
UCLA
*OFFICE OF

ACADEMIC COMPUTING

N\ CCN!NSW SERVICE SUMMARY

I FINAL TECHNICAL REPORTr
4/9/80-9/30/82

* CCN 1TR32

0 Neil Ludlam
Denis De La Roca

UNIVERSITY OF CALIFORNIA, LOS ANGELES

0|

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMJPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

OAC/TR32

4. TITLE (and SubItfie) S. TYPE OF REPORT & PERIOD COVERED

CCN/NSW Service Summiary Final Technical Report
4/9/80 - 9/30/82

6. PERFORMING ORG. REPORT NUMBER

7. AuTHOR(s) 0. CONTRACT OR GRANT NUMBER(a)

Neil Ludlam & Denis DeLaRoca MDA 903-80-C-0231

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

University of California Prog. Elmt: 62708E
Office of Academic Computing Prog. Code: OT10
Los Angeles, CA 90024 ARPA Order No. 2543/12

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defcnse Advanced ResearLh Projects Agtacy 10/1/82
1400 Wilson Blvd., Arlington, VA 22209 13. NUMBER OF PAGES

* Attn: Program Management Office 110
74. MONITORING AGENCY NAME & AODRES(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

IS.. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If difterent (rom Report)

18. SUPPLEMENTARY NOTES

t1, KEY WORDS (Continue on tevere aide it necessary and identify by block number)

National Software Works, ARPANET, CCN, File types, Workspace Command
interpretor, Interactive services, Batch services, file creation, file
management, editing, Library files FORTRAN, PL/I, Assembler, GPSS, SPSS,
ECAP, EISPACK, GIM-II, AP-l, B520AS

20. ABSTRACT (Continue on reverse aide It neceeary and Identify by block number)

This report sumarizes technical development at UCLA/OAC relating to the
Nation Software Works during the period from April 1980 through Septemb'er
1982. Specifically, it ennumerates the user services that have been
installed in NSW, and describes their user interfaces.

FORMDD F ORN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102 LF 014 6601
SECI)ITY CLASSIFICATION OF THIS PAGE (".n Datr alnered)

0

0

UCLA Office of Academic Computing

5628 Math Sciences
University of California C0012
Los Angeles, California 90024

FINAL TECHNICAL REPORT

DARPA Contract Sp,%zg ~ /
MDA 903-80-C-0231: , ,

ARPANET COMPUTER SERVICES IN SUPPORT OF
THE NATIONAL SOFTWARE WORKS _________________--

Accc~lon For

NTIS GHR&I
April 9, 1980 - September 30, 1982 DTIC TAi

William B. Kehl, Principal Investigator jtj .

(213)/825-7511 __-

Difst,-i,

* This work was primarily sponsored by the "

Defense Advanced Research Projects

Agency under ARPA Order no. 2543/12

Contract no. MDA 903-80-C-0231

Additional support was provided by the
0 Air Force Systems Command,

Rome Air Development Center,

under Contract no. F30602-82-C-0109

The views and conclusions contained in this document are
those of the authors, and should not be interpreted as
necessarily representing the official policies, either

expressed or implied, of the Defense Advanced Research
Projects Agency, the Air Force Systems Command,

or the United States Government.

CCN/NSW SERVICE SUMMARY

by
Neil Ludlam

Denis De La Roca

October 1, 1982

Document TR-32

UCLA Office of Academic Computing
5628 Math Sciences

University of California C0012
Los Angeles, California 90024

CONTENTS

Section page

1. INTRODUCTION 1

What is CCN .. . 1
*About this Manual 1

2. HOW TO USE THE CCN NSW SERVICES 2

Using CCN Batch Services 2
Using CCN Interactive Services 3

*Files Used By IBM Services 7

3. WORKSPACE MANAGEMENT SUPPORT 11

Using the CCN Workspace Command Interpretor (WSCI). 11
Workspace Files. 12

*The CREATEW Service. 13
The DELETEW Service. 14
The PURGEW Service 14
The LISIV Service. 14
The EDITW Service. 15
The DISPLAYW Service 16

*The GET Service. 17
The DELIVER Service. 18
The TSO Service. 19

4. NSW FILE MANAGEMENT SUPPORT...................20

*The DISPLAY Service. 20
The EDIT Service 28
The SEND Service 39

5. LI3RARY-M.ANAGEMENT SUPPORT 40

*What is a Library?9 . 40
When Will You Use a Library? 40
Characteristics of IBM Libraries...............42
Service Summary. 43
The CREATEL Service 44
The PUTMEM Service 44

*The GETMEM Service -. 44
The LIBMAINT Service.....................44
The MERGELIB Service.....................49
The COMPRESS Service 49

Examples............................50

*6. GENERAL INFORMATION ON NATIVE-LANGUAGE SUPPORT SERVICES 54

Compile-and-Go Services 57
Compile-and-Save Services 57
Batch Load-and-Go Services..................57
Interactive Load-and-Go ("IGO") Services............58

*Linkage-Editor Services 60
Examples............................65

7. FORTRAN SUPPORT 70

FORTRAN: Compile-and-Go...................71
*FORTCONIP: Compile-and-Save 71

FORTBGO: Batch Load-and-Go 71
FORTIGO: Interactive Load-and-Go 72
FORTLINK: Perform Linkage Editing...............72
Preparing FORTRAN Source Files................73

*8. PL/I SUPPORT. 74

PLI: Compile-and-Go 75
PLICOMP: Compile-and-Save..................75
PLIBGO: Load-and-Go in Batch 75
PLIIGO: Load-and-Go Interactively...............76

*PLILINK: Perform Linkage Editing 76
Preparing Source Files 77

9. IBM ASSEMBLER SUPPORT......................78

ASM: Compile-and-Go 79
ASMCOMP: Compile-and-Save..................79
ASMBGO: Load-and-Go 79
ASMIGO: Load-and-Go Interactively...............80
ASMLINK: Perform Linkage Editing 80
Preparing Source Files....................81

10. MISCELLANEOUS SERVICES. 82

The HELP Service 82
The GPSS Service 83
The SPSS Service 85
The ECAP Service 89
The LISPACK Subroutine Package................90

11. SUPPORT FOR THE GIM-II INFORMATION SYSTEM.............92

Functional Description of GIM-Il...............92
GIM-II under NSW 93
The GIM Interactive Service 94
The BGIM Service 96
the GIMDUMP Service 96
The GIMRESTORE Service....................96

Examples 97

*12. SU:PPORT FOR THE At-1 SOFTWARE MAINTENANCE SYSTEM. 99

Functional Description of AP- 99
Files used by the AP-l Services. 101
The APlASM Service......................102
The APiLINK Service 103

*Examples...........................104

13 SUPPORT FOR THE B52 OFFLINE AVIONICS SYSTEMl

Functional Description of the B520AS 106
Example 107

REFERENCES..............................108

LIST OF FIGURES

Figure page

1. How EDIT Uses Files. 30

2. Interfaces Between NLP and Other Services 55

3. Interfaces Among NLP Services 56

4. How the AP-1 Services Use Files. 100

-iv -

Section 1

INTRODUCTION

1.1 WHAT IS CCN?

The National Software Works (NSW) tool-bearing host named ACCN" is an
IBM computing system at the UCLA Office of Academic Computing. The name

- "CCN" dates back to a time when that office was known as the UCLA
"Campus Computing Network."

The CCN System consists, at this writing, of a 12-megabyte IBM 3033, one
of the larger implementations of the IBM System/370 architecture. It
operates under the MVS operating system, and supports both batch
computing and interactive access under the IBM Time-Sharing Option
(TSO). Both modes of access are available to the NSW user.-

1.2 ABOUT THIS MANUAL

This manual describes the NSW services that have been mounted on the CCN
host, under the NSW "Development System" as it exists at the time of
writing. These services are not necessarily available to NSW users;
availability is determined by the NSW administrators.-,

This manual is inDnded to be used in conjunction with the NSW User
Reference Manual, [26]9 It does not purport to describe the National
Software Works itself, but only the specific services provided by the
CCN host. , .

46 Throughout the manual we refer to CCN services by the simple names by
which they are known locally. In the larger context of the NSW resource
catalogue, these names are not usually sufficient. In most cases, the
local name is included literally within the NSW-wide name, so that, for
instance, the elliptical form

USE ... <simple name>

can be used to access a CCN service.

This manual is a major update of several previous documents that
describe individual CCN services. It draws from, and supersedes, [27,
28, 29, 30, 31, 32, and 33].

-1-

Section 2

HOW TO USE THE CCN NSW SERVICES

2.1 USING CCN BATCH SERVICES

A batch service never does any direct communication with a user. Rather,
you converse with components of the NSW Works Manager, to specify 0
interactively the parameters needed to define a "job" for the service,
to query that job's status, and to be notified that the job has
completed. After the initial job specification is complete, you may end
your NSW session if desired, and the job will continue toward its
completion. When, in any NSW session, you receive notification that the
job has completed, you can examine any output files that the service 0
produced to determine whether the job was successful.

These characteristics of batch services are of interest to the user:

1. In addition to the various files that you may specify for the S
service's use, the job will produce a "standerd system output"
file (sometimes abbreviated "SYSOUT"), which is the local
operating system's communication to the user of what it did to
execute the job, and of what the results seemed to be from its
point of view. Ideally, you should not have to be concerned with
this file unless you believe that the job was executed S
improperly. In that case, you should employ the DISPLAY service
(not the Front End DISPLAY command) to examine the file. This
will reveal much material that is meaningless to those not
familiar with IBM systems; however, there are occasional error
messages in English.

The first time you need to examine a SYSOUT file, you should
probably simply list the whole file. After examining several
such files, you will be able to use the "find" subcommand to pick
out relevant information more quickly.

2. All batch jobs must be allocated certain quantities of system
resources before they will be executed. For most services, one
of these, the number of CPU seconds, varies drastically with the
specific job, and must usually be supplied by the user. If a job
exceeds this estimate, it will be aborted at that point. On the
other hand, if the time is overestimated, the job may not be S
selected for execution as quickly as it could be. Estimatiag
this quantity is an abstruse art; therefore, each batch service

2-

provides the user with a default value that is judged to be
sufficient in "average" cases. Users are advised to accept this
default initially, and to note the feedback information listed in
the job's SYSOUT file to refine guesses. To locate this
feedback, one should use DISPLAY to examine the SYSOUT file and
search for a string of the form:

JOB TOTALS (ALL STEPS)

and examine the next few lines. Notice that the CPU time is given
in seconds to two decimal places. Host services will ask you to
supply an integer representing CPU seconds. Some CPU-intensive
services may ask for CPU minutes.

2.2 USING CCN INTERACTIVE SERVICES

The following points should be borne in mind when talking to any
interactive process on an IBM host:

1. Communication is half-duplex between the NSW Front End and the
IBM process. The terminal remains in "full-duplex" mode, but
only because echoing is done by the Front End.

2. Communication is always by entire lines. Nothing reaches the IBM
process until you type a carriage return or control-C. Features
like command recognition and completion via "escape" are not
available.

3. IBM systems use the EBCDIC character code instead of ASCII.
Normally, this is transparent to the NSW user, except that many
of the "control" characters of an ASCII keyboard are filtered out
before reaching the IBM proc(,ss. However, because the line being
typed is being accumulated by the NSW Front End [26], the
Front-End control-character conventions for dealing with
"line-buffer" hosts are in effect.

4. "Backspace" (control-H) can be accepted by an IBM service. In
most cases, it will be interpreted as a character-delete, but
some services may process it as data.

5. The IBM "interrupt-process" character is "control-C", entered
when there is no incomplete and non-empty input line (otherwise
it becomes a line delete). This will also abort any terminal
output queued at the service's host (but not any in the network
or queued at the Front End).

3-

6. At this writing, CCN does not sunport recovering and resuming an
interactive NSW service session after an interruption by a
harware or software system crash. In such a case, your only
option will be to restart the service session from the beginning.
Some services, such as EDIT, could lose significant work in the
event of a crash; however, most CCN interactive services do not
accumulate large amounts of data for delivery ac the end of the
session.

7. At this writing, the CCN encapsulator does not maintain a "Local
Name Dictionary" (LND). In general, no relationship between a
workspace file and the NSW file of which it is a copy is known to
the encapsulator. Specific services may remember such a
relationship for specific files -- for instance, the EDIT service 0
is able to deliver its output back to its input file without
being told the name again -- but no general mechanism exits.

2.2.1 Talking With The Encapsulator

Interactive services execute in the foreground, under an "Encapsulator".
The conversation that collects service parameters from the user is done
by the Encapsulator, after the terminal is connected t the IBM host.
When all needed parameters are collected, the terminal is turned over to S
the service itself.

Your conversation with the Encapsulator is limited to answering
questions in response to Encapsulator queries. As a matter of
convention, there are several valid responses to an Encapsulator query:

1. A naked carriage return: When you are being queried for one of
several options, this response tells the Encapsulator to use the
default.

2. A question mark: This requests clarifying information from the
Encapsulator. If any such information is available, it will be
printed, and the query will be repeated. If only the repeated
query appears, then there is no more information available. This
facility supports only one level of additional information, so it
does not help to enter more than one question mark in response to 0
the same question.

3. Control-C (alone): This response tells the Encapsulator to back
out of the question. Usually, the Encapsulator will abort the
current line of questioning, back up to the previous option 0
level, and repeat a previous question. When there is no longer
any sensible place to back up to, it will end the service session
and return the terminal to the NSW Front End.

-4-

4. A character string: This constitutes your answer to the question
being asked. If the Encapsulator presents a list of options. and
if your input does not match any of the options, then the query
will be repeated. You are allowed to abbreviate a reply which is
a selection from an option list; however, if the abbreviation is
ambiguous, it is unpredictable which option will be selected.
For instance, one can say "y" or "n" to a yes/no question, but
not "certainly". Of course, if the Encapsulator is nct working
with an option list, as when it asks for a FileSpec, then
whatever you type will be accepted, whether it is valid or not.

In many cases, the encapsulator will suffix its error messages with a
clause of the form " -- CODE=number". These code numbers are intended
to be useful to NSW maintenance personnel in case of errors caused by
system malfunctions. They are not intended to convey useful information
to the NSW user.

2.2.2 Talking With The Service Program

User communication with a service program itself follows the same
conventions that the particular service would use outside NSW. Usually,
IBM programs respond to a subcommand language using the simple syntax
defined by the IBM TSO Time-Sharing system [6]

Currently, it is iLot possible to interupt execution of a service program
to talk with the Encapsulator, and then continue execution of the
service.

5-

2.2.3 Talking with the CCN Workspace Command Inter-rrtor (WSCI)

The CCN Workspace Command Interpretor (WSCI) is an interactive service
with the capability to execute other services sequentially. The S
advantages of using services through the WSCI include faster switching
from service to service and the capability to pass temporary "workspace
files" between services.

The WSCI uses the same conversational conventions as the CCN Encapsu-
lator. For a more complete description of the WSCI, see the section on S
WORKSPACE MANAGEMENT SUPPORT.

6-

2.3 FILES USED BY IBM SERVICES

The various files used by the various IBM services differ among one
another in two primary attributes: file structure and the NSW Global
File Type (GFT).

2.3.1 File Structures

There are two file structures: sequential files, which make up the
large majority of NSW files, and which we call simply "files"; and
library files, which are presently unique to IBM services within NSW,
and which we call simply "libraries". A library is rather like a
collection of (usually short) sequential files. Currently, users may
create and manage libraries using the CCN Library Management (LM)
support package. Under this scheme, libraries are always kept on one
IBM host and cannot move about the network like ordinary NSW files.
They are not used as "input" or "output" files, but rather as "direct
update" files. They must always pre-exist for a service to use them,
and the service always operates on the single NSW copy directly.

2.3.2 Global File Types

The NSW Global File Type (GFT) is the vehicle by which an NSW service
specifies its requirements in terms of the formatting of its file data.
For each file which a service requires or creates, there is an
associated set of acceptable GFT's, preferentially ordered. The same
GFT may be specified by any number of services.

The actual meaning of the GFT differs depending on the usage of the
file:

1. OUTPUT FILES

When a service delivers an output file to NSW, it states its GFT.
The GET describes the attributes of the data as delivered, and it
remains associated with the file for as long as the file exists.

2. INPUT FILES

As the file is being fed into the service, it is converted to one
of the GFT's that the service has stated as acceptable, from
whatever GFT is associated with the file itself. This conversion
may be null, as when the two GFT's are the same. It may be a
matter of reformatting, as when a card-image file is converted to
PL/I source. It may lose information, as when a printer file is

-7-

converted to a card-image file. It may be undefined, as when one
GFT represents binary data and the other represents text. Users
need to know the GFT's of a service's input files in order to be
able to prepare input files in a form that will not cause
information to be lost when the conversion into that GFT occurs.

3. LIBRARY FILES

Under LM, libraries are not converted to the GFT requested by a
service. It is your responsibility to see that the library is
assigned the proper GFT when it is created. Fortunately, the CCN
Library-Management services make this easy.

The following sections list GFT's that are frequently used by common CCN
services and explain their primary characteristics. Notice that the
notion of sequence numbers is frequently mentioned. NSW files can carry
optional sequence numbers with each record, but these sequence numbers
are not simply data characters within records. In order for sequence
numbers to be handled properly during GFT conversion, their presence
must be known to NSW. In other words, one may not just type a column of
numbers in the first eight columns of a PL/I program and expect the PL/I
services to treat them as sequence numbers. Unless the editor which
delivers the source file to NSW declares those columns to be sequence
numbers, they are going to be treated as part of the PL/I program.

Notice that all GFT names native to IBM hosts begin with the characters
"360-". When speaking in the context of IBM services, we frequently
elide the prefix. Thus, as used in this document, the names
"360-PLI-SOURCE" and "PLI-SOURCE" are equivalent.

1. 360-KEYPUNCH

This is the standard IBM card-image file type. The records have
a maximum data length of 72 characters, and longer records will
be zplit at that length. There is an optional 8-character
sequence-number field which is placed in positions 73-80. All
data is forced to upper case. No format effectors of any kind
are permitted. KEYPUNCH files are used for "control card decks",
such as those used by the Linkage-editor services. They can also
be used as source files for most language-processing services, so
this GFT is used for both files and libraries.

2. 360-CARDS

This is the standard IBM card-image file type without sequence
numbers. The records have a maximum data length of 80
characters, and longer records will be split. All data is forced
to upper case. No format effectors of any kind are permitted.
CARDS files are used for input data to PL/I programs that use
"stream oriented" I/O.

8-
S

3. 360-PRINT

This is the file format produced by services for transcription to
a printer device with the "top-of-form" facility. All "standard
system output" (SYSOUT) files are PRINT files, as are the primary
informational outputs of most batch services. Since this is
almost always an output type, users need not be concerned with
any restrictions on its format. That is the services' problem.

4. 360-OVERPRINT

This is like 360-PRINT except that it can include printer control
codes to cause overprinting. This allows, for instance,
underlining.

5. 360-LIST

This is a very general format. It uses neither format effectors
nor sequence numbers. It is similar to PRINT without the
"top-of-form" concept, or to CARDS without the fixed-length
concept. It is useful for storing machine-readable data as well
as for listing on teletype-like devices.

LIST is used by most CCN services whenever text data with no
particular formatting requirements is called for.

6. 360-TEXT

This is the file type for storing machine-readable data that
contains lower-case alphabetics. Most IBM programs do not handle
lower case, so this GFT is seldom used.

7. 360-BINARY

This is the format required by FORTRAN "unformatted I/O"
statements. It can also be used by other user programs to write
binary data. It is very free form, with its only major distin-
guising characteristic being that it represents binary data, not
text.

BINARY is used by the "go" services of the native-language
support packages, whenever the user indicates a binary file. In
particular, any file manipulated by the FORTRAN "unformatted I/O"
statements will be of type BINARY.

-9

8. 360-OBJECT

This is the IBM binary card-image file type. It is essentially
like 360-KEYPUNCH except that the 72 data columns contain
eight-bit binary data. It is usually generated by a compiler
service. The optional 8- character sequence-number field still
contains character data. (Do not confuse this format with
"column-binary" cards, which contain 80 12-bit data bytes and are
not directly supported in NSW.)

9. 360-LOAD

This is another binary file type, but one of a very specific
sort. It represents executable program data on the IBM system.
LOAD data can only exist in a library. It is usually generated S
by either a compile service or a linkage-editor service. In NSW
as it exists at this writing, LOAD data cannot be converted to
any other type, and it cannot be transmitted between hosts.

10. 360-PLI-SOURCE S

This is the file type preferred by the compiling services of the
PL/I support package, so it is used for both files and libraries.
More information on data of-this type can be found in the section
on PL/I support.

11. 360-FORTRAN-SOURCE

This is the file type preferred by the compiling services of the
FORTRAN support package. More information on data of this type
can be found in the section on FORTRAN support.

12. 360-ASM-SOURCE

This is the file type preferred by the compiling services of the
Assembler support package. More information on data of this type

can be found in the section on IBM Assembler support.

10 i

Section 3

WORKSPACE MANAGEMENT SUPPORT

3.1 USING THE CCN WORKSPACE COMMAND INTERPRETOR (WSCI)

The CCN Workspace Command Interpretor (WSCI) is a minimal implementation
of the WSCI concept as documented in the NSW User Reference Manual [26].
It is merely an interactive service with the name "CCN". No actual
service program is associated with the WSCI. It consists of the
Encapsulator repeatedly requesting the simple name of a CCN-resident
service, through the prompt string "CCN:"

For each service name entered, the WSCI invokes that service just as
though it had been requested by a Front-End "USE" command. When the
service is completed, instead of returning terminal control to the Front
End, the Encapsulator requests the name of another local service. A
service name of "QUIT," "END," or control-C terminates the WSCI and
returns terminal control to the Front End.

Theoretically, every CCN interactive service is available either under
the WSCI or via the USE command. In practice, there are some services
which perform functions that are not useful outside the context of the
WSCI, and such services are not offered via the USE command. Examples
are the GET and DELIVER services. These services are all documented in
this section. Services documented in other sections are available
through both paths.

Notice that the WSCI executes services absolutely sequentially. It has
none of the multiplexing capabilities of the NSW Front End. You can use
the Front End to manage two concurrent instances of the WSCI, but each
operates in its own local workspace, and there is no communication
between them. In particular, workspace files created by services in one
workspace are not known to services operating in another.

- 11 -

3.2 WORKSPACE FILES

When using the WSCI, it is possible to manipulate "workspace files" as
well as NSW files. A workspace file is a temporary data collection that
lasts for the life of the WSCI session only.

At this writing, the CCN encapsulator does not maintain a "Local Name
Dictionary" (LND). In general, no relationship between a workspace file
and an NSW file of which it is a copy is known to the encapsulator.
Workspace files are either explicitly named by you, or are "unnamed", •
and are available only to the service that creates them.

A named workspace file must be given an IBM-compatible name, following
these rules:

" The name must consists of one or more simple names, 0
separated by periods.

" The total length of the name cannot exceed 36 characters.

" Each simple name must be from 1 to 8 characters long.

" All characters in a simple name must be alphabetic,
numeric, or from the "national" set ("@", "#1", "$").

" The first character of a simple name must not be numeric.

It is important to understand that a workspace is assigned to a new
service session randomly. It is quite impossible to pass workspace
files from one session to another without moving them into the NSW
filespace.

- 12 -

3.3 THE CREATEW SERVICE

The CREATEW service creates a workspace file. The file survives only
for the duration of the session unless you later deliver it into the NSW
filespace with the DELIVER service.

You are prompted for the local file name, a GFT (default is CARDS), an
approximate file size, and an optional member count. If no member count
is given, the file will be sequential. Otherwise it will be a library.

Examples:

CCN: createw
File name: ?
Enter the local name of the workspace file,
or ctl-C to back out.
File name: urge
Enter a GFT -- default is "CARDS"

GFT: 360-
File size in kilochars: ?
Enter a rough guess of how many thousand bytes of data will
be written to this file, or ctl-C to back out.
File size in kilochars: 2
Member count, if library: ?
Enter 0 or nothing for a sequential file; to get a library
file, enter the maximum number of members.
Member count, if library:
Workspace file urge created.

CCN: createw
File name: nominal
Enter a GFT -- default is "CARDS"
GFT: 360-pli-source
File size in kilochars: 5
Member count, if library: 25
Workspace file nominal created.

CCN:

- 13

3.4 THE DELETEW SERVICE

The DELETEW service destroys a workspace file. You are prompted for a
local file name. 0

3.5 THE PURGEW SERVICE

The PURGEW service destroys all workspace files currently in the
workspace. It requires no parameters.

3.6 THE LISTW SERVICE

The LISTW service lists the names of the files currently in the
workspace. It requires no parameters.

14-

3.7 THE EDITW SERVICE

The EDITW service is a special version of the EDIT service which
operates on a workspace file as its primary input. Thus it does not
involve fetching or delivering NSW files, as does EDIT. Except for this
difference, its operation is the same as that of EDIT. Refer to the
section on the EDIT service for more information.

Example:

CCN: editw
Workspace file name: ?

Enter the local name of a workspace file to be edited,
or carriage return to create a new file,
or control-c to abort.

Workspace file name: temp2
Enter a GFT -- default is KEYPUNCH
GFT: 360-
IKJ52320I DATA SET OR MEMBER NOT FOUND, ASSUMED TO BE NEW
INPUT
00010 this is the first data record
00020 and this is the last
00030
EDIT
list
00010 THIS IS THE FIRST DATA RECORD
00020 AND THIS IS THE LAST
IKJ52500I END OF DATA
end save

CCN:

- 15

3.8 THE DISPLAYW SERVICE

The DISPLAYW service is a special version of the DISPLAY service which
operates on a workspace file. Thus it does not involve fetching from
the NSW filespace, as does DISPLAY. Except for this difference, its
operation is the same as that of DISPLAY. Refer to the section on the
DISPLAY service for more information.

Example:

CCN: displayw
Workspace file name: temp3
DISPLAY: 1 non
00000010 ON ENDFILE (SYSIN) NOEOD = 'O'B;
00000020 DO WHILE (NOEOD);
00000030 RILE (SYSIN) INTO (BUFFER);
00000040 IF NOEOD
00000050 THEN GET FILE (SYSPRINT)
00000060 EDIT ('DATA READ: ' BUFFER)
00000070 (SKIP, A);
00000080 ELSE GET FILE (SYSPRINT)
00000090 EDIT ('END OF DATA') 0
00000100 (SKIP, A);
00000110 END;
DISPLAY: end

CCN:

- 16 -

3.9 THE GET SERVICE

The CCN GET service makes a copy of an NSW file in the service session

workspace. This copy survives only for the duration of the service
session.

You are prompted for an NSW filespec, a simple name for the workspace

copy, and an optional NSW Global File Type (GFT). If you specify a GFT,
it MUST be one of the CCN-native types; therefore, you do NOT type the
"360-" prefix. If you do not specify a GFT, then GET assigns one. If

the GFT of the NSW file is native to CCN (begins with "360-"), then it

is used. Otherwise, either "TEXT" or "BINARY" will be used.

Unless you have a good reason for specifying a GFT, it is wise to let
GET select one.

Example:

CCN: get
NSW filespec: ... at-ccn

Enter a GFT -- default is file's current type
GFT: 360-

Set a lock? (yes or no): n
[... Disconnecting from 2ccn]

[NSUExec for 2ccn:]

Full file name is $CCN.AT-CCN
[now talking to 2ccn (...ccn)]
Workspace file name: temp2

CCN:

- 17 -

3.10 THE DELIVER SERVICE

The CCN DELIVER service moves a file fycm the service session workspace
into an NSW file, deleting it from the workspace.

You are prompted for the simple name of the workspace copy, the NSW file
name, and an optional NSW Global File Type (GFT) to be assigned. If you
specify a GFT, it MUST be one of the CCN-native types; therefore, you do
NOT type the "360-" prefix. If you do not specify a GFT, then DELIVER
assumes "TEXT".

If the file includes sequence numbers, you should specify a GFT;
otherwise, the sequence numbers will be treated as part of the data.

Example:

CCN: deliver
Workspace file name: ?
Enter the simple name of the workspace file to be delivered

or control-c to abort.
Workspace file name: hydra
Enter a GFT -- default is "LIST" •
GFT: 360-
NSW filespec: ?
Enter the NSW file name to be assigned the delivered copy

or control-c to abort.
NSW filespec: hydra.listing
[.. .Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
SCCN.HYDRA.LISTING

[now talking to 2ccn (...ccn)]
New filename is $CCN.HYDRA.LISTING

CCN:

- 18

• • m m0

3.11 THE TSO SERVICE

The CCN TSO service is provided primarily as a convenience to NSW
implementors. It is not intended to be a full-facility access path to
TSO, and NSV users use it only at their own risk.

The TSO service switches the WSCI from the mode where WSCI commands are
requested by the "CCN:" prompt to a mode where IBM TSO Commands are
requested by the "TSO:" prompt.

In this mode, the user operates entirely without NSW services, and in a
temporary workspace. Therefore, NO FILES are available except those
workspace files that were set up through WSCI commands entered before
entering the TSO service. Likewise, NO FILES can be saved except
through WSCI commands entered after the TSO service is exited.

Like the WSCI, Lhe TSO service is exited by entering "END", "QUIT", or
control-C.

Except for the constraints of the temporary workspace, the TSO service
is very like using IBM TSO outside NSW, with the "TSO:" prompt taking
the place of TSO's usual "READY" prompt. However, only TSO command-pro-
cessor programs can be invoked. This excludes any use of command lists,
even system-provided ones. It also excludes the use of those commands
that are built into the TSO Terminal Monitor Program, such as TEST,
CALL, TIME, and EXEC.

19 -

Section 4

NSW FILE MANAGEMENT SUPPORT

4.1 THE DISPLAY SERVICE

The DISPLAY service is an NSW offering of the CCN DISPLAY processor as
implemented under the CCN TSO system, but operating under the CCN NSW
Encapsulating Foreman. DISPLAY is used to browse text
files, particularly the outputs of batch jobs. It is not a text
editor, and it does not have the capability to alter data; for that
purpose, use the EDIT service.

The primary purpose of DISPLAY is to view the outputs of CCN-based
NSW batch services, which are normally stored on the CCN system.
DISPLAY is not sensitive to the NSW Global File Type (GFT) of its
input files, except to the text/binary attribute, so it can be used
to browse any non-binary NSW file; however, initial response time will
suffer if the file has to be fetched from another NSW host.

4.1.1 Invoking DISPLAY

When you type the USE command that invokes the DISPLAY service, these
events should occur:

1. Your terminal is connected to the CCN Encapsulator.

2. The Encapsulator queries you for the identity of a file to
be browsed. If you enter control-C, that is interpreted as
a request to terminate the session, and you will skip to step
6.

3. A copy of the file is made available to the service. If there
is a local NSW copy that can be browsed directly, it will
be used, since DISPLAY does not have the capability to
destroy data. In any other case, a service copy must be created
in the service's workspace.

4. Your terminal is connected to the DISPLAY program. The two of
you cooperate in browsing the file.

- 20 -

• • m m |0

5. Eventually you issue the END subcommand. DISPLAY terminates,
and your terminal is reconnected to the Encapsulator. The

* session reverts to step 2.

6. When you have entered control-C, your terminal is once again
connected to the NSW Front End, where you issued the USE
command.

• 7. The Front End prompts you for another NSW command.

Your communication with the DISPLAY program itself is limited to
entering the simple subcommands described in the next section. On
occasions, you will also wish to abort a subcommand, as for instance
a LIST subcommand, by using the "interrupt-process" character

* (control-C).

Whenever DISPLAY is ready to accept a new subcommand, it prompts with
the string "DISPLAY". You can then enter one of the commands
DEFAULT, END, FIND, LIST, or PAGE.

4.1.2 Subcommands

DISPLAY subcommands follow the syntax of the TSO command language as
* defined in [6]. A DISPLAY subcommand consists of a subcommand name,

followed by an optional list of operand strings separated by blanks
and/or commas, and terminated by a semicolon or carriage return. An
operand string is usually either a simple number or quoted string or
a keyword name optionally followed (without a blank) by a paren-
thesized list. The list follows the same syntax as the main

* operand list except that it is terminated by its closing parenthesis
instead of a semicolon or carriage return. Subcommand names and
keyword operands may be abbreviated to any unambiguous leading string.
Blanks and/or commas are used to separate operands, and should not
occur in any other place except within quoted strings.

* In the descriptions below, the full syntax of each DISPLAY subcommand
is shown in the form of a skeleton subcommand. In these skeletons,
operands that are given as lower-case strings in single quotes represent
"positional" operands -- operands whose order is critical (but some of
them may be optional, nevertheless). You are to substitute some value
for the entire quoted string (the quotes are part of the metalan-

• guage). Operands shown as upper-case strings, sometimes with
parenthesized lists, represent "keywords" -- operands that may be
entered in any order, provided they follow all positional operands.

Keyword operands separated by "/" represent different names, with
different meanings, for the same basic option. Only one should be used

* in a given subcommand.

- 21 -

4.1.2.1 The DEFAULT Subcommand

The DEFAULT subcommand is used to set or reset default display
control options. Its effects remain until the next DEFAULT subcommand
is issued. Various other DISPLAY subcommands carry some of the same
operands as DEFAULT, and with the same meanings; however, such
options only hold for the duration of the subcommand on which they are
stated. When such a subcommand does not have one of these options
stated, its value is taken from the last DEFAULT subcommand that was
issued.

The full syntax of DEFAULT is:

DEFAULT COMPRESS/NOCOMPRESS
NUMBER/NONUMBER
WIDTH('number')
COLUMN('number')

No operands are required. Those not explicitly specified remain as
before the DEFAULT subcommand was issued. Before any DEFAULT is
issued, the control options are set to:

DEFAULT NOCOMPRESS NUMBER WIDTH(999) COLUMN(l)

The meanings of the options are:

COMPRESS or NOCOMPRESS

If COMPRESS is specified, multiple blanks will be
compressed to a single blank. The compression is
done AFTER the COLUMN and WIDTH options have been
applied to the output line.

NUMBER or NONUMBER 0

If NUMBER is specified, a line number is printed to
the left of each output line. Unless the input
file is organized into printer pages, this is a
single logical record number. If the file is
organized into printer pages, it is of the form
'page-number':'line-number'. Overprinted lines
will be considered to be separate lines.

WIDTH ('number')

The maximum number of characters printed per record
displayed is set to 'number'. COLUMN and WIDTH are
independent.

COLUMN ('number')

When a record is displayed, it will be printed
starting at column 'number'. COLUMN and WIDTH are
independent.

- 22

4.1.2.2 The END Subcommand

The END subcommand is used to stop browsing the current file and
return control to the Encapsulator. It has no operands -- just type
"END".

4.1.2.3 The FIND Subcommand

The FIND subcommand is used to display the records in which a
specified string occurs. You may find a single such record, the next
such record after the last ona found, or all such records. The
search may be over the entire file or restricted to a certain part of
the file, and it may be confined to certain columns of the logical
records.

The full syntax of FIND is:

FIND 'starting record number'
'ending record number'
'search string'

ASIS
BETWEEN('coll','col2')
COUNT('number')/K('number')/ALL
COMPRESS/NOCOMPRESS
NUMBER/NONUMBER
WIDTH('number')
COLUMN('number')

The 'search string' operand is required except in one special case:
if a FIND operation terminates because the COUNT is exhausted, it may be
resumed with an assumed COUNT of one by entering FIND with no
operands. The defaults for omitted operands are:

1 999999 COUNT(l) BETWEEN(I,999)

The meanings of the options are:

'starting record number' and 'ending record number'

These numbers specify the range within which the
search is to be done. Unless the file is organized
into printer pages, each is entered as one- to
six-digit integers. If the file is organized into
printer pages, each is entered as a pair of one- to
three-digit integers in the form
'page-number':'line-number', or as a single page
number. If a page or line number is greater than
that of any page or line in the file or in the

- 23 -

-- 0m

indicated page, then the last record of the file or
page is assumed.

'search string'

This string is enclosed in arbitrary matching
delimiters (see section "Typical Commands"). It
will match only an "identical" string which occurs
completely within the bounds of a record. Unless
the ASIS operand is specified, differences in
alphabetic case will not prevent matches between
the search string and file data.

ASIS

This operand causes differences in alphabetic case
to prevent matches between the search string and
file data.

BETWEEN('coll','coI2')

This operand specifies an inclusive range of
columns within which the search is to be confined.

COUNT('number'), K('number'), or ALL

This operand specifies the maximum number of
records to be displayed before the FIND operation
is interupted. "K" is an alias for "COUNT". "ALL"
is equivalent to "COUNT(999999)".

The remainder of the options are the same as those for the DEFAULT
subcommand. If specified here, they will have effect only for the
duration of the FIND operation.

4.1.2.4 The LIST Subcommand

The LIST subcommand is used to display all or a part of the File. The •
full syntax of LIST is:

LIST 'starting record number'
'ending record number'
COUNT('number')/K('number')
COMPRESS/NOCOMPRESS
NUMBER/NONUMBER
WIDTH('number')
COLUMN('number')

The defaults for omitted operands are:

1 999999 COUNT(999999)

- 24 -

The meanings of the options are:

'starting record number' and 'ending record number'
These numbers specify the range of records which
are to be displayed. Unless the file is organized
into printer pages, each is entered as one- to
six-digit integers. If the file is organized into
printer pages, each is entered as a pair of one- to
three-digit integers in the form'page-number':'line-number', or as a single page
number. If a page or line number is greater than
that of any page or line in the file or in the
indicated page, then the last record of the file or
page is assumed.

COUNT('number') or K('number')

This operand specifies the maximum number of
records to be displayed as a result of this LIST
operation. "K" is an alias for "COUNT".

The remainder of the options are the same as those for the DEFAULT
subcommand. If specified here, they will have effect only for the
duration of the LIST operation.

4.1.2.5 The PAGE Subcommand

The PAGE subcommand is used to display a particular page of the file.
If the file is not organized into printer pages, then PAGE wil! display
a particular line. The full syntax of PAGE is:

PAGE 'page number'
COUNT('number')/K('number')
COMPRESS/NOCOMPRESS
NUMBER/NONUMBER
WIDTH('number')
COLUMN('number')

The defaults for omitted operands are:

1 COUNT(999999)

The meanings of the options are:

page number'

This number specifies the page to be displayed. If
the file is not organized into printer pages, then
it is interpreted as a line number.

COUNT('number') or K('number')

- 25 -

This operand specifies the maximum number of
records to be displayed as a result of this PAGE
operation. "K" is an alias for "COUNT".

The remainder of the options are the same as those for the DEFAULT
subcommand. If specified here, they will have effect only for the
duration of the PAGE operation.

4.1.3 Typical Commands

The following are sample DISPLAY subcommands:

DEF C(9) W(62)
All subsequent DISPLAY operations will
display only columns 9-70.

D COMP NON 5
All subsequent DISPLAY operations will
show compressed text without line
numbers.

F 'bursitis' ASIS ALL
Display all occurrences of the string
"bursitis" in the entire file. Do not
consider upper-case letters to match
(e. g., "Bursitis" is not a match).

FIND 5:9 /twister/ K(7) BETW(10 20) COL(l) W(8)
Locate the first seven logical records,
at or after the ninth one on page 5,
which contain the string "twister", in
any combination of upper and lower case,
within columns 10 to 20. For each such
record found, display columns 1 through 8.

L
List the entire file.

LISi 9:34 10:7 COMP
List the contents of the file from page
9, line 34 through page 10, line 7.
Compress out excess blanks.

P7
List the contents of page 7.

END
Return to the NSW Encapsulator.

- 26 -

| • •

4.1.4 Sample Service Session

CCN: display

Filespec: ?
Enter the NSW file specification of a file to be

browsed, or a control-c to terminate the tool.

Filespec: ... body
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.BODY
[now talking to 2ccn (...ccn)]
DISPLAY: help

SUBCOMMANDS
LIST,PAGE,FIND,DEFAULT,END

IKJ56804I FOR MORE INFORMATION
ENTER HELP SUBCOMMANDNAME OR HELP HELP

DISPLAY: list non
00000010 ON ENDFILE (SYSIN) NOEOD = 0B;
00000020 DO WHILE (NOEOD);
00000030 READ FILE (SYSIN) INTO (BUFFER);
00000040 IF NOEOD
00000050 THEN PUT FILE (SYSPRINT)
00000060 EDIT ('DATA READ: ' Ii BUFFER)
00000070 (SKIP, A);
00000080 ELSE PUT FILE (SYSPRINT)
00000090 EDIT ('END OF DATA')
00000100 (SKIP, A);
00000110 END;
DISPLAY: f 'put' all comp
000005 00000050 THEN PUT FILE (SYSPRINT)
000008 00000080 ELSE PUT FILE (SYSPRINT)
DISPLAY: end

Filespec: ?
Enter the NSW file specification of a file to be

browsed, or a control-c to terminate the tool.

Filespec: @

ending DISPLAY session

- 27 -

4.2 THE EDIT SERVICE

The EDIT service is an NSW offering of the IBM TSO EDIT processor (6]
as implemented on the CCN computing system. As an NSW service, it
operates under the CCN NSW Encapsulating Foreman. This section is a
brief description of EDIT that uses NSW parlance and excludes those
features of the editor that are not available from the encapsulated
vers ion.

The EDIT service is used to create, modify and examine NSW files.
Through this service, data is entered into the system from the NSW
terminal and stored into new or existing NSW files. Such data may
comprise source programs, text, data used as service input, or any other
non-binary data. EDIT is not particular about the NSW Global File Type
(GFT) of its input file, but it will deliver its output under the same
type unless you choose to specify a different type. If you are creating
a new file, you will have to specify a type.

While EDIT can also be used to browse a file without altering it, the
DISPLAY service is more suitable for this purpose.

EDIT can be used as an NSW service, or as a command of the CCN WSCI.
The differences between the two usages are illustrated in Figure 1.

1. When EDIT is invoked directly through the "USE ... EDIT" command,
only one NSW file can be edited in a single service session, and
not more than one file can be delivered back to NSW as a result
of a single session. The input file can be an existing file or
a new file. Delivery can replace an existing file or create a
new NSW file. If the EDIT session does not produce a useful
edited file, delivery can be skipped.

2. When EDIT is invoked under the CCN WSCI, that is, through "USE
...CCN", more capability is available. You can invoke the WSCI 0
GET command to place named copies of your NSW files into your
session workspace. Then you can invoke the WSCI EDIT command to
operate on a primary NSW file and on those workspace files, to
save the results in one or more workspace files, and optionally,
to deliver the primary workspace file back to NSW. Then you can
use the WSCI DELIVER command to move any secondary workspace
files back into the NSW file space. Notice that there is no
capability for interrupting EDIT, reverting to the WSCI, and then
resuming EDIT. It is possible to end EDIT, perform WSCI work,
and then start EDIT again from scratch; however, restarting EDIT
requires specifyingy a new NSW file name, not a workspace file
name.

In either case, you should be aware of your exposure to loss of data
should any systems crash occur. While such crashes are infrequent,
massive editing is still safest done in several short sessions rather
than one very long one. It is not sufficient to use occasional SAVE
subcommands to checkpoint the editing process, since only delivered NSW 9
file data will survive a system crash.

- 28 -

In keeping with its IBM heritage, EDIT is oriented toward sequenced
files. It is possible to edit unsequenced data, but it is not
convenient. There is no direct connection between NSW file sequence
numbers and those used by EDIT. EDIT merely expects to find sequence
numbers, if any, in either the first eight or the last eight characters
of each data record. The NSW file descriptions of IBM data types have
been designed to make this happen in virtually all cases, and you
shouldn't have to worry about it. Still, it is hoped that a future
version of EDIT will have a more definite understanding of NSW file
sequence numbers.

29

A

* NSW file(s)

A
(Copied when you (copied back when
enter a filespec you enter an
in answer to the entry name during

Encapsulator's the Encapsulator's
prompt) delivery sequence)

V
Primary EDIT capabilities
available under either * Primary
USE ... EDIT or Workspace *

USE ...CCN. * File
., (unnamed) ,

A
(Loaded at first (Stored ONLY when
entry to editor, you enter the
and again when SAVE subcommand
you elect to without a file name,
"reedit") or "END SAVE".

V

V ~ * •

............. * Editor internal buffers *- .------

A

A
(Loaded by the I I (Stored by the FORMAT
MERGE subcommand) l I subcommand or by SAVE

I I with a file name)
V

Secondary capabilities
available only under * Secondary *

USE ...CCN. * Workspace
* Files *

* il(named) *

A I
(Copied only when I j (copied back only
you use the WSCI I I when you use the
GET command) I I WSCI DELIVER command)

i V

NSW file(s)

Figure 1: How EDIT Uses Files

- 30 -

4.2.1 Invoking the EDIT Service

When you type "USE ...EDIT", the following events should occur:

1. Your terminal is connected to the CCN Encapsulator.

2. The Encapsulator queries you for information about the file to be
edited. It establishes whether it is an old file or a new one,
and what basic type of file it is.

3. A copy of the file (empty if new) is made in the service's
private workspace.

4. Your terminal is connected to the IBM TSO EDIT program, and that
program loads its internal buffers from the workspace file. The
two of you do the kinds of things that users and editors do to
data. Usually, unless you decide to abandon the edit session,
this includes one or more SAVE subcommands. Whenever you issue
SAVE, and at no other times, the editor's internal buffers are
rewritten to the workspace file.

5. Eventually you issue the END subcommand. The editor termi-
nates, and your terminal is once again connected to the
Encapsulator.

6. The Encapsulator gives you the opportunity to "re-edit", that is,
to loop back to step 4, and edit the current contents of the
workspace file.

7. When you do not elect to re-edit, the Encapsulator queries you
about how to deliver the edited data. You can skip delivery,
deliver to a new NSW file, or, if you were editing an existing
NSW file, deliver back to the input file.

8. The Encapsulator tells you the full name of the NSW file to which
delivery was made.

9. Then it reconnects your terminal to the NSW Front End, where you
issued the USE command. The Front End reports to you the
resources used by the entire service session, and prompts you for
another NSW command.

The relationship between an NSW file, the NSW service workspace copy,
and the editor's internal buffers is illustrated by figure 1.

- 31 -

4.2.2 Invoking the WSCI EDIT Command

When you type "EDIT" as a CCN WSCI command, the same basic events occur.
However, since you are already in conversation with the CCN Encapsu-
lator, step 1 has already happened, and step 9 is deferred until you end
the WSCI session.

4.2.3 Subcommand Modes

The editor is always operating in one of two subcommand modes: "edit"
or "input". In edit mode, you can only enter editor subcommands. In
input mode, everything that you type is entered into the file as data.
In either mode, you can always switch to the alternate mode just by
typing a bare carriage return. Usually, though, you will want to enter
input mode through the INPUT subcommand, since it allows you to specify
a new point within the file where your new data is to be placed. You
can also enter edit mode through the "interrupt-process" character,
control-C.

The two modes are readily distinguished by the prompt strings which the
editor displays when it changes mode. When entering edit mode, the
string "EDIT" is displayed. This string is also used as a prompt for
the next subcommand in certain situations in edit mode; however, no
prompt is issued after subcommands that cause data display, and certain
trivial subcommands (as VERIFY) cause neither display nor prompt.

In the input mode, if the file is sequenced, data line entry is
prompted by the sequence number of the line to be entered. If the file
is not sequenced, there is not prompt in input mode. However, in
either case, the string "INPUT" is displayed when the editor switches
from edit to input mode.

Usually, when you enter the editor, you will begin in edit mode;
however, if the file is empty (as when it is a new file), you will begin
in input mode.

4.2.4 Continuation Lines

Whenever a line entered to the editor ends with a hyphen immediately
followed by a carriage return, a "continuation line" is indicated. The
editor assumes that the carriage return is for the convenience of the
terminal user, and does not signify end-of-line. Both the hyphen and
the carriage return are discarded by the editor, and subsequently typed
characters become a part of the subcommand or data line that was being
typed when the hyphenL was entered. If you need to create a data line
that ends in a hyphen, follow it by at least one blank. If that method S
is not applicable to your situation, you can probably use the CHANGE
subcommand.

- 32 -

4.2.5 Specifying Lines and Ranges

The editor maintains a virtual "current line pointer" which always
indicates the text line that was last operated on. In some of the
editor's subcommards, unless a specific line number is stated, the
"current line" is implied. The current line can usually be referenced
explicitly by using a "line number" of "*" See [6] for a chart of the
effects of various editor subcommands on the pointer.

The scope of an editor subcommand is frequently stated in terms of a
"line specification" which may indicate either a single line or a group
of contiguous lines. There are two basic forms of line specifications:

1. An explicit specification is one or two line numbers, specifiying
either the only line or the first and last lines of a contiguous
range. This form can only be used for numbered files.

2. A context specification consists of the current line indicator
"*", optionally followed by a number indicating how many

contiguous lines beginning at the current line are being
specified. This form can be used for numbered or unnumbered
files.

4.2.6 Verify Modes

The editor is always operating in one of two "verify" modes, called
"verify on" and "verify off". These modes govern how much feedback is
given the user as his subcommands are executed. When verify is off,
this feedback is minimal. When verify is on, EDIT displays the current
line whenever:

1. The position of the current line pointer changes, as, for
example, the result of an UP, DOWN, or FIND subcommand. (A minor
exception arises with the TOP subcommand, which sets the current
line pointer to "0". Unless a line 0 actually exists in the
file, no current line display occurs.)

2. The text or sequence number of the current line is changed (for
example, by a CHANGE or RENUM subcommand).

The default verify mode is ON. Turning it OFF is not reccommended if
the file is unnumbered.

33 -

4.2.7 Subcommands

4.2.7.1 Summary

A complete description of the subcommands of EDIT can be found in [61;
however, it is quite possible to use the editor effectively given only
its online HELP facility. This facility will print for the online
user a list of available subcommands or a description of the function,
syntax, and operands of a given subcommand. It will also reflect any
embellishments that CCN may have made, which are not reflected in [6].
For a descripton of the usage of HELP itself, enter the subcommand "HELP
HELP". 0

In the table below, note that the aliases used by EDIT for UP, DOWN, and
TOP are not those specified in [6]. CCN has changed these aliases for
compatibility with previous systems. In any case of conflict between
this document and [61, this document should take precedence.

The following subcommands are available through EDIT:

0

0

0

- 34 -

0

Subcmd: Alias: Function:

ALLOCATE ALLOC creates an empty workspace file.
BOTTOM B Points to the last line of the file.
CHANGE C Modifies character strings.
COPY CO Copies a line or a range of lines from

one portion of the file to another.
DELETE DEL Deletes lines from the file.
DOWN D Points closer to the end of the file by a

specified number of lines.
END Returns to the NSW service Encapsulator.
FIND F Locates a specific character string

in the file.
FORMAT FORM Formats all or part of the file, either to

the terminal or to a workspace file. If the
subcommand is used to create a workspace
file, its name will be suffixed by ".LIST"
and its type will be "360-PRINT".

HELP H Displays information on subcommands.
INPUT I Enters input mode.
INSERT IN Inserts new lines of data.
"linedit" Inserts, replaces, or deletes a single

line merely by typing its line number (or "*")

followed (except for delete) by a blank and
the line's data. This function does not
actually have a subcommand name, but it is
known to the HELP facility as "linedit".

LIST L Displays one or more lines of the file at
the terminal.

MERGE M Merges data from a workspace file into the
editor's buffers. The file will usually
have been created by the GET service. The
file being edited can be specified by "*".

MODIFY MOD Alters the contents of a line by replacing,
deleting, or inserting characters.

MOVE MO Moves a line or range of lines from
one portion of the file to another. The
original line(s) are deleted.

PROFILE PROF Specifies non-standard character- and
line-deletion characters.

RENUM REN Sequence-numbers the file.
SAVE S Stores the edited file back into the service

workspace copy, or into another workspace file.
TABSET TAB Establishes or changes tab stops for use in

data entry.
TOP T Points to line 0, whether it exists or not.
UNNUM Removes sequence numbers from a numbered file.
UP U Points closer to the beginning of the file

by a specified number of lines.
VERIFY V Turns verify mode on or off.

- 35

9

4.2.7.2 Unavailable Subcommands

When using HELP or consulting [61, you will see references to some
subcommands which are unavailable or not useful from EDIT, usually
because of the constraints of the NSW environment. Some of these
subcommands may be supported in a future version of EDIT; however, in
the precant vtrsion, their use may cause unpredictable dnd nonrepeatable
results, possibly including abnormal termination of the service.

These subcommands are:

DO
EXEC
FSE
RUN
SCAN
SEND
SUBMIT

-36

4.2.8 Example

CCN: edit
Filespec: ?
Enter the NSW file specification of a file to be edited,

or carriage return to creat: a new file,
or control-c to abort.

Filespec: ...testl.body
Enter a GFT, or carriage return to use the file's current type
GFT: 360-
Set a lock? ?
Do you intend to replace the same NSW file with the edited data (Yes or
Set a lock? n
[...Disconnecting from 2ccn]
[NS.%WExec for 2ccn:]

Full file name is $CCN.TESTL.BODY
[now talking to 2ccn (...ccn)]
EDIT
help
SUBCOMMANDS -

ALLOCATE,BOTTOM,CHANGE,COPY,DELETE,DO,DOWN,END,EXEC,FIND,FORMAT,FSE,
HELP,INPUT,INSERT,LIST,MERGE,MODIFY,MOVE,PROFILE,RENUM,RUN,SAVE,
SCAN,SEND,SUBMIT,TABSET,TOP,UNNUM,UP,VERIFY. (FOR EXPLANATION
OF LINE INSERT/REPLACE/DELETE FUNCTION, ENTER HELP LINEDIT).

IKJ568041 FOR MORE INFORMATION ENTER HELP SUBCOMMANDNAME
OR HELP HELP

list
00010 ON ENDFILE (SYSIN) NOEOD = '0'B;
00020 DO WHILE (NOEOD);
00030 READ FILE (SYSIN) INTO (BUFFER);
00040 IF NOEOD
00050 THEN PUT FILE (SYSPRINT)
00060 EDIT ('DATA READ: ' II BUFFER)
00070 (SKIP, A);
00080 ELSE PUT FILE (SYSPRINT)
00090 EDIT ('END OF DATA')
00100 (SKIP, A);
00110 END;
IKJ525001 END OF DATA
top
c * 999 /PUT/ GET/ all
00050 THEN GET FILE (SYSPRINT)
00080 ELSE GET FILE (SYSPRINT)
mod 30
00030 READ FILE (SYSIN) INTO (BUFFER);
MODS-> <<<<<
00030 RILE (SYSIN) INTO (BUFFER);
end save
Re-edit? ?
Do you wish to edit the same data again
from the last SAVE subcommand?
(YES or NO -- default is 'NO')

Re-edit? n
delivery type = NEW/QUIT/SAME/WORKSPACE: new

37 -

NSW filename: edited
Pick a delivery GFT (default is PLI-SOURCE)
GFT: 360-
[... Disconnecting from 2ccn]
[NSWExec for 2ccn:J

Full name of new file is
$CCN.EDITED

[now talking to 2ccn (... ccn)]
new NSW file is $CCN.EDITED

CCN:

380

4.3 THE SEND SERVICE

The CCN SEND service is provided primarily as a convenience to NSW
implementors. It is not fully supported by internal NSW protocols, and
NSW users use it only at their own risk.

The SEND service is like the NSW COPY command. It copies the data from
one NSW file into another. However, the SEND command allows you to
specify the NSW host on which the copy is to reside, and the Global File
Type (GFT) to be assigned it.

When you use SEND, you are prompted for the input filespec, the output
file name, the receiving host name, and the optional GFT.

You can specify no GFT, in which case the file's existing GFT will be
used. This will only work if the sending and receiving host are of the
same NSW host family.

If you specify a GFT, it must be native to the receiving host's NSW
family. Even if that host is CCN, you cannot ellide the host-family

* prefix. For instance, if the receiving host is CCN, you can say
"360-TEXT", but "TEXT" will not work. The SEND command makes no attempt
to validate your GFT before attempting to make the copy.

Example:

CCN: send
Old filespec: ?
Enter the NSW file specification of the file to be copied

or control-c to abort.
Old filespec: at-ccn
New filespec: ?
Enter the NSW file specification of the file to be created

or control-c to abort.
New filespec: sent.file
Destination Host: ?
Enter the NSW host name where the copy is to be stored

or control-c to abort.
Destination Host: radc-20
New GFT: " , -

Enter a GFT to assign the copy,",
or null to use the existing GFT,", -
or control-c to abort.", -
Note: no local validation can be done on any GFT you enter.

New GFT: lOx-text
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.AT-CCN
[now talking to 2ccn (...ccn)]
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.SENT.FILE
[now talking to 2ccn (...ccn)I
File at-ccn copied to sent.file at radc-20

- 39 -

Section 5

LIBRARY-MANAGEMENT SUPPORT

5.1 WHAT IS A LIBRARY?

A library is a collection of related sequential files, called "library
members", which is allocated to a requesting service as a unit. The
service then selects and reads members as if they were separate files.
The name of the library does not matter to the service, since you supply
it, in one way or another, when you start the service; however, the
names of the members are known to the service, and members are sought by
the service by name. The library thus represents a "search scope"
within the NSW filespace. It also represents a private sub-namespace
within which both a service and a user refer to members by the same
simple names.

Library Management, or LM, is a support-function package designed to
make the most essential features of IBM library file support available
to the NSW user.

5.2 WHEN WILL YOU USE A LIBRARY?

When you use services mounted on an IBM System/360 or System/370 system,
you will have many occasions to use libraries. Theoretically, a library
can have any Global File Type (GFT); however, in practice, only four
types of libraries are usually needed: "card-image" libraries, "PL/I
source" libraries, "load-module" libraries, and "object" libraries.
You will use them in a least the.following cases:

5.2.1 Load-Module Libraries

A load-module library is of GFT 360-LOAD.

Any executable program on an IBM system is invoked by a simple name,
under an environment that states or implies a search scope. Therefore,
executable programs, or "load modules", are members of load module
libraries. In fact, the format of a load module precludes storing it
in any other manner, so that you cannot put a single load module into a
sequential NSW file.

- 40 -

l l P •0

Obviously, any NSW IBM service that produces a binary IBM program as its
output will store it in a load-module library. This includes most of
the services in the CCN Native Language Processing (NLP) support
packages. If you are going to save any binary programs, you will need
at least one load-module library. You create and maintain the library
with the LM support package, but you create and use members with NLP
services.

5.2.2 PL/I Source Libraries

A PL/I source library is of GFT 360-PLI-SOURCE.

The PL/I %INCLUDE statement fetches a segment of PL/I source code by
name, from some user-specific search scope. Therefore, PL/I "canned"
text segments are stored in libraries. If you are going to use
%INCLUDE, you will need at least one PL/I source library. You create
and maintain both the library and its members using the LM support
package and an editor service. Only services in the CCN PL/I support
package will actually "use" the library.

5.2.3 Card-Image Libraries

A card-image source library may be of GFT 360-CARDS, 360-KEYPUNCH, or
360-ASM-SOURCE, depending on how specific you want to imply the
contained data to be formatted.

The COPY statement and all the macro-assembly features of the IBM
assembler fetch code segments by name, from some user-specific search
scope. Since the IBM assembler demands "card-image" input, all such
text is stored in card-image libraries. If you use the COPY statement,
or if you define your own macro definitions (except for those local to
and contained within a single source program), you will need at least
one card-image library. You create and maintain both the library and
its members using the LM support package and an editor service. Only
services in the CCN Assembler support package will actually "use" the
library.

5.2.4 Object Libraries

An object library is of GFT 360-OBJECT.

Most CCN language-support packages allow you to deal only with source-
language files or load-module files; however, there is an intermediate
card-image binary form in which code can be stored. This form, called
"object" form by IBM, must be used by certain cross-compiler systems
which do not ever produce code to be loaded into an IBM computer, and

- 41 -

which therefore have no reason to produce load modules. To support
these compilers, the LM package supports Object libraries.

5.3 CHARACTERISTICS OF IBM LIBRARIES

Under LM, the library owner must perform certain housekeeping chores to
keep a library tidy, so he must necessarily understand some of the
characteristics of the IBM library implementation.

5.3.1 Host Dependence 0

Under LM, only one physical copy of a library can exist, so the library
data cannot be made directly available to a service on another host.
The IBM support package provides services to copy members from certain
library types into NSW sequential files, and vice-versa, and such
sequential files can be used in any way that any NSW file can; however, 0
they remain separate files, unrelated to the library except in the
user's mind.

5.3.2 Member Names 0

Each member has a simple name, and may have a number of "aliases". An
alias is just like a true member name in almost every respect. An
exception is that the load-module attributes stored in the directory of
a load-module library may differ among aliases and true names. This
facilitates describing subroutines with multiple entry points. Under
LM, member and alias names follow a standard IBM syntax, that is:

1. A member name is 1 to 8 characters long.

2. All characters are alphabetic, numeric, or national (the
"national" characters are "@", "#", and "$").

3. The first character is not numeric.

0
5.3.3 Library Representation

A library is usually created by the CREATEL service. At that time, it
is allocated a fairly fixed piece of disk storage. The total space
available tor the library can wax and wane, within limits, according to
library use; however, the extent to which this can actually happen is 0
governed by conditions external to NSW and not under the library owner s

- 42 -

0

control. Therefore, it is important, when creating a library, to make
a reasonable estimate of its "average" size. This need not accomodate
the maximum expected size, but it should not differ from it by an order
of magnitude. See the section on "GARBAGE COLLECTION" for more
information on size estimation.

At the time of library creation, an unnamed member called the
"directory" is created. This serves as the "table of contents" for the
library, and in the case of a load-module library, it holds the set of
member attributes that a loader program would use to allocate main-
storage space for. a program (which is why a load module cannot exist
outside a library). Once created, the directory is absolutely fixed in
size, so you must make a good estimate of the maximum number of
members and aliases that the library will ever need to hold. Directory
space is fairly cheap, so you can afford to overestimate somewhat here.
If the directory ever overflows, you can reclaim space in it by deleting
unneeded members. If all members are valuable, you will have to create
a new library, with a larger directory, and merge the old one into it.

5.3.4 Garbage Collection

The space in a library is allocated sequentially. When a member is
"overwritten", the new data is actually added to the end of the file,
and the original becomes wasted space. Likewise, when a men.ber is
deleted, its space is not immediately reclaimed. If this kina of
activity is frequent, a library can outgrow its space allocation very
quickly. For this reason, you might be well advised to plan for an
'average" file size about twice what you expect to actually store in the
library.

The LM support package provides a "COMPRESS" service which performs
garbage collection on a library, and a "LIBMAINT" service which can help
determine when this should be done. You should certainly compress a
library whenever an operation that would have added data to it fails.
Normally, you will want to do it more often, to prevent the failure of
time-consuming operations.

5.4 SERVICE SUMMARY

The LM support package provides basic services for creating, merging,
and compressing libraries. There is one truly interactive service,
"LIBMAINT", which accepts a subcommand language which is detailed below.
The other services are not interactive except during the .pecification
of their parameters; however, all the services execute in the
foreground, under the interactive Encapsulator.

- 43 -

5.5 THE CREATEL SERVICE

CREATEL creates a library in the NSW file space. You are prompted for
the NSW file name, the GFT, the approximate file size in thousands of
characers, and the approximate maximum number of members that the
directory needs to be able to accomodate. On successful competion of
the service, the library has been entered into the NSW file catalog, and
is ready to be used by other services.

Remember to inflate your size estimate to allow for the space lost in
normal file update. The particular allocation scheme used will allocate
one half the stated number of characters (very approximately) of disk
space, with provision for (under optimal conditions) expansion to
approximately eight times the stated size.

5.6 THE PUTMEM SERVICE

PUTMEM copies the data from a sequential file into a member of an
existing library. If the member already exists, it is replaced.
Otherwise, it is created. PUTMEM can operate on any library except a
load-module library.

5.7 THE GETMEM SERVICE

GETMEM copies the data from a member of an existing library into a
sequential NSW file. It can operate on any library except a load-module
library. S

5.8 THE LIBMAINT SERVICE

The LIBMAINT service allows you to access and manipulate the directory
and selected members of a library. For load-module libraries, where
certain status information is stored in the directory itself, some
extended functions are provided. LIBMAINT is an interactive service
that functions as a subcommand processor. It prompts for each
subcommand with the herald string "PDS:" ("PDS" is IBM parlance for S
"library", but you might think of it as standing for "Please Demand
Something"). The available subcommands, which are described in detail
below, are:

ALIAS DISPLAY HELP LIST RENAME USAGE 5
ATTR END HISTORY MAP SCRATCH

- 44 -

Unambiguous abbreviations are acceptable for all subcommand names except
for SCRATCH, which requires at least 3 letters as a safety precaution.

5.8.1 ALIAS

The ALIAS subcommand allows you to assign an alias to a member. Its

* syntax is:

ALIAS <member> <alias>

The named member will be assigned the designated alias name. If the
library is a load-module library, the attributes of the the alias will

* be copied from those of the member, with one exception -- the entry
point address of the alias will be assigned according to the rules of
the IBM Linkage Editor. If no entry point can be determined by those
rules, then the entry point address of the member will be copied.

An alias can only be assigned to a true member name. If an alias name
* is supplied for <member>, this subcommand will fail.

5.8.2 ATTR

* The ATTR subcommand allows you to display the attributes assigned to
a member of a load-module library, and, optionally, to alter the values

of certain attributes. Its syntax is:

ATTR <member> <attribute-list>

• The load-module attributes of the named member will be listed. If
<attribute-list> does not appear, that is all that is done.

If <attribute-list> does appear, it is a parenthesized list of attri-
butes or their negations, separated by commas and/or blanks. The
named attributes will be assigned to the member. For a complete

• description of load-module attributes refer to the documentation of the
IBM Linkage Editor [7]. The permitted attributes are:

EXEC REFR RENT REUSE
NOEXEC NOREFR NORENT NOREUSE

* Notice that these attributes are properties of the directory entry for a
member. Therefore, you can alter the attributes of an alias without
altering those of the corresponding true name.

- 45 -

5.8.3 DISPLAY

The DISPLAY subcommand lists the directory of a library. Optionally, a
range within the directory may be listed. Tb syntax is:

DISPLAY <start> <end>

If no parameter is given the entire directory is listed. If one
parameter is given, the directory is listed from the (virtual) member
named to the end of the directory. If two parameters are given, all
member names within the range so implied are listed.

5.8.4

The END subcommand terminates the LIBMAINT service. It has no
parameters.

5.8.5 HELP

The HELP subcommand provides tutorial information about using the
service, and will not be needed by the user who has ready access to this
document. it has several options that will not be listed here. The
best way to learn its use is to enter the command with no parameters,
as:

HELP

HELP will list two additional subcommands, "DO" and "CHANGE", which are
not available to the NSW user.

5.8.6 HISTORY

The HISTORY subcommand produces a brief summary of certain update
history information kept for load modules. Unlike the attributes
listed by ATTR, HISTORY deals with data wi-hin the member itself.
Therefore, the history of an alias and of its true name are always the
same. The syntax is:

HISTORY <member>

- 46 -

I P 0

5.8.7 LIST

The LIST subcommand lists the contents of a member or alias, so long as
it is not a load module. The syntax is:

LIST <member>

5.8.8 MAP

The MAP subcommand produces a brief reference map of a load module
similar to that produced by the MAP option of the linkage editor [7].
Its syntax is:

MAP <member>

5.8.9 RENAME

The RENAME subcommand renames a member or an alias. Its syntax is:

RENAME <old-name> <new-name>

5.8.10 SCRATCH

The SCRATCH subcommand deletes a member or alias. The member data
becomes lost space when no member or alias name remains to refer to it.
It is legal to scratch a member name and leave it referenceable only
through an alias; however, this can cause problems later (see the ALIAS
subcommand), so you are cautioned against it. The syntax is:

SCRATCH <lmember>

5.8.11 USAGE

The USAGE subcommand produces a brief listing of the general status of
the iibrary. There are no parameters. Included are:

1. The number of directory blocks allocated and in use. When these
numbers become nearly equal, you should think of creating a new
library with a larger directory.

- 47 -

2. The number of members and aliases in the library.

3. The number of disk tracks allocated and unused. The length of a
disk track depends on the physical device type being used. At
this writing, NSW data is stored on an IBM 3380 disk pack, with
approximately 47,000 characters per track (under optimum
conditions). The number of unused tracks does not include space
lost due to members deleted or updated.

4. The number of disk extents taken by the library. The
"extent" is the vehicle for expanding a library's space
allocation. A maximum of sixteen extents are permitted, so when
this number approaches sixteen, you should consider compressing
or copying the library.

4

0

- 48-

S

5.9 THE MERGELIB SERVICE

The MERGELIB service copies the members of one library into another.
Duplicate names are automatically replaced. Members with aliases are
copied only once, but with all aliases retained. The output library
must already exist. If it is empty, or freshly garbage-collected and
free of duplicate names, then the result of this service will be a
garbage-free output library. Thus NERGELIB can be used as a form of
library garbage collection procedure. This is especially useful when
it is desired to expand the directory as a part of a garbage collection
process.

MERGELIB is a foreground service, so its parameters are collected by the
CCN Encapsulator process. Thus you cannot end your NSW session until
the service has completed.

5.10 THE COMPRESS SERVICE

COMPRESS does garbage collection in a library file. It is a foreground
service, so its parameters are collected by the CCN Encapsulator
process, and you cannot end your NSW session until it has completed.

49 -

5.11 EXAMPLES

CCN: createl
NSW file name: ?
Enter the NSW file name of the new library,
or ctl-C to back out.
NSW file name: testl.clib
Enter a GPT -- default is "CARDS"
GFT: 360-
File size in kilochars: ?
Enter a rough guess of how many thousand bytes of data will
normally be stored in this library, or ctl-C to back out.
File size in kilochars: I
Maximum members: ?
enter the maximum number of members you expect to ever
store in this library, or ctl-C to back out.
Maximum members: 10
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
$CCN.TESTL.CLIB

[now talking to 2ccn (...ccn)]
New library name is $CCN.TESTL.CLIB

CCN: createl
NSW file name: testl.llib
Enter a GFT -- default is "CARDS"
GFT: 360-load
File size in kilochars: 3
Maximum members: 10
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
$CCN.TESTL.LLIB

[now talking to 2ccn (...ccn)]
New library name is $CCN.TESTL.LLIB

CCN: createl
NSW file name: testl.plib
Enter a GFT -- default is "CARDS"
GFT: 360-pli-source
File size in kilochars: 2
Maximum members: 5
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is •
$CCN.TESTL.PLIB

[now talking to 2ccn (...ccn)]
New library name is $CCN.TESTL.PLIB

CCN: createl
NSW file name: testl.plib2
Enter a GFT -- default is "CARDS"
GFT: 360-pli-source

- 50 -

File size in kilochars: 2
Maximum members: 5
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
$CCN.TESTL.PLIB2

[now talking to 2ccn (...ccn)]
New library name is SCCN.TESTL.PLIB2

CCN: putmem
Library filespec: ?
Enter the NSW file specification of the

library to which you wish to add
a member, or control-c to abort.

Library filespec: ... clib
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.CLIB
[now talking to 2ccn (...ccn)]
Sequential file name: ?
Enter the NSW file specification of the file

containing the data which you wish added
to the library, or control-c to abort.

Sequential file name: ... lkcntl
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.LKCNTL
[now talking to 2ccn (...ccn)]
member name: ?
Enter the name under which you wish

the data stored in the library,
or control-c to abort.

member name: lkcntl

CCN: putmem
Library filespec: ... plib
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.PLIB
[now talking to 2ccn (...ccn)]
Sequential file name: ...pgm
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.PGM
[now talking to 2ccn (...ccn)]
member name: pgm

CCN: putmem
Library filespec: ...plib
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.PLIB
[now talking to 2ccn (...ccn)]
Sequential file name: ... body

- 51 -

[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.BODY
[now talking to 2ccn (...ccn)]
member name: body

CCN: getmem
Library filespec: ?
Enter the NSW file specification of the library

from which you wish to extract a member,
or control-c to abort.

Library filespec: ...clib
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.CLIB
[now talking to 2ccn (...ccn)]
Member name: ?
Enter the name of the member to be extracted,

or control-c to abort.
Member name: lkcntl
Sequential NSW file name: ?
Enter the NSW entry name of the file to receive

the library member's data,
cr control-c to abort.

Sequential NSW file name: getc
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
$CCN.GETC

[now talking to 2ccn (...ccn)]
NSW filename is $CCN.GETC

CCN: getmem
Library filespec: ... plib
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.PLIB
[now talking to 2ccn (...ccn)]
Member name: pgm
Sequential NSW file name: getp
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
$CCN.GETP

[now talking to 2ccn (...ccn)]
NSW filename is $CCN.GETP

CCN: mergelib
Input filespec: ?
Enter the NSW file specification of the

input library, or control-c to abort.
Input filespec: ...plib
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

- 52

Full file name is $CCN.TESTL.PLIB
[now talking to 2ccn (...ccn)]
Output filespec: ?
Enter the NSW file specification of the

output library, or control-c to abort.
Output filespec: ...plib2
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

* Full file name is $CCN.TESTL.PLIB2
[now talking to 2ccn (...ccn)]

CCN: libmaint
Filespec: ?
Enter the NSW file specification of the library

to be operated on, or control-c to abort.
Filespec: plib2
[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTL.PLIB2
[now talking to 2ccn (...ccn)]

PDS: usage
1 DIRECTORY BLOCKS ALLOCATED
1 DIRECTORY BLOCKS IN USE
2 MEMBERS EXIST
1 TRACKS ALLOCATED
0 TRACKS UNUSED
1 EXTENTS USED
PDS: d
BODY PGM
PDS: al pgm newname
ALIAS ASSIGNED
PDS: scr body
SCRATCHED
PDS: re pgm renamed
RENAMED
PDS: di
NEWNAME RENAMED
PDS: 1 renamed
00000020 TESTOR: 1* SAMPLE PL/I PROGRAM */
00000030 PROCEDURE OPTIONS (MAIN);
00000040 %INCLUDE DECLS;
00000050 %INCLUDE BODY;
00000060 END TESTOR;
PDS: end

CCN:

- 53

0

Section 6

GENERAL INFORMATION ON NATIVE-LANGUAGE
SUPPORT SERVICES

The CCN IBM Native Language Processing (NLP) service support packages
enable you to compile, link, and execute programs written in languages
supported by IBM System/360/370. There will be a separate support
package in this group for each language supported by System/360/370 and
of interest to NSW; at this writing, support is available for PL/I,
FORTRAN, and the IBM Assembler. Possible candidates for future support
include ALGOL, PASCAL, and COBOL.

This section will introduce you to the general concepts of program
development using IBM services under NSW, and to the features common to
most NLP support. Subsequent sections give more information on the
support for specific languages.

For each language, the same basic set of services is provided. See
figure 3 for the relationships among them. They are:

1. A Compile-and-go service 0

2. A Compile-and-save service

3. A batch Load-and-go service

4. An interactive Load-and-go service 0

5. A Linkage-editor service

The NLP services are intended to be supported by other CCN services, as
illustrated in Figure 2.

The NLP services are mostly batch services, so they expect files as
their primary data inputs, and they produce printer files as their
primary informational outputs. The EDIT service can be used to prepare
input files, and the DISPLAY service can be used to view outputs.

Each support package uses NSW library files to store binary programs, S
and some also define source-language libraries. This means that each
NLP support package must be used in conjunction with the CCN Library
Management support services.

54 -

S S
*S EDIT S

S Service S
S S
SsSSSSSsSSSS

* V
SSSSSSSSSS FFFFFFFFFFFFF
S--------------------------F F
S PUTMEM S F Source F
S ServiceS SSSSSSSSSS F Files F

S S S S-->F F
*sSSSSSSSSS S GETMEM S FFFFFFFFFFFFF

I S ServiceS
IS S
I SSSSSSSSSS

I A

V
LLLLLLLLLLLLLL
L LI
L Source L
L Libraries L ---------------

* L L I
LLLLLLLLLLLLLLj

AI I
SSSSSSSSSSS I V V
S S I LLLLLLLLLLLLLL SSSSSSSSSSS
S Other S< -- L L S S
S SLM S L Load L S NLP S
S ServicesS< --------->L Libraries L<- -- ->S Batch S
S S L L S ServicesS
55555555555 LLLLLLLLLLLLLL S S

SSSSSSSss

V
5555555555555 FFFFFFFFFFFFF
S S F F
S DISPLAY S F Printer F
S Service S<--F Files F

*S S F F
5555555555555 FFFFFFFFFFFFF

Figure 2: Interfaces Between NLP and Other Services

-55-

FFFFFFFFFFFF LLLLLLLLLLLL
F F L L
F Source F L Source L
F File F -- *- L Library L
F F i / L L
FFFFFFFFFFFF I / LLLLLLLLLLLLSI /I

V *---

SSSSSSssssSs / I S
S s / I
S Compile S /
S & Save S< ------
S Service S I
S S *-------*
SSSSsSSSSSS I I

I V
SSSSSSSSSSSSS FFFFFFFFFFF J SSSSSSSSSSSS
S S F F *-->S S
S Linkage S F Data F S Compile S
S Editor S F Input F S & Go S
S Service S F File F ------- >S Service S
S S F F S S
SSSSSSSSSSSSS FFFFFFFFFFF SSSSSSSSSSSS

A I
II V II
I LLLLLLLLLLLL I
I L L V
+- -- L Load L SSSSSSSSSSS I

L Module L S S V
-------- >L Library L ---- >S Load S FFFFFFFFFFFF

L L S & Go S F F
LLLLLLLLLLLL S Service S ------- >F Output F

S S F Data F
SSSSSSSSSSS F File F

F F
FFFFFFFFFFFF

Figure 3: Interfaces Among NLP Services

- 56 -

Sv

6.1 COMPILE-AND-GO SERVICES

A compile-and-go service is a batch service that accepts a source
program file and compiles it. For the languages that define it, an
optional source program library can be specified. The compiled program
is not saved, but is executed and discarded. You can supply one or two
optional data input files and an optional load-module library to be
searched for any separately compiled subroutines called by your main
program.

As output, a compile-and-go service produces a printer file containing
the compiler listing. If you elect to execute, an execution-time
printer listing may be produced. For programs which wish to produce
non-printer output, you can specify a data output file. Current
restrictions in the NSW Interactive Batch Specifier (IBS) implementation
prevent a more comprehensive execution-time file structure at this time.

The standard batch-job system-output listing is also produced.

6.2 COMPILE-AND-SAVE SERVICES

A compile-and-save service is a batch service that accepts a source
program file and compiles it, saving the binary output as a designated
member of a designated load-module library. For the languages that
define it, an optional source program library can be specified. There
is no option to execute the program.

As output, a compile-and-go service produces a printer file containing
the compiler listing. You must have already created a load-module
library, using the CREATEL service, to receive the binary program.

The standard batch-job system-output listing is also produced.

6.3 BATCH LOAD-AND-GO SERVICES

A batch load-and-go service executes a binary program that was produced
by a compile-and-save service, or one that has been reprocessed by a
linkage-editor service. You specify a member and a library name. The
same library will be searched for any separately sompiled subroutines
called by your main program, if they have not already been bound to it
with a linkage-editor service. You can also supply one or two optional
data input files.

As output, a batch load-and-go service may produce an execution-time
printer listing. For programs which wish to produce non-printer
output, you can specify a data output file. Current restrictions in
the NSW implementation prevent a more comprehensive execution-time file
structure at this time.

- 57 -

The standard batch-job system-output listing is also produced.

6.4 INTERACTIVE LOAD-AND-GO ("IGO") SERVICES

Interactive load-and-go services, collectively referred to as "IGO"
services, are more useful than batch load-and-go services, because they
allow you to specify a comprehensive set of input and output files.

An IGO service will execute a binary program that was produced by a
compile-and-save service, or one that has been reprocessed by a
linkage-editor service. You specify a member and a library name. The
same library will be searched for any separately compiled subroutines
called by your main program, if they have not already been bound to it
with a linkage-editor service.

An IGO service executes in three stages: file allocation, execution,
and file disposition.

6.4.1 File Allocation

During file allocation, the Encapsulator is driven by your responses to
a set of basic prompts. The primary prompt is for the internal name of
a file, or for a control-C to indicate that you have allocated all the
files that the program will need, and that you are ready to proceed with
program execution.

The "internal name" of a file varies from one programming language to
another, and the various IGO services will attempt to prompt you in the
appropriate parlance. In FORTRAN, you will deal with "logical unit"
numbers; in PL/I, "file titles" are used, and Assembler deals directly
with the "ddnames" used by the IBM operating system.

Whatever the particular service calls an internal file name, for each
one that you specify you will be prompted for several pieces of
information. The first of these is the basic type of file allocation to
be performed, and the others are selected depending on your response to
that first prompt. There are five basic types of allocation:

I. Type "I" -- NSW Input File Allocation

If you select type "I" allocation, you are prompted for an NSW
filespec and a GFT. An unnamed copy of the NSW file is moved
into your workspace, converting the data to the stated GFT. This
copy is allocated to the internal file. If you enter a null GFT,
then no conversion is performed, and the workspace copy will have

- 58 -

the same GFT as the NSW file. In any case, it is your
responsibility to ensure that the program and the data are
compatible.

Notice that the workspace copy is "unnamed". It lasts only for
the duration of the IGO service. If this is not satisfactory for
your purposes, consider making the workspace copy with the GET
service, and using allocation type "W", described below.

2. Type "0" -- NSW Output File Allocation

If you select type "0" allocation, you are prompted for an NSW
filename, a GFT, and an approximate file size. An "unnamed"
empty file will be created in the workspace and allocated to the
internal file.

In this version of the IGO services, the NSW file named is not
looked up until the file disposition phase of the service. This
is why there is no option to copy the GFT from the previous
generation of the file, should one exist.

Again, if an "unnamed" workspace file is not satisfactory, use
allocation type "W", described below, and the DELIVER service.

3. Type "L" -- NSW Library File Allocation

Type "L" allocation is essentially just like type "I" allocation,
except that no GFT will be requested. The main difference is
that the NSW file is assumed to be a library, so instead of
making a workspace copy, the NSW file is allocated to the program
directly. This type of allocation usually makes sense only for
an Assembler program, as FORTRAN and PL/I do not have the
facilities for direct manipulation of libraries.

4. Type "W" -- Workspace File Allocation

Type "W" allocation is quite different from the others because no
NSW file is involved. You are prompted for the local name of an
existing workspace file, and that file is allocated to the
internal file. Sincre the file must have been previously
created, and since ,3rkspace files cannot be shared among
concurrent users, the service has no need to know the file's GFT
or whether it will be read or written. Those things are up to
you.

5. Type "" -- Terminal Allocation

Type "*" allocation is unique in that external files are not
involved at all. The internal file is allocated directly to the

- 59 -

user's terminal. This type of allocation can be used with any
sequential file provided you do not intend to use the file
conversationally, and it can be used for conversational PL/I
STREAM files. For other languages, internal buffering of file
data will interfere with conversational use. Of course, in
Assembler, you have facilities to read and write the terminal
without the use of files.

6.4.2 Execution

After you have ended the file allocation phase, an IGO service enters
its execution phase. You are prompted for the library and member to be
executed. You can abort execution by entering control-C; otherwise the
program is loaded and executed.

6.4.3 File Ditposition

After the execution phase is completed or aborted, the file disposition
phase is performed. For each file allocated in the first phase, the
binding to the program is unbound. Temporary files in the workspace are
deleted, but not those allocated as type "W".

For each file allocated as type "0", you are asked whether delivery is
to be performed. If you elect not to deliver, the temporary file is
deleted; otherwise, it is delivered to the NSW file space. If delivery
fails, you are given the option of giving the unnamed workspace copy a
visible name. If you exercise this option, then you can attempt
delivery again using the DELIVER service. Of course, this option is
only useful if you are operating under the CCN WSCI. 0

6.5 ' LINKAGE-EDITOR SERVICES

A linkage-editor service collects compiled and/or previously edited
programs from load-module libraries and combines them to form a single
executable program. this program is then stored as a member of a
load-module library. You specify an input library name, an output
library name, and a file containing linkage-editor control statements.

The service produces a file containing a listing of the control
statements, a map of the output module, a cross-reference table, and an
error list. The standard batch-job system-output listing is also
produced.

The linkage-editor services all use the IBM linkage editor, program 0
360S-ED-521 [7]. The linkage editor is essentially a language-inde-

- 60 -

pendent program, and these services differ primarily in the selection of
the system libraries that are implicitly provided for the resolution of
compiler-generated calls to execution-time system routines. For this
reason, the bulk of the NSW user documentation on these services is
contained in this section, rather than being replicated for each
language.

6.5.1 Functions of the Linkage Editor

The primary function of the linkage editor is to combine load modules
that reference each other into a single new load module. In addition
to modules that you explicitly ask to be combined, the editor will
search your input library, as well as an implicitly provided, language-
dependent system library, for any modules called but not otherwise
included in the output module. This feature, called the "automatic
library call" mechanism, enables you to collect many load modules merely
by including the main program. The resulting module is intended to be
fully resolved and ready to execute. A load-and-go service can process
it much faster than it can an ordinary compiled program, so programs
that are executed frequently and that do not change should be stored in
this form. A single use of a linkage-editor service can create any
number of output modules.

An essential, but less often needed, function of the linkage editor is
the actual editing of inter-module linkages. That is, the alteration
of a module reference to indicate a different module, or the deletion of
a portion of an included load module. Another form of editing is the
construction of overlay structures of load modules; however, since the
CCN system uses virtual memory, this function is not likely to be
needed.

Proper use of the linkage-editor services requires an understanding of
IBM load-module structures and dynamics that is beyond the scope of NSW
documentation. If the control statement documentation below is not
clear to you, you should obtain a copy of [7].

6.5.2 Control Statement Usage

A linkage editor control statment consists of a verb, delimited on both
sides by one or more blanks, followed by an operand field in which no
blanks may occur. The sections below define a subset of the available
statements. Within this subset, statements are grouped quite infor-
mally, with only two rules that need to be followed:

- 61 -

1. Multiple output modules can be created with a single file of
statements, but you must group all the statements relevant to a
single output module together. The end of such a group is the
NAME statement. Until a NAME statement is encountered, the
editor is only collecting information. On reaching a NAME, it
stops collecting and stores the member. Any subsequent
statements define a new output member.

2. The CHANGE and REPLACE statements must immediately precede the
INCLUDE of the module to which they are to apply. If the 0
INCLUDE specifies more than one module, only the first one is
affected. Again, you can think of the editor as collecting
editing instructions until a module is included, then applying
them all and forgetting them before proceeding with the next
module.

6.5.2.1 INCLUDE -- Getting a Member From a Library

The NSW services support two forms of the INCLUDE statement: •

INCLUDE SYSLIB(<member>,<member>,...)
INCLUDE SYSL1OD(<member>,<member>,...)

The statement specifies one or more members to be included in the
current output module. If there are any pending CHANGE or REPLACE
operations, they will be applied to the first or only member name. In
the first form, your input library is searched for the members. If any
are not found, the implicit system library is searched. If any are
still not found, an error exists. In the second form, the output
library (only) is searched for the members. If any are not found, an
error exists. You can use as many INCLUDE statements as you need, and
you can include as many members on each as you can type without
exceeding column 72.

6.5.2.2 ENTRY -- Specifying the Primary Entry Name

The ENTRY statement has the form:

ENTRY <name>

The given name mu;t be an entry name within the collected modules by the
-.me the member is actually written. It need not have been found at
the timne this control statement is processed. For all practical
purposes, this statement is always required by the NSW linkage-editor
services. It should appear just once per module.

- 62 -

6.5.2.3 NAME -- Naming the Output Module

The NAME statement has two forms:

NAME <name>
NAME <name> (R)

All processing of the current output member is completed, and it is
added to the library as the named member. The entry point associated
with the module name vill be the one specified in the NAME statement.
In the first form, if -he name already exists in the directory, it will
not be replaced. In the second form, it will be.

6.5.2.4 ALIAS -- Assigning Aliases

The ALIAS statement has the form:

ALIAS <name>,<name>,...

You can assign up to 16 aliases to the module. You can use as many
ALIAS statements as you need, and you can include as many names on each
as you can type without exceeding column 72. Each name has an entry
point associated with it. This is determined separately for each name,
according to these two rules:

1. If the alias name matches an entry name within the module, then
that entry will be assigned.

2. If the alias name does not match any entry name within the
module, then the entry specified by the ENTRY statement will be
assigned.

6.5.2.5 LIBRARY -- Leaving References Unresolved

The LIBRARY statement has two forms:

LIBRARY (<name>,<name>,...)
LIBRARY *(<name>,<name>,...)

This statement lists the names of external references for which the
automatic library call mechanism is to be disabled. Unless a named
entry point was collected as a result of an INCLUDE statement, it will
not be included, references to it will remain unresolved, and a
warning-level message will be issued.

- 63 -

The second form of LIBRARY has the same meaning, except that the output
module will be marked in such a way as to propogate the effect of the
LIBRARY statement to any future linkage-edit that includes this output
module. This is called the "NEVER-CALL" function.

6.5.2.6 CHANGE -- Renaming Things

The CHANGE statement has the form:

CHANGE <name>(<newname>),<name>(<newname>),...

You can use as many CHANGE statements as you need, and you can include
as many changes on each as you can type without exceeding column 72.
All changes are collected, and take effect simultaneously when the next
included module is fetched.

The names may be entry names, control section names, external reference
names, or any sort of names known to the linkage editor. Each <name>
is replaced by the corresponding <newname>, in one module only. If you
wish changes to have effect in more than one module, you must replicate
the CHANGE cards.

6.5.2.7 REPLACE -- Deleting Things

The REPLACE statement has the form:

REPLACE <name>,<name>,....

You can use as many REPLACE statements as you need, and you can include
as many names on each as you can type without exceeding column 72. All
replacements are collected, and take effect simultaneously when the next
included module is fetched.

The names may be entry names, control section names, external reference
names, or any sort of names known to the linkage editor. Each one is
deleted from one module only. If you wish deletions to have effect in
more than one module, you must replicate the REPLACE cards.

-0

-64 -

6.6 EXAMPLES

Because the NSW interaction is so similar for all the NLP packages, we
only show one set of representative examples.

NSW: use ... pli [confirm]
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.CCN.PLI
Time estimate in seconds (default 20): [confirm]
Source file: ...pgm [confirm] !

Input file is CCN.TESTP.PGM
Will you be using a source library? (Yes or No): y [confirm]
Source library name: ...plib [confirm]

Input file is CCN.TESTP.PLIB
Compiler listing file (default PLI.LIST): [confirm]

Output file is CCN.TESTP.PLI.LIST
Will you be using a subroutine library?

(Yes or No): n [confirm]
Execution SYSPRINT file (default PLI.SYSPRINT): [confirm]

Output file is CCN.TESTP.PLI.SYSPRINT
Do you have a SYSIN file? (Yes or No): y [confirm]
SYSIN file name: ...pgm [confirm] !

Input file is CCN.TESTP.PGM
Do you have an INPUT file? (Yes or No): n [confirm]
Do you have an OUTPUT file? (Yes or No): n [confirm]
SYSOUT file (default PLI.SYSOUT): [confirm]

Output file is CCN.TESTP.PLI.SYSOUT
[command completed]
Job number is 50250
Specification of batch job complete

NSW: show stat job 50250 [confirm]
[command initiated]
[command completed]
The status of job number 50250

for COMPASS + LUDLAM is: Sending
Job processing begun
Job allocated on batch host

NSW:
The status of job number 50250

for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.TESTP.PGM ready at batch host
File CCN.TESTP.PLIB ready at batch host
File CCN.TESTP.PGM ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 6230
Execution complete per call from batch host

- 65 -

F

File CCN.TESTP.PLI.SYSOUT delivered into NSW
File CCN.TESTP.PLI.SYSPRINT delivered into NSW
File CCN.TESTP.PLI.LIST delivered into NSW

0

NSW: use ...plicomp [confirm] I
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.CCN.PLICOMP

Time estimate in seconds (default 20): [confirm] I 0
Source file: ...pgms2 [confirm] !

Input file is CCN.TESTP.PGMS2
Will you be using a source library? (Yes or No): n [confirm]
Compiler listing file (default PLICOMP.LIST): [confirm]

Output file is CCN.TESTP.PLICOMP.LIST
Will you save the binary program?

(Yes or No): y [confirm]
Library to receive binary program: ...llib [confirm]

Input file is CCN.TESTP.LLIB
Binary member name: main [confirm] !
SYSOUT file (default PLICOMP.SYSOUT): [confirm] !

Output file is CCN.TESTP.PLICOMP.SYSOUT
[command completed]
Job number is 50251
Specification of batch job complete

NSW: 0
The status of job number 50251

for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.TESTP.PGMS2 ready at batch host
File CCN.TESTP.LLIB ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 6267
Execution complete per call from batch host
File CCN.TESTP.PLICOIP.SYSOUT delivered into NSW
File CCN.TEZTP.PLICOMP.LIST delivered into NSW

NSW: use ...plibgo [confirm] 1
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.CCN.PLIBGO
Time estimate in seconds (default 20): [confirm]
Compiled library name: ... Ilib [confirm]

Input file is CCN.TESTP.LLIB
M1ember name of main program: main [confirm]
Execution SYSPRINT file (default PLIBGO.SYSPRINT): [confirm]

Output file is CCN.TESTP.PLIBGO.SYSPRINT
Do you have a SYSIN file? (Yes or No): n [confirm] 1
Do you have an INPUT file? (Yes or No): y [confirm] 1
Is your INPUT binary? (Yes or No): n [confirm] I

- 66 -

• • m mm | | | m0

INPUT file name: ...pgm [confirm]
Input file is CCN.TESTP.PGM

Do you have an OUTPUT file? (Yes or No): y [confirm]
Is your OUTPUT binary? (Yes or No): n [confirm] !
OUTPUT file name (default PLIBGO.OUTPUT): [confirm]

Output file is CCN.TESTP.PLIBGO.OUTPUT
SYSOUT file (default#PLIBGO.SYSOUT): [confirm]

Output file is CCN.TESTP.PLIBGO.SYSOUT
[command completed]
Job number is 50252
Specification of batch job complete

NSW:
The status of job number 50252

for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.TESTP.LLIB ready at batch host
File CCN.TESTP.PGM ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 7521
Exe-utin complete per call from batch host
File CCN.TESTP.PLIBGO.SYSOUT delivered into NSW
File CCN.TESTP.PLIBGO.OUTPUT delivered into NSW
File CCN.TESTP.PLIBGO.SYSPRINT delivered into NSW

NSW: use ...plilink [confirm]
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.CCN.PLILINK
Control statement file: ... lkcntl [confirm] I

Input file is CCN.TESTP.LKCNTL
Compiled library name: ...llib [confirm]

Input file is CCN.TESTP.LLIB
Module map file (default PLILINK.LIST): [confirm]

Output file is CCN.TESTP.PLILINK.LIST
Library to receive linked program: ...llib [confirm] I

Input file is CCN.TESTP.LLIB
SYSOUT file (default PLILINK.SYSOUT): [confirm]

Output file is CCN.TESTP.PLILINK.SYSOUT
[command completed]
Job number is 50253

*1 Specification of batch job complete

NSW:
The status of job number 50253

for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.TESTP.LKCNTL ready at batch host
File CCN.TESTP.LLIB ready at batch host

- 67 -

File CCN.TESTP.LLIB ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 7521
Execution complete per call from batch host
File CCN.TESTP.PLILINK.SYSOUT delivered into NSW
File CCN.TESTP.PLILINK.LIST delivered into NSW
File CCN.TESTP.PLILINK.SYSPRINT delivered into NSW

NSW: use ... ccn [confirm] '
(command initiated]

CCN: pliigo
First file title or ctl-C: ?
Enter a file title to be defined.
Control-C ends the definitions.

First file title or ctl-C: sysprint
Type: 1, 0, L W, or *: ?
What kind of file is to be allocated to this file title?
Enter "I" if to an NSW Input file;
Enter "0" if to an NSW Output file;
Enter "L" if to an existing NSW Library file;
Enter "W" if to an existing local workspace file;
Enter "*" if to the terminal;
Carriage return defaults to "I";
Or enter ctl-C to forget this file title.

Type: 1, 0, L W, or *: 0
NSW filename: ?
Enter the filename of the NSW file to receive the data from
output file sysprint, or ctl-C to back out.

NSW filename: pliigo.sysprint
Enter a GFT -- default is "LIST"
GFT: 360-print
File size in kilochars: ?
Enter a rough guess of how many thousand bytes of data will
be written to this file, or ctl-C to back out.

File size in kilochars: 2
NSW file pliigo.sysprint allocated to file title sysprint

as OUTPUT type 360-print.

Next file title or ctl-C: input
Type: I, 0, L W, or *: *
file title input allocated to terminal I

Next file title or ctl-C: output
Type: I, 0, L W, or *: *
file title output allocated to terminal

Next file title or ctl-C: @
3 files allocated, including 1 potential deliverables.

Compiled library name: ?

- 68 -

Enter the filespec of the NSW Library file that contains the
programs to be run, or enter ctl-C to abort.

Compiled library name: ... llib

[... Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full file name is $CCN.TESTP.LLIB
[now talking to 2ccn (...ccn)]
Main Program name: ?
Enter the library member name of the compiled program that
is to be the main entry point, or enter ctl-C to abort.

Main Program name: echoer
Do you want a memory map? ?
Yes" will map the loaded program on your terminal before
it executes. "No" will suppress the map. Ctl-C will abort.

Do you want a memory map? no
Enter any "parm" string to be passed the program: ?
Enter that character string that the main program expects
to receive from the system. A null string is legitimate.
Ctl-C will abort.

Enter any "parm" string to be passed the program:

PL/I ECHO TEST PROGRAM...
ENTER A STRING: this is user input
ECHO OF STRING: this is user input
ENTER A STRING: a second line...
ECHO OF STRING: a second line...
ENTER A STRING:
END OF ECHO TEST

Should file title sysprint be delivered
to NSW file pliigo.sysprint? y

[...Disconnecting from 2ccn]
[NSWExec for 2ccn:]

Full name of new file is
$CCN.TESTP.PLIIGO.SYSPRINT

[now talking to 2ccn (...ccn)]
File title sysprint delivered to NSW file pliigo.sysprint.

CCN:

- 69

Section 7

FORTRAN SUPPORT

The CCN FORTRAN support package enables you to compile, link, and
execute programs written in the FORTRAN language, using the IBM "Gl"
compiler and library (IBM program products 5743-FO2 and 5743-LM3) and
the IBM Linkage Editor (IBM program 360S-ED-521). This section
describes the features of the FORTRAN support package that are unique
among the CCN Native Language Processing (NLP) support packages. The 0
general concepts of such packages are described in an earlier section.
The specific features of the IBM FORTRAN compiler and Linkage Editor are
documented in IBM publications. The package uses NSW library files to
store binary programs, so it must be used in conjunction with the CCN
Library Management (LM) support package. Most of the services are batch
services, so they produce printer files as their primary informational
outputs. The DISPLAY service should be used to view such outputs.

In addition to the other sections of this manual, the user of this
support package may need the following additional documentation:

The IBM FORTRAN language specifications [9] •
The IBM FORTRAN programmer's guide [101
The IBM Linkage Editor manual [7]
The IBM Linkage Editor messages manual [8]

The FORTRAN support package contains the same basic set of services as
all NLP support packages. They are:

FORTRAN, a compile-and-go service
FORTCOMP, a compile-and-save service
FORTBGO, a batch load-and-go service
FORTIGO, an interactive load-and-go service
FORTLINK, a Linkage-editor service

- 70 -

7.1 FORTRAN: COMPILE-AND-GO

FORTRAN is a batch service that compiles and executes a FORTRAN source
program. The compiled program is not saved. You can specify from one
to four execute-time files, as explained below under the FORTBGO
service. The standard batch-job system-output listing (SYSOUT) is also
produced.

7.2 FORTCOMP: COMPILE-AND-SAVE

FORTCOMP is a batch service that accepts a source program file and
compiles it, optionally saving the binary output as a designated member
of a designated load-module library. There is no option to execute the
program.

As output, FORTCOMP produces a printer file containing the compiler
listing. If you save the binary program, you must have already created
a load-module library, using CREATEL, to receive it. The standard
batch-job system-output listing (SYSOUT) is also produced.

7.3 FORTBGO: BATCH LOAD-AND-GO

FORTBGO executes a binary program that was produced by FORTCOMP or
FORTLINK. You specify a member and a library name. The same library
will be searched for any separately compiled subroutines called by your
main program, if they have not already been bound to it with FORTLINK.
You have the same options for execute-time files as under the FORTRAN
service:

1. Logical Unit 5

Logical unit 5 is the default unit for reading the primary input
file. It is not required, but if you use it, it will be of type
360-CARDS.

2. Logical Unit 6

A file must always be assocaited with logical unit 6, since the
FORTRAN library routines use it. It is also available to the
programmer as an output file of type 360-PRINT.

3. Logical Unit 15

Logical unit 15 has been chosen as an optional second input file.
Its GFT will depend on how you respond, when specifiying the
service parameters, to questions about the class of the file. If

- 71 -

you request a text file, it will be 360-LIST, which is suitable
for reading with FORTRAN formatted I/0 statements. If you
request a binary file, it will be 360-BINARY, which is suitable
for reading with FORTRAN unformatted I/0 statements.

4. Logical Unit 16

Logical unit 16 has been chosen as an optional second output
file. Its GFT will depend on how you respond, when specifiying
the service parameters, to questions about the class of the file.
If you request a text file, it will be 360-LIST, which is
suitable for writing with FORTRAN formatted I/0 statements. If
you request a binary file, it will be 360-BINARY, which is
suitable for writing with FORTRAN unformatted I/O statements.

7.4 FORTIGO: INTERACTIVE LOAD-AND-GO

FORTIGO loads a compiled FORTRAN program and executes it in the
foreground. It follows the conventions outlined for the "IGO" services
in the section on Native-Language Support Packages.

FORTIGO refers to internal files as "logical units", as is appropriate
in a FORTRAN environment. When you type a logical unit number, you must
express it as two numeric digits. The service does not check for this
form, and if you violate it, the program will be unable to use the file.

There is currently no support for the form of file allocation required
by the continued use of a logical unit after the execution of the
FORTRAN END FILE statement against it.

FORTRAN files allocated as type "*" will be fully buffered. This almost
precludes the use of terminal input files, but it is of little conse-
quence in the case of simple output files.

7.5 FORTLINK: PERFORM LINKAGE EDITING

FORTLINK uses the IBM Linkage Editor to collect sets of binary programs
output by FORTCOMP and FORTLINK (as well as those produced by the
Assembler services) and to store them, as monolithic executable
programs, as members of a load-module library. You specify an input
library name, an output library name, and a file containing linkage-
editor control statements. Note that, since this service can store more
than one member into the output library, the member names are specified
as a part of the control file, not as a part of the service parameters.

The service produces a file containing a listing of the control
statements, maps of the output modules, cross-reference tables, and

72 -

error lists. The standard batch-job system-output listing (SYSOUT) is
also produced.

The functions of the linkage editor are summarized in the section on
Native Language Support.

7.6 PREPARING FORTRAN SOURCE FILES

The primary source input file for FORTRAN and FORTCOMP is a
FORTRAN-SOURCE file. In order to ensure that conversion to this type
does not alter your data, you must prepare it with these restrictions in
mind:

1. The maximum length of any data line (not including any sequence
number fields) is 72 characters. Any lines longer than this
will be split after the 92nd character. Because of the peculiar
continuation convention used by FORTRAN, this will alter the
meaning of the program, and it will usually produce compilation
errors.

2. If the file has sequence numbers, they must be declared to NSW.
That is, the file must be given a GFT the attributes of which
includes a sequence field (such as FORTRAN-SOURCE). Sequence
numbers will occupy columns 73-80.

3. If the file has no sequence numbers, then columns 73-80 will be
blank.

4. All characters of the file will be forced to upper case.

5. Binary files cannot be used.

- 73 -

Section 8

PL/I SUPPORT

The CCN PL/I support package enables you to compile, link, and execute
programs written in the PL/I language, using the IBM Optimizing compiler
and subroutine library (IBM program product composite package S734-PL3)
and the IBM Linkage Editor (IBM program 360S-ED-521). This document
describes the features of the PL/I support package that are unique among
the CCN Native Language Processing (NLP) support packages. The general
cc.icepts of such packages are described in another section. The
specific features of the IBM PL/I optimizing compiler and Linkage Editor
are documented in IBM publications. The package uses NSW library files
to store binary programs and source text segments, so it must be used in
conjunction with the CCN Library Management (LMk) support package. Most
of the services are batch services, so they produce printer files as
their primary informational outputs. The DISPLAY service should be used
to view such outputs.

In addition to the other sections of this manual, the user of this
support package may need the following additional documentation:

The IBM PL/I language specifications [11]
The IBM PL/I programmer's guide [12]
The IBM PL/I TSO user's guide [131
The IBM PL/I messages compendium [14]
The IBM Linkage Editor manual [7]
The IBM Linkage Editor messages manual [8]

The PL/I support package contains the same basic set of services as all
NLP suipport packages. They are:

PLI, a compile-and-go service
PLICOMP, a compile-and-save service
PLIBGO, a batch load-and-go service
PLIIGO, an interactive load-and-go service
PLILINK, a Linkage-editor service

- 74 -

• • •m mS

8.1 PLI: COMPILE-AND-GO

PLI is a batch service that compiles and executes a PL/I source program,
optionally using a source library. The compiled program is not saved.
You can specify from one to four execute-time files, as explained below
under the PLIBGO service. The standard batch-job system-output listing
(SYSOUT) is also produced.

8.2 PLICOMP: COMPILE-AND-SAVE

PLICOMP is a batch service that accepts a source program file and
compiles it, optionally saving the binary output as a designated member
of a designated load-module library. An optional source program
library can be specified. There is no option to execute the program.

As output, PLICOMP produces a printer file containing the compiler
listing. If yju save the binary program, you must have already created
a load-module library, using CREATEL, to receive it. The standard
batch-job system-output- listing (SYSOUT) is also produced.

8.3 PLIBGO: LOAD-AND-GO IN BATCH

PLIBGO executes a binary program that was produced by PLICOMP or
PLILINK. You specify a member and a library name. The same library
will be searched for any separately compiled subroutines called by your
main program, if they have not already been bound to it with PLILINK.
You will also be prompted for various execute-time files.

PLIBGO allows the use of only a limited set of execute-time files.
Your PL/I program can use any subset of them. Current limitations on
the type of information that can be specified as service parameters
prevent the use of arbitrary file titles and types. These limitations
are ex- -ted to be lifted in a future NSW release. In the meantime you
are limited to a fixed set of file titles with fixed GFT's.

1. SYSIN

SYSIN is the default title for the major STREAM INPUT file;
Lowever, by explicitly declaring it, you can make it into a
RECORD file. It is not requ red, but if you use it, it must be
of type 360-CARDS.

2. SYSPRINT

The file titled SYSPRINT is always required, since the PL/I
library routi -s use it. It is also available to the
programmer. It is a STREA OUTPUT file of type 360-PRINT.

75 -

3. INPUT

INPUT is the title chosen for the optional second INPUT file.
It can be STREAM or RECORD, depending on how you declare it. Its
GFT will depend on how you respond, when specifiying the service
parameters, to questions about the class of the file. If you
request a text file, it will be 360-LIST. If you request a
binary file, it will be 360-BINARY.

4. OUTPUT

OUTPUT is the title chosen for the optional second OUTPUT file.
It can be STREAM or RECORD, depending on how you declare it. Its
GFT will depend on how you respond, when specifiying the service
parameters, to questions about the class of the file. If you
request a text file, it will be 360-LIST. If you request a
binary file, it will be 360-BINARY.

8.4 PLIIGO: LOAD-AND-GO INTERACTIVELY

PLIIGO loads a compiled PL/I program and executes it in the foreground.
It follows the conventions outlined for the "IGO" services in the
section on Native-Language Support Packages.

PLIIGO refers to internal files as "file titles", as is aupropriate in a
PL/I environment. The file title is either the name specified in the
TITLE option of the OPEN statement, or the name of the FILE datum

PL/I STREAM files can be allocated to your terminal by using allocation
type "*". The PL/I run-time package will then translate file-manag3ment
requests into terminal-management requests. This eliminates record
buffering, and enables input and output files to be used together to
achieve true conversational terminal management.

If PL/I RECORD files are allocated as type "*", buffering will still
take place, and conversational use will not be possible.

8.5 PLILINK: PERFORM LINKAGE EDITING

PLILINK uses the IBM Linkage Editor to collect sets of binary programs
output by PLICOMP and PLILINK (as well as those producee by the
Assembler services) and to store thpm, as monolithic executable
programs, as members of a load-module library. You specify an input
library name, an output library name, and a file containing linkage-
editor control statements. Note that, since this service can store more
than one member into the output library, the member names are specified
as a part of the control file, not as a part of the service parameters.

- 76 -

The service produces a file containing a listing of the control
statements, maps of the output modules, cross-reference tables, and
error lists. The standard batch-job system-output listing (SYSOUT) is
also produced.

The functions of the linkage editor are summarized in the section on
Native Language support.

8.6 PREPARING SOURCE FILES

The primary source input file for PLI and PLICOMP is a PLI-SOURCE file.
If you elect to supply a source library to either of these services,
it should be a PLI-SOURCE library. In order to ensure that conversion
to this type does not alter your data, you must prepare it with these
restrictions in mind:

1. The maximum length of any data line (not including any sequence
number fields) is 92 characters. Any lines longer than this
will be split after the 92nd character.

2. If the file has sequence numbers, they must be declared to NSW.
That is, the file must be given a GFT the attributes of which
includes a sequence field, such as PLI-SOURCE. Sequence numbers
will occupy the eight columns preceding the first data column.
If the file has no sequence numbers, then the eight columns
preceding the first data column will be blank.

3. Page-defining format effectors are not supported. If you use
them, the results may not be what you expected.

4. The "ASA carriage control" option of the IBM PL/I compiler is not
automatically supported. You can enable it with a "*PROCESS"
statement [11]; however, if any input lines are split to
accomodate the 92-character limit, a program character will
probably fall into the carriage-control column. We reccommend
that you use the "%SKIP" and "%PAGE" statements instead of ASA
control.

5. Binary files cannoc be used.

- 77

Section 9

IBM ASSEMBLER SUPPORT

The CCN IBM Assembler support package enables you to compile, link, and
execute programs written in the System/360/370 Assembler language, using
the IBM H-level assembler (IBM program product 5734-ASI) and the IBM
Linkage Editor (IBM program 360S-ED-521). This document describes the
features of the Assembler support package that are unique among the CCN
Native Language Processing (NLP) support packages. The general concepts
of such packages are described in a previous section. The specific
features of the IBM Assembler and Linkage Editor are documented in IBM
publications.

The package uses NSW library files to store binary programs and source
text segments, so it must be used in conjunction with the CCN Library
Management (LM) support package. Most of the services are batch
services, so they produce printer files as their primary informational
outputs. The DISPLAY service should be used to view such outputs.

In addition to the other sections of this manual, the user of this
support package may need the following additional documentation:

The IBM SYSTEM/370 architecture description [151
The IBM general Assembler language specifications [161
The IBM Assembler H language specifications [17]
The IBM Assembler H programmer's guide [181
The IBM Assembler H messages compendium [19]
The IBM Linkage Editor manual [71
The IBM Linkage Editor messages manual [8]
The IBM Supervisor services and macros manual [20]
The IBM data-management services manual [21]
The IBM data-management macros manual [221
The IBM TSO command-processor manual [23]

The Assembler support package contains the same basic set of services as
all NLP support packages. They are:

ASM, a compile-and-go service
ASMCOMP, a compile-and-save service
ASMBGO, a batch load-and-go service
ASMIGO, an interactive load-and-go service
ASMLINK, a Linkage-editor service

78 -

9.1 ASM: COMPILE-AND-GO

ASM is a batch service that assembles and executes an Assembler source
program, optionally using a source Library. The compiled program is not
saved. You can specify from one to four execute-time files, as
explained below under the ASMBGO service. The standard batch-job
system-output listing (SYSOUT) is also produced.

9.2 ASMCOMP: COMPILE-AND-SAVE

ASMCOMP is a batch service that accepts a source program file and
compiles it, optionally saving the binary output as a designated member
of a designated load-module library. An optional source program
library can be specified. There is no option to execute the program.

As output, ASMCOMP produces a printer file containing the compiler
listing. If you save the binary program, you must have already created
a load-module library, using CREATEL, to receive it. The standard
batch-job system-output listing (SYSOUT) is also produced.

9.3 ASMBGO: LOAD-AND-GO

ASMBGO executes a binary program that was produced by ASMCOMP or
ASMLINK. You specify a member and a library name. The same library
will be searched for any separately compiled subroutines called by your
main program, if they have not already been bound to it with ASMLINK.
You will also be prompted for several execute-time files.

ASMBGO allows the use of only a limited set of execute-time files.
Your Assembler program can use any subset of them. Current limitations
on the type of information that can be specified as service parameters
prevent the use of arbitrary file names and types. These limitations
are expected to be lifted in a future NSW release. In the meantime you
are limited to a fixed set of DDNAMEs with fixed GFT's.

1. SYSIN

SYSIN is a DDNAME associated with a text input file of type
360-CARDS.

2. SYSPRINT

SYSPRINT is a DDNAME associated with a text output file of type
360-PRINT.

3. INPUT

- 79 -

INPUT is the DDNAWE chosen for the optional second INPUT file.
If you request a text file, it will be 360-LIST. If you request
a binary file, it will be 360-BINARY.

4. OUTPUT

OUTPUT is the DDNAME chosen for the optional second OUTPUT file.
If you request a text file, it will be 360-LIST. If you request
a binary file, it will be 360-BINARY.

9.4 ASMIGO: LOAD-AND-GO INTERACTIVELY

ASMIGO loads an assembled program and executes it in the foreground.
It follows the conventions outlined for the "IGO" services in the
section on Native-Language Support Packages.

ASMIGO refers to internal files as "ddnames", as is appropriate in an
assembler environement.

QSAM and BSAM files can be allocated as type "*"; however, the proper

way to achieve true conversational terminal use in Assembler programs is
through the GETLINE, PUTLINE, and PUTGET macros [23]. TGET and TPUT
[23] can also be used, but these macros bypass many of the TSO session-
management facilities.

9.5 ASMLINK: PERFORM LINKAGE EDITING

ASMLINK uses the IBM Linkage Editor to collect sets of binary programs
output by ASMCOMP and ASMLINK (as well as those produced by other
services), and to store them, as monolithic executable programs, as
members of a load-module library. You specify an input library name, an
output library name, and a file containing linkage-editor control
statements. Note that, since this service can store more than one
member into the output library, the member names are specified as a part
of the control file, not as a part of the service parameters. The
service produces a file containing a listing of the control statements,
maps of the output modules, cross-reference tables, and error lists.
The standard batch-job system-output listing (SYSOUT) is also produced.

The functions of the linkage editor are summarized in the section on
Native Language support.

- 80

9.6 PREPARING SOURCE FILES

The primary source input file for ASM and ASYCOMP is a ASM-SOURCE file.
If you elect to supply a source library to either of these services,
it should be a ASM-SOURCE library, or at least some form of card-image
library. In order to ensure that conversion to this type does not alter
your data, you must prepare it with these restrictions in mind:

1. The maximum length of any data line (not including any sequence
number fields) is 72 characters. Any lines longer than this
will be split after the 72nd character, causing invalid assembler
statements.

2. If the file has sequence numbers, they must be declared to NSW.
That is, the file must be given a GFT the attributes of which
includes a sequence field, such as ASM-SOURCE. Sequence numbers
will occupy columns 73 through 80.

3. If the file has no sequence numbers, then columns 73-80 will be
blank.

4. All characters of the file will be forced to upper case.

5. Binary files cannot be used.

- 81 -

Section 10

MISCELLANEOUS SERVICES

10.1 THE HELP SERVICE

The HELP service provides function, syntax, and operand information on
the interactive and batch services available at CCN. HELP itself is an
interactive CCN service.

After calling up HELP from the CCN WSCI or the USE command, you are
prompted for a "help spec". The simplest such spec is a null string,
which requests a summary of CCN services. Another useful spec is a
simple service name, which requests a summary of the purpose and use of
the named service. Other forms of the help spec can be used to list
more specific or more detailed information. The complete format can be
listed by entering "HELP" as the help spec. You can abort any segment
of HELP output at any time by striking "control-C".

- 82 -

10.2 THE GPSS SERVICE

10.2.1 Functional Description

GPSS (General Purpose Simulation System) [4, 5] is a program designed
for conducting evaluations and experiments of systems, methods,
and designs through computer simulation. The version of GPSS available
at CCN is GPSS V. This is IBM's program product version, compatible
with GPSS/360, the older version, but which includes several
enhancements.

When used through NSW, some GPSS features are not available, because the
program is constrained to reading a single sequential input file, and to
producing a single sequential output listing.

10.2.2 Use;r Prompts

After you type the "USE" command that designates the GPSS service, you
will be prompted for several necessary pieces of information:

1. Time Estimate in Seconds

As always, estimating execution time is guesswork at best. The
default of 20 seconds should be more than enough for most test
runs.

2. Input File

The input file is that NSW file into which you have already
placed your GPSS directive data. This data should be formatted
according to [4] and [5].

3. Output File

As the Output File, you should name a file into which the primary
GPSS output listing is to be placed. This file need not already
exist -- if it does, you will be asked if it should be replaced.

4. SYSOUT File

The SYSOUT file is that file of system messages that you will
want to consult only if you believe that the service executed
improperly, or possibly to obtain feedback on execution time.
Like the primary output file, this one need not already exist --

if it does, you will be asked if it should be replaced.

- 83 -

10.2.3 Example

NSW: use ...gpss [confirm]
[command initiated]
Beginning specification of job for batch tool PUBLIC.SERVICES.GPSS
Time estimate in seconds (default 20): [confirm)l
Input file: ...gpssl.in [confirm]

Input file is CCN.GPSS1.IN
Output file (default GPSS.OUTPUT): gpss.test.output [confirm]

Output file is CCN.GPSS.TEST.OUTPUT
SYSOUT file (default GPSS.SYSOUT): gpss.test.sysout [confirm]
[command completed]

Output file is CCN.GPSS.TEST.SYSOUT
Job number is 50212
Specification of batch job complete

NSW: show status job 50212 [confirm]
[command initiated]
[command completed]
The status of job number 50212 for COMPASS + LUDLAM is: Submitted

Job processing begun
Job allocated on batch host
File CCN.GPSSI.IN ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 5332

NSW:
The status of job number 50212 for COMPASS + LUDLAM is: Completed S

Job processing begun
Job allocated on batch host
File CCN.GPSS1.IN ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 5332
Execution complete per call to batch host
File CCN.GPSS.TEST.SYSOUT delivered
File CCN.GPSS.TEST.OUTPUT delivered

- 84

10.3 THE SPSS SERVICE

10.3.1 Functional Description

SPSS, or Statistical Package for the Social Sciences [35], is a system
of computer programs for the statistical analysis of social-science
data. The package is distributed by National Opinion Research Center.

10.3.1.1 Supported Facilities

One or more statistical procedures can be requested in a single SPSS
service call. The following statistical procedures are available:

CONDESCRIPTIVE: Descriptive distributional statistics.

FREQUENCIES: Frequency tables, histograms, and descriptive
distributional statistics.

AGGREGATE: Descriptive distributional statistics for
aggregated data files.

CROSSTABS: Contingency tables and related measures of
association.

BREAKDOWN: Descriptive distributional statistics of a
dependent variable among subgroups of the cases
in a file>.

T-TEST: Pairwise or between group comparison of sample
means.

PEARSON CORR: Pearson product-moment correlation coefficients.

NONPAR CORR: Spearman and/or Kendall rank-order correlation
coefficients.

SCATTERGRAM: Scattergram of data points and simple linear
regression.

PARTIAL CORR: Partial correlation analysis.

REGRESSION: Multiple linear regression using a stepwise
forward algorithm. Variable forcing allowed.

ANOVA: Univariate general linear model for analysis of
variance and covariance. Main class model,
hierchical model, or complete general-linear
model available. Multiple classification
analysis option.

ONEWAY: Tests for trends, a priori contrasts, a

- 85 -

posteriori contrasts, and one-way analysis of

variance.

DISCRIMINAT: Discriminant analysis using a direct or a
stepwise forward with backword glance algorithm.

FACTOR: Principal component factoring, principal factor
factoring with iteration, Rao's canonical
factoring, alpha factoring, or image factoring.
Varimax, quartimax, equimax, or oblique (with
delta) rotation.

CANCORR: Canonical correlation analysis.

GUTTMAN SCALE: Guttman scaling with the Goodenough technique.

10.3.1.2 Limitations of the NSW SPSS Service

File maintenance facilities are not supported in the present SPSS tool
configuration. Only those data manipulation facilities not utilizing
files are supported. The following is a list of facilities most likely
to be affected.

- Recode or recompute variables.

- Generate new variables within and across cases.

- Declare missing values for variables.

- Subset a file by defining subfiles.

- Select cases for processing by sampling or by logical tests.

- Weight cases.

Randomly sample cases.

- Label variables and their values on printed output.

Process numeric and alphanumeric data.

Save documented files for further use.

Generate files to be used by other programs.

Check SPSS control cards before doing production runs.

- Use files generated by the OSIRIS statistical package.

- 86 -

10.3.2 User Prompts

After you type the "USE" command that designates the SPSS service, you
will be prompted for sevteral necessary pieces of information:

1. Time Estimate in Seconds

As always, estimating execution time is guesswork at best. The
default of 20 seconds should be more than enough for most test
runs.

2. Input File

The input file is that NSW file into which you have already
placed your SPSS directive data. This data should be formatted
according to [35].

3. Output File

As the Output File, you should name a file into which the primary
SPSS output listing is to be placed. This file need not already
exist -- if it does, you will be asked if it should be replaced.

4. SYSOUT File

The SYSOUT file is that file of system messages that you will
want to consult only if you believe that the service executed
improperly, or possibly to obtain feedback on execution time.
Like the primary output file, this one need not alreacy exist --

if it does, you will be asked if it should be replaced.

- 87 -

10.3.3 Example

NSW: use ... spss [confirm]
[command initiated] 0
Beginning specification of job for batch tool PUBLIC.SERVICES.SPSS
Time estimate in seconds (default 20): [confirm]
Input file: spssl.in [confirm] !

Input file is CCN.SPSSI.IN
Output file (default SPSS.OUTPUT): spss.test.output [confirm] !

Output file is CCN.SPSS.TEST.OUTPUT
SYSOUT file (default SPSS.SYSOUT): pss.test.sysout [confirm]
[command completed]

Output file is CCN.PSS.TEST.SYSOUT
Job number is 50213
Specification of batch job complete

NSW: show status job 50213 [confirm]
[com-and initiated]
[command completed]
The status of job number 50213 for COMPASS + LUDLAM is: Submitting

Job processing begun
Job alPlcated on batch host
File CCN.SPSS1.IN ready at batch host

The status of job number 50213 for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.SPSS1.IN ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 5469
Execution complete per call to batch host
File CCN.PSS.TEST.SYSOUT delivered
File CCN.SPSS.TEST.OUTPUT delivered

I

- 88

10.4 THE ECAP SERVICE

10.4.1 Functional Description

ECAP (Electronic Circuit Analysis Program) [24, 253 is a system of
programs designed to aid the electrical engineer in the design and
analysis of electronic circuits. ECAP can produce DC, AC, and/or
transient analysis of electrical nc' .orks.

10.4.2 User Prompts

Aft2r you type the "USE" command that desiginates the ECAP service, you
will be prompted for several necessary pieces of information:

1. Time Estimate in Seconds

As always, estimating execition time is guesswork at best. The
default of 20 seconds should be more than enough for most test
runs.

2. Input File

The input file is that NSW file into which you have already
placed your ECAP directive data. This data should be formatted
according to [24] and [25].

3. Output File

As the Output File, you should nane a file into which the primary
ECAP output listing is to be placed. This file need not-already
exist -- if it does, you will be askeQ if it should be replaced.

4. SYSOUT File

The SYSOUT file is that file of system Tnessages that you will
want to consult only if you believe thaL the serrize executed
improperly, or possibly to obtain ft dbacK on ex.ecution time.
Like the primary output file, this one need not already exist --

if it does, you will be asked if it should be replaced.

- 89

0 ia n ~ ml m u nlul llunm m n n[

10.5 THE EISPACK SUBROUTINE PACKAGE

10.5.1 Functional Description

EISPACK [341 is a powerful eigensystem subroutine package developed
at Argonne National Laboratory. It consists of a series of FORTRAN
and Assembler subroutines which may be called from a FORTRAN
program. EISPACK can be used to compute some or all of the eigen-
values, with or without eigenvectors, of the following types of
matrices: complex general, complex hermitian, real general, real
symmetric, real symmetric tridiagonal, and certain real nonsymmetric
tridiagonal.

EISPACK subroutines must be called from a driver FORTRAN program, thus,
the matrix whose eigensystem is being computed may itself be the result
of other computations in your program, and the computed eigensystem may
conveniently be used in further calculations in your program.

When a call to Eispack is made, the EISPACK monitor selects the
sequence of routines in the eigensystem package which will solve your
problem as rapidly as possible with reasonable assurance of
stability in the calculations.

10.5.2 Accessing EISPACK

EISPACK is a subroutine library, not an NSW service. It is used through
the FORTRAN support package documented elsewhere in this manual.

You do not need to do anything special to make EISPACK routines
available to your FORTRAN program. Any routine from the following list
which is called from a program processed by one of the FORTRAN support
services will automatically be included in the executable program.

90

The following subroutines are in the NSW EISPACK library:

*BAKVEC BALANC BALBAK BANDI? BANDV BISECT
BQK CBABK2 CBAL CG CH CINVIT
CO\1BAK COMHES COMLR COMLR2 COMQR COMQR2
CORTB CORTH DGNHEP DGSHEP USNHEP EGNHEP
EGSHEP EISPAC ELMBAK ELMHES ELTRAN ERMSEP
ESNHEP FIGI FIGI2 HQR HQR2 HTRIBK

*HTRIB3 HTRIDI HTRID3 IBCMEP IMTQLV INITQL1
INTQL2 INTREP INVIT MINFIT ORTBAK ORTHES
ORTRAN QZHES QZIT QZVAL QZVEC RATQR
REBAK REBAKB REDUC REDUC2 RG RGG
RS RSB RSG RSGAB RSGBA RSP
RST RT SUPVEP SVD TINVIT TQLRAT

*TQL1 TQL2 TRBAK1 TRBAK3 RD TE2
TRED3 TRIDIB TSTURM

S9

Section 11

SUPPORT FOR THE GIM-II INFORMATION SYSTEM

11.1 FUNCTIONAL DESCRIPTION OF GIM-I

TRW's Generalized Information Management (GIM-II) System [36,
37,38,39,40,41,42] is a software program designed to simplify the
definition, creation, maintenance and interrogation of a data base,
i.e., a collection of files of information. The GIM-II software
functions provide for such features as:

1. File Definition

2. Initial Darta Base Construction

3. Update, Selection and Retrieval of an item or an extended item

4. Checkpoint and Restoration of a data base

5. Security

6. Data Base Validation and Statistics

7. Recording Transactions on History Files

S
A number of other techniques and capabilities for field, file and system
manipulation and maintenance are also available.

The GIM-II system was prompted by TRW research which indicated a need to
replace dependence on periodic printed reports by timely access to
specific relevant information. GIM-II was designed to realize these
objectives of a generalized data base management system:

1. Flexible data structures suitable to each application (hierarchy
- network)

2. A variety of access/search methods

3. Centralized control of the physical organization of data

4. Storage of data in relation to access frequency and response
requirements

5. Data independence of programs and devices

- 92 -

6. Integrity of the data base against destruction and/or security
breach

7. Recovery and restart techniques in the event of hardware/
software failures

S. User interaction with the data base via inquiry system or
language

9. Multiple update/retrieval of information from the data base

GIM-I1 is an online system; the data base and program libraries all
reside on online direct-access storage. Access to the system can be in
either:

1. Interactive mode -- where the user communicates with the system
from an interactive terminal

2. Batch mode -- where the primary input and output streams are

files.

GIN-II has its own Executive and Data-Management system, all operating
under the IBM MVS operating system. A batch-mode GIM-II job executes a
private instance of the GIM-II executive, while all interactive GIM-II
sessions share a single instance of the executive which operates as an
essentially never-ending job under MVS. Concurrent instances of the
executive can share data bases.

11.2 GIM-Ii UNDER NSW

The GIM-II NSW services are specially configured paths to the GIM-If
executive through the NSW Interactive Batch Specifier (IBS) and the CCN
NSW Encapsulating Foreman. The services are configured around an
existing data base belonging to the Air Logistics Command of the U. S.
Air Force, so in their present fc-i'-, they should not be considered
generalized public offerings.

Under NSW, most of the capabilities of uIM-II are available to the user,
with the significant exceptions of those operations which use data sets
or devices local to the host system. The NSW GIM-I user is constrained
to operate with a predefined data base and with simple input and output
files. In the interactive case, input and output are the users terminal
and optional NSW files to receive the output of the NSW PRINT command.
In the batch case, input and output are NSW files.

Access to a pool of backup tape reels is provided through the GIMDUMP
and GIMRESTORE services; however, these are not intended for use by the
average GIM-II user.

- 93 -

11.3 THE GIM INTERACTIVE SERVICE

The GIM service provides access from the NSW front end to the long-
running instance of the GIM-II executive, through the CCN Encapsulating
Foreman or WSCI.

11.3.1 Invoking GIM

When you type the USE command that invokes the GIN service, these events
should occur:

1. Your terminal is connected to the CCN Encapsulator

2. If you are the first GIM user for a while, then the long-running
instance of the GIM-II executive may not be active, and your
session will pause briefly to activate it. If this happens, you
will see

The GIM system is being bootstrapped...
Enter a carriage-return when asked for its password.
ENTER PASSWORD:

followed by an obscuring "blot". Do not attempt to provide a
password -- just enter a carriage return. If the GIM executive
is active to begin with, this step is skipped.

3. When the CCN Encapsulating Foreman is satisfied that the GIM-II
executive is running, it issues the message

*** UCLA-OAC NSW GIM SERVER ***

and attempts to establish communication with it. If delays are
encountered, you may see the message

TRYING TO CONNECT TO GIM-II .

A successful connection is indicated by the message

GIM 4.2D CONNECTION = GIMZnnn

An unsuccessful connection would be indicated by

CANNOT CONNECT TO GIN-II

and would skip to step 6.

4. When you see the GIM-II prompt ":", you begin your dialog with
GIM-II. The first step should be to SIGNON to GIN using your
assigned GIM-II signon parameters and password.

- 94 -

5. Eventually you issue the SIGNOFF command. You will see the
message

* j ! CONNECTION CLOSED

and your terminal will be returned by the encapsulator back to
the Front End where you issued the USE command.

6. The Front End prompts you for another NSW command.

11.3.2 GIM Terminal-Handling Conventions

The NSW GIM service supports the following terminal protocol:

1. The normal GIM-II command prompt is ":, to which the user ought
to respond with any of the valid GIM-II commands.

2. Th- interrupt-command prompt is "INT:", to which the user ought
to respond with any of the valid GIM-II interrupt commands.

3. Status reporting or modification of a currently executing GIM-II
is done through interrupt commands. These commands are entered
in response to an interrupt prompt, which is itself produced by
entering "attention" (control-C) while the command is executing.

4. Of particular interest is the DISPLAY ALL command. This command
puts the terminal into an "automatic" mode; GIM does not prompt
for terminal input, but only logs output directed to the
terminal, as from other GIM terminals. To revert to normal
control mode signal attention and respond to the "INT:" prompt
with a "CT" command (return to control mode).

5. No form of statement terminator is used. Continuation lines may
be entered by appending a "+" to every line but the last in the
sequence. In particular "aaaaaa ++" specifies both a continu-
ation line and the passing of a "+" as data.

6. All user input is translated to upper case.

7. Null lines are passed as such to GIM-II.

8. When the PRINT command is entered from the user's terminal, the
data thus spun off is captured by the NSW Encapsulator. Before
the session continues, the user will be asked to enter an NSW
file name to which that data should be delivered.

- 95 -

0

11.4 THE BGIM SERVICE

BGIM is a batch service that executes an instance of the GIM-II
executive program against the same data base that the GIM interactive
service uses. BGIM uses an input file and an output file instead of the
user's terminal. You will be prompted for NSW file names for those two
files, and for a CPU time estimate. The default time estimate will
probably be sufficient.

The input file will be converted to type 360-LIST. This means that the
lines that you supply are significant only up to the carriage return.
Unlike the GIM service, BGIM does expect statement terminators. All
input records are concatenated up to the first occurrence of the
reserved terminator "#".

The output file will be of type 360-PRINT. The standard batch-job
system-output (SYSOUT) file is also produced.

Interception of the output from the PRINT verb into a separate NSW file
is not available under BGIM.

11.5 THE GIMDUMP SERVICE

GIMDUMP is a batch service intended for use by personnel charged with
maintaining the database used by GIM and BGIM. GIMDUMP defines a pool
of ten magnetic tape reels, numbered 1 through 10. The user is prompted
for a reel number and a name for a standard SYSOUT file. GIMDUMP dumps
the GIM database onto the indicated reel. It is the user's respcnsi-
bility to choose reels using a scheme that maintains some orderly backup
system.

11.6 THE GIMRESTORE SERVICE

GIMRESTORE is a batch service intended for use by personnel charged with
maintaining the database used by GIM and BGIM. It restores the GIM
database from one of the tapes created by GIMDUMP. The user is prompted
for a reel number and a name for a standard SYSOUT file.

- 96 -

11.7 EXAMPLES

NSW: USE ... GIM [confirm]

[command initiated]
[command completed; 33GIM ready to use]
[now talking to 33GIM (...gim)]

Welcome to UCLA/NSW GIN-II.
Enter GIM statements in response to the ":" prompt.
Enter GIM interrupt commands in response to the "INT:" prompt.
*** UCLA-OAC NSW GIM SERVER
GIM 4.2D CONNECTION = GIMZ098
: SIGNON ORG"A" OPER"5" DB"AFLCDB"
STATEMENT= 36982.000, DATE=II/19/82, TIME=13.6018, USER=
ENTER PASSWORD:
SIGNON PROCESSED DATE=lI/19/82, TIME=13.6018
YOUR LAST SESSION ON THIS DATABASE WAS '11/11/82*11:00'.
NO MESSAGES ON A QUEUE.

COMPLETED 36982.000 CTIME=I3.6038
: ROUTE *X
STATEMENT= 36983.000, DATE=1/19/82, TIME=13.6086, USER=A
ROUTE LIST ESTABLISHED.
COMPLETED 36983.000 CTIME=I3.6087
: /EX US
ORG OPERATOR UNIT ID UNITS DBNAME SIGNON TIME STMT

099/100 AFLCDB 13:28 0
GSG HELMS 085/085 AFLCDB 13:31 13:34 0
A 5 098/098 AFLCDB 13:36 13:36 0
PRINT4 P4 SPNOFF 054/054 AFLCDB 13:28 0
PRINT3 P3 SPNOFF 053/053 AFLCDB 13:28 0
PRINT2 P2 SPNOFF 052/052 AFLCDB 13:28 0
PRINT1 P1 SPNOFF 051/051 AFLCDB 13:28 0
PRINTO P0 SPNOFF 050/050 AFLCDB 13:28 0:

* PRINT

NSW file name: GIMREPORT
Full name of new file is

$CCN.GTMREPORT [now talking to 33GIM (...gim)]
new NSW file is $CCN.GIMREPORT
STATEMENT= 36985.000, DATE=II/19/82, TIME=13.6228, USER=A
002 MESSAGES MOVED TO PRINT QUEUE FROM Q=5
COMPLETED 36985.000 CTIME=13.6247
: SIGNOFF
STATEMENT= 36986.000, DATE=II/19/82, TIME=13.7311, USER=A
SIGNOFF ACKNOWLEDGED. DATE=lI/19/82, TIME=13.7311
STATEMENTS PROCESSED=000004, ELAPSED TIME= 0.1293
COMPLETED 36986.000 CTIME=13.7324
*** GIM CONNECTION CLOSED ***

[Service termination initiated by 33GIM]
Remote host closed connection

NSW:
[35: Service termination completed; output ready; 33GIM closed]

NSW:
[35: " Service termination

- 97 -

Resources used by tool:
3 - CPU seconds
3 - Connect minutes
168 - I/0 operations
The charges for this session are: 105

NSW: use ... bgim [confirm]
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.BGIM
Time estimate in seconds (default 20): [confirm]
Input file: bgiml.in [confirm] !

Input file is CCN.BGIM1.IN
Output file (default BGI .OUTPUT): [confirm] 0

Output file is CCN.BGIM.OUTPUT
SYSOUT file (default BGIM.SYSOUT): [confirm]
[command completed]

Output file is CCN.BGIM.SYSOUT
Job number is 50215
Specification of batch job complete

NSW: show stat job 50215 [confirm]
[command initiated]
[command completed]
The status of job number 50215 for COMPASS + LUDLAM is: Sending

Job processing begun
Job allocated on batch host

NSW:
The status of job number 50215 for COMPASS + LUDLAM is: Completed

Job processing begun
Job allocated on batch host
File CCN.BGIM1.IN ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 5673
Execution complete per call to batch host
File CCN.BGIM.SYSOUT delivered
File CCN.BGIM.OUTPUT delivered

- 98 -

Section 12

SUPPORT FOR THE AP-1 SOFTWARE MAINTENANCE
SYSTEM

12.1 FUNCTIONAL DESCRIPTION OF AP-1

The IBM AP-l processor is the flight compuLer for the F-1I aircraft.
The AP-l Assembler, linker, subroutine package, and simulator are
programs which support software development for thaL computer [44].

Only the Assembler and Linker are supported through NSW, and the ABSLIST
function of the linker is somewhat restricted. Both services are batch
services.

- 99 -

* Source * * Source
File * ----------.. +----------* Library

*"%' I I * *

V V
.HJ #HI#########

APlASM # >*--------------->* APlASM *
--------- Service # * SYSOUT

I ##+* File *

V V

Binary * * Control * Assembler
Library * * Statement* * Listing *

Members * * File * File

-------------- I ---------------SI I

VV V
#1lf####1H/1#####
APILINK # --------------- >* APlLINK*

+--------- # service # * SYSOUT *
S# --------- + * File *

S############# I
v v

* Paper * * Message/
" Tape * * Stats *
* File * *IFile *

V V

LOADMOD * * Abslist *
* Output * Output *
* File * File *

Figure 4: How the AP-1 Services Use Files

- 100-

12.2 FILES USED BY THE AP-1 SERVICES

Figure 4 shows the relationships among the AP-l services and the files
that they use.

1. The AP-l Source File

This file consists of assembler-language statements on card
images. Its preferred Global File Type (GFT) is 360-ASM-SOURCE.
The records have optional sequence numbers in columns 73-80. You
can prepare this data with any convenient editor, but if you do
use sequence numbers, be sure that the file is delivered using a
GFT that supports sequence numbers.

2. The AP-l Source Library

This card-image library consists of multiple members, each of
which is formatted exactly like the AP-I Source File. You create
this library with the CREATEL service, and you place members into
it with the PUTMEM service. If your application does not use
library data, you do not need this file.

3. The Assembler Listing File

APiASM produces a listing file of type 360-PRINT. This file may
optionally be used as input to APILINK, when the ABSLIST option
is used.

4. The Binary Library

APIASM produces a binary output of type 360-OBJECT. If you wish
to save this output, you must create an object library with the

CREATEL service. This library must exist in order to use
APILINK.

5. The SYSOUT Files

APlASM and APlLINK produce SYSOUT files, as do all CCN batch
services.

6. The Control Statement File

AP1LINK reads its control cards from this file. The data that
you supply will be converted to type 360-CARDS.

- 101 -

7. The Message/Stats File

APILINK produces its primary printer output on this file, which
is of type 360-PRINT. This file does not include any printer
output from the ABSLIST option.

8. The Paper Tape File

APILINK uses this file to produce an image of the paper tape that
is to be loaded into the AP-1 computer itself. Its GF'T i.
360-BINARY.

9. The LOADMOD File

APILINK uses this file to produce an alternate form of the load
data that is also writtep to the paper-tape file. This is the
file that would be loaded into the APl Simulator, which is not
available under NSW at this writing. Its GFT is 360-BINARY.

10. The Abslist Output File

If the ABSLIST option is specified, APILINK produces a relocated
copy of the Assembler Listing file on this file. It is also of
type 360-PRINT.

12.3 THE AP1ASM SERVICE

APIASM is a batch service that assembles a single AP-l routine. 0
You are prompted for a CPU time estimate and for all the files that the
assembler can use. You do not need to specify a source library or an
object library if you do not wish the corresponding functions.

Because the listing file can vary drastically in size, the service asks
you to supply a very rough estimate of the number of pages to allow for. 0
This estimate helps the service make an intelligent disk allocation for
the file.

The default time estimate of 20 seconds should be sufficient for an AP-l
assembly of moderate size.

At this time, there is no way to pass non-default parameters to the AP-I
Assembler.

- 102

12.4 THE APILINK SERVICE

APILINK is a batch service that combines the object outputs of various
assemblies into a module that can be loaded into the AP-l computer or
the simulator. You are prompted for a CPU time estimate and for all the
files that the linker can use. If you are not using ABSLIST you will
not need to specify the two files that are concerned with ABSLIST
processing.

Both the message file and the ABSLIST output file can vary drastically
in size, so in each case, the service asks you to supply a very rough
estimate of the number of pages to allow for. This estimate helps the
service make intelligent disk allocations.

The default time estimate of 30 seconds should be sufficient for an
average run.

The Assembler listing file that ABSLIST reads is normally the concaten-
ation of the listing files produced by the assemblies that are being
linked. Since NSW does not support concatenation at read time, you must
have done the concatenation with an editor or similar tool before using
AP1LINK. This is a restriction that will probably be lifted in a future
NSW release.

At this time, there is no way to pass non-default parameters to the AP-I
Linkage Editor.

- 103 -

12.5 EXAMPLES

NSW: use ... aplasm (confirm] I
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.CCN.APIASM
Time estimate in seconds (default 20): [confirm]
Source file: ...mathsubs [confirm] !

Input file is CCN.TESTA.MATHSUBS
Will you be using a macro source library?

(Yes or No): y [confirm] !
Source library name: ... aplmacs [confirm]

Input file is CCN.TESTA.AP1MACS
Assembler listing file (default APlASM.LISTING): [confirm]

Output file is CCN.TESTA.APIASM.LISTING
Approximate printer pages (default 100): [confirm]
Will you save the object program?

(Yes or No): y [confirm]
Library to receive object program: ... aplobj [confirm]

Input file is CCN.TESTA.APIOBJ
Object member name: mathsubs [confirm] !
SYSOUT file (default APlASM.SYSOUT): [confirm]

Output file is CCN.TESTA.APIASM.SYSOUT
[command completed]
Job number is 50264
Specification of batch job complete

NSW:
The status of job number 50264

for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.TESTA.MATHSUBS ready at batch host
File CCN.TESTP.AP1MACS ready at batch host
File CCN.TESTP.APIOBJ ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 6270
Execution complete per call from batch host
File CCN.TESTP.AP1ASM.SYSOUT delivered into NSW
File CCN.TESTP.AP1ASM.LISTING delivered into NSW

NSW: use ... apllink [confirm]
[command initiated]
Beginning specification of job for batch tool

PUBLIC.SERVICES.CCN.AP1LINK
Time estimate in seconds (default 30): [confirm]
Ccntrol statement file: ... linksubs [confirm]

Input file is CCN.TESTA.LINKSUBS
Msgs and stats file (default APlLINK.MESSAGES): [confirmi

Output file is CCN.TESTA.AP1LINK.HESSAGES
Est. pages in msgs and stats file (default 100): [confirm] I
Object program library: ... aplobj [confirm]

Input file is CCN.TESTA.AP1OBJ
Paper tape load file (default AP1LINK.PTAPE): [confirm]

- 104-
0

Output file is CCN.TESTA.APILINK.PTAPE
LOADMOD output file (default APlLINK.LOADMOD): [confirm]

Output file is CCN.TESTA.APILINK.LOADMOD
Are you invoking the ABSLIST option?

(Yes or No): n [confirm]
SYSOUT file (default APlLINK.SYSOUT): [confirm]

Output file is CCN.TESTA.APILINK.SYSOUT
[command completed]
Job number is 50265
Specification of batch job complete

NSW:
The status of job number 50265

for COMPASS + LUDLAM is: Completed
Job processing begun
Job allocated on batch host
File CCN.TESTA.LINKSUBS ready at batch host
File CCN.TESTP.AP1OBJ ready at batch host
SYSIN file ready at batch host
STARTJOB accepted for batch host job name 6289
Execution complete per call from batch host
File CCN.TESTP.APILINK.SYSOUT delivered into NSW
File CCN.TESTP.AP1LINK.LOADMOD delivered into NSW
File CCN.TESTP.APILINK.PTAPE delivered into NSW
File CCN.TESTP.APILINK.MESSAGES delivered into NSW

NSW:

- 105 -

Section 13

SUPPORT FOR THE B52 OFFLINE AVIONICS SYSTEM

13.1 FUNCTIONAL DESCRIPTION OF THE B520AS

The B520AS support package is a collection of services implementing the
various functions of the B520AS database-manager, assembler, compiler.
linker and simulator [1]. These are all batch services.

As configured under NSW, the B520AS services include both programs and
pre-configured data bases.

The following data bases are provided:

FCPDB - source B52OAS database ("IF" database)
GMCPDB - supplemental library B520AS database ("SL" database)
CHANGEDB - change database ("OF" database)
APCLIB - scratch database
TEMP - temporary database to pass results between

the service calls, i.e. assembler to simulator.

The following Services are provided:

B52APCJ - J3B compiler, AP/101C assembler output
B521BMJ - J3B compiler, IBM assembler output
B52SAMP - Cross reference processor
B52APCA - AP/lOlC assembler

B52SIMU - AP/101C simulator

B52DBMS - DBMS (database management processor)

Each service requires an input file (converted to type 360-CARDS), and
an output file and a SYSOUT file (each of type 360-PRINT). The
data-base files are built into the package, and are not prompted for.
Each service will also prompt for a CPU time estimate. The default
values have been chosen to suffice in typical cases.

- 106 -

S

13.2 EXAMPLE

NSW: use ...b52apcj [confirm]

[command initiated]
Beginning specification of job for batch tool PUBLIC.SERVICES.B52APCJ
Time estimate in minutes (default 1): [confirm]
Input file: ... apcj.in [confirm] !

Input file is CCN.B52.APCJ.IN
Output file (default B52APCJ.OUTPUT): [confirm]

Output file is CCN.B52APCJ.OUTPUT
SYSOUT file (default B52APCJ.SYSOUT): [confirm]
[command completed]

Output file is CCN.B52APCJ.SYSOUT

Job number is 50214

Specification of batch job complete

NSW: show stat job 50214 [confirm]
[command initiated]

[command completed]
The status of job number 50214 for COMPASS + LUDLAM is: Submitting

Job processing begun
Job allocated on batch host
File CCN.B52.APCJ.IN ready at batch host

The status of job number 50214 for COMPASS + LUDLAM is: Completed

Job processing begun
Job allocated on batch host
File CCN.B52.APCJ.IN ready at batch host

SYSIN file ready at batch host
STARTJOB accepted for batch host job name 5495

Execution complete per call to batch host
File CCN.B52APCJ.SYSOUT delivered
File CCN.B52APCJ.OUTPUT delivered

- 107 -

REFERENCES

1 The Boeing Corporation, Control Program Operational Procedures:
B520AS Support Computer Program - Milestone 7. Document no.
D675-10107-701.

2 IBM Corporation, OS/VS2 MVS JCL. Order no. GC28-0692.

3 IBM Corporation, OS/VS2 TSO Command Language Reference. Order
no. GC28-0646.

4 IBM Corporation, General Purpose Simulation System V Introductory
User's Manual. IBM Form SH20-0860

5 IBM Corporation, General Purpose Simulation System V User's Manual.
IBM Form SH20-0851

6 IBM Corporation, OS/VS2 TSO Command Language Reference. IBM
form no. GC28-0646.

7 IBM Corporation, OS/VS Linkage Editor and Loader. IBM form no.
GC26-3813.

8 IBM Corporation, OS/VS Linkage Editor and Loader Messages. IBM
form no. GC38-1007.

9 IBM Corporation, IBM SYSTEM/360 and SYSTEM/370 FORTRAN IV
Language. IBM form no. GC28-6515.

10 IBM Corporation, IBM SYSTEM/360 Operating System FORTRAN IV (G
and H) Programmer's Guide. IBM form no. GC28-6817.

11 IBM Corporation, OS PL/I Checkout and Optimizing Compilers:
Language Reference Manual. IBM form no. GC33-0009.

12 IBM Corporation, OS PLII Optimizing Compiler: Programmer's Guide.
IBM form no. GC33-0006.

13 IBM Corporation, OS PL/I Optimizing Compiler: TSO User's Guide.
IBM form no. GC33-0029.

14 IBM Corporation, OS PLIl Optimizing Compiler: Messages. IBM form
no. GC33-0027.

15 IBM Corporation, IBM SYSTEM/370 Principles of Operation. IBM form
no. GA22-7000.

- 108 -

16 IBM Corporation, OS/VS-DOS/VSE-VM/370 Assembler Language. IBM
form no. GC33-4010.

17 IBM Corporation, OS Assembler H Language. IBM form no. GC26-3771.

18 IBM Corporation, OS Assembler H Programmer's Guide. IBM form no.
GC33-3759.

19 IBM Corporition, OS Assembler H Messages. IBM form no. GC33-3770.

20 IBM Corporation, OS/VS2 MVS Supervisor Services and Macro
Instructions. IBM form no. GC28-0683.

21 IBM Corporation, OS/VS2 MVS Data Management Services Guide. IBM
form no. GC26-3875.

22 IBM Corporation, OS/VS2 MVS Data Management Macro Instructions.
IBM form no. GC26-3873.

23 IBM Corporation, OS/VS2 TSO Guide to Writing a Terminal Monitor
Program or a Command Processor. IBM form no. GC28-0648.

24 IBM Corporation, ECAP/360 - Electronic Circuit Analysis Program.
IBM S/360 General Program Library Form 360D-16.4.001.

25 IBM Corporation, IBM 1620 Electronic Circuit Analysis Program ECAP
(162u--EE-02X): User's Manual. IBM Form H20-0170-1.

26 Lind, Henrik 0., NSW User Reference Manual. BBN, May, 1982.

27 Ludlam, N., Using the UCLA Interim Library Management Tool Kit.
Document UCNSW-101, Office of Academic Computing, UCLA, July 18,

1979.

28 Ludlam, N., Using the UCLA Native Language Processing Tool Kits.
Document UCNSW-102, Office of Academic Computing, UCLA, July 18,

1979.

29 Ludlam, N., Using the UCLA PL/I Tool Kit. Document UCNSW-103,

Office of Academic Computing, UCLA, July 18, 1979.

30 Ludlam, N., Using the Display Tool. Document UCNSW-106, Office of
Academic Computing, UCLA, March 1, 1980.

31 Ludlam, N., Using the TSOEDIT Tool. Document UCNSW-107, Office of
Academic Computing, UCLA, July March 1, 1980.

32 Ludlam, N., Installing the UCLA PLI Tool Kit. Document UCNSW-211,

Office of Academic Computin g, UCLA, November 6, 1979.

33 Ludlam, N., Installing the UCLA ILM Tool Kit. Document UCNSW-212,
Office of Academic Computing, UCLA, November 6, 1979.

- 109 -

34 NATS Project, Eigenoystem Subroutine Package (EISPACK),
Subroutines E2F269 to E2F298 and E2F220 to E2F223.

35 Nie, Norman H., et al. Statistical Package for the Social Sciences,
2nd ed. McGraw-Hill, Inc., 1975.

36 TRW Systems Group, GIM-Il Brochure. Document 6760-W500-RU-00.

37 TRW Systems Group, GIM-II Executive Summary. Document
6760-W510-RU-00.

38 TRW Systems Group, GIM-1I Reference Manual. Document
6760-W520-RU-00.

39 TRW Systems Group, GIM-I Acceptance Test Plans. Document
6760-W530-RU-00.

40 TRW Systems Group, GIM-I Procedure Oriented Language. Document
6760-W540-RU-00.

41 TRW Systems Group, GIM-II Data Base Operation Manual. Document
6Y60-W5bO-RU-00.

42 TRW Systems Group, GIM-Il Release 4.2D update notes.

43 UCLA Office of Academic Computing, Basic JCL. Document B003.

44 McDonnell Douglas Corporation, AP-1 Computer Software Systems
Manual. Document 6007340A, September 15, 1972.

- 110 -

