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Abstract

HORNE is a programming system that offers a set of tools for building
automated reasoning systems. It offers three major modes of inference:

--a horn clause theorem prover (backwards chaining mechanism);
--a forward chaining mechanism; and

--a mechanism for restricting the range of variables with arbitrary
predicates.

All three modes use a common representation of facts, namely horn clauses
with universally quantified varniables, and use the unification algorithm. Also.
they all share the following additional specialized reasoning capabilities: 1)
variables may be typed with a fairly general type theory that allows
intersecting types; 2) full reasoning about equality between ground terms, and
limited equality reasoning for quantified terms; and 3) escapes into LISP for
use as necessary. This paper contains an introduction to each of these
facilities, and the HORNE User's Manual.
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1. Introduction

This is a brief introduction to the major reasoning modes and facilities provided
by the HORNE reasoning system. Detatls on the actual system are contained in the
HORNE User's Manual which forms the second half of this report. In this section.
we will first discuss the basic reasoning modes, and then outline the specialized
reasoning svstems embedded in HORNE.

2. The Basic Reasoning Nlodes

There are three basic reasoning modes. The first two correspond to the
antecedent and consequent theorem mechanisms of PLANNER. and are called
forward chaining and backward chaining. respectively. The third is most closely
related 1o reasoning with constraints. and is called constraint posting.

Independent of the mode of reasoning, all facts are in the form of horn clauses.
which can be viewed as logical implications with a single consequent. Thus

P<Q

read as "if Q then P.” is a horn clause, as is
P <

which simpiy asserts P. and as is
P <Q R

which should be read as "if Q and R, then P.” The following is not a horn clause.
because there are two consequences:

*P, Q<R

Note that, in more general systems of this type. this would be read as "if R, then P or

Q.

A horn clause may contain globally scoped, universally quantified variables
which are indicated by a prefix of "?". Thus

(P 7%) < (Q )

is a horn clause that is read as "for any x, if Q of x holds, then P of x holds.” Finally.
whenever the process of matching two formulas is discussed, we are referring to the
full unification algorithm found in resolution theorem-proving systems extended to
unify lists in LISP format. This extension is explained in detail in the HORNE User’s
Manual.

2.1 Backwards Chaining

This mode provides a PROLOG-like theorem prover. It searches a horn clause
that could prove the given goal, and attempts to prove the antecedents of the horn




clause. It uses a depth-first, backtracking search. For the reader not familiar with
such systems, see [Kowalski, 1979).

As an example, consider the following axioms:

All fish live in the sea

(1)  (LIVE-IN-SEA 7x) <(FISH 7x)
All Cod are fish.

(2) (FISH 7x) <(COD )
All Mackerel are fish.

3y  (FISH %) <(MACKEREL %)
Whales live in the sea.

(4)  (LIVE-IN-SEA 7y) C(WHALE ?y)
Homer 1s a Cod.

(5) (COD HOMER)K
Willic 1s a Whale.

(6) (WHALE WILLIE)K

Given these axioms. we can prove Willie lives in the sea us follows. using a
straightforward  backtracking search. We have the goai:

(7)  (LIVE-IN-SEA WILLIE)

Ruie 1 appears applicable: Unifyving (1) with (7) we get
(LIVE-IN-SEA WILLIEYC(FISH WILLIE)

So we have a new subgoal:

(8)  (FISH WILLIE)
Rule (2) applies, giving
(FISH WILLIE) <(COD WILLIE),
so we have a new subgoal
(9) (COD WILLIE)
X No rule applies. try (8) again.
Rule (3) applies, giving
(FISH WILLIE) < (MACKEREL WILLIE)
So we have a new subgoal
(10) (MACKEREL WILLIE)
X No rule applies, try (8) again. no more ways to prove (8)
X No rule applies. try (7) again
Rule (4) applies giving
(LIVE-IN-SEA WILLIE) C(WHALE WILLIE)
So we have a new subgoal
(1) (WHALE WILLIE)
Rule (6) asserts (11) as a fact
v Goal (11) 1s Proved.
v Goal (7)is Proved.




2.2 Forward Chaining

The rules for forward chaining are quantified horn clauses augmented with a
trigger. Such a rule is applied whenever a fact is added that matches (i.e., unifies
with) the trigger. In such a case, the reasoner attempts to prove the antecedents of
the rule and, if it is successful, asserts the consequence. In general, each of the
antecedents is attempted by simple data base lookup only. In other words, the
backwards chaining reasoner is not invoked to prove an antecedent. There is an
option, however, to invoke the backwards reasoning if desired.

For cxaniple. consider maintaining the simple transitive relation < (less than)
using forward chaining. The axiom we want to use to cnsure the complete DB is

v xyvoz LT(xy) & LT(y,z) D LT(x.2).
To implement this using forward chaining rules. we have the foilowing:
Trigger Rule
(12) (LT ™) (LT 2 72) < (LT X ) (LT 2y 72)
(1) (LT 22 (LT x 72) < (LT 7y 22) (LT %% )
Consider the following additions:
(LTBC) triggers rules (12) and (13), but nothing can be proved

(LT A B) triggers (12) 2x « A, 7y « B
proves (LT A B) Vv
proves (LT B ?%z), 72 « C
adds (LT A Q)
triggers (12) x « A, % « C
proves (LT A C)
fails on (LT C 72)
triggers (13) 7y « A. 72 « C
proves (LT A O)
fails on (LT ?x A)
triggers (13) 7y « A, 72 « B
proves (LT A B)
fails on (LT % A)

As one can see, the rules apply recursively on inferred additions, and the search
space generated by the forward chaining rules is completely searched. The forward
chainer detects possible infinite loops that could result from adding the same fact
twice.

2.3 Constraint Posting

The last facility allows proofs of goals 1o be delayed for certain predicates until
more is known about the arguments to the predicate. In particular, it allows one to




delay proving a formula until one of its variables is bound.

This is best illustrated by example. Assume we want to define a predicate of two
arguments, ?’x and ?v, that is true iff 7x and ?y are bound to different terms. The
most common way to implement this in PROLOG svstems is to use negation by
failure on the EQ predicate, which is simply defined by
(14) (EQ ™ %)

Thus EQ forces two terms to unifyv. and fails if they cannot. Using this. they detine
(15)  (NEQ* 7x 7v) < (UNLESS (EQ 7x 7v))

where UNLESS is negation by failure. This formulation gives undesirable resus.
when one of its terms is unbound. In particular. it binds a variable argument to muke
the terms equal. Thus with the axioms

(16) (P 2 ) CONEQ* x M) (R )

(17y (R B)

we could not prove (P A ?v) for the predicate (NEQ* A 7v) would fail since (EQ A
7yv) succeeds by binding v 0 A.

To avoid this. we could define NEQ* s0 that it only fails when both arguments
are bound. But this would allow incorrect proofs as the variable could later be bound
violating the distinctness condition. What s needed is a facility to delay the
evaluation of (NEQ* 2¢ y) until both arguments are bound. We do this by a
mechanism called posting.

If a literal is POSTED and contains no vanables. it is treated as a usual literal.
The proof succeeds or fails and the posting has no effect. If the litera! does contain
variable, the evaluation of that hiteral is delaved unul the vanable is bound. Thus we
define a new predicate DISTINCT by
(18) (DISTINCT 7x %) < (POST (NEQ* 7x )).

Now, using a modified axiom (16), namely,

(19) (P % %) < (DISTINCT %X %) (R %)

and the modified definition of NEQ* as in axioms (20) - (22),
(200 (NEQ* x 7v) < (unbound M)

2 (NEQ* x 7y < (unbound 7v)

(22)  (NEQ* 7% %) < (NOT (EQ v )

we can prove (P A 7). resulung in 7y being bound to B as follows:




Goal: (P A )

Subgoals: (DISTINCT A %) (R %)

(DISTINCT A %) is proven using (18), but the subgoal (NEQ* A 7y) is not
evaluated in the normal manner since 7y is unbound. Instead. the call
succeeds and ?y is annotated to be NEQ* from A.

(R ?) succeeds from axiom (17) if 7y can be bound to B. The unifier checks
(NEQ* A B), which succeeds. allowing ?y to be bound.

Goal proved is (P A B). Note that DISTINCT is a built-in predicate in HORNE and
is defined using this mechanism.

Let us consider this mechanism 1n a bit more detail. After a literal has been
POSTED. its variables are annotated using a form such as

(any X (Q X))

which is a term that will unify with any term such that Q holds for that term. Thus
(any 7x (Q 7x)) unifies with A only 1t we can prove (Q A).

If there are multiple vanables in a posting, each vanable is annotated separately.
and the constraints on each are checked as each is bound. For example. the trace of
the proof of (P 2x %y) given axioms (17) - (22) is as follows:

Goal: (P 7x %)

Rule (19) applies. giving

(P 7x ) < (DISTINCT 2% ?2v) (R %)
Subgoal
(DISTINCT X )
Rule (18) applies. giving

(DISTINCT % %) < (POST (NEQ x ?v)

Subgoal

(POST (NEQ 2%x V)

succeeds binding ?x « (any x1 (NEQ* x1 %1))

7% « (any V1 (NEQ* X1 1))

Proved: (DISTINCT (any ?x1 (NEQ* 7x1 1)) (any ?7y1 (NEQ* 7x1 ”v1)))
Subgoal
(R (any vl (NEQ* x1 Nv1))
Rule (17) applies
(R B) if we can unifv (any %yl (NEQ* x1 %y1)) with B
[We try subproof of (NEQ* ?x1 B). which succeeds]

Proved: (P (any 7x1 (NEQ* x1 B)) B)

Thus constrained vanables may appear in answers. Users may explicitly construct
their own constrained variables in queries and assertions as well, if they wish.




Two constrained variables may unify together as long as the combined
constraints are provably consistent in a strong sense, i.e., there exists at least one
proof of the combined constraints. For example, if we had the following data base:

(23) (PA A)
(24) (PB B)
(25  (PB A)
(26) (T (anv 2x (PA X))

We could prove the goal (T (any ?v (PB 7v)) by unttication with (26) as follows:
(any 7y (PB 7v)) and (any 2x (PA 7x)) may unify to (any 7z (PB Y2) (P 220 if there 1s
an object such that (PB ?z) and (PA 7z). A subproof of (PB 7z) (PA 7z) 15 teund with
72 « A. This binding is not used. however. since the desired answer could be
something else. The result 1s

(T tany 7z (PA ?2) (PB 2)).

[ in a later part of a proof. 7z was unified against u constant k. a subproof of (PA k)
(PB k) would be done before the unification succeeds.

3. Built-In Specialized Reasoning Systems

There are two built-in specialized reasoning systems provided with HORN\E.
These provide typing for terms and simplc egquality reasoning.

3.1 Types

All terms in HORNE may be assigned ¢ type [f a term is not explicithy assigned
a type. it is assumed to belong in T# L. the universal type. Variables over u type are
allowed. and a special syntax is provided. The variable 7x:DOG. for instance.
signifies a variable ranging over all objects of type DOG. Constants and other ground
terms can be asserted to be of a certain type using a built-in predicate ITYPE. Thus

(TYPE A DOG)
asserts that the constant A is of type DOG.

Types in HORNE are viewed as sets of objects, and all the normal set
relationships between types can be described. Thus one type may be a subset (i.e..
subtype) of another. two types may intersect or be disjoint, and the non-null
intersection of two types produces a type that is a subtype of the two original types.
All this information is asserted using built-in predicates. For example.

(ISUBTYPE DOG ANIMAL)
asserts that the type DOG is a subset of the type ANIMAL (i.e.. all dogs are animals).

(DISIOINT DOG CAT)




asserts that no object can be both a cat and a dog,
(INTERSECTION FAT-CATS CATS FAT-ANIMALS)

asserts that the set of FAT-CATS consists of all cats that are also fat animals, and
(XSUBTYPE (MALES FEMALES) ANIMALS)

asserts that (MALES FEMALES) is a partition of ANIMALS. i.e.. that every animal
is either a male or a female, and that all males and females are animals.

All direct consequences of these facts are inferred when the axioms are added.
For example. if A and B are disjoint. and Al is asserted 1o be a subtype of A_ then it
is inferred that Al and B are disjoint. This 1s done by the forward chaining system.
During a proof. the parttion intormaton is not used. As a result. asserting
(XSUBTYPE (a b) ¢) has the same etfect as asserting (ISUBTYPE a ¢). (ISUBTYPE
b ¢). and (DISJIOINT a b). During adding type assertions. howesver. partition
information is used. For example. given the relationship between a, b, and ¢ above. If
we assert (ISUBTYPE d ¢) and (DISJOINT d a), then it will be concluded that
(ISUBTYPE d b).

The type reasoner acts during unification. A constant will match a vanable of
tvpe Tv only if the constant is of type Tv (1.e.. the constant is asserted to be of type
Tv. or is of twpe Tvs which is a subtype of Tv). Two variables unify only if the
intersection of their types is non-empty. The result 1s a variable ranging over the
intersection of the two types. Thus, complex types may be constructed during a
proof. If tvpes T1 and T2 intersect. but no name for the intersection is asserted. then
a complex type I(T1 T2), which is their intersection. is constructed when unifying
2:T1 and 7v:T2.

This type reasoner provides a complete reasoning facility between simple types.
For complex types, however, the reasoner may permit some intersections that may
not be desired since they are empty. \ote that this can be checked for at the end of a
proof if desired. Any intersection of more than two types is guaranteed only to be
pairwise non-empty. For example. if the complex type (Tt T2 T3) is constructed by
unifying a variable of type I(T1 T2) with a variable of type T3. then it must be the
case that KT1 T2). KT1 T3), and KT2 T3) are non-empty. However. there might be
no object that is of type I(T1 T2 T3).

The assertions about the types may be incomplete. For example, two types may
be introduced where 1t is not asserted, or is inferrable. that the types intersect or are
disjoint. HORNE provides two modes of proof for dealing with these cases. In the
strict mode. two types intersect only if they are known to intersect. In the easy-going
mode, two types will intersect unless they are known to be disjoint. Easy-going mode
is more expensive. but can be useful in many applications, although it may provide
conclusions that on closer inspection are not useful since theyv contain a variable
ranging over the empty set

As an example, the simple fish data base above could be restated in the typed
prover as follows:




(1) (ISUB1YPE COD FISH) <

(2) (ISUBTYPE MACKEREL FISH) <

(3) ({TYPE HOMER COD) <

(4) (ITYPE WILLIE WHALE) <

(5)  (LIVE-IN-SEA 7x:FISH) <

(6) (LIVE-IN-SEA 2v:WHALE) <

Aithough this took one more insertion. it also encodes more information (e.¢.. whales
and fish are disioint). The proof that WILLIE fives in the sea is much shorter in the
tvped system. 't is completed using only o0 unifications.

Goal: (LIVE-IN-SEA WILLIE)
unirving with (5) fails as WHLLIE 5 not a fish:
unifying with (6) succeeds. v < W{LLIE.

Thus Goal 1s proved.

If we add the following axioms. we can demonstrate more complicated tpe
reasoning. Let us assume that all animals are either fish or mammuls.

(7)  (XSUBTYPE (FISH MAMMAL) ANIMALS)

This asserts that both FISH and MAMMAL are subtypes of ANIMAL and that they
are disjoint. Note that since COD and MACKEREL are subtvpes of FISH. these will
also now be disjoint from MAMMALS,

(8) (ISUBTYPE W-ALE MAMMALDL)

This asserts that WHALE is a subtyvpe of MAMMAL. and hence WHALE is disjoint
from FISH.

(9 (ISUBTYPE WHALE THINGS-THAT-SWIM)
(10) (SUBTYPE FISH THINGS-THAT-SWIiM)

Note that in asserting that WHALE is a subtype of THINGS-THAT-SWIM, the
cystem then knows that MAMMAL and THINGS-THAT-SWIM intersect.

(11) (BEAR-LIVE-YOUNG "m:MAMMAL)
(12) (SWIMS-WELL 2t:THINGS-THAT-SWi\M)

Now if we try to find something that bears live young and swims well, ie.. find ?x
such that




(BEAR-LIVE-YOUNG ) (SWIMS-WELL %),

we succeed by unifyving the first subgoal to (11), causing ?x « ‘m:MAMMAL, and
the second subgoal to (12), causing ‘m:MAMMAL and M. THINGS-THAT-SWIM
to be unified, resulting in a complex variable 7y:I[(MAMMAL THINGS-THAT-
SWIM). Thus the answer is: all things that are both of type MAMMAL and
THINGS-THAT-SWIM. If we add

(13) (LARGE "w:WHALE)

and query for something that bears live young, swims well, and is large, we will end
up unifying 7v:I(MAMMAL THINGS-THAT-SWIM) with "w:WHALE. The result
of this is simply "wW:WHALE, since WHALE is a subtype of both MAMMAL and
THINGS-THAT-SWIM.

Constrained variables may be typed in the obvious manner. For example
(any CMAMMAL (SWIMS-WELL 7:MAMMALY)

1s a term that will unify with any term t such that t is of type MAMMAL. and
(SWIMS-WELL ) is provable. It is interesting to note that the constrained variable
svstem could be used to implement a tvped svstem directly. where a variable
"CMAMMAL would be replaced by (any X (TYPE 7x MAMMAL)). The semantics
of the two notations are identical. Types are so common, however, that the special
notation for variables 1s maintained and types are optimized in the implementation.

Unification between a typed constrained variable and a typed variable results in
the expected answers. Thus, unifiing ":MAMMAL with (any ?7v:ANIMAL
(SWIMS-WELL 7:ANIMAL)) succeeds with the result (any ?z:MAMMAL
(SWIMS-WELL ":MAMMAL)). Unifiing 2X:ANIMAL with (any 7y:MAMMAL
(SWIMS-WELL 7v:MAMMAL) succeeds simply and 7x:ANIMAL is bound to the
constrained variable.

Unifying a constrained variable with a term that itself contains variables may
introduce new constrained variables. For example, if we are given the fact (P (f A)).
then unifving (any ?x (P 7x)) with (f 7w) will produce the term (f (any 2z (P (f 72))).
This is the correct result since the constrained variable ?x will unify with any term
such that (P x) is provable. Since (P (f 7z)) is provable (because of the fact (P (f A))).
the terms unify. The variable 7w is not bound to A, however, since there may be
other terms for which (P (f 7z)) holds as well. Thus (P (f A)) might not be the most
general unifier.

These examples are summarized in Figure 1.




Term 1 Term 2 Most General Unifier

(any 7x:MAMMAL WILLIE WILLIE

(SWIMS-WELL X))
(any x:MAMMAL 7a:ANITMAL (any 2x:MAMMAL

(SWIMS-WELL %)) (SWIMS-WELL %))
(any X:MAMMAL "'wW:WHALE (any ?2:WHALE

(SWIMS-WELL %)) (SWIMS-WELL 7z2))
(any %x (SPOUSE ?a) (SPOUSE

(SWIMS-WELL %) (any 72 (SWIMS-WELL

(SPOUSE ?2))))
assuming that the query
(SWIMS-WELL (SPOUSE Tan

succecds
(any X (any ?y (any 72 (SWIMS-WELL 72)
(SWIMS-WELL %)) (BEAR-' IVE- (BEAR-LIVE-YOUNG 20

YOUNC ) assuming that the query
(SWIMS-WELL 72)
(BEAR-LIVE-YOUNG 72)
succeeds

Figure 1: Unification with Constrained Variables
3.2 Typing Functions

Because of the additional compievities involved, a special system is provided tor
uping functiors. This is needed for reasoning about function terms that contain
vanables. If the only functions used in the systemn are always fully grounded. the
standard tvpe sysiem can be used directly.

(or a given function. one can specify the type of the result of the function. plus
the types on the arguments of the function. Any funcuon term whose arguments
violate these tvping restrictions will be flagged as an error. Thus if we define the
function SPOUSE to map from PERSON to PERSON, the term (SPOUSE WILLIE)
will cause an error. since WILLIE is a WHALE and thus cannot be a PERSON. This
function could be defined as follows:

(declare-tn-type 'SPOUSE (PERSON) 'PERSON),

re., the function SPOUSE takes one argument of type PERSON. and produces
objects of type PERSON.

Of course, one might like to do better than this, and define SPOUSF to be of
type MALE when the argument is FEMALE. and FEMALE when the argument is
MALE. Such definitions can be done in HORNE given the following conditions:

10




1) the function takes a single argument;

2) the function is first declared to the most general type of
arguments allowed, and the most general type of objects
produced;

3) further declarations are ccnsistent with the other declarations so
far:

4) all further declarations have the most general argument type for
the specified range type.

In other words.
(declare-fn-type 'SPOUSE '(FEMALE) 'MALE)
1s allowed since

1) it 1s consistent with the intial defimuion of spouse:

2) every function with argument type FEMALE produces an
instance of type MALE:

3) all function instances of type MALE must have an argument
type FEMALE.

Similariy. (declare-fn-type ‘SPOUSE ‘(MALE) ‘FEMALE) is allowed.

This will produce the appropriate results during unification. Thus if we unify
(SPOUSE m:PERSON) with 7x:MALE. the result is (SPOUSE "m:FEMALE). as
desired.

One cannot define a further specification that produces instances of a tvpe
already used in a specification, but with a different argument type. For example. the
following is not allowed:

(declare-fn-type ‘fn (T#U) 'PERSON)
(declarc-fn-type 'fn '(MALE) "MALE)
(declare-fn-type ‘fn '(FEMALE) ‘MALE) ** ERROR **

since the last declaration violates assumption (4) above. Neither MALE nor
FEMALE is the most general argument type producing instances of type MALE.

Function typing does not guarantee that functions fully cover their range type
(i.e., they are not necessarily "onto"). For example, given

(declare-fn-type 'G (T#U) 'ANIMAL)
the query
(EQ (G %) 7w:WHALE)

11




will fail, since there is no guarantee that any terms of form (G 7x) are of type
WHALE. even though all are of type ANIMAL. Even if there is a known instance of
G of type WHALE, such as (EQ (G ABLE) WILLIE), the above proof will still fail.
It is difficult to do otherwise and yet still produce a most general unifier. Some
scheme using constrained variables would be possible but would probably be
expensive.

3.3 Equality

The system offers full reasoning about equality for ground terms. Thus if yau
add

() (EQ A B) K
(2) (EQ B C) <
(3 (P AL

vou will be able to successfully prove the goal (P B) as well as (P C). Furthermore.
given the asseruon

4) (P (f A))
vou will be able to successtully prove the goals (P (f B)) and (P (f ). Adding
(5) (EQ (g A) B)

allows you to prove a potentially infinite class of goals, including (P (g A)). (P (g By).

(P (g Q). (P (g (g A))), (P (g (g B)). etc.. to arbitrary depths of nesting of the ¢
function.

An incomplete facilit, is offered for reasoning about equality for non-ground
terms as follows. With a data base of equalities between gounded terms. one can
prove an equality statement with variables in it and the variables will be bound
appropriately. All possible bindings of the variable are computed and returned in an
any form so that backtracking to the equality is never needed. Thus if we have

(EQ (f B) G)
(EQ (f A) G)
and we try to prove
(EQ (f x) G)

X will be bound to (any 7x1 (MEMBER* ?x1 (A B))). Multiple variables are also
handled correctly by this scheme.

A very limited facility is provided for adding equality statements that contain
variables. Essentially, these can be used to prove an equality by a single direct
unification. Thus if we add




(EQ (f ™) (g X))
(EQ (f ) (h X))

we will be able to prove
(EQ (f A) (g A)),
(EQ (f A) (h A)). and

(EQ (f (g %)) (h (g 7))

but not

(EQ (f A) (h A))

13
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1. INTRODUCTION

HORNE is a simple Horn clause theorem prover written in LISP that is a
straightforward application of the problem reduction technique to a very simple
logical formalism. The original theorem prover, HCPRVR. was written in UCI LISP
by Dan Chester at the University of Texas at Austin in August 1979. The
software has been completely rewritten by Mark Giuliano and Rich Pelavin to
produce compilable LISP code from the axioms. as well as adding many
extensions. Questions on using the system should be referred to Mark
Giuliano.

HORNE is embedded in a LISP environment. Its facilities are calied as LiISP
functions and HORNE programs can themselves cail LiSP functions. Thus.
effective programming in HORNE involves a careful mixture of logic
programming and LISP programming. This manual assumes that the user is
familiar with the fundamentals of both LISP and Prolog. The naive user should
consuit Winston and Horn (1981) for an introduction to LiISP. and Kowalski
(1974; 1979) and Bowen (1879) for PROLOG. The system is fully implemented.
and runs in FRANZ LISP (Foderaro. 1980) on vAX machines.

1.1 Using This Manual

Several notational conventions are followed throughout this manual. Function
calls that can be made to the HORNE system are shown in italics. HORNE
distinguishes between upper and lower case letters. Therefore it i1s imperative
that the reader pay close attention to the case. The usual LISP documentation
convention of quoting parameters that are evaluated during function calls is
used. For example, in the call

(function-name <arg¢> <argp>)

<argp>, but not <argq>. is evaluaied. Throughout, all functions ending in the
letter "q" do not evaluate their arguments. while most other functions do.

1.2 Syntax

The three major classes of expressions in this language are terms. atomit
formulas, and axioms. The syntax for these classes are given by the following
BNF rules:

<{axiom> = (<conclusion> ) |

( <conclusion> <index>) |

( <conclusion> <index> <list of premisses> )
(atomic formula>

{premiss> | <premiss> <list of premisses>

1

{conclusion>
<list of premisses> ::
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{premiss> :: = <variable> | <atomic formula> | /

<index> : = (literal atom> | <list of indexes>

<atomic formula> : = (<predicate name> <list of terms> )
{predicate name> :: = <{constant>

<term> ::= <constant> | <variable > | (<list of terms) )

<literal atom>

? (literal atom>

<e> | <term> | <term> <list of terms> |
{term> | <term>

{e> n=

<{constant>
{variable>
<list of terms>

An example of an axiom is: ((P ?x) <1 (Q ?x)) where "(P ?x)" is the
{conclusion>, "<1" is the index, and "(Q ?x)" is a simple <list of premisses>.
This statement is interpreted as follows: the assertion named "<1" signifies
that for any x. (Q x) implies (P x). Or. alternately. to prove (P x) for any x, try to
prove (Q x).

1.3 Special Symbols

The HORNE system uses two special symbols which should not be used for
other purposes:

"?" indicates a variable will cause the atom following it to be expanded
into the internal variable format. This is true only in axioms. The symbol
can be used freely in LISP code.

=" is a read macro that is used for HORNE comments, and so should
be avoided entirely. If comments are not desired, this can be disabled
using the appropriate LISP reader functions.

2. BASIC HORNE PROGRAMMING

This section explains how the HORNE database can be modified and examined.
and how theorems can be proved.

2.1 Defining and Deleting Predicates
Several simple functions are available for asserting and retracting axioms.

(axioms <list of axioms>)

Asserts all of the axioms in <list of axioms> at the end of the database
in the order they appear in the list. Same as adag:z.
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(adda <axiom¢> ... <axiomp,>) and (addaq <axiomi> ... <axiom,>)

Adds all the axioms to the beginning of the database. <axiom1> will
precede <axiom2> in the database, etc. Warning: This operation ‘is
much more expensive than addz or axioms.

(addz <axiomy> ... axiomp>) and (addzq <axiomy> ... <axiom,>)

Adds all the axioms to the end of the database. <{axiom1> will precede
{axiom2> in the database.

(retracta <predicate name>) and (retractaq <predicate name>)

Retracts the first axiom in the database that concerns <predicate
name).

(retractz <predicate name>) and (retractzq <predicate name>)

Retracts the last axiom in the database that concerns <predicate
namep.

(retractall <pattern>) and (retractalla <{pattern>)

Retracts all the axioms in the database whose conclusions unify with
the specified pattern. The predicate name must be specified in the
pattern. If an atom is given as a pattern, it will be interpreted as a
predicate name and all axioms for that predicate will be deleted. For
example, (rall ‘(P A ?x)) retracts all axioms whose head unifies with (P
A ?x) (e.g., (P ?x ?z). (P ?x B). (P A B)). and (rall ‘P) retracts all axioms
for predicate P.

(clear <index>) and (clearq <index))

Retracts all axioms in the database with an index matching the specific
index. This function accepts patterns for complex indexes. Thus (clear
‘(ff ?x)) would delete all axioms with an index consisting of a two-
element list with the first atom being "ff" (e.g., (ff 1), (!f DD). (ff (aa b))).

(clearall)
Deletes all axioms defined by the user.

Predicates in HORNE can either have a constant arity or can va-y. The addition
mechanism assumes that any predicate not previously specified as a varying
predicate is constant. To define a predicate with a varying number of
arguments. use the function
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(declare-varyingq <predname1> ... <{prednamen>),
eg.,

(declare-varyingq or* and*)
The predicate or* defined in Section 5.3 is an example of a predicate that has
to be declared to be varying. Only varying predicates allow list matching on

their arguments. Thus, for or*, we can use a term of form (or* ?first . ?rest) and
the variables will be matched appropriately.

2.2 Examining the Database
The database of axioms can be examined with the following functions:

(orintp <pattern>) and (printpq <pattern>)
Pretty prints all of the axioms whose conclusions unify with the pattern.
including comments. As with ra//. atomic patterns are assumed to be
predicate names.
(printi <index>) and (printiq <index>)
Pretty prints all of the axioms that have an index that unifies with the
specified index.
(relations)
Returns a list of all the predicate names currently defined in the system.
This includes all of the predicate names that are LiSP functions.
(indices)
Returns a list of all the indices in use.

(axioms-by-index <index)>)
Returns a list of axiom names associated with the given index. This
uses a direct match of the index without unification.
(axioms-by-name-and-index <pred-name> ‘<index))
Prints all the axioms with the given predicate name and the given index.
This uses a direct match of the index without unification.

There are also functions for accessing the data base without invoking the
prover:
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(find-facts <atomic formula>) and (find-factsq <atomic formula>)

Returns all axioms of form (<conclusion>) or (<conclusion> <index)>)
that unify with the specified formula. Thus to find all axioms that assert
that P is true of something, we could use (find-facts ' (P ?x)). If the data
base contained the facts

((PA))
((P B) <3)
((P D) <4 (Q R))

then the query would return (((P B) <3) ((P A))).

(find-facts-with-bindings <atomic formula>)

Same as find-facts except that it returns the variable bindings as well in
the format ((<axiom> <binding list>)*). For example. with the above
three axioms for P, the query (find-facts-with-bindings (P ?x)) would
return

((((P B) <3) ((?x B))) (P A)) ((?x A))).

(tind-clauses '<atomic formula>)

Returns all axioms whose <conclusion> unifies with the specified
formula. The same restrictions on variable naming as with find-fact hold
for this function. It would return all three of the above axioms in the
query (find-clause (P ?x).

(get-facts <atomic formula>)

Same as find-facts except that the <conclusion> must be identica! to the
specified formula ignoring variable naming. e.g., (get-facts ‘(P ?x)) with
the above three axioms would return NIL.

(get-clauses <atomic formula>)

Same as find-clauses except that the <conclusion> must be identical to
the specified formula ignoring variable naming.

2.3 Proving Theorems

The theorem prover is invoked by calling the LISP function prove with a set of
formulas that represent the goal ciause.




(prove <atomic formulay> ... <atomic formula,>)
(proveq <atomic formulay> ... <atomic formula,>)

Attempts to prove the list of formulas, and returns a bound solution if
one is found.

Once a proof is completed, you can find out the execution time in seconds by
calling (runtime). The answer returned by the last query can be printed using
the function (printanswer).

There are variations on the prove command that allow multiple answers to be
found. These are indicated by an optional first argument as follows:

(prove query <atomic ‘ormulay> ... <atomic formula,>)
(proveq query <atomic formula> ... <atomic formula,>)

Prompts the user each time a solution is found, and queries whether to
search for another or not.

(prove all <atomic formulay> ... <atomic formula,>)
(oroveq all <atomic formula¢> ... <atomic tormulap,>)

Does an entire search of the axioms and returns all solutions found.
Note that currently it there is an infinite path in the proof tree (e.g.. a
transitivity axiom) then this function will not return.

(prove <number> <atomic formulay> ... <atomic formula,>)
(proveq <number> <atomic formulaqs> ... <atomic formula,>)

Finds <number> proofs of the goal obtained by evaluating <formuia>.
Note that (prove 1 <formula>) is equivalent to (prove <formula)).

Note: Every 500 proof steps the theorem prover prompts the user whether to
continue or not. When you see the output "continue?", respond with a "y" to
continue, "n" to stop. Also at this point, any LISP function can be evaluated
and the system will then reprompt whether to continue. See Section 7 to

change the number of steps before a prompt.

2.4 Comments

Comments can be added for each predicate name. These are then printed by
the various print functions.
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(add-comment <predname> <comment>)

Adds a comment to the predicate specified (and deletes any existing
comment). The comment can be any LISP expression, but it is most
convenient to use strings. e.g.,

(add-comment ‘loves '[This is a comment])
Strings can include carriage returns, so longer comments can be used.

(add-to-comment <predname> <{comment>)
Extends an existing set of comments with the new comment.

(print-comment <{predname>)
Prints the comments for a predicate.

3. THE PREDICATEEDITOR

The axioms of a single predicate can be defined and modified using the HORNE
predicate editor, which is entered with the function (edita <predicate name.).
An online help facility is provided with the €~itcr. Once the editor has been
entered, the following commands are avzailable:

p Print the axioms with numbers.

q (Quit) Complete the edit.

u Undo all changes made to the axioms (i.e.. complete restart).
a <number>

Add an axiom at indicated position. You will be prompted for the axiom.

If index is "z" then axiom is added at the end.
r <number1> ... <{numbern>
Delete the indicated axioms. The remainder axioms are renumbered.

e Enter intra-axiom editor mode. Single axioms may be edited using the
LISP editor in this mode. On entering this mode you will be prompted for
the number of the axiom to be edited. See the LISP manual for details
on the LISP editor. Warning: Tne LISP editor should onily be invoked
through this edita function. simply calling editp on the predicate name
will produce disasterous results as the axioms share common sublists.

m <number1> ... <number2>
Move axiom number <{number1> to position <number2>.




4. TRACING AND DEBUGGING IN HORNE

The HORNE system provides extensive tracing facilities that operate on the
entire proof, or on selected predicates. There are four places where tracing
may occur during the processing of a single goal. These are called the q, a, b,
and r tracepoints throughout, and are defined as follows:

The g tracepoint is the point where the goal is first selected
by the prover;

the a tracepoint is the point where a clause is selected in
an attempt to prove the goal: i

the b tracepoint is the point where the prover resumes after
backtracking (note that the b points are a proper subset of
the a points):

the r tracepoint is the point where the goal has been proven
and the prover is "returning" to consider a new goal.

in every trace function you can explicitly specify which tracepoints you want. If
they are not specified. the default is the q¢ and r tracepoints.

4.1 Global Tracing Controls

(htraceall)

When called it turns on a trace of HORNE showing every formula that is
about to be proved (i.e.. at the g tracepoint), as well as indicating when
a formula has been proved (i.e.. at the r tracepoint). It can take the
following optional specifications:

(at <tracepoint>)

Indicates tracing at the specified tracepoints only, e.g.. (htraceall
(at g b)) traces all predicates at the query and backtracking
points.

break

Indicates a break is desired in addition to a trace message. See
4.3 for a description of the break package.

(using <LISP function))

Indicates that a user-supplied function should be called at the
tracepoint rather than printing a message. See Section 4.4 for
details.




These can be combined as you wish. For instance, if you want a break
at backtracking points, and a trace of query points, use

(htraceall break (at b))
(htraceall (at q))

4.2 Selective Tracing

The user can trace individual goals by identifying which predicate names are
to be traced. The simple form of this function is described first. then further
options are introduced.

(htrace <predspec;> ... <predspec,>) or
(htraceq <predspecy> ... <predspecp,>)

When <{predspec> is a simple predicate name (e.qg.. (htraceq P)). this causes
tracing at the g and r tracepoints of all gcals that have the specified predicate
name as their head. When <predspec> is a list of form ({predname>
<options>*), the usc- can specify various options as described in Section 4.1.
For example. (htraceg (P (at g a)/) traces P at the tracepoints q and a.

(unhtrace <r-zdicate nameq> ... <pregicate name,,)) or
(unhtraceq <predicate name;> ... <predicate namep>)

Turns off selective tracing. If no predicates are specified. all selective
tracing is undone.

A similar set of tracing facilities are provided for tracing by the index of clauses
rather than the predicate name in the conclusion. In index tracing. however,
only the a and b tracepoints can be specified.

(htraceiq <index-spec> ... <index-spec,>)
Turns on tracing for the specified index.

An <index-spec> is of the following form:
(Kindex pattern) <options>*)

An <index pattern> is an expression that may contain HORNE variables. Any
clause with one index that unifies with the pattern is traced. For example.
(rtraceiq (<1) (<3)) would cause tracing at all a tracepoints that use a clause
with index "<1" or "<3.," and (rtraceig ((<G ?x)) ((F ?x) break)) would cause
tracing at all a tracepoints using a clause with an index unifying with (<G ?x),
and cause a break at all a tracepoints using a clause with an index unifying
with (F ?x).




(unhtraceiq <indexq> ... <indexp>)

Undoes the above trace commands. If these are called with no
arguments, all index tracing is turned off.

The trace messages all involve printing out formulas. To control the 1/0
behavior one can set limits on how deep a formula will be printed, as well as
the length. This is controlled by the global variables:

H$SDEPTH - the depth to which formulas will be printed (default is 4).
H$SLENGTH - the length of formulas to be printed (default is 6).

4.3 The Break Package and Traces ot Proofs

Once a proof is interrupted using a break in the trace package. the
programmer can look around at what is happening. modify the tracing
behavior, etc. To continue the proof. enter go. Some useful functions for
debugging are:

(goal)--prints the current formula to be proved.
(top)--prints the current top of the goal stack.
(stack)--prints the current goal stack (see below).

(show-proof-trace)--prints a trace of the proof up to the current point
(see below).

(show-facts)--prints the axioms that could directly prove the goal.
(show-clauses)--prints the clauses that could be used to prove the goal.
(totry)--prints all axioms for current predicate name.

The goal stack contains the current formula being proved at each level of
recursion, plus all the succeeding formulas that need to be proven once the
current formula succeeds. Thus if we had the axioms

((A)<(B) (C) (D))
((B) <)
((C) < (B) (F)

and we put a break on the predicate in E (i.e., (rtraceq (E break)), in trying to
prove A we would find the following stack at the break point:

((E) (F))
((C) (D).




In oths - words, we're trying to prove E, after which we will try to prove F. If
both succeed then we will have proven C, and will try to prove D.

Any valid LISP expression can also be evaluated while debugging.

After a proof has been found. one can obtain a full trace of the successful
proof tree. If multiple proofs are found. a list containing each individual proof is
returned. For efficiency reasons, however, a proof trace is not collected unless
some predicate is being traced. If you wish a proof trace to be constructed
when nothing is being traced. you must first call (turn-on-proof-trace). The
function (turn-off-proof-trace) puts the system back into its default mode.

(proof-trace)

Returns the successful proof tree(s) of the last call to the prover. or. i
callec within a proof break. returns the current state of the proof tree.
For formatted prinrting of the trace. you can call (show-proof-tracej.

The format of the proof tree is (<conclusicr ™~ <index> <proof-trace of subgoals>).

Thus. given the axioms

(A<1BC)
(B <2 D)
(C <3)
(D<4)

if we proved the goal A. the proof tree would be

(A <1 (B<2(D<4))
(C <3))

4.4 User Defined Trace Functions

Users can define their own tiacing functions for use in the HORNE system. All
tracing functions must have the same form: they must be lambda expressions
taking two arguments. The first is set to the type of tracepoint (i.e., either q. a,
b, or r) and the second is the instantiated clause that caused the trace. The
default tracer simply prints this information at the terminal after some
formatting. For example. we could define our own trace function as follows:

(def ttt
(lambda (tpoint clause)
(terpri)
(print (list tpoint clause)))

Then given the three axioms:




(P ?x) <(Q?x %) (R %)
(QA?2)
(RB)

and the trace command
(traceall (using ttt)),

we get the following output during the proof of (P 2d):

(q (P ?d))
(q(Q7d ?%1))
(r(QA?y1))
(@ (R?y1))
(r(RB)
(r(PA)




5. THE HORNE/LISP INTERFACE

So far, we have seen how the various HORNE facilities can be invoked from
within LISP. This section explains how LISP facilities can be used within HORNE.

5.1 Assigning LISP Values to HORNE Variables

There is a simple mechanism for binding a HORNE variable to an arbitrary LISP
vaiue. This is accomplished by using the built-in predicate:

(SETVALUE <variable> <LISP expression))

This evaluates the <LiSP expression> as a LISP program and binds the
result to the HORNE variable specified. If the variable is already
bounded, SETVALUE will fail.

(GENVALUE <variable> <LiSP expression>)

This is the same as SETVALUE except that the LISP expression is
expected to return a list of values. The variable will be bound to the first
value. and if the proof backtracks to this point. to the succeeding
values one at a time.

5.2 Predicate Names as LISP Functions

Occasionally it is useful to let a predicate name be a LISP function that gets
called instead of letting HORNE prove the formula as usual. The predicate name
"NEQ", for example. tests its two arguments for inequality by means of a Lisp
function because it would be impractical to have axioms ¢f the form ((NEQ X
Y)) for every pair of constants X and Y. These special LiSP functions must be
FEXPRs and receive their argument list from HORNE with all bound variables
replaced by their values. To declare such a LISP function to HORNE use

(declare-lispfnq <name{> ... <namep>)

From then on HORNE will recognize those <name>s as LISP functions. LISP
functions should only return "t" or "nil" which will be interpreted as true and
false respectively. For example, assume we enter the following:

(def check
(nlambda (x)
(terpri)
(princ ‘| in check, args are: |)
(print x)))
(declare-lispfng check)
(addzq ((P ?x ?y) < (check ?x ?%)))

Then if we call




(proveq (P A B))
the LISP function check is calied resulting in the output:
in check, args are: (A B).
Since check returns a non nil answer, the LISP call is treated as a success.

Other useful functions for manipulating argument lists within LISP are:

(isvariable <term))

Returns the variable name if <term> is an unbound HORNE variable:
otherwise it returns nil.

(vartype '<variable>)
Returns the type of the HORNE variable, or nil otherwise.

(bind <variable> <value>)

Binds the HORNE variable to the value of the LISP expression. If the first
argument is not a HORNE variable, it returns nil. Example: the following
LISP function sets the first HORNE argqument to 4 if it is a variable:

(def SetTo4
(ntambda (x)
(cond ((isvariable (car x))
(bind (car x) (add1 3))))))

5.3 Using Lists in HORNE

Since HORNE is embedded in LISP, one can use the LISP list facility directly. In
fact, the HORNE unifier can be thought of both as operating on logical formulas.
and matching arbitrary list structures.

The unifier will handle the dot operator appropriately anywhere except at the
top level of non-varying predicates. Thus the following pairs of terms unify with
the most general unifier shown:

(abc) (a?x?) with m.g.u. {?x/b, ?%y/c}

(abc) (a.?x) with mg.u. {?x/(b ¢)}

(abc) (?x.?%) with mgu. {?x/a, %/(b ¢)}

(abc) (a?x.?%) with m.g.u. {?x/b, ?y/(c)}

(ab) (a ?x .?y) with m.g.u. {?x/b ?y/nil}

(a) (a ?7x .?7y) does not unify.

(ab) (?x) does not unify. (?x) only matches lists of length 1.
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List unification is also allowed with varying arity predicates, although the
predicate name position cannot contain a variable. Consider the definition of
the predicate or* that is true if any of its arguments is true:

(declare-varyingq or*)

((or* ?x .?y) < ?x) or* is true if the first argument is true

((or* ?2x . ?y) < (or*.?y)) or* is true if or* of all but the first
argument is true

Thus the call with no arguments. (or* ), always fails and each of (or* (4)). (or*
(B) (A)) and (or* (B) (A) (C)) succeeds if (A) is provable.

5.4 Manipulating Answers from HORNE
Once a proof succeeds. these commands can manipulate the answer returned.

(get-binding <(varname))

Returns the binding for the named variable. For example. (ge‘binding
?x) will return the binding for ?x in the last proof. If muitiple solutions
were found in the last proof. a list of bindings is returned.

(get-answer)

Returns the answer found in the last query. If multiple answers are
found. a list of answers is returned.

6. SAVING AND RESTORING PROGRAMS

These commands allow the user to partially or entirely save his HCRNE program
and to restore it at a later time. Great difficulty can be saved by avoiding the
use of "." in filenames.

(get-axioms ‘<filename>) and (get-axiomsq <filename>)

Retrieves the axioms and LISP predicates that have been saved in
{filename> by save-axioms. The names of the predicates defined by this
retrieval are put in a list named (concat <filename> 'fns). Thus (get-
axioms xxx) reads in the predicates in file xxx, and sets the variable
xxxfns to the names of the predicates that were restored from xxx.

(save-predicates ‘<filename> <list of prednames>)

Saves the axioms and comments for the predicates given in the
specified file. LISP predicates declared to HORNE may also be saved.
The output is in a pretty format (with "?" for variables). Hashtable into is
saved so0 they can be reconstructed when retrieved. If <filename>
already exists, a backup copy is retained as <filename>.back.
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(save-all-axioms ‘<filename))
Does a save-predicates on all the predicates known to the system.

(save-indices <tilename> <list of indices>)

Saves all axioms with one of the specified indices on the specified file.
The output is in pretty format, but no comments are saved. No
hashtable info is saved.

(dump-predicates <filename> <list of prednames>)

This saves the definitions of the predicates specified in the file in an
internal format. Thus reading in the file is considerably faster, but the
file is not for human consumption. If the second argument is omitted. all
the known predicates are dumped. Dump-predicates always saves all
the type information even if only a subset of the defined predicates are
dumped. Dumped files are compilable by the LISP compiler. whose
output can then be loaded into HORNE.

7. TYPED THEOREM PROVING

The type of a variable is indicated by following the variable with the name of its
type. Thus ?x:CAT names a variable ?x that is of type CAT. The variable ?x:CAT
will unify only with terms that are compatible with the type CAT. The internal
format for typed variables is the list (* # <name> . <type>) as in (* 3 ?x . CAT).

Types should be viewed as sets, and no restrictions are assumed as to
whether sets are disjoint. mutually exclusive, or wholly contained by each
other. This information is specified by the user with assertions of the forms:
(ITYPE <individual> <typename>)
Asserts that the individual is of the indicated type, e.g.. (TYPE A CAT)
asserts that the constant A is of type CAT.
(ISUBTYPE (subtype> <supertype>)
Asserts that the first type is a subclass of the second type. e.g.,
(SUBTYPE CAT ANIMAL) asserts that CAT is a subclass of ANIMAL.
(DISJOINT <typel> <type2> ... <type n>)
Asserts that all the types mentioned are pairwise disjoint.

(INTERSECTION <newtype> <typel> <type2>)
Asserts that the intersection of typel and type2 is newtype.
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(XSUBTYPE (Ktype1> <type2> ... <type nd) <super-type>)

Asserts that typet ... type n is a partition of sup-type, i.e., they are all
subtypes of sup-type. that type1 ... type n are pairwise disjoint, and that
the union of typel ... type n is equivalent to sup-type.

7.1 Adding TYPE Axioms

These statements are added to HORNE in the form of axioms by using the
regular axiom addition functions adda, addz. axisms. etc. However. two things
occur when axioms of these forms are added:

1) The relation between the types namsd and its implications are added to
a matrix which stores the known set relationship between all the types
known to the system. Of course what is implied by any statement
depends on what is already in the matrix.

2) The statement is added 1o the axiom list so they can be printec out anc
edited as normal axioms.

The system that adds a TYPE axiom and its implications to the matrix first
checks that the statement is consistent. ¥ the statement cortains an
inconsistency, an error message is printed and no information is added to the
matrix. For example, if one adds (DISJOINT cats dogs) and then adds
(SUBTYPE dogs cats), an error message will be given and information in the
second axiom will not be added to the matrix.

In order for the matrix system to derive all implied information. ITYFZ axioms
should be added after SUBTYPE. XSUBTYPE. DISJOINT. and INTERSECTION
axioms. Adding an ITYPE axiom may add or dslete other ITYPE axioms implied
by the axiom. (In fact, sometimes the axiom that was written might not even be
added.) Because of this and the nature of axiom addition, axioms for the
predicate ITYPE are always added at the end of the axiom list for ITYPE (e.g.,
as with using addz). This restriction has no effect on the proof procedure, for
the order of the atomic ITYPE axioms is irrelevant. Edita can be used to
reorder the axioms for documentation purposes.

Type restrictions on the arguments to a function term. and on the type of the
function term itself, are declared using the form:
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(declare-fn-type '<fn-name> '(<typel> ... <typen>) '<typename))
(declare-fn-typeq <tn-name> (<typel> ... <typen>) <typename))

Asserts that <fn-name> is the name of a function that takes arguments
of the types <typel>,..<typen> and describes objects of type
{typename>. For example, (declare-fn-type ADD (NUMBER NUMBER)
NUMBER) declares a two-place function ADD, with both arguments of
type NUMBER, and which produces an object of type NUMBER.

Single place functions may have multiple declarations subject to strict
conditions outlined below:

1) the first declaration is the most general in its argument place and its
value:

2) all subsequent declarations define a proper subset of the first definition
in both the argument type and the value type;

3) the type of the argument is the most general type that produces values
of the specified value type.

Examples and further discussion are found in the system overview. Section
3.2.

Deciare-fn-type returns one of three values to indicate the status of the call:

t -- a new definition of a type (or exact repeat of a previous definition)

comp -- an additional definition to a single argument function that is
compatible with all previous definitions

nil -- improper form of definition or a definition inconsistent with previous
definitions

(delete-fn-definition <function name>)
Removes all previous definitions for the function.

7.2 Deleting TYPE Axioms

In order to delete an axiom about types, one can use one of the HORNE
deletion functions (retracta, retractz, edita, retractall, etc.). However, at this
point, the prover is disabled. This is because the axiom lists are correct but the
matrix has not been changed. In order to restore the matrix and enable the
prover to run, use the function:
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(recompile-matrix)
Recompiles all the type axioms in the system.

This is an expensive process and shouid be avoided if possible.
7.3 LISP Interface to Type System

There is a set of LISP functions to access and use the type system
independently of HORNE. The most important function returris the type of an
arbitrary HORNE term:

(get-type-object <term>)

Given any HORNE term. this function returns the most specific type of
that term. if the term contains one or more variacies. it returns the mc st
specific type that includes every instantiation of the term.

(issub <typel> <type2>)

Takes any two types and returns t if the types are identical. cor if <type1>
is a proper subtype of <type2>.

There are functions for inspecting the definitions of function terms (in addition
to get-type-object above).
(see-function-definition (tunction name>)

Returns the complete type table for the specitied function. For single
argument function, this may be a tree of the form

(Kfunction type> (Karg type list>) <{subtree>*).
For example. the functior SPOUSE might have the definition
(PERSON (PERSON) (FEMALE (MALE)) (MALE (FEMALE)))
i.e., SPOUSE of a PERSON is of type PERSON. and SPOUSE of MALE
is of type FEMALE, and SPOUSE of FEMALE is of type MALE.
(defined-functions)
Returns a list of all function names that have been declared.
One can examine the TYPE axioms added to the system by using the HORNE
functions printp, printi, etc.. but these functions will only show you the base

facts and not all the inferences the system has made. The following functions
allow examination of what is in the matrix.
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(matrix-relation <type1> <type?2))

Returns the information that is stored in the matrix for the relationship
between the two types.

(type-into <type))
Returns a list giving the relationship between the given type and every

other type in the system, oi the form: ((type rel type1)(type2 rel type) ...)
The type you are querying can be in either the first or second slot.

The following are the possible relationships between types:

1) "sb"--a subset relation holds between the two types.
2) "ss"--a superset relation holds.
3) "0"--the types intersect but the ouverlap is not named.

4) "(ip (list))" or "(p (list))"--a superset partition relationship
holds: the list contains all the partitioning sets of the
superset.

5) a list of length 1--the item on the list is the name of the
intersection of the given types.

(types)
Returns a list of all types known in the system.

7.4 Type Compatibility and An Example

Using the axioms above, HORNE can compute the compatibility of two terms
efficiently. Types are compatible if one is a subtype of the other or if they
overlap. Overlaps occur in two ways: named or unnamed. A named overlap
results from an INTERSECTION axiom: an unnamed overlap can be implied
from either TYPE axioms or a named overlap. The unification of two typed
variables may result in a variable of a complex type of the form (int type1
type2) indicating the intersection of the two types. This new type is recognized
in the proof as a new type. For example, suppose we have the axioms:

(ISUBTYPE cars anything)
(ISUBTYPE person anything)
(ISUBTYPE ford cars)




(ISUBTYPE smalicars cars)
('SUBTYPE student person)
(ISUBTYPE worker person)
(ITYPE john worker)
(ITYPE john student) ; note this implies that the types worker
(INTERSECTION pintos ford smalicars) and student cverlap
((want ?x:person 7?g:ford) < (fuel-efficient ?g:ford)
(wealthy ?x:person))
((fuel-efficient ?f:smallcars) <)
((wealthy ?2d:worker) <)

We could then query (want ?:student ?d:ford) and we would get (want ?r:(int
student worker) ?u:pintos). pintos being a named overlap while the intersection
of the types student and worker is derived by the prover.

7.5 Tracing Typechecking

In order to trace the typechecking functions. call the function (trace-
typechecking). The prover will break during typechecking if this function is
called with the form (trace-typechecking breax). In order to stop tracing. call
(untrace-typechecking).

7.6 Assumption Mode

The default mode for HORNE is t0 assume that two types whose relationship is
not known are not compatible. This can be overridden by the command (type-
assumption-mode). in which all unknown relationships are assumed to be
unnamed intersections. Alternatively, the mode (type-query-mode) will query
the user each time two types are found for which there is no known
relationship. The function (normal-type-mode) returns the system to default
mode.

In assumption mode, the format ot answers is
((Kanswer> <{type assumptions>)).

For example, given (Q ?x:CAT) and proving (Q ?x:DOG) in assumption mode
where no relationship is known between the types CAT and DOG. we get:

(((Q ?x:(int CAT DOG)) (int CAT DOG)))
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Note that if you obtain multiple answers in this mode, the list of assumptions
for each answer may refer to assumptions needed for other answers as well.

7.7 Defining a Custom Typechecker

If users wish to design their own type checking facility, the interface between
the unifier and the type checking system consists of two LISP functions that
can be rewritten. These are:

(typecheck <term> <type>)
Returns t if and only if the term is of the appropriate type (or a subtype):

(typecompat <typel> <type2>)
Returns the more specific type. For example.

(typecompat GIRL PEOPLE) returns GIRL,
(typecompat GIRL BQY) returns nil.

8. EXTENSIONS TO THE UNIFICATION ALGORITHM

The unifier in HORNE has been augmented to allow two types of special
unification dealing with equality and restricted variables.

8.1 Equality

The unification algorithm of HORNE has been modified so that when terms do
not unify they can be matched by proving that the terms are equal. Any
variables in the terms matched will be bound as needed to establish the
equality. Equality statements are added to the system by using the axiom EQ.
(Note that EQ is of arity 2.) For example:

((EQ (president USA) Ronald-Reagan) <)
expresses a fact that is well known to most Americans. The axiom
(EQ (add-zero 1) 1) X)

expresses an infinite class of equalities. For example, (add-zero (add-zero 1))
equals 1, as does (add-zero (add-zero (add-zero 1))), and so on.

The system provides, in an efficient manner, complete reasoning about fully
grounded terms (i.e., terms that contain no variables), and supports partial
reasoning about equality assertions containing variables. The current system
will allow variables in queries (which may be bound to establish equalities). but
variables in equality assertions are restricted in their use. In particular, there is
no transitivity reasoning for terms containing variables; e.g., given




(EQ (f ) %)
(EQ (G ?) (f ?%))
we can prove (EQ (f A) A), (EQ (f ?z) ?z), and (EQ (G (f ?t)) (f ?t)), but cannat

prove (EQ (G A) A), even though it is a logical consequence of the two axioms
above.

The information derived from the EQ axioms that are asserted is stored on a
pre-computed table which is updated as EQ axioms are added and deleted.
This table is storable using the standard HORNE 1/0 mechanism.

There are two LISP functions for examining th- =quality assertions:

(equivclass <ground ‘tarm))
Returns a list of all ground terms eqGuai to the <grounc term.,.

(equivciass-v <term)

Ret. "ns a list of all terms that could be equal to the term foilowed by
variauie binding information.

8.2 The Post-Constraint Mechanism

HORNE allows the user to specify that the proot of an atomic formula be
delayed until the terms in it are completely bound. The user does this by
enclosing the atomic formula within the lispfn POST, as in the axiom:

((F ?7x) < (POST (M=MBER ?x (a very very long list))) (G ?x)).

POST takes an atomic formula as an argument. if the formula is grcunded then
the proof proceeds as usual. Otherwise the variabies in the formulz are bound
to a function which restricts its value anc the proof proceeds as though the
proof of the formula succeeded.

Restrictions on variables are implemented by binding the variable to a special
form

(any ?newvar (constraint ?newvar)).

Thus, give the above axiom, if we queried (F ?s} the POST mechanism would
bind ?s to

(any ?s0001 (MEMBER 7s0001 (a very very long list))).

This use of a special form any is similar to the omega form used in Kornfeld
(1983).
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The HORNE unifier has been modified so that it knows about any. A term of
form (any ?x (R ?x)) will unify with any term that satisfies the constraint (R ?x).
Again using the above axiom: after the POST succeeds, the proof continues
with the subgoal

(G (anv ?s0001 (MEMBER ?s0001 (a very ...

Now suppose that (G e) is true. Then we can unify these two literals if we can
prove

(MEMBER e (a very very long list)).

Note that the constraint will be queried only once its variable is bound. Thus if
(G ?c) were true above, the unification would succeed and

(F (any ?s0001 (MEMBER 7?7s0001 (a very long list))))

would be returned as the result of the proof. If (G (fn ?c)) were true instead. a
recursive proof testing whether (MEMBER (fn ?c) (a very very long list)) wouid
be done and, if successful. the final result of the proof would be

(F (fn (any ?z (MEMBER (fn ?z) (a very very long list)))).

During normal tracing, any subproofs due to the post constraint mechanism
are not traced. If tracing is desired for these proofs, call (htrace-post-proof). To
set it back to the default of no tracing, call (unhtrace-post-proof).

8.3 Interaction Between Systems

The equality system and the POST mechanism use each other as can be
shown by the following example.

(EQ (child-of Adam) Abel)
(EQ (child-of Eve) Abel

Then we can unify (child-of ?x) with Abel, resulting in ?x being bound to
(any ?x0001 (MEMBER ?x0001 (Adam, Eve))).

Thus we have restricted the values that ?x can take on to Adam or Eve. It
should be noted that MEMBER must take equality into account; that is, in the
example, the any term should unify with the term (First-man) given (EQ (First-
man Adam)).
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9. THE FORWARD CHAINING FACILITY

The prover has a forward production system in which the addition of new
axioms adds new facts that are implied by the existing axioms. The general
form of forward axioms are as follows:

((trigger) (list of conclusions) index (list of conditions)).

After a HORNE axiom is added to the database it is checked to see if it matches
any trigger pattern. A trigger must be an atomic formula. but cannot be a LiSP
predicate. If it matches. then using the binding list of the match the system
tries to show that the conditions associated with the trigger arc in the
database. Note that the system does not try to prove the conditions (unless
specified). but simply checks that they are in the database. If all the conditions
can be shown to be in the database then each of the conclusions in the
conclusion list is added to the HORNE axiom list using the bindings ccllected in
the process. LISP predicates can be used in the conditions and in the
conclusions. where they are called as in the backwards chaining system. The
value returned by a LISP predicate in the conclusion list is ignored. Irn adding a
conclusion another trigger may be fired. To prevent infinite looping the forw:=-d

chaining system will not add axioms that are already in the database. '

9.1 Defining Forward Production Axioms

(addf Catomic formula> (Katomic formuia> ...) <index)>
‘(Katomic formula> ...})
(adctq <atomic formula> (<atomic formula> ...) <index> (<atomic formuia™ ...J)

Adds the forward production axiom to the end of the data base. €.3..
adding the following

(addf ‘(e 2d) ‘((w 2d)) 'r '((r 2d)))

(addaq ((r d) s))

(addag ((e 7) j))

will result in the axiom ((w d) r) being added to the database.
9.1.1 Options to addf and addfq
(addf all “(Catomic formula> ...) <index> ‘L atomic formula> ...))

(addfq all (<atomic formula) ...) <index> (<atomic formula> ...))

Using the atom "all" for the trigger adds a separate forward-chaining

axiom for each of the atomic formulas in the condition list with that

condition as the trigger. Thus each of the conditions is a trigger. €.g..
(addt all "(eq ?y %2) 'eq '(eq % ?x) (eq ?x ?2)))

adds the following axioms to the system:




1. (eq ?% ?x) (eq % ?2) eq ((eq % ?x) (eq ?x ?2))
2. (eq ?x %2) (eq % ?z) eq ((eq % ?x) (eq ?x ?z))

Upon the following addition:

(addaq ((eq w e) 1)
(addaq ((eq r w) 1)

the axiom ((eq r e) eq) is added to the system.

(addf '<atomic formula> '(Katomic formula> ...) <index> ‘()
(addfq <atomic formula> (<atomic formula> ...) <index> ())

Using "()" for the conditions list makes it such that whenever the axiom
is triggered it will assert its conclusions.

(addf ‘<atomic formula> (<atomic formula> ...) <index>
‘(Katomic formula>) ... )

(addfq <atomic formula> (<atomic formula> ...) <index>
(<atomic formula>) ...)

This option allows a lispfn to occupy the position of the predicate name
in any of the conditions. The lispfn succeeds if it returns a non nil value.

(addf <atomic formula> ‘(<atomic formula> ...) <index>
‘((prove <atomic formula>) ...) )

(addf <atomic formula> (Katomic formula> ...) <index>
((prove <atomic formula>) ...) )

The prove option allows any of the conditions to call the theorem
prover to prove the condidtion. (Note that normally conditions are not
proved but just shown to be in the data base). The condition is true if
the atomic formula can proved by the theorem prover. Any variables
bound in the proof will be passed on to the next condition.

(retract-forward 'form) and (retract-forwardq form)

These delete the forward-chaining axioms specified by the given form,
which is either a pattern or a predicate name. If the form is a predicate
name, all forward-chaining axioms that have the given predicate name
as their trigger name are deleted. Otherwise all forward-chaining
axioms whose trigger unifies with the given pattern are deleted. Note
that if the form is a pattern the car of the pattern must be an atom.

The system does not perform truth maintenance; i.e., axioms entered into the
data base due to a forward-chaining axiom are not removed when the axiom is
removed.
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9.2 Examining Forward Production Axioms

(printf

(printc

‘form) and (printfq form)

These functions pretty print all axioms whose triggers are specified by
the form argument, which can be either a predicate name or a pattern.
If it is a predicate name, all forward-chaining axioms with the given
trigger name will be printed. Otherwise all forward-chaining axioms
whose trigger matches with the given pattern will be pretty printed. Note
that if the form is a pattern the car of the pattern must be an atom.

‘form) and (printcq form)

These functions pretty print all axioms whose conclusions are specified
in the form argument. The form argument can be either a precicae
name or a p=‘tern. If it is a predicate name then all forward-chaining
axioms that have as &« member of thier contusion list an atomic foermula
with the given predicate name will be pretty printed. Otherwise all
forward-chaining axioms who have a member of their conclusion list
that unifies with the given patterm wili be pretty printed.

(triggers}

Returns a list of all the predicate names which are trigger names for
forward-chaining axioms.

9.3 Tracing Forward Chaining

Because the forward-chaining mechanism is defined in HORNE. the standard
tracing functions (e.g., htraceal!) are useable tor debugging forward-chaining
axioms. In addition, the following trace facilties are provided.

(trace-assert.ons)

This causes the system to print out all axioms that are asserted by the
forward chaining system. The system default is that this tracing is on.

(untrace-assertions)

Stops the tracing of assertions made by the forward chaining system.

(trace-forward)

Causes the system to print out the trigger and rule of any forward-
chaining axiom that has been triggered.

(untrace-forward)

Undoes the effects of "trace-forward™.
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9.4 1/0

170 for forward production rules are handled by the /0 functions documented
in Section 6 (Saving and Restoring Programs). An exception is the function
"save-indices" which cannot be used to save forward chaining rules.

9.5 Editing Forward Chaining Axioms

(edit-forward ‘predname)
The above call will get you into an interactive editor for forward-
chaining axioms. The options are listed as below.
a assert”

Prompts for a position of the new axiom. If correctly specified it
prompts for axiom. Enter axiom as a list of its components.

r "retract”

Prompts the user for the number of an axiom to remove. Will
return error message if number is not properly specified.

p "print"

Pretty prints out the current version of the axiom list.
u "undo"

Undoes any and all changes made in the current edit session.
q nquitn

Leaves the editor and makes all changes.

9.6 Examples

The first example shows the use of forward chaining for a simple equality
system. The rules capture the transitivity and symmetric properties of equality.
The rules are:

(addf all "((MYEQ % 72)) 'p '((MYEQ % ?x) (MYEQ ?x ?2)))
(addf "(MYEQ ?s 2d) “(MYEQ 2d ?s)) 'p ‘()

If we now add
(addag ((MYEQ w e) k))
the following axioms are also asserted by the system:
((MYEQ e w) p)
(MYEQ w w) p)
(MYEQ e €) p)
f we now add:

((addag ((MYEQ r e) k))




then the following are also asserted:

(MYEQ e 1) p)
((MYEQ r w) p)
(MYEQ w ) p)

The second example involves forward chaining rules that are used to maintain
consistency in a data base for a simple blocks worid. Here the chaining rules
call LIsp functions to delete axioms.

(addf ‘(pickup ?d) '((holding ?d)
(RETRACT (ontable ?d))
(RETRACT (clear ?d))
(RETRACT (handempty)))

'index

'((ontaple ?d)
(clear ?d)
(handempty)))

(addaq ((ontable block1) k)
((clear block1) k)
((handempty) k))

if we now add
(addaq ((pickup block1) k))

then the axiom ((holding block1) index) becomes true and the predicates
(ontable block1) (clear block1) and (handempty) are deleted from the data
base.

10. BUILT-IN PREDICATES

This section documents the built-in predicates that are already defined in
HORNE.

(ASSERT <axiom>)

Adds the specified axiom to the data base at the end of the axiom list
for the specified predicate. Thus, this performs a similar function to
addz but is callable from HORNE and returns t. All logic variabies in the
new axiom that are bound in the current environment will be replaced
by their values before the new axiom is added.

(ATOM <term))
Succeeds if <term> is an atom.
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(BOUND ?x)

Succeeds only if ?x is not a variable. It succeeds on any other non-
grounded term. For example, (bound (f ?x)) succeeds. Equivalent to
but faster than (UNLESS (VAR ?x)).

(DISTINCT <term{> <termy))

Succeeds if both terms are fully grounded, but to different atoms. If a
term is not fully grounded, this posts a constraint on the variable(s) and
succeeds.

(EQ <term;> <termy>)
Succeeds if <termq> equals <termo> (i.e., they unify) (see Section 8.1).

(FAIL)
This predicate is always false.

(GENVALUE <variable> <LISP expression>)
Sets the HORNE variable <variable> to first value in list returned by
evaluating the <LISP expression>. Other values are used for
backtracking (see Section 5.1).

(GROUND <term 4>}
Succeeds if termq is a fully grounded term. i.e., it contains no variables.

(/DENT/CAL (rerm1> <term2>)
Succeeds if <termq> and <term,> are structurally identical; i.e., if they
unify without the equality mechanism.

(MEMBER <termq> <list>)
Succeeds if <term> is equal (i.e., HORNE equality) to a term in the list.

(NEQ <term> <termy>)
Succeeds if both <termy> and <termo> are fully grounded. but to
different values. Otherwise it fails.

(RETRACT <termq))
Retracts all axioms whose head unifies with <term{>

(RPRINT <termq> ... <termp>)
The values of <term> through <term,> are printed on successive lines.




(RTERPRI)
Prints a line feed.

(SETVALUE <variable> <LiSP expression>)

Sets the HORNE variable <variable> to the value of the LISP expression
<{LISP expression>. Any logic variables in <LISP expression> are replaced
by their logic bindings before LISP evaluation (see 3ection 5.1).

(UNLESS <atomic formula>)

Succeeds only if the call (proveq <atomic formula>) fails. This gives us
proof by failure. Note that variables change in interpretation in the
UNLESS function: e.g., if we are given the fact that (P A) is true. then

(UNLESS (P B)) will succeed.
(UNLESS (P A)) will fail as expected.
But (UNLESS (P 7x)) also fails. since (P ?x) can be proven.

(VAR <variable>)
Succeeds only if <variable> is an unbound variabie.

/ The cut symbol. It has no effect until HORNE tries to backtrack past it.
and then the prover immediately fails on the subproblem it was working
on. An alternate definition: cut always succeeds. and when executed.
removes all choice points in the proof from the point when the axiom
containing the cut was selected to the current point of the proof.

11. HASHING

A hashtable can be declared for a predicate name whether it currently has
axioms asserted for it, or will have axioms asserted later. It can also be used to
redefine an already existing hashtable for the predicate. The hashtable allows
the axioms for a predicate to be stored according to the values of the
arguments to the predicate. They can currently only be used on argument
positions that do not allow equality reasoning. For example, consider a one-
place predicate P with hashing on its argument into three buckets. If we have
asserted the facts (P A), (P B), (P C), (P D), (P (f A)) and (P (g ?x)), the hashed
structure might look like the following (ignoring efficiency encodings):

bucket 1 = (P A)
bucket 2 —(P B), (P D)
P bucket 3 - (P C)
function bucket — (P (f A)), (P (g ?X))
variable bucket — (P A), (P B), (P C), (P D), (P (f A)), (P (g ?x))
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Now if we query (P A), we would hash on A to bucket 1 and just unify (P A)
with those axioms there, i.e., only (P A). Similarly, for (P E), if hashing on E
gives bucket 3, then (P E) would be unified only with (P C). Any complex
argument, such as (P (g B)), will be checked against the special function
bucket, i.e., (P (f A)) and (P (g ?x)). Finally, any query with a variable, e.qg., (P
?y), will be matched against the variable bucket which contains the complete
axiom list.

As one can see, if equalities were allowed on terms in the argument position,
this structure might fail. For example, given B = F, if we query (P F). and
hashing on F gives bucket 1, then (P F) will be checked only against (P A) and
would fail. Hashing with equality is being considered for the next version.

Hash tables are defined as follows:

(define-hashtable <predicate name>)

For forward chaining axioms. the trigger can be hashed using the function

(define-hashed-trigger <predicate name)).

For both of these uses, the system then prompts for paths through a formula to
where the hashing should take place. and for the size of the buckets for each
hash. The simple options for paths are as follows:

<{number>
Hash on nth argument to predicate.

(i <number>)

Hash on first atom found by successively taking CARs on the nth
argument to predicate.

Arbitrary paths may be built by specifying a sequence of CARs and CDRs
starting from the predicate name. Thus the path (CAR CDR) is equivalent to the
first argument. The path (CAR) would give the predicate name. The only other
possibility in a path is to specify an arbitrary number of CARs, specified as
CAR* in the path. Thus entering (CAR* CDR CDR) is equivalent to (i 2).

The minimum number of buckets in a hashtable is 3; one for variables, one for
lists (i.e., functions). and one for atoms. The number of buckets for atoms is
the only size under programmer control. Thus, entering a 5 when prompted will
produce 5 buckets for atoms.
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A sample session that hashes a predicate MYPRED on the form of its second
argument (into 10 buckets), and on some other arbitrary position in the third
argument (into five buckets) follows:

—(define-hashtable MYPRED)

Enter path spec: 2

Hashtable size? ("q" to respecify path) 10

Enter path spec: (CAR* CAR CDR CAR CDR CDR)
Hashtable size? ("q" to respecify path) 5

Enter path spec: g

Hashtable defined.

12. CONTROLS ON HORNE
The following global variables affect the behavior of HORNE:

HS$SLIMIT

The number of steps HORNE can take before asking the user whether it
should continue. Default value is 500. To continue, simply enter y, to
terminate enter n. You can enter debug mode by entering d. after which
typing go gets you back to the question whether to continue.

H$SPARTITIONSCHK

The mechanism that adds information to the TYPE matrix does
extensive consistency checking involving XSUBTYPEs. | no
XSUBTYPE axioms are present the consistency testing is wasted If this
flag is set to nil then the testing is turned off. Default value is "t'.

TESTFLAG
If this flag is set to nil then consistency will not be checked when TYPE
axioms are added. Default is non nil.

The following functions also control the behavior of HORNE:

(warnings)

Enables the printing of warning messages at the user’'s terminal. By
default. warning messages are printed.

(nowarnings)

Disables the printing of warning messages. By default. warning
messages are printed.
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13. EXAMPLES
13.1 A Simpie Example
The following is a simple session with HORNE:

*(addzq ((HAPPY ?person ?item) <
(DESIRABLE ?item)
(CAN-AFFORD ?person ?item))
; you can afford items if you have money
((CAN-AFFORD ?person ?item) <
(HAS-MONEY ?person))
; but love is for free
((CAN-AFFORD “?person Sweetheart) <)
((DESIRABLE Newsuit) <)
((DESIRABLE Caviar) )
((DESIRABLE Sweetheart) <)
((HAS-MONEY Sam)) )

*(htraceall)
; prove JOHN can be happy even if he has no money
*(proveq (HAPPY JOHN ?why))

(q-1) (HAPPY JOHN ?why)
(g-2) (DESIRABLE ?why)
(r-2) (DESIRABLE Newsuit)
(q-2) (CAN-AFFORD JOHN Newsuit)
(g-3) (HAS-MONEY JOHN)
: note, backtracking to (q-2) (DESIRABLE ?why)
(r-2) (DESIRABLE Caviar)
(g-2) (CAN-AFFORD JOHN Caviar)
(g-3) (HAS-MONEY JOHN)
; backtracking again to (q-2) (DESIRABLE ?why)
(r-2) (DESIRABLE Sweetheart)
(g-2)(CAN-AFFORD JOHN Sweetheart)
(r-2) (CAN-AFFORD JOHN Sweetheart)
(r-1) (HAPPY JOHN Sweetheart)
; end of trace, the value returned is:
((HAPPY JOHN Sweetheart))




13.2 The Same Example with Posting

*(addzq ((HAPPY ?person ?item)

(POST (C=SIRABLE ?item))

(CAN-AFFORD ?person ?item))
((CAN-AFFORD ?perscn ?item) <

(HAS-MONEY 7?person))
((CAN-AFFCRD ?person Sweetheart))
((DESIRABLE Newsuit) )
((DESIRAELE Caviar) )
((DESIRABLE Sweetheart) <)
((HAS-MONEY Sam)) )

*(htraceall)
*(proveq (HAPPY JOHN 2why))

(g-1) (HAPPY JOHN ?why)
(g-2) (POST (DESIRABLE ?why})
(r-2) (POST (DESIRABLE (any 20006 ((DESIRABLE ?000€)))))
(Q-2) (CAN-AFFORD JOHN (any 20006 {({(DESIRABLE ?0006)))))
(q-3) (HAS-MONEY JOHN;)
;intrying the second axiom for CAN AFFORD. we must
prove (DESIRABLE Sweetheart) to unify Sweethe zr1
with (any 2?0006 ...)
(r-2) (CAN-AFFORD JOHN Sweetheart)
(r-1) (HAPPY JOHN Sweetheart)
((HAPPY JOHN Sweetheart))

The only difference between this proof ard the proof in 13.1 is when the
predicate DESIRABLE is proved. In the first. we would backtrack through all
values until one was found that succeeded. In the second. the rest of the ©roof
is done first, and then when a value for ?why is found, it is checked to see if we
can prove it is DESIRABLE.

13.3 An Exampile Using Types

This example uses a type hierarchy with two types, PROFESSOR and
MUSICIAN, that intersect with the subtype MUSICAL-PROFESSOR.

; The type hierarchy
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(addzq ((ISUBTYPE PROFESSOR PEOPLE))
((ISUBTYPE MUSICIAN PEOPLE))
((INTERSECTION MUSICAL-PROFESSOR

PROFESSOR
MUSICIAN)))

: The axioms:

all professors teach, and all musicians sing
someone is happy if they teach and sing

(addzq ((TEACH ?p:PROFESSOR))
((SING ?m:MUSICIAN))
((HAPPY 7p) < (TEACH 7p) (SING 7p)))

; Here we could add hundreds of professors and musicians, and a few musical-
professors.

(addzq ((ITYPE JACK MUSICAL-PROFESOSRY)))
Now we can prove the following:
Is Jack Happy? yes.
(proveq (HAPPY JACK))

(g-1) (HAPPY JACK)
(g-2) (TEACH JACK)
(r-2) (TEACH JACK)
(@-2) (SING JACK)
(r-2) (SING JACK)
(r-1) (HAPPY JACK)

Who is happy? All musical professors.

(g-1) (HAPPY 7x)

(@-2) (TEACH 7x)

(r-2) (TEACH ?y:PROFESSOR)

(9-2) (SING ?y:PROFESSOR)

(r-2) (SING ?z:MUSICAL-PROFESSOR)
(r-1) (HAPPY ?2:MUSICAL-PROFESSOR)

((HAPPY ?z:MUSICAL-PROFESSOR))
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INDEX OF FUNCTIONS

(add-comment <predname> 'C<comment>) -- Sect. 2.4

(add-to-comment <predname) <comment)) -- Sect. 2.4

(adda ‘Caxiomy> ... Caxiomp,>) and (addaq <axiomq> ... <axiomp>) -- Sect. 2.1
(addf 'all ‘(<atomic formula> ...) <index> '(<atomic formula> ...)) -- Sect. 9.1.1

(addf <atomic formula> '(Katomic formuifa> ...) '<index>
‘(Catomic formula>) ... ) -- Sect. 9.1.1

(addfq all (<atomic formula) ...) <index> {<atomic formula> ...)) -- Sect. 9.1.1

(addfq <atomic formula> (Katomic formula> ...) <index>
(<atomic formula-' ...) -- Sect. 9.1.1

addz <axiomq> ... <axiomp>) anc (addza <axiomy> ... <axiomp,-) -- Sect. 2.1
(any ?newvar (constraint ?newvar)) -- Sect. 8.2

(ASSERT <axiom>) -- Sect. 10

(ATOM <term>) -- Sect. 10

(axioms <list of axioms>) -- Sect. 2.1

(axioms-by-index '<index>) -- Sect. 2.2

(axioms-by-name-and-index '<pred-name> <index>) -- Sect. 2.2

(bind <variable> <value>) -- Sect. 5.2

(BOUND ?x) -- Sect. 10

(clear <index>) and (clearq <index>} -- Sect. 2.1

(clearall) -- Sect. 2.1

(declare-tn-type <fn-name> (Ctypel)> ... <typen> <typename>) -- Sect. 7.1
(declare-lispfnq <namey> ... <namep>) -- Sect. 5.2

(declare-varyingq <predname1> ... <prednamen>) -- Sect. 2.1
(defined-functions) -- Sect. 7.3

(define-hashed-trigger <predicate name>) -- Sect. 11

(detine-hashtable <predicate name>) -- Sect. 11

(delete-fn-definition <function name>) -- Sect. 7.1

(DISJOINT <typel)> <type2> ... <type n>) -- Sect. 7
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(DISTINCT <term> <termo>) -- Sect. 10

(dump-predicates ‘<filename> <list of prednames>) -- Sect. 6
(edit-forward 'predname) -- Sect. 9.5

(edita <predicate name>) -- Sect. 3

(EQ <termy> <termy>) -- Sect. 10

(equivclass <ground term)) -- Sect. 8.1

(equivclass-v <term>) -- Sect. 8.1

(FAIL) -- Sect. 10

(find-clauses ‘<Catomic formula>) -- Sect. 2.2

(find-facts <atomic formula>) and (find-factsq <atomic formula>) -- Sect. 2.2
(find-facts-with-bindings ‘<atomic formula>) -- Sect. 2.2
(GENVALUE <variable> <Lisp expression>) -- Sect. 5.1, Sect. 10
(get-answer) -- Sect. 5.4

(get-axioms <filename>) and (get-axiomsq <filename>) -- Sect. 6
(get-binding <varname)) -- Sect. 5.4

(get-clauses <atomic formula>) -- Sect. 2.2

(get-facts <atomic formuia>) -- Sect. 2.2

(get-type-object <term>) -- Sect. 7.3

(goal) -- Sect. 4.3

(GROUND <termy>) -- Sect. 10

(htrace <predspec;> ... <predspec,>) -- Sect. 4.2
(htrace-post-proof) -- Sect. 8.2

(htraceall) -- Sect. 4.1

(htraceiq <index-specq> ... <index-spec,>) -- Sect. 4.2

(htraceq <predspecq> ... <predspecp>) -- Sect. 4.2

HSSLIMIT -- Sect. 12

H8$PARTITIONSCHK -- Sect. 12

(IDENTICAL <termy> <termy>) -- Sect. 10




(indices) -- Sect. 2.2
(int type1 type2) -- Sect. 7.4

(INTERSECTION <newtype> <typel> <type2>) -- Sect. 7

(issub <type1> <type2>) -- Sect. 7.3

(ISUBTYPE (subtype> (supertype>) -- Sect. 7 i
(isvariable <term>) -- Sect. 5.2 )
(ITYPE <individual> <typename)) -- Sect. 7

(matrix-relation ‘type1 ‘type2) -- Sect. 7.3

(MEMBER <term{> <list>) -- Sect. 10

(NEQ <term> <termy>) -- Sect. 10

(normal-type-mode) -- Sect. 7.6

(nowarnings) -- Sect. 12

(print-commern: <predname>) -- Sect. 2.4

(printanswer) -- Sect. 2.3

(printc ‘form) and (printcq form) -- Sect. 9.2

(printf ‘form) and (printtq form) -- Sect. 9.2

(printi <index>) and (printic <index>) -- Sect. 2.2, Sect. 7.3

(printp <pattern>) and (printpq <pattern>) -- Sect. 2.2, Sect. 7.3

(proof-trace) -- Sect. 4.3

(prove all <atomic formula;> ... <atomic formulap,>) -- Sect. 2.3

(prove <atomic formula;> ... <atomic formulapy>) -- Sect. 2.3

(prove <number)> <atomic formulaq> ... <atomic formula,>) -- Sect. 2.3

(prove query '<atomic formula> ... Catomic formula,>) -- Sect. 2.3

(proveq all <atomic f. mula;> ... <atomic formula,>) -- Sect. 2.3 P
(proveq <atomic formula;> ... <atomic formuia,>) -- Sect. 2.3 .
(proveq <number> <atomic formulay> ... <atomic formula,>) -- Sect. 2.3

(proveq query <atomic formula;> ... <atomic formula,>) -- Sect. 2.3

(recompile-matrix) -- Sect. 7.2
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(relations) -- Sect. 2.2

(retract-forward 'form) and (retract-forwardq form) -- Sect. 9.1.1
(RETRACT <term;>) -- Sect. 10

(retracta <predicate name>) and (retractaq <predicate name>) -- Sect. 2.1
(retractall <pattern>) and (retractallg <pattern>) -- Sect. 2.1

(retractz <predicate name>) and (retractzq <predicate name>)-- Sect. 2.1
(RPRINT <termy> ... <termp>) -- Sect. 10

(RTERPRI) -- Sect. 10

(runtime) -- Sect. 2.3

(save-all-axioms ‘<filename>) -- Sect. 6

(save-indices <ftilename> <list of indices>) -- Sect. 6

(save-predicates <filename> <list of prednames>) -- Sect. 6
{cee-function-definition <function name>) -- Sect. 7.3

(SETVALUE <variable> <LiSP expression>) -- Sect. 5.1, Sect. 10
(show-clauses) -- Sect. 4.3

(show-facts) -- Sect. 4.3
(show-proof-trace) -- Sect. 4.3

(stack) -- Sect. 4.3
TESTFLAG -- Sect. 12
{top) -- Sect. 4.3

(totry) -- Sect. 4.3
(trace-assertions) -- Sect. 9.3
(trace-forward) -- Sect. 9.3

(trace-typechecking) -- Sect. 7.5
(trace-typechecking break) -- Sect. 7.5
(triggers) -- Sect. 9.2

(turn-on-proof-trace) -- Sect. 4.3
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(turn-off-proof-trace) -- Sect. 4.3
(type-assumption-mode) -- Sect. 7.6
(type-info ‘type) -- Sect. 7.3
(type-query-mode) -- Sect. 7.6

(typecheck <term> <type>) -- Sect. 7.7
(typecompat <typel> <type2>) -- Sect. 7.7

(types) -- Sect. 7.3

(unhtrace-post-proof) -- Sect. 8.2

(unhtrace <predicate namey> ... Kpredicate namep>!
(unhtraceiq <index4> ... <indexpy>) -- Sect. 4.2
(unhtraceq <predicate namey> ... <predicate namey>)
(UNLESS <atomic formula>) -- Sect. 10
(untrace-assertions) -- Sect. 9.3

(untrace-forward) -- Sect. 9.3

(untrace-typechecking) -- Sect. 7.5
(VAR <variable>) -- Sect. 10
(vartype 'Cvariable>) -- Sect. 5.2

(warnings) -- Sect. 12

(XSUBTYPE (Ktype1> <type2> ... <type n>) Csuper-type>) --

/ -- Sect. 10

56

-- Sect. 4.2

-- Sect. 4.2

Sect. 7
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