
SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVE1L.SITY
STANFORD, CALIFORNIA 94305-4022

N

A Build-Up Interior Method for Linear Programming:
Affine Scaling Form

by
George B. Dantzig and Yinyu Ye

TECHNICAL REPORT SOL 90-4

February 1990

C b

Research and reproduction of this report were partially supported by the National Science Founda-
tion grants DDM-8814253, DMS-8913089; Office of Naval Research grant N00014-89-J-1659 and the

Department of Energy grant DE-FG03-87ER25028.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the authors and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

A BUILD-UP INTERIOR METHOD FOR LINEAR PROGRAMMING:

AFFINE SCALING FORM

George B. Dantzig t and Yinyu Ye

February 1990

INSPECTED
4

Key words: linear programming, interior method, affine scaling.

A

Abbreviated title: A Build-Up Interior Method for LP

t Department of Operations Research, Stanford University, Stanford, CA 94305

t Department of Management Sciences, The University of Iowa, Iowa City, IA

52242

Abstract

We propose a build-up interior method for solving an m equation n variable linear

program which has the same convergence properties as their well known analogues

in dual affine and projective forms but requires less computational effort. The algo-

rithm has three forms, an affine scaling form, a projective scaling form, and an exact

form (that uses pivot steps). In this paper, we present the first of these. It differs

from Dikin's algorithm of dual affine form in that the ellipsoid chosen to generate the

improving direction A in dual space is constructed from only a subset of the dual

constraints.

At the start of each major iteration t, we are given an interior iterate y'. A

selection of m dual constraints is made using an "order-columns" rule as to which

constraints show "the most promise" of being tight in the optimal dual solution. An

ellipsoid centered at yt is then inscribed in convex region defined by these promising

constraints and an improving direction A computed that points to the optimal point

yt + A on the ellipsoid boundary. Minor cycling within a major iteration is then

started.

During a minor cycle, the constraints selected to define the ellipsoid centered at yt

is built up to include the constraint (whenever there is one) that first blocks feasible

movement from y' to yt + A. If one blocks, it is used to augment the set of promising

constraints and the ellipsoid is revised; the improving direction A is recomputed by

means of a rank-one update, and the minor cycle repeated until none blocks movement

from y' to y' + . When none blocks, the minor cycling ends. y'' = y=' + initiates

the next major iteration. Major iterations stop when an optimum solution is reached.

We prove this will occur in a finite number of iterations.

2

1. Steps of Dikin's Algorithm

We are concerned with the linear program whose primal form is

(P) minimize " = ex

subject to XE{xER" :Ax=b,z O}, (1.1)

where c E R", A E Rrnx ", and 0 $ b E R- are given. Its dual form is

(1) maximize z = yb

subject to YE {yE R- :c-yA>0}. (1.2)

We denote the dual slack variables by

u = c - yA > O. (1.3)

When feasible solutions exist for both (P) and (D), then feasible solutions z and (y, u)

are optimal for (P) and (D) if and only if the vector

Diag(u)X = 0, (1.4)

see Dantzig [4]. Diag(u) denotes the diagonal matrix with diagonal u. We therefore

seek feasible solutions for (P) and (P) satisfying complementarity conditions (1.4).

In order to show convergence for our build-uD method, we need to refer to specific

parts of the proof for Dikin's algorithm, and th- best way we found to do so is to

first give our own proof of the latter in the next two sections. Proofs of Dikin's affine

scaling algorithm [5] were further developed by Adler, Karmarkar, Resende and Veiga

jA], Barnes [2], Monma and Morton [8], and Vanderbei, Meketon and Freedman [11],

among others. We will present a set of assumptions and inductive conditions upon

which a proof of convergence can be based and show how these extend to our variant;

hence details ot their results with 1"odi.ficiois provide a proof that our build-up

algorithm also converges to optimal solutions to (P) and (D). We then show that our

3

starting rules for initiating a major iteration imply convergence in a finite number of

iterations.

Each iteration t of the Dikin algorithm starts with an interior dual y', solves an

ellipsoid subproblem centered at yt:

(&) maximize z = yb

subject to yE S = {yER - : II(y-y*)AD-'Il <_ 1}, (2.0)

where the Euclidean norm of a vector v is denoted by IJvII and D = Diag(ut) denotes

the diagonal matrix with diagonal u.

The optimal solution to (C) becomes y'+' of the next iteration. We will review

later the proof that y' -- lies in the interior of (P). It is computed by (2.2) below. At

the same time, a solution xt is computed by (2.3) which satisfies Azt = b; x' may or

may not be a feasible solution to (P). As t - oo, we will show that z tends towards

being feasible and also becomes more and more complementary to:

ut = c - yt A > 0. (2.1)

The algorithm starts with an interior solution y' given. The iterates are then computed

by

yt+1 = Yt + (Ab) - I2 A, (2.2)

z t = D -2 AT AT (2.3)

where

A = br(AD -2 AT) - 1 and D = Diag(u t). (2.4)

The superscript I denotes transpose.

In place of (2.2), an adjusted y+' is often used that makes a bigger step:

adj. y'+ = V + (Ab /2 A, a > 1,

4

where a is chosen so that adj. y'+ I is .9 of the way in the direction A from unadjusted

yt +1 given by (2.2) to the boundary of (D). The proof of convergence is almost exactly

the same. For our development, we assume a = 1.

2. Motivation for the Build-Up Algorithm

The improved point yt+l = ys + A = yt + (Ab)- 1 /2 A results from solving the

ellipsoid constrained subproblem (2.0). The computation of bT (AD-2 AT)- involves,

however, all the columns of A even though, in practical problems, most columns have

little effect on the shape and size of the ellipsoid and hence on the location of the

optimal point y = y'+'. Still other columns may affect its location but may do so

adversely. This suggests that a good part of the computational work could be bypassed

if one kr--,.w (or had a good guess about) which columns to drop temporarily on a given

iteration as non-promising. The ellipsoid based on fewer columns contains e, and hence

its use accelerates convergence. Another motivation connected with the first step of

the build-up algorithm is a rule for selecting a promising set of basic columns; we

believe it will speed up convergence of some practical problems, especially those with

a large number of columns. Several versions of the rule lead to finite convergence, see

Theorem 7.

Zikan and Cottle [13] propose the box method to select "likely" columns to keep

in. Given an interior point y in (D), they choose m columns from A corresponding to

the m closest hyperplanes in (D) to form a "box" or parallelepiped around yt . Then

the moving direction is generated by maximizing yb subject to the box constraints.

This approach uses a subset of the columns and replaces the ellipsoid by a box.

Another approach, the build-down scheme, proposed by one of the authors, [12],

is also designed to reduce the computational burden. The algorithm begins with a

full set of columns. Then an eliminating criterion is applied which identifies columns

5

guaranteed to never be basic in any optimal solution. Via this criterion, A is eventually

built-down to the optimal basis (when it is unique) and does so in polynomial time.

The main idea in this paper, in contrast to the build-down scheme, is to present

a build-up interior method by selecting from A, in each major iteration, a subset of

hyperplanes (columns) that the current iterate would be moving in some sense towards

if the proposed move from yt in the direction A were actually made. We refer to the

corresponding columns as "promising". Thus, during a major iteration we work with

fewer dual constraints, hence less computational effort per major iteration, including

the effort to do the rank-one update. We present an affine scaling variant of the

algorithm here.

As in Dikin's method, the affine scaling variant uses ellipsoids in the subopti-

mization problem, but the ellipsoid is modified by replacing A with A,, a subset of

"promising" columns selected from A, which are built up during the minor cycling by

blocking dual constraints. Our goal is to compare this variant with the affine scaling

method of Dikin [5] (in dual form). We have also looked into the analogous variant for

the related Karmarkar's projective algorithm [7] and plan to make that the subject of

a subsequent paper.

The well known theoretical result is that the iterates of Dikin's algorithm (y', z t)

converge as t -- oo to (9,2*), the optimal dual and primal feasible solutions. Proofs

of convergence can be found in [1] [2][5][8] [11] and in Vanderbei and Lagarias [10] under

somewhat weaker assumptions. The convergence ratio p = (go b- y 'b) / (9g b - y'b)

is asymptotically bounded above by 1 - 1/,/m as t --+ oo. A proof of this asymptotic

ratio of decrease can be found in this paper and in Dantzig [3].

6

3. Proof of Convergence of Dikin's Algorithm

Assumptions:

(AO) b 5 0, c $ 0, n > m, and every subset of m columns from A has rank m.

(Al) An interior feasible dual solution y' is given.

(A2) A feasible primal solution exists.

(A3) Every feasible dual basic solution is nondegenerate.

(A4) Every primal basic solution, feasible or not, is nondegenerate.

The assumptions imply the primal feasible region is bounded, but no assumption is

made about boundedness of the dual space here.

We must show first that the detailed steps of the algorithm, (2.2),...,(2.4) are legal

and hence can be executed iteratively, namely:

(i) D - I exists; (3.1)

(ii) (AD - 2 AT) - ' exists; (3.2)

(iii) Ab > 0; (3.3)

(iv) A = (Ab)- 1/2 A is an improving direction, i.e., y t+' b > y'b; (3.4)

(v) U'+' = - IID t 1-1(D 2 xt)T . (3.5)

(vi) 0 < u+' < 2u t . (3.6)

Proof. We are given inductively by (2.1) that / is an interior point meaning u' =

c - y t A > 0. Thus, D = Diag(u t) has a positive diagonal and therefore (i) D and

D- 2 exist and have positive diagonals. The rank of A by (AO) is n and so the rank

of AD- I (which rescales the columns j of A by (1/u) > 0) is also of rank m; hence

AD- 2 AT is an m by m symmetric positive definite matrix of rank m, implying (ii),

(AD - 2 AT)-' exists.

The iterates satisfy certain important relationships. First

Ax' = b, (4.1)

7

which is obtained by substituting the expression for A from (2.4) into (2.3) and mul-

tiplying by A thus:

Ax t = (AD-2 A ")(AD -2 AT)- 'b = b (4.2)

which are valid steps since D-1 and (AD- 2 AT)-' exist. Note that

Dx' = (, $,0,,x*,...,,.), 54 0, IIDx'II > 0, (4.3)

because ut > 0 and x' 5 0 (since x = 0 in (4.2) would imply b = 0 contrary to (AO)).

Also note that

0 < IID II = (x)TD' Vx = (AAD - 2)D 2 (D - 2A AT)

= A(AD-2A T)AT = A(AD- 2 AT)(AD- 2 AT)-b = Ab. (4.4)

Thus, (iii) is true. This implies that it is legal to use (Ab)- 1/2 as a factor in (3.4) and

(2.2) since (Ab) > 0. Multiplying (2.2) on the right by b and noting (4.4)

y t 1 b-Y'b= (Ab)'/ 2 = HDxt 11 > 0. (4.5)

Thus (iv) is true; that is, & = (Ab)-/2 A is a strictly improving direction.

By multiplying (2.2) on the right by A and substituting c - u' and c - u t + ' for

ytA and y'+lA, we have from (2.1):

u + I = Ut - (Ab) - 1 / 2 AA (4.6)

= U' - IIDx- 1- 1AA (4.7)

= ,i' - jjDx'j 1-'(D'zt)T (4.8)

where (4.7) follows from (4.4); and (4.8) follows by multiplying (2.3) by D2 . Hence

(v) is true.

We now verify (vi) that 0 < u'+ ' < 2u' by showing first 0 < u'+ ' < 2u' and next

that the feasible region of (C) is contained in the interior of the feasible region of (D).

8

Let g be any point that lies in the ellipsoid 6 and let i = c - PA. An example of such

a point is= y+l and 2 =ut+I =c-Y +'A. Then

((- y')A.,)<

(Ut)2 1

that is n(f",,. I),
E ii - j) < 1 (5.2)

This implies for each j:

_<2 1, (5.3)

(Ujl)2

j < u u <- it (5.4)

0 < t2 _< 2 ,. (5.5)

In particular, y - y' is in t and therefore (5.5) implies

0 < U ' 1 = C - y'+A < 2u. (5.6)

What remains to show is u' > 0. Assume on the contrary, that y'+' is on the

boundary of the dual feasible region, then there exists a j = s such that

0=U+ y=+cA.,. (6.1)

But equality holding for (6.1) for j = s, implies the same for (5.3) forj = s and this

in turn implies that all terms of the sum (5.2) must vanish except term j = a. Hence

U.+= u. for all j except s. Recalling (2.1) and (2.2):

0=U,- u+I = (y'+ - y')A., = (Ab) - / 2 AA.j j a . (6.2)

Therefore, since Ab > 0, by (3.3),

AA., = 0 for all j 4 a, (6.3)

and so from (2.3)

X1 = 0 for all j s. (6.4)

However choosing B to be any basic set of m indices j which includes j = s, we have

b= Azt = ABz = A..,

which implies that z is a degenerate primal basic solution, contradicting (A4). There-

fore (vi) is true. Q.E.D.

This completes the proof that the detailed steps of Dikin's algorithm are legal.

The property that u+t4 < 2ut :s not needed for iteratively executing the algorithm

but will be used in the proof of convergence which we now present in the form of

several theorems and lemmas.

But first some definitions: A primal solution is any z satisfying Ax = b. A dual

solution is any (y, u) satisfying yA + u = c. A primal solution is feasible if x > 0; a

dual solution is feasible if yA < c or u > 0. Neither primal or dual solutions need

be feasible; however, all dual solutions we will be considering will be feasible ones. A

partition of indices j = 1, 2, ..., n into two sets consisting of m indices and the remaining

n - m indices will be denoted by (B, N). The set AB of columns corresponding to B is

non-singular by assumption (AO) and hence forms a basis in the space of the columns

of A.

The basic primal and dual solutions associated with some partition (B, N) will be

denoted by I and (g, i). By definition, the primal solution 2 = (-4, tN) associated

with (B, N) is basic, if 2N = 0. The nondegeneracy assumption (A4) also states that

I2,l>O for jEB. (7.1)

By definition, the dual basic solution complementary to 2 is (., i) if 9AB = C5 or

u 5 = 0. The non-degeneracy assumption (A3) asserts that the dual baqic solution

10

satisfies 11i I > 0 for j E N; in particular, if the dual basic solution is feasible, then

fLN > 0. (7.2)

Primal-dual solutions are called complementary if xju, = 0 for j = 1, 2, ..., n.

Theorem I. The primal-dual iterates {u', Xt } tend towards complementarity, i.e., for

j =1, 2, ... , n

' t-+oo. (8.0)

Proof of Theorem 1. We note that ytb is strictly monotonically increasing by (3.4)

and has a finite upper bound because by (A2) primal feasible solutions exist. Therefore

from (4.5) we have

yt+1b- y'b = IIDx' - 0 as t - oo. (8.1)

where IlDzt ll = Z(u;z.) 2 from (4.3). Q.E.D.

Note that the proofs of convergence given in Theorems 2 and 3 that follows do

not require the dual feasible region to be bounded.

Theorem 2. Given S, any infinite subsequence of t = {1, 2, ... , jo}, there exists a

subsequence S. C So and a partition (B, N) such that x' = (* , zxt) tends to the

primal basic solution (;N = 0) and (yt, ut , uN') tends to the complementary dual

basic feasible solution (gtZB = 0, fiv> 0) using t in S., i.e., as t -- oo when t is

restricted to successive t in the subsequence S..

It is convenient to break up the proof of the theorem into three lemmas.

Lemma 2.1. Given So, any infinite subsequence of t = {1, 2, ..., oo}, there exists a

subsequence S. C So and a partition (B, N) such that either, for j E N, u. _

for all t in S., or, for j E B, u t - 0 using t in S..

Proof of Lemma 2.1. Define inductively for j = 1,2, ... , n the nested set of infinite

subsequences So D S, D S 2 ... D S, as follows:

11

initialize j 1; So given; e. := oo;

while j < n. do begin

cj := inf(u*) using t in Sj_, ; (note ej : 0)

if c >0 then5 :=S S-,;

if E- 0 then S:- any infinite subsequence of S#_.. such that

t ---, 0 using t in this subsequence;
j

j:=j+;

end while;

S. := S,; e. := min(ei such that c, > 0).

Let fn be the number of indices j such that u'. -- 0 using t in S.. For the remaining

n - fn indices j, ut > e. > 0 for all t in S.. We have two possibilities:

Case 1: Either Ylu < m, in which case there exists a subset N of n - m indices j such

that for j in N, u' > e. for all t in S.; the partition (B, N) is then defined by letting

B denote the remaining indices j.

Case 2: Or the alternative fn > m, in which case there exists a subset B of m indices

such that for j E B, u' --+ 0 using t in S.. The partition (B, N) is then defined by

letting N denote the remaining indices j. Q.E.D.

This completes the proof of Lemma 2.1. The two lemmas that follow establish

that th = m and iterates (y', z ') converge using t in S.. The complementary basic

solutions associated with (B, N) are denoted by (2, 9).

Lemma 2.2. If Lemma 2.1 resulted in Case 1, then Theorem 2 is true.

Proof of Lemma 2.2. Under Case 1 there is a partition (B, N) such that for j E N

that u > e. > 0 for all t in S.. Since (zsu.) --+ 0 as t -- ,oo by Theorem 1 and tu >

e. > 0 for j E N and all t in S., it follows that x'N -- 0 =2N using t in S., and it also

12

follows that x' -- A (b - AN,) X' A-'b = 2B using t in S.. By the nondegeneracy

assumption (A4), 12jI > 0 for j E B. Again noting (x*u') - 0 as t --+ oo, it follows

using t in S. that u. -- + 0 f&B. Finally, we have y' = (CB - u')A-' - c- =

using t in S. and hence u =CN - y* AN - cN - yAN = f4N using t in S.. Moreover,

since us > 0, u(.N 0. By the nondegeneracy assumption (A3) or (7.2), -N _ 0

implies UN > 0.

Hence using t in S., x' - , the basic primal solution with respect to (B, N), and

iterates (yt , ut) converge for t in S. to the basic dual feasible solution

(9, uB = 0 , iN > 0). Thus Theorem 2 is proved for Case 1. Q.E.D.

Lemma 2.3. If Lemma 2.1 resulted in Case 2, then Theorem 2 is true.

Proof of Lemma 2.3. Under Case 2, there is a partition (B, N) such that, for j E B,

ut -+ 0 using t in S.. As in final part of proof of Lemma 2.2, y' = (CB - Ut)A--

cAq = using t in S.. Moreover, since u4 > 0, ut *-+fN >0. By (A3) or (7.2),

fN _> 0 implies iZN > 0. Thus u -. fN > 0 using t in S.. But u' > 0 and fN > 0

imply for j E N there exists an c. > 0 such that u' > e. > 0 for all t in S.. But these

were the conditions we assumed in the previous lemma, hence its conclusions apply,

proving Theorem 2 for Case 2 as well. Q.E.D.

Theorem 3. As t --* co, (X', yt) converge to primal basic and complementary dual

basic feasible solutions (.t , y").

Proof of Theorem 3. In Theorem 2, choose So = {1, 2,..., n} and let T. = S. be

the subsequence obtained for this choice of So, and let (2*,V*) be the basic primal

solution and complementary basic dual feasible solution that (Xt , y') converge to using

t in T.. Denote by (-P,P') for p = 1,2,...,q the finite set of q other basic primal and

complementary basic dual feasible solutions. Let 460 be the shortest distance between

13

any two extreme points 9; i.e.,

5o = (1/4)minI9'- fI, 119', (9.1)

where i,j *,1,2,...,q.

Given any 6 > 0 and any extreme points g, denote by N6 (g) the 6-neighborhood

of 9; i.e., the ball

N6 (9) = {y: Ili - 911 :5 6}. (9.2)

It is not difficult to show that the o-neighborhoods of g' and 9P for p = 1,2, ..., q have

no points in common. To complete the proof we will need three lemmas.

Lemma 3.1. Given any 6, 0 < 6 < 60, the count of y' not in the interior of any of

the balls N6 (9*) and N6 (yP) for p = 1, 2,..., q is finite.

Proof of Lemma 3.1. An iterate y' is said to lie outside the non-overlapping balls

if 1y' - g*"11 > 6 and 1' - 9P11 > 6 for p = 1,2,...,q. Let Y be the subsequence of

all such yt and let So be the corresponding subsequence of t. If, on the contrary, the

count of t in S0 is infinite, then by Theorem 2 there would be an infinite subsequence

S. such that y' -- g using t in S., implying an infinity of t in S0 whose yt' are in a

ball 1iy - 9P 15 b< for some p in {*, 1,2,...,q}, contrary to assumption.

Lemma 3.2. If the count of Se in the ball N6. (g) for some extreme point g is infinite,

then y' --+ 9 using y' in the ball.

Proof of Lemma 3.2. Note that the set of S' lying in the ball N60 (9) for some

extreme 9, but outside the smaller concentric ball Ns (g), is a subsequence of Y defined

in Lemma 3.1 and therefore must also be finite whatever be 6 < 60. It follows that

if the count of y' in N60 (g) is infinite, then given any 6, 0 < 6 < 6o, there exists a

t6 such that for all t > t6 all y' in N60 (g) are also all in N6 (9). By definition, this is

what we mean when we say y' -* 9 using y' in N6° (9).

14

Lemma 3.3. Either yt - g as t -- oo or there exists an infinite subsequence

TI - tl,t 2 ,.. . and a successor subsequence T 2 = {t1 + 1,t 2 + 1,.. . such that

yt g9 fort-th tinT andy t Po fort =tk +linT2 for somep=p 0 .

Proof of Lemma 3.3. Assume the latter case that y' - is not true. Generate

infinite subsequences T, = {tk} and T2' = {th + 1) and {ph,} as follows:

initialize k := 1; a, := first t such that y' E N60 (g");

cycle:

th :- first t > sk such that yt E N60 (go) and yt+ I E N60 (9P) for some p;

Ph :- p

-9A:- first t > t3 such that y' E N60 (");

kc k + 1;

repeat cycle;

Note that 8 k always exists since y' - " using t in To. And tk also exists, for else

8 k, 8h k+ 1, S- +2,... would all belong to N60 (g'), implying by Lemma 3.1 that y' -. "

as t -- oo, contrary to the contrary assumption. Therefore, since the subsequence

{ph is infinite and there are at most q different values that the ph can assume, there

exists a p = p0 such that there is an infinite subsequence of t E T, whose y' are in

N60 (9") and whose successor subsequence y'+I are in N60 (rT 0). Hence, there exists a

subsequence T C T, of th and successor sequence T2 C T2 of tA, + 1 such that yt - j"

using t in T7 and y'+' --+ PO using t in T2 .

Proof of Theorem 3 continued. Let (B, N) be the basic partition associated

with go, rA* = c - g A and let (h, R) be the basic partition associated with VPo,

UP° = c - 9Po A where po is as defined in Lemma 3.3 under the contrary assumption

that y' does not converge. Since B 5 B, let j = r be in B and not in B. Then since

15

for tk in TI, y, as k -+ 00:

U' = c, - y' A. -- c, -"A., = = 0, (10.1)

f+1 -c yhi ~-"A.=i~>,(10.2)ur, c , - yt" + 1 f. - 9P -0 A., -f P > 0, (02

where uo > 0 because r is non-basic with respect to (h, *) and the dual basic solution

by (A3) is nondegenerate. According to (3.6), ut+ < 2u t . Since ut, -- 0, it follows

that ut, +I - 0, contrary to (10.2). Therefore the contrary hypothesis of Lemma 3.3

holds, namely (z t , y') do converge to a primal basic solution 2" and the complementary

dual basic feasible solution q*. Q.E.D.

Essentially the same proof of Theorem 3 was given by Todd [10]. We gave the

proof above to show later where to modify it for our build-up algorithm.

Theorem 4. Dikin's algorithm converges to optimal basic primal and dual solutions.

Proof of Theorem 4. It is clear that if the primal z -- t which is feasible, then

the complementary conditions (1.4) are satisfied, implying convergence in the limit to

optimal solutions to the primal and dual problems. Since Azt = b, we only need to

prove that -- 0 for all j. At the tth iteration, we have from (4.8)

t+1 '
Uj = - IIDz' 1 IIDz=t1 "

.Il

Let us assume on the contrary for some basic index r, that x, -- <0 as t -- 00.

By complementarity, see Theorem 1,' -+ ft = 0. There exists a finite F such that

for all t > F, z' < 0 and therefore, since u, > 0:

1-u tzt/DztII > 1 for all t > F. (11.2)

Hence, from (11.1), for all t > f
Ut+1 > t (11.3)

16

Thus, we have u, strictly increasing for t = t+ 1, T + 2 oo, contradicting ul -+ 0

for basic index r. This completes the proof of Theorem 4. Q.E.D.

Theorem 5. The ratio of convergence

t - < + (12.1)
= -b-y t b - m

where i' --' 0 as t --* oo, i.e., pt is asymptotically _ 1 - (l/M)' / 2 .

Proof of Theorem 5. Let (B, N) be the partition associated with optimal (V, qT)

and let B = {j,,j2 ,...,j,,}. Since " CBAB and yt = (CB - ut

b- ytb -t uA- 'b = ut . (12.2)

From (12.1) and (4.5),
t)t2)112

Pt+Y b - ytb t i- t ' (uz (12.3)
= 1- " b- yb u B

We may rewrite (12.3) as:
1/2

(U M;)(1 - P') = (u,.).

(t t

_> u',j)2 (12.4)

(U,2) -+- (Uto.,2((XI., 1)) (12.5)

Define Ai = A ut t. Note A" A,= 1, o < A, < 1, because ut =

u-' .t,., and u,'.t, > 0. Substituting u to = >.(u*B2") on the RHS of (12.5) and

cancelling the common factor u' B2 > 0 from both sides:

(1 -p') > (,1) +Z(.)2((z2.,/:;,)2 - 1) (12.6)

_ (I/M + t) I /2 (12.7)

where the first term of (12.6), E(,\,)2 > 1/m since A ". = 1 and the second term

denoted et tends toO bcause > 0 and the weights 0 < Ai < 1. This

completes the proof of Theorem 5. Q.E.D.

17

4. The Build-Up Affine Scaling Algorithm

At the start of each major iteration t, we have given an interior y = y' with

u = c - ytA > 0. We order the columns by some criterion such as (13.0) which

measures the "promise" of a column A., being in the optimal basis. The subroutine

is as follows:

choose-m-promising-columns:

Reorder indices (1,2,...,n) to (j,,j 2 ,...,j,,) such that

Ut <u t <.... <U (13.0)

0' := (jij 2, ...,J,,) (13.1)

Later we will show that this rule and some other alternate rules for choosing the

starting / = O' all lead to finite convergence, see Theorem 7. In practical applications,

the assumption that every set of m columns is independent is usually not correct and

(13.1) is modified to read: choose 3 as the indices of the first m most promising

independent columns. /3 stands for "build up". During a major iteration the initial

set of indices (13.1) is built up to include additional indices. When /3 is used as a

subscript, it means that the indices j are restricted to 6.

The second subroutine is

solve-starting- basis- (/3):

Here 8 is the set of indices of the m most promising columns. AO at the start of a

major iteration is nonsingular and therefore may serve as a basis. The detailed steps

are:

z= (A) -b; r c,(Ap)-; (14.0)

r = argmin(z,). (14.1)
hd

18

The third subroutine is

solve-ellipsoid-(y' , /3):

Here 0 refers to the initial set of promising indices plus those built-up so far during

the minor cycles within a major iteration. The ellipsoid subproblem to solve is

(4) maximize yb subject to yE 4={y: II (y - y)A D;I }.

The subroutine steps to solve (4O) are:

Do = Diag(u'); (15.1)

A 6r b (A D
-

2 A T) - ' ; (15.2)

A - (Ab)- / 2A. (15.3)

The fourth subroutine is

fin d- blocking-constraint-(s):

At the start of a major iteration, ratio is set equal to +oo and the subroutine

scans from y' in the direction A looking for the first blocking constraint j = s; at the

start of each minor cycle, ratio is set equal to 1 and the subroutine then scans the line

segment yt to y' + A looking for the first blocking constraint j = 8. If no blocking

constraint is encountered, s = 0. The detailed searching steps are:

8 := 0;

v := AA;

for j := I to n do begin

if ((j 0 /) and (vi > 0) and (u /v,: _ ratio) then begin

ratio:=u, /vj; s:=j;

end;

end for.

19

The Main Program of the build-up affine scaling method is as follows:

Program;

Input: dual feasible solution y' and u' = (c - y' A)T > 0;

Initialize t := 1 and opt:= false;

While ((opt = false) do begin

choose-m-promising-columns;

solve-starting-basis-(0) for /3 and r;

if ((zj, > 0) and (c - 7rA > 0)) then begin

output ("optimum", X0, ZN = 0, 7r); opt := true;

end;

if (opt = false) then begin

:=(A);

ratio := +oo;

find-blocking-constraint-(s);

if s = 0 then begin

output ("error, primal infeasible"); opt := true;

end;

while s > 0 do begin

03:=# U{s};

solve-ellipsoid-(y' ,/3) for A;

ratio:= 1;

fin d-blocking-constraint- (s);

end (end of a minor cycle);

: (AA,)/(.) 2 for j E /;

. := ofor j fl;

y t +,&; ut := e - ytA;

t := t + 1;

end If;

end while (end of a major iteration);

end program.

20

5. Proof of Finite Convergence of Build-Up Algorithm

Theorem 6. Independent of the rule used to choose-m-promising-columns, the itera-

tive process either terminates in a finite number of iterations with the optimal primal

and dual solutions or converges to them in the limit.

Proof of Theorem 6. Let us assume it does not converge in a finite number of

iterations. Each major iteration t, after it checks and finds that the starting basis

is not optimal, engages in a number of minor cycles building up W3 (the indices of

the constraints used to define the ellipsoid 4s) until there is no constraint blocking

movement from yt to y' + &, the optimal point of (4q): i.e., y' + & is an interior point

of (D). The count of minor cycles within a major iteration cannot be more than n - m

because this is the number of remaining constraints yA.i !5 c, whose index j might be

used to augment starting P. Therefore minor cycling always terminates with a move

from yt to y+ I where the formulae for this move are the analogs of (2.1) to (2.4) of

Dikin's algorithm.

/3 = ,W, Dq = Diag(u'), (16.0)

br(A 2 A')- , (16.1)

A - (Ab)- 1 /2 A, (16.2)

yt+1 = yt +,&, (16.3)

o=D 2 ATAT; zx=O for jV#. (16.4)

In addition, we have the analogs to (4.1) to (4.4)

b = A = Az', (17.0)

0 < IID,112 = Ab, IID ,11 = IIDz'I, (17.1)

21

because x' = 0 for j § 13. The proofs that D- ' and the (AO D- 2 AT) exist are the

same as those without the subscript 3, see (3.1) and (3.2) implying that steps (16.1)

and (16.2) are legal. The proofs that

Ab > 0, (17.2)

A = (Ab)-'1/2A is an improving direction, (17.3)

yt + 'b- y'b = (Ab) 12 DozTll = 11Dzx' > 0 (17.4)

follow the proofs of (3.3) and (3.4). The analogs to (3.5) and (3.6) are

Ut+l = - IDjL'(Dxt)T , (17.5)

0< u.+ <2u', O<uts', (17.6)

where u+ > 0 for j 0 3 is true because the minor cycles do not terminate until there

is no blocking constraint, i.e., ut + = ci - yt+'A. > 0 for all j 1 3.

Under the assumption of no finite termination, we now show that Theorems 1 to

5 of Dikin's algorithm are true for the build-up algorithm. However the reasons why

they are true will need more explanation in places and this we will now proceed to do.

That u' x-t _! 0 as t --+ oo, Theorem 1, follows from (y t 'Ib - y'b) --* 0 and (17.4).

The proof of Theorem 2 is the same. It states that given any infinite subsequence So

of t, there exists a subsequence S. c So such that (zt, yt) converge using t in S. to

(,), a pair of basic primal and complementary basic dual feasible solutions.

Next to show Theorem 3 for the build-up algorithm that (z, yt) converges as

t -+ oo to a pair of basic primal and complementary basic dual feasible solutions,

we note all steps of the proof apply up to the very last step where relation (3.6)

that ul+ I < 2u' for t = ti in the subsequence T, is used to obtain a contradiction.

However the analog of (3.6) for the build-up algorithm is (17.6) which states u,+ I <2u'

22

provided r E 3 = T3. We claim that except for a finite subsequence of t in T, that r

is indeed in /3'; if so then this is clearly sufficient to complete the proof of Theorem

3. Suppose on the contrary there is an infinite subsequence RI in T, such that , for t

in R 1 , r not in /3'. Since RI C T is infinite, its convergence properties are the same

as T, and therefore z - t" and i±; I 0 because r is basic index in (B, N). On the

other hand, z - 2 = 0 for t in RI because the algorithm sets all z' = 0 for j IZ 0

which contradicts j±; 1I5 0 for r E B.

Also requiring explanation is Theorem 4 which asserts that (z t , y') converge to

complementary optimal basic primal and dual solutions. The proof assumes, on the

contrary, V is not feasible and that there is some basic index j = r such that z -

i±* < 0 as t - oo. To get a contradiction, relation (11.1) was used; its analog (17.5)

is applicable provided r E /. However there can be at most a finite count of t such

that basic r § M and a corresponding count of zx = 0, because if the set S of r IZ '

were infinite, this would imply x' - -**r = 0, but this limit is the same as that for all

t, contradicting !.t I $ 0. Therefore there exists a finite to such that for all t > to that

B E 3' and (17.6) is true for all r E B, and the rest of the proof of the Theorem 4 can

now be applied without further change.

Finally the proof of Theorem 5 about the asymptotic ratio of convergence being

p' < 1 - (1/m)1/ 2 may be used without change. Q.E.D.

This completes the proof of Theorem 6 which asserts that if the build-up algorithm

does not detect an optimal basic feasible solution at start of some major iteration t

and terminate, then it will converge in the limit to such a solution.

We now present several alternative rules that rank the promise of column j being

in the optimal basis according to the ratio (zx.),/(u.)" from high to low:

Rule 1 (Ai, v) = (0,1):

(1/;) _> 2 ... ! (lui.).

23

Rule 2 (p,v) = (1,0):

Rule 3 (g,.,) = (1,1)-

_X /" ('- I/u' j-

Theorem 7. If the starting Y = (j1 ,j 2,-.-.,) is chosen by any of the above rules,

the build-up algorithm will terminate in a finite number of iterations with the optimal

primal and dual solutions.

Proof of Theorem 7. Let the optimal partition be (B, N). Assume on the contrary

that the particular rule chosen does not lead to finite termination, then by Theorem
6 as t -- oo, (X , X) converge to optimal (% > 0,2 = 0); and (utuk) converge

to (f,; = 0, fi > 0). Let

,o = (1/2)min('i EB, eN).

There exists a to such that for all t > to:

ts.<fo jEB and u;>eo jEN.

Z .>to jEB and z.<EO jeN.

z'/ut. >1 jEB and z4/t <1 SEN.

Therefore, contrary to the assumption of convergence in an infinite number of iter-

ations, we see that under any one of the three rules, the basis associated with the

starting M for all t > to is optimal and the algorithm will detect this fact by iteration

t < to. Q.E.D

24

6. Number of Minor Cycles

The count ht > m, the number of indices in 3 = 3t build up by the end of major

iteration t, is not fixed and can vary up and down from one iteration to the next. We

expect in early iterations that h' will be somewhat large, but as t increases hI will

likely be close to m. Also, one may allow several columns to enter A$ simultaneously,

instead of one at a time, and allow some columns deleted from AO in order to keep

the size of AO under control. In the following, we show, at least heuristically, that the

size of AO might he controlled to no more than 2m for problems with n > 2m. This

is based on the following theorem:

Theorem 8. Let 0= {yE R- :c-yA >0 whereAER" × and n=2m+1, and

let yo be any interior point in fl. Also, let AO denote an m x (2m) submatrix of A.

Then, there exists a particular A, such that

EO = {y: I(y- y)AD <'- 1} C l1

where Do = Diag(co - yoAO).

Proof. We know that

t C {y : co - yA , > 0}.

Therefore, we only need to show that

6, C{y:c,-yA..>0} for s.

Let aj .A.j, D = Diag(c - / A) and let a be the vector whose i-th component is

= aT (AD- 2 AT)-'a 1 2/ , >0,

which are diagonal components of the projection matrix

D-AT (AD- 2AT)-'AD - 1 .

25

The trace of the projection matrix satisfies

2rn + 1

E G7j = M.
j=1

Therefore, there exists at least one j = s such that a, < 1/2. Define 6 to be the 2m

indices which excludes s. We show Sp C {y: c, - ya. > 0}, i.e., constraint s does not

block eo in any direction. As shown in Reference (12J, it suffices to prove that

a.A D 2 AT) -'a. /D.o < I

This is because the following argument. The maximal value of the problem:

maximize (y - yO)a. subject to y E 4

is exactly

(y')a. = Vla. (AO D; 2 A)' a.

where 9 denotes the maximum. Thus, if

C. y. = D.. > /a (Ao D 2 A) -a. = a,

then

c. > Va.>ya. for all y E .

Note that

(AD-2AT) - ' = (AD; 2A + a.al /D2..) -

- (AOD 2AT)-' -(AD; 2 AT)- 1 a.a, (A, D; 2 A)-'/(D.(I + .)). (18.1)

Multiplying (18.1) by al' and a. from the left and right, and then dividing it by D. . ,

we have

a. =,.- a,./ +a.)

26

which yields

a./ (1a)

Thus, a. < 1/2 indicates that

a. <1

This completes the proof of Theorem 8. Q.E.D.

Theorem 8 states that the ellipsoid to inscribed in polytope 0 with 2m + 1 con-

straints can be constructed using at most 2m constraints, which suggests but does not

establish that h' will be at most 2m. This helps when faced by an n > 2m LP problem

because if the number of components of 0 becomes greater than 2m the calculation of

A, D; 2 A' will be a big burden as it is in conventional interior-point algorithms. Note

that the build-up method can also be used for optimization problems where linear

constraints are generated during the course of the algorithm.

A rank-one updating method should be used to efficiently refactorize

and recalculate A after A, is augmented by a blocking dual constraints. This efficiency

can be achieved using any one of several techniques (see, for example, Gill et al. [6]

and Ng [9]). Also, at the beginning of each major iteration we need to invert a basis

typically in factorized form. If the basis differs from the one at the beginning of the

previous major iteration by only few columns, we can apply a few rank-one updates

to obtain its inverse in factorized form as well.

27

References

[1] I. Adler, N. Karmarkar, M. G. C. Resende and G. Veiga, "An implementation

of Karmarkar's algorithm for linear programming," Working Paper, Operations

Research Center, University of California (Berkeley, CA, 1986).

[2J E. R. Barnes, "A variation on Karmarkar's algorithm for linear programming,"

Mathematical Programming 36 (1986) 174-182.

[3] G. B. Dantzig, "Dikin's interior method for solving LP," manuscript, Department

of Operations Research, Stanford University (Stanford, CA, 1988).

[4] G. B. Dantzig, Linear Programming and Extensions (Princeton University Press,

Princeton, NJ, 1963).

[5] I. I. Dikin, "Iterative solution of problems of linear and quadratic programming,"

Doklady Akad. Nauk USSR 174 (1967), Translated in Soviet Math. Doklady 8

(1967) 674-675.

[61 P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, "Maintaining LU

factors of a general sparse matrix," Linear Algebra and its Applications 88/99

(1987) 239-270.

[71 N. Karmarkar, *A new polynomial-time algorithm for linear programming," Com-

binatorica 4 (1984) 373-395.

[81 C. L. Monma and A. J. Morton, "Computational experimental with a dual affmine

variant of Karmarkar's method for linear programming," Technical Report, Bell

Communications Research (Morristown, NJ, 1987).

[9] E. Ng, "On the solution of sparse linear least-squares problems,' Presentation at

Stanford, Mathematical Science Section, Oak Ridge National Labs (Oak Ridge,

TN, 1988).

28

[101 R. J. Vanderbei and J. C. Lagarias, "I. 1. Dikin's convergence result for the affine-

scaling algorithm," manuscript, AT&T Bell Laboratories (Murray Hill, NJ, 1988).

[11] R. J. Vanderbei, M. S. Meketon and B. A. Freedman, "A modification of Kar-

markar's linear programming algorithm," Algorithmica 1 (1986) 395-407.

[121 Y. Ye, "A 'build-down' scheme for linear programming," manuscript, Department

of Management Sciences, The University of Iowa (Iowa City, IA, 1988), to appear

in Mathematical Programming.

[13] K. Zikan and R. W. Cottle, "The box method for linear programming: Part I-

basic theory," Technical Report SOL 87-6, Department of Operations Research,

Stanford University (Stanford, CA, 1987).

29

UNCLASSIFIED
SECUmRIT CLASIFICATION OF TV41S PAE (WA Daee.0____________________

5. gm~miw OOAIZTIO ~ ADDUESST0 PAGE P ROG A D IMNT R CTN S

StOrd CA- 940-42
SI. TITL~ n oldC SuduE 5-D TYE FREORREPRIDSS9X

Offie-U ofnvalo Reserho fo Dept. r of gamig thenca Navyr

Arligto, V 22217F r . UF~IN 4. EOT U8

7. AUTWR~sI -. CNTACT 04GANT w/0Q8wGRaO)

9. PERFRINGTORGANATIOEN NAM E AN DRESI-Pr A0mtETj JIRST A

This dcument heason Rsarcve fo publi rlA Ad sale61

11. ONTROLTIONG OFFATEMAWS AND. AVOM.. I&tn~ QVON DATEn a i

800 . S QPuEMnAy NSe &"N"O AE

linear~~I pSECURITiY interio metod affin scaling

85. AS? RC? (m~e~ ,w d U ~eap i UNCLASSIFIED~g1

(plese scuen revesen de) o ubi elaean ae

14.j~ 147)EENAR NOTES PINV ~S~~

It. ~ ~ ~ ~ ~ sCUT KEYPCAIO WORD (CohISm Pas n~e sid ifEne & d &6F WN

SgCUI"TY CLAIMiPICA
T

IOW O
r

Thin, PA@S(Wi DON Sm Xi0

A BUILD-UP INTERIOR METHOD FOR LINEAR PROGRAMMING:

AFFINE SCALING FORM

George B. Dantzig and Yinyu Ye

February 1990

Abstract

We propose a build-up interior method for solving an m equation n variable linear
program which has the same convergence properties as their well known analogues
in dual afline and projective forms but requires less computational effort. The algo-
rithm has three forms, an affine scaling form, a projective scaling form, and an exact
form (that uses pivot steps). In this paper, we present the first of these. It differs
from Dikin's algorithm of dual affine form in that the ellipsoid chosen to generate the
improving direction A in dual space is constructed from only a subset of the dual
constraints.

At the start of each major iteration t, we are given an interior iterate y'. A
selection of m dual constraints is made using an "order-columns" rule as to which
constraints show "the most promise" of being tight in the optimal dual solution. An
ellipsoid centered at y' is then inscribed in convex region defined by these promising
constraints and an improving direction A computed that points to the optimal point
y' + A on the ellipsoid boundary. Minor cycling within a major iteration is then
started.

During a minor cycle, the constraints selected to define the ellipsoid centered at yt
is built up to include the constraiJat (whenever there is one) that first blocks feasible
movement from yt to y1 + A. If one blocks, it is used to augment the set of promising
constraints and the ellipsoid is revised; the improving directior. A is recomputed by
means of a rank-one update, and the minor cycle repeated until none blocks movement
from yt to y' + A. When none blocks, the minor cycling ends. yt+l = y' + A initiates
the next major iteration. Major iterations stop when an optimum solution is reached.
We prove this will occur in a finite number of iterations.

511CUNII~y CLASwpVCAY@ OP TWO* PA09MV w EwE

