOL

DO FORM 1473. s4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCLASS IFIED

UNCLASS FIED

UCUPNTY CLAWPICATION OF THIS PA..

7b. NASA Langley Research Center, Hampton, VA 23665

Office of Naval Research, 800 N. Quincy, Arlington, VA 22217

19. impact on future architectural studies of memory systems.

'1

UNCLASSIFIED

SILCURITY CLASSIFICATION OF THIS PAG_

I
I

Single-Pass Memory System Evaluation For Multiprogramming Workloads

I
Thomas M. Conte Wen-mei W. HwuI

3 Center for Reliable and High-Performance Computing

University of Illinois

hwutcsg.uiuc.edu

i

I
I

I
Ao@ession For

NTIS SPA&I
DTIC TAB 0

gnnn med r--Uwlirlnotlnced 0
Just Iricatio

I B _

"(i % [AvailabilityCd.

-' IDet Speola~l/r

* Iif ~do

U

I Single-Pass Memory System Evaluation For Multiprogramming Workloads

I
U Abstract

Modern memory systems are composed of levels of cache memories, a virtual mem-
ory system, and a backing store. Varying more than a few design parameters and
measuring the performance of such systems has traditionally be constrained by the
high cost of simulation. Models of cache performance recently introduced reduce the
cost simulation but at the expense of accuracy of performance prediction. Stack-based
methods predict performance accurately using one pass over the trace for all cache
sizes, but these techniques have been limited to fully-associative organizations. This
paper presents a stack-based method of evaluating the performance of cache memoriesIusing a recurrence/conflict model for the miss ratio. Unlike previous work, the prfor-
mance of realistic cache designs, such as direct-mapped caches, are predicted by the
method. The method also includes a new approach to the problem of the effects of
multiprogramming. This new technique separates the characteristics of the individual
program from that of the workload. The recurrence/conflict method is shown to be
practical, general, and powerful by comparing its performance to that of a popular3traditional cache simulator. The authors expect that the availability of such a tool will
have a large impact on future architectural studies of memory systems.

I
1 IntroductionI
Because of the role they play in the design of cost-effective memory systems, cache memories

I have occupied a special place in research into computer architecture. In 1986, Smith compiled

3a bibliography of 380 papers on the topic covering fifteen years of research [1]. A majority of

these papers have focused on the performance evaluation for the design of cache memories.

Some papers have evaluated cache performance as compared to other alternatives [2, 3]. In

3 either case, cache design and evaluation is largely an empirical procedure. A benchmark

3- set is selected and it is used to evaluate the cache performance for a design space. The

performance evaluation technique of preference has been simulation. However, simulation is

I costly, limiting the design space and the number of benchmarks the designer can consider.

Two directions have been undertaken in the literature into alternate cache performance

evaluation methods. An analytical approach was introduced by Denning in [4]. A recent i
example of an analytical approach is presented by Agarwal, et. al. [51 and has been used for

design space exploration by Przybylski et. al. [61.

An alternative to an analytical model is a hybrid approach described collectively one- I
pass or stack algorithms. These were introduced by Mattson et. al. in [7]. They function 3
by exploiting properties of stacking replacement policies to evaluate all fully-associative

cache sizes in one pass over the trace. A recent example of the evolution of these ideas is

in Thompson and Smith [8], where one-pass algorithms are presented for f'ully-associative 3
buffers for realistic policy decisions such as write back and sector mapping. Traiger and

Slutz [9] present a method that addresses various levels of set associativities and block

sizes in one pass, but the amount of collected information required to reconstruct the cache U
performance is large. Due to this large storage requirement, their technique is impractical.

Even when using the trusted simulation techniques for evaluation of cache memories, the

issue of approximating operating system effects is troublesome. Multiprogramming has the

effect of partially- or completely flushing a buffer at arbitrary instances during execution. 3
One approach to this problem used in [10] was to systematically flush the cache at fixed

intervals. Using this technique, the designer can randomly insert context switches into a

simulation, but to get stable results requires increasing significantly the number of simu- I
lations. Also, it has been shown that assuming fixed context switching intervals is overly 5
optimistic [11, 12]. Another approach is to estimate the cache performance using cold-start

miss ratios, but an assumption of no-saved context after a context switch has been shown to

not be true for large caches [12, 10]. Combining several reference streams into a stochastically 3
merged stream solves this problem, but at the cost introducing workload choice (e.g., sets

2 I

!

I of benchmarks) into the evaluation problem [13]. Lastly, none of these approaches consider

3 separately the voluntary context switching that occurs when a program makes a request of

the operating system.

This paper presents the recurrence/conflict method of evaluating the performance for

3fully-associative, set-associative and direct mapped cache organizations for all cache and

block sizes exactly using one pass over the trace. This method is based on the work of

Mattson et. al., Traiger and Slutz, and Thompson and Smith, but alters the statistics col-

I lected to accommodate a new model for miss ratio calculation [7, 8, 9]. This model for the

3 miss ratio reduces substantially the traditional storage requirements of the collected infor-

mation, making the method practical. A portion of the information collected can be used to

reconstruct multiprogramming effects due to both voluntary and involuntary (preemptive)

context switching. Preemption frequency and partial flushes of the buffer are parameter-

ized to separate workload considerations from benchmark considerations. To evaluate the

method's practicality, the run time of its implementation is compared against a popular

I traditional cache simulator. Results from a set of benchmarks are presented to demonstrate

3 the method's operation.

1 2 A Method for Memory System Evaluation

A cache memory is a familiar concept. The dimension of a cache can be expressed as a three-

tuple, (C, B, S), for a cache of size 2C bytes, with block size 2B blocks, and 2S blocks for each

associativity set Note that C > B + S. For example, a cache of dimension (10, 6, 1) is a 1KB

direct-mapped cache with a block size of 64 bytes. A cache of dimension (21, 10, 11) is of

size 2MB with 1KB-length blocks and it is fully-associative (such a cache models a modern

3

I
virtual memory system). The notation (C, B, oo) is an abbreviation for fully-associative 3
caches (S = C - B). 3

Common metrics of cache performance are miss ratios and traffic ratios. One method of

calculating the miss ratio, p, is to count the number of instances that a miss occurred in N I
references. This number is the miss count, M, and the miss ratio is then, 3

M
=(1)

The traffic ratio, o, a measure of the traffic on the memory bus generated by the cache, can 3
be expressed as a = 28 p.

2.1 The recurrence/conflict model

Because the traffic ratio is derived from the miss ratio and the block size, the miss ratio

suffices to characterize the performance of a cache memory. One method of calculating p is

to use Equation 1. Another method of calculation is based on the observation that all hits 3
occur due to recurring references. For example, consider the following string of references:

Reference number 1 2 3 4 5 6 7 8 £
Address 100 101 102 103 102 101 104 101 3

References to addresses 100, 103, and 104 occur only once and result in a miss regardless I

of the cache organization. References to 101 and 102 occur more than once and hence

have potential for a hit, dependent upon the cache organization. Such references are called

recurring references, and there are three of them in the example (references 5, 6, and 8). The I

references between recurring references are termed the intervening references. For example, 3
4 I

references 3, 4 and 5 are the intervening references between the first recurring reference to

3 address 101. There is a chance that for a given cache organization the intervening references

will remove the recurring reference from the cache, resulting in a miss instead of a hit. Such a

1 situation is termed a conflict. If there are R instances of recurring references and K instances

3 of conflicts, the miss ratio can be expressed as,

I R NK (2)

3 This expression is termed the recurrence/conflict model for the miss ratio.

The method of calculating the miss ratio for a large class of cache organizations accurately

is based on the recurrence/conflict model. The method involves the calculation of two arrays,

3 r[B] and K[C, B, S], using one pass over the reference string. An algorithm to perform these

3 computations is presented in Figures 1 and 2. The procedure, recurrence-conflict (a), is

applied in-turn to each referenced address. The array stack[B] is an array of stacks managed

I by the routines push(.), topofstack(.), depth(.), and repush(.). The items kept on a stack

3 are addresses. Note the two functions, zero.outi.sb(.) and count-trailingzeros(-) The

function zero-outilsb(a,B) returns a with B least significant bits set to zero (i.e., the

block address of address a). The function count.trailingzeros(.) returns the number of

3 trailing zeros in the binary representation of a number. The algorithm explores a predefined

3 maximum design space, delimited by the parameters Cmx, Bmax, and S,,x. Also, a special

column is maintained in ,K[C][B][5] for conflicts in fully-associative caches, ,K[C, B, oo]. Note

I that any conflict that occurs in a cache of size (C, B, S), also occurs in a cache of size

3 (C - 1, B, S). The while loop of procedure process-cycle (Figure 2) implements this

observation. The miss ratio for a cache of dimension (c, b, s) can be calculated from r[B] and

I

I

recurrence-conflict (a, voluntary-cs): 3
begin

N+-N + 1
for B-O to Bmax do I
begin

blockaddr+-zerooutisb(a, B)
if on-stack(stack[B], blockaddr) then I

d+-depth(stack[B], block.addr)
process-cycle(B, d, block-addr)
repush(stack[B], block-addr)

else
push(stack[B], block-addr)

end

cs -count(block.addr) +- 1
unmarkvoluntary.cs (block-addr) 3
if voluntary.cs then mark-voluntarycs(block-addr)

end
end 3

Figure 1: Driver routine for the recurrence/conflict algorithm.

t[C][B][S] using Equation 3.

p(c, b, s) = rib]- E t U, b, sj).3
jCa

Since the recurrence/conflict algorithm is based on the LRU stack algorithm presented by

Mattson, et. al. in [7], it is of complexity O(N lg N) on average. The space storage required 3
for the resulting r[B] and tc[C,B,S] is Bmx + (Cmax + 1) x (Bmax + 1) x (Smax + 2) +1 3
words (typically, a C language long). Also, two arrays, Mr[C][B][S] and Mv[C[B][S] are

calculated to account for multiprogramming (see Section 2.2 below). Hence, for a design U
space of size Cm.x = 31 (2GB), Bmax = 12 (4KB), and Sm., = 3 (up to 8 ways, and fully 3
associativity), the space storage requirements are approximately 6K words. This allows the

statistics to be readily stored as a disk file. Since the arrays tend to be sparse, the disk file

is smaller than this upper bound, in practice. I

I
6 Ii

Uprocess..-cycle (B, d, lc-dr
begin

r[B] +- r[B] +I1

if top-of..stack(stack[B]) - block-.addr then return
Let a E stack[B] and depth(stack[B], a) = d - 1
cs-count (a) +-- cs-count (a) +cs..count (block-addr)

if marked-oluntary.cs(block-addr) then mark.voluntary-cs(a)
num..unique 4-03 cs.points i-0

voluntary-cs +- false
for a E stack[B] and depth (st ack[B], a) < d doI begin

dist +-count -trai ing.zero s(la - block-addri)
p[dist]*-p[dist] + 1I max-dist +- max(max-dist, dist)
num-unique +- numunique +I
if marked-voluntary-cs(block.addr) then voluntary.cs 4-trueU cs-points +-- cs-.points + cs-count(a)

end
FA-cachesize +- Llg null-uniquej

if FA-cachesize > Cmax, then FA.cachesize +- Cmax
K[FAcachesize, B, co] +- ic[FA-.cachesize, B, 00] +13MII[FA-cachesizel[B]I)4-Mr[FA-cachesize] [B]lSI + spit
dist+-max.dist

for S-0 to 5 max do
begin

while dist > 0 and sum < i do
begin

sum+-sum + p[dist]I dist+-dist - 1
end
Cmin,conf 4-0

if sum > i then
Cmin,conf -dist + S + 1

edK [Cmin, con I (B] SI -K (Cm in, conf] (B] (S] + 1

M1 [0 min, con!] [B] [S] iMI [0 min, conf I[B] [SI + cs-.point S

i f volunt ary-cs then Mv [Cmin, conflI[B][IS]4+-MV[Cminconf]I[A]IS] + 1
Zi-2 x i

edend

3 Figure 2: The process-.cycle procedure to calculate r[B] and K[C, B, S].

7

2.2 Multiprogramming effects

Estimating the effects of multiprogramming on cache performance is a well-known prob-

lem [10]. Several techniques have been employed to approximate these effects. The cold

miss ratio vs. warm miss ratio technique was examined by Easton in [12, 14]. Examples

of statistical approaches can be found in [11, i3]. This paper presents a method based on

the recurrence/conflict model. Multiprogramming is divided into two categories: voluntary

context switching and involuntary context switching. These categories are explained below.

Voluntary context switching

A process performs a voluntary context switch when the continuation of its execution depends

on a system service which may take a long time to finish. The frequency and timing of a

voluntary context switch is solely a characteristic of the benchmark. The number of processes

executed before a process returns from a context switch is, however, a function of the system

load and the operating system scheduling policy. For example, the working set of a process

may have been purged from the cache before it re-enters the run state after a context switch.

This results in a degraded cache performance as compared to an ideal execution of the same

benchmark without any context switching.

There are two pieces of information that are associated with context switching. One is

the number of potential victims, defined as the number of non-conflicting recurring references

which may be converted from a hit to a miss. This information is a function of the benchmark

and the cache dimension. The method presented in this paper provides this information

exactly. However, the fraction of the potential victims which are actually converted to misses 3
is a function of the system's load and the operating system's scheduling policy. Hence, this

8
I

U

I fraction is modeled as a parameter, . The designer can vary the parameter value between

3 0% and 100% to examine the changes in design decisions based on information collected in

only one pass. This feature distinguishes this method from most of the previous ones where

varying this parameter requires a re-simulation.

3 The total number of potential victims of ali voluntary context switches is measured using

the recurrence/conflict method. Each voluntary context switch point is marked in the trace,

and the potential victims of this context switch point are identified as those non-conflicting

1 recurring references which occur across the context switch point. This is implemented by

3 marking references that occur immediately before voluntary context switch points.

The array, Mv[C][B][S], is used to record the number of potential victims of voluntary

context switching. The method of updating Mv[.] is included in Figure 2. If Mv[c][b][s] is

3 equal to i: at the end of the execution, it indicates that for all caches (c', b, s), c' > c, n of

all the hits can be potentially converted to misses due to voluntary context switches. Given

a percentage of preserved context across context switches, , one can expect to find n of

3 the hits to be converted to misses. The miss ratio for a cache of dimension (c, b, s) in the

* presence of voluntary context switching becomes,

S(Cmax
* p(c,b,s) = 1- - R[b]-E K IKj[b][S]- E Mv[j[b][s] . (4)

3 Involuntary context switch

3 Involuntary context switching occurs due to external events such as timer-implemented pre-

emption and 1/0 device interrupts. The frequency and occurrance of involuntary context

I switching is a function of the system load and the operating system's scheduling policy, but

3 not a characteristic of the program. Therefore, it is assumed that an involuntary context

1 9

I

switch has an equal probability of occurring after any reference. With this assumption, the 3
recurrence/conflict method derives the average number of potential victims, V1, due to each 3
involuntary context switch. A parameter, Q, is defined as the effective quantum (average

preemption interval). Hence, N/Q is the total number of involuntary context switches ex- I
pected for the entire reference string. Therefore, the total number of hits that are converted 3
to misses is (fNV 1)/Q. Like , one can vary Q over an arbitrary range to observe the impact

of involuntary context switching frequency on the design decisions.

To derive the average number of potential victims due to each involuntary context switch, 3
one can sum the number of potential victims for all possible switching points in the reference

string and divide this sum by the number of possible switch points (N). This is given in the

following formula, U
V1 (-(al switching points)Number of potential victims for a switch point (5)

By exchanging the roles of the context switches and the potential victims, Equation 5 can 3
be rewritten in the following form, 3
V, (2al potential victims)Number of switching points affecting potential victim)

(6)

Equation 6 fits naturally into the recurrence/conflict method. 3
Due to the large number of context switching points involved, a counter, cscount(-), is 3

kept for each element on the stack. Each time a new stack element is created, this counter

is set to 1. When a recurring reference is processed, the context switching count of its

stack element is accumulated into that of the element above it before it is promoted to the 3
top of the stack. In this way, all the references originally below the clement will see the 3

10 U

same number of context s-"i tching points above them. The context switching count of the

3 promoted element then is reset to one. (See Figures 1 and 2.)

The array, MI[C][B][S], is used to record the total number of potential victims of all

involuntary context switching points. If M[c][b][s] is equal to n at the end of the execution,

3 it indicates that for all caches (d, b, s), c' > c, n of all the hits will potentially be converted

to misses due involuntary context switching. The average number of potential victims per

involuntary context switch for a cache of configuration (c, b, s) is,

11 1
V1= -E M[j][b][s]. (7)

N =

The miss ratio for a cache of configuration (c, b, s) under multiprogramming is expressed in

I Equation 8.

p(c, b, s) = 1- R[b] - E K[jl[b][S] - M][b[s]- (8)
j=C j=oQ

2.3 Trace collection

I A method of collecting the trace of a benchmark program is to annotate executable with

3 special probe instructions. As these probes are executed, local-scope dynamic behavior is

recorded. Such a method is termed, keyhole experimentation, to emphasize that it is a dy-

namic dual of retargetable "peephole" techniques used for local optimization [15]. Keyhole

3 experimentation has been used to generate profiles of the programs' behavior, although the

3 potential for more than just profile information gathering exists. The keyhole probes can

be placed by the compiler (e.g., GPROF [16]), the assembler (e.g., TRAPEDS [17]), or a

I separate object-code modifier (e.g., PIXIE [18]). Using keyhole experimentation at the com-

3 piler level is of greatest use to architects, since the compiler possesses information about the

I 11

I

program's data and instruction structure before optimization. The Architects Workbench 3
(CARA), created by Flynn at Stanford [191, is one such tool. The System Parameter Inde- 3
pendest Keyhole Experimenter (SPIKE) is a compiler-independent tool similar to CARA,

constructed by the authors. The current version of SPIKE has been fitted into the GNU CC I
compiler [20], since GNU CC is capable of producing code for a variety of architectures.

3 Experimental results 3
The success of a cache performance evaluation method depends on its practicality. To 3

Table 1: The benchmark set. 3
Benchmark No. references Description

grep 4.1M The grep program from Unix, used
for a search through /usr/dict/words

tex 2.7M The TVX typesetter, using the 'TripTeX'
diagnostic input 3

yacc 722K The LALR(1) parser-generator from Unix,
with the grammar from make) as input

investigate the practicality of the recurrence/conflict method, a set of benchmark programs 3
was compiled for the MC68020 and their instruction reference behavior was instrumented 3
using SPIKE. The benchmarks are summarized in Table 1.

The run time for the recurrence/conflict method was compared against Dinero III, a I
reliable public-domain cache simulator constructed by Mark Hill. These results are presented 3
in Table 2. rhe minutes of (user-mode) run time were collected for each benchmark using

an unloaded Sun 3/280. Note that although tex had approximately 1.2M less references

than grep, it took longer to run. This is due to the nature of stack algorithms: the less

locality present in a program, the larger the average stack depth. The worst slowdown was 3
12 I

Table 2: Running time versus Dinero III.

Time Average
Recurrence/ Dinero III ratio

Benchmark Conflict model (21,4,oo) (21,4,0) RCM/Dinero
grep 1:38 0:21 0:20 4.8
tex 4:35 0:17 0:16 16

yacc 0:53 0:03 0:03 18

bv a factor of 18. However, given that the design space explored contained approximately

31 x 10 x 5 = 1500 cache dimensions for each level in the memory system's hierarchy, the

recurrence/conflict model has a great advantage over conventional simulation.

Since tex had the most interesting locality, results of the miss ratio for tex are presented

in Figure 3. Set associativity is represented as a solid line for S = 0, a dotted line for S = 2,

and a dashed line for S = oo. (Because of its high performance, S = oo is only visible in the

graph of B = 3.) After the execution of the recurrence/conflict method, the time required

to generate the entire set of miss ratios for Figure 3 was under a second of user time. As

many points as feasible were checked using Dinero, and all agreed with 100% accuracy.

To see the effects of multiprogramming, tex was evaluated assuming B = 3, for =

100%, 90%,80% and Q = 100, 1000. The results are presented in Figure 4. Unfortunately,

voluntary context switching information is not yet available in SPIKE at the time of this

writing. Therefore, only the results of involuntary context switching were evaluated. The

results are presented as the difference between miss ratios of uniprogramming and of mul-

tiprogramming (Ap). Note that the preemption interval dominated for Q = 1000, whereas

the percentage of flushed context () had a large effect for Q = 100. This implies that, for

tex, beyond a certain Q saved context has little bearing on instruction cache performance.

13

I
I
I

B=3 B=4 B=5

0.3- 0.3- 0.3 3

0.20.2- 0.2-1

0.1 0.1 -0.1

0-- 0-1 0 -1-
0 10 20 30 0 10 20 30 0 10 20 30

C C C

B 6 B =7 B=8 3
0.3 0.3 0.3-

0.2- 0.2- 0.2-

p p p

0.1- 0.1- 0.1-

0- 0 0
0 10 20 30 0 10 20 30 0 10 20 30

C C C 3
Figure 3: Miss ratios for tex for vario is cache dimensions.

1
I
I

14 I

- 100%,Q - 100 = 90%,Q - 100 = 80%,Q - 100

0.1 0.1 :- 0.1-

A p Ap Ap

0.05 - 0.05- 0.05-

0- 0- 0-
0 10 20 30 0 10 20 30 0 10 20 30

C C C

=100%, Q =1000 -- 90%, Q =1000 80%, Q 1000

0.1 - 0.1 -- 0.1-

AP AP AP

3 0.05- 0.05- 0.05-

0 0 0
0 10 20 30 0 10 20 30 0 10 20 30

C C CFigure 4: Multiprogramming miss ratios for tex.

15

I

4 Conclusions 3
This paper has presented a method to evaluate efficiently a very large design space for 3
cache memories. When used to evaluate cache hierarchies satisfying the inclusion property

(see [211), an entire memory system can be evaluated in one pass. Although the algo-

rithm presented omitted the issues of write-back and sector-mapping for brevity, the stack I
algorithm extensions of Thompson and Smith are compatible with the recurrence/conflict 3
method [8]. Hence, the method is general. The method was shown to be efficient and hence I
profitable to use.

The recurrence/conflict method is applicable to both design and architectural research.

Combined with design criteria such as described in [6], there is the potential of an automated

memory system design process. Since it evaluates a large memory system design space in

one pass, techniques for architectural studies into other interacting system tradeoffs can 3
be simplified and broadened in scope. Hence, there are a large number of future research 3
directions possible using the recurrence/conflict method.

The inclusion of context switching effects into the method is an advance of previous U
work as it cleanly seperates the behavior of the benchmarks from the multiprogrammed 3
performance characteristics they exhibit. Previous approaches involved measuring snapshots

of actual inultiprogramming and using these traces for cache simulation. Such approaches

are restricted to phenomenological conclusions since the mix of executing processes and I
the interprocess timings are not adjustable after measurement. This illustrates a powerful 3
feature of the recurrence/conflict model of the miss ratio: external effects that degrade cache

performance such as context switching or coherence protocol invalidations, can be modeled N
1

16 I

I
I as additional types of conficts, thereby isolating the performance of different design tradeoffs.

3 [For interested parties, a stable version of the tool written in portable C is freely available

I from the authors.]

I
I
I
I
I
U
I
U
I
U

I

I
U

I

Addendum 3
This report was presented for review to the International Symposium on Computer Archi- 3
tecture Program Committee in November of 1989. In December of 1989, Mark Hill and 3
Alan Smith published an article in IEEE Transactions on Computers, entitled, "Evaluating

associativity in CPU caches" (see [22]). Although Hill and Smith did not make the dis- I
tinction between recurrences and conflicts, the presented algorithm is similar to the RCM 3
method. Since it is common in Science for two distinct research groups to discover an idea,

and common also for each group to have different insight, this report is being made available

to present our insights into stack-based memory hierarchy analysis. The material in this 3
report discussing evaluation of multiprogramming effects (context switching) is our own and 3
not present in the Hill and Smith paper.

- T. M. Conte and W. W. Hwu, March, 1990 1
I
3
3

I

I
I
I

18 I

I Acknowledgements

I- The authors would like to thank Sadun Anik, David Griffith and all members of the IM-

PACT research group for their support, comments and suggestions. This research has been

supported by the National Science Foundation (NSF) under Grant MIP-8809478, a donation

from NCR, the National Aeronautics and Space Administration (NASA) under Contract

NASA NAG 1-613 in cooperation with the Illinois Computer laboratory for Aerospace Sys-

terns and Software (ICLASS), and the Office of Naval Research under Contract N00014-SS-

K- 0656.

-- 19

I
References

[1] A. J. Smith, "Bibliography of readings on CPU cache memories and related topics,"
Comput. Architecture News, vol. 14, pp. 22-42, Jan. 1986. i

[21 J. R. Goodman and W.-C. Hsu, "On the use of registers vs. cache to minimize memory
traffic," in Proc 13th Annu. Int'l Symp. on Comput. Arch., pp. 375-383, Jan. 1986. I

[3] R. J. Eickenmeyer and J. H. Patel, "Performance evaluation of on-chip register and
cache organizations," in Proc. 15th Annu. Int'l Symp. on Comput. Arch., (Honolulu, 3
Hawaii), pp. 64-72, May 1988.

[4] P. J. Denning and S. C. Schwartz, "Properties of the working-set model," Communica-
tions ACM, vol. 15, pp. 191-198, Mar. 1972.

[5] A. Agarwal, M. Horowitz, and J. Hennessy, "An analytical cache model," ACM Trans.
Computer Systems, vol. 7, pp. 184-215, May 1989.

[6] S. Przybylski, M. Horowitz, and J. Hennessy, "Characteristics of performance-optimal
multi-level cache hierarchies," in Proc. 16th Annu. Int'l Symp. on Comput. Arch.,
(Jerusalem, Israel), pp. 114-121, June 1989.

[7] R. L. Mattson, J. Gercsei, D. R. Slutz, and I. L. Traiger, "Evalutation techniques for I
storage hierarchies," IBM Systems J., vol. 9, no. 2, pp. 78-117, 1970.

[8] J. G. Thompson and A. J. Smith, "Efficient (stack) algorithms for analysis of write-back I
and sector memories," ACM Trans. Computer Systems, vol. 7, pp. 78-117, Feb. 1989.

[9] I. L. Traiger and D. R. Slutz, "One-pass techniques for the evaluation of memory hier- -
archies," IBM Research Report RJ 892, IBM, San Jose, CA, July 1971.

[10] A. J. Smith, "Cache memories," ACM Computing Surveys, vol. 14, no. 3, pp. 473-530, 3
1982.

[11] 1. 1. Haikala, "Cache hit ratios with geometric task switch intervals," in Proc. 11th 3
Annu. Int'l Symp. on Comput. Arch., (Ann Arbor, MI), pp. 364-371, June 1984.

[12] M. C. Easton, "Computation of cold-start miss ratios," IEEE Trans. Computers, vol. C- 3
27, pp. 404-408, May 1978.

[13] G. S. Shedler and D. R. Slutz, "Derivation of miss ratios for merged access streams,"
IBM J. Research and Development, vol. 20, pp. 505-517, Sept. 1976.

[14] M. C. Easton and R. Fagin, "Cold-start vs. warm-start miss ratios," Communications
ACM, vol. 21, pp. 866-872, Oct. 1978.

[15] J. A. Davidson and C. W. Fraser, "The design and application of a retargetable peephole
optimizer," ACM Trans. Prog. Lang. and Systems, vol. 2, pp. 191-202, Apr. 1980.

I
20 U

U [16] S. L. Graham, P. B. Kessler, and M. K. McKusick, "gprof: A call graph execution
profiler," in Proc. 1982 SIGPLAN Symp. on Compiler Construction, pp. 120-126, June
1982.

[17] C. B. Stunkel and W. K. Fuchs, "TRAPEDS: producing traces for multicomputers via
execution driven simulation," in Proc. ACM SIGMETRICS '89 and PERFORMANCE
'89 Int'l Conf. on Measurement and M1odeling of Comput. Sys., (Berkeley, CA), pp. 70-
78, May 1989.

U [18] MIPS Computer Systems, MIPS language programmer's guide, 1986.

[19] C. L. Mitchell and M. J. Flynn, "A workbench for computer architects," Design & Test,
pp. 19-29, Feb. 88.

[20] R. M. Stallman, Using and porting GNU CC. Free Software Foundation, Inc., 1989.

[21) J.-L. Pter and W.-H. Wang, "Architectural choices for multi-level cache hierarchies,"
in Proc. 16th Int'l Conf. on Parallel Processing, pp. 258-261, Aug. 1987.

[22] M. D. Hill and A. J. Smith, "Evaluating associativity in CPU caches," IEEE Trans.
Computers, vol. C-38, pp. 1612-1630, Dec. 1989.

2

I2

