
This paper will appear in the Proceedings of the 10th International Conference

on Distributed Computing Systems (May 1990).

Causal Distributed Breakpoints

Jerry Fowler DTIC
Willy Zwaenepoel ELECTE

N MAY 3 0 1990
Department of Computer Science

Rice University S D
Houston, Texas 77251-1892 D

Abstract a causal effect on events later in time, and sequential
execution totally orders all events. In distributed pro-

A causal distributed breakpoint is initiated by a se- grams, however, breakpoints are more complicated,
quential breakpoint in one process of a distributed since events are only partially ordered, and since it
computation, and restores each process in the com- is impossible to obtain an instantaneous snapshot of
putation to its earliest state that reflects all events
that hfiappened before" the breakpoint. A causal

), d" distributed breakpoint is the natural extension for A causal distributed breakpoint is the natural ex-

distributed programs of the conventional notion of tension for distributed programs of the conventional
a breakpoint in a sequential program. We-preeent- notion of a breakpoint in a sequential program. A
an algorithm for finding the causal distributed break- causal distributed breakpoint restores each process
point given a sequential breakpoint in one of the pro- to the earliest state that reflects all events that hap-
cesses. Approximately consistent checkpoint sets are pened before the breakpoint, according to Lamport's
used for efficiently restoring each process to its state partial order of events in a distributed system [8].
in a causal distributed breakpoint. In contrast, previous definitions of distributed break-

Causal distributed breakpoints assume determin- points simply find any consistent global system state
istic processes that communicate solely by messages.
The dependencies that arise from communication be- including the breakpoint.
tween processes are logged. Dependency logging and We present an algorithm for finding the causal dis-
approximately consistent checkpoints sets have been tributed breakpoint given a sequential breakpoint in
implemented on a network of SUN workstations run- some process. The implementation of a causal dis-
ning the V-System. Overhead on the message passing tributed breakpoint requires a facility for restarting
primitives varies between between 1 and 14 percent and replaying the execution of individual processes
for dependency logging. Execution time overhead for by means of dependency logging: Each message car-
a 200 x 200 Gaussian elimination is less than 4 per- ries with it an event index for the sending process
cent, and generates a dependency log of 288 kilobytes. at the time the message was sent. This facility for

restart and replay requires that process execution be
deterministic.

1 Introduction The logging of dependency information is essen-
tial, but the message data may or may not be logged.

At a breakpoint the programmer would like to see Logging the data allows quick restoration of processes
the program in a state that reflects all events that to a particular state, but requires much larger logs.
have had a causal effect on the state of the program The use of approximately consistent checkpoint sets
at the breakpoint. With a sequential program, this is expedites restoration of process events, permitting
straightforward, since only events earlier in time have the use of dependency logging for all messages except

those sent during the time the checkpoint is being

This work was supported in part by the National Science taken. This keeps the logs small.
Foundation under Grants CDA-8619893 and CCR-8716914,
and by the Office of Naval Research under Contract We describe our model of distributed computa-
NOOOl4-88-K-0140. tion in Section 2 of this paper. We define causal dis-

DWM-dMuMON $WATEMNIT A 1
Approved for public releajej

1;7 ribuiu nlimited 0 ~2 5

tributed breakpoints and motivate their definition in 3 Causal Distributed
Section 3. Section 4 contains the causal distributed Breakpoints
breakpoint algorithm, and Section 5 shows how to

restore the system to a causal distributed breakpoint 3.1 Definition
using approximately consistent checkpoint sets. Some
implementation experience is described in Section 6. A causal distributed breakpoint is initiated by the
In Section 7 we survey related work, and in Section 8 occurrence of a breakpoint in the breakpoint process.
we present conclusions. The breakpoint event is defined as the latest event

in the breakpoint process that happened before the
breakpoint. A causal distributed breakpoint is defined

2 Distributed System Model as a system state that consists of,

We consider a collection of deterministic processes 1. for the breakpoint process, its state at the time

communicating solely via messages. The execution of of the breakpoint, and

the individual processes is deterministic in the follow- 2. for all other processes, the earliest process state
ing sense: If two processes start in the same state and that reflects all events in that process that hap-
receive the same sequence of input messages, they ter- pened before the breakpoint event.
minate in the same state and send the same sequence
of output messages. An event is the sending or the Any causal distributed breakpoint is a consistent sys-
receipt of a message. An event is uniquely identi- tem state.
fled within the process in which it occurs by an event With a sequential breakpoint, the state of a se-
index, which is incremented by one at each event. quential program reflects all events that occurred in

Events are partially ordered by Lamport's "hap- physical time before the breakpoint. The naive ex-

pened before" relation, denoted -- , and defined [8]: tension of this notion to a distributed program-
i.e., the state of all processes such that they reflect

1. If a and b are events in the same process, and a all events that occurred in physical time before the
occurs before b, then a - b. breakpoint-is not achievable, because it is not pos-

sible to take an instantaneous snapshot of the en-
2. If a is the sending of a message and b is the re- tire system. Nor is it appropriate, because events

ceipt of the same message, then a - b. that precede the breakpoint in physical time can ob-
scure the causal relationship between events in a dis-

3. If a -- b and b - c, then a - c. tributed program. Causal distributed breakpoints ex-
tend the notion of a sequential breakpoint so that the

Two events a and b are concurrent if and only if a 74 b system state reflects all events that happened before
and b 74 a. the breakpoint according to Lamport's "happened be-

A process state is an observation of the state of fore" partial order, which is an observable ordering.
a process at some point in its execution. The pro- In Figure 1, the execution of three processes is shown, ' ''

cess states of a particular process are totally ordered with time going from left to right. The messages mi
with respect to each other and with respect to all through m5 have been exchanged between the pro-
events happening in that process. A process state cesses. A breakpoint has occurred in Process 1 at the
of a particular process reflects an event occurring in location marked "x." The causal distributed break-
that process if the event happens before that process point for this breakpoint event consists of the process
state. A system state is a set of process states, one states at the intersection of line A with the lines rep-
for each process. A system state is consistent if and resenting the execution of each process.
only if for each process i, if the state of process i in
the system state reflects event oi, then the state of 3.2 Relation to Other Definitions -
all other processes must reflect all events that hap-
pened before event oi. That is, all messages received Miller and Choi [10], and Haban and Weigel [5] de-
by all processes must have been sent. Only consistent fine a distributed breakpoint as any consistent system
system states can occur during normal execution. state that includes the breakpoint state. In an arbi- e

STATEMENT "A" Per Dr. Andre Tilborg t
ONR/Code 1133
TELECON 5/29/90 VG

A B happened before event o'i in process i. Hence, it suf-

Process 1 1 2' . 3 4 fices to know for each event oi the latest event of each
/ :"other process that happened before a,. We define theProces .2. 5 dependency vector [6] of event ai of process i, DV$?,

1rcs 2.3 .4
as a vector

Process3 1 :2 3 :4 DVs? = (1,612,63,. , 6n)
time where n is the total number of processes in the sys-

Figure 1 Distributed Breakpoints for tem. Component 6i of the dependency vector of
Event 3 of Process 1. event oi of process i is always set to o,. Component

6, of the dependency vector of event ai of process i
trary consistent state, the processes other than the is the largest event index that was received by pro-
breakpoint process can be in any state that cess i in a message sent by process j. If process i has

1. is equal to or later than the earliest state that re- not received a message from process j, then 6i is set

flects all events that happened before the break- to 1, which is less than all possible event indices. The
point event, and dependency vector of any event can be computed eas-

ily using the log for that process, given that for each
2. is earlier than the first event that the breakpoint message received the sender's identification and the

event happened before, send's event index are recorded in the log.

By contrast, in a causal distributed breakpoint, all This dependency vector records the direct depen-
processes are at the earliest state that reflects all dencies between events, resulting from the fact that
events that happened before the breakpoint state. In send events happen before the corresponding receive
Figure 1, a consistent syst m state is any system state events. However, transitive dependencies may also
consisting of process states between lines A and B. exist between events in two processes i and j, as a
The causal distributed breakpoint is the system state result, for instance, of a message sent from process i
indicated by line A. to process kc and a message sent later from process k

The continued execution of a process beyond its to process j. Such transitive dependencies must be
state in the causal distributed breakpoint may ob- taken into account when computing the causal dis-
scure the causal relationships on which the state of tributed breakpoint.
the breakpoint process depends. For instance, in Fig- Figure 2 shows the algorithm for finding the causal
ure 1, in the consistent system state denoted by line distributed breakpoint for event c" of process i. The
B, Process 3 has received message M3 . As a result, algorithm computes for each process the latest event
the state of Process 3 may have changed so as to de- that happened before the breakpoint event. Proce-
stroy any evidence of why Process 3 sent message M2 , dure CausalBkpt starts by initializing the causal
which had a causal effect on Process 1 at the break- distributed breakpoint, CDB, to contain the break-
point state. point event o" for process i, and _L for all other pro-

cesses. The algorithm then examines the dependency
vector of each event it includes in CDB by recursively

4 The Causal Distributed invoking VisitEvent. When VisitEvent finds an

Breakpoint Algorithm event index that is larger than the index of the cor-
responding process already included in CDB, CDB

Each message carries with it the event index of its is altered to include the new, larger event index, and
sender at the time the message was sent. Dependency the dependency vector of that event is also examined.
information is logged for each message received, and Thus, VisitEvent recursively includes all events that
consists of the identification of the sending and re- happened before the breakpoint event. Hence, when
ceiving processes and the event indices corresponding the recursion terminates, CDB holds the event in-
to the sending and the receiving of the message. dices of the causal distributed breakpoint.

The algorithm relies on the observation that if Suppose that in Figure 1 we wish to find the causal
event rj in process j happened before event a' in pro- distributed breakpoint for the state marked with an
cess i, then all events from 0 to r -1 in process j also "x" ini Process 1. CDB is initialized to (2,1, 1),

and VisitEvent is invoked for event 2 of Process 1. process named in the arguments and sending the cur-
The dependency vector DV2 for that event is (2, 3, 1). rent value of CDB with the remote procedure call.
The event index for Process 2 in this dependency vec- In the worst case, the complexity of the algorithm
tor is 3, and is not included yet in CDB. Thus, CDB is linear in the number of messages exchanged by the
is set to (2,3, 1) and VisitEvent is invoked with computation, since each dependency may invoke tran-
event 3 of Process 2. The dependency vector DV3 for sitive dependencies on each process for which Vis-
that event is (1,3, 2). The event index for Process 3 itEvent has not yet been invoked. VisitEvent is
in this dependency vector is 2 and is not included only invoked by a direct dependency, so it will never
yet in CDB. Thus, CDB is set to (2,3,2) and Vis- revisit the same event. A lower bound for complex-
itEvent is invoked with event 2 of Process 3. The ity is O(n), for a system of n processes, since each
dependency vector DV 2 for that event is (1., 1, 2). process must be examined at least once.
All of its events have been included in CDB: hence
this invocation of VisitEvent returns without mak-
ing changes to CDB, as do both its ancestor invo- 5 Approximately Consistent
cations. The final value of CDB is (2,3,2), which is Checkpoint Sets
the causal distributed breakpoint for the state marked
with an "x" in Process 1. 5.1 Motivation

A dual of the causal distributed breakpoint algo- Recreating a causal distributed breakpoint requires
rithm fid the sa idistruted bneapint ige 1 that each process i be restored to the process staterithm finds the state indicated by line B in Figure 1, immediately after the occurrence of the event with

which we refer to as the upper bound of execution event ie D[

with respect to the breakpoint event. The causal dis-

tributed breakpoint algorithm can be distributed by If only the dependency information is recorded in
the log, then every process must be restarted from itsmaking VisitEvent a remote procedure call to the initial state. Since the order of receipt of messages is

recorded in the log, all messages can be replayed to
each process in the same order as in the original exe-

CausalBkpt (i : process, a : event index) cution. Restoration is complete when each process i's
/* Causal distributed breakpoint for aj. */ event index equals CDB[i].
/* CDB holds the result. */ If the message data as well as the dependency in-
for all k : i formation are recorded in the log for each message

CDB[k] = received, and processes take occasional checkpoints,end for.
CDB[i] = then it suffices to restart each process i to the state
VisitEvent(i,) recorded in its latest checkpoint before CDB[i], andend CausalBkpt. replay from the log the messages received since thatcheckpoint until the event index equals CDB[i].

VisitEvent (j : process, r : event inc-x) Recording the message data for each message re-
/* Put the dependencies of ri into CDB I ceived may result in impractically large logs. Record-
for all k # j ing only the dependency information produces much

a = DVj[k] smaller logs, but leads to potentially long restora-
if a > CDB[k] tion times. Approrimately consistent checkpoint sets

CDB[k] = a are used to reduce the size of the logs while keeping
VisitEvent(k, a) restoration times short.

endif
end for.

end VisitEvent. 5.2 Method

A checkpoint set comprises a checkpoint for each pro-
cess in the distributed computation. To establish an

Figure 2 Causal Distributed approximately consistent checkpoint set, a two-phase
Breakpoint Algorithm. protocol is used. The initiator of a checkpoint broad-

casts an out-of-band checkpoint request to all pro- the sending of the message. Hence, the term approzi-
cesses in the computation. The checkpoint request mately consistent checkpoint set: The states recorded
is retransmitted until an acknowledgment is received in the checkpoint set may not be a consistent system
from all processes. A monotonically increasing check- state, but they are a system state from which a con-
point identifier is transmitted in the checkpoint re- sistent state can be recovered.
quest message to act as a sequence number for dupli- If the time between the completion of a checkpoint
cate suppression among checkpoint requests. and the receipt of the checkpoint confirmation mes-

Upon receiving a checkpoint request, a process sage is short compared to the interval between check-
performs a checkpoint and sends the event index points, relatively few messages need to have their
recorded in its checkpoint to the coordinator in its ac- data logged, resulting in much smaller logs. How-
knowledgment of the checkpoint request. When the ever, restoration times should also be short, since it
initiator has received acknowledgments from all pro- suffices to restart each process from its checkpoint
cesses in the computation, it performs a checkpoint in the approximately consistent checkpoint set pre-
and broadcasts to all processes an out-of-band check- ccding the state to be restored. To further reduce
point confirmation message that gives the event index the amount of storage required to support causal dis-
recorded for each process in the checkpoint set. tributed breakpoint, any checkpoint set except the

In the interval between its checkpoint and its re- initial state can safely be deleted, without impairing
ceipt of the checkpoint confirmation message, each the ability to restore any event, albeit at the expense
process that receives a message records not only the of slower restoration times for some system states.
dependencies, but also the data contained in the mes-
sage. After the confirmation message is received, each 6 Implementation Experience
process compares the send event index of each re-
ceived message with the sender's checkpoint event in- 6.1 Implementation
dex received in the checkpoint confirmation message.
If the event index in the message is smaller, the data Causal distributed breakpoint has been implemented
in the message are recorded along with the depen- under the V-System [2]. Each participating host runs
dency information. Otherwise, only the dependency a modified V-System kernel, a logging server pro-
information is recorded. cess managing the logging of messages received by

To recreate a particular process state, it is never the host, and a checkpoint server process managing
necessary to restart any process from a checkpoint checkpoint recording for the host.
earlier than its checkpoint in the most recent ap- As messages are received by a process, they are
proximately consistent checkpoint set that precedes saved in the message buffer by the kernel. This buffer
the state to be restored. The data of any message is stored in the volatile memory of the local logging
sent after a checkpoint in the set can be recreated by server process, which periodically writes the contents
restarting from the checkpoint. Because all message of this buffer to the message log file on the shared
dependencies are logged, the message can be replayed network storage server. There is a separate message
to the receiver in the order that was recorded during log file for each host.
the original execution. Furthermore, although the The checkpoint server implements full and incre-
data of any message sent before the checkpoint in the mental process checkpoints. A full checkpoint writes
set cannot be recreated by restarting from the check- the entire address space to the checkpoint file, and is
point, its data are available in the receiver's log. used for the first checkpoint of each process. There-

The checkpoints in an approximately consistent after, an incremental checkpoint is used to write only
checkpoint set are not necessarily consistent, because the pages of the address that have been modified
a process i can complete its checkpoint and then send since the last checkpoint. Precopying is used to limit
a message to process j, which may be received before the effect of checkpointing on execution [12]. In pre-
process j completes its checkpoint. The receipt of the copying, the process is allowed to continue executing
message is recorded in j's checkpoint, but its sending while initial passes over the address space are made
is not recorded in i's checkpoint. Although the set to write the necessary pages to disk. The process is
of checkpoints is inconsistent, process i can deter- then "frozen," and the pages that were changed since
ministically execute forward from its checkpoint to having been written in the last precopying pass are

Table 1

Performance of common V-System communication primitives with and without logging

Elapsed Time (milliseconds)
Operation With Dependencies Without

Data Only Logging
Send-Receive-Reply 1.63 1.57 1.37
Send(1K)-Receive-Reply 3.31 2.94 2.73
NoveTo(64K) 89.0 88.7 87.8

Table 2

Performance of 200 x 200 Gaussian elimination

Without With Dependencies Approximate
Logging Data Only Checkpoints

Time (seconds) 86.7 87.7 87.3 89.7
Log (kilobytes) - 2225 238 288

rewritten to disk. As a result, most of the checkpoint- Receive-Reply (with and without appended data) is
ing activity occurs concurrently with process execu- approximately 200 microseconds, indicating a fixed
tion. cost of approximately 100 microseconds per logging

The resulting implementation is efficient, yet ker- operation. The additional overhead for logging the

nel modifications are minor. The most performance- message data stems from copying the message (and

critical operation, recording d pendencies in the its appended segment, if any) in the log. The fact that

volatile log, is the only one performed entirely in the differences between the three numbers for NoveTo

the kernel. In addition to several small changes to are so small is because these bulk data transfers are

the internal operation of some existing kernel primi- implemented as blasts of packets without intervening

tives, only four new primitives to support checkpoint- acknowledgments [13]. As a result, logging occurs in

ing and five new primitives to support logging were parallel with the transmission and reception of the

added to the kernel, next packet, so logging has almost no effect on the
elapsed time of the operation.

The overhead of checkpointing in terms of elapsed
6.2 Performance time is on the order of 3 seconds pe, megabyte of

We measured performance on a group of diskless address space. Since most of this overhead occurs in

SUN-3/60 workstation, which have 20-megahertz Mo- parallel with program execution, its effect on program

torola MC68020 processors. They are connected by execution time is small.

a 10 megabit per second Ethernet to a V-System file We ran a program performing Gaussian elimina-

server running on a SUN-3/160, with a 16-megahertz tion with partial pivoting on a given n x n matrix

MC68020 processor and a Fujitsu Eagle disk. of floating point numbers, with no logging, with log-

The overhead of message logging, with and with- ging only the dependency information, and with log-

out logging message data, for common V-System ging both the dependency information and the mes-

communication operations is given in Table 1. The sage data. This program employs a relatively large

performance is shown for a Send-Receive-Reply of amount of communication, 0(n2) for an n x n ma-

a 32-byte message, Send-Receive-Reply of a 32-byte trix.

message with a 1-kilobyte appended data segment, The results of this experiment are shown in Ta-
and for a MoveTo bulk data transfer operation of 64 ble 2. With six slave processors computing on a

kilobytes. All times were measured at the user-level, 200 x 200 matrix, the execution time increased from

and show the elapsed time between invoking the op- 86.7 seconds without any logging, to 87.3 with logging
eration and its completion. The difference between dependencies (a 0.7 percent increase), and 87.7 with
no logging and logging the dependencies for Send- logging both message data and dependency informa-

tion (a total 1.2 percent increase). The total size of sage communication can be described as serializable
the logs for all processes was approximately 240 kilo- reads and writes of shared objects. Our method of
bytes without message data, and 2.2 megabytes with logging only dependency information is similar to
message data. With approximately consistent check- theirs, although not restricted to any particular form
pointing every 30 seconds, the overall execution time of read/write access. Our use of approximately con-
is increased by roughly 4 percent. The effect of ap- sistent checkpoint sets improves replay response time.
proximately consistent checkpointing on the size of Causal dependency tracking by including the
dependency logs is run-dependent, since the check- event index of the sender in each message, and the
points are initiated asynchronously with respect to notion of a dependency vector are due to the work of
the computation, and both message frequency and Johnson and Zwaenepoel on optimistic message log-
message size during the checkpoint interval are fac- ging for fault tolerance [6]. The goal of replay in
tors in the size of the logs. In the Gauss experiments, optimistic fault tolerance is to achieve a maximum
the increase in log size due to data logging during recoverable sybcem state. As a result, they use pro-
checkpoint intervals is 50 kilobytes on the average. cess state interval indices, incremented only upon re-

ceipt of a message, instead of our event indices, which
are incremented for each event. Their checkpoint and

7 Related Work recovery method requires that they log both depen-
dencies and message data. An alternative method of

Miller and Choi [10] adapt Chandy and Lamport's dependency tracking by including the full dependency

distributed snapshots [1] to distributed breakpoint- vector with each message sent was introduced earlier

ing. Haban and Weigel [5] use a similar approach by Strom and Yemini [11].

to that of Miller and Choi for generating interactive The approximately consistent checkpoint set
breakpoints. Cooper [4] broadcasts a halt request bears some similarity to the Chandy-Lamport snap-

out-of-band, which produces a consistent system state shot algorithm [1] and the consistent checkpoints of

when used during normal execution, or in replay from Koo and Toueg [7]. Chandy and Lamport assume re-
logs containing dependencies only. However, none of liable communication channels, where we do not. We
these methods gives the earliest system state that re- assume deterministic process execution, which they

flects all events that happened before the breakpoint do not. We use these checkpoints for replay, while

event, as does causal distributed breakpoint. In fair- they use the checkpoints and the channel states for

ness to the work of Miller and Choi, and that of Ha- detecting stable properties of computations. As a re-
ban and Weigel, an implementation using their defini- suit, in the snapshot algorithm, messages sent by a
tions of distributed breakpoint does not require that process after its checkpoint must not be received be-

process execution be deterministic, as ours does. fore the checkpoint of the recipient. For replay of

In a later paper, Choi et al. develop the notion deterministic processes, this is allowable if the origi-

of a before and an after state in a parallel program, nal order of message receipt is reproduced. Koo and

relative to a node in a parallel dynamic program de- Toueg generate consistent checkpoints, at the expense

pendency graph [3]. Their before state resembles our of prohibiting message traffic during the execution of

notion of causal distributed breakpoint. However, the checkpoint algorithm. Our algorithm does not

they do not address the issue of how to construct prohibit message traffic at any time, but requires log-

the dynamic dependency graph, which we do by in- ging of the dependency information and some mes-

cluding the event index of the sender in each mes- sage data, and assumes deterministic processes. Our

sage. Furthermore, their algorithm computes the be- algorithm does not produce consistent checkpoints,

fore state for all nodes in the graph, while ours com- but achieves a consistent system state through re-

putes the causal distributed breakpoint for a single execution.

process state. Their paper reports no implementa-
tion results.

LeBlanc and Mellor-Crummey observe in Instant 8 Conclusion
Replay that the size of the logs necessary to replay
may be a concern [9]. They point out that it is We have defined causal distributed breakpoint, which
not necessary to store the message data if all mes- naturally extends the notion of a sequential break-

point to distributed systems, where only a partial or- [5] Dieter Haban and Wolfgang Weigel. Global
dering between events can be observed. When one events and global breakpoints in distributed sys-
process of a distributed computation is halted at a tems. In Proceedings of the 21st Annual Hawaii
breakpoint, the causal distributed breakpoint shows International Conference on System Sciences,
the other processes in the computation in their earli- Vol II, Software Track, pages 166-175. IEEF
est state that reflects all events that happened before Computer Society, January 1988.
the breakpoint. Previous distributed breakpoint def- [6] David B. Johnson and Willy Zwaenepoel. Re-
initions allow any consistent system state including covery in distributed systems using optimistic
the breakpoint. This may obscure the causal rela- message logging and checkpointing. In Proceed-
tionship between the states of other processes and ings of the Seventh Annual ACM Symposium on
the state of the breakpoint process. Principles of Distributed Computing, pages 171-

We have also introduced the notion of approxi- 181. ACM, August 1988. May 1988.
mately consistent checkpoint sets, which allow quick [7] Richard Koo and Sam Toueg. Checkpointing
restoration of process states with relatively small logs. and rollback-recovery for distributed systems.
Our implementation shows that the overhead of de- IEEE Transactions on Software Engineering, SE-
pendency logging has little effect on program execu- 13(1):23-31, January 1987.
tion time, and that log sizes using approximately con- [8] Leslie Lamport. Time, clocks, and the orde-;ng
sistent checkpoint sets are acceptable. of events in a distributed system. Communica-

tions of the ACM, 21(7):558-565, July 1978.

Acknowledgments [9] Thomas J. LeBlanc and John M. Mellor-
Crummey. Debugging parallel programs with In-

We wish to thank Dave Johnson for his many useful stant Replay. IEEE Transactions on Computers,
criticisms of this work, as well as Rick Bubenik, John C-36(4):471-481, April 1987.

Carter, Mootaz Elnozahy, Pete Keleher, and Mark [10] Barton P. Miller and Jong-Deok Choi. Break-
Mazina, for their comments on earlier drafts of this points and halting in distributed programs. In
paper. Proceedings of the 8th International Conference

on Distributed Computing Systems, pages 141-
150, June 1988.

References [11] Robert E. Strom and Shaula Yemini. Opti-

[1] K. Mani Chandy and Leslie Lamport. Dis- mistic recovery: An asynchronous approach to
fault-tolerance in distributed systems. In Thetributed snapshots: Determining global statesForenhItraialCfrnconau-

of dstrbute sytem. AC Trnsacion onFourteenth International Conference on Fault-of distributed systems. ACM Transactions onToeatCmuig DgstfPprpgs

Computer Systems, 3(1):63-75, February 1985. 3 3l e E Computer iet June 1984.
374-379. IEEE Computer Society, June 1984.

[21 David R. Cheriton and Willy Zwaenepoel. The [12] Marvin N. Theimer, Keith A. Lantz, and
distributed V kernel and its performance for David R. Cheriton. Preemptable remote exe-
diskless workstations. In Proceedings of the cution facilities for the V-System. In Proceed-
Ninth ACM Symposium on Operating Systems ings of the Tenth A CM Symposium on Operating
Principles, pages 129-140. ACM, October 1983. Systems Principles, pages 2-12. ACM, December

[3] Jong-Deok Choi, Barton P. Miller, and Robert 1985.

Netzer. Techniques for debugging parallel pro- [13] Willy Zwaenepoel. Protocols for large data
grams with flowback analysis. Technical Report transfers over local area networks. In Pro-
TR 786, University of Wisconsin, Madison, WI, ceedings of the 9th Data Communications Sym-
August 1988. posium, pages 22-32. IEEE Computer Society,

[4] Robert Cooper. Pilgrim: A debugger for dis- September 1985.

tributed systems. In Proceedings of the 7th In-
ternational Conference on Distributed Comput-
ing Systems, pages 458-465. IEEE, September
1987.

