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I Introduction

The propagation of regional phases in eastern Asia, within the boundary of the People's Republic

of China, is not well known because of the lack of data there up to early 1980's. Since then data from a

number of the Chinese Kimos network stations were available in 70 mm film chips. The Kirnos instrt-

ments have relatively broad frequency response, but the gains are about 1500-2000 in the frequency range

from 10 Hz down to 0.1 Hz. Thus, events in the magnitude range of less than 4 are not observed at all

stations. The recently installed Chinese Digital Seismic Network provides excellent data in the short-

period, intermediate and long-period bands. To date data from five to six stations are available on a regt-

lar basis.

2 Regional Phases at WMQ and KSH from the Semipalatinsk test sites

2.1 Objective

Regional phases such as Sn, Lg and Rg may contain valuable information for the discrimination

between earthquakes and underground nuclear tests. Film records from the broad-band Chinese Kir-

nos stations are available from 1979 to 1984, and for the first time we can study the propagation of

regional phases across eastern Asia. In this report, we summarize results previously published in

China, of regional phases observed at a number of the Kirnos stations (Fig. 2.1.1), and then provide

preliminary results of our analysis of the Kirnos film records.

2.2 Summary of Chinese Results

Examples of seismograms and a brief description of them are contained in Zhao (1980). The most

important observational results of regional phases are summarized as follows:

1. Within a distance of 100: (a) In eastern China, P. and S, are typically weak and unclear. P" is occa-

sionally seen, but in western China, in Xinjiang and Tibet, P. and S. may be quite prominent. (b) PL

waves have periods between 6 and 20 seconds.

2. Between 100 and 200: (a) P and S waves tend to be weak or absent, (b) Lgl and Lg2 at velocities of

3.54 km/sec and 3.38 km/sec respectively are usually observed. Lgl appears more frequently from

sources at depths greater than 10 kin, while Lg2 becomes more dominant for shallower sources. Peri-

ods of Lg waves range from 0.5 to 5 seconds, mostly between 2 to 4 seconds. They may persist for

more than 10 cycles. Lg however, does not propagate well across the Tibetan Plateau; the arrival

within the group velocity window of 3.5 to 3.3 kn/sec consist of long (10 second) period pulses.

3. Between 20* and 300: (a) P and S waves are very clear. (b) Lg waves tend to appear with a domi-

nant period of about 6 seconds.



2.3 Regional Phases Observed at Chinese Stations from Semipalatinsk Sources

Patton and Mills (1984) and Langston (1986) have shown the broad-band Kirnos records from

Chinese stations contain clear mid-period surface waves at Urumchi stations. Currently, records from

sixteen similar stations (1979 to mid-1984) are in archive at USGS office in Denver. The locations

and names of these stations are shown in Fig. 2.3.1.

The Kirnos instrument response is essentially flat between 0.1 to 10 seconds. The magnification of

the horizontal component at different stations varies between 1400 and 2400 with the vertical magni-

fication about one half of the horizontal. Because of the relatively low magnification, large events (5

< Mb <6.5) are quite often recorded on scale at distances of around 1000 km. However, the wave

amplitudes at more distant stations are often small, especially at the high frequency end.

We use records from a series of Semipalatinsk tests in 1980 and 1982 to study the propagation of

Lg across China. Figure 2.3.2 shows the general observability of Lg2 (within a velocity window of

3.4-3.2 km/sec) of a Mb=5.9 (USGS) event. The amplitude has been corrected for instrument magni-

fications and is expressed in millimeters on our film reader; the noise level is about 2 mm. Event of

smaller magnitude are normally observed clearly only at WMQ (epic. dist.=950 km) and KSH (epic.

dist.=1 160 km). At LZH (epic. dist.=2550 km) a Mb=5.4 event may be barely observable. The Lg

waves at WMQ and KSH are dominated by 1 second waves while at greater epicentral distances 4 to

6 second waves are observed.

The WMQ and KSH stations provide excellent records of the Semipalatinsk events. Although the

epicentral distances to these two stations differ by 200 km, the waveforms are totally different. The

WMQ records consistently show an emerging Lg and dispersed Rayleigh waves, while at KSH Lg

waves show an impulsive beginning and a long decaying tail without clear surface waves. The P

waves are usually weak and the Lg waves are the first large amplitude waves observed. The path

between WMQ and the Semipalatinsk test site is relatively flat and crosses a minor mountain range.

The wave path between KSH and the test site, on the other hand, cross a major range, the Tianshan.

These differences are evidently responsible for the differences in observed seismograms.

The Semipalatinsk events recorded at WMQ have common recognizable characteristics. In Fig.

2.3.3, the vertical components for five events ranging in magnitudes from 5.5 to 5.9 are shown. The

high frequency Lg superposed on the 8-10 sec. period Rayleigh waves are very clearly displayed for

the lower four traces, but for the 5.5 event, the high frequency is almost absent.
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6

We have measured maximum amplitudes of Lg waves on the three components as well as that of

the P waves, the 8-10 seconds Rayleigh waves and the 4 second Rayleigh wave near the end of each

wave train. The results are shown in Fig. 2.3.4. It is seen that the linear amplitudes increase nearly

exponentially as they should, except in the case of 8- 10 seconds Rayleigh waves.

2.4 Conclusions

Lg propagation in eastern Asia is fairly complex because of the presence of various tectonic prov-

inces. At WMQ and KSH high frequency Lg waves are recorded well. At more distant stations, Lg

amplitudes are small even for Mb=6.2 Semipalatinsk events. The observation is evidently limited by

the low magnification of the Chinese Kirnos stations.

To get a more complete view of the regional phase propagation, earthquakes in various parts of

eastern Asia recorded at the Kirnos stations should be studied. The Chinese Digital Seismic Network

data is coming online. Data from this network has a much larger dynamic range and should prove to

be of key importance in the whole study.

3 Regional phase observations at CDSN stations

This section shows some examples of typical earthquake and explosion seismograms recorded at

several CDSN stations (Fig. 3.0.1). All events are those in 1987. The event information is shown in

Table 3.1. For the CDSN records the short and intermediate components are triggered. Usually the short

period records contian only the P phases and the coda. The intermediate records often include most of the

Lg and later phases. To show more complete records and taking particular notice of the regional phases,

we have high-pass filtered (four pole Butterworth with comer at 0.5 Hz) the intermediate components to

simulate short period records. In all figures, when three component seismograms are shown, they are

arranged in the order, from top down, as east-west, north-south and vertical.
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,..ble 3. Events information for the regional seismogrrams shown in figures 3.1 through 3.12.

rr D Distance Event Fil

Date 0. Time Lat Long (km) Mb WMQ LZH BJI KMI Location No.

01/05 22:52:46.5 41.96 81.3 17 5.9 560.5 Tianshan 3.1

01/07 18:19:08.8 34.0 103.4 33 5.2 1718 S. E. Gansu 3.2

01/24 08:13:14.4 41.4 79.4 33 5.9 731.2 Tiaishan 3.3

01/28 12:12:15.9 45.36 96.1 33 5.1 692.2 1217 W. Mongolia 3.4

02/25 19:56:35.5 38.1 91.2 26 5.7 699.9 1146 W. Qaidam 3.5

03/01 17:59:10.0 49.8 102.8 24 4.8 1323 1511 N. Mongolia 3.6

04/30 05:17:37.0 39.8 74.6 8 5.7 1175 S. Xinj. 3.7

06/06 02:37:07.0 49.86 78.11 0 6.1 990.8 Degelen 3.8

06/08 13:30:32.8 39.8 74.6 10 5.1 1172 S. Xi-j. 3.9

06/20 00:53:04.8 49.9 78.7 0 5.5 960.3 Shagan R. 3.10

08/09 21:14:58.2 29.4 83.7 34 5.6 1628 W. Himalaya 3.11

08/10 12:12:14.1 38.19 106.4 33 5.4 1689 318.1 Yinchuan Grab. 3.12

09/06 23:38:52.2 26.7 93.4 42 5.4 1969 950.6 E. Himalaya 3.13

09/18 21:58:36.6 47.28 89.7 10 5.3 387.6 Altai Mount. 3.14

09/27 06:12:42.5 34.1 80.7 33 4.9 1228 NW Tibet 3.15

10/03 11:00:03.3 36.5 71.5 80 6.0 1604 Pamir 3.16

11/03 18:24:49.7 33.1 86.9 33 4.9 1189 C. Tibet 3.17

12/17 12:17:23.4 41.8 83.1 33 5.1 421.9 N. Tarim 3.18

12/22 00:16:39.1 41.4 89.7 21 5.9 316.1 1364 E. Tarim 3.19

Figures 3.1 through 3.19 show a series of representative seismograms recorded at three of the

CDSN stations. The seismograms are intermediate-period records, unless otherwise noted in the figure

caption, and have been subjected to high-pass Butterworth filter with the corner at 0.5 Hz and with four

poles. Although a longer seismogram is usually available for the intermediate-period records than the

short period records, often the regional phases are not complete. The trigger system on these systems

need to be improved. WMQ station is the best station to look at regional phases because of the many

events within a distance range f 2000 km.
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Figure 3.4 (a) WMQ and (b) LZH records of an event in western Mongolia. Lg arrives with 3.6 and 3.52
km/~sec: velocity at WMQ and LZH, respectively. The WMQ paths crosses the Altai Mountains while the
LZH path goes along the Qilain Mountain chain.

LZH
4 -1 1 f I I I I I T 1 1

2- JAN 28 (028), 1987
A & 

12:16:36.020

Cn 2- JAN 28(028)1 1987

2- JAN 28 (028), 1987

300 350 400 450 500 550 600



-4-

200 t~L)25

150 Sec

pato

,.s h a r k T h 
t hee r n o ~ ~ th w ni a n d p o t i O f b e w e e n

LL"tag rd, 

hC

big bre 3J e m a t 9 T g TIhe f ist 1 - , 1 
( a) \<Vl anS 

ch G as~f ab o t g o p of L . aga in

and,,h wav theh 10 g~ has aabocl 
t 3D 5 fir Js C hepoups

A n the A t n g n O A o n a ln i

.,lcity of ven Xo S i -5 1 11 ~ it~ r

L7: 
~ 25 056).~J

-2 
5

tel04



13

WMQ

20 4

,,-~~~ 

I.,....,. TIV

X

I "-" t MAR 01 (060). 1987 -

23 4 5
X10"{2

Time, Sec
Figure 3.6 (a) WMQ and (b) BJI records from an event in northern Mongolia near the Soviet Border.
While the path to WMQ crosses two mountain chains, the Changgajin in southwestern Mongolia and the
Altai Mountains along the border between Mongolia and China, the path to BJI lie almost entirely within
the PreCambrian Shield area of eastern Mongolia and northeastern China. The relative simplicity of the
Bl records in comparison to the WMQ records can be ascribed to the pure path for the BJI path and more
heterogeneous path for WMQ. The Lg waves arrive between a velocity window of 3.57 to 2.94 at WMQ
and 3.5 to 3.18 at BI.
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Figure 3.7 The events is near the Sino-Soviet border in southern Xinjiang (near the town of N,'uqia). The
is a shallow event. The seismograms in Fig. 3.9 art from the same region. They appear quite similar.
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Figure 3.8 This is an Semipalatinsk event (evidently from the D~,'clcn site, judting fioin the epiceitral
location and wavcforn - sce more later). The Lg velocity for the first group is 3.4 ki'sce. Compare
Figure 3. l0 and notice the overall diferencc bctwccn this figurc and the Shaigan River iscjil r tcords (Fig-
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The is a shallow event. The Lg phase arrives with a velocity of 3.44 km/sec.
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Figure 3.12 This event is located at the western edge of the Ordos Platform in the vicinity of the Ying-
chuan Graben. The (a) WMQ and (b) LZH records are shown here. At LZH, the closer station, the Lg
arrives with a velcity of 3.57 km/sec; at WMQ the triggered records stopped short of the Lg wave.
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Figure 3.13 An event from the eastern Himalayas. (a) WMQ and (b) KMI records are shown. The path
to KMI is contained almost entirely within the southern edge of the Tibetan Platean, much in the Hima-
layas. The records show evidence of scattering. No trace of Lg can be found in the KN4I record (expected
arount 280 seconds.
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Figure 3.14 An event in the Altai mountains east of the Zhungar Basin.

WMQ

50 LSEP 27 (270), 1987 -
c' 0 Ii i :1"w

" -50- ,4 7 M 7 rMRII1

,. .1 SEP 27 (270). 1987
C: ~kiI J -ltl ,~. .. ,',, ~ ,.lml,. ,L ILI.M m.,, ,_,, . 06:11452.120-

150 200 250 300 350 400 450 500 5o 6Wo
Time, Sec

Figure 3.15 An event in northwestern Tibet near the Karakunruns. The Lg appears as a small but visible
phase with a velocity of 3.3 krn/sec. A burst of energy at 325 seconds represents probably a local shock.
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Figure 3.16 An intermediate shock from the Pamirs recorded at WMQ. Here a large P wave is seen, but
no Lg can be found.
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4 Observations of events from Semipalatinsk

Seismograms of the Semipalatink events at CDSN stations are interesting, and not yet completely

understood. As expected, the events in the eastern part of the test site (Shagan River) produce seismo-

grams that are quite distinct from those for events in the western part of the test site (Degelen Mountains).

The events are listed in Table 4.1.

Table 4.1 Information for Semipalatinsk events

Julian Lat. Long. Date 0. Time Mb M.
Day

87071 49.94 78.82 03-12 01:57:17.2 5.5 3.9

87093 49.93 78.83 04-03 01:17:08.0 6.2 4.7

87107 49.89 78.69 04-17 01:03:04.8 6.0 4.3

87126 49.83 78.13 05-06 04:02:05.6 5.3

87171 49.91 78.73 06-20 00:53:04.8 6.1 4.2

87198 49.78 78.13 07-17 01:17:07.0 5.8 4.6

87214 49.84 78.89 08-02 00:58:06.7 5.9 3.8

87319 49.87 78.79 11-15 03:31:06.7 6.0 4.8

87347 49.96 78.85 12-13 03:21:04.7 6.1 4.5

87354 49.83 78.00 12-20 02:55:06.7 4.8

87361 49.83 78.74 12-27 03:05:04.7 6.1 4.5

4.1 Seismograms for the Shagan River and the Degelen Sites Recorded at WMQ, LZH and BJI.

The epicentral distances of WMQ, LZH and BJI stations to the Soviet test sites are around 8.8,

23 and 31 degrees, respectively. While the first arrival at WMQ is P., the P waves arrive at LZH and

BJI have travelled through upper mantle. Detailed interpretation of the P phases in all three cases

would be difficult. However, comparison of the initial P waves and phases arriving within 20 seconds

of the initial P, demonstrate great differences of the seismograms from the Shagan and Degelen sites

as well as subtle difference among the individual events at either site. These records have been

shifted in time to align either at the first arrival or the maximum (or minimum) of the first cycle.

As we can see from Figs. 4.1.1 through 4.1.4, SPZ seimograms for the Shagan and Degelen

events recorded at WMQ, the initial P at WMQ are much more impulsive for the Shagan than for the

Degelen events. The initial motion of the Degelen records can best be described as emergent. Inci-

dentally, the broad-band IPZ records show sharper P first arrivals, but the overall waveforms are quite

similar and we have more SPZ records available for comparison. On the Shagan River records a large

phase at about 3 seconds after the initial P can be observed, but it is virtually absent in the Degelen

records. Another characteristic phase in the Shagan records are the prominent five cycles at about 14
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seconds after the initial P. This phase appear as one and half cycle phase for the Degelen events and

arriving slightly later. For both the Shagan and the Degelen records, the pP phases can be clearly

discerned (Fig. 4.1.1), based on comparisons with studies of Burdick et al. (1989).

A detailed interpretation of these phases is difficult. By comparing the similarities and differ-

ences of the Degelen and Shagan events recorded at WMQ we make the following observations:

(1) It is quite remarkable that two sites that are less than 70 km apart can generate regional waveforms

that are clearly different.

(2) Based on its variability, and the absence of it for the Degelen records, the piase at 3 seconds or so

after the initial arrival is probably a wavetrain associated with velocity structures near the source.

(3) The phase at 15 or so seconds after the initial break for both Shagan and Degelen events are prob-

ably a phase having a common path, but a part of the phase is probably associated with a up-going ray

near the source, causing the differences observed between the Shagan and Degelen records.

(4) Detailed study of these waveforms with synthetics will be quite interesting.
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Fig. 4.1.1. The first seven seconds of

the SPZ records of 1987 Shagan and

ae , Degelen events recorded at WMQ.

The details of P waves are shown

' 'here. These records are lined up at
AOKI the first motion. The top five traces

are from the Shagan events (corre-

/, .Usponding to events numbers 87071,

87093, 87171, 87 214, and 87347)

and the lower four are from the Dege-

len area events 98126, 87157, 87198,

87354). Notice that while first

c motions for Shagan events are clearly

up, those for the Degelen events are

emergent when plotted at this scale.

By increasing the vertical scale we

can see the upward first motions for

both Shagan and Degelen events

(Figs. 4.1.3 and 4.2.4). Also, for the

Shagan records a clear phase arrives

at 3 seconds after the initial break.

4 4 I me,
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Fig. 4.1.2. The first twenty seconds

of the SPZ records of the 1987 Sha-

IN' gan and Degelen events (in the same

order as that of Fig. 4.1.1) recorded at

-r, ,WMQ. Clearly displayed are the

arrivals for both Shagan and Degelen

events at 14 to 15 seconds after the

__ 11- initial breaks. The detailed wave-

forms of this phase for the Shagan

and Degelen events are significantly

1.11111 different. Notice that the overall

differences in the waveforms of these

C two groups of records are also quite

clear.U

I I I I I I I I

lime1 miel
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Fig. 4.1.3. Details of SPZ records of

Shagan River event 87171 recorded

at WMQ. Notice the clear first

motion and the differences between

this record and Fig. 4.1.4.

Time, Sec

WWMQ

Fig. 4.1.4. Details of SPZ records of

Degelen event 87126 recorded at

lme, Sec

Fig. 4.1.5 presents the records of the Shagan River and Degelen events recorded at BJI. The

epicentral distance is about 28 degrees. The pP phase is not very clear as shown in the LZH records

(Fig. 4.1.6).
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Fig. 4.1.5. SPZ records of Shagan
River and Degelen events recorded at

, 0BJI. The records from events (from

top)

87071

0' 87093
87107

87214

87319
87347

87126 (Degelen)

-" "Notice the very noticeable differ-
ime, k ences between the Shagan River and

Degelen records.
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Fig. 4.1.6. SPZ records of Shagan

River and one Degelen event

recorded at LZH. The events are

87071

87093

UI 187171

87214

87319

87347

87198 (Degelen)

-I l I 4 I 1 10 a N

FTe, Sec

4.2 Cross-correlation of waveforms from different shots

To show the similarities and differences of the Semipalatinsk events, we have performed corre-

lation studies of these events at LZH.
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Fig. 4.2.1 SPZ records at LZH. Fig. 4.2.2 Cross-correlation of the records at

left.

4.3 Spectral comparison of Shagan events of different sizes

Sample velocity spectra for Shagan events are shown in figures 4.3.1-4.3.6; in all cases a time

window of ten seconds is used. For the WMQ spectra, the common features in the spectra are a rela-

tive low between 4 and 5 Hz and the high frequency fall-offs are quite similar. While the spectra of

event 87071 (Fig. 4.3.1, Mb=5.5) and 87214 (Fig. 4.3.3, Mb=5.9) have similar overall shape, the

spectrum for event 87093(Fig. 4.3.2, Mb=6.2) shows clear low frequency enrichment in comparison.
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The LZH spectra show however significant low frequency enrichment for events 87071, 87093 and

87214 in comparison to the WMQ records of the corresponding events. The flattening of the LZH

spectra at the high frequency end is evidently ground noise.

The WMQ records show a comer frequency of about 6-7 Hz and the LZH records, on the other

hand, has a comer around 1 Hz. The differences evidently arise from the fact that WMQ P s, -s are

composed mainly of crustal phases while the LZH P (and other body ) waves have suffered from its

double passage through the low-velocity/attenuation zone in the uppermost mantle.

Fig. 4.3.1 Fourier spectrum of the verti-

Ical component of WMQ records for

W 12 event 87071. The comer frequency is at

6-7 Hz.

C

I . 1 2 3 4 51,1 I0 2 3 4 5117 ,41

Frei=y (Hz)
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Fig. 4.3.2 Fourier spectrum of the verti-

WK cal component of WMQ records for

event 87093. Although the long period

content is enriched compared to the

spectrum in Fig. 4.3.1, the comer fre-

Iquency is still at 6-7 Hz.

F (Hz)

Fig. 4.3.3 Fourier spectrum of the verti-

-- 1 cal component of WMQ records for

SO(M41 m event 87214. The enrichment of low

frequency compared to the spectrum in

Fig. 4.3.1 is clear.

E

0. U

IrI( II~~l~~l 1 4 4 6iI i f i/ ll,'
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f2~UvFig. 4.3.4 Fourier spectrum of the verti-

cal component of LZH records for event

8707 1. The corner frequency is at 1-2

Hz and noise dominates the spectrum

beyond 8-9 Hz.

44 II 2 1 2 468a

Frerqc (Hz)

Fi g. 4.3.5 Fourier spectrum of the verti-

cal component of LZH records for event

87093. The corner frequency is at 1-2

Hz. The noise dominates beyond about
4~5 Hz.

19 2 3 4 SI 5 6 11111~

rre~q (Hz)
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Lt

an .Fig. 4.3.6 Fourier spectrum of the verti-
raw cal component of LZH records for event

87214. The comer frequency is at 1-2

Hz and the noise dominates the spectrum

beyond about 8 Hz.

Frequen (OZ)

5 Regionalization of Rayleigh and Love Waves using CDSN Seismograms

5.1 Introduction

The purpose of this work is to derive the Rayleigh and Love group velocities appropriate for

various geologic/tectonic provinces in China. The results available to-date are based on relatively

sparse path coverage over China (e.g., Feng and Teng, 1983). With the established of Chinese Digital

Station Network (CDSN), the quality of the available data has increased immensely. Although data

from only four to six stations were available to us during 1987 and the first half of 1989, we are able

to use many magnitude Ms 4 to 5.5 (as well as a few larger) earthquakes as sources for this work.

Events used include continental ones located in Central Asia, western China, the Pamirs etc (Fig.

5.0.1) and a number of them near Japan.

The approach used in this study is to assign regional boundaries and determine the velocities

for these regions through an inversion of the measured group travel times of the Rayleigh waves tra-

versing across them. Similar method has been used by many others (e.g. Nishimura and Forsyth,

1988).

5.2 Group Velocity Determination

5.2.1 Program for rapid interactive group velocity determination

We have written an interactive group velocity determine routine on the Sun workstation

utilizing SAC (Seismic Analysis Code, LLNL) graphics subroutines. It takes less than two min-

utes to compute and plot (on the screen) the result of a multiple filter group velocity analysis in

the period range of interest. The subsequent determination of group velocities may involve
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ambiguities because of the presence of higher modes, the arrival of later surface waves due to

lateral refraction or even body waves. In such cases human intervention is needed to locate the

secondary maxima, rather than the absolute maxima, on the energy envelop. We have developed

an interactive routine in which a point on the curve is adopted if no stepwise change in group

velocity occurs, otherwise a secondary maximum will be sought by the program until it satisfies

the user. This procedure evidently involves subjective judgment and some experience on the part

of the user is therefore needed. The resulting group velocity vs frequency is stored in a file for

further processing.

5.2.2 Data

An event search at the Center for Seismic Studies was performed to include all 1987

mb>4.8 events within the latitude range of 250N and 60'N and the longitude range of 700E and

120'E and data from the CDSN stations (Fig. 5.0.1) were extracted from the archive tapes. Data

tapes were written at IRIS. They include the explosion events in the Semipalatinsk test sites, and

earthquakes in the Lake Baikal area, in western China, in the Pamirs etc. This dataset is aug-

mented by first half of the 1989 data, obtained through IRIS Data Management Center in Austin

Texas. This later set includes more events from Japan Arc area, intended for use to cover some

holes left by the first dataset. The files were converted to SAC (Seismic Analysis Code) format

and processed on the Sun workstation. Fig. 5.0.1 shows the events used. As shown in Fig. 5.2.1,

the ray paths criss-cross a large portion of China. It is already clear however that some blocks are

still under-sampled. Some events in the Ryukyus and Taiwan area in the next few years should

allow us to have enough data for the area of interest.

Because the wide dynamic range of the digital data, we have been successful in using

events with rnb 4.8 (some with Ms as low as 3.9) or higher for surface wave dispersion in the

period range of about 15 to 70 seconds. Fig. 5.2.2 shows two example of the contour plot and the

group velocities determined; the June 8, 1988 Ms 4.3 event produced excellent result. In fact.

some of the low magnitude events gave clearer dispersion than larger events presumably due to

the complexity of the sources of the larger events. Explosions invariably yield consistent and well

defined group velocities. The dataset was carefully checked and about 15% of the curves were

abandoned because of incomprehensible dispersion patterns.

5.3 Geologic and Tectonic Regionalization

The crust in the area of investigation is very complex, with blocks of diverse geologic charac-

teristics juxtaposed as a result of successive collisions in the geological past. As a first effort we have

regionalized China guided by the geologic map of China. Units with distinctive petrology (e.g.
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Mesozoic magmatic province of SE China), and of diverse geologic age (e.g. PreCambrian sedi-

mentary rocks south of the Yantze River) and tectonic provinces (e.g. Tibetan Plateau) are classified

as different blocks (Fig. 5.1.1), since we may expect them to have different subsurface velocity

structures. As shown later, we do not yet have sufficient data to resolve the velocities in all the

blocks. We then relax the criteria for subdivision, thus combining various geological provinces

shown in Fig. 5.1.1, into larger blocks (Fig. 5.3.1a). We are attempting to find an optimum middle of

the way such that the conclusion can be supported by data available now. The soundness of our deter-

minations can be assessed by checking against some "pure path" data. Of course the resolution matrix

allows us to assess the quality of the result.

The program for path calculation can accomodate further refinement of regionalization very

easily. Experiments are being conducted for regionalization using hexagons of various sizes as well

as a simplification of the present scheme. Because many boundaries are more than a few hundred

kilometers long, we have used spherical rather than plane geometry for block ooundaries. Of course

the ray paths are those on a sphere.

5.4 Determination of Regional Group Velocities

The travel time for a group of surface waves, at a particular period, between an event and a

station can be written as

ti= I-~
i.1 Uj

where t is the arrival time of a group for the ith path, Axij is the portion of path through block j and u,

is the group velocity for the j th block. With about 150 paths at this time and the velocities of a total

of 25 blocks to be determined, we have a mixed determined problem due to the under-sampling of

some blocks. The SVD method is used for the weeding out of the small singular values and the inver-

sion was performed using the decomposition matrices.

5.5 Initial result

Figs. 5.5.1 and 5.5.2 show the results of the initial regression with 1987 data on Rayleigh

waves only. In these figures, we have included the regionalized dispersion curves between 20 and 60

seconds as well as the resolution matrix. We have experimented with different cutoffs in the singular

values in order to investigate the stability of the solutions. For results shown in Fig. 5.5.1, the cutoff

was set at 0.03 of the maximum singular value and for those in Fig. 5.5.2, a cutoff of 0.05 was used.
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Figure 5.3.1 Simplified block structures for China and surrounding areas. (a) (top) The block

numbers, the stations (circles) and location of earthquakes (triangles) are shown. (b) (bottom)

The ray coverage for most of the western blocks are quite good. Blocks 9, 10, 11 are still not

well traversed by the rays.
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Figure 5.5.1 Regression result for the model with 37 blocks with singular cut-off at 3% of the
maximum. (b) the corresponding resolution matrix. The trade-off between different blocks is
severe as can be seen from from the resolution matrices.
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Figure 5.5.2 Regression result for the model with 37 blocks with singular cut-off at 5% of the
maximum. (b) the corresponding resolution matrix. The trade-off between different blocks is
severe as can be seen from from the resolution matrices.
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An inspection of these two sets of figures shows that some blocks are well resolved

with stable dispersion curves. For example the result for block 15 (Tibetan plateau) is quite

stable both in terms of the shape of the curves and the velocities obtained with different trun-

cation values. Similarly, blocks 16 (the Himalayas), 20 (Alashan), 26 (Tianshan), 33

(Kazakh-Xingjiang), and 34 (Mongolia) were well resolved. These blocks are sampled by

the ray paths well as can be seen in Fig. 5.2.1. The corresponding distribution of resolution

matrix elements show very clearly which blocks are well sampled and which are not.

5.6 A model with fewer blocks

In order to improve resolution, we have decreased the number of blocks by combining

areas of similar overall geology. For example, Tibet now includes the Kunlun Mountains

and a large area dominated by Triassic sediments at the surface (Fig. 5.3.1a). For this study

we have added the January through June, 1989 data. Figs. 5.3.1b shows the ray paths cover-

age. By simplifying the block structures we increase the ray path coverage for each block.

But blocks 9, 10, and 11 are still poorly covered, and only the western part of block 1 is well

covered. This occurred because data from KMI were not available during this period. Addi-

tional data from Japan, the Ryukyus and Taiwan are needed to improve the overall situation.

Figs. 5.6.2 and 5.6.3 presents the Rayleigh and Love wave results. The curves are much

smoother and in most cases they are well resolved. Notice that except for the blocks 9, 10

and 11, the group velocity variations are reasonable.

In order to check the validity of the results we show the KMI results for two events

(9/27 and 11/3 in Table 3) in the middle of the Tibetan Plateau. The paths in this case are

mostly confined with the Plateau. These two datasets (Figures 5.6.3) are nearly identical.

Furthermore they agree with the regression results presented in Figs. 5.6.1 and 5.6.2. These

results thus lend credence to the regression result as a whole.

5.7 Discussion

Using a year and a half of CDSN data we are able to perform initial Rayleigh and Love

group velocity regionalization studies. Under the current regionaliztion scheme, the disper-

sion characteristics of several interesting blocks can be determined. Thus, the Tibetan pla-

teau is seen to have a generally low velocity crust, with a minimum at 45 second. While the

Tianshan velocities are higher in comparison. The Mongolian block, being an ancient

(PreCambrian) shield, is shown to have rather high velocities.
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Evidently, we need more data to resolve the dispersion characteristics of many blocks in the

area of interest. The 1988 and 1989 events in the same source area as well as those at the continental

margin to the east are being collected. We have set up our surface wave dispersion determination in

such a way that we can handle a large amount of data very efficiently.
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