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C.W. Extrand and A.N. Gent
Polymer Engineering Center
The University of Akron

Akron, Ohio, 44325-4001

Abstract

Breaking stresses and strains have been measured for sheets of a
brittle elastic material, a highly crosslinked polyisoprene rubber,
under three different modes of deformation: simple tension, pure shear,
and equi-biaxial extension. Sharp cracks, about 2 mm long, were made
in the center of each specimen before testing. The breaking stress
for equi-biaxial straining was found to be significantly higher than
for uniaxial straining while the breaking strain was about one-half as

large. All of the results are in accord with a single value of the

fracture energy, about 150 J/mz.

1. Introduction

Although the relative strength of materials under different
deformations is an important practical issue, there is little agreement
on the answer, even in the simplest cases. Shortly after Griffith's
classic paper on fracture (1), Wolf deduced that the distribution of
applied stress will affect the breaking stress (2). Since then,
various theoretical studies have sugyested that the breaking stress in
biaxial extension will be: no different from (3-5), less than (6), or

greater than(7,8), that in simple tension. Other analyses suggest the




biaxial breaking stress may be greater or less than that in simple
tension, depending on the value of Poisson’'s ratio for the material
(2,9,10). Experimental studies are equally confusing, as discussed
later.

In the following section, some important theoretical and
experimental studies of the strength of solids under multi-axial
loading are summarized. Some new measurements are then presented for
sheets of a brittle elastic material, a highly-crosslinked
cis-polyisoprene elastomer, containing a small through-crack in the
center of the sheets, and stressed to break in uniaxial tension,
constrained tension (pure shear) and equi-biaxial tension.
Measurements were attempted both for sheets that were much thinner than
the length of the crack and for sheets that were somewhat thicker,
corresponding to conditions approaching plane stress and plane s;rain.

respectively.

2. Previous Work

(a) Theoretical studies
When discussing biaxial stressing of a sheet containing a
center crack, a tiaxiality ratio k is often employed to relate the
applied far-field stress parallel to the crack (x-axis) to the

far-field stress perpendicular to the crack (y-axis)

k=o/o. (1)

When k = 1, the deformation is equi-biaxial tension and when k = 0, the




deformation is a simple tension with the stress applied along the

y-axis.
Griffith originally derived the breaking stress of a sheet
containing a center crack under equi-biaxial tension (1)

2
o

b - LEG/ma(l + v)(3 - k) (2)

where E is the tensile (Young) modulus of the material, G is the
critical strain-energy-release rate or fracture energy, 2a is the crack
length, and ¥ is Poisson’s ratio. For plane stress,

£ = (3 - v)/(l + v), and for plane strain, £ = 3 - 4v. Griffith later

corrected this result (11), giving the now widely-accepted relation for

the breaking stress in simple tension,
ag = 4EG/xa(l + v)(1 + «). (3)
Thus, under plane stress conditions,
2
o, = EG/xa (4)
b
and in plane strain,
ag = EG/ma(l - uz). (5)

No distinction was made between equi-biaxial and uniaxial loadiug; the

breaking stresses were apparently assumed to be equal.




Swedlow derived a general expression for the breaking stress under
multi-axial loading (9). For biaxial loading it reduces to a form

first derived by Wolf (2):
ag = (BEG/3xa)(l + »)/{(3v - L)k + (1 + v)] (6)

for plane stress, and

ag - (8EG/3ma)/[(4v - 1)k + 1] (7)
for plane strain.

For an incompressible material such as rubber (¥ = 1/2) in

simple tension (k = 0), these expressions both reduce to
2
oy = 8EG/37a. (8)

This differs from the Griffith forms for simple tension, Equations 4
and 5, by factors of 8/3 and 2. . The cause of these discrepancies is
not known to the present authors.

Figure 1 shows the relationship derived by Swedlow between
breaking stress rafio R(= 2 in biaxial tension / g in uniaxial
tension ) and biaxiality ratio k, in plane stress. When Poisson’'s
ratio g is less than 1/3, the breaking stress in biaxial tension is
predicted to be greater than in uniaxial tension, and when y is greater
than 1/3 the situation i{s reversed. Similar conclusions are reached

in plane strain. For most engineering materials, therefore, the




breaking stress in biaxial extension would be expected to be about the
same as, or less than, that in simple tension. For example, aluminum
with Poisson’s ratio of about 0.3 would have a breaking stress in
simple tension slightly greater in plane stress and slightly less in
plane strain than under equi-biaxial loading. For plane stress and
strain, both polymethyl methacrylate (PMMA), with y = 0.4, and rubber,
with ¥ = 0.5, would be expected to show a lower breaking stress in
biaxial extension than in simple tension.

Eftis and Jones (10) derived expressions for the breaking stress
of biaxially-loaded sheets containing a center crack, similar to those
of Wolf (2) and Swedlow (9). The breaking stress gy also depended upon
the value of Poisson’s ratio of the material and the biaxiality ratio.
When ¥ = 1/2, the theoretical predictions of Swedlow (9) and Eftis and
Jones are identical. For other values of Poisson's ratio, the two
differ only slightly.

However, other studies have yielded quite different conclusions.
For example, Sih apd Liebowitz (5) derived the strain energy of a
stressed sheet containing an elliptical crack and found that for both
equi-biaxial and constrained tension (pure shear) loading, the breaking
stress was less than that in uniaxial tension. But, as the shape of
the elliptical hole apﬁroached that of a linear crack, both the biaxial
and pure shear breaking stresses approached the value for uniaxial
loading, given by Griffith. Thus, Sih and Liebowitz concluded that
there is no difference in the breaking stresses for uniaxial, pure
shear, or equi-biaxial loading of a material with a linear center

crack. Kassir and Sih (4) considered a solid block containing a




central flat "penny-shaped" crack, loaded multi-axially, and also found
that the breaking stress was unaffected by stresses applied parallel to
the crack.

Thus, apparently similar theoretical studies have arrived at
divergent conclusions.

Other studies have dealt with special cases and suggest that
breaking stresses under various loading conditions will differ. For
example, Adams (7) employed a hypothesis that fracture occurs at a
critical crack opening displacement. Loading parallel to the crack
introduces an additional constraint on crack opening, which increases
with the value of Poisson’s ratio. Adams argued that, in consequence,
additional stresses are required to open the crack sufficiently to

cause failure, so that the breaking stress g

g will increase linearly

with the biaxiality ratio k, and the larger the value of Poisson’'s
ratio, the greater will be the effecrt.

For a material undergoing plastic deformation before fracture,
Hilton (8) predicted the breaking stress to increase under biaxial
loading, even when the yield zone was comparatively small, while
compressive loading parallel to the crack was predicted to have the
opposite effect. Thus, these two treatments of non-linear materials
both suggest that the blaxial breaking stress will be higher.

The various theoretical conclusions about the breaking stress ratio
are summarized in Table 1. Kassir and Sih (4) and Sih and Liebowitz
(5) concluded that there would be no difference between the breaking

stresses in biaxial and uniaxial loading. Wolf (2), Swedlow (9) and

Eftis and Jones (10) predicted that the breaking stress in most




materials would be less in equi-biaxial loading than in simple tension.

Adams (7) and Hilton (8) predicted that it would be greater.

(b) Experimental studies of biaxial strength
Only a few experimental measurements are known to the authors of
breaking stress in deformations other than simple tension. They are

listed here.

(i) Biaxial strength of aluminum

Kibler and Roberts (12) measured the strength of biaxially-loaded
sheets of 6061-T4 and 6061-T6 aluminum alloys. Both materials showed
an increase in fracture toughness K with increasing load biaxiality k
(gb is proportional to K). Eftis and Jones (10) carried out sim%lar
measurements on specimens of 7075-T6 aluminum alloy having center
cracks both parallel and perpendicular to the rolling direction of the
sheet. In both cases the breaking stress increased slightly with
increasing load parallel to the crack. Thus, the breaking stress of
aluminum appears to be somewhat greater in biaxial loading than in

uniaxial loading.

(11) Biaxial strength of PMMA
Kibler and Roberts (12) measured the strength of biaxially-loaded
sheets of PMMA (polymethyl methacrylate) using square-sided and
cruciform specimens. A load parallel to the crack caused the breaking
stress of the material to rise. On the other hand, Leevers, Culver,

and Radon (13) found in a preliminary study that the fracture toughness




K of PMMA sheets with a center crack decreased slightly with increasing
load parallel to the wim crack direction. In a later study, however,
Radon, Leevers, and Culver (14) concluded that stress parallel to the
crack direction had no appreciable effect on the breaking stress. In
contrast, Eftis and Jones (10) concluded that the fracture toughness K
decreased with increasing biaxiality k. But their data had a great
deal of scatter. It is therefore difficult to decide from these
conflicting studies whether the effect of biaxial loading on the
strength of PMMA is significant or not, and if it is, whether the
breaking stress is larger or smaller under equi-biaxial loads than
under simple tension.

Although aluminum and PMMA are technically important materials,
they are rather poor choices for experiments designed to test the
predictions of linear-elastic fracture mechanics. Aluminum has a low

yield stress and PMMA is prone to stress crazing, a form of plastic

deformation, before fracture.

(iii) Biaxial strength of rubber
Smith and Rinde (15) measured the breaking stresses for rubber
tubes under combined extension and inflation, and comncluded that the
breaking stress in constrained biaxial extension was somewhat higher
than in simple tension. Dickie and Smith (16) studied the fracture of
inflated circular membranes and concluded that the breaking stress in
equi-biaxial tension was considerably higher than in simple tension.
One should note, however, that failure of tubes and membranes

generally starts from the surface, where flaws are less damaging,




whereas failure of strips in tension generally starts from an edge,
where flaws are both more common and more serious. Thus, it is not
kn- .a at present whether simple sheets of simple elastic solids are
really stronger in equi-biaxial extension than in uni-axial tension
when the flaw from which failure initiates is the same in both cases.
We have therefore measured the breaking stress and breaking strain
for sheets of a brittle elastic material, a highly-crosslinked
polyisoprene rubber, with a small cut made in the center of the sheets,
under three different modes of deformation: uniaxial extension,
constrained extension (pure shear), and equi-biaxial extension.
Measurements were attempted both for sheets that were much thinner than
the cut length and for sheets that were somewhat thicker, corresponding
to conditions approaching plane stress and plane strain, respectively.
The results are reported here.

Because the highly-crosslinked rubber used was quite brittle,
samples with a center cut failed at unusually small strains for rubber
— less than 20%. As a result, the stress - strain relations were
approximately linear up to the breaking point. The elastic behavior
in simple tension is shown in Figure 2 for a parallel-sided strip with
no crack. In this case the breaking elongation was appreciably
higher, about 25%, and the stress - strain relation was slightly
non-linear. From the linear relation obtained at small strains, the
value of the tensile (Young) modulus E of this material was found to be

2.3 MPa.




.. Experimental Details
(a) Material and test apparatus
The material used in this study was Goodyear Natsyn 2200
polyisoprene. It was molded and crosslinked in the form of thin
sheets, about 1 and 2.6 mm thick, by adding &5 per cent by weight of
dicumyl peroxide (Dicup-R, Hercules Chemical Company) and heating the
mixture for 50 minutes at 150°C in a sheet mold in an
electrically-heated press.

Stress-strain relations in uni-axial tension and constrained
tension (pure shear) were measured using an Instron tensile test
machine. For equi-biaxial deformations, a thin-film biaxial
stretcher, Model BIX-702, manufactured by Iwamoto Seisakusho Co., Ltd.
of Kyoto, Japan, was used. This apparatus can apply loads of up to
100 kg in each direction, with a maximum displacement of 500 mm. The
arrangement employed to hold the sample is shown schematically in
Figure 3. It consisted of forty pneumatically-controlled clamps, each
of 1 cm width: nine on each side and four at the corners. The
apparatus is designed so that the clamps separate at a coustant rate to
produce a uniform strain field. .

Stretching forces were measured by two load cells, one for each
direction, attached to the center clamps on two adjacent sides, Figure
3. They were calibrated using an arrangement of pulleys and weights,
both with the clamps moving as well as stationary.

All experiments were carried out at room temperature, about 23%.

(b) Test specimens and procedures

(1) Tearing

10




Tear experiments were carried out using rectangular strips, 150 mm
long and 30 mm wide, cut from the molded sheets. The strips were cut
along the centerline for a distance of about 50 mm and the two legs
created in this way were then pulled apart in opposite directions at
various rates, causing a tear to propagate along the centerline, Figure
4, The fracture energy G was calculated from the average force F
required to propagate a tear and the width ol the tear w, G = 2F/w
(17). It should be noted that the width w was about 40% greater than
the thickness of the rubber sheet because the tear tended to run at an
angle of about 45° to *he plane of the sheet (18,19).

Fracture energies were determined for rates of tearing ranging from
8 um/s to 8 mm/s.

(ii) Uniaxial tension

Testpieces for uniaxial tension experiments were cut with a
dumbell-shaped die to have a central parallel-sided length of 40 mm and
a width of 13 mm. A through-crack was made in the center of the
specimen, at right angles to the stretching direction, using a small
sharp metal spear, lubricated with soapy water. By pushing the widest
part of the spear head all the way té;ugh the rubber sheet, a cut of
uniform length was obtained. The cut length 2a for six sheets was
measured using a travelling microscope to be 1.906 * 0.005 mm.

The effect of crack size was examined using tensile samples with
center cuts of different length, made using spears of different widths.
Samples were suspended from the top clamp of the tensile test machine
and the bottom clamp was then tightened. As it was tightened, it

compressed the material within it and caused some to extrude,
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lengthening the portion between the clamps. As a result, the initial
tensile force F on the sample changed from zero to a small negative,
i.e., compressive value. To correct for this, the sample was extended
slightly to bring the initial force reading back to zero. The
separation of the clamps was measured at this point and taken as the
initial length of the sample. The change in length was relatively
small, about 2 percent of the breaking elongation for thin sheets and
about 5 percent for thick sheets,

After failure, the width of the sample was measured with a
microscope and the thickness with a dial gauge. The stress was
computed from the measured force and the unstrained sample dimensions,
and the strain from the crosshead displacement, relative to the initial
length of the sample.

Specimens were stretched to break at a cross-head speed of 20
mm/min, corresponding to a strain rate e of approximately 8 x 10.3 s-l.
(iii) Pure shear (constrained tension)

Pure shear or constrained tension samples were molded so that both
clamped edges had a thick ridge along their widths to prevent them from
slipping. They had an initial length between the clamps of about 15 mm
and a width of about 150 mm. A through-crack was made in the center
of each sample, parallel to the width direction, as for the simple
extension samples.

A sample was fastened into the upper clamp and the crosshead was
adjusted to give an initial clamp separation, and hence sample length,

of 15 mm. The bottom clamp was then tightened. As with uniaxial

tests, this caused the force reading to drop below zero, and the sample

12




was therefore extended slightly to bring the initial force back to
zeros, by about 1 percent of the breaking elongation. The initial
length of the sample was measured at this point. After failure, the
sample width was measured with a ruler and the thickness with a dial
gauge. Stresses were then calculated from the measured forces and
sample dimensions, and strains were calculated from the displacement of
the clamps, relative to the initial length of the sample.

Samples were stretched to break at a rate of 5 mm/min, resulting in

a strain rate e of 6 x 1.0’3 ek

(iv) Equi-biaxial tension
A compression-molded sheet having a thickness of 1 mm was trimmed

to fit the biaxial stretcher, approximately 150 mm x 150 mm.
Stress-relieving holes, 4 mm in diameter were made in the rubber sheet
at points lying between each clamp. Cuts were then made connecting
the holes to the side of the sheet as shown in Figure 5. Each tab
made in this way was reinforced before clamping it with a piece of
vinyl tape. The area within the holes and tape reinforcement was about
120 mm x 120 mm. Finally, a crack was made in the center of the sheet,
as described previously.

Thick biaxial samples tended to fail at the clamps rather than at
the center crack. A mold was therefore made to produce sheets with
smooth molded-in stress-relieving holes, about 3 mm in diameter,
arranged to lie between each clamp, and with a cloth-reinforced edge
for clamping. The area inside the holes was about 120 mm by 120 mm and

the central square, about 100 mm by 100 mm, was made of smaller

thickness to raise the stress in this region. Figure 6 shows a

13




cross-section of a thick biaxial sample. The central region, where the
cut was placed, was approximately 2.6 mm thick.

Biaxial samples were placed in the clamp assembly and stretched at
a rate of 60 mm/min to give a strain rate of 8 x 10°3 s-l. After
failure, the thickness was measured with a dial gauge. Stresses were

computed from the measured forces and sample dimensions, and strains

from the clamp displacements relative to the initial clamp separation.

4, esu and Discussio
(a) Stress-strain relations

Measured stress-strain relations for all three geometries are shown
in Figures 7a and 7b, for thin and thick specimens, respectively.
They are seen to be almost linear, right up to break. Breaking
stresses and strains are listed in Table 2. The least constrained
experimental condition, uniaxial extension, gave the largest breaking
strain and the most constrained, equi-biaxial extension, gave the
smallest. The variation reported in the measurements is the standard
deviation from a set of samples @easured under nominally identical
conditions. Three or more samples were used in all cases, except for
the thick biaxial samples when only two experiments were successful.

In constraineﬁ tension (pure shear), the stress-strain relations

had an initial slope of 3.03 MPa, i.e., 1.32 E, in good agreement with
the theoretical value of 4E/3 (20). For biaxially stretched samples
the initial slope was 2,07E, in good agreement with the expected value
of 2E.

(b) Fracture Energy of the Material

14




Measured fracture energies G are plotted against the corresponding
rates of tear propagation ¢ in Figure 8. They showed a marked
dependence on tear rate, Iincreasing by a factor of three, from 80 to

250 J/mz, as the tear rate increased by three orders of magnitude.

(c) Dependence of Breaking Stress on Crack Length.
The tensile breaking stress g, was measured for thin samples having
center cuts of different lengths 2a, ranging from 1.5 to 3.8 mm. As

shown in Figure 9, the results were in satisfactory agreement with a

1/2

direct proportionality between g, and a /%7 in accordance with

b

Griffith's relation, Equation 4. The slope of the linear relation
shown in Figure 9 corresponds to a value for fracture energy G of 145 %
8 J/mz. From the results shown in Figure 8, this corresponds to a

rate of crack propagation of about 1 mm/s in tensile rupture.

(d) Rate Dependence of the Breaking Stress

The tensile breaking stress g, was determined as a function of

b

strain rate over three orders of magnitude from 1.67 x 10-4 to
1.67 x 10-1 m/s, using samples 0.9 mm thick with center cuts 1.9 mm

long. It was found to increase somewhat with strain rate, as shown in

Figure 10, from 0.29 MPa at & = 1.67 x 10™%s™!

x 10 28"}, The smaller dependence on strain rate than that shown by

to 0.40 MPa at ¢ = 1.67

the fracture energy, Figure 8, is in accord with Equation 4, since the
breaking stress is related to the fracture energy only by a half-power
dependence. Small variations in the strain rates used in the breaking

experiments should therefore not affect the breaking stresses strongly.
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(e) Uniaxial Samples

Thin uniaxial samples with a center cut had an average thickness of

It

= 1.09 £ 0.135 mm, and a ratio of cut length 2a to thickness of 1.75

I+

0.22, approaching plane stress conditions. The mean breaking stress
was 0.325 * 0.018 MPa and the corresponding breaking strain was 0.147 *
"0.008.

Thick uniaxial samples had an average thickness of 2.54 * 0.05
mm, giving a ratio of cut length to sample thickness of 0.75 & 0.02,
approaching plane strain conditions. The mean breaking stress was
0.342 * 0.009 MPa, and the corresponding breaking strain was 0.159 %
0.006.

Both thin and thick samples followed the same, nearly lirtear
stress-strain relation up to break, Figure 7, but the thin samples
broke at slightly lower stresses and strains.

(f) Constrained tension (pure shear)

Pure shear samples had an average thickness of 0.77 * 0.02 mm,
giving a ratio of cut length to thickness of 2.48 * 0.07.
Stress-strain relations are shown in Figure 7. The mean breaking
stress was 0.374 * 0.016 MPa and the breaking strain was 0.134 % 0.004.

Unlike uniaxial samples, failure of pure shear samples occurred
over a period of several seconds. The crack grew rapidly at firsc,
crossing most of the width of the sample and releasing about 80 §% of
the initial stress, but {t then slowed down and crept across tae
remainder of the sample width. This behavior can be understood in

terms of the strain energy release rate. When the length 2a of the

16




cut is much smaller than the sample length, the strain energy release

rate G depends on a (17)

G = CUa (9)

as well as upon the strain energy density U. (€C is a numerical
constant). Thus, failure is initially autocatalytic and the crack
accelerates. But when the length of the cut is greater than the sample

length L, the strain energy release rate becomes (17)

G = UL, (10)

and no longer depends on the length of the crack. Finally, when the
crack length is comparable to the width of the specimen, the energy
density U decreases towards the value for a strip in simple extension,
and the strain energy release rate is correspondingly reduced.
(g) Biaxially Stretched Samples

Thin equi-biaxial samples had an average thickness of 1.20% 0.1%
mm, giving a ratio of cut length to thickness of 1.§9+ 0.14. The mean
breaking stress was 0.451 * 0.010 MPa and the breaking strain was 0.074
+ 0.00s.

With thick equi-biaxial tension samples, only two experiments were
successful. All other samples broke from an edge flaw, rather than
from the initial center crack. The sheets had a thickness of 2.57 *
0.035 mm, giving a ratio of cut length to thickness of 0.74 + 0.01.

The mean breaking stress was 0.443 *+ 0.020 MPa and the breaking strain

17




was 0.086 * 0.003, nearly the same as for the thin sheets.

When a biaxially-extended sample failed, the crack grew
catastrophically to the sample edges, releasing all of the stress
perpendicular to the crack, but a considerable amount of strain energy
remained due to the clamps holding the rubber taut in the direction

parallel to the crack.

(h) Contribution to biaxial breaking stress from the reinforced

perimeter

The apparent stress in the reinforcement g, at the breaking
elongation was subtracted from the apparent strength to give a
corrected value of biaxial breaking strength g:. It was determined
with a sample having the center cut away, leaving a square ring. A
plot of stress-strain data for a thin biaxial sheet is shown in Figure
11, together with results for the reinforced perimeter ring alone. The
stress in the perimeter ring at the breaking strain of the entire sheet
was only 0.025 *+ 0.003 MPa, about 5 % of the breaking stress for thin
sheets. A correction was made by subtracting this value from the
measured breaking stress. Similarly, for thick samples the mean
stress in the reinforcement ring was 0.056 + 0.008 MPa, about 12.5 % of
the measured breaking stress. Again, this value was subtracted to
yield a corrected breaking stress.

For both thin and thick samples, the stress in the reinforcement
rings showed an initial increase up to a strain of ‘2=3 & and then
decreased to a constant or nearly constant value.

Comparing the corrected values of breaking stress with those for

18




the other two loading geometries in Table 2, they are still
considerably larger than for uniaxial tension or pure shear.
(i) Strain-energy-density considerations
For uniaxial tension and pure shear samples, the strain-energy
density necessary to initiate fracture is given by the area under the
stress-strain curve up to break. Since the material is nearly linearly

elastic, this area can be approximated by:
Ub - (1/2)abeb. (11)

But, when a sample is stretched equi-biaxially, strain energy is put
into the sample in two directions, so the strain energy is twice the
area under the stress-strain curve: %8 However, as the crack
grows, the region around it is not rendered stress-free: it remains in
a state of simple tension as a result of the stress acting parallel to
the crack. Thus, biaxial strain energy is released but strain energy

in uniaxial tension remains. The change in strain-energy is
1
U = o,e - 39,¢ (12)

where g, is the sﬁress in simple tension at a strain equal to the
breaking strain in biaxial stretching. Strain energy densities

released at failure were computed using equation (12) and are listed in
Table 3, along with computed values of strain energy densities at break

for uniaxial and pure shear loading.

Values of breaking energy were also calculated from the measured
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stress-strain relations, without assuming that they were linear. They

were fitted with quadratic functions:

e + a,e

o(e) = a1 28

(13)

using a least-squares analysis to determine the fitting constants, 2,
and a,- Values of ub were computed by integration up to the breaking
strain. They are given in Table 3. The error listed for them is the
standard deviation in values obtained from separate stress-strain
curves.

Since the stress-strain curves were nearly linear, values of Qb
computed from the quadratic functions were almost the same as those

calculated assuming linear stress-strain relations, being only from 3.2

to 9.2% higher, Table 3.

(j) Fracture Energies from Breaking Stresses and Strains
From the strain energy density at failure ub' a value of fracture

energy G can be calculated using Griffith’s criterion

G = 2naly ' (14)
where 23 is the length of the center crack. Fracture energies G for
the three different deformations were calculated from values of the
strain energy densities released at fracture, calculated assuming
linear elastic behavior, Equations (11) and (12). They are listed in

Table 4.
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Wicthin experimental error, breaking stresses in simple tension,

pure shear, and the corrected values for equi-biaxial tension all
correspond to the same fracture energy, G = 150 J(mz.
On the other hand, the breaking stress was significantly larger in

pure shear and equi-biaxial deformation than in simple tension. @y\su—k pa5e 2la)4—

5. Conclusions
The fracture behavior of sheets of a rather britﬁle, rubbery

material with a center through-crack has been examined in three modes
of deformation: simple tension, pure shear and equi-biaxial tension.
The simple tension samples, which were the least constrained, showed
the largest strain at break (gb = 0.14) and smallest breaking stress
(gb = 0.35 MPa), while the highly-constrained biaxial samples had the
smallest breaking strain (gb = 0.08) and the largest breaking stress
(gb = 0.44 MPa).

Thick biaxial sgmples failed at a somewhat lower stress than thin
ones, but at a stress still larger than that for simple tension
samples.

Values of the strain energy released at failure for all three
modes of deformation were equivalent, within experimental error, and
corresponded to a fracture energy of about 150 J/mz, in reasonable

agreement with directly measured values.
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Values of breaking stress and strain can be calculated from
equations (11l), (12) and (14) for plane stress conditions, assuming
linear elasticity. For imcompressible materials they are:

ab2 = (4/3)-EG/xma (15)

for both pure shear and equi-biaxial extension,

eb2 = (3/4)-G/=xaE (16)

for pure shear, and,

e 2
b

= (1/3)-G/xaE (17)
for equi-biaxial extension. Experimental results were in reasonable

agreement with these relations, when scaled with respect to values

measured in simple extension, Table 5.
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Table 1. Theoretical Values of the Ratio of Equi-biaxial to Uniaxial

Breaking Stress for an Incompressible Material, frcxz Various Authors.

Author(s) gb,z/gb,l

plane stress plane strain
Kassir and Sih (1967) 1 1
Sih and Liebowitz (1967) 1 1
Wolf (1923) 0.866 0.707
Swedlow (1965) 0.866 0.707
Eftis and Jones (1982) 0.866 0.707
Adams (1973) 1.5 .-
Hilton (1973) Greater than 1 -~
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Table 2. Breaking Stresses and Strains.

Deformation e, -
(MPa)
Uniaxial extension
plane stress 0.147 % 0.008 0.325 * 0.
plane strain 0.159 + 0.006 0.342 + 0.

Pure shear

plane stress 0.134 + 0.004 0.374 £ 0
Equi-biaxial extension

plane stress 0.074 * 0.005 0.451 £ O

plane strain 0.086 * 0.003 0.443 % 0
Corrected equi-biaxial extension

plane stress -- 0.425 = 0

plane strain -- 0.387 2 0

018

009

.016

.010

.020

.013

.028
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Table 3. Strain-Energy-Densities at Failure.

*
Deformation gb
3
(kJ/m™)
Uniaxial extension
plane stress 23.9 1.3
plane strain 27.2 £ 0.9
Pure shear
plane stress 25.1 £ 0.9
Equi-biaxial extension
plane stress 26.5 £ 2.4
plane strain 29.4 £ 2.2

Corrected equi-biaxial extension
plane stress 26.6 £ 2.7

plane strain 24.6 £ 3.5

27.4

I+

2.5

28.2

I+

2.4

30.7

I+

2.2

*From equations (11),(12)

and (14)
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Table 4. Tear Energies Computed from Strain-Energy-Density at Failure.

Deformation G
2
(J/m™)
Uniaxial extension
plane stress 143 + 26
plane strain 163 + 18

Pure shear
plane stress 150 *+ 18

Equi-biaxial extension
plane stress 159 £ 15
plane strain 176 * 14
Corrected equi-biaxial extension
plane stress 147 + 17

plane strain 147 * 21
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Table 5. Breaking Stress and Strain Ratios.

Deformation e

.................................................................

Uniaxial extension
plane stress 1 1

plane strain 1.08 £ 0.10 1.05 £ 0.08

Pure shear
plane stress 0.911

I+

0.080 1.15 £ 0.11

Equi-biaxial extension
plane stress 0.503 + 0.059 1.39 £ 0.11
plane strain 0.582 * 0.051 1.36 £ 0.14

Corrected equi-biaxial extension
plane stress -- 1.31

I+

0.11

plane strain -- 1.19 + 0.15
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Figure legends

Figure 1. Ratio R of breaking stresses vs biaxiality ratio k of
the applied stresses, from Swedlow’s results for plane

stress (9).

Figure 2. Relation between tensile stress g and extension g for a

parallel-sided strip of the test material. The break

point is denoted by a circle.

Figure 3. Clamping arrangement for equi-biaxial extension.

Figure 4. Measurement of tear force F and tear width w.

Figure 5. Method of clamping sheets for equi-biaxial extension.

Figure 6. Cross-section of a thick molded sheet, as used for

equi-biaxial extension.

Figure 7. Experimental relations between stress g and extension e
in equi-biaxial extension (E-B), pure shear (P.S.), and
simple tension (S.T.). The points denote fracture.

(a) Relatively thin sheets, giving approximately plane stress

conditions.
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(b) Relatively thick sheets, giving approximately plane strain

conditions.

Figure 8. Fracture energy G from tearing experiments as a function
of rate ¢ of tear propagation.

Figure 9. Tensile breaking stress ¢

p VS crack half-length a,

plotted in accordance with Equation 4.
Figure 10. Tensile breaking stress g, Vvs. rate € of extension.
Figure 11. Stress-strain relation for a thick sheet in

equi-biaxial tension (E-B) and apparent stress for the

outer ring alone.
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