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ABSTRACT

Carrier generation within a photodetector is reviewed to determine the shot noise of generation-re-
combination, arising from thermal radiation from within the detector itself. Since this is a noise that ex-
ists in all detectors at a finite temperature, it sets the absolute limit of detectivity that no detector of
whatever type or design can exceed. The author’s intent is to preclude managers from believing that high-
er detector temperature operation can be permitted. The equations are given and exemplar graphs are
displayed for two interesting cutoff wavelengths, using coordinates that may readily be related to system
performance needs. Several particular types of detectors are compared with the absolute limit curve.

DISCUSSION

Summary and conclusions:

In the frequent case of an infrared camera imaging a terrestrial scene with about a 300K background
it is well recognized that background limited infrared performance (BLIP) refers to the terrestrial back-
ground. It is the shot noise of the radiation of this background which is the dominant noise. However,
when the camera is used to image a scene against a much colder background, e.g. deep space, the shot
noise of that background, being very small, may not be the dominant noise. However, the detector array
is still immersed in the radiation of the cryogenic dewar and cold finger. Indeed, parts of each element of
the detector array are irradiating the remainder of the element. The detector is immersed in 1ts own self-
radiation. The shot noise of this self-radiation may be the dominant noise. Several authors have ad-
dressed this problem? 3.4 5. 6.7 for particular types of detectors.
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This paper follows the general procedure of Long? and Jensen? to determine an absolute lower limit
on the noise of a quantum detector, a goal which can never be reached much less exceeded, for any and
all types of detectors. There is established a detection level beyond which no one will ever expect to at-
tain. This level is expressed as an equivalent BLIP flux density. This limit is set by the self~radiation of
the detector itself, simply because it is at a finite temperature. This is often referred to as the thermal
generation-recombination noise limit. It is set by a shot noise and not a resistive Johnson-Nyquist noise.
This level is then compared with the results of Long and of Jensen and of Kinch?.

This BLIP flux density is then related to a Noise Equivalent Flux Density, which is a further function
of the product of the detector area and the exposure time {or ratio of the detector area to the circuit
bandwidth). For subaperture targets (those that are not resolved by the sensor system) the relation is
made to the Noise Equivalent Number of photons per pixel. It is possible then to use these scales for
comparison with the system parameters and target flux at the focal plane to determine how to apply a
detector in a desired sensor system.

For comparison to other detector candidates we use Kinch* equations for extrinsic silicon (XSi), and
Forrester et al® equations for a superconductor (SC). For the SC, however, since quasi-particles (qp) gen-
erated farther than a coherence length from a weak link or a Josephson junction (JJ) do not produce a
signal, the coherence length is used instead of the absorption length. One must be aware, however, that
the ratio of these two lengths may also be a factor in the effective carrier lifetime so that the overall oper-
ation of the detector may be a weak function of this ratio.

A second part of this paper examines the lower limit on the noise of an ideal bolometer. The bolome-
ter is ideal in that it is radiatively coupled only. It is shown that this noise, though often considered to be
a thermal noise, is really a shot noise of the detector self-radiation. This result is also compared with the
noise of a quantum detector of Kinch and the absolute lower limit of Jensen. Bolometers may have a
niche where long wavelength detection is required while the detector must operate at as high a tempera-
ture as is permitted by the target signal which must be detected.

Radiative generation of carriers in quantum detector:
Assume:
1. quantum detector, absorption of photon generates a charge carrier
2. sharp spectral cutoff appropriate to band gap

3. signal is integral of carriers generated during an exposure time; all generated carriers contrib-
ute to the signal

4. Planck density of quanta, function of temperature and wavelength

5. mean free path of quantum is equal to the reciprocal of the absorption coefficient (though
equation (5) below makes a better substantiated approximation than this)

6. no other noise sources (Johnson-Nyquist thermal noise from dissipative sources, preamplifier
noises, etc. are assumed to be zero to obtain an ideal situation focussed on the detector alone)

Assumption #5 means that the product of the thickness, b, of the material and the absorption coeffi-
cient, a, is unity. To err on the side of the ideal the quantum efficiency, v, is also taken as unity.

8. M.G. Forrester and J. Talvacchio, “Photon Detection by High-Temperature Superconducting Films: Fundamental Limits”,
Proc. Intnat. Conf. M2-HTSC, Materials and Mechanisms of Superconductivity, High-Temperature Superconductors II at Stan-
ford University, pp391 to 392, North-Holland, July 1989. Also Physica C, pp162 to 164 (1989), North-Holland
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In the event that the lifetime of the carrier is shorter than the exposure time, assumption #3 requires
that some means be provided to integrate all the short term effects, within the lifetime of the carriers,
over the period of the exposure time. This may be an engineering challenge. When this is done, the output
signal is the product of any carrier gain that occurs within the detector, the signal radiation induced car-
rier generation rate per unit area, the illuminated area, and the exposure time:

S=G*g*A*t [carriers] (1)

Similarly, since every photon in this radiation is independent, the carriers they generate have a Poisson
distribution and the noise is its shot noise. This noise is the product of the carrier gain within the detec-
tor and the square root of the product of the carrier generation rate per unit area, the illuminated area,

and the exposure time:
N = G* \j g*A*t [carriers] 0))

Consequently, for maximum signal-to-noise ratio the carrier generation rate is the quantity of interest.
The area and the exposure time are system design varameters.

There are two approaches that lead to the calculation of the carrier generation rate:

(1) Thermodynamic: The first starts with the Fermi-Dirac statistics for the carrier, which are fer-
mions, and from thermodynamics. This results in an expression for the carrier density of the de-
tector material®, If, then, the carrier lifetime can be calculated, the ratio of the density of states to
the carrier lifetime can be taken as the carrier generation rate simply because the average carrier
density must remain constant at thermal equilibrium.

We follow this approach, using the equations of Kinch* and Forrester et al, to obtain curves for par-
ticular types of detectors for comparison to the absolute limiting curve.

The problem with this approach is that of determining the maximum carrier lifetime based only upon
fundamental principles. In general, there are too many practical considerations involved, such as impurity
states, defect states, etc. The detector material and its configuration may be important determining fac-
tors. It is difficult to establish a carrier lifetime that absolutely cannot be improved. A determined man-
ager can always order the materials engineer to go back to the lab and make it better.

Since the purpose of this paper is to establish an absolute physical limit, which may not even be at-
tainable, and certainly not exceeded, by any arbitrary type of detector, we take a second approach:

(2) Radiation: Generally this follows Long2 which in turn follows van Roosbroeck and Shockley!® and
is detailed in R.A. Smith!l, The carrier generation rate is derived assuming that they are excited
above their ground state at zero kelvin only by radiation and lattice photons from the lattice of
the detector itself because it is at a finite temperature. All of this radiation is within the material
of the detector, not in free space. Hence in Planck’s Radiation Law the speed of light is that with-
in the material. If c is taken as the speed of light in free space, that within the material must be
c/nopt, Where nopy is the optical index of refraction. This results in a higher value of flux density
within the material than it emits from its surface. This author interprets this to result from the

9. R.A. Smith, “Semiconductors”, esp. pp74 to 79 and equation 18 p78, Cambridge Un. Press, 1968.
10. W. van Roosbrocck & W. Shockley, Phys. Rev., Vol. 94, p1558 et ff, 1954.

11. R.A. Smith, “Semiconductors™, esp. pp288 to 290, Cambridge Un. Press, 1968. Note that on p289 in equation 205 there is a
typographical error, the factor ¢ should be in the denominator.
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reflectance of the surface, few photons getting out of the surface, more remaining inside, much as
a laser operates, but in this case the radiation is non-coherent.

Thus the radiative generation ratel% 13 14 [carrier/sec*cm?] is:

g pe) 0 du where u Uc

® hec
_8andy | kT } u? "c]
w -1+¢ A

where it can readily be seen that the square of the speed of light in ihe medium is in the denominator so
that the square of the refractive index (ngpy) must be a factor in the calculations. One might also note
from the factor in the denominator within the integral that this approach involves Bose-Einstein statistics
since the photons are bosons. Expressed in wams of the radiation constants the equation becomes:

I : 2a2
4'[2'7r'c2'h]'n§p‘ JkT 3. . [carrier/sec*cm?]
———— |du (3a)
h-c h-c v -1+ €

Long? approximates the integral to be uc? * e Yc arguing that for practical cases uc > > 1. Actually,
the integral has very significant contributions for values of 0.1 <u <6, and the approximation is not valid
except for uc> >3, that is AT < <(hc/k)/3 = 14388 um*K/3 = 4796 um*K. Now since the peak of the
Planck function of photon flux density vs temperature!S occurs at A T = 3669.84 um*K, the condition is
equivalent to A\ < <(4/3)*\n(T). A better approximation has to be used for situations with long wave-
lengths and higher detector temperatures.

Intrinsic photovoltaic detector:

Kinch® takes the first (thermodynamic) approach, expressing the thermal generation rate (per unit
area) of minority carriers as the ratio of the ~arrier density to the product of the carrier lifetime and the
absorption coefficient. He assumes Auge. «mrcd lifetime in HgCdTe and the generation rate becomes:

1.5
Nopt ['kTT‘]

[166-1012- V- sec|- a *E}3 €

—| [carrier/sec * cm?]; where u = %]::'1_—5 Q)

g:

12. Some algebra exchanges the absorption index, k, in equation 205 on p289 of Smith"!, for the absorption coefficient, o, ac-
cording to the equation given by Smith'! on p288 above his equation 200.

13. For a pure quantum detector we assume zero absorption coefficient for wavelengths longer than the cutoff wavelength, i.e. we
ignore the bolometric response that results from absorption of radiation by the lattice. This changes the lower integration limit
from zero to u. {following many other authors we use u instead of x for the argument in the integral)

14. This author aiso prefers to express the fundamental constants in these equations thus:
2*m*c?*h = 37418.4 um**W/cm?, first radiation constant
hce/k = 14388.3 um*K, second radiation constant
hc = 1.98648°10'° um®J

15. Note well that this is the peak of the curve of photon flux in units [photon/sec*cm?*um]. It occurs for ug = 4*[1-exp(-ua)].
Wein's Law is usually written for the peak of the curve of power flux in units [W/em?*um] which occurs for ug = 5*(1-exp(-um)]
for which (15.1) An*T = 2897.88um*K
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Long et al? take the second (radiation) approach following van Roosbroeck and Schockley!? and ob-
tain in their equation (A1) p395 the same result as equation (3) above. They continue to obtain an expres-
sion for D*, along the way dlscussmg optimizing the thickness, b, of the absorbm% region and the resul-
tant quantum efﬁcxency For maximum signal to noise ratio [l—exp(—b‘oz)}/(b‘oz)0 must be maximized.
They obtain a minimum multiplying factor:

b;la = %—% = 1.756 [photon/carrier]; n = 0.7153 carriers/photon 5)

which must be applied to the minimum BLIP flux density which may be derived from these generation
rates.

Equivalent BLIP flux density upon detector surface:

The current noise spectral density of a detector is the sum of that from the self radiation and the
scene radiation:

%l% = 2'¢ba-Ag+2e2 Ay Pg [A%/Hz] (6)

Equating the two noises for the -3 dB equivalent BLIP flux density:

®p = g b;’°‘ [photon/sec*cm?] %

Thus the carrier generation rate is proportionately related by equation (7) to the equivalent, back-
ground limiting, photon flux density from the scene which is incident upon the detector. This equxvalent
BLIP ﬂux density is one possible figure of merit of a detector, and has been used by both Jensen? and
Kinch3 as one coordinate for a graphical representatxon of detector performance as a function of detector
temperature. It will be used for detector comparisons in this paper also.

This assumes that all the photon generated carriers are simply swept out to become signal charge. In
practice, extracting the signal from a detector may introduce its own associated noise, which will add in
quadrature with this radiation noise.

Detectivity:
Detectivity, commonly represented by D*, is a common figure of merit, inversely proportional to the
root of the BLIP flux density:
D* - |A|. /1 [cm*root Hz/W] )
he D,
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Noise Equivalent Flux Density:

To be detectable the target signal does not have to exceed the equivalent BLIP flux density. Rather, it
need only exceed the shot noise of this radiation, by an amount which depends on the system design. The
noise equivalent flux density (NE®) is the flux density of a target signal which is just equal in amplitude
to the rms noise of the radiation. From equation (2) the NE®:

NE® = &, =

n At [photon/sec*cm?] ®

For a given detector, with its BLIP flux density, design choice of the product of detector size and expo-
sure time, based on system considerations, determines the smallest target flux density which can be de-
tected. This is appropriate for targets which are resolved by the system, that is, for targets that subtend
many pixels.

Noise equivalent number of photons/pixel:

Many systems applications involve targets which are too small to be resolved by the system. These are
called subaperture targets, and a majority of their radiation impinges upon one pixel only. The noise
equivalent signal of such a subaperture target is the noise of the total radiation incident upon one pixel
during an exposure time:

T At
NEN = N, = /—B—,’—— [photon/pixel] (10)

Extrinsic silicon detector:

The blocked impurity band (BIB) detector is selected since it has the lowest dc leakage current, hence
lowest noise and dissipated Joule heating power of this type. Kinch? equations and his parameters are
used directly, but adjusted for the chosen cutoff wavelength, despite this perhaps not being attainable in
reality.

Superconductor nonequilibrium (quantum) detector:

Forrester et al® equations and parameters are used directly except that the coherence length is used
instead of either detector thickness or the reciprocal of the absorption coefficient. This assumes a weak
link or other JJ type detector where quasi-particles (qp) generated farther than a coherence length from
the JJ do not appear in the output. We still assume that the detector is so configured that signal photons
still generate qp within a coherence length of a JJ so that the quantum efficiency is still unity. We assume
a gain of 2 gp/photon since qp are generated in pairs. A superconductor detector that utilizes other
mechanisms may have to be computed differently. For proper comparison with the other detectors the
bandgap is assumed to be that appropriate for the chosen cutoff wavelength, regardless of reality.

Bolometric detector:

Taking the second (radiation) approach and applying the equation (3) above, we must take the inte-
gral over all u from zero to infinity. The argument of the integral is ﬁmte over the entire range, and the
integral is also finite but difficult. It is given by Gradshteyn et al!6 as

16. 1.5./ Gradshteyn and LM. Ryzhik, “Table of Integrals, Series, and Products”, esp. p325, section 3.411, equation 1, Academic
Press, 1980
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Jo _—1—‘+—'€—u— du =T 3) Zeta(3) (11)
Gamma(n) = (n-1) ! so that Gamma(3) = 2.
Riemann’s zeta function is given in Tuma!? as:
Zeta(3) = 1.202 056 903 159 594
so that:
I ) W] aw = 2406113806 11
R ()
hence the generation rate for a bolometer!8 is:
4-[2-7-¢c2-h] - n2 T P
g = | ho et ' [h-c] To [carrier/sec*cm?] (12)
3

This generation rate is the minimum BLIP flux density, obtainable if the entire charge generated by
incident scene flux can be gotten out of the bolometer without additional noise (another engineering chal-
lenge). Furthermore, this is for a bolometer of infinite electrical resistance so that no Johnson thermal
noise is present. Note also that any thermal conductive coupling, for example through a support to a sub-
strate, will also produce a Johnson thermal noise. For a real bolometer with finite resistance the thermal
noise contributes an additional effective generation rate:

Ziotal = g + gr Where the resistive contribution (13)

gr = 2*k*T/(e**R*A) (13a)

17. Jan J. Tuma, “Engineering Mathematics Handbook”, 2nd, enlarged and revised edition, esp. p99, section 8.08(1Xb), McGraw-
Hill Book Company, 1970.

18. It is interesting at this point to apply the integral of equation (11) to the Planck radiation equation. When applied to the radi-
ation equation for power flux, the integral becomes:

(18.1)

3

- UJ . —
L [-1+£"] du = T(d) Zetad) =

and the familiar Stefan-Boltzmann equation results:

HT) =0T [W/em?) (18.2)
where sigma = 5.669 623 456°10"'2 W/cm?*K*, the Stefan-Boltzmann constant. On the other hand for photon
flux the radiation (3) equation applies. The result is:

&) =o; T’[photon/scc‘cm’] note: temperature is cubed! (18.3)

where  0; = 1.520 288 574*10"! photon/sec*cm?’K?
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Comparison of detector types:
Figure 1 is a plot of log (BLIP flux density/[photon  /sec*cm?]) as a function of detector tempera-
ture.
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Figure 1.
log (BLIP fiux density) vs Delector Temperature
12.5 um culoff wavelength
A = absolute minimum by equation (3)
P = HgCdTe photovoltaic detecttor by equation (4}
X = exirinsic silicon detector
S = superconducting detector
B = bolometric detector by equation (11)
R = bolometric detector with R = 1330 Ohm (12)

90-0885-1/bw
Using equation (8) one could readily put an auxiliary scale on the ordinate for D* for the particular
| cutoff wavelength.

Since Jensen uses the equations from Long?, his curves are identical with the absolute minimum
curve A given in these figures.

In the figure the first auxiliary scale on the right is the log (Noise Equivalent Flux Density/[photon/
sec*cm?]) for an area * exposure time product of 107 cm? sec (e.g. a pixel 100um square and an exposure
time of 1ms), which corresponds to the BLIP flux density on the left. It is against this ordinate that target
flux densities should be compared. The second right hand scale is the log (Noise Equivalent Number of
photons/pixel) for the same parameter. It is against this ordinate that subaperture targets (that is, small
targets unresolved by the optical system and the focal plane pixel size) are to be compared.

.Note that the photovoltaic detector is better for the shorter cutoff wavelengths, for reasonable cryo-
genic temperatures. However, there is a niche for bolometric detectors where it is necessary and possible
for the detector to be operated at a higher temperature. This is particularly true where the cutoff wave-
length must be large. Also, despite the advent of high temperature superconductors, any quantum detec-
tor that depends upon superconductive c£fects will have to be operated at a low temperature. The possi-
ble choice of cutoff wavelength and detector temperature must be made by systems analysis, considering
the target, its temperature and range, data rate requirements, practical optics and cryogenic equipment.




It must be emphasized that curve A is an absolute ideal. No amount of engineering can be ever ex-

pected to develop a detector of any type whose performance will come close to this curve and centainly
not below it
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