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1 STATISTICAL CONSIDERATIONS OF
EYE DAMAGE

In considering eye protection we must take into account not only the
average energy or average power density on the retina but also random vari-
ation, as noted by Fried (1981). Random variations can arise in at least two
ways. Most surfaces, either natural or manmade, are extremely rough on the
scale of an optical wavelength. Under illumination by coherent light, a wave
reflected from a typical rough surface consists of contributions from many
scattering points or areas. Images formed at a given point are the combina-

tion of amplitudes of spread functions, each arising from a different scattering
point on the surface. The spread functions add with different phases, giving
complex interference patterns, which are labeled speckle. The eyes will form
a random intensity pattern on the retina: subjective speckle.

In a static, nonturbulent atmosphere, a speckle pattern propagates through
the atmosphere unchanged; it is statistically stationary. When turbulence is
present, it seems to modulate the brightness of each speckle. Turbulence
gives rise to a random, moving patchiness in the atmospheric temperature
field and thus in the index of refraction. The combined effect of turbulent
eddies is to form a screen, which alters the phases of the waves that combined
to form speckles.

It is easy to imagine scenarios in which speckles will form under battlefield
conditions. For example, a laser beam entering a helicopter cockpit will
undergo scattering off the interior surfaces. Airborne lasers will scatter off
the ground, buildings, and trees. In such scenarios, the laser beam may
undergo several such scatters-the statistical properties of doubly or multiply
scattered laser radiation can be expected to differ from those of ordinary
speckle.

1.1 Statistics of Speckle

Classical speckle theory has been well-developed in recent years (Good-
man, 1985), but much less work has been done on multiply scattered speckle.
If a surface is truly rough on the scale of a wavelength, the field associated

1



with any singly linear polarization must be circular, complex Gaussian. The

intensity, I, follows a negative exponential distribution, such that the prob-

ability of the intensity lying between I and I + dl is

p(III) = (1)e- I > 0

-0 1<0,

given a mean intensity . Since the probability density function is a nega-

tive exponential, the fluctuations about the mean are pronounced and the

distribution has a long fat tail, as compared with a Gaussian distribution.

The long tail implies that high intensities, several times the mean, are not

all that improbable.

If we define contrast as the ratio of the standard deviation to the rijean,

then the contrast of a speckle pattern is unity. Because of its high contrast,

speckle is highly disturbing to observers. This is particularly true if fine

detail is of interest and speckle results in a significant loss in resolution.

The probability, PT, of exceeding some threshold intensity, IT, of damage

is
PT = fI -'e-' dI = exp- .

For a given threshold p,'obability PT and intensity damage threshold IT, the

mean intensity I at the retina must be

S= IT

ln PT

or less, a result discussed by Fried (1981). Thus, if PT is set at 106,

should be held to 0.0724 IT or less, in order to insure that subjective speckle

is below threshold at a probability of one in a million. This probability is

for a single speckle scene. In a battlefield situation, an individual will be

exposed to large numbers of such scenes, as both the laser source and the

individual move relative to the rough surface giving rise to the speckle. The

probability of 106 carries into the far reaches of the tail of the distribution.

It is assumed that the exponential distribution is still valid in this region.
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1.2 Statistics of Scattered Speckle

As a model of speckle scattering, consider a laser beam illuminating a
rough surface, which then scatters onto a second surface, which is viewed by
an observer. Alternatively, a laser beam could be projected through a ground-
glass screen onto a rough object, which is then viewed. The condition for
subjective speckle is that the observer is close enough to the laser-illuminated
object to resolve clearly the details of the objective speckle pattern projected
on the object by the ground-glass screen.

The speckle pattern from the first scattering has a nominal instantaneous
power density I' and is a random quantity governed by a negative exponential
distribution with mean I. The subjective speckle on the retina will also have
a negative exponential distribution. The overall power density on the retina
will then have a probability density p,, given by

Ps(I[I) = fo 0 p(I[I')p(I'l])dI'

or

Pm ) = 1 0 00 l' exp [- (f + I)] dI'.

The integral can be evaluated in a straightforward fashion. Instead we
consider a somewhat more general problem, in which the calculation of the
conditional probability p, is a special case. Let X be a random variable with
a gamma probability density function

px(x) = 1--a(ax) -1exp(-ax) a > 0,

with scale factor a and index v; F(v) is the gamma function. We note that
a negative exponential distribution for speckle is a gamma distribution with

a = i - , v=1.

Now consider a second random variable Y, with a gamma density function
index p and a scale factor /. The product of X and Y, Z,

z = XY,
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has a probability density function

0z0z = Px (X)PY () d
P Z) 0 (x x

- r.l~g ( .1 -' ]0(ax)l,-Ie-° x(Oxl-(;'-')e- dX
-1 avoZ)< 'U d

- r(v)r(p) a -  x-/-lexp - ( + dx.

From the theory of Bessel functions we have the equality

KA(y) = -1 (-'Y)' 1j T'(A+l)eXp (-- i) di-,

where KA\(y) is a Bessel function of imaginary argument of the second kind,
which is sometimes known as a Basset or MacDonald function (Watson,

1944). The probability pz(z) is then

pz(z) = a!3 [(az)-'(aIz<T2K-.

Thus, the product of two gamma-distributed random variables gives rise to
a distribution involving K functions.

Returning to the problem at hand, because we have a product of negative
exponentials, the probability density of the intensity of scattered speckle is

P(I = 2-'K0(, [2 ;]
The threshold probability for scattered speckle is then

PT = )I 211I~d - K] [2V d.

The integral fl' K0(x)dx is tabulated function (Abramowitz and Stegun,
1965). For a threshold probability PT = 10', the allowable average intensity
of ordinary speckle is 0.0724 IT, while that of scattered speckle is 0.017 IT.

The fatter tail of the K distribution lowers the allowable average intensity
by a factor of 4.3 for scattered speckle.
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1.3 Turbulence Modification of Speckle

For a laser beam propagating through the atmosphere at levels of tur-
bulence below saturation, the probability distribution for intensity tends to
follow either a lognormal or a Rice-Nakagami distribution of the form

p(x) -[exp -(±3]l 2ix~

where Io(x) is a Bessel function of the first kind with imaginary argument
(Goodman, 1985). We assume for the purpose of this calculation that the
Rice-Nakagami distribution is the appropriate distribution for low levels of
turbulence. In turn, the Rice-Nakagami distribution can be very closely

approximated by a gamma distribution with index M. The index M of
the gamma distribution is related to the parameters a and /3 of the Rice-
Nakagami distribution by

M- (Ce + 0)2

/32 + 2a,3'

and the normalized moments of the gamma distribution are determined by

r (n + M)
=~) M.F(M) •

The probability density function for the turbulence-modulated spectrum
is

p(III) = 0 PD(IjI')po(I)dI

where pQ is the negative exponential distribution appropriate to the undis-

turbed, quiet atmosphere, and PD is the probability distribution for the tur-
bulent modification of the intensity distribution. We thus have the product
of two gamma distributions. At low levels of turbulence, the M distribu-
tion is appropriate (Strobehn, Wang and Speck, 1975). At higher levels of
turbulence, the intensity distribution associated with turbulence alters the
negative exponential distribution of the intensity associated with speckle. A
distribution of the form

1 MM M-1 Mx
AX) ( X exp
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results in a distribution for the intensity of

p(III) = 2 ( 2I--K [2 (MI)]

where KM(x) is the Bessel function of an imaginary aigument of the second
kind with index M. The moments of this distribution follow from

I0 K,(x)xP-'dx = 2"-'(' - V) f(P + V)
o 2 2

(Watson, 1944; p. 388). The normalized moments of p(III) are

In _ F(n + M)F(1 + M)
(I)n 1(M)Mn

with a normalized variance of 1 + -

The probability PT of exceeding some threshold intensity of damage,

PT = 2(~i I' JT~ [2 (c]dI,
I IT

can be obtained by integrating by parts and using the recursion relations

KM-1 - KM+l - 2M KM
x

KM1 + KM+l = -2 d KM ( x )

dx

which lead to

P=2(MIT) 1 2( )
I (M)KM

Observation of turbulently scattered laser light leads to estimates of M
(Holmes, Lee and Kerr, 1980; Phillips and Andrews, 1981). With no tur-
bulence, normalized variance of intensity is unity, which corresponds to a
large M. As turbulence increases, the variance rises to a value of about
1.25, corresponding to M = 8; at still stronger turbulence the variance again
decreases. At the limiting value of infinite M, the K distribution asymptot-
ically approaches the negative exponential distribution. At values of M ; 8
for a given value of PT, the allowable mean intensity will be less than that
for ordinary speckle, because of the long tail of the K distribution.
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