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case for half-duplex radios.

Eariier CDMA neiwork models assume a network access protocol which is analogous
to ALOHA; namely, if a packet arrives at an idle radio it is immediately transmitted. For
ALOHA systems, network performance can usually be improved by introducing carrier
sensing, where the users listen before transmitting and block transmission if another carrier
is sensed. In this report, we investigate the improvement that is realized by using a channel
load sense access protocol in a CDMA network. In this protocol, radios are allowed to begin
transmitting a packet only if the total number of transmissions on the channel is less than

a threshold K.

We analyze specific fully connected configurations of a more general multi-hop model
developed by Boorstyn and Kershenbaum [BOORS80] and also by Brazio and Tobagi
[BRAZ84]. For these configurations, we find the single-hop throughput and the proba-
bility of correct packet reception. The models are for asynchronous networks with variable
length packets that are generated by Poisson processes. In Section 2, we present the sys-
tem assumptions underlying the models analyzed. In Section 3, we present a simplified
network model, which assumes a simplified channel model. We analyze the throughput
and the probability of a packet being successful, and present some performance results.
In Section 4, we present a more accurate channel model which can include forward error
correction (FEC) coding. We refine the network model to accomodate this channel model.
In Section 5, we modify the network model in order to investigate the performance of a
network of half-duplex radios. Then, in Section 6, we add channel load sensing to the
models developed earlier, and investigate the resulting improvement in performance. By
using an approximate model of propagation delay, we find the degradation in throughput

that this delay causes in networks using channel load sensing.
2. System Assumptions

The general model applies to various networks with the following common features.




1. Introduction

For many years, various forms of spread spectrum signalling have been used in secure
communications systems. Though primarily implemented in military systems because of
their anti-jam and anti-intercept properties, spread spectrum techniques offer other ca-
pabilities such as ranging and code division multiple access (CDMA). The performance
of CDMA systems which use forward error correction (FEC) coding has been analyzed
by various authors. Raychaudhuri [RAYCB81] analyzed throughput, delay, number of re-
transmissions and stability of a slotted single hop network. Musser and Daigle [MUSS82]
derived the throughput for a single hop unslotted network with fixed length packets. Purs-
ley [PURSB83] studied asynchronous frequency hopping systems with fixed length packets,
to find the throughput and the probability of a packet being correctly received. Taiple
[TAIP84] investigated the channel and network performance of a Direct Sequence CDMA
(DS-CDMA) packet radio system.

Previous models and analyses of the performance of CDMA systems fall into one of
two groups. The first group focuses on the radio links, deriving bit error rates (BER) for a
given code and number of interfering transmissions. The other group focuses on network
performance, deriving throughput and delay. Typically, in the analyses of network perfor-
mance, a very simple channel model is used to approximate the radio link performance.
Also, the models only account for the transmitters, assuming that a receiver is always

available.

In this report, we present a network model which is flexible enough to incorporate
a variety of channel models for the radio links. We than adopt a channel model of a
Direct-Sequence Binary Phase Shift Keying (DS-BPSK) radio link presented by Taiple
[TAIP84], and find the network throughput. A modification of the network model allows
us to account for the receivers as well as the transmitters. We investigate the throughput

of a network in which radios cannot transmit and receive simultaneously, as would be the
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The network is fully connected with only single hop traffic. All users are identical. In
Section 5, we use an M user finite population model, and consider each user to have a
directed link to each of the M — 1 other users. We assume equal traffic requirements on

all M(M — 1) of these links.

The network has the following characteristics due to the use of spread spectrum CDMA.
Radios are assumed to use receiver directed codes. The destination receiver has a probabil-
ity a; of synchronizing to the packet header (capturing the packet), where « is a function
of the number of radios transmitting at the start of the packet transmission. Once cap-
ture occurs, we assume that the receiver never loses synchronization until the packet is

completed.

Two channel models are considered. The first is a simple model in which no trans-
mission errors occur for L or fewer simultaneous transmissions, and transmission errors
occur with probability 1 for greater than L+ 1 simultaneous transmissions. This is referred
to as the step function channel model, as the probability of bit error vs. the number of

interfering transmissions is a step function.

The second channel model is a more accurate model of a DS-BPSK CDMA system.
Channel performance results are found for a system incorporating FEC coding as well
as for an uncoded system. The type of coding modeled is convolutional coding with
Viterbi decoding. In our analysis, we assume an upper bound L, such that more than
L simultaneous transmissions will cause all packets to be unsuccessful with probability
1. Of course, there is a small probability that a packet will be successful even if the
number of interfering transmissions is so great that the probability of bit error is nearly
1/2. Nevertleless, the time averaged contribution to throughput by such packets is very
small. We choose the cutoff point L such that the error due to ignoring larger numbers of

interfering transmissions is negligible.
In both channel models, we assume that a single error in the corrected information




bit stream will cause the packet to be unsuccessful. In order to identify packets with bit
errors, parity or cyclic check bits would be appended, and those packets found to be in

error would be discarded. We will ignore the overhead this parity check would require.

We ignore the effect of acknowledgments, assuming a perfect and instantaneous ac-

knowledgement channel is available.

A packet which is scheduled for transmission is blocked (i.e., rescheduled) if the radio
is currently transmitting or receiving. In the channel load sense models, the transmission
is also blocked if the number of radios currently transmitting is greater than or equal to a
threshold K. Packets that are not blocked are immediately transmitted at the scheduling

point

For channel load sense models, it is assumed that each radio has perfect knowledge of
the number of radios currently transmitting. At a scheduling point, the decision whether
or not to transmit is based on this knowledge. In a real system, the users can only estimate
the channel loading. For example, if headers are transmitted using a general code rather
than a receiver direcied code, the user can couni the Leaders received in the recent past
to estimate the number of other users transmitting. Alternatively, the received signal plus
noise power car be integrated to give an estimate of the total energy in the pseudo-noise
signals received, which will indicate the channel loading. Clearly, ihesc impleracutations

will perform worse than the idealized model.

3. Network Model

In the basic model, we assume that receivers are dedicated to transmitters, so that
transmissions are never blocked due to the source being busy receiving, and transmis-
gions are never unsuccessful due to the destination being busy. For finite transmitters,
each user generates scheduling points from a Poisson process at the rate of offered traffic

A. This Poisson traffic includes retransmissions 2« well as newly generated p:.icts. We
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use the heavy traffic assumption that there is a packet available for transmission at ev-
ery scheduling point. If the user is not already transmitting and the protocol does not
inhibit transmission (in the channel load sense protocol), the transmission of the packet
will begin at the scheduling point. For an infinite population, the scheduling poirts for
all transmissions are generated from a Poisson process with aggregate rate A. Again, a
packet will begin to be transmitted at the scheduling point if the protocol does not inhibit
transmission. The transmission time of the packets is exponentially distributed with mean

1/p. We use g to denote the normalized rate of offered traffic, g = A/p.

In this simplified model, we assume a channel behavior such that no errors occur
for L or fewer radios transmitting, and errors occur with probability 1 for more than L
simultaneous transmissions. A more realistic model of the channel behavior is presented

in Section 4.

Let X(7) be the number of radios transmitting at time 7 (We use 7 to denote time
throughout the report to avoid confusion when we use t as the number of active transmitters
in Sections 5 and 6). We find that X () is a continuous time Markov chain. The state space
Sof £(r)is § = {0,1,2,....} for an infinite population, and § = {0,1,2,..., M} for finite
transmitters. In both cases, § has a strictly positive stationary distribution {r,, j € S}.
We notice that X(7) for the infinite pogr:lation model has the same state transition rates
as the model of the M/M/oo queue, shown in Fig. 3.1, and for the finite transmitters
case, the same as the M/M/oo//M queue, shown in Fig. 3.2 [KLEI75]. For an infinite

population,
A uy :
T, = (.;J’L) =AM i=0,1,2, .. (3.1)
For finite transmitters,
(M) (M) .
PR WA o SR =0,1,...M 3.2
A ES VLAY B e
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Figure 3.1. State-transition-rate diagram for the infinite population model.

M)A M-

( )A A
G (¢ -
[ 2u Mu

Figure 3.2. State-transition-rate diagram for the finite transmitters model.




3.A Probability of Success

We derive the probability of success for the infinite population model by tracing the
evolution of the network model during the transmission of a tagged packet. If the transmis-
sion is completed before the state L+1 is reached, the packet will be successful. Conversely,

if the state L + 1 is visited first, the packet will be unsuccessful.
We define the following parameters:
User 1 is the source of the tagged packet
70 is the time at which the transmission of the tagged packet begins
Ps is the probability that a transmitted packet is successful

Pg|; is the conditional probability that a transmitted packet is successful given that

the network was in state j at time 7,

7 is the steady state probability of the network being in state j at time 7, given that

a packet transmission begins at time 7

P,,,, -(7) is the probability that a tagged user 1 is not transmitting given that the

network state is j

To find Ps, we first condition on j.
oo L-1 _
Ps = Z ﬂ.J'PSIJ' = E ”]'PSU (3.3)
7=0 7=0

The tagged packet began transmission at time 7y, which implies that user + was idle at

time 7, . Thus,

m; = Pr( 5 transmitters | “1ser ¢ was idle)
For an infinite population, due to the Poisson generation process, #; = ;. For finite

transmitters, we find 7; from Bayes’ Theorem as

R Tt LI (3.4)

;= SAM- :
Zjiﬂl IJ"IDLE(])"J.




Because all users are identical,

Thus, we have

. M- .
Piupie@) = ~5y 0 fori=12,.,M (3.5)
(L—1
Z 7;Psy; infinite population
j=0 (3 6)

£i%o (M ~ j)m;Py);

Z?LBI(M - j)”j

finite transmitters

If we count the number of successful packets transmitted in a long interval of time,

and divide by the length of this interval, we will get a variable whose expected value is 4,

the number of successful packets over time. We can find 7 from Pg); as

L-1

Z Am;Pg; infinite population

J)=0

min(L.M)—1 (3.7)
Y Am(M - 1) Ps|; finite transmitters
J=0

For the simple case of an infinite transmitter population with L = 1, which is a standard

ALOHA channel, mg = exp(~A/p) and Pg)q is the probability that no arrivals occur before

the packet is completed. Both the time to completion of the message and the time until

the next arrival are exponentially distributed, so we can easily find

H“
Pgo= . "~ 3.8
SI0= ) 4 p (3.8)
e—g
8




and

— (3.10)

This case was previously analyzed by Ferguson [FERG?75] and by Bellini and Borgonovo
[BELLS8O0].

For the more difficult case of L > 1, we can find Pg); recursively as follows. A packet
finding the system in state j will cause a transition to state 7 + 1. From state j + 1, we

have the following probabilities for the next transition.

A
P4(j) 2 Pr(next transition is due to an arrival) = ——~——— 3.11
.4(.7) ( ) (] + 1),‘ + A ( )
Pg(7) 2 Pr (next transition is due to another packet completing)
JH

= 3.12
(F+Dp+ A (3.12)

Pc(7) 2 Pr (next transition is due to the tagged packet completing)
=K (3.13)

Because of the memoryless property of the exponential packet length distribution, at every
state transition, given that no errors have occurred and that the state entered is state j,
the probability that the packet will be successful is the same as Pgj;_;. So we have the

equations

PS[OZPA(O)PSH-*-PC(O) j=0
Ps|j = Pa(5)Ps|j+1 + Ps(5)Psij—1 + Pely) 1<;<L-1 (3.14)

PS]j:O ]ZL




or

0=—(u+ A)Psjp + APs) + ps

0=—(( + 1)+ M) Ps)j + APsjs1 + juPsjj +p  1<j<L-1 (3.15)
0=—(Lu+A)Psjp_y + (L~ 1)pPgp_o+p

We define ® to be the vector such that [#]; = Pg;,,. In matrix form,

0=R¥ + 4l (3.16)

where 0 is the L x 1 vector of zeros, 1 is the L x 1 vector of ones, and R is the matrix

—(p+A) A 0 0 0
@ —(2u+ A) A 0 es 0
0 2u (3u + A) A ]
R= : . - . :
0 0 (L-2p —((L-1)p+2) A
0 0 0 (L-1p —(Lu + A)
(3.17)
A similar analysis for finite transmitters gives the matrix
~(afhy) (M -1 0 0 0 )
H —(f5n) (M -2 0
3
R = 0 Zp ((M‘i;),\) (M —3)A
.. 0 (L-2p (4 fh) (M —L+1)x
. 0 0 0 L-1s ("))
(3.18)
We can solve Eqn. 3.16 for ¥ as
¥=-uR'1 (3.19)

Thus, having found Pgj;, we can find Ps and 7.

10




3.B Throughput Analysis

Because it is possible for a packet to be successfully transmitted even if overlapping
transmissions occur, there are several steps required in finding the throughput. For an
infinite population, throughput S is defined as

oo
S =Y j(Fraction of time spent transmitting j successful packets) (3.20)

3=0
For finite transmitters, S;, the throughput for user 1 is the fraction of time spent transmit-
ting successful packets. Network throughput can be found as the sum of user throughputs,

which is simply MS;, since all users are identical.

Unfortunately, the probability of a packet being successful depends on its length as
well as the state of the network upor its arrival. Thus, throughput is not simply 7/u as it
would be for fixed length packets (7 is the expected number of successful packets over time
as in Section 3.A). Furthermore, for our definition of success, a packet cannot be counted
as successful until it is completed, as an error anywhere will cause the entire packet to be
unsuccessful. Thus, for determining success or failure, it is not sufficient to know only the
state of the Markov chain at the beginning of a transmission. For this reason, we follow the
approach used by Brazio and Tobagi [BRAZ84|, and introduce an auxiliary Markov chain
which traces the evolution of a tagged packet until either an error occurs or the packet
transmission is successfully completed. We define §' to be the subset of the state space
S consisting of all states from which a successful transmission can begin. An arrival to a

state in 8’ will cause a transition to a state in the auxiliary Markov chain.
We define the following parameters:
Pg; . is the probability that a packet is successful given that
i) it is of length 7,

11




ii) the radio is not busy when the packet arrives,
iii) it finds the network in state 7 upon arrival, and

iv) the protocol and channel state ; allow it to be transmitted (in the

channel load sense model discussed in Section 6).

T, is the successful length of a packet, which is O if the packet is unsuccessful, and is

the packet’s length if it is successful.

E(T,|5) is the expected successful length of a packet given that the network is in state

J upon its arrival, and that the packet was transmitted.

P:

i 1pLe (1) i8 the probability that user ¢ is not transmitting given state j, as in Section

3.A.

E(T,|j) is found from Pg);,, by removing the condition on the packet length. Thus,

E(T.|5) = /000 Psyj . 7 fr(r)dr (3.21)

where fr(r) is the pdf of the packet lengths. Here, fr(r) = pe™#". We note that Pg;

derived in Section 3.A is
Ps;= | Py fr(r)dr (3.22)

For an infinite population, throughput is given by

5= ZM, T,lj) = ZM (T.15) (3.23)

As shown in Appendix A, for finite transmitters, user throughput is given by

M-1

Si = Z /\W]'P{,DLE(j)E(T,|j) (3.24)
J=0

12
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As in Section 3.A,
N M-3 )
Piiprei) = —M—’ fori=1,2,..,.M (325)
So, network throughput S is

min(L,M)-1
S=MS;= Y An;(M—-j)E(T.|j) (3.26)
j=0

3.C Calculation of E(T,|j)

The simple case L = 1, infinite transmitter population, was analyzed by Ferguson
[FERG75] and by Bellini and Borgonovo [BELL80]. The probability of a packet of length

7 being correct, Pgq,, is the probability of no new arrivals in time 7, or
Pgp, = e (3.27)

From equation 3.21,
oo A
E(T,|0) = /; e rue " dr

-k [T —(A+p)r
/\+#/0 (A+p)re dr

_ s 1p
R T {1+ gy (3.28)

which gives

YV _  ge*f
(1+9)? " (1+9)°

S =2xe™? (3.29)

The maximum throughput of 0.137 occurs at ¢ = v/2 — 1.

To solve for E(T,|j) for L > 1, we consider the evolution of a packet that arrives and

is transmitted. If y > L, E(T,|5) = 0. If j < L, the packet will begin to be transmitted

13




with a non-zero probability of success. As the packet transmission progresses, the network
state changes. Eventually, either an error occurs, in which case the transmission fails, or
the packet is completed, and the transmission succeeds. This evolution is modeled by an
auxiliary Markov chain with a state space S;y-, which is constructed from § as follows

(BRAZ84].

First, we delete all states for which the probability of successful transmission is zero.
For an infinite population, this leaves states {0,1,..., L}, and for finite transmitters, the
states {0,1,...,min(M, L)}. If M < L, all packets will be successful, so E(T,|j) = 1/u, the
average packet length. Thus, we will consider only cases where L < M. Next, we delete all
states corresponding to no transmissions occurring, here the state § = 0. Finally, we add
two absorbing states, Success and Failure. We reduce by u the rate of all transitions from
states 7 to states y — 1, 2 < j < L, and add transitions from every non-absorbing state
to the state Success at rate u. A transition from the state L to the state Failure is added
corresponding to the rate at which new transmissions are scheduled when in the state L,
which is A for an infinite population, and is (M — L)A for finite transmitters. Thus, we
have the auxiliary Markov chains given in Figs. 3.3 and 3.4. If we index the states Success

and Failure as the last two states, the transition rate matrix R* is

B pl o
R' = ( 0 0 ) (3.30)

0 O
0 0 O

where R is the L x L sub-matrix corresponding to transitions between the states {1, 2, ..., L}
of the auxiliary Markov chain, ¢ is the 1 x L sub-matrix corresponding to transitions to the
state Failure, 1 is the 1 x L vector of ones, and 0 is the L x 1 vector of zeros. For infinite
and for finite transmitters, R is identical to the corresponding matrix given in Section
3.A. Indeed, as we show in Appendix B, Pgy; is simply the probability that the auxiliary
Markov chain is in state success at time 7 = oo given that it was in state 7 + 1 at time

7 = 0, which can be found from ® = —uR~!1 as shown earlier. Furthermore, the quantity

14




FAILURE

Figure 3.3. Auxiliary Markov chain for the infinite population model.
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(M-1)X (M-2)\ (M-L+1)X\ (M-L)X

FAILURE

SUCCESS

Figure 3.4. Auxiliary Markov chain for the finite transmitters model.
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E(T,|j) is the expected time to reach state Success given that the auxiliary Markov chain

starts in state 5 at time 7 = 0. This has been shown [BRAZ84] to be
E(T|j) =R ?1;s; JES (3.31)
The derivation is given in Appendix B.

3.D Packet Header Synchronisation Probability

Because this model does not specifically account for the receivers, packet header syn-
chronization affects the probability of a packet being successful but it does not affect the
state space. We define a; to be the probability that the receiver captures the packet given
j interfering transmissions. The contribution to throughput by packets that found the
network in state j upon arrival will be reduced by the factor ;. Similarly, 4 and Ps will

be reduced. For an infinite population, we have

L-1
PS = Z w,-ajPSlj (3.32)
§=0

L-1
7= ) Am;a;Ps); (3.33)
7=0

5 =S ArjoBT) (3.34)
i=0

and for finite transmitters, we have

T (M — j)mjaiPs);
Ps=—7 ZoM-x(M _ 2 : . (3:35)
7=0 1)r;

M-1

7= Y ;M - j)a;Ps; (3.36)
~
M-1

S =Y MM - j)a;E(T.l5) (3:37)
J=0

Again, if L < M, Pgy; and E(T,|J) are zero for j > L.

17




3.E Results

In Figs. 3.5 and 3.6 we plot the throughput S, 7/u, and Ps for L = 10 for an infinite
population, and for finite transmitters (M = 25). These results are similar to those found
by Pursley [PURS83|. We notice that when Ps drops below one, 7/u becomes greater

than the throughput, but that the curves are similar.

In Fig. 3.7, we plot normalized throughput S/L vs. normalized offered traffic g/L
for several values of L for the infinite population model. Although L is limited to whole
numbers, a continuous function is shown in the following plots to make them easier to
read. The results are analogous to those found by Musser and Daigle [MUSS82] for fixed
size packets. We notice that as L increases, the maximum throughput comes closer to the

capacity L, but performance is more sensitive to the offered traffic rate.
4. Realistic Channel Model

The performance of spread spectrum radio channels using error correction coding in a
CDMA environment has been analyzed by many authors. The models derived either bound
or approximate the channel performance. Several difficulties arise in incorporating these
models into the Markovian network model described earlier. First, the detailed channel
models require a large amount of computation for even moderate numbers of interfering
users. Thus, numerical results are not tractable over the entire range of interest. Second,
the performance of decoders is often modeled using somewhat loose bounds. These bounds
are poor approximations to actual performance for regions of high BER. However, these
high BER regions are within the range of interest for network performance. Finally, the use
of decoders introduces memory into the system, as the output bit depends on the received
signal over an interval extending many bits into the past. In this section, we discuss the
various approximations used to overcome these difficulties and verify the validity of the

approximations. We then present numerical results for several cases.
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4.A Radio Channel Model [TAIP84]

As mentioned previously, a large number of detailed analyses of DS-CDMA channels
have been published. We choose to incorporate a model which is numerically tractable
even for large numbers of interfering users. The model was developed and analyzed by
Taiple [TAIP84]. It relies on several worst case assumptions, and does not require specific
characteristics of the set of codewords used for the PN sequence. Therefore, some of the
approximations used are lower bounds which are believed to be only moderately tight over

some of the range of interest.

The channel model is of a coherent BPSK DS-CDMA communications system. It does
not account for fading, multipath, or jamming. The received signal power is identical
for all transmitter-receiver pairs, and the thermal noise level is identical for all users, so
all receptions have the same received bit energy to noise energy Ej/No. The receiver is
assumed to be perfectly synchronized with the transmitted signal, which includes carrier
phase, pseudo-noise code chip timing, and bit timing. In addition, a worst case is assumed
for the interfering signals; all interfering signals are in phase and chip aligned with the

desired signal.

We adopt the following terminology. Bits refer to the uncoded information stream
generated by the user. Symbols refer to the output of the error correction encoder. Thus,
for a rate 1/2 code, there will be 2 symbols per bit. Chips refer to the pseudo-noise coded

information.

The general channel model is as follows. Information to be transmitted is formed into
packets of data bits. FEC coding is applied to these bits, resulting in binary symbols. Each
symbol is multiplied by a pseudo-noise (PN) code, resulting in a number of binary chips.
We denote the number of chips per data bit as N. N is the total bandwidth expansion
due to both FEC coding and PN spreading. Finally, the chips are input to a modulator

which phase modulates an RF carrier. Thermal noise and a number of interfering signals
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are added to the transmitted carrier, resulting in a corrupted received signal. The receiver
coherently demodulates the signal and despreads it by multiplying by the PN code stream.
It then integrates over one symbol, and makes a hard decision on the symbol value. We
denote the symbol time by T. The decoder then estimates the source’s data bit stream
from the corrupted symbol stream received. If any bit is incorrectly estimated, we declare
the entire packet in error. We again implicitly assume additional error detection, such as a
CRC code, but ignore the overhead required. The radio and channel model is diagrammed

in Fig. 4.1.

The mathematical model is a special case of the channel model given by Pursley
[PURS77]. All users are identical, so for notational convenience, we assume that the
source is user 1 and the destination is user 0. In the general model, the received signal

r(t) is given by

J
r(t) = n(t) + Y V2Pay(t — )b (t — 7i) cos(wct + ¢i) (4.1)

k=1
where J is the number of signals simultaneously arriving at user 0 at time £, a; is the
pseudo-noise code stream of transmitter k, by is the FEC coded symbol stream of trans-
mitter k, ¢x is the phase shift from transmitter k£ to user 0, 7 is the time delay from

transmitter k to user 0, P is the received signal power, and n(t) is the additive white

Gaussian noise (WGN).

In the specific channel model examined, we assume that the symbols by and the code
chips a; are independent random variables assuming the values +1 and —~1 with probabil-
ities 1/2 and 1/2. In addition, because of the worst case assumption, 7; is a multiple of

the chip time T /N and ¢; is a multiple of 2.

Because of the symmetry of the channel, the probability of error is the same whether

the transmitted symbol is a +1 or a —1. Thus, we will only analyze the case when the
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transmitted symbol is a +1. We define ci(t) as the product of the received chip from user

k with the code stream of user 1, so

ck(t) = ar(t — m)be(t — m)ar(t — )

Because of the assumption of chip alignment, we can unambiguously define the discrete

chips

ekl = ck(t = (—1;11#)—7‘) l=1to N

The random variables {ci;} are jointly independent Bernoulli trials.

The output of the correlation receiver is

Z = \/g/(;T r(t)ax(t) cos(w,.t)dt (4.2)

This reduces to

J N
Z=\/E—.(1+Ezck,,) + N (4.3)

k=21=1
where E, = PT is the energy per symbol, and N is a Gaussian random variable with
variance Ny/2. It can be seen that Z = D + I + N, where D is the desired symbol, I is
the sum of the interfering signals, and N is thermal noise. A symbol error occurs if Z < 0.
Knowing D + I, we can find Pr(Z < 0) from standard communications theory. But D is
known to be \/E, and I has a known distribution, so we can find the mean probability of

symbol error given J simultaneous transmissions, P, symso(J), by averaging over all values

of I.

Pr(I _ VE@i-(J - I)N)) = ((" _.I)N) 0<i<(J-1)N (4.4)

N 3
(J-1)N _
Pagmat) = L (70N )zov g (45)




where

p(0) = @ (Vo /Ny (14 2= E200)) (4)

and Q(z) is the Marcum Q function,

Q)= 1= " e 2y (47)

4.B Error Correction Coding Model

The performance of CDMA radio networks can often be improved by introducing
FEC coding. We analyze the network performance using a rate 1/2 constraint length 7
convolutional code with Viterbi decoding. The decoder performance analysis is discussed
in some detail in Appendix C. In this section, we will briefly discuss the decoder model and
several limitations. From the analysis of the decoder, we can find the so-called probability
of first error, Pg, which is the probability of a bit being in error given that no earlier bits
were in error. Since we declare an entire packet to be in error if any bit is in error, this is

the appropriate performance measure. Fig. 4.2 shows Pg vs. the input symbol error rate.

Taiple [TAIP84] shows that for fixed length packets of length £ in a slotted system,
the probability of a packet being correct is lower bounded by (1 — PE)ﬂ. For packets of
1000 bits, if Pg is as high as 1073, there is still at least a 37% chance that the packet will
be correct. For Pr = 5 x 1073, this drops to at least 0.67%. This indicates that we should
strive for a decoder model which is accurate up to Pg of at least 5 x 1073, Unfortunately,
as discussed in Appendix C, the analysis uses a union bound which becomes very loose for
Pg above about 102, The rapid increase in Pg in the range 1072 to 1072 can be seen in

Fig. 4.2. Thus, the decoder model gives pessimistic results for Pg in this range.
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Figure 4.2. Probability of first error versus symbol error rate.
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4.C Refined Network Model

From the channel model and the FEC decoder model, we car find Pg(j), the probability
of first error given a symbol error rate of P, ympot(j). PE(j) vs. j is plotted in Fig. 4.3

for Ey/Ny = 8.0 for several values of N.

As shown in Appendix D, for a packet which does not visit the state L + 1 and spends

L; bits in state j, the probability of correct reception is approximately bounded by

L
Pez I] (1 - Pe(G)™ (4.8)

=1

We can account for this in the network model by introducing a time varying Poisson process
that generates errors at a rate ¢; while the tagged packet is in state y. Specifically, this
is accomplished by adding transitions from each non-absorbing state j in the auxiliary
Markov chain to the state Failure at at rate ¢;, as shown in Fig. 4.4. The probability
that no errors occur while in state j for time 7; is simply e™"/. For a small bi{ time At,
7; & LAt for some number of bits £;. The probability that a packet is successful is the

product of the probabilities that no errors occur during any state j.

L L
Po = I‘I e~ ay H(e—A!cJ)Ej (4.9)
J=1 J

‘=1

If we set 1 — Pp(j) = e™ 2!, the probability of a packet being correct will be precisely the
bound given by Eqn. 4.8. Thus,

= - lnt = Pe() or % =-POSIEO) o pp), (a0

here b = 1/(pAt) is the average number of bits per packet.
Several approximations are implied by this model.
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¢) First, the channel and decoder models yield an error process which occurs at bit
boundaries. There are two approaches to incorporating this into the network model. One
approach is to change the network model to a discrete time model, with arrivals and
departures occurring at bit boundaries. For bit times which are short in comparison to
the average holding times in the states, this model will be very similar to the continuous
time model, except that there will now be transitions occurring between non-neighboring
states. These transitions will have very low probabilities for short bit times, as the arrival
or departure rate per bit is low. We chose the alternative approach, which is to approximate
the error process as a continuous time process, in which errors are generated by a time
varying Poisson process. This yields a simpler network model and will give accurate results

for average packet lengths of 1000 bits.

i) Second, the network model requires a cut-off L such that errors occur with probabil-
ity one for 5 > L. No such cut-off exists in the physical channel, since the probability of bit
error is never greater than 1/2, so there is always a non-zero probability of correct recep-
tion. Introducing the limit L underestimates the throughput, as some successful packets
will be counted as unsuccessful. Nevertheless, if L is chosen such that (1 — Pg(L + 1))&
is small for H equal to the mean holding time in state L + 1, the probability of a packet

successfully surviving a visit to state L + 1 will be small.

The choice of L is simple in the case of the coded channel because of the decoder
model used. As explained in Appendix C, the bound for the decoder model is not known
to be accurate for Pg above 1072, For this reason, the model effectively truncates the
performance in this range, and sets Pr = 1 when the bound indicates Pr > 10~2. Thus,

L is chosen to be the largest j such that Pg(j) < 1072,

#55) Another approximation implied by the model is that the addition of an error process
does not affect the existing transition rates for the auxiliary Markov chain. In reality, the

existing transition rates leaving state j will be reduced by 1 — Pg(j) per bit. However, for
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Pc(7) as high as 1072, this will only be a 1% reduction. Thus, this approximation has a

negligible effect on throughput for the coded channel model.

tv) The final assumption made in incorporating a realistic channel model into the

network model is that the channel behavior is memoryless. It can be shown that for
some of the cases considered, the decoder performance depends on past states most of the
time. Nevertheless, the approximate bounds described below show that the variation in
throughput due to this assumption is small. Thus, even though the model does not exactly

parallel the physical system, the results closely match the ideal performance of the system.

The decoded memory typically extends 30 bits into the past [CLAR81|. Thus, Pg at
time 7 depends not only upon the current state, but also upon the states visited during
the last 30 bits, or 60 symbols. The arrival and departure processes are both Poisson, so
the holding time in a state j is exponentially distributed, with rate A + ju for the infinite
population model, or (M — j)A + ju for the finite transmitters model. The mean holding

time in state 7 is thus

;\--;_—].7‘ = g I j infinite population
(4.11)

TV RRTE T v e finite transmitters
(M-)A+ip (M-j)g+;

For 1/u = 1000 bits, the average holding time is

1000 1000

T or ‘2 x N

g+7 (M -j)g+3;
For the coded channel, with E,/N, = 8.0, N = 64 chips per bit, the cut-off L = 7, and the
maximizing values of offered traffic g are 3.01 (infinite population), 0.04 (80 transmitters),
and 0.53 (10 transmitters). It can be seen that even for the state 7 = L, the average
holding times are 1000/(7+3.01), 1000/(7 + 80-0.04), and 1000/(7+ 10-0.53), all of which

are about three times the decoder memory of 30 bits. In these cases, we can ignore the




transient behavior which occurs during the 30 bits following a state change. Unfortunately,
for larger N, the mean holding time in some states is as low as 10 or 20 bits. For these
cases, the decoder output is very likely to depend upon the previous state for a large

fraction of the time spent in these states.

Nevertheless, even for these few extreme cases, the probability that the number of
interfering transmissions j varied widely during the last 30 bits is not large. For offered
traffic g in the range which gives maximum throughput, most of the steady state probability
is concentrated in the states with intermediate values of Pp(j). We find that Pg(j) varies
slowly with j over these intermediate ranges (see Fig. 4.3). This is especially true for very
large numbers of chips per bit, which are the cases where the memory may be significant.
Thus, for those cases were the decoder memory cannot be ignored as a second order
transient effect, the difference between Pr(j), Pp(j +1) and Pg(j — 1), and even Pg(j +2)
and Pg(j — 2) is small.

To verify this approximation, we calculated approximate bounds by using first Pg(j+3)
and then Pg(j —3) as the error rates from state 5. This was done for the infinite population
model, with E;/No = 8.0 and with 256 chips per bit. For thiz case the cut-off L is 26.
For offered traffic g of 26.0, the transitions from j to j + 1 occur at a rate gu = 26.0/1000
per bit, and the transitions from j to j — 1 occur at a rate ju, which is upper bounded by
Ly = 26/1000 per bit. The probability of going from state 5 to a state 5/ > 5 + 6 in 30
bits is less than the probability of more than é arrivals from the Poisson arrival process
(which is rate 0.026 per bit) in 30 bits, which is simply

|y e (oT8y (4.12)

!
=0 L

For § = 3, this comes to 0.0083. This probability is even smaller for offered traffic g less
than 26.0. Similarly, the probability of going from state j to a state ;' < j — § in 30 bits

is less than 0.0083. Thus, when the current network state is j, with probability greater
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than 99%, the minimum symbol error rate encountered by any of the 60 symbols in the
decoder memory will be no less than Pg(j — 3) and the maximum symbol error rate will
be no greater than Pg(y + 3). Thus, substituting Pg(s £+ 3) for the symbol error rate of
state 7 will give approximate bounds to the performance of a decoder with a memory of

30 bits.

These bounds are fairly loose, since for many states, the variation will be less than
+2 or +1 states with a very high probability. Also, even when the states j + 3 or j — 3
are visited, many of the last 60 symbols will have symbol error probabilities closer to
P, yymboi(7) than P, ;ympot(7 £3). Even so, as can be seen in Fig. 4.5, the maximum values
of the throughput for the models which use Pg(j + 3) are within 20% of the maximum
throughput for the model which uses Pg(j). Therefore, the approximate model which
ignores the memory of the decoder yields meaningful results even for extreme cases where

holding times are on the order of 30 bits.

4.D Standard ALOHA Channel

For comparison, we derive the throughput of the uncoded, unspread radio channel
with therinal noise. In this case, N = 1 chip per bit, and also L = 1. The analysis is
similar to the case with no thermal noise, which was presented in Section 3.C. However, in
addition to new arrivals, there are also failures due to an error arriving before the packet

is completed. Thus,

Psp, = e~ M+l (4.13)
_ Y
BT = (o e (4.14)

S = (lgi—‘;)é (4.15)
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For an uncoded channel with E;/N, = 8.0, 1000 bits per average packet, ¢) /u = 1.15x 10~%,
which is much iess than 1, so the extra term is negligible. Thus, the thermal noise has little

effect on throughput, so the maximum throughput is again 0.137, achieved at g = V2-1.

4.E Results

For a fair comparison of throughput, we state most results in terms of S/N, which
is throughput divided by N, the number of chips per information bit. §/N indicates the
throughput per unit bandwidth, where a bandwidth of one is required by an uncoded

unspread signal.

Fig. 4.6 shows the normalized throughput S/N vs. the normalized offered traffic g/N,
for the coded channel with E,/Ny = 8.0, for the infinite population model. Results are

given for several values of N. This has a shape similar to Fig. 3.7.

The following curves show the effect of various parameters on the maximum throughput
Smax, achieved by maximizing over offered traffic g. For convenience, we refer to this
maximum as throughput or normalized throughput, without specifically indicating the

maximization over g.

Fig. 4.7 shows the throughput vs. N for several values of Ej/Nj, for the infinite
population model. The corresponding values of S/N are plotted in Fig. 4.8. It can be
seen that the performance becomes limited by multi-user interference for E,/Ny greater
tnan about 20. Also, the normalized throughput increases monotonically with N. The
maximum normalized throughput for the uncoded ALOHA channel (N = 1) is 0.137.
Thus, over all of the ranges of E;/Ny and N examined, the normalized capacity of the
spread spectrum channel with FEC coding is less than that of a non-spr~ad channel with

no coding.

We plot S/N vs. Ey/N; for the coded and the uncoded channels in Fig. 4.9, for 256

chips per bit. The improvenient due to FEC coding is significant. Again, we notice that
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the curves flatten out for large E,/Ny, as the multi-user interference begins to dominate

the thermal noise.

Fig. 4.10 shows S vs. N for the infinite population case and for several values of M
in the finite transmitters case, for Ey/Ny = 8.0. As N increases, the channel reaches a
point where Pp(M) becomes small. At this point, even with all M users transmitting,
there are few unsuccessful packets. Thus, increasing N further results in little increase in
maximum throughput. This can be seen for the M = 10 and the M = 20 curves. Because
of the additional bandwidth required, increasing N can actually cause a decrease in the
normalized throughput. This is seen in Fig. 4.11. We note that the peak value of S/N
for M = 10 and M = 20 is less than half the throughput for the uncoded N =1 channel.

In Fig. 4.12, we plot the network throughput and also the individual user throughput
vs. the number of users for the finite transmitters model, E;/Ny = 8.0 and N = 128 chips
per bit. It is interesting to find that there is an optimum value of M which maximizges
network throughput. We will see in Section 5 that this is no longer true when the effect

of half-duplex radios is taken into account.

5. Half-Duplex Radios

5.A Analysis

We next consider a finite user network where both the sources and the destinations of
packets are among the M users. Several modifications are needed. First, we must account
for the case when the source is busy receiving a packet, and therefore will not transmit a
packet which is scheduled. Second, we must account for the case when the destination is
busy receiving or transmitting, and will not receive the packet. Finally, we must treat the

effect on state transitions of an idle receiver not capturing a packet.

The state variable X(7) is now defined as both the number of active transmitters and

the number of receivers which have captured a packet. This gives a state space § = {(t,r) :
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0<t<M0<Lr<t and t+r < M}. For the basic model, we observed that successful
transmissions could only begin when the state was in a subset §' of the state space §,
corresponding to y < L. In the model with finite receivers, we find that this subset is now
S'={(t,r):0<t<M-1t<L,0<r<t andt+r <M-—1}. The non-absorbing

states of the auxiliary Markov chain consist of the subset {(t,r): (t — 1,r - 1) € §'}.
We define the following variables:

Ps)(1,r) is the probability that a transmitted packet is successful given that the network

was in state (¢,r) upon its arrival and given that it was captured.
Psi(t,r) is the probability that the source radio is idle given state (t,r)

Pp(t, r) is the probability that the destination radio is idle given state (¢, r) and given

that the source is idle

a, is the probability that the destination radio synchronizes to the packet header given

that it is idle and given that there are ¢ interfering transmissions.
T(tr) is the steady state distribution of X(r)

% (1.r) i8 the steady state probability of the network being in state (¢, r) at time 7; given

that a packet transmission begins at time 7
E (T,|(t,r)) is the expected successful length as in the basic model.
Pg(t) is the probability of first error for ¢ simultaneous transmissions.

Because of identical users, for any user i, we find

M-t-r
st(t,r) = T (5.1)
t+
Por(t,r) =1~ 11 _'l (5.2)

4%




since the destination is uniformly distributed over the M — 1 other radios, t + r of which

are busy.

In state (t,r), transmissions are scheduled at rate (M — ¢ — r)A. A packet has a
probability a; Ppr(t, r) of being captured, which will cause a transition to state (¢+1,r+1).
Otherwise, the packet will not be captured, so it will cause a transition to state (¢ + 1,r).
Of the t packets being transmitted, r have captured a receiver and ¢ — r have not captured
a receiver. Thus, due to packets transmissions completing, there is a transition to state
(t —1,r—1) at rate ru, and to state (¢ — 1,r) at rate (t — r)u. The state transitions for the
general state (¢,r) are diagrammed in Fig. 5.1. The forms of the Markov chain X(7) and
of the auxiliary Markov chain are given in Figs. 5.2 and 5.3. The steady state probabilities
7(t.r) of the Markov chain X(r) are not easily found analytically. However, they can be

found from the conservation equations
Qr=0 (5.3)
where Q is the transition rate matrix, and from

Z "(t.r) =1 (5.4)

(,r)€S
Similar to the result in Section 3.A, we find

Ps= Y, T,y Pp1(t, r)Ps|r )
(¢,r}es?!

¥ Psy(t,r)m @ Ppr(t, r)Ps|,r)

(t,rjes’
= e T —_— 5.5
2 PSI(tI r)”(t r) ( )
(t,r)es’
As we show in Appendix E,
Si= Y AmynPsi(t,r)Ppr(t,r)o E(T,|(t, 1)) (5.6)
(t,r)es’
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Figure 5.1. Local state-transition-rate diagram for the half-duplex model.
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Figure 5.2. State-transition diagram for the half-duplex model.
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Figure 5.3. Auxiliary Markov chain for the half-duplex model.
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Since S = MS,', we find

t+
= 5 Ampy(M—t—r) (1 - M_'l) W E(T,|(, 7)) (5.7)
(t,r)es’

Ps)+) and E(T,[(t,r)) are again found from the auxiliary Markov chain transition rates.
The Poisson error generation process described in Section 4 is included in this auxiliary

Markov chain.
5.B Results

Throughput vs. N is plotted for several values of M in Fig. 5.4. We find that the
throughput is much lower than for the same values of M in the basic model. This is
expected, as the maximum possible throughput is | M/2|. The jump at the point where
the curve flattens out occurs when L = M — 1. This jump is due to the truncation of
the decoder performance model Jor Pg > 1072. Below the jump, the decoder model uses
the loose bound Pg = 1.0 for some states, while above the jump, the model uses a tighter

bound for all states.

The maximum throughput flattens out around the point where the channel can support
M /2 simultaneous transmissions with high probability of success. As ¢, the number of users
transmitting, increases above M/2, the number of users that can be receiving is limited
to M —t, so the probability that the destination is idle becomes very small. Thus, we
expect that the optimum offered traffic is such that ¢ < [ M/2] for most of the time, so
increasing IV to support more than {M/2| transmissions should not have much impact on
maximum throughput. In Fig. 5.5, we plot network throughput and also user throughput
vs. M for E;/Ny = 8.0, N = 128. We find that, contrary to the earlier results of Section

4, the network throughput for the half-duplex model increases monotonically with M.
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6. Channel Load Sensing

Many authors have shown that for ALOHA-like systems, the network performance

can be improved by sensing the channel and blocking transmissions when the channel

is busy. In a CDMA network where multiple users can transmit simultaneously, similar
improvement is possible if the radios can sense the number of radios transmitting and
block transmission when the channel is heavily loaded. In addition to combatting multiple
user interference, this technique of channel load sensing may also increase the robustness
in the presence of jamming, by causing the channel capacity to degrade gracefully as the

jamming signal power increases.

6.A Infinite Population

We use K to denote the number of sensed transmissions at which new transmissions
are blocked. For K > L, the state space § is just a truncation of the basic model state
space. This has the same state transition rates as the state space of the M/M/K/K queue,
which is a K server loss system [KLEI75]. The auxiliary Markov chain is the same as in
the basic model; so for this range of K > L, the only difference from the basic model is in

the initial state probabilities {n;}, now given by

Auy/s! (6.1)

K
L (M up)k/k!
k=0

For very small K, almost all transmissions will bg successful, because Pg(j) will be
small for all j € §. In the limit as ¢ — o0, as soon as the end of a transmission is sensed
a new packet transmission will begin. In the case of zero propagation delay, this will
result in there always being exactly K users transmitting. The probability of success is

the probability that the packet is completed before an error occurs. Thus, we find

Pgig 1, =€ K7 (6.2)
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E(Ts|K — 1) = (T+—:K—/“)3 (6.3)
80
S = (75 e (6.4
6.B Half-Duplex Model
i) K>M

Because there will never be any more than M transmissions occurring, a channel load

sense threshold K > M will give the same performance as no channel load sensing.

ii) K < M and ¢g /u non-negligible

In this case, the state space is truncated at ¢ = K, while the auxiliary Markov chain
remains the same. Consequently, the only difference from the case studied in Section § is
that the initial probabilit. distribution {m(,,)} changes. Thus, the solution can be found

using the equations derived in Section 5.

ili) K < M and e /p << 1

For this range of K, almost all captured packets will be successful. However, packets
may not be captured, due to the destination radio being busy. Even so, we note that when
K is small compared to M, the probability of no capture is very small, so the throughput
is maximized by a very large g. Unfortunately, the numerical solution used for finding the
throughput becomes unstable as g becomes large. Therefore, we use an approximation
of the Markov chain which is valid for such values of g. For very large g, we expect the
number of transmissions to be K, since as soon as a transmission ends a new scheduling
point will be generated and transmission of a new packet will begin. However, in order to

find the throughput, we must find the distribution of the number of captured receivers.
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In this section, we first justify that the probability of there being fewer than K active
transmitters is O(1/g). We then use an approximation of the Markov chain which contains
only the states {(¢,r) : ¢t = K —1ort = K} to find the distribution on the number of
captured receivers. E(Ts|(K — 1,r) is found from Eqn. 3.21, to give

ﬂl’(K r)
S = Z T+ e/ (65)

We denote the marginal probability of there being ¢ users transmitting by #,, so
E -
fo=) LI € =min(¢t, M — t) (6.6)
r=0

We denote the expected number of users receiving given ¢ users transmitting by E(R|t),
80
on
E(R|t) = 2_‘3 r—‘;‘—’ ¢ = min(t, M - t) (6.7)
We can find #; from the balance equations resulting from a cut between states (¢,r) and
states (¢ + 1,r) (see Fig. 5.2).

t t+1

E(M -t - T)A‘N(l’r) = Z(t + l);ur(Hl,,)

r=0 r=0
(M -~ t)Aﬁ'g - /\ﬁ]E(R]t) = (t + l)[lﬁ'g.ﬂ (6.8)
80
goo (M=) - BRE-D) (69

tu
If we define E(I}t) as the expected number of idle radios given ¢ users transmitting, we
have
E(I|t) = E(M -t — R|t)
=M-t- E(R|t) (6.10)
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. E(It-1)A,
4= EUIE=1) .
tp
‘0 (A/B)EI]u)
= e | 6.11
(ul-;[o (v +1) 0 (6.11)
For t < M/2, there will always be at least one idle radio, so 1 < E(I|t) < M —t.
Therefore,
(«"L‘t‘{%ﬂ‘l is 0(g) for t < M/2, (6.12)

which implies that for K < M/2, g is O (g"l), and fig_o is O (9_2). Thus, to first
order, for large g, we can consider the approximation to the Markov chain which is shown

in Figs. 6.1 and 6.2.

The two cuts indicated in Fig. 6.2 give the following local balance equations.

K+r-1
(K - ")[lff(K‘r) = Ar (1 — QK1 (1 - -’A—l—zl—‘-)) (6.13)
A = (K - rJumg ) + (r + 1Dpmg 41 (6.14)

Where A, is the rate of probability flowing out of state (K — 1,r), so
A,- = (M -K-r+ I)’\”(K—l,r) (615)

From these equations, we find

(K - T)[lﬂ’ K,r
B — (K - g, (6.16)

(r+ 1)prg ) =

80

K-r 1
TKrel) = - : -1 ™K, 0<r<K-1 6.17
(Kr+1) (1_aK_( e ) (K.r) (6.17)
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From these recursion equations, we can find the probabilities 7(x ,) in terms of m(g o), and

then normalize by > mk ) = 1.

For the case of K small compared to M, and ¢x/u << 1, we have found an approx-
imation for the Markov chain which gives the distribution m(g,,), from which we find the
throughput S. For larger K, the maximum throughput is achieved at values of ¢ for which
the approximation is no longer valid. However, for g in this range, we can use the numerical

solution developed in Section 5.

6.C Propagation Delay

It is well known that carrier sensing systems degrade as the propagation delay becomes
large relative to the packet lengths. To investigate this effect for the CDMA model, we
introduce an exponentially distributed holding time at the beginning of each packet. The
decision on whether or not to transmit is again based on the number of radios which can
be sensed transmitting, but this decision does not account for users in the holding state.

This model approximates the behavior due to propagation delay.

From the standpoint of a receiver, all other users have a state model which is dia-
grammed in Fig. 6.3(a). During the holding state, the receiver cannot detect the transmis-
sion. From the standpoint of a transmitter, the holding time and the transmission time
are reversed. Thus, a packet transmission can be illustrated as in Fig. 6.3(b). The model
has the peculiarity that a radio is busy both during the transmission time and during the
holding time, so it is as if a radio contiuu-- to be busy from the time a packet transmission
is completed until the time the packet finishes propagating to the receiver. This is shown
as the shaded region in Fig. 6.3(b). We will see that this extra busy period causes the

throughput to be reduced even for no channel load sensing.

59




TX:

TRANSMITTING

7

\
H \ AN
\\ N
\ N
.'" 3 \
| | \\ \\\
{ .
| i "X HOLDING
| : DELIAY RECEIVING
|
| |
! I oV y —f———— 1y ————=
—J
(a) (b)

Figure 6.3. Exponential holding time model for non-zero propagation delay.




6.D Delay Model

We introduce the parameter v, where 1/v is the average holding time. We also define
h as v/u, so 1/h is the average holding time normalized by the mean packet length.
This parameter 1/h is roughly equivalent to the standard delay measure a, which is the
propagation delay normalized by the packet length. A radio can be either idle, holding,

transmitting, or (for the half-duplex model) receiving, as we indicate in Fig 6.3(a).

We incorporate the holding time into the Markov chains as follows. Let w be the
number of transmitters in a holding state. In the model which does not account for
receivers, the states are indexed by w and t. The state space is § = {(w,t) : 0 < w <
M,0 <t < M - w}, and the subset from which successful transmissions can begin is §' =
{(w,t): 1< w< M, 0<t<M-w, and t < L}. Forthe state (w,t), t < K, transmissions
are scheduled at rate (M — w — t)A, causing transitions to state (w + 1,t). Users change
from the holding state to the transmitting state at rate wv, causing transitions to state
(w—1,t+1). Transmissions are completed at rate tu, causing transitions to state (w,t—1).
The state transitions for the general state (w,t) are diagrammed in Fig. 6.4. For t > K,
there are no transitions due to new packet transmissions, but the other transitions are not

affected.

For the half-duplex model, we have a 3-dimensional state space indexed by w, t, and

0<w< M
S={(w,t,r):0<t<M-w

0<r<{M-w-t andr<t.

1<w<<M
S'={(w,t,r):0<t<M-w,andt< L

0<r<M-w-t andr<t.
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Figure 6.4. Local state-transition-rate diagram

for finite transmitters, non-zero propagation delay.
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Once again, channel load sensing causes the deletion of transitions due to new packet

transmissions for t > K.

The derivations of user throughput S; are given in Appendix F. For the model which

does not account for receivers, we find

S= Y V7 (w0 P (w0, ) E(T,|(w, 1)) (6.18)

(w.t}eS’

where Pg(w,t) is the probability that user s is in the holding state given state (w, t), which

is simply w/M. So network throughput is

S5= 5% vrggwaE(T,|(wt) (6.19)

{x t)ES!

Again, E(T,|(w,t)) is found from uR %1 for t < L. For the half-duplex model, we find

Sx' = Z V"(w,l‘r)PH(w)t:r)PDI(wat’r)atE(Tal(w)t’r)) (620)
(wt.r)es’

where Pg(w,t, r) is the probability that user 1 is in the holding state given state (w,¢,r),
which is simply w/M, and Ppr{w,t,r) is the probability that the destination is idle given

state (w,t,r) and given that 1 is holding, or

Ppi(w,t,r) =1— "3—’};“%11 (6.21)
Thus,
t —_
S= ¥ vt (1= U TN wE (L (w,t,9) (6.22)
Ve, M-
(w.t,r)es
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6.E Results

For an infinite population, N = 256, and E,/Ny = 8.0, we plot S/N vs. g for various
values of K, and also for no channel load sensing in Fig. 6.5. For these parameters, the
cut-off L is 26. It is seen that for small K, the normalized throughput increases towards
K/N as g increases. Also, the maximum throughput for K = 25 is almost equal to the
maximum for no channel load sensing. We then _lot the throughput S vs. the channel
load sense point K for an infinite population in Fig. 6.6, varying N from 64 to 1024, For
N =64, channel load sensing can increase the throughput from 1.09 to 2.22, or 104%. The
absolute increase is almost constant with respect to N, so for larger N, the percentage
increase becomes small. Nevertheless, even though the increase in maximum throughput
may be small, by using channel load sensing, the system can be made more stable. We note

that in Fig. 6.5, the throughput varies only slightly over a wide range of offered traffic.

For the model of non-zero propagation delay, we plot the normalized throughput S/N
vs. 1/h for the half-duplex model with M = 12. Results are shown in Fig. 6.7 for N = 64
and for N = 128 chips per bit, which give cut-offs of L = 7 and L = 13 respectively.
These results were calculated for no channel load sensing and for K at the optimum
channel load sense point. It is seen that even for no channel load sensing, the throughput
decreases as 1/k increases, due to the users being busy during the holding periods. Also,
as expected, the significant improvement from channe! load sensing for N = 64 degrades

as 1/h increases, and there is almost no improvement for 1/h = 1.0.

7. Conclusions

In this report, we developed the Markovian model of a packet radio network for several
specific fully connected topologies. We = .troduced a refinement which allows general bit
error rate functions and incorporated a model of a DS-BPSK CDMA radio channel with

convolutional FEC coding. Throughput and normalized throughput were found for various
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values of Ej/Ny and chips per bit N. Next, we accounted for the effect of both the receivers
and the transmitters belonging to the hnite user population, as would be ihe case for a
half-duplex radio network. This had a large impact on throughput. We then considered
a channel load sensing protocol, and found that this resulted in increased throughput.
Finally, a model of non-zero propagation delay was developed. We showed that increasing
the delay degrades the improvement due to channel load sensing, a result familiar from

CSMA analyses.




Appendix A. Throughput Equation For Finite Transmitters

To find the throughput for a user #, we expand the state space X(7) to explicitly

indicate the state of user 1, giving a new state space X*(r)
We define the following:
7* is the number of users transmitting not including user s
¢, is the state of user 1, with ¢; € {idle, busy}, where ¢ is busy when transmitting
$* is the expanded state space, §* = {(j*,¢;):0<7* < M -1, ¢; € {idle, busy}}
() 18 the steady state probability of being in state (3°,¢;)

S(5°*,1) is the fraction of time that user 1 is successfully transmitting packets which

found the network in state (y*, idle) upon arrival.
The resulting Markov chain is shown in Fig. Al.

The analysis then follows exactly the solution to a more general case for multihop
networks found by Brazio and Tobagi [BRAZ84]. First, we note that the times of successive
transitions from the state (5*, idle) to the state (7*, busy) are regeneration points for
the Markov chain X*(r). Consider the cycles defined by the time intervals between two
successive regeneration points. Let Ci(j*,t) denote the length of the kth cycle, and let
Ti(5*,1) denote the successful length of the packet whose arrival initiated cycle k. The

sequence

{(Ck(5°18), Ti(5%,3)) - k > 1}

is a sequence of i.i.d. pairs of random variables. Let E(Ci(7*,+)) and E(Ti(5%,1)) denote
the average values of Ci(j*,1) and Ti(s*,t) respectively. From the theory of rencwal

processes,

S = 5= 50 s with probability 1 (A1)




(M - 1) (M -2)x

Figure Al. Expanded state-transition-rate diagram

for the finite transmitters model.
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Also, as shown by Brazio and Tobagi in [BRAZ84|,

. 1
B ) = s - (A2)
(5*, idle)

If user 1 is idle, and there are j* other radios transmitting, the total number of users
transmitting is y*. Thus, the event {X* = (j*,idle)} is the same as the event {¥ =

7 and t is idle)}, when j* = 5. In other words,

1r(‘j', idley = "J'PimLE(j) it=7J (A3)
so Eqn. A2 becomes
E(CH(i*,1) : =3 (A%)
k ) = oo =
A "J'Pi]DLE(])

Now, because all users are identical, the expected successful length of a packet that is
transmitted given j* other radios transmitting when it arrived does not depend on which
particular radio ¢ the packet arrived at. Consequently, E(Ty(5*,1)) is simply E(T,|j), for
1" =73

S(7%,1) = ”J'RIDLE(j)E(Ta'j)) =7 (AS)

The total throughput is simply the sum of conditional throughputs, so

M-1
S; = Z S(j.)i) (AG)

J*=

M-1
= ) 7Py, ()AE(T.7) (A7)

7=0

Finally, we notice that if L < M, S(5*,¢) = 0 for j* > L, so less computation is required

for smaller L.
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Appendix B. Solution to E(T,|j)

This derivation of E(T,|5) from the matrix R is also from [BRAZ84].

P*(7) is the probahility transition matrix of the auxiliary Markov chain, defined as

P;,J"(T) = Pr(r(f) = j’ir(O) = J): .7 € sauz, j’ (= Sa,,,

Similar to the corresponding rate transition matrix R*, P*(7) has the form

P(r) Ps(r) Pr(r)
P'(r)=1| 0 1 0 (B1)
0 0 1
Because of this structure, the forward Kolmogorov equations
d * * * ® [/~
d—TP (r)=P*(7) R P0) =1 (B2)
can be broken down to
! p(r) = PR
dr VTR P(0) =1
d (B3)
LPs()=P()1  Ps(0) =0
d
"Pr(r) =P(r)p Pr(0)=0
dr
which has the solution
P(r) = % r>0
Ps(r) = u(e® —DR'1 r>0 (B4)
Pr(r) = (& -I)R71p >0

Rr

Since all the states except Success and Failure are transient, e’ — 0as7 — oo. By

construction, the j + Ist element of the column vector Pg(oo) is the probability that a
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transmitted packet which found the network in state j on arrival will be absorbed in the

state Success, which we defined in Section 3.A as Pgj;. Thus, from Eqn. B4, we find

Ps(oo) = u(-I)BR7'1 = —uR~!1. P5(c0) is equal to ¥ from Section 3.A.

Now, let T be a random vector giving the time to absorption in Success. We construct

T as column vector with rows indexed by the non-absorbing states in S;,, in the same

order as the rows of R. The j + Ist element, [T|;4;, is the random variable which is

the successful length of a packet which arrived to find the network in state 7 and was

transmitied.
L-1
Y Pr(|T)s1) =Ps(r) 120
J=0

and
E(TIT <o) = [~ (Ps(o0) - Ps(r) dr

o o3
= —p,/(; PR 1dr = uR™%1
The desired quantity E(T,(7) is simply the 7 + 1st element of this vector, so

E(T.7) = E([Tlys1 | [Tjs1 < 00) = (kB4
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Appendix C. Viterbi Decoder performance

In this appendix, we summarize the analysis required to derive the performance of the
decoder. The analysis is due mainly to Viterbi [VITE71]. Also, an excellent treatment
of convolutional coding and of the Viterbi decoding algorithm is presented by Clark and

Cain in [CLARSL1)|.

C.1 Characteristics of Convolutional Codes

Unlike block codes, convolutional codes do not require a frame structure. Instead, the
output symbols from the encoder at any time are a linear combination (modulo 2) of the
previous k bits, so the output stream depends on the input bits in a sliding window {ashion.
For a rate m/n code, n symbols are output for each m bits. Typically, for m =1 codes, a
shift register will store the last k bits, and each of the n symbols will be generated by a

different linear binary function of ihese bits.

The major parameters of the code are its constraint length £ and its rate m/n. We
only consider a commonly used rate 1/2 constraint length 7 code in the network model,

but for illustrative purposes we will also discuss a rate 1/2 constraint length 3 code.

Convolutional codes are group codes, meaning that a set of symbols of a given length
form a group. Oune convenient property of group codes is that for a binary symmetric
channel (BSC), the probability of error does not depend on the actual data stream being
sent. Thus, we can analyze the probability of error for the data stream of all zeros and
this will yield the probability of error for any data stream. Furthermore, because the
codes are linear, the all zero data stream will result in all output symbols being zero. For
convenience, we denote the symbol stream of m[ zeros by C(()E). Also, without loss of

generality, we assume that the initial loading of the encoder shift register is a sequence of

k — 1 zeros.
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C.2 Performance Analysis [VITET71]

Two performance measures are commonly derived for evaluating codes. The most
widely used measure is Ppg, the probability of bit error. This is the long term proportion
of bit errors in a very long sequence of bits. Another measure is Pg, the probability of
first error. This is the probability of a bit error at the output of the decoder, given that
the first k — 1 bits were known by the decoder, and given that no errors have occurred
up to the present. In the network model, we assume that a known header precedes the
packet transmission. This header will allow the decoder to be initialized to the correct
state. Ounce initialized, we are interested in the first occurrence of an error in the decoder

output bit stream, as this will cause the entire packet to be declared in error.

The Viterbi decoding algorithm is a maximum likelihood decision rule, in which the
codeword which is closest in Hamming distance to the received codeword is chosen as the
estimate of the transmitted symbol stream, and the corresponding bit stream is output
as the estimate of the source’s information stream. We denote the Hamming distance
between C,, and C; by dg(Ca, C3). The probability of error given that C((,c) was sent is the
probability that R(£) the first mL received symbols, is closer to some other codeword of

length £ than it is to C},C). This is the union of events,

2.1
U {da(R\D,c18) < dg(R'D), i)
a=1

(£)
0

In the case of a tie between C'f) and ¢ , one is chosen at random. We can bound the

probability of this event with the union bound, so that

2ty
Pr(error) < }_ Pr(dg(/?“:),d,m) < dH(Rw),C(()m))
a=]
2t} c
+1/2 Y Pr(dg(R'S,c'0) = ag(RD), ci)) (C1)
a=1
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This union bound is the most common method used for analyzing decoder performance.

We can model the encoder as a finite state machine. Transitions between states occur
at each new input bit. Because the oldest bit of the k bits in the shift register does not
affect the next state, we only need 25! states. The finite state machine representation of

the rate 1/2 k = 3 encoder is shown in Fig. Cl.

There is a one-to-one mapping between codewords and paths through the finite state
machine. Consider two paths £, and €3 of length L, corresponding to codewords CS,“
and Cf,ﬁ), which both start in the state zero and end in the same state. Let A(£) be the
set of all codewords of length £; > £ for which the first £ bits are the codeword co.

(54}
A

Every codeword C‘gc‘) € A'f1) s the concatenation of Co ' and some sequence Cif”, where
L+ £y = L. Similarly, we form the set B(£1) from Cgﬂ), and find that C;c') e B(£1) js
the concatenation of Cff’ and C(\C"’). Also, we denote the last mLs symbols of R{f1) by

R(.Eﬂ

We wish to find the sequences in A'f) and B{f) at minimum Hamming distance from

C(()u. We note that
(R, CIEVy = dg(R'D), ¢(0)) + dy (R, CE2)) (C2)

and
dg(RUED, ¢lFy = ay (R, 'y + dg(R'E2), L)) (C3)

Let C(f') € A'LY) be the codeword which minimizes dH(R(B‘),Cgt')), and similarly for
c’}f" € B!L1) Because the starting state is the same, C:,ﬁz) and C(\£2) range over the same
sequences. This implies that dH(R‘f”,C‘L,C”) must equal dg(R(f?),C(\C’)). Therefore,
the codeword which is uniquely closest to R!£1) will be in AL1) only if dH(R(m,CS.c)) <
dH(R(C’,C(,m), and will be in B£1) only if dH(E“:),Cf.m) > dH(R(C),C‘(,m). In the case

of a tie, dH(Rw),Cf,u,' = dH(R(E’,Cf,‘C)), the ~odewords C(f') and C;C” will have equal

e




Figure C1. Finite state machine model.

Rate 1/2 k=3 code.
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Hamming distances to C((JE'), so one must be chosen at random. We can make this random
choice at bit £ without increasing the probability of error. Therefore, no matter how the
paths compare, at bit £ we can eliminate cne of the paths entering a given state. In fact,
we can eliminate all but one path entering every state. We call the remaining paths the

survivors.

Because of the known starting statc, during the first k — 2 bits, there are a limited
number of states that the encoder can be in. For example, it cannot be in the all ones
state since all of the zeros will not have been shifted out. After k — 1 bits, it can be in any
state, so the kD bit can be mapped into any of the 2¥ transitions. There are at most 2F~!
survivors. At each bit a comparison must be made between the two paths entering every
state, or at most 2* comparisons. The decoder must retain the 2! survivors and the

Hamming distance between the received symbol sequerce and each of the 2¥~! survivors.

For a finite length message, a known seqguence of k — 1 bits must be appended. This
will give a uniquely specified ending state, so the decoder will be able to decide between

the 251 survivors.

Assuming that the atl zero codeward C{',E) was sent, an error event nccurs at bit £ when
the path merging with the state zero is chosen as a survivor, eliminating C((,C’. For a fixed
length message, if we alsn asaume that the known concluding bits are a sequence of & — 1
zeros, the decader will always chonse 4 codewnrd which ends in the state zero, s¢ again

y . . | .
the only ~oriparizons we need to consider are those between C,‘,C and the path entering
the state zero. Dennte the codeword Lorresponding to the path entering the state zero at

: ALY ‘r o Hermring ek anmen bt (£) (L) (£
bit L by (. The difference in Hamming distance between R'“Y and £,7' and R4} and

y E t

Ci¥! anly depends on cymhels of RV for which €1 - ' f
¢ only depends on those symbala o for which " = 1. Let 1 be the nuraber o

. Al , oy - . . .
symbols for which L,LC’ 1. The probability that L‘I:C! 13 chosen as the survivor is P,, the
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probability that more than half of these ¢+ symbols are in error, which is

> (:)p‘(l -p), i odd;
R. _ e=(i+1)/2 ' (04)
1( : ) i/2 i2 ~ (1), i—e :
NIV AT LR p°(1 —p)'™¢, 1 even.
2\i/2 e=ij2+1 \©

where p = P, ,ymbot, the channel symbol error rate.

We wish to find the number of codewords which begin in state zero, return to state zero
for the first time at bit £ and have 1 ones. This is done by modifying the state diagram as
follows. Split the zero node into a source node and a sink node. Assign a gain of LN#D?
to the transitions, where 4 is the weight of the input bit (i.e., 0 for a 0, 1 for a 1), and 7
is the weight of the output bit (i.e., 0 for 00, 1 for 01 or 10, and 2 for 11). For a path of
length o' with 8’ ones in the input bits and ' ones in the output symbols, the product of

the transition gains is LY N¥ DY, The modified state diagram is given in Fig. C2.
If we sum together all possible paths from the source to the sink, we will find the
overall gain of the network, T(D, L, N). For example, for the rate 1/2 k = 3 code, this is

T(D,L,N)=D°L’N + D°L*(1 + L)N? + ..+ DV L** (1 4+ LYN'* 4. (C5)

This gain can be found directly from the modified state diagram by solving the set of linear
equations giving the dependencies between the nodes. For example, for the rate 1/2 k =3

code, we find T(D, L, N) directly as

D°L’N
T(D,L,N)=
(D,L,N) 1-DL(1+L)N (Ce)
Since we are not interested in the number of ones in the input bits, set ¥ =1 to get
D°L}
D, L) = 7

(D, L) 1--DL(1+ L) (€7)
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Figure C2. Modified state diagram.

Rate 1/2 k=3 code.
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We define a,“:) to be the sum of the coefficients of all terms of T(D, L) for which the

L)

exponent of D is 1 and the exponent of L is less than or equal to L. af is the number

of codewords of length less than or equal to £ with 1 ones. The union bound on the

probability that an error event occurs at bit £ is

mfl
PP <Y alPPp, (C8)

=1

This is overbounded by letting £ go to infinity. We define a, = limp_. af-ﬁ), 80

o0
Pp <) aP, (C9)
=1
for every bit. We find the coefficients a; by evaluating 7(D, L) at L = 1, since

T(D,L)|p= = f;a,-p" (C10)

=1

An additional simplification is realized by using the bound P; < (2\/p(1m— p))*. This

yields
Pe < 3 2ol - ) = T(D)lpoy i (c11)
1=1

However, this is a very loose bound for large values of p. Because we are interested in the
decoder performance up to about 1072, it is necessary to use the more exact expression of

equation C9.

C.3 Numerical evaluation of Decoder Performance

Several steps were required in order to derive numerical results for the performance.

First, the transfer function T(D) had to be calculated. Next, the expression had to be
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stated in the form of a power series expansion to find the coefficients a,. Finally, the terms

P; had to be calculated and the summation of Eqn. C9 evaluated.

A computer program was written to give the equations relating the states of the mod-
ified state diagram for the rate 1/2 constraint length 7 code being modeled. The MAC-
SYMA ((©1976,1983 Massachusetts Institute of Technology, ©1983 Symbolics, Inc.) sym-
bolic manipulation program was then used tc solve the 64 simultaneous equations, giving
an expression for T(D) as the ratio of two polynomials. This expression is given in Table
Cl.

Table C1. Polynomial Ratio Solution to T(D)

Numerator=—D8 416D —120D7? — D70 + 562 D% 1 8 D% _ 1838 D64 — 20D%2 + 4429 D%? —
18D°% —8068D°¢ +235D°4 +11218 D°? -678 D°° —11900D*® + 1097 D¢ +9575 D44 —1094 D42 —
5841 D% + 611D + 2795D%¢ — 49D3* — 1156 D% — 228 D° + 417D?® + 243D? — 76 D —
176D% — 15D + 93D'® + D1 _ 25D _ 6D'? + 11D

Denominator=2D"% — 32D7? + 240D% + 3D% — 1123D% — 30D%2 + 3662D% + 131D%8 —
8766 D¢ — 331 D% + 15763 D%2 4 561 D°0 — 21403D* — 782D%¢ 4 21746 D% + 1184D4? —
16133 D% — 1960 D% + 8344 D% + 2807D% — 2751 D% — 3064D3° + 389D?8 4 2509D?% +
267D — 1601 D%* — 403 D" + 844 D' +262D'® —345D!4 ~81D'2 +-85D10 + 40 D% —30D° —

6D* —4D? +1

The denominator was then expanded using the identity

I_I:1+z+:r?+xs+... (C12)

The expansion was calculated out to 64 terms. This was then multiplied by the numerator,

and the first 64 terms were retained. The coefficients are listed in Table C2.

We note that for large 1, the number of codewords of Hamming weight 1 given by a; is

very large. For a low probability of symbol error P, ,ymba, P will be small enough to offset
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10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52

11
38

193

1331

7275

40406

234969

1337714

7594819

43375588
247339453
1409277901
8034996288
4.580875611 x 10'°
2.611287754 x 10!
1.488634502 x 10'2
8.486419243 x 102
4.837861791 x 10'3
2.757937903 x 10'4
1.572231420 x 10%°
8.962880896 x 10'°
5.109505443 x 10'®

54
56
58
60
62
64
66
68

72
74
76

80
82
84
86
88
90
92
94
96

Table C2. Coefficients a;

a;

2.912797332 x 107
1.660510362 x 10'8
9.466139591 x 10'®
5.396401324 x 10'°
3.076348764 x 10%°
1.753746820 x 10%!
9.997656840 x 102!
5.699405471 x 1072
3.249083581 x 102
1.852218477 x 10%4
1.055901826 x 10%°
6.019423091 x 107
3.431517347 x 1026
1.956219246 x 1077
1.115189974 x 10?8
6.357409478 x 10?8
3.624194641 x 10%°
2.066059586 x 10%°
1.177807109 x 103!
6.714373564 x 10°!
3.827690629 x 10°2
2.182067383 x 1033
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98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134

136

1.243940152 x 10%4
7.091380930 x 1034
4.042612776 x 103
2.304588936 x 10%¢
1.313786523 x 10%7
7.489557000 x 10%7
4.269602640 x 10°8
2.433989993 x 10%°
1.387554717 x 104
7.910090375 x 10%°
4.509337848 x 10!
2.570656827 x 1042
1.465464930 x 1043
8.354236400 x 104
4.762534003 x 10%
2.714997404 x 104
1.547749762 x 10%6
8.823320927 x 1046
5.029946958 x 1047
2.867442606 x 104




the coefficient a;, so only the first few terms of the summation are significant. However,
for P, yymbot = 0.04715, which corresponds to Pp = 1072, the term ajy3gPjas is equal to
2.16 x 1074, or about 2% of the total. For P, yymbot > 0.04715, the power series yields
a Pp > 1072, However, in this range, terms of the summation of order higher than 138
become significant. Because the numerical calculation truncates these terms, the power
series result is not the true union bound. Of course, the bound becomes quite loose, so
the partial sum is probably greater than the actual Pg. Nevertheless, we use the looser

bound Pg <1 for P, sympot > 0.04715.
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Appendix D. Probability of Correct Packet Reception

D.1 Fixed Length Packets [TAIP84]

For a packet of length £ being sent over a binary symmetric channel, the probability of
the packet being correctly decoded, P¢, was bounded by Taiple [TAIP84] as follows. For
correct decoding, we assume that the starting state is known and that a known tailer of
k —1 bits is transmitted, so a total of £+ k—1 bits are encoded, and m(L + k— 1) symbols
are transmitted. Again, we choose the starting state and the tailer to be k — 1 zeros. There
are a total of 2£ codewords which are candidates for comparison to the received sequence,
since the decoder will only choose a codeword which starts and stops in the all zero : tate.
We index the paths corresponding to these codewords as £;. Let the event E; be the event
that path £; is not chosen by the decoder. The packet will be correct if the path 0 is chosen

by the decoder, or equivalently, if E; does not occur for any ¢+ > 0. Thus,

2ty
Pc = Pr( ﬂ E;) (D1)
=1
Taiple [TAIP84] proves that for the events E;,
21
Pc > [ Pr(E) (D2)

1=1

We can group the non-zero codewords according to the first time at which they return
to the zero state. Let B, be the set {1|£; returns to the zero state at bit z}. The soonest
a non-zero codeword can return to the zero state is in k bits, since a one followed by all
zeros still must pass through all k stages of the encoder shift register. Thus, the first
non-empty set B, is By. The sets {B,|k <z < L + k — 1} form a partition of the indices

{1,2,...,2£ -1}, s0

2£ L+k-1
Pe> ] PE) = 11 I Pe(E) (D3)
=1 =k {(€D;
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Let {£!} be the set of paths starting at bit —oo, passing through any arbitrary state
at bit zero and ending in the zero state at bit £ + k — 1. We can include in the product
[liep, Pr(E;) the terms corresponding to paths which first return to the zero state at bit
z but which did not start in the initial state of all zeros at bit 0 , and still retain the
inequality of D3, since the probabilities of the extra terms are all less than 1 Let B.
be the set {i[¢] returns to the zero state at bit z}. The set of all paths {&![i € B.} are

equivalent for all z, so we let B' = B!,. The inequality of D3 now becomes

L
Pg > (H Pr(E,-))

i€p’
L
> ( I1a- Pr(E,-))) (D4)
te€B’

where E; is the compliment of E; We multiply out the term [T;ep/(1 — Pr(E;)) to get an
infinite sum, which is lower bounded by the sum of lower order terms 1 — ¥,cpr Pr(E;).
However, the event E; is the event that path ¢! is chosen as the correct path, and this is
summed over all paths which are returning to the zero state. This sum is exactly the sum

found in the union bound earlier. Thus,

£
P; > (1 -2 PF(E.')) = (1 - Pg)t (D5)

D.2 Varying Symbol Error Rate

Using a similar approach, we can find an approximation to a bound for the probability
of correct packet reception for a variable length packet being transmitted on a channel
with varying symbol error rate, as in the network model. This approximation results in
a model of decoder performance which is memoryless, and therefore can be incorporated

into the Markovian network model.
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The analysis of the Viterbi decoding algorithm assumes that infinite decoder memory
is available, so that the chosen codeword will be the one which is closest to the received
symbol stream. In a practical implementation, a finite memory must be chosen, and a
sub-optimum choice must be made when the memory overflows. However, the memory
can be made large enough that the probability of this occurring is negligible. Simulations
have shown that a memory of approximately 5(k — 1) information bits is sufficient for a
rate 1/2, constraint length k decoder [CLARS81]. In the case of the k = 7 code, this is 30

bits.

Even if the packet length is not fixed, for a given packet of length £ bits, the inequality
of D3 is still valid. We again include those paths corresponding to codewords of length

greater than z in the product, to give

L+k-1 L+k—1 B
Po> I 1 PeE)= 11 II (1 Pr(E) (s)
r=k ieB) r=k ieB;}

Also, the inner product can be lower bounded by the sum of lower order terms, so

IT(1-Pr(E))>1- Y Pr(E) (D7)

1eb} €B!

We now partition B!, into * B, those paths which diverged from the all zeros state
within the last 30 bits, and ~ B!, those paths which diverged more than 30 bits ago. The
decode memory is chosen such that

3 Pr(E;) << Y Pr(E) (D8)

€~ B 1€+ D}
Thus, we approximate the sum 3¢ p: Pr(E;) by ¥,c+ p. Pr(E;). To find Pr(E,) fori € * B.,
we must know the probability of symbol error during each of the previous 30 bits. However,

the sum is monotonic in P, ,ympe- We can bound the sum by taking the nighest and iowest
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values of P, symbot Occurring in the last 30 bits and finding Pr(E;) if all symbols had the

extreme value of Pe ,ymbol-

We approximate the performance by using the current value of P, ,ymbx as the value
experienced by the last 60 symbols. By using the bounds on P, symbot, We show in Section

4.C that this approximation is valid.

If the symbol error rate for all 60 symbols is P. ,ymbot(7), We can bound the sum by

Y Pr(E) < Pg(s) (D9)
et JY
where Pg(7) is the probability of first error given a symbol error rate of Pe symbot(7)- If j:

is the state at bit z, using the memoryless approximation we find

+k-
Pc2 H (1 — Pe(s:)) (D10)
r=k

Let £; be the number of bits for which the state is j.

H I—PE].!' (Dll)

J=1

As described in Appendix C, the decoder niodel overbounds Pg by Pp <1 for those
values of P greater than 1072, We use L to denote the state j such that Pg(L) < 1072
and Pg(L 4+ 1) > 1072, We bound P by zero if the state L + 1 is reached. Thus, we only
need to find P for those cases when £, =0 for y > L. We then find

L

Poz [ (1 - Pei))™ (D12)

J=1




Appendix E. Throughput Equation for the Half-duplex Model

As in Appendix A, we expand the state space to explicitly indicate the state of user ¢
We define the following:
t* is the number of users transmitting not including user s

r* is the number of users receiving not including user 1

0 1 is idle
¢; is the state of user 1, ¢ =<1 ¢ is transmitting
-1 1 is receiving

§* is the expanded state space,

0<t*<M~1)

0L r <t +¢
ST =((t",r" )
t*+rr<M-1

¢ € {-1,0,1}

Tipe is the steady state probability of being in state (t*,r*,¢;)

rtey)

S(t*,r*,1) is the fraction of time that user 1 is successfully transniitting packets which

found the network in state (¢*,r*,0) upon arrival.
We again have Ci(t*,r*,t) and Ty(t*,r*,1) as in Appendix A.

* * N l
E(CH(t',r"i) = | (E1)
(t*.r*.0)

The event {X* = (t*,r*,0)} is the same as the event {X = (¢,r) and 1 is idle)}, t = ¢* and

r=r" so

1r(‘l'.r'.0) = . Psr(t,r) (E2)




and

1 t =t* and
E(Cr(t*,r*,3)) = - Y E3
( k( 7 1")) AW((,,-)PSI(t) T) r =1t ( )
By definition, the quantity E(T,|(¢,r)) is conditioned on the packet capturing the
receiver. If the receiver is not captured, this corresponds to an immediate transition to

the state Failure in the auxiliary Markov chain. Since Ti(¢*,r*,1) is not conditioned on

capture, we have

= t* and
E(Ty(t*,r*,3)) = E(T,|(t,r)) - Pr(receiver is captured |t, r) ‘ . z:n (E4)
=r
Pr(receiver is captured lt, r) is equal to Ppy(¢, r)ca;. Given these, we can find
. E(T(t*,r",1))
S(t*,r*,s) = RS
v E(Cr(t*,r*,1)
( k( r ) (Es)
t =1¢* and
= A7"(!,r)PSI(t’ T)PD](t, T)ag E(TU‘(ts T')) r— gyt

for ihose states {(t*,r*) : (¢*,r*,¢c,) € §*, for any c¢,}. Since E(T,|(t,r)) = 0 fort > L, the

throughput can be found by summing over the states §’, so

S; = Z /\"u.r)PSI(t,T)PDI(t,")Olt E(Tn{(t»")) (EG)
(t.r)es’
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Appendix F. Throughput Equation for Delay Models

F.1 Receivers Available for all Transmissions

The derivation is very similar to those of appendixes A and E.
We define the following:
w* is the number of users in the holding state not including user s

t* is the number of users transmitting not including user 1

0 1 is idle
c; is the state of usert,¢; = (1 1 is holding
2 1 is transmitting

O<w <M-1
St={(w't'c):0<t* < M-1-w'

0<¢; <2

7 (e*1o.c,) 18 the steady state probability of being in state (w*, t*, ¢)

(u,. .t.
S(w*,t*,1) is the fraction of time that user 1 is successfully transmitting packets which

left the holding state when the network was in state (w*,t*,1).

1

E(Ci(w*,t*)3)) = (F1)

*
V”(tr‘.t'.l)

The event {X* = (w*,t*,1)} is the same as the event {I = (w,t) and 1 is holding)},

w=w"and t =t* so
”(.w'.t'.l) = ey Pr(w,t) (F2)
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which gives

1 w=w"* and
E(C(w* t' ) =- - - - =
( L(w y »')) V”(w,t)PH(w)t) t ==t
Also,
& e w = w" and
E(Tk(w 7t 1’)) = alE(Tﬂl(w)t)) t =t
Given these, we can find
oo E(T(w',t%,4))
§(w',t"i) = E(Ci(w*,t*,1))
w=w* and

= V”(w.t)PH(w)t)a‘E(Tﬂl(wa t)) t=t*

and

S; = Z wr(w‘,)PH(w,t)a,E'(T,Kw,t))
(v t)eS'

F.2 Half-duplex Model

We define the following:
w* is the number of users in the holding state not including user ¢
t* is the number of users transmitting not including user 4

r* i3 the number of users receiving not including user 1

0 1 is idle
1 1 is holding
¢; is the state of user 1, ¢ =
2 1 is transmitting
1 is receiving

0 c; =0orl

a;, =141 c; =2
-1 c;, = 3

92

(F3)

(F4)

(Fé)




( 0<w'<M-1
o<t*<M-1-w
§$'={(wt'r'e):0<r* <t +a;

w+t*+rr<M-1

0<¢ <3

is the steady state probability of being in state (w*,t*,r*,¢,)

1r(.w’,l"r',c.)
S{w*,t*,r*,1) is the fraction of time that user s is successfully transmitting packets
which left the holding state when the nstwork was in state {w*,t*,r", 1).

1

E(Cy(w®,t*,r",1)) = (F7)

]
VT (w0 1% r2,1)

The event {X* = (w*,¢*,r* 1) is the sane as the event {¥ = (w,t,r) and 1 is holding)}
w=w't=¢t,and r* =r, so

w=w"'t=t,

1r(.w',t“r‘,l) = “(u',t,r)PH(w:t’ T) and r = r* (FS)
which gives
1 w=w't{=1t*
E(C(w*,t*,7*,4)) = 5 eyt o
(Ca(w ap) VT (e PE(W, 2, T) and r = r* (F9)
Also,
o oge 8oy w=uw"t=t*,
B(Ti(w',t", ') = Por(w,t, N B(T(Er) 7007 (F10)
Given these, we can find
T I E(Tk_(ui:f’r‘:_t))
SWLE L) = BGu(wt, e 4))
w=w',t=1t"
= VTr(w,t,r)PH(w)t) r)PDI(wa t, r)a! E(Tal(w’ ¢, r)) and r = r* ’(Fll)
and
S = Z Vﬂ'(w,,‘,)PH(w,t,T)PD[(w,t,f)agE(T.I(W,t,T)) (Flz)

(w,t,r)eS’
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