
NAVAL POSTGRADUATE SCHOOL
Monterey, California

VTIC FILE COPY
Lfl
Lfl

'-U7

IN

'7G R A D'3 l

THESIS
A MICROCOMPUTER-BASED CONTROLLER FOR AN

AUTONOMOUS UNDERWATER VEHICLE (AUV)

by

William D. Riling

March 1990

Thesis Co-Advisor: Roberto Cristi
Thesis Co-Advisor: John Yurchak

Approved for public release; distribution is unlimited.

DTIC
ELECTE

SbMAYO 11990U

!O 05 10,' 045

UNCLASSIFIED

SECL-0 CLASS cCA' 0% J -S rAC-

FK rrr A4ppo~d
REPORT DOCUMENTATION PAGE C'_M8BNo 0704 0188

la REPORT SECA, 71 CASS CA-(l 7[) r PEs-;C ' V

UNCLASSIFIED_______________ _____

2a SECuR7- CAss CA G A 1_77 3 D S 9' A..-

2b ECASS-,A-j1,D('-%PA %C SE'..,;Approved for public release;
2b DC~AS'C~hO OOZ\GPDXCSC''E)distribution is unlimited

4 PERIORM NG ORGAN,A 0 Q POPR- %. NlBER l 5 MON TOR .C O;PCL',ZA- 0%~C

6a NAME OF PERFORM NCG ORGAN Z47 ON 6b O0F CZ SYVBS0L 7a NAEOF Y V Oj - N .C]-
(If applicable)

Naval Postgraduate School j EC Naval Postgraduate School
6c ADDIRESS 'City State, and ZIP Code) 7t) 4,DDAESS City State ac! ZtP Codt-)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a %AV; 2.)N 3PCP'QI8 0 9 CC. V ~ -

ORGAN%:7AT 01. 1 (f appliable)

8c ADES(City %,.c SO]' N
Z OC A% Pn.0. ;C

(Inctide Security class '"a t or)A M ICROCOMPUTER -BASED CONTROLLER FOR AN
AUTONOMOUS UNDERWATER VEHICLE (AUV)

12 ESNACP

RILING, William D.
3a~ DP 4k~ C) -- (14 DO Yea- P,'urr'r D-1); - -

Master's Thesis - 1990 March 159
6 SEMYAP ~' 'The views expressed in this thesis airt: thosu fu the

author and do not reflect the official policy or position of the Depart-

RI- Autonomous Underwater Vehicle; variable structurE
control; Doyle-Stein observer; synchro-to-

________ Iresolver conversion; sensor error detection
9 :.u4 - -xe on re. erse f occessary ar)d 'dentr f b block nuitrn r :

Considerations of real-time control problems for an-Autonomous Under-
water Vehicle (AUV.) are addressed in this research. Among these problems
is the ability to control the submersible given its highly nonlinear
operating environment. In order~to account for these variations, robust
control techniques must be used. In particular, Variable Structure
Control (VSC) with Doyle-Stein Observer has proven to produce optimal
results while maintaining a high degree of robustness. This led to the
development of a real-time error detector using the robust observer to
provide system redundancy through software. The culmination of this work
is a real-time autopilot written in the "C" language which is ready for

*implementation and testing in the.-Naval Postgraduatc5,School AUV prototype.
We also address the aspect of real-time signal processing and condition-

ing in terms of Synchro-to-Resolver Conversion and anti-aliasing filters.

* . L7.. t UNCLASSIFIED

R CRISTI/J YURCHAK 408-646-2223/3390 EC/Cx CS/Yu
DD Form 1473, JUN 86*'. ,i'n .

T' V i.. S:?I=

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGC (Sbn D. Etlere.0

19. cont.
The synchro problem involves converting a nonpotentiometric
directional gyro output to a natural binary format which calls
for an intricate design of power transformers, analog-to-
digital converter, and passive element components. Lastly,
the use of Generalized-Immittance Converter circuitry in the
design of very low frequency anti-aliasing filter applications
is developed and tested.

9J

Accession For

NTIS GRA&I
DTIC TAB
Unannounced U
Justificatio

By
Distribution/

Availability Codes

Jv ai1 an d/or -
Dist Special

UNCLASSI FIED

SECURITY CLASSIPICATIOW OP TIS PAGE(Weei Del. Entered)

Approved for public release; distribution is unlimited.

A Microcomputer-Based Controller For An

Autonomous Underwater Vehicle (AUV)

by

William D. Riling
Lieutenant, United States Navy

B.S., Middle Tennessee State University, 1983

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEEPING

from the

NAVAL POSTGRADUATE SCHOOL

MARCH 1990

Author: WilliaD Rdkn .

Approved by: h_ _ C__1 _._ ,_,__---"---
Roberto Cristi, Thesis Co-Advisor

oh M YurchaV Thesi- ('-.-Advisor

'-'John P. Powers, Chairman
Department of Electrical and Computer Engineering

iii

ABSTRACT

Corsiderations of real-time control problems for an Autonomous Underwater

Vehicle (AUV) are addressed in this research. Among these problems is the ability to

control the submersible given its highly nonlinear operating environment. In order to

account for these variations, robust control techniques must be used. In particular,

Variable Structure Control (VSC) with Doyle-Stein Observer has proven to produce

optimal results while maintaining a high degree of robustness. This led to the

development of a real-time error detector using the robust observer to provide system

redundancy through software. The culmination of this work is a real-time autopilot written

in the "C" language which is ready for implementation and testing in the Naval

Postgraduate School AUV prototype.

We also address the aspect of real-time signal processing and conditioning in terms

of Synchro-to-Resolver Conversion and anti-aliasing filters. The synchro problem involves

convening a nonpotentiometric directional gyro output to a natural binary format which

calls for an intricate design of power transformers, analog-to-digital converter, and passive

element components. Lastly, the use of Generalized-Immittance Converter circuitry in the

design of very low frequency anti-aliasing filter applications is developed and tested.

iv

TABLE OF CONTENTS

I. INTRODUC HON . .. 1

II. REAL-TIME CONTROL METHODS FOR DEPTH AND STEERING 3

A. BACKGROUND INFORMATION 3

B. VARIABLE STRUCTURE CONTROL ALGORITHM DERIVATION 3

C. COMPUTER CODING AND TESTING OF THE ALGORITHM 9

1. Sim ulation Results 10

D. ROBUST OBSERVER DESIGN 17

1. Robust Observer Derivation based on the Doyle-Stein Condition 18

a. Graphical Evidence of a Stability Window in Discrete-Time 23

E. SENSOR ERROR DETECTION AND HANDLING IN SOFTWARE 31

1. Development of the Error Detection Algorithm 31

2. Testing of the Error Detection Algorithm 36

3. Fatal Sensor Errors 42

F. SIMULATION OF REAL-TIME AUTOPILOT 44

v

III. CONSIDERATIONS FOR REAL-TIME-IMPLEMENTATION OF THE AUV

CONTROLLER 52

A. DEVELOPMENT OF A PC-BASED AUV MODEL 52

B. INTEGRATED SIMULATION ENVIRONMENT INTERFACE

PROGRAM 56

C. FIELD EVALUATION GRAPHICS ROUTINE 56

1. C Functions used to Implement the Graphics Routine 57

a. Main Program PLOT 57

b. Function GRAPHICSMODE 59

IV. ASSOCIATED AUV HARDWARE 61

A. LOWPASS ACTIVE ANALOG FILTER 63

1. Numerical Development of Active Lowpass Filter 66

2. Evaluation of Numerical Results 67

B. SYNCHRO-TO-RESOLVER CONVERSION 70

1. Directional Gyro Background 70

2. Synchro Conversion Circuit Design 74

a. Component Selection 75

b. Design Considerations 76

c. Evaluating the 2S8OKD Converter Output 79

V. CONCLUSIONS 81

vi

APPENDIX A. HIGH LEVEL DEVELOPMENT SOURCE CODE 83

APPENDIX B. REAL-TIME CONTROL CODE 108

APPENDIX C. INTERFACE AND MODEL PROGRAMS 120

APPENDIX D. FIELD EVALUATION GRAPHICS ROUTINES 132

APPENDIX E. HARDWARE DESIGN SCHEMATICS 139

LIST OF REFERENCES 142

BIBLIOGRAPHY 144

INITIAL DISTRIBUTION LIST 145

vii

LIST OF TABLES

Table 1. STATE DEFINITIONS FOR AUV MODEL 54

Table 2. NATURAL BINARY BIT CONVERSION SCHEME 80

viii

LIST OF FIGURES

Figure 1. Sliding Surface Representation 8

Figure 2. Actual Depth for Variable Structure Controller Test 12

Figure 3. Divefin Response to a Change in Depth of 50 Feet 13

Figure 4. Pitch Rate Response to a Change in Depth of 50 Feet 14

Figure 5. Pitch Response to a Change in Depth of 50 Feet 15

Figure 6. Sliding Plane for Change in Depth of 50 Feet 16

Figure 7. Typical Sliding Mode Scenario 17

Figure 8. Continuous Time Nyquist Plot of the Dive System 21

Figure 9. Time Response of Dive System with q = 200 for a 50 ft Dive 22

Figure 10. Block Diagram Showing System Broken at Input "X" and Output "XX"

... 2 4

Figure 11. Discrete Nyquist Plot for Dive System Closed Loop Broken at Input 28

Figure 12. Discrete Nyquist Plot Closed Loop Broken at the Output 29

Figure 13. Time-Response of Dive System with Robust Observer and q = 5.0 30

Figure 14. Block Diagram of Robust Observer 32

Figure 15. Actual State and Estimated State Error for Depth Change of 50 Feet 34

Figure 16. Actual and Observed State Errors for a Depth Change of 50 Feet . . 37

Figure 17. Plots of Pitch and Pitch Rate with Threshold Levels for Sensor Failure

D etection . .. 39

Figure 18. Plots of Pitch and Pitch Rate with Threshold Levels for Sensor Failure

D etection 40

ix

Figure 19. Plots of Pitch and Pitch Rate Errors with Threshold Levels for Sensor

Failure Detection ... 41

Figure 20. Block Diagram of the Error Detection Scheme 43

Figure 21. Plots of Corrected Pitch and Pitch Rate Errors 48

Figure 22. Plots Of Normalized-Depth Error and Actual Vehicle Pitch Rate ... 49

Figure 23. Plots of Actual Vehicle Depth and Dive Fin Response 50

Figure 24. Plot of the Sliding Plane 51

Figure 25. Sketch of the AUV with Euler Angles "From Ref. 5.". 55

Figure 26. Typical Output of Graphics Program 60

Figure 27. Signal Conditioning Network for AUV Gyros 62

Figure 28. Open Loop Bode of the Diveplane System 65

Figure 29. Magnitude Portion of Lowpass Active Filter Bode Plot 68

Figure 30. Phase Portion of Lowpass Active Filter Bode Plot 69

Figure 31. Simple Resolver (After Ref. 7.) 72

Figure 32. Simple Synchro (After Ref. 7.) 74

x

ACKNOWLEDGEMENTS

No single entity in a major endeavor such as this thesis can stand alone without

support, encouragement, and love. In my case, Professor Roberto Cristi provided the

support through his brilliance in the field of discrete control systems. He has left an

indelible mark in my problem solving techniques for which I am truly grateful. The

encouragement and drive to master an exiting programing language, such as "C", was

given to me by LCDR John Yurchak. His gift for conveying concepts and his mastery

of the language has instilled a passion for "C" programing with me. Finally, I would like

to recognize my wife, Ramona, who provided all of the above requirements. I shall never

forget her patience and love during this time.

xi

I. INTRODUCTION

The Autonomous Underwater Vehicle (AUV) project was conceived at the Naval

Postgraduate School in the early 1980's. The purpose of the project was the development

of an underwater vehicle as a testbed for research. Most of the early work on this project

was on model development and applications of the hydrodynamic equations essential in

modeling vehicle motions accurately. More recently autonomous navigation, obstacle

avoidance, path planning, and advanced control techniques have become the focus of

current research, in particular adaptive and nonlinear control design.

To get an understanding of the goals of the project and the need for research in the

aforementioned areas, a basic knowledge of the concept and scope of operation of the

AUV is needed. The NPS vehicle is designed to be an untethered submersible capable

of autonomous operation for an extended period of time. Conceptually, the vehicle is

placed in an unknown environment where it will map the immediate surrounding area

while evading static and dynamic obstacles. Upon completion of its mission, the vehicle

will return to its base for retrieval and subsequent down-loading of its mission data.

The submersible must be capable of operating in various dynamic environments in

order to complete this type of mission. This can be achieved by adding a level of

intelligence, at the expense of increased complexity of the real-time control problem.

The purpose of this work is to design and implement a real-time control system for

rapid maneuvers of the ALV. The tecaFiuque used is based on Variable Structure Control,

em • an mn minn Uli I Il • I I

with subsequent computer code developed in a high level language. Controller

requirements are in terms of performance (i.e., fast response) and robustness in the

presence of modeling errors and sensor failures.

A robust observer has been designed for the purpose of redundancy so that system

stability can still be maintained when one or more sensors (pitch and pitch rate, for

example) fail. Upon successful modeling and testing of this complete autopilot, the code

was converted into the "C" language for real-time implementation. The converted "C"

code then was tested using an interface module that emulates real-time sampling

conditions and acts as a link between model, controller, and local path planner. A further

aspect of this work is the design and testing of various hardware components of the

electronic signal processing and conditioning network proposed for the AUV.

This thesis discusses issues ranging from automatic control systems to hardware

implementation of electronic signal processing equipment. In Chapter 1 the autopilot

control principle and algorithm are developed. Chapter I addresses considerations of

real-time code development and testing. In Chapter IV hardware design issues concerning

signal conditioning and information encoding are covered. The final chapter contains

co1n,.usions and general project assessment. All pertinent computer code and hardware

designs are located in the appendices.

2

U. REAL-TIME CONTROL METHODS FOR DEPTH AND STEERING

A. BACKGROUND INFORMATION

An accurate model of the system must exist in order to develop and test control

algorithms. This model should allow for all possible dynamic situations. In the case of

the AUV, a model based on the United States Navy's Swimmer Delivery Vehicle is used.

This model is discussed at length in Chapter I. The estimated dynamics of the prototype

AUV helped to determine the control methodology used in the real-time algorithms. The

uncertainties in the dynamic response of the vehicle due to the operating enviroment

means a robust control scheme has to be used. The control techniques used in steering

and depth are distinctly different due to these vehicle dynamics and purposed operating

conditions. This chapter discusses the development, testing, simulation, and future real-

time implementation of an autopilot for the AUV. The derivation in this chapter of the

variable structure algorithm is based on work by Cristi [Ref. 1].

B. VARIABLE STRUCTURE CONTROL ALGORITHM DERIVATION

This technique is used in the design of regulators for nonlinear time varying

uncertain systems [Ref. 2]. Variable structure control, commonly referred to as sliding

mode control, can be based on a nominal model, and it can account for uncertainties in

the dynamic respgnse of the plant. The main feature of this method of control is the fact

that it is very robust in nature. Since the uncertainties can be handled in the control law

3

by assuming a known bound on the uncertainty. In particular let us consider a nonlinear

state space model of the form

-- f (x,u,t) (2-1)

where f is not exactly known. The function can be divided into the sum of a known

portion and an uncertain component

f (x,u,t) = f0 (x,Ut) + 4 (x,u,t) (2-2)

where fo is the known nominal function. A bound on the uncertainty eAf is assumed to be

known as

F (x,u,t) z I af (x,ut) (2-3)

where F is a known for every x, u, and t. Although F could be arbitrarily large, an

extreme value of the bound will result in undesirable chattering of the control signal. I

variable structure control technique is based on the definition of a sliding surface, o(x)

0 0, and switching law for which the feedback control is of the form

u(x) u.(x) if o(x) > 0 (2-4)
u_(x) if C(x) < 0

4

The switching law is determined so that the state is driven from any initial condition x(t)

to the sliding surface o(x) = 0 where it stays (ideally, at least) for all subsequent times.

In selecting the sliding surface, the only condition which must be satisfied is that of stable

dynamic response to any set of initial conditions which may be imposed. This can be

expressed mathematically as the following:

o(x(t)) = 0 forall t> r0 - limx(t) = 0 (2-5)
U-M

Based on this, a possible choice of a(x) is a linear sliding surface

o(x) = s Tx (2-6)

where s is a left eigenvector of A

STA .. (2-7)

This definition combined with the state space model

= Ax + bu + Af (2-8)

yields the dynamics of a. Thus, by combining (2-7) and (2-8)

s Ti - _XsTbu + SrTf (2-9)

5

this expression is obtained. Next let 0(t) = sx(t), a scalar signal, and substitute this

expression into Equation (2-9) to obtain

&(t) X -Xo(t) + s Tbu + s TAf (2-10)

Now the control input u can be defined as

u(t) = -K(t) sign(o(t)) (2-11)

where K(t) is a time-varying gain to be chosen so that we define the Lyapunov function

1

V(o) - (0(0))2 (2-12)
2

which guarantees that the sliding surface will reach 0, equilibrium, in a finite amount of

time. This is depicted in Figure 1 which illustrates that, regardless of intial condition, the

state trajectory is driven to the sliding surface. This can be found by multiplying Equation

(2-10) by a(t)

o(b(t)) = -Xo(t) 2 + sTbuo + srTfo = I2(o) (2-13)

which corresponds to the first derivative of the Lyapunov function. If we choose u as in

(2-11) and

K(t) isrF1 (2-14)

then

V(o) < 0 and V(G) - 0 (2-15)

This in turn implies that a(x(t)) -- 0 (i.e., the state approaches the sliding surface c0(x) =

0). In fact, by Equations (2-10) and (2-12) we obtain

V(o) = -Xo(t) - (sTb)K(t)loa + sTafo (2-16)

In order for the sliding surface to behave as in Figure 1 over a finite interval of

time, the following condition must be satisfied:

5(t) = -KC) 2sign(o(O) (2-17)

The condition of Equation (2-17) is satisfied by choosing the control input as

a + W = u = -(sTb)-'sTAx - K 2(srb)-lsign(o(t)) (2-18)

Several important notes concerning the two previous equations should be addressed at this

point. The selection of K(t) should be made only slightly larger than F, the known portion

7

X(O)

\ SWITCHING
\ PLANE

Figure 1. Sliding Surface Representation

of the uncertainty. This is due to the fact that, as the gain K increases, more chatteringwill

be introduced on the sliding plane. From Equation (2-18), we note that the control u is

composed of two parts,

a = _(S Tb)-ls TAx (2-19)

which is a linear feedback law, and

u = -K 2 (s Tb)-I sign (o) (2-20)

8

This part is a nonlinear feedback with its sign toggling between plus and minus according

to which side of the sliding plane the system is located in. The caveat placed on the

magnitude of K must also include that it must be large enough to allow the system to

possess the required degree of robustness to handle the uncertainties brought about by the

operating enviroment [Ref. 1].

C. COMPUTER CODING AND TESTING OF THE ALGORITHM

The first programs generated were developed on the IBM-PC using Matlab for code

generation. The real-time controller that was eventually realized was much more complex

than this initial routine which only tested the nonadaptive sliding mode control derived

in the preceding section. The Matlab code, dauv.m, is included in Appendix A. The

primary purpose of this code was to test the basic depth controller and obtain a set of

steady-state feedback gains. These gains were associated with the following states: pitch,

pitch rate, and depth. The steady-state feedback gains were found using the linear-

quadratic-regulator function in Matlab which is based on a solution to the Riccati

equation. These gains were based on the nominal state space model of the SDV, and, as

such, will require adjustment in the future to enable the AUV to perform as designed.

The state space model used in the depth control algorithm is based on previous

work by Schwartz [Ref. 3]. This model is discussed in detail in Chapter IV. The Matlab

code is based on the variable structure development of the preceding se"tion. The steady

state feedback gains are contained in the variable L which is a vector with three

components. The program calls a model of the SDV which contains the dynamic

9

equations of motion developed by Boncal [Ref. 4]. In order to pass the updated

information determined by this model, an array containing all twelve states has been set

up. The states of this array which are of interest to the diving algorithm are: state(5) =

pitch rate, state(9) = actual vehicle depth, and state(11) = pitch. In an effort to simplify

the code and to reduce the error inherent with round off, the depth error, "z", is

normalized with the absolute speed. The sliding surface is equated by multiplying the left

eigenvector of the state space model with the error vector composed of pitch, pitch rate,

and the normalized depth error. As shown in the derivation of the sliding mode controller,

the input of the dive command is composed of a linear feedback component fi and a

ne, dinear feedback portion 6i. The maximum deflection of the dive planes is 0.4 radians

which is a software factor and has yet to be determined in hardware experimentation.

1. Simulation Results

The code is simulated using iteration techniques to varying orders of depth. In

Figure 2 the graphical representation of the actual vehicle depth is shown. This graph

shows that, for a commanded depth of 50 feet based on an initial or reference depth, the

vehicle has no overshoot and settles to the desired depth change in a minimum of time.

This simulation is based on a vehicle speed of approximately 3 knots which is the

designed cruising speed of the AUV. Additional simulations have been run for varying

depth commands with similar results (i.e., no overshoot with a minimum settling time).

For the dive depicted in Figure 2, the corresponding dive plane action is shown in Figure

3. We note that the action of the dive plane is smooth and does not exceed 0.4 radians.

In direct correlation with the graph of the vehicle depth, we note that the dive plane

10

adjusts to not allow the vehicle to exceed a declination with respect to reference normal

of approximately 0.8 radians. This is accomplished by feeding back the pitch rate and

pitch states. Figure 4 is a depiction of the pitch rate which is a direct reflection of the

divefin action. A measurement of the accuracy and smoothness of the vehicle trajectory

can be assessed by graphical representation of the pitch rate. The pitch rate should possess

a nearly symmetric shape with respect to either side of the mean value which is zero for

constant trajectories. This is, in fact, the case of the graph in Figure 4. The last graph of

this trial simulation represents vehicle pitch over the run. When the submersible

approaches the commanded depth, a gradual decrease in pitch should occur as depicted

in Figure 5. This decrease in pitch should go to zero for constant trajectories as is the

case. This indicates that the vehicle is coincident to the reference axis of the system.

The last graph of this set, Figure 6, depicts the sliding surface behavior. This

graph indicates that a stable sliding plane exist, and that, for the given initial condition,

the state trajectory error will be driven to zero along this plane. Many simulations have

been run for varying conditions and depths. All of the data collected indicated a stable

and highly accurate controller which was the goal of this portion of the project.

11

-~~ -F 1doF-

K 0 C12

00

UO 7 1 V T;A0

13C

_____ - - - _____ 0
I I

V

I VV

0

0

V

Q

0
V

0

V

V

0
'0 -~ e N '0 '0

0 .Yi.
0 0 0 0 0 0 0

I-
*.U~ U.'~Td U

14

-T-~~ ---T

.......

.....

...

....

.

cc 4
c a a

015T

I IIn

.

.

...

ob

V 16

D. ROBUST OBSERVER DESIGN

The variable structure algorithm developed in the previous section is very robust in

behavior. The sliding mode control in general can handle any nonlinear perturbation due

to this robustness. This concept is shown in Figure 7 where f, the nonlinear perturbation,

which is possibly state dependent is shown.

f (Unknown Noise Perturbation)

u (t) NomIna, y tM
S State Space g

Model

Figure 7. Typical Sliding Mode Scenario

When the state vector is replaced by its estimate, in general a degradation in the

overall performance of the system occurs. This is due primarily to the fact that the

estimator introduces errors into the loop. As a consequence, a controller which is

satisfactory in a state feedback configuration might not perform in a desirable way once

an observer is introduced. In this context we introduce the concept of robust observers in

order to determine a class of observers for which the degradation of the closed loop

system performance is minimal.

17

1. Robust Observer Derivation based on the Doyle-Stein Condition

It is a standard result in system theory that in ideal situations the observer

dynamics do not affect the dynamics of the closed-loop system. This can be seen easily

by considering the equations of the closed-loop system

x = Ax + Bu
y Cx (2-21)
u - -Li + r

=AY + Bu + K(y - CY)

and deriving the transfer function (in the SISO case) Y(s)/R(s). However, this does not

mean that the observer docs not have any impact in the dynamics of the overall system.

In particular, we can see that in the case of a disturbance entering the input, for example,

as

Y Ax - b(u + f)
y --Cxu " -Li + r (2-22)

-= AY + Bu + K(y-CU)
dr

with f the disturbance term. The transfer function relating f to y is affected by the

observer, and it could cause eithei instability of the system or poor characteristics in

terms of phase and gain margins.

However, when we know the precise point of entry of the disturbance f as in

Equation (2-22), we can determine the observer gain K so to minimize its effect on the

system performance. It has been shown in Ref. 10 that in the limiting case of K such that

1.

K[I + C(sl - A)'K] - ' = B[C(sI - A)-'B] -' (2-23)

the observer dynamics do not appear in the transfer function between f and y. As a

consequence, the system (2-22) and its state feedback equivalent

x = Ax + B(u + f)
y = Cx (2-24)
u = -Lx + r

behave in the same manner. Condition (2-23) is called the Doyle-Stein condition and the

resulting observer is referred to as a robust observer.

It turns out that the Doyle-Stein condition (2-23) can be satisfied only as a limiting

case. In other words it has been shown in Ref. 10 that a sequence of observer gains K(Q),

with

K(Q) = P(Q)c TRt (2-25)

where R. is an arbitary definite matrix and P(Q) is the solution of the Riccati equation

AP(Q) + P(Q)A T + q2BB T _ P(Q)c TR -IcP(Q) = 0 (2-26)

with q a scalar, positive parameter, is such that

19

Ur K(Q) = K (2-27)

with K satisfying the Doyle-Stein condition (2-23).

The hntuitive idea behind this agrument is to design an observer "as if' the

disturbance f (not necessarily white or even random) were white noise with covariance

q2. This leads to a steady-state Kalman filter design, Equations (2-25) and (2-26), where

the degree of robustness of the observer increases as q increases [Ref. 5]. Therefore, we

should be able to determine the optimal value of q using the Nyquist criterion and the

continuous-time Nyquist plot. This plot should show a point of convergence for the

maximum phase and gain margins capable of being achieved by our dive system. This

point of convergence should give a value for q such that the dynamics of the observer do

not effect the closed-loop characteristics of the system. Figure 8 is the continuous-time

Nyquist plot for the dive system. We note that, as q increases in magnitude, the Nyquist

plot converges to a optimal value. This value theoretically should give a optimum time

response for depth and dive plane action. Figure 9 is a depiction of these time response

plots for the value of q = 200 which was the point of convergence on the Nyquist plot.

It is ,:vident from Figure 9 that the optimal value for the parameter "q" is not 200 as

suggested by the continuous-time Nyquist plot and supported by the current

documentation.

20

-- --

40

0 0~

AIV*.-1W-KIn

21.

C

V ii
o 0
Lf~

o 0
o 0

o o
'p.
N N

o 4)
o
N

~ 0
o 0'~I

II
o a

E
4)

C
4.?

o 0
4.)

4)

c o
0 a a o a a V ~ N 0 - ~4 ' V

V N N 0
- C 0 0 0 0 0 0 C

22

The dive plane response plot of Figure 9 suggested that q = 200 was too large

in magnitude due to the chattering of the dive command. This led to a hueristic approach

to determine the appropriate value for q. The optimal value for the dive system was found

to be 5. The problem was how to justify this value mathematically and to prove the

existence of a stability window that occurs when discrete controllers are used.

a. Graphical Evidence of a Stability Window in Discrete-Time

To study the behavior of the closed-loop system for different values of

the parameter q, the discrete-time Nyquist plot was used. In discrete-time the Nyquist

stability criterion is equivalent to the one in continuous-time, and the closed-loop behavior

is inferred from phase and gain margins. Although we have shown in the previous section

that the use of a robust observer improves the loop characteristics, in the actual

implementation we have to exercise some care in the choice of the parameter q. This is

due to the fact that we have assumed that the disturbancef in Equation (2-22) enters from

the input only. If other sources of disturbances are present (i.e., entering at the output),

they can introduce instabilities if the value of the parameter q in Equation (2-26) is too

large. In order to verify this, let us break the loop at the input u and consider the transfer

function u2 --+ u , which is shown in the block diagram of Figure 10. This transfer function

is derived in the following manner:

x =Ax + Bu 2 (2-28)

23

OBSERVER
K

ixtM

Figure 10. Block Diagram Showing System Broken at Input "X" and Output AXX"

24

y = Cx (2-29)

AY + Bu1 + K(y - Ci) (2-30)dt

u= -Li (2-31)

By substituting Equations (2-29) and (2-31) into Equation (2-30), we obtain

= AY - BL. + KCx - KCi (2-32)dt

Then collecting terms

dx̂
(A - KC - LB)i + KCx (2-33)

dt

Now if we let

= HI = Ax, ,. Bu 2 (2-34)

which resolves to

25

K A K- Xe + [I U2 (2-35)
KC (A-KC-LB)iX

u 0 L]x, (2-36)

the transfer function of u2 --* u, in state-space form. We can compute the frequency

response of the loop in Figure 10 open at the point marked with "X". Using this transfer

function, a discrete Nyquist plot was obtained for various values of q: 5, 50, 150, and

200. This plot is shown in Figure 11. From a comparison of this plot and that of Figure

8, we see that the discrete time transformation effects caused no noticeable deviations in

the frequency response for all values of the parameter q.

As mentioned above, the only perturbation on the system taken into

account so far isf which enters at the input as depicted in Figure 7, but in fact the system

is also corrupted by noise at the output. If we want to see the effect of a disturbance at

the output as q changes, we have to open the loop at the point marked "XX" in Figure

10 and study this closed-loop transfer function y2 -* yl. It can be shown that the state-

space representation of the dynamics y2 -- y, is given by

xe -- A-KC-LB xe Y (2-37)

Y1 = [C Ox.

26

The Nyquist plot of the corresponding frequency response depicted in

Figure 12 shows some of the problems encountered for large values of q. We note that,

while the phase margin and gain nimrgin increase in Figure 11, a corresponding decrease

is occurring in the phase margin of Figure 12 for an associated increase in the parameter

q. Therefore, the noise present at the output causes a reverse effect on the system for

increasing values of q. The effect of this is chattering in the dive plane response which

occurs for large values of q. As the gain and phase margins increase at the input, the

phase margin is diminishing at the output of the system.

We can see from the Nyquist plots in Figure 12 that as q increases the

gain margin decreases. In particular, from the phase margin, we can see that the closed-

loop response of the system seen from a disturbance entering at the output becomes more

and more under-damped for larger values of q. Experimental results show that a value of

q = 5 yields a reasonable closed-loop response. This can be seen by comparing the step-

response plots of the robust observer depicted in Figure 13 for the value of q = 5 with

those of q = 200 in Figure 9.

The continuous-time behavior of the Doyle-Stein condition appears to not

account for the noise at the output in a similar fashion to that of the discrete-time.

However, further investigation of this topic is warranted. Graphical evidence does support

the adverse effect of a nonlinear perturbation present at the output in discrete-time control

for submersible vehicles such as the Naval Postgraduate School Autonomous Underwater

Vehicle.

27

...........

0

V-4

280

.4

00

0 LP 0

-n in N n

0 In

29

C
0 02 - 2

0
C a'
a,

o 1:
0

0
0

II
0 0

*0
C *0

I-
~ 4.)

o a'
'I- a'

EQ

a'

~. .~

C 0

0 4.)
im I- ~., 4-

4.)

~.1~
0 12

4.)5.

0

______________________________________ 0

0 0 0 0 0 0 V -~ 0 ~4 ~ V
V ('4

-~ - - - 0 0 0 0 0 0 0 0 =

30

E. SENSOR ERROR DETECTION AND HANDLING IN SOFTWARE

The purpose of the robust observer for the AUV, which is depicted in block

diagram form in Figure 14, is to provide redundancy in systems through software vice

hardware. The observer developed in the previous section provides a certain degree of

redundancy in the control of the AUV. In fact, for every signal in the loop (pitch, pitch

rate, and depth in our case), both the measured and estimated signals are available.

Based on this we can determinc. an error detection algorithm which alerts the system

in case of sensor failure and replaces the faulty values by the estimates. This offers an

advantage in terms of reliability, and it allows for a stable control even in the presence

of one or more sensor failures. The principle of this error detection scheme is simple.

Through the use of a fast computer algorithm, it checks error thresholds between

measured state and observer estimated state. Then the algorithm selects the most accurate

state representation and uses it for control. By this we mean that, if an error was detected

in the sensor output, the estimated state would be used instead of the faulty measured

state.

1. Development of the Error Detection Algorithm

The error between actual state. x, and estimated state, *, is defined as

.=x-x (2-38)

31

x(t)

ROBUST OBSERVER
STEADY STATE
KALMAN FILTER

x 2[(t)

STEADY STATE
FEEDBACK

GAINS

Figure 14. Block Diagram of Robust Observer

32

The measured state is obtained in the AUV prototype directly from the sensors (i.e.,

gyros, sonars, and servo-controllers). Each sensor sends the information to a signal

conditioning network and then to a designated area in memory where the autopilot

samples the data. In order for the error detcction concept to be realized, the typical error

signal, f , should be as small as possible during normal operations, at least

asymptotically; however, transient responses due to the observer dynamics introduce

errors even in ideal conditions. A graphical representaion of the pitch rate and pitch error

signals in Figure 15 shows that f in the transient phase is far from zero. These

transients are present due to the initial conditions placed on the observer. In this section

we determine an error criterion which is not affected by the transient response of the

observer. Our arguments are an application of the Cayley-Hamilton theorem.

In the ideal case the error between actual and estimated state satisfies the state

space equation

f(k + 1) = 0 9(k) (2-39)

with D, the discrete transition matrix of the observer, of the form

00 = 0 - KC (2-40)

33

o 0

N i ID In N

340

In our particular case, the state error I is given by

q X1

g' '2 (2-41)

V. 3

where v is vehicle forward speed. Since the observer gain K is chosen to guarantee

exponential stability of Equation (2-39), we can see that 9(k) has an effect only during

the transient response. In order to determine an error criterion which is not affected by

the transient response and is zero (or very small) during normal operations, consider the

Cayley-Hamilton theorem applied to the matrix (DO,

I0 n + alo 0"- + ... + a.1 = 0 (2-42)

where

A(X) = A" - a, X" - + a 2 1 2 +... + a, = det(X I - 0o) (2-43)

is the characteristic polynomial of (D.. Application of Equation (2-42) to Equation (2-39)

yields, at least under ideal conditions,

e(k) = 9 (k) + a Pf(k-1) + .. +a .i(k-n) = 0 (2-44)

35

for all k, since

Y(k) + a1 (k-1) +.. + aJx(k-n) -

(0 n a1 0 "- 1 + + aI)Y(k- n) (2-45)

which is zero by the Cayley-Hamilton theorem.

2. Testing of the Error Detection Algorithm

The error detection algorithm was tested by simulating a sensor failure. This

was done in the code auvobs.m found in Appendix A. To simulate a sensor failure, the

sensor in question is driven to zero to indicate a broken connection and to 100,000 to

indicate the program accessing a null pointer region. Both of these error conditions reflect

possible error sources which can actually occur. To notify the program developer and user

that the system had detected an error, "C" language standard output printf statements were

used. The actual real-time code documents error conditions differently by setting flags in

a file that contains the vehicle run data. Also a faulty sensor or broken connection will

probably not result in a polled value of 0.0, but for simulation purposes this value was

used to show the sensitivity of the error detection algorithm.

The algorithm takes the corrected error vector and compares the values with

the threshold levels previously mentioned. If the corrected errors are within the tolerance

setup by the threshold values, then the actual state is used, else the observed state is used

and an error is assumed to have occurred. Several runs depicting various error conditions

36

00

U'n

L -7

N J)

370

are shown in Figures 17, 18, and 19. These figures only show the magnitudes present

under these error conditions. In Figure 17 theerror simulated is a broken connection to the

pitch rate gyro. When the plots of Figure 17 are compared to those of Figure 16, we note

the large magnitude of error present at the sensor failure point. This error diminishes

rapidly, and, even though a sensor error is still present, the errors are below the threshold.

Therefore, the autopilot does not need to discriminate between the observer state and the

actual state.

This error diminishes rapidily because the controller drives the error to zero

in steady state and thus the effects of this type of error (i.e., a returned value of 0.0 from

the failed sensor) are negligible. However, in Figure 18, a null pointer assignment error

is simulated. This type of error occurs when a program, such as the sensor polling

program for the AUV, accesses a region of memory which is marked for ,.ull

assignments. When this occurs, the value returned can take on a spurious assignment such

as the one modeled in the simulation. From these plots we note that, regardless of the

magnitude of the error, the other sensors are not effected. This is due to the fact that the

sensors are independent of each other in hardware and software. The final set of plots

shown in Figure 19 demonstrate a pitch sensor failure. This plot along with the others

shows that, when a sensor failure occurs, the resultant error exceeds the threshold level

and causes the observer state to be used. Once again the failure value of 0.0 was used to

demonstrate the sensitivity of the error detection method. While the pitch sensor failed,

we note again that the pitchrate sensor is not affected, and the error does not exceed the

threshold level.

38

0
0

o 0

a l
o

o o 0

016

4.4

0 0 r

o a
390

-

0 .

0 6

, -o

._1

0 k 0 -

39 n

o 0

I ~ ~ I I 0

o 0

0:

0
K U

o
0

4.)

o
0 0
p 0
N

I 4~)

~ 0

o U
o

V N

0 0
0

L~L

4.)

.0
U -

V
C

V
*o I

~ ~ I ~ _

VI ; I I 1 0
0 p

40

o 0
o I [tFT 0

0
U,

0 m I
0
o

IS
0

-
o
U, 0

('4

0

01

o
I -~

0
.4' 0

-~

0I 1 -
JOe 0H

I-
0

-J -

0 I ,o
I- 0

-

V

V I
0~ I 0

I- F U,

0

__ I

_________________ I I
o 0

0 ~f ~ 0 ~v V '4 0 N

C C 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
U

41

3. Fatal Sensor Errors

Most sensors can be modeled with sufficient accuracy to be used in place of

the actual state, but some errors, if detected, are considered major and cause mission

termination upon detection. Three such errors are depth sensor error, directional gyro

error, and erroneous input to the autopilot from the mission planner. All of these

conditions are closely monitored, and if any one of these conditions is detected the AUV

programmed run is terminated. The AUV is forced to surface and slows to the minimum

required speed necessary for the vehicle to remain on the surface. The rudder is also set

to zero deflection when a fatal error occurs.

Depth sensor gyro failures are detected in the same manner as those of the

pitch and pitchrate gyros. A threshold level is compared to the corrected error returned

by the difference of the estimated and actual states. This concept is depicted in block

diagram form in Figure 20. This diagram demonstrates how all of the components are

linked in the algorithm.

The error detection method used for sensing mission planner errors and

directional gyro failure is different from the previous scheme. This algorithm does a check

of the incoming values and compares these values to 2n. If the incoming value is > 2m,

then a sensor error has occurred. The vehicle is forced to surface and the rudder is set to

0 deflection. This terminates the AUV mission and protects the prototype vehicle from

being damaged due to sensor failure or incorrect desired-headings generated by the

mission planner.

42

ERROR DETECTION CONCEPT

u UNCORRECTED
y(t) OBSERVER ERROR

BEST
STATE

TRANSIENT
COMPENSATOR K

THRESHOLD
DETECTOR

Figure 20. Block Diagram of the Error Detection Scheme

43

F. SIMULATION OF REAL-TIME AUTOPILOT

With the development of the robust observer and the error detection algorithm, the

autopilot routine is complete and ready for simulation and implementation. The final

check of the proposed autopilot was conducted simulating the "C" source code using the

programs and interface module discussed in Chapter 3. The Matlab simulation code,

auvobs.m, is located in Appendix A while the "C" source code, autopilot.c, is located in

Appendix B.

During this final evaluation period, a multiple dive simulation was run. This

simulation detected a fault in the error detection algorithm. This fault occurred because

the error vectors must go through two iterations of the control routine after a new ordered

depth is received. This is due to the fact that the error vectors operate on previous states

as shown in Equation (2-24). To correct this fault, a flag is used which sets the variable

"transient-flag" to a value such that the error ,i¢ctors are allowed to update prior to being

operated on by the coefficents of the characteristic equation of the A matrix.

In the C code version of the autopilot, the current ordered depth is compared to the

previous ordered depth. If the values are identical then error checking continues, but,

when these values are different, a flag "transienthold" is set using a discrete counter

which increments each time the autopilot routine is called. This allows the error detection

algorithm to operate in a discrete mode as intended. The transient flag can only be re-

initialized when a change in ordered depth has been sent to the controller.

44

A multiple depth change simulation is depicted in Figures 21-24. This simulation

was based on the following initial conditions and simulated errors:

* Initial Depth: 100 Feet.

* Initial Velocity: 4 Knots.

• Initial Propeller Revolution Rate: 500 RPM.

* Parameter q set to 5.

* First Ordered Depth: 140 Feet.

* Second Ordered Depth: 120 Feet (Begins at Frame 226).

" Duration of Simulation Run: 400 Frames.

* Simulated Error in Pitch Rate Gyro (Pitch Rate Sensor = 100000).

" Simulated Failure of Pitch Gyro (Pitch Sensor = -35).

* Pitch Rate Threshold Error set to 0.005.

* Pitch Threshold Error set to 0.05.

" Normalized Depth Error set to 0.2.

The simulation has two induced sensor errors. The first error occurs at time-frame 5 when

the value of 100000 is returned during polling of the pitch rate gyro. The second error

occurs at time frame 50 when the value of -35 is returned during sampling of the pitch

gyro. The pitch rate gyro error is an example of a null pointer assignment while the pitch

gyro error is a general sensor failure. As noted before, these are both plausible values for

their associated errors. In Figure 21 plots of the corrected pitch and pitch rate errors with

their associated thresholds are shown. From these plots we note the beginning of the

45

sensor failure by the jump in the error. Both errors cause the direct sampled states to not

be used and instead the estimated states returned by the observer are used. The noticeable

drop in magnitude of these two errors that occurs at frame 226 is due to the change in

ordered depth which calls for resetting the error vectors. The hiatus required to reset the

error vectors causes the magnitude of both errors to momentarily fall, but, when the error

detection algorithm is reset, the errors rise and again cause the observed state to be used

vice the actual measured state in the controller. The time in seconds of this hiatus is

approximately 0.1 seconds, which even for a slow sampling system such as the AUV, is

negligible. The next set of plots shown in Figure 22 are of the normalized-depth error and

actual pitch rate of the vehicle. The plot of normalized-depth error demonstrates that the

errors induced in the pitch and pitch rate gyros have no effect on it. From previous

simulations this is what we expect. The depth error does not exceed the threshold, and,

therefore, a fatal sensor error is not detected. The plot of the pitch rate of the vehicle is

a good indicator of the system stability. The vehicle pitch rate curve should be symmetric

about the mean which is 0 in steady state. This indicates a stable platform and is, in fact,

the type of curve shown in Figure 22. Figure 23 depicts plots of the actual depth with the

ordered depth overlain and the stem plane or dive fin response. This set of plots shows

that the controller, even with two sensor failures, is capable of driving the vehicle to the

desired depth with no overshoot and a very smooth motion. The dive plane response is

nearly optimal and also does not show any influence of the sensor errors on its control.

This demonstrates the robust nature of the controller-observer combination. The last plot

contained in Figure 24 is the final verification of system stability. This plot is of the

46

sliding plane. As mentioned earlier in this chapter and depicted in Figure 1, the controller

should drive the state trajectories to the equilibrium point along this switching plane. This

is the case shown Figure 24. From the sliding plane, we can deduce that two errors

occuned during the run. The change in ordered depth also caused the states to be offset

at time-frame 226. The fimal result of the sliding plane was the states were in fact driven

to equilibrium. This is the last necessary component needed to prove stability in the

variable structure controller design.

47

Tr -)

0N

0 0:

S. 5

0 u
t-

aC

la

48C

0 OT0

to

4 9-

o N

00

00

o 0

a
0

)0

C5 Z

0 L.

- 2~0
m

50.

...7 * '*

..

ID~I...........

14 4

cc 0

51

m. CONSIDERATIONS FOR REAL-TIME-IMPLEMENTATION OF THE
AUV CONTROLLER

A. DEVELOPMENT OF A PC-BASED AUV MODEL

To facilitate development and testing of the various programs to be implemented

on the prototype-vehicle, a computer model of the vehicle dynamics has been developed.

This model presents an interface that is similar in nature to the actual hardware

implementation. By this we mean that the sampling of the actual measured states on the

prototype by the control programs should be similar to the methods used in simulation.

A model for the purposes of simulation was previously developed by Schwartz [Ref. 3]

which described the dynamics of a 17.4 feet long vehicle, weighing 12000 pounds, and

having neutral buoyancy. This previous work was taken as the basis of the real-time

model developed here.

The model has six degrees of freedom: three referring to position, the Euler angles,

and three to rotation. Figure 25 shows the right-hand coordinate system of the vehicle

which the control code is based on, as well as an artist's rendition of the AUV. To define

the coordinate system setup by these angles, the vector of orientation and rate of change

had to be taken in to account. In order to describe the right-hand coordinate system for

computer computations, the model consists of the 12 states listed in Table 1, where the

mathematical symbol, state definition, and computer program variable are annotated.

In Appendix C the program, model.c, and header file, nio -. lprm.h, which contains

the parameters of the AUV have been listed. This version of the model features the states

52

in array format which allows the calling routines to access the model by passing a pointer

to the first address of the array. This is a significant improvement over the previous

version of the model which used all gobal variables, a method that has been generally

shunned by programmers. Due to the capabilities of the "C" language, the visibility of

functions and variables can be easily modified [Ref. 6]. (A variable with global visibility

can be accessed by any function and modified, where as a variable which is locally

visible to its parent function only cannot be modified by any other function.)

The actual AUV implementation will use these visiblity rules in a similar manner

to that of the integrated test package which uses the model to update the states for

simulation purposes. This updated model also corrected several serious coding hazards

such as the initialization of an array beginning with an index of I vice 0, which led to an

extraneous use of zeros for array padding. This critical mistake can cause null pointer

assignments which result in run-time errors if a program references the array outside of

its bounds. Another notable improvement which lends the model more to real-time-

simulation code development was the update method used for the control surfaces, rudder,

stemplane, bowplane, and propeller revolution rate. These values are passed in a similar

manner to the states (i.e., using pointers).

The model calls one external function, signum.c, which accepts a variable that has

been declared as a double, and returns a double which has the value of +1.0 or

-1.0 depending on the sign of the passed argument. The function model() passes the

following arguments: a pointer to the address of the first value of oldstate, a pointer to

53

the address of the first value of inputs, and the sampling interval. It returns the address

of the first value of the updated state array and a integer which can been used to

determine if an error has occurred during the state update.

Table 1. STATE DEFINITIONS FOR AUV MODEL

Mathematical State Program x-y-z-axis
Symbol Definition Variable Definition

u surge rate mstate[O] x-axis
velocity

v sway rate mstate[l] y-axis
velocity

w heave rate mstate[2] z-axis
velocity

p roll rate restate[3] rotation rate
about x-axis

q pitch rate mstate[4] rotation rate
about y-axis

r yaw rate mstate[51 rotation rate
about z-axis

x surge restate[6] x-axis

y sway mstate[7] y-axis

z heave mstate[8] z-axis

roll mstate [9] rotation
about x-axis

0 pitch mstate[l10] rotation
about y-axis

yaw restate[1] r tation
about z-axis

54

ILI:

cx(

a4

_ U4

55

B. INTEGRATED SIMULATION ENVIRONMENT INTERFACE PROGRAM

The control code, developed in chapter 2, and the model simulation code required

an interface program that would mock the actual hardware integration with the softwa-e.

The program, auvs.c, performs this vital interface function, as well as demonstrating how

field evaluation methods and troubleshooting with AUV run data can be accomplished.

It features a scheme for calling the functions which make up the real-time software and

the simulation code. It also gives one method for storing vehicle run data. This was the

method used in the testing and simulation of the autopilot program which used the Doyle-

Stein Observer. The suggested method for the actual AUV run data storage would be to

open a data file upon completion of the autopilot update. This would allow the current

position data and control surface actions to be congruent; however, this is not the order

found in the interface program bc-cause the system, like all simulations, has a set of initial

conditions which perturb the control system to perform a set of actions. This was the only

simulation difficulty which could not be accounted for in the integrated package.

C. FIELD EVALUATION GRAPHICS ROUTINE

The data processed by the AUV during an actual deployment may have the need

for immediate graphical interpretation. This case could arise due to a malfunctioning

program or sensor. It was therefore essential to write a graphics routine which would take

the uninterpreted data and graphically depict it with little effort by the evaluator.

56

1. C Functions used to Implement the Graphics Routine

The main program, plot.c, calls numerous functions to perform various tasks.

The majority of these functions are system calls which are specific to Microsoft C version

5.1. Therefore, it is imperative that any future modifications made to the files composing

the graphics routine be compiled using the Microsoft C 5.1 compiler. To invoke the

executable file, type graph <filename>.

The data file should be set up in the same format as that produced by the

interface program. In particular, the file should consist of column headings followed by

the output of a particular state, sensor, or control surface in column format. The first

column of the data file will always be taken as the abscissa. Therefore, to ensure that the

graphs represent meaningful data, time should always be the first column of the data file.

The ordinate label is the current heading of the data file. The source code for all of the

graphics files are in Appendix D.

a. Main Program PLOT

This file sets up the graphics environment, as well as actually creating the

graphs. Numerous system functions once again are used; the prototypes and descriptions

of these functions can be found in Microsoft C version 5.1 documentation. The main

program calls one user-defined function which is graphics_mode. The next section deals

with this function in detail. A header file is also associated with the graphics files, grph.h.

This file contains structures and prototypes common to both of the primary files.

57

The program begins by setting up buffers for the storage of data file

headings, data, graph titles, and graph subtitles. The defaults for plot representation are

white foreground, black background, and solid line representing the plotted data. The user

is prompted for the use of grids on the graph. The only correct replies to this prompt are

lowercase y or n; any other response will cause the prompt to reappear. Due to the nature

of the program, which is to plot dynamic arrays, the program must perform some learning

tasks. Therefore, it is not as rapid a plotting routine as one that knows the size of the

array prior to compilation time, but the capability to plot varying array sizes is a

requirement for field evaluation. The program determines the array size by reading the

data file the first time through. During this first read, the program determines how many

columns to expect and the length of the columns or number of rows in the array. The

program does not store or act on any of the actual data until the second read.

The capability of the program to dynamically set the data storage area is

a feature which is a strong point of C [Ref. 6]. The plots are displayed in succession (i.e.,

order is determined by the column in the data file), and are held on the screen until the

user presses the return key. The graphs are autoscaled, no manual scaling is available to

the user, so that the largest and smallest values are depicted. A typical output of the

program is represented by Figure 26. Prior to terminating, the executable code resets the

video mode of the computer system back to its previous mode.

58

b. Function GRAPHICSMODE

This function is contained in the file, setvid.c, and is called by the

function, plot.c. It does not pass any arguments and returns a void. The function checks

the computer system for a graphics card. If a graphics card is present, the card is

automatically placed in its highest resolution mode. This will cause a problem if the

system that the program is running on has a Video Graphics Adapter card (VGA) which

is set for enhanced mode, and the system is using an enhanced graphics adapter monitor.

The program will automatically set the graphics adapter card to its highest setting which

in this case is VGA; this results in the monitor receiving incorrect graphic information

and will cause screen disruption or system lockup. Therefore, the graphics program should

not be used in situations like this. The function tests for all common graphics cards. If

no graphics card is present, the program informs the user that a graphics card is necessary

and then terminates.

59

. _ _ _ _ _ _ _ _ _ _ _ _ _ _

...

... - - -- -

600

IV. ASSOCIATED AUV HARDWARE

The hardware development and designs presented in this thesis are by no means all

inclusive of the AUV project. The AUV project has been distributed hardware

responsibilities among many individuals. The common bond has been the GRiDCASE

1535 EXP laptop computer and the associated data translation board. The initial designs

of the AUV electronics called for an intricate network of sensors and control servos.

These devices would be sampled and sent control signals, respectively, by the Grid

interface network. This network consists of signal conditioning modules, power supplies,

and sensors. A portion of the network is depicted in Figure 27.

The Grid computer was to initially contain all of the code for control, local path-

planning, and mission-commander. This basic premise has grown to the current design

which calls for a two computers, the Grid and a Gespack. The Gespack computer is a

rack-based system which runs the OS9 operating system. It contains a separate data

translation board from that of the Grid and is designed to operate both autonomously or

networked. In this scheme the Grid acts as a quasi-Lisp-machine, since it runs a Lisp

interpreter while not being a true Lisp-machine. It contains the Lisp code written for the

global path-planner while the Gespack runs the control code for AUV mission. This

modified hardware scheme still requires an elaborate interface network for signal

conditioning. The following sections deal with two different aspects of the signal

condit;,ning problem, filtering and synchro conversion of the rate gyro signals.

61

z %)->
4 41:

0(

z zz z
(n () hrnU

0

z >

>- 0

I II <

P- 0

626

A. LOWPASS ACTIVE ANALOG FILTER

This lowpass active filter was designed to be used as an anti-aliasing filter. Its

relative position in the signal interface network is shown in Figure 27. In order to

determine the filter cutoff frequency f., the open-loop bandwidth of the dive control

system had to be determined along with the sampling frequency. The sampling frequency

for the AUV prototype is proposed to be 20 Hz. This results in a significant oversampling

ratio which is discussed in more detail later in this section. In order to determine the

open-loop bandwidth of the dive control system, the transfer function or state space model

for that system had to be derived. The open-loop Bode plot could then be plotted and the

bandwidth determined.

The discrete-time transfer function for the dive system was developed by Schwartz

[Ref. 3]. The corresponding continuous-time dynamics were derived and estimated by

Davis [Ref. 7], and its transfer function has been estimated to be

0.04
H(s) = (4-1)

+ 0.7s + 0.04)

which corresponds to

4 -0.7 -0.04 0 0.04

0= 1 0 0 + 0 u (4-2)

0 -1 0 0

63

in state-space format where q, 0, and z are defined in Table 1, and the input u is the dive

command signal. This transfer function is based on a linearized model operating at 300

RPM. With the state space model defined, an open-loop Bode plot, magnitude only, was

then produced. The code, auvbode.m, used to produce this plot is located in Appendix A.

The Bode plot is depicted in Figure 28; it represents the dive system dynamics and gives

us a numerical value for the system bandwidth. The Bode diagram demonstrates the low

frequency nature of the AUV dive system. Because the system bandwidth is

approximately 0.2 Hz and the sampling frequency is 20 Hz, the system is being

significantly oversampled. This simplifies many associated sampling problems and insures

that the Nyquist criterion

f >2fa= (4-3)

is satisfied [Ref. 8]. In determination of the cutoff frequency f, needed for the anti-

aliasing filter, the bandwidth was rounded up to 0.5 Hz. This fact, coupled with the 20

Hz sampling frequency f,, meant that the lowpass filter fc was required to be within the

range of 5 Hz to 15 Hz. This is due to the fact that the next harmonic of the system will

occur at a frequency equivalent to the sampling frequency f, of 20 Hz. Based on these

facts, the lowpass f, was set at 10 Hz. Also due to the high sampling frequency with

respect to the system bandwidth, a reconstruction filter associated with the anti-aliasing

filter was not needed [Ref. 8].

64

..4

........... - 0

.-

.......-.

............-..'.
.... -

.......................... 1......................
.*

...I
.KL0..:.

.....................-..

...........- - -..2..0..- -------

...............

..

.0.

--- --- ---
..

..........
Up UT O~r4TurA

65

1. Numerical Development of Active Lowpass Filter

The active-resistor-capacitor filter, active-RC, development is based on the

generalized-immittance converter (GIC) circuit. This is due to the fact that active-RC

filters can be derived directly from passive-RLC prototype networks by replacing the

passive inductors with active, GIC-simulated inductors as shown by Ghausi and Laker in

Ref. 9. The development of the basic transfer function for the active-RC filter using a

biquadratic GIC scheme is also shown in Ref. 9. From this basic derivation, the generic

lowpass filter transfer function can be derived. This is the basis of the analytical and

numerical development of the lowpass active-RC filter designed. The determination of the

appropriate values for the circuit components was based on

27tf = 1 (4-4)
RC

where f, is the cutoff frequency and

Wt = 2nxlO6 (4-5)

is the gain bandwidth product. In addition to these parameters, the following design

specifications were considered: maximally flat Butterworth filter (i.e., Q = 0.707), fc

= 10 Hz, and negligible phase shift in the frequency region of interest.

66

To limit the amount of noise introduced by this circuit, the resistor values were

limited to 100 LfQ. Therefore; solving Equation (4-4) for the capacitor, a value of 0.159

gF was found. The complete schematic circuit diagram is located in Appendix E. Due to

the fast sampling rate, a second-order Butterworth filter with a slow roll-off was designed.

This circuit is a monatomic design; that is, for each sampled sensor a lowpass anti-

aliasing filter exists as shown in Figure 27.

2. Evaluation of Numerical Results

Based on the results of the previous section, a numerical transfer function was

determined. This transfer function was based on the generic lowpass filter function

derived in Ref. 3. Using this transfer function the Bode diagrams representing the

magnitude and phase of the designed lowpass filter were obtained and are depicted in

Figures 4-2 and 4-3, respectively. The magnitude graph shows that, for an ideal op amp,

the circuit's 3-dB frequency is 10 Hz, as called for in the specifications. While the phase

plot shows that in the frequency region of interest (i.e., 0.2 Hz), a negligible phase shift

exists, as desired.

The experimental results were well within a tolerable deviation from the ideal

results. These results were also supported by simulation using Spice, a computer circuit

simulation program. Due to the very low frequency involved, a GIC-circuit was a logical

choice. This is due to the sensitivity of the circuit which has been proven in related

experimentation [Ref. 9].

67

.T... .. - - -- -.

S.......... 7

.................................... ..

. -- --- --. 7-

.- --- --- --- --

............ ------ -------- ------ ----
.-------------------........

.

..----------..........+
.. --------.....- I

........

.... -- ------------....
_ _ _ I W

........................... ... - -- - ---- -- - -- - - - - --- - - -
..

.... p. .. p4-Tu

6 8..1.

........ --------..

........---------------.....................

.. -

.........

....................
.0.

...............~~- 0.......... ---- ---
.I -- -- ---- -- --..

-- --- --- -----
../- ------........

................II..

........

...

, -

..

..0 0..

..........----

- 6-9---- --- ---- --.....

B. SYNCHRO-TO-RESOLVER CONVERSION

In order to determine the direction or neading of the AUV, a highly accurate Flux

Gate Gyro was purchased. The gyro specifications are 400 Hz, 26 volt reference, with an

11.8 volt line signal. Due to these specifications which required higher voltages and

subsequently produce higher output voltages than are capable of being handled by the

system hardware, a conversion scheme had to be worked out so that the line voltages

were within a specified range (i.e., 2.0 volts), but still maintained the needed accuracy

which is inherent in the 11.8 volt line signal. To overcome this problem, a set of chips

was purchased which included the following: reference isolation transformer, signal

isolation transformer, and analog-to-digital converter. The problem that had to be resolved

was the design of this circuit including all of the passive elements which are used to set

various ,arameters on the transformer chips.

1. Directional Gyro Background

Directional gyros have two degrees of freedom. The first degree of freedom

referred to as the inner gimbal axis, allows the spin axis to be maintained horizontal with

respective to the fixed Earth reference coordinate system. The second degree of freedom,

referred to as the azimuth or outer gimbal axis, detects and indicates movements of the

vehicle in azimuth from a heading reference. This reference in the case of the AUV is

along the x-axis or the surge-axis as previously defined. Therefore. it is apparent that the

spin axis of the directional gyro must continue to point in a fixed direction in a horizontal

plane. The term fixed direction refers to a mode, slaved, or type of gyro which makes

70

corrections in order to maintain a fixed orientation with respect to the Earth reference

frame. In order to do this, most gyros require the corrections to be made externally;

hence, the role of the flux gate is revealed. A slaved gyro is precessed in azimuth by an

external reference signal such as a magnetic transmitter. In this case the magnetic

transmitter (flux gate) continuously aligns the azimuth gimbal to magnetic north.

Therefore, the overall accuracy of the gyro depends in a large part on the flux gate

output. We note that spurious magnetic anomalies and interference will have an adverse

affect on the flux gate output and thus result in inaccurate headings. Due to this sensitive

characteristic, the flux gate on the AUV has been encased in a nonmagnetic metal alloy

known as mu-metal. This is intended to lessen the probability of error induced by

magnetic interference.

Equipment associated with gyros are typically power supplies, and synchros,

or resolvers. Usually, these pieces of equipment are internal to the overall housing of the

gyro. The power supply performs an obvious task, but some discussion ,-I the function

of the synchro and resolver is warranted. The synchro and resolver perform identical

missions, that of encoding the gyro output on a signal to enable other equipment to have

access to this information. The primary difference in the two schemes is the method of

encoding the direction information.

The rotor and stators in a resolver are oriented 90 degrees with respect to each

other as m Figure 31. This electrical arrangement results in the following

71

R2 0 0 S4
ROTOR S TATOR

R,4 S2

SI

STATOR

Figure 31. Simple Resolver (After Ref. 7.)

resolver shaft angle equations:

R = Asin ((t) (4-6)

S- 3 = Asin (ot sin (0) (4-7)

S4_2 = A sin (ct) cos (6) (4-8)

where R represents the rotor excitation voltage which is the ac reference voltage, and 0

is the resolver shaft angle. Thus the output voltage which appears acros- stator terminals

S,-S 3 and S4-S2 contains the necessary angle information. This information must Ie

72

converted into a usable format (i.e., natural binary or dc), hence the need for resolver

conversion.[Ref. 10]

The synchro rotor-stator configuration differs from the above rrsolver format

in that the orientation of the stators with respect to each other is 120 degrees. This is

depicted in Figure 32. Due to this orientation of the stators, three phases of shaft angle

information exist while in resolver format only two phases exist as previously shown. The

resulting synchro format voltage equations are:

$1-3 = Asin (ot) sin (0) (4-9)

SI- 2 Asin (wt) sin (0 + 120') (4-10)

$2-1 Asin (wt) sin (0 + 240') (4-11)

These equations represent the line signal voltage which carries the shaft angle

information. The rotor excitation voltage is the same as that of Equation (4-6); also the

amplitude of the line voltage signal is the same as the reference signal. This is logical

because the ac-reference signal acts as a carrier for the line signal [Ref. 10]. The problem

that had to be solved was how to interpret the information contained on each line signal

coming from the stators. The three-phase output produced by the synchro had to be

converted to a usable format for interface with the computer.

73

ROTOR

STATOR

R2

Figure 32. Simple Synchro (After Ref. 7.)

2. Synchro Conversion Circuit Design

The output format of the flux-gate gyro presented several problems to the

system designers of the AUV. Some of these problems included the high line signal and

reference voltages. The data translation board would only accept a maximum of +5 volts

rms. The desired voltage was +2 volts rms. Another consideration was how to handle the

information presented in a 3-phase output such as the one present in the flux-gate gyro,

and lastly what type of information format was desired. The data translation board can

accept both analog and digital inputs. This section deals with one solution to the problem.

74

a. Component Selection

Presented with the format problem mentioned above and the compatible

output required to interface with the data translation board, the following components

were selected: 5S70/411, 5S72/26V, 2S8OKD, and AD767KN. These components are all

manufactured by Analog Devices tc perform the task of synchro-to-resolver conversion.

The additional passive components required in the design are off-the-shelf resistors and

capacitors.

The 5S72/26V is a reference-signal-isolation transformer. It takes the

reference signal used in the rotor excitation, Equation (4-6), as a input. The transformer

then steps down this voltage to the standard 2 volts rms used by most analog-to-digital

converters. The transformer also provides isolation for the electronics from the resolver.

The 5S70/41 1 is a line-signal-isolation transformer. It accepts the output

of the synchro stators, Equations (4-9), (4-10), and (4-11), as a input. The 5S70/411

converts the three-phase 11.8 volt signals into a two-phase 2 volt rms resolver format.

This is the format required by most analog-to-digital converters used in control and sensor

applications. The 5S70/411 is designed specifically for synchro-to-resolver conversion of

11.8 volt line signals.

The 2S8OKD is a monolithic tracking resolver-to-digital converter. This

converter uses a ratiometric tracking conversion technique which provides continuous

position data without conversion delay. The ratiometric conversion technique is based on

the ratio of the resolver format voltages being equal to the tangent of the shaft angle.

Therefore, the tracking converter is not dependent on the absolute magnitudes of the

75

signal input [Ref. 10]. It also allows the circuit designer to select passive components to

define the appropriate bandwidth and the desired resolution of the converter.

The AD767KN is a digital-to-analog converter. It accepts a 12-bit binary

input and converts it to a analog output. This particular component was not used in the

synchro-to-resolver conversion design, but can be implemented without the need for

handshaking in the circuit design which appears in Appendix E. This chip would be

needed only in the event that the binary input lines to the data translation board are

required for additional purposes other than the directional gyro information. In this case

the 12-bit binary output of the 2S80KD would need to be converted to a analog signal

and input into the data translation board in this manner.

b. Design Considerations

The passive component selection was based on the desire to achieve the

highest possible bandwidth and resolution. The components selected were all within 5%

tolerance. In reference to the circuit schematic found in Appendix E, the resistors R1 and

R2 alongwith the capacitors Cl and C2 makeup an HF filter. The purpose of this filter

is to reduce the amount of noise present on the signal inputs to the 2S80. The values of

C l and C2 are dependent on R I which is equal to R2. If the value of R I is selected based

on optimal value given by the manufacturer, the following equation can be solved for the

values of C1 and C2:

Cl = C2 (4-12)

76

The resistor R4 is a gain scaling resistor whose value is determined by

R4 = DC (4-13)
100 x 10 9 3

For resolution of 16 bits, the DC-error component is 0.0025. Components R3 and C3 act

as a all-pass filter. These components introduce a phase shift in order to offset any phase

shift introduced by the circuit at the reference frequency. The values for these components

are R3 = lOOk and C3 > . The maximum tracking rate is set by the

10' fREF

voltage-controlled-oscillator input resistor R6. This is accomplished by selecting the

desired maximum tracking rate Tn. which is not to exceed 1/16 of the reference

frequency.

R6 = 5.92 x ik (4-14)
65,536(T.)

The maximum tracking rate is the highest angular speed for which the converter output

is able to keep track with the input. The tracking rate has a direct relationship to the

reference frequency (i.e., the nigher the reference frequency, the higher the tracking rate)

[Ref. 11].

The closed-loop bandwidth of the convener is selected by adjusting

capacitors, C4 and C5, and resistor R5. The bandwidth of the convener is a measure of

the acceptable variance of a sinusoidal input to the converter (i.e., a 80 Hz bandwidth

converter will accept a varying input sinusoid < 80 Hz) [Ref. 11]. This implied that the

77

converter for the AUV did not require a large bandwidth because the directional gyro

line-signal will vary slowly. While this is, in fact, the case, the circuit was designed with

a 80 Hz bandwidth to allow for any future modifications to the associated systems of the

AUV. The trade-off for the increased bandwidth was an increase in the value of R5 by

20% while C4 and C5 decreased in value 30% and 50% respectively. The following

equations were used in determining the appropriate values of the bandwidth components:

f'EF > 2.5(f'w) (4-15)

C4 = 20.2 x 10-1 (4-16)
R6 x fEW

C5 = 5 x C4 (4-17)

R5 4 Q (4-18)

Offset and bias current at the integrator input of the 2S80KD can cause

an additional error. This error can be lessened or completely eliminated with the use of

an offset bias circuit. This offset bias circuit is realized in the design by placing a resistor,

R8, at the integrator input and tying its output to a potentiometer, R9, which is coupled

across the ± 12 volt dc source . The values of these components, as well as C6 and R7

are given in Reference 12.[Ref. 12]

78

c. Evaluating the 2S80KD Converter Output

Many possible methods exist for representing angular information in

digital form. The most common method is natural binary coding. The most significant bit

in this system represents 180 degrees, the next 90 degrees, and so on. A representation

of bit and angle equivalence is listed in Table 2. This table shows the accuracy possible

with the converter set in 16 bit resolution mode. In this mode the accuracy is

approximately 19.8 arc seconds. The circuit can be modified to represent the output in

binary coded decimal (BCD) for tests and evaluation by sending the output of the

2S80KD to a binary to BCD converter. The resulting output can then be sent directly to

a seven-segment decoder for visual display purposes.

79

Table 2. NATURAL BINARY BIT CONVERSION SCHEME

Bit Number Angle in Degrees

1 MSB 180.0

2 90.0

3 45.0

4 22.5

5 11.25

6 5.625

7 2.8125

8 1.40625

9 0.70313

10 0.35156

11 0.17578

12 0.08790

13 0.04395

14 0.02197

15 0.01099

16 0.00549

80

V. CONCLUSIONS

The Variable Structure Controller has been shown to be robust and to work under

adverse operating conditions. This makes it well-suited for application in the AUV.

Simulation results have shown that, despite external disturbances, the system's response

converges to a desired equilibrium. In order to preserve this property, a robust observer

was designed to estimate the signals in the loop. This observer design is based on the

Doyle-Stein robust observer condition.

The observer signals are used in an error detection algorithm, which detects the

presence of a sensor failure. The purpose of this is to eliminate the need for redundant

hardware systems, while still maintaining reliable control operation in case of sensor

failure. The simulation results show that the autopilot equipped with the sensor failure

detector we developed can still maintain stability in the presence of sensor errors. This

is conceptually again a new approach to an old problem that of system redundancy.

When dealing with Autonomous Underwater Vehicles, new methods for system

redundancy are required due to space limitations. This autopilot algorithm has proven to

be accurate and as sensitive to deviation in the sensor errors as the user desires. The

inclusion of the error detection algorithm did not result in any degradation in efficiency

of the overall autopilot.

When converting the autopilot algorithm to the "C" language, an interface module

was necessary to link the converted algorithm to a converted model. The model used to

81

test the real-time autopilot had to be modified to simulate the envisaged sensor sampling

of the actual hardware. This modified model behaved identically to the original "C"

model which declared all variables as global.

The anti-aliasing filter design was tested in a lab environment with very satisfactory

results. The very low frequency of this filter and its intended ise ca1l1,d for a special

design. The GIC active-filter was proven very well suited for the application.

The software developed for the autopilot is ready to be implemented on the onboard

computer of the AUV (Gespack). Wet-bed testing of the whole system in various

maneuvers is the next step in the development of the autopilot.

82

APPENDIX A. HIGH LEVEL DEVELOPMENT SOURCE CODE

This appendix contains the high level source code used in testing and evaluation of

the autopilot algorithm. The source code is in Maflab, a "C"-based development

language. This source code was used to produce all graphical representations presented

in this thesis. It is not part of the real-time code intended for the AUV prototype which

is written exclusively in "C", and is located in Appendix B. A copy of this source code

can be obtanicd from Professor Roberto Cristi, Naval Postgraduate School (see Initial

Distribution List for mailing address).

Matlab is a registered trademark of The Math Works, Incorporated. It does not

produce stand-alone executable code, but instead is an interactive program intended for

numerical problem solving. This program is not available with the source code in this

appendix. Matlab is required when using the source code listed in this appendix.

83

% Filename "auvobs.m"

% Doyle - Stein observer for continuous model of AUV

% This program was used to develop and evaluate the real-time

% autopilot code for the AUV. It calls a model that is written in

% "C" language to update the states using the dynamic equations

% motion for the submersible.

clear

ERXP=['Failure simulated in pitch at 50 (Sensor Pitch = -35)'];

ERXQ=['Error induced in pitch rate at 5 (Sensor Pitch Rate = 100000)'];

ERXQP=['Sensor Pitch Rate = 100000 at 5, Sensor Pitch = -35 at 50'];

q=input('Input your q for this run ');

a=.04;

b=.7

A = [-b -a 0

1 0 ()

0 -1 0]; % !!!!!! notice the minus signs

% s=[l; 0.2070;-0.0198] % left real eigenvector of A-B*L

s=[1; 0.7; -0.04]; % left eigenvector of A for lambda=0

B = -a;0;0]; % to get model states to track right

C = [00 11;
D =0;

Qe=(.01 0 0

0 .01 0

0 0 .01]:

Re=[11;

G =1:

qc=[1 0 0

0 1 0

0 0 1];

rc = [10]:

dt=.25;

phi=eye(3)+A*dt;

del=B *dt,

L=lqr(AB,qcrc) % returns optimal feedback gains

Q = Qe*l + qA2*B*B';

84

Kd=lqe(A,G,C,Q,Re); % returns optimal kalman gains
Kd=Kd*dt

% observer dynamics:

phiO--phi-Kd*C;

ac=poly(phi0)

knmax=-400;

ordered-depth= 150;
previous=ordered depth;
depth=100;

rpm=500;
xdot=4.0;

transient-flag=3:

thresl=.001;

thres2=.01;

thres3=.O1;
abspeed =xdot;

pitchrate=0.0;

pitch=0.0;

r--[zeros(l1,krnax)

zeros(kmax)

depth*ones(1,30) ordered-depth *ones(1 ,kmax -30)];
state = zeros(12,kmax);

xo = zeros(3,kmax);

uk = zeros(1,kmax);

error = zeros(3,kmax);
auv-non-nalz = zeros(1,kmax);

initial_state = [xdot;0;0;0O;pitchrate ;0;0;0;depth;0;pitch;0];
xo(:,1) = [pitchrate; pitch; -depth/abspeed]; % initialize observer
state(:,1) = initial-state;

%------------------------- main loop ------

for j=l:kmax-1

if j > 500,
ordered-depth=1 20;

85

end;

---- Allow for Error Matrix to Change States-----%

if previous -ordered-depth,

transient-flag = j+2;
end

u=L(3)*ordered-depth/abspeed;

u=u-L*[state(5 ,j);state(11 j);state(9,j)/abspeedl;

z=state(9,j)-ordered depth;

q=state(5,j);

th=state(1 1,j);

% check the error to the threshold

if abs(error(1,j)) > thresi,

pjate=xo(l1,j);
fprintf('pitchrate is using obs\n')

else

p-rate=q;

end

if abs(error(2,j)) > thres2,
pit = xo(2,j);

fprintf('pitch is using obs\n')

else

pit = th;

end

if abs(error(3,j)) > thres3,

nom-ndep-err = xo(3,j);

fprintf('normalized depth error is using obs\n')

else

nom--ep-err = z/abspeed;

end

ex=[prate; pit; nonm..dep-eff]; % setup to compute nonlin

steO,)=s'*ex;

ubar=1 .O*(steOj));

if (abs(ubar) > 0.4)

86

ubar=O0.4*sign(steOj));

end

U=u+ubar;

divfin = u;

if (abs(divfmn) > .4)

divfin = 0.4*sign(divfin);

end;

inputs=[0; divfm; -divfmn;rpm];

u = divfm;

state(: ,j+ 1)--nodel(state(: ,j),inputs,dt);

ukj+)u;

xo(:,j+l)= phi*xo(:,j) + del*u

xo(:,j+l)= xo(:,j+1) + Kd*(z/abspeed - Ckx(,))

abspeed=sqrt((staie(1,j+ 1))A2+(state(2,j+l1)/'2+(state(3 ,j+l1))A2);

%--simulate a fault in q (pitchrate)

if j>5;
q--100000;

end

%--end fault

%--simulate a fault in theta (pitch)

if j>50;

th=-35.0;

end

%--end fault

% transient correction for the observer

xe(:, j+l)=[q;th;z/abspeed]-xo(:,j);

if j>transient flag,

error(: ,j+l1)=ac(l1)*xe(: ,j+l1)+ac(2)*xe(: ,j)+ac(3)*xe(: ,j-1)+ac(4)*xe(:,-)

end

pre vious=ordered depth;

end % end of main loop

87

% Begin plotting routine

subplot(2 1),plot(xe(2,:)), title('Uncorrected Pitch Error')

subplot(2 12),plot(xe(1,:)), title('Uncorrected Pitchrate Error')

%meta uncorE

pause

cig

axis(10 kmax -.2 .5])
subplot(21 1),plot([0 kmax],[.05 .05],':')
%text(300,-. 14, 'Threshold');

=t(300,05,Thresholci');

hold on;

plot(abs(error(2,:))), tidle('Corrected Pitch Error')

%text(. 13,.525,ERXP,'sc');

hold off;

axis(10 kmax -100 1000])

subplot(2 12),plot([0 kmax] ,[.005 .005],':')
text(300,.005 ,'Threshold');

hold on;

plot(abs(error(1,:))), title('Corrected Pitchrate Error')

text(.09,.015,ERXQ,'sc');

hold off,

meta errbigq

pause

cig

axis([0 kmax -.2 .4]);

subplot(21),plot(abs(effor(3,:))), title('Depth Corrected Error')

hold on;

plot([0 kmax],[.2 .2],':')

text(300,.2, 'Threshold');

hold off;

subplot(21 2),plot(state(5,:)), title('Pitch Rate')

text(. 1,.03,ERXQP,'sc');

88

%meta simderr

pause

cig
axis(Jj0 kmax 100 160]);

subplot(21),plot(state(9,:)),title(' Model Depth')

hold on;
plot([0 225 226 kmax]J[140 140 120 120],':')
text(20,140, 'Ordered Depth');

hold off;
axis([0 kmax -.45 .45]);

subplot(2 12),plot(uk) ,title('Divefin Action')
text(. 1,.03,ERXQP,'sc');

pause

%meta sinidd

clg

subplot(2 1),plot(state(1 1,:)),title('Pitch '

subplot(2 12),plot(xo(2,:)),title(' Observer Pitch '

pause

cig

subplot:

axis;

plot(ste),title(' Sliding Surface'),grid
text(. 1,.03,ERXQP,'sc');

89

% NON-AT)APTIVE VARIABLE STRUCTURE DIVEFIN CONTROL

% filename = dauv.m

% This program is used to determine the optimal feedback gains of

% the fullstate feedback sliding mode contoller. It also test the

% accuracy of the variable structure controller.

clear;

a=.04;

b=.7

A = [-b -a 0 % State space model of Dive system

1 00

0 -1 0]; % !!!!!! notice the minus signs

s=[1; 0.2070;-0.0198]; % left real eigenvector of A-B*L

B = [-a;0;0]; % to get model states to track right

C =[00 1]

qc=[1 0 0

0 1 0

0 0 1]; % error covariance noise

rc = [10]; % measurement noise

dt=.25;

L=lqr(A,B,qc,rc); % Optimal Feedback gains

kmax=400;

depth=0;

rpm=600;

xdot=4.0;

am=A-B*L

[eigvec,eigval]=eig(am');

lambda=real(eigval(1,1));

s=eigvec(:,1) ; % Left eigenvector of dive system

st=s'

abspeed = xdot;

pitchrate=0.0;

pitch=0.0;

state = zeros(12,kmax);

uk = zeros(l,kmax);

90

auv-normalz = zeros(1,kmax);

initial-state = [xdot;0;0;0;pitchrate;0;0;0;depth;0;pitch;0J;

state(:,1) = initial_state;

% ------------------------- main loop ------
S= 0;

for j=1:kmax-1,

if 0 < 180),
ordered~depth=50;

else,

ordered-depth=70;

end

ul1=L(3)*ordered -depth/abspeed;
u=ulI (L*[state(5 ,j);state(I11,j);state(9,j)/abspeed]);

z=state(9,j)-orderec-depth;

q=state(5,j);

th=state(1 j);
ex2=[q;th;z/abspeed];

steOj)=s '*ex2;

ubar=1 .0*(steOj));

if (abs(ubar) > 0.4)

ubar=-0.4*sign(steoj));

end

u=u+ubar;

divfin= u;

if (abs(divfin) > .4) % Limit maximum deflection to .4 radians

divfin= 0.4*sign(divfin);

end;

inputs= [0; divfin;0;rpm];

u= divfmn;

state(:,j+l)=model(state(:,j),mnputs,dt); % Call the dynamic equations model
ukOj+l)=u; % Save u for plotting purposes

abspeed=rpm/l 50;
% abspeed=sqrt((state(1 j+l1))A2+(state(2,j+l1))A2+(state(3 ,j+l1))A2);

timeoj) =dt * i

timel10) =dt * -

91

end

tinieO+l) = dt * i

% Begin plotting routine

axis ([0,70,-1 ,5 1]);
plot(time ,state(9,:)),xlabel('Timne (Sec) '),ylabel(' Depth (et'),grid
%meta chap2_1

pause

axis([0,80,-.2,.4]);

%plot(time,uk),xlabel('Time (Sec) '),ylabel(' Divfmn Action'),grid
plot(time~uk),title('AUV Run #1 Dives of 50 ft and 70 ft'),
xlabel('Time'),ylabel(' Divfin '),grid

meta chap3-2

pause

axis ([0,70,-.08,.l])
plot(tirne ,state(5,:)),xlabel('Time (Sec) '),ylabel('Pitch Rate'),grid

%meta chap2_3

pause

axis([0,70,-.8.1I)
plot(tim-e ,state(1,:)),xlabel('Time (Sec) '),ylabel('Pitch'),grid

%meta chap2_4

pause

axis ([0,70,-.05,.25j);
plot(timel1,ste). xlabel('Time (Sec)'),ylabel(' Sliding Surface '),grid

%meta chap2_5

axis;

92

% Dive system BODE Plot

% filename = auvbode.m
% This program determines the Bode plot of interest for

% the AUV dive system.

clear;

% Set initial model conditions

qll= I

q22 = I

q33= 1
r = [0;0;0];

dt = 0.25

kmax = 400

al= -.7 -.04 0
1 0 0

0 -1 0];

bl = [-.04

0

01;
q=[qll 0 0

0 q22 0

0 0 q331;

c=[0 0 1];

[num,den] = ss2tf(al,bl,c,0,1)

w=logspace(-3,3,250);

[mag,phase]=bode(al ,bl,q,r,1,w);
axis([-3,2,-150,50]):

semilogx(w/(2*pi),20*log I 0(mag)),title('Magnitude Response for AUV Dive Controller')

xlabel('Frequency (in Hertz)'),ylabel('Magnitude (in dB)')

text(.002,-25,'Pitchrate')

text(.002,2,'Pitch')

93

text(.01,25,'Dive')

grid

% Continuous-Time Nyquist Plot

% filename qcnyq.m
% This program is used to determine the effect of varying q in the program

% auvobs.m. This program performs the nyquist plot for a family of q's.

clear;

cig;

axis([-1.l 1.1 -1.1 1.1]);

axis('square');

dt=.25;

% Plant definitions

A=[-.7-.04 0

1 0 0

0 -1 0];

B=[-.04; 0; 0];

C=[0 0 1];

s=[I; 0.7; -0.041; % left eigenvector of A for lambda=0

D =[0];

Qe=[.01 0 0

0 .01 0

0 0 .01];

Re =[1 ;
G =1;

qc=[l 0 0

0 1 0

0 0 1];

rc = [10];

dt=.25;
L=lqr(A,Bqc,rc); % returns optimal feedback gains

UTR = zeros(3); % upper right block of 'Ae' (A extended matrix)

Be=[B

0

0

94

01: % B extended

Ce = [O0O0LJ; % Cextended
w=logspace(- 1, 1, 150);

tempq=input('Input 4 values of q as a vector (ie.[)';

% Begin loop for family of curves

plot(exp(sqrt(-1)*f0:0.05:71),'-2);

hold on;

title([IIContinuous Time Nyquist Plot']),grid;

for i = 1:4,
q=tempq(i);

if i== 1,

QTXl I '~ q=',num2str(q)];

elseif i==2,
QTX2 = f'... q=',num2str(q)];

elseif i==3,

QTX3 = _ q=',num2str(q)];

else,

QTX4 = -q=',nurn2str(q)):

end

Q = Qe~l + qA2*B*BW:

Kd=lqe(A.G.C.Q,Re); % returns optimal kalman gains

LL = Kd*C; % lower left block of Ae

LR = A-LL-B*L;

Ae=[A UR

LL LRJ; % A extended
[re.im] = nyquist(AeBe,Ce,D.1.w).

if i--I.

plot(re,im,'--')

elseif i==2,
plot(re,irn,':')

elseif i==3,

plot(re,im,'-.')

else.

95

plot(re,ir,'-')

end

end
hold off:

xlabel('Real'),ylabel('Imaginary'); text(.05,.35,QTX1 ,'sc');
text(.05,.25,QTX2,'sc');text(.05,. 15,QTX3,'sc');text(.05,.05,QTX4, 'sc');

% Discrete Nyquist Plot Program for AUV Dive System

% filename = q.nyq.m

% 1is program is used to determine the effect of varying q in the program

% auvobs.m. This program performs the discrete Nyquist plot for a family of q's.

clear;

clg;

axis([-1.1 1.1 -1.1 1.1]);

axis('square');

dt=.25;
% Plant definitions

A=[-.7-.04 0
1 0 0

0 -1 0];
B=[-.04; 0; 0]:

C=10 0 1]:
s=[l; 0.7; -0.04]: % left eigenvector of A for lambda=0

D =[0];

Qe=[.01 0 0

0 .01 0

0 0 .01];
Re = [1 ;

G =I;

qc-[1 0 0

0 1 0

0 0 1];
rc = [101;

dt=.25;
L=lqr(A,Bqc,rc); % returns optinal feedback gains

96

IJR zeros(3); % upper right block of 'Ac' (A extended matrix)
Be=[B

0

0
0]; % B extended

Ce= [0 0 0L]; % Cextended

tempq--input('Input 4 vAues of q as a vector (ie.[)')
% Begin loop for family of curves

plot(exp(sqrt(- 1)*[0:O.05:7]),'-');

hold on;

plot([-l I]JO 0],'-');
for i = 1:4,

q=tempq(i);

if i==l1,

QTX1 I '- q=',num2str(q)];

elseif i==2,

QTX2 = ['... q=',num2str(q)];

elseif i==3,

QTX3 = ['.q= ',num2str(q)];

else,

QTX4 = [.q=',num2str(q)];

end

Q = Qe*l + qA2*B*B';

Kd=lqe(A.G,C,Q,Re); % returns optimal kalman gains
LL = Kd*C; % lower left block of Ae
LR = A-LL-B*L;

Ae = [A IJR

LL LR]; % A extended

% Begin discrete portion of program (ic. discretize Ac and Be)

[PHle,GAMe] = c2d(Ae,Be,dt);
wr = logspace(-1.57,pi,250);

97

[mag,phase] = dbode(PI-He,GAMe,Ce,D,1 ,wr);
for k= 1: length(mag),

REAL(k)--mag(k)*cos(phase(k)*pi/1 80);
LMAG(k)--mag(k)*sin(phase(k)*pi/1 80);

end

if i==1,
plot(REAL,IMAG,'--')

elseif i--2,
plot(REAL,IMAG,':')

elseif i==3,
plot(REAL,IMAG, '-.')

else,

plot(REAL,IMAG, '-')

end

end

%title ('Discrete Nyquist Plot')

xlabel('Real'),ylabel('Imaginary');

grid;

text(.05,.35,QTX1 ,'sc');

text(.05,.25,QTX2,'sc');

text(.05,.15 ,QTX3 ,'sc');

text(. 05,.05,QTX4, 'sc');
hold off;

axis('normal');

axis;

98

% State Feedback Steering Algorithm

% filename = auvrud.m

% AUV steering algorithim based on the feedback of current direction

% and desired heading.

clear

%K = input('Input gain ');

desiredhead=input('Input desired heading ');

K=.3;

kmax=300;

depth=0.0;

head=0;
rpm=500;

xdot=4.0;

dt = .25;

abspeed = xdot;

pitchrate=0.0;

pitch=0.0;

yawrate=0.0;

yaw=0.0;

state = zeros(12,kmax);

ruk = zeros(lkmax);

initial_state=[xdot;0;0;0;pitchrate;yawrate;0;head;depth;0;pitch;yaw];

%statesare 1 234 5 6 7 8 9 10 11 12

state(:,1) = initial_state;

% ------------- main loop
turn = desiredhead-state(12,l);

if turn > pi,

fprintf('Tum is more than 180 degrees')

desiredhead = desiredhead-(2*pi);

end

for j=l:kmax

rud = -K*(desiredhead-state(12,j));

rudder = rud;

if (abs(rudder) > .4)

99

rudder = 0.4*sign(rudder);

end;

divfin = 0;
inputs=[rudder; divfin;-divfin;rpm];

rd= rudder;

state(: ,j+ 1)=model(state(: ,j),inputs,dt);

rukoj+l1)=rud;

abspeed=sqrt((state(1 j+ 1)YA2+(state(2,j+ 1))A2+(state(3 j+1))A2);
desired - ead;

state(I 2,j);

end % end of main loop

cig

time=0:kmax;

subplot(2 1),plot(time,state(12,:)),title(' Model Head')

subplot(2 12),plot(timne,ruk),title(' Rudder Action')

text(.01 ,.03 ,'AUVRUD program with gain=.3 ','Sc')

%meta pres

100

% Steering and Dive Simulation Program for the AUV

% filename = auv.m

% This program is the final phase test of the autopilot algorithm.

% It links the VSC, Doyle - Stein Observer, state feedback steering, and

% error detector components of the controller for full simulation.

clear

ERX=['Error induced in Pitch Rate at time intervals of 15 and 130 (p = 0.0)'];

desiredhead=input('Input desired heading ');

ordered-depth=input('Input ordered depth ');

q=5;

a=.04;

b=.7

A = [-b -a 0

1 00

0 -1 0]; % !!!!!! notice the minus signs

s=[l; 0.7; -0.04]; % left eigenvector of A for lambda=0

B = [-a;0;0]; % to get model states to track right

C = [0 1];

D =0;

Qe=[.01 0 0

0 .01 0

0 0 .01];

Re [1
G =1;

qc=[1 0 0

0 1 0

0 0 1];
rc = [10];

dt=.25;

phi=eye(3)+A*dt

del=B *dt

L=lqr(A,B,qc,rc); % returns optimal feedback gains

Q = Qe*l + qA2*B*B';

101

Kd=lqe(A,G,C,Q,Re); % returns optimal kalman gains

Kd=Kd*dt;

% observer dynamics:

phi0=-Phi-Kd*C;

ac=poly(phiO);

kmax-400;

depth= 100;

rpm=500;

xdot=4.0;

thresl=.001;

thres2=.01;

thres3=.0 1;

abspeed = xdot;

pitchrate=0.0;

pitch=0.0;

yawrate=0.0;

yaw=0.0;

r=-[zeros(I 1 ,max)

zeros(I kmax)

depth *ones(1,30) ordered depth*ones(1 kmax-30)];

state = zeros(12,kmax);

xo = zeros(3,kmax),

Ak = zeros(1,krnax);

ruk = zeros(1,kmax);

error = zeros(3,kmax);

auv-normalz = zeros(1,kmax);

initial_state=[xdot;0:0O;0;pitchrate;yawrate;0;0;depth;0;pitch;yaw;

% states are 1 234 5 6 78 9 10 11 12

xo(:,1) = [pitchrate;pitch;depth/abspeed]; % initialize observer

state(:.1) = initial_state;

turn = desired-head-state(12,1);

if turn > pi,

fprintf('Tum is more than 180 degrees\n')

desired-head = desired-head-(2*pi);

102

end

%------------------------- main loop ------

for j=1:kmax-l

u=L(3)*orderec-depth/abspeed;

u=u-L* [state(5 ,j);state(11 j);state(9j)/abspeed];
z=state(9,j)-ordered depth;

q=state(5,j);

th=state(l lj);

% check the error to the threshold

if abs(error(lj)) > thresi,

p.rate=xo(1 ,j);
fprintf('pitchrate is using obs\n')

else

p-ate=q;

end

if abs(error(2,j)) > thres2,
pit = x(,)

fprintf('pitch is using obs\n')

else

pit = th;

end

if abs(error(3,j)) > thres3,
norm...deperr = xo(3,j);
fprintf('nonnalized depth error is using obs\n')

else

nonr..dep-eff = z/abspeed;

end

ex=[pjrate; pit; normneperr; % setup to compute nonlin

steOj)=s' *ex;

ubar=1 .0*(steOj));

if (abs(ubar) > 0.4)

103

ubar=-0.4*sign(steoj));

end

u--u+ubar;

divfin = u;

if (abs(divfm) > .4)

divfin = 0.4*sign(divfin);

end;

u = divfin;

xo(:,j+l)= phi*xo(:,j) + del*u

xo(:,j+1)= xo(:,j+1) + Kd*(z/abspeed - C(o:))

% simulate a fault in q
if j>15 & j<130,

q=0.0;

end

% end fault

% transient correction for the observer

xe(:, j+ 1)=[q;th;z/abspeedl-xo(:,)

if j>3,
error(: j+ 1)=ac(l1)*xe(: ,j+l1)+ac(2)*xe(: ,j)+ac(3)*xe(: 'j-1)+ac(4)*xe(: ,j-2);

end

% Simple AUTV steering algorithim.

rud = -K*(desired-head-state(12,j));

rudder = rud;

if (abs(rudder) > .4)

rudder = 0.4*sign(rudder);

end;

inputs=[rudder; divfm;-divfin;rpm];

rud = rudder;

state(: ,j+ 1)=model(state(: ,j),inputs,dt);

rukoj+l1)=rud;

ukOj+l)=u;

104

abspeed=sqrt((state(I ,j+ I))A2+(state(2,j+ I))A2+(state(3,j+lI))A'2);

end % end of main loop

% Begin plotting portion

cig

subplot(21 1),plot(error(2,:)), title('Pitch Corrected Error')

subplot(21 2),plot(error(1,:)), title('Pitch Rate Corrected Error')

%meta pres

pause

cig

subplot(21 11),plot(error(3,:)), title('Depth Corrected Error')

subplot(2 12),plot(state(5,:)),title('Pitch Rate')

text(.03,.04,ERX,'sc');

%meta pres

pause

cig

subplot(21),plot(state(9,:)),title(' Model Depth')

subplot(2 12),plot(uk),title(' Divefm Action')

text(.03,.04,ERX, 'sc');
%meta pres

" subplot(223),plot(state(5,:)),title('Pitch Rate')

" subplot(224),plot(xo(l1,:)),title(' Observer Pitch Rate '

pause

cig

" subplot(221),plot(xo(3,:)),title(' Observer Depth, etc')

" subplot(222),plot(ste),title(' Sliding Surface')

" subplot(223),plot(state(11,:)),title('Pitch')

" subplot(224),plot(xo(2,:)),title(' Observer Pitch '

subplot;

plot(ste),title(' Sliding Surface'),grid

text(.03,.04,ERX,'sc'); pause,clg
subplot(2 11),plot(state(12,:)),title(' Model Head')

subplot(2lI2),plot(ruk),title(' Rudder Action')

text(.01 ,.03,'AUTVRUD program with gain=.3 ','Sc'

105

% filename = giclp.m
% This file plots the magnitude portion of the gic bandpass active filter.

% This was used in the determination of the required components of the

% active-RC filter discussed in Chapter 4.

% definitions

clear;

R=100e3; % resistor values

G=I/R;

wt=2*pi*le6; % gain bandwidth product

% -start loop -----------

QP=.707; % for maximally flat response

rq=G/QP;

C=.159e-6; % Capcitor value

wc=l/(R*C);

% --------------- set up transfer function-----

numl=(2*C*GA2)/w,

num2=(2 *GA3+2*rq*GA2)/wt;
num3=2*GA3;
num=[numl num2 num3l;

den 1 =2*CA2*G/WtA2;
den2=(2*G*CA2)/wt+(4*GA2*C)/wtA2+(2*G*C*rq)/wtA2;

den3=CA2*G+2*GA3/wtA2+2*GA2*rq/wtA2+4*GA2*C/wt+2*G*C*rq/wt;

den4=2*GA3/wt+2*GA2*rq/wt+G*C*rq;
denS=GA3;
den=[denl den2 den3 den4 denS];

w=logspace(- 1,4,250);

[mag,phase]=bode(num,den,w);

% Begin plotting routine

axis([- 1,2,-2,7]);

semi]ogx(w/(2*pi),20*log I 0(mag)),title('Magnitude Response (LPF) Fc= 10 Hz')

xlabel('Frcquency (in Hertz)'),ylabel('Magnitude (in dB)'),grid

text(.80,.03,'Q = .707','sc');

text(.05,.03,'Wt= 6.18e6','sc')

106

pause
axis([- 1,3,-i180,01);

semilogx(w/(2*pi),phase)

xlabel('Frequency (in Hertz) '),ylabel('Phase')

107

APPENDIX B. REAL-TIME CONTROL CODE

This appendix contains the real-time autopilot code written in the "C" language.

It has the following components: Variable-Structure Controller, Doyle-Stein Observer,

error detector, and state feedback steering algorithms. This code is ready for

implementation in the AUV. Also included in this appendix are two external functions

called by the control routine, signum.c and matmul.c.

Particular attention should be given to the comments preceding the code and to the

disclaimer. This code was written and compiled in Microsoft C 5.1, but is compiler

independent (i.e., will compile on any ANSI standard C or K&R C compiler). A copy

of this source code is available through Professor Roberto Cristi, Naval Postgraduate

School (see Initial Distribution List).

108

AUV Autopilot Control Program Dave Riling / Prof. Cristi

This program makes use of a Non-Adaptive Variable Structure Algorithim

with an associated Doyle-Stein Observer used for error checking in the

diving mechanism. For the steering a simply Single State Feedback control

scheme is used.

The following values were used in the determination of the (1) feedback

gains, (2) observer gains, (3) eigenvalues and (4) transient response

coefficents :

A= -.7 -.04 0 Amatrix B =[-.04 Bmatrix

1 0 0 0

0 -1 01 0]

C=[0 0 1] Cmatrix D= [0 Dmatrix

The associated matlab program which was used to evaluate the above

values has the filename : " auvobs.m "

The following values were obtained from the above program

(1) L = -3.6308 -2.8032 0.3162

(2) K = [-0.0036 -0.0679 0.1859]

(3) S=[1.0

0.7

-0.04 1
(4) Ac = 1.0 -2.6391 2.3302 -0.6874

The threshold levels used in the sensor error detection algorithim were

determined using a hueristically graphic approach.

threshold_ - = .003 pitch rate threshold error

threshold_2 = .05 pitch threshold error

threshold_3 = .2 normalized depth threshold error

The feedback gain used in the steering algorithim is " Ks = .175 ". This

value was determined using a hueristic approach.

109

DISCLAIMER: Once the actual AUV model has been determined the matlab

file " auvobs.m " should be changed and run to obtain the true values

required for the actual AUV. Note this algorithim is designed to be

a Real Time Implementation and is very Robust; as such, it should not

require any changes other than the above parmeters if that.

State Definitions

mstate[0] = xdot

mstate[1] = ydot

mstate[2] = zdot

mstate[3] = rollrate

mstate[4] = pitchrate

mstate[51 = yawrate

mstate[6J = x

mstate[7] = y

mstate[8] = z

mstate[9] = roll

mstate[10] = pitch

mstate[1] = yaw

*/

#include <math.h>

#include <stdio.h>

#include "auv.h"

#define RLTD_STOPS 0.4

#define PI 3.141593
#define TWO_PI 6.283186

#define YES 1

#define NO 0

static double

ex[] = 1 0.0, 0.0. 0.0 1,

110

Q[] = (-3.6308, -2.8032, 0.3162 1

state[] = f0.0, 0.0, 0.0)

void control8(double *mtate, double *inputs,

double ordered-depth, double desired-head, double rpm)

int order-change;
jump-over = 0;

double bowplane,

sternplane,

rudder;

double q,
theta,

divres,

obsres,

abspeed,

errz,

divfinl1,

divfin,

required_turn

Ks = 0.175;

static double

old-ordered-depth =0.0;

/* Now read speed sensor ~

abspeed = mstate[0];

q = state[0] = mstate[4];

theta = statel = mstate[10];

state[2] = mstate[8]/abspeed;

divfinl = L[21 * ordered-depthabspeed;

mat_mul(L, 1, 3, state, 3, 1, (Matrix)&divfin),

divres = divfinl - divfin;

if (ordered_depth != old-ordered-depth)

ordered-change = YES. /* set flag to indicate a change in ordered-depth) *

else

ordered-Change =NO;

old-ordered.Aepth =ordered-depth;

errz = (mstate[8] - ordered-depth)/abspeed;

ex[0] = mstate[4];

ex[l] = mstate[10I;

ex[2] = errz;

/"'---- Call Diveplane Function ----"

diveplane(ex, &divres);

if (observer(q, theta, errz, divres, order-Change, &obsres))

stemnplane =obsres;

bowplane =-sternplane;

else

sternplane =divres;

bowplane =-divres;

-*------start steering algorithui----------------------*

if (desired-head > TWOP1)

printfC' Error in desired heading coming from mission commander\n");

printf(" AUJV surfacing and slowing to 150 RPM, rudder 0 deflection~n");

stemplane =RUDSTOPS;

bowplane =-RUDSTOPS;

rpm = 150;

rudder = 0;

jump-over =1

if (mstate[I1] > TWOPI)

printf(" Error in directional gyro\n");

printf(" AUV surfacing and slowing to 150 RPM, rudder 0 deflection\,n");

stemplane =RUDSTOPS;

bowplane =-RUD_-STOPS;

112

rpm = 150;

rudder = 0;
jump-over = 1;

if (jump--over =1

required-turn desired-head - mstate[1 1]; /* Make the shortest turn *
if (required..tum > PI)I

desired-head = desired-head - (2*PJ);

rudder = -Ks * (desired-head - mstate[I1]);

if (fabs(rudder) > RUJDSTOPS)

rudder = RUDSTOPS * sign(rudder);

/*-movedata ???????????????? --------------------
inputs 10] = rudder;

imputsllll = stemplane;

inputs[21 = bowplane;

inputs[3] = rpm;

This function determines the observer states and also performs

error & threshold comparisons to check sensor validity. The arguments

are :pitchrate, pitch, normalized error in depth, current divefin

value, state of order-change, and observer divefm value

int observer(double q, double theta, double errz,

double divres, int order-Change, double *obsres)

#define NoEffor 0

#define SensorError 1

#define Major-Error 5

int i. flag.

113

static int

transienthold = 3;

j = 0;

double

PHI --
0.8250, -0.01, 0.0,

0.2500, 1.00, 0.0,

0.0, -0.25, 1.0 1;

double

DEE[] = -0.01, 0.0, 0.0 },

C[) = f 0.0, 0.0, 1.0 1,
K[] = { -0.0036, -0.0679, 0.1859 },

Error[] = { 0.0, 0.0, 0.0 1;

static double
obserr[] = (0.0, 0.0, 0.0),
obslerr[] = f 0.0, 0.0, 0.0 },
obs2err[] = (0.0, 0.0, 0.0 },

obs3err[] = { 0.0, 0.0, 0.0 1,
old-obst[] 1 0.0, 0.0, 0.0),
obstate[] = 1 0.0, 0.0, 0.0);

double cobs,

comp,
thresholdI = .003, /* pitch rate threshold error */

threshold_2 = .05, /* pitch threshold error */

threshold_3 = .2, /* normalized depth threshold error */

Al = 1.0, /* transient error coefficents */

A2 = -2.6391,
A3 = 2.3302,

A4 = -0.6874;

matmul(PHI, 3, 3, oldobst, 3, 1, obstate);

DELlO] * divres;

DELfl] *= divres;

114

DEL[2] *= irs

mat-mul(C, 1, 3, old-obst, 3, 1, (Matrix)&cobs);
comp = errz - cobs;
for (i = 0; i < 3; i++)

obstate[iI += DEL[ij;

K[i] *= comp;
obstate[i] += K[i];
old-obst[iI = obstate[i];

/*..---.Correct for Transient Response---*

obserr[OJ = q - obstate[0];
obserr[1] = theta - obstate[1];
obserr[2] = errz - obstate[3];
if (order-Change == YES)

transient-hold=j+3;
if (j > transient-hold)I

for (i = 0; 1 < 3; i++)
Error[i] = Al *obserr~iI + A2*obslerr~iI + A3*obs2err[i] + A4*obs3err[i];

j++

for (i =0; i < 3; i++)
obs3err[i] = obs2err[i];

obs2err[i] = obslerr[i],
obslIerr [i] = obserr[i];

/* --Compr the error to the Threshold values---*

flag = 0;
if (fabs(Error[O]) > threshold I)

printf(" Error[0] = %If \n",Error(0j);

ex[0] = obstate[0],
flag =Sensor-Error;

115

if (fabs(Error[1II) > threshold_2)

printf(" Error[l] = %If \n",Error[I]);

ex[IJ = obstate[1J;

flag = SensorError;

if (fabs(Error[2]) > thresholdL3)
/* Big Problem depth sensor is malfunctioning SURFACE SURFACE N!*

printf(" Error[2] = %If \n",Error[21);

obsres = .4; / Full diveplane deflection ~

return Major-Error; /* Depth Sensor error code ~

if (flag -= 0)
return NoError; /* Sensor readings appear normal do not use observer *

else

diveplane(ex, &divres);
*obsres = divres;

return SensorError;

Dive plane function determnines the appropriate radian angle for the

dive fins. The arguments are :ex = state error vector, divefin value

void divepl ane (double *ex, double *divres)

static double S[] 1.0, 0.7, -0.04)

double nonlin,
ste,

stesign,

diver,

dive;

116

diver = *divres;

mat-rnul(S, 1, 3, ex, 3, 1, (Matrix)&ste);

nonlin =ste;

stesign =sign(ste);

/*--.Saturation Switch for Nonlinearity ------------- *
if (fabs(nonlin) > 0.4)

nonlin = 0.4 * stesign;

diver += nonlin;

dive = sign(diver); /*--Utiize Signum Function--*/!

if (fabs(diver) > RUDSTOPS)I

diver = RtJDSTOPS * dive;

*divres = diver;

117

1*

* AUV.H

* Header file for the AUV project.

* Associated Files : 'auvs.c' 'autplt.c' 'matmul.c' 'signum.c'

* 'model.c' 'modelprm.h'
*/

typedef double *Matrix;

void mat mul(Matrix MI, int rl, int cl, Matrix M2, imt r2, int c2, Matrix M3);

void control8(double *mstate, double *inputs,

double ordereddepth, double desiredhead, double rpm);

int model(double *oldstate, double *inputs, double *dt, double *mstate);

double sign(double argument);

int observer(double q, double theta, double errz,

double divres, int order-change, double *obsres);

void diveplane(double *ex, double *divres);

/*

* signum.c

* This is a generic signum function for use in the A.U.V. project.

* The function accepts an argument, determines the sign of the argument,

* and returns the sign (+I or -1).
*/

double sign(double argument

return (argument > 0.0 ? 1.0 : -1.0);

l8

* mat_mul.c

* This function multiples two matrices or vectors (or scalar, matrix mult.)

* and returns the product, typical usages:

* A=[1 2 3] B=[4; 5; 6] then mat mul(A,1,3,B,3,1,(Matrix)&scalar-ans)

* A=[123 B=[123

* 4 5 6 4 5 6 then mat-mul(A,3,3,B,3,3,matrixans)

* 789] 789]

* This function is called by autplt.c, the autopilot program for the AU'V

* project. Dave Riling 16 Jan 90
*/

#include <stdio.h>

typedef double *Matrix;

/* Row major access macro */
#define Xrm(M,row,col,col len) (*(M +(row * col_len) + col))

void mat_mul(Matrix MI, int rl, int cl, Matrix M2, int r2, int c2, Matrix M3)

int i,j,k;

double sum;
/* Take this out when code is implemented in the auv */

if (cl != r2) I
fprintf(stderr,"mat_mul: matrices rows/cols not compatible'n");

exit(l);

for (i=0; i < rl; i++)

for 0=0; j < c2; j++)
sum = 0.0;

for(k=0; k < cI; k++)

sum += (Xrm(Ml,i,k,cl) * Xrm(M2,kj,c2));

Xrm(M3,i,j,rl) = sum;

119

APPENDIX C. INTERFACE AND MODEL PROGRAMS

Included in this appendix are the interface module and the dynamic equations of

motion model both written in "C" for the AUV. Also included is the header file for the

model. The code in this appendix is not complier specific, and a copy can be obtained

by contacting Professor Roberto Cristi, Naval Postgraduate School (see Initial Distribution

List).

The model in "C" calls one external function, signum.c, which is located in

Appendix B. This model updates the 12 states depicted in Table 2. of this thesis using

the dynamic equations of motion modeled after the U.S. Navy's Swimmer Delivery

Vehicle. The interface program calls th -odel after the controller modifies the necessary

control surface commands (i.e., Dive plane, rudder, and RPM).

120

*MODEL.C

* function state = model(oldstate,inputs,dt)

#include <math.h>
#include <stdio.h>

#include "modelprmn.h"

double sign(double);

int model(double *oldstate, double *inputs, double *dt, double *mstate)

it j, k;
double u, v, w, p, q, r, phi, theta, psi;

double dr, ds, db, rpm, delt;

double mass, latyaw, norpit, re, termO;

double signu, signn, eta, cdO, ct, ctl, eps, xprop;

double ucf[41. fp[6], f112];
double tmpl. tmp2, tmp3, tmp4;

double cos-theta, sin_theta, tan_theta;

double cos-phi. sinphi, cos-psi, sin-psi;

u = oldstate[O];
v = oldstate[l];

w =oldstate[2].

p =oldstate[31;

q =oldstate[4];

r =oldstate[5];

phi =oldstate[9];

theta =oldstate[IO];

psi =oldstate [IlIJ;

121

dr = inputsllOj;

ds = mnputs[l];

db =inputs[2];

rpm =inputsll3l;

delt =*dt;

latyaw = norpit = 0.0;

mass = weight/g;

re = u*l/nu;

signu = sign(u);

signn. = sign(rpm);

if (fabs(u) < xltest)

u= xltest;

eta =0.012*rpmlu;

re =u*l/nu;

cd0 0.00385 + 1.296e-17 *(re - 1.2e7)*(re - 1.2e7);

ctl =0.008*l*1/aO;,

ct =ctl*eta*fabs(eta);

eps =-1 .0+signn/signu*(sqrt(ct+1 .0)-i .0)/(sqrt(ctl+1 .0)- 1.0);

xprop =cd0*(eta*fabs(eta) - 1.0);

* calculate the drag force, integrate the drag over the vehicle

*integrate using a 4 termn gauss quadrature

for (k=0; k<4; ++k)

tmpl = v+g4[k]*r*l;

tmp2 = w-g4[kI*q*l;

ucflk] = sqrt(tmpl*tmpl + tmp2*tmp2);
if(1.Oe-10 <= ucflkl) I

termO = ((rho/2.0)*(cdy*hhfkI*tmplI*tmp 1

+ cdz*brlk*tmp2*tmp2)) *gk4[41*l/ucf[k];

122

latyaw += termO*tmpl;

norpit += termO*tmp2;

* force equations

*commnon sub-expressions

tmnpl = (rho/2.O)*1*1;

tmp2 = tmpl1*1;

tmp3 = tmp2*1;

tmnp4 = tmp3*1;

cos-theta =cos(theta);

sin-theta =sin(theta);

tan-theta =sin-theta/cos-theta;

cos-phi =cos(phi);

sin -phi =sin(phi);

Cos-psi =cos(psi);

sin-psi =sin(psi);

* longitudinal force

fp [0] = mass*v*r - mass*w*q + mass*xg*q*q

+ mass*xg*r*r - mass *yg *p*q - mass*zg*p*r

+ tmp3*(xpp*p*p+xqq*q*q + xrr*r*r+xpr*p*r)

+ tmp2*(xwq*w*q+xvp*v*p+xvr*v*r+u *q*(xqds *ds+xqdb*db)+xrdr*u *r*dr)

+ tmplI*(xvv.*.vr*vxww *w*w + xvdr*u*v *dr+u *,,A*(xwds*ds+xwdb*db)

123

+ u*u*(xdsds*ds*ds+xdbdb*db*db+xdrdr*dr*dr))

- (weight -boy)*sin -theta

+ tmp2*xqdsn*u*q*ds*eps

" tmpl *(xwdsn*u*w*ds+xdsdsfl*u*u*ds *ds)*eps

" tmpl*u*u*xprop;

* lateral force

fpf 1] = -mass*u*r - mass*xg*p*q + mass*yg*r*r - mass*zg*q*r +

tmp3*(ypq*p*q + yqr*q*r)+tmp2*(yp*u*p +

yr*u*r + yvq*v*q + ywp*w*p + ywr*w*r) + tmpl*

(yv*u*v + yvw"'v~w +ydr*u*u*dr) -latyaw +(weight-boy)*

cos-theta*sin-phi+mass*w*p+mass*yg*p*p;

* normal force

fp [2] = mass*u*q - mass*v*p - mass*xg*p*r - mass*yg*q*r +

mass *zg*p*p + mass*zg*q*q + trnp3*~

(zpp*p*p+zpr*p*r + zrr*r*r) + tmp2*(zq*u

*q+zvp*v*p + zvr*v*r) +tmpl*(zw*u*w + zvv*v*v

+u~u *(zds*ds+zdb*db))-norpit+(weight-boy)*cos_theta*cos-phi

+tmp2*zqn*u*q*eps +tmpl *(zwn*u *w +zdsn*

U*U*ds)*eps;

124

* roll force

fp[3] = ..iz*q*r +iy*q*r -ixy*p*r +iyz*q*q -iyz*r*r +ixz*p*q+

mass *yg*u*q ..mass*yg*v *p -mass *zg*w*p+tmp4*(kpq*
p*q + kqr*q*r) +tmp3*(kp*u*p +kr*u*r + kvq*v*q +

kwp*w*p + kwr*w*r) +tmp2*(kv*u*v + kvw*v*w) +
(yg*weight - yb*boy)*cos theta*cos-phi - (zg*weight -

zb*boy) *costheta*sin-phi + tmp3 *kpn.*u*p*eps+

tmp2*u*u*kprop +mass*zg*u*r;

* pitch force

fpfI4] = -ix*p*r +iz*p*r +ixy~q*r -iyz*p*q -ixz*p*p +ixz*r*r-
mass*xg*u*q + mass*xg*v*p + mass*zg*v*r - mass*zg*w*q +

tmp4*(mpp*p*p +mpr*p*r +mrr*r*r)+tmp3*(mq*u*q + mvp*v*p + mvr*v*r) +

tmp2*(mw*u *w+mvv*v*v+u*u *(rnds*ds+mdb*db))+ norpit ..(xg*weight-
xb *boy) *cos theta*cos-phi+tmp3 *mqn *u *q*eps +

tmp2*(mwn*u*w+mdsn*u*u*ds)*eps-

(zg*weight-zb*boy)*sin-thata;

* yaw force

fp[5] = ..jy*p*q +ix*p*q +i-xy*p*p -ixy*q*q +iyz*p*r -ixz*q*r-

mass*xg*u*r + mass*xg*w*p - mass*yg*v*r + mass*yg*w*q +

tmp4*(npq*p*q + nqr*q*r) +tmp3 *(np*u*p+
nr*u*r + nvq*v*q +nwp*w*p + nwr*w*r) +tmp2*(nv*

u~v + nvw~'v~w + ndr*u*u*dr) - latyaw + (xg*weight -

xb*boy)*cos -theta *sin-phi+(yg *weight) *sin-theta
+tmp2*u *uj*nprop..yb*boy*sjil theta;

125

* now compute the f(O-5) functions

for 0j=0; j<6; ++j)
for (ffjI=O.Ok=O; k<6; +i+k)

ffij += xmmmnvUj[k]*fp[kI;

* the last six equations come from the kinematic relations

* inertial position rates f(6-8)

f16] = u*cospsi*cos-theta + v*(cospsi*sin~theta*

sin-phi - sin-psi*cos-phi) + w*(cos psi*sin-theta*

cos-phi + sinpsi*sinphi';

f[7] = u*sinpsi*cos-theta + v*(sinpsi*sin-theta*

sin-phi + cos-psi*cos-phi) + w*(sin-psi*sin-theta*

cos-phi - cos-psi*sinphi);

f18] = -u*'sin-theta +v~cos-theta*sin-phi +w*cos-theta*cos-phi;

* euler angle rates f(9-1 1)

f[91 = p + q*sin-phi*tan-theta + r*cos-phi*tan-theta;

f1O] = q*cos phi - r*sin_phi;

f Ill] = q*sinpicos_theta + r*cos_philcosjtheta-

126

1*

* first order integration
*/

for (--0; j<12; j++)

mstateU] = oldstateU] + d ;lt *f[j];

return 0;

127

* modelprm-h

* This file contains all of the parameter coefficients

* used by the file MODEL.C.

* longitudinal hydrodynamic coefficients

const double

xpp = 7.0e-3, xqq = -1.5e-2, xrr = 4.0e-3, xpr = 7.5e-4,

xudot =-7.6e-.3, xwq =-2.0e-1, xvp = -3.0e-3, xvr = 2.0e-2,

xqds =2.5e-2, xqdb =-2.6e-3, xrdr = -1.Oe-3, xvv 5.3e-2,

xww = 1.7e-1, xvclr = 1.7e-3, xwds = 4.6e-2, xwdb = .Oe-2,

xdsds = -1.0e-2, xdbdb =-8.0e-3, xdrdr = 4.Oe-2, xqdsn =2.0e-3,

xwdsn =3.5e-3, xdsdsn = -1.6e-3;

Slateral hydrodynamic coefficients

const double

ypdot = 1.2e-4, yrdot 1 .2e-3, ypq = 4.0e-3, yqr =-6.5e-3,

yvdot = -5.5e-2, yp = 3.0e-3, yr = 3.0e-2, yvq = 2.4e-2,

ywp = 2.3e-1, ywr = -1.9e-2, yv = -1.0e-1, yvw = 6.8e-2,

ydr = 2.7e-2, cdy = 3.5e-1;

128

*normal hydrodynamidc coefficients

const double
zqdot =-6.8e-3, zpp = 1.3e-4, zpr = 6.7e-3, zrr = .7.4e-3,
zwdot =- 2 .4e-1, zq = -1.4e-1, zvp -4.8e-2, zvr = 4.5e-2,
zw = -3.0e-1, zvv =-6.8e-2, zds =-7.3e-2, zdb = -2.6e-2,
zqn -2.9e-3, zwn =-5.le-3, zdsn =-1.Oe-2, cdz = 1.0;

* roll hydrodynamic coefficients

const double
kPdot = -I.Oe-3, krdot = -3.4e-5, kpq =-6.9e-5, kqr = 1.7e-2,
kvdot = 1.3e-4, 4p = -l.le-2, kr = -8.4.e-4, kvq =-5.le-3,

kwp =-1.3e-4, kwr = 1.4e-2, kv = 3.le-3, kvw =-1.9e-1,

kpn -5.7e-4, kdb = 00;

* pitch hydrodynamic coefficients

const double
mqdot=-1.7e-2, mpp= 5.3e-5, mpr= 5.0e-3, mrr = -2.9e-3,
mwdot =-6.8e-3, mq = -6.8e-2, mvp 1 .2e-3, mvr 1 .7e-2,
MW = l.Oe-1, mvv =-2.6e-2, mds =- 4 .le-2, mdb = 6.9e-3,
rnqn = -1.6e-3, rnwn= -2.9e-3, mdsn= -5.2e-3;

129

/*

* yaw hydrodynamic coefficients
*/

const double

npdot = -3.4e-5, nrdot = -3.4e-3, npq = -2.le-2, nqr = 2.7e-3,

nvdot = 1.2e-3, np - -8.4e-4, nr = -1.6e-2, nvq-- -1.Oe-2,

nwp = -1.7e-2, nwr= 7.4e-3, nv -7.4e-3, nvw = -2.7e-2,

ndr = -1.3e-2;

/*

* mass characteristics of the flooded vehicle

*/

const double
weight = 12000.0, boy = 12000.0, vol 200.0, xg = 0.0,

yg = 0.0, zg = 0.20, xb = 0.0, zb - 0.0,

ix = 1500.0, iy = 10000.0, iz = 10000.0, ixz = -10.0,

iyz = -10.0, ixy = -10.0, yb = 0.0,

1 = 17.4, rho= 1.94, g = 32.2, nu 8.47e-4,

aO = 2.0, kprop = 0.0, nprop = 0.0, xltest = 0.1,

degrud = 0.0, degstn = 0.0;

/*

* define length fractions for gauss quadrature terms
*/

const double

g4[] = 0.069431844, 0.330009478, 0.669990521, 0.930568155 },
gk4[j = 0.1739274225687, 0.3260725774312, 0.3260725774312,

0.1739274225687 1;

130

*define the breadth bb and height hh terms for the integration

const double

br[] 1 75.7/12.0, 75.7/12.0, 75.7/12.0, 55.08/12.0 I
hh[] = 16.38/12.0, 31.85/12.0, 31.85/12.0, 23.76/12.0 1

* assemble inverted mass matrix

const double

xmminv[6][6J

0.2431e-2, 0.2701e-8, 0.1899e-5, 0.1649e-7, -0.5023e-5, 0.3243e-8 I

0.2679e-8, 0.1537e-2, 0.5593e-8, 0.4 276e-4, -0.1479e-7, 0.1057e-4)
0.1899e-5, 0.5639e-8, 0.6293e-3, 0.3443e-7, -0.1049e-4, 0.6770e-8 I
0.1649e-7, 0.4321e-4, 0.3443e-7, 0.3294e-3, -0.9106e-7, -0.1049e-5)

I-.5023e-5, -.1491e-7, -.1049e-4, -.9106e-7, 0.2773e-4, -0.1790e-7 ~

0.3243e-8, 0.1057e-4, 0.6769e-8, -.1052e-5, -0.1790e-7, 0.6561e-4

131

APPENDIX D. FIELD EVALUATION GRAPHICS ROUTINES

This appendiA contains the routints written for field graphical analysis of AUV run

data. These programs are not intended to produce hardcopy output, but are merely for

on-the-spot interpretation of AUV run data. They are user friendly and will operate on

many different graphic systems.

Particular attention should be paid to the disclaimer in the comment sections of the

source code. These programs are compiler dependent. They call many nonstandard C

functions in Libraries specific to MICROSOFT C 5.1 or QUICKC 2.0. These functions

are necessary for the graphics routines. This code must be compiled using either of the

above compilers.

A copy of this source code is available through Professor Roberto Cristi, Naval

Postgraduate School (see Initial Distribution List). MICROSOFT C 5.1 and QUICKC 2.0

are registered trademarks of the Microsoft Corporation. The code contained in the

libraries called by this source code is available through Microsoft Corporation and its

affiliated vendors. The U.S. Navy does not support the use of any particular C compiler;

C compiler used was solely the preference of the author.

132

plot.c
This program takes a columnized data file (x, y) and plots each column
with respect to discrete time. It autoscales and labels the graph
appropriately using the tabular headings created in the "auvs.c" program.
This file is intended for field use during ALUV test. Usage:

plot <fdename> ie. plot auvrun.dat
This program is composed of : grph.h setvid.c.
The setvid.c function sets the program for the correct graphics adapter
installed (note: please see setvid.c for more information.
IMPORTANT: The first column of the data file must always be time. This
column is always the x-axis on the graphs. For a hardcopy output the only
facility is the use of print screen, since this program was note intended
for hardcopy output. There is no limitation on the size of the file or the
number of columns of data it may contain. The larger the file the longer
the required run time.
Final note: These files have library functions particular to Microsoft 5.1
or Quick C 2.0 and as such must be compiled using either of these
compilers.

* /

#include "grph.h"
#include <malloc.h>

#define BUFFER 256

float **bigarray;

struct text

char title[30], /* structure used for labeling graph */
subtitle[30];

label;

133

main(int argc, char **argv)

chartenv env; /* setup chart enviroment structure *
int ijjkjm,n;
FILE *fptr;

char headingbu f[BUFFER+ 1],

databufliBUFFER+ 1],
gridquest (3 1

char *tptr;

if ((fptr = fopen(argv[1], ofrt")) =- NULL)

perror(argvll)
exit(1);

else

fgets (headingbufBUFFER,fptr); /* get the heading *

n=O;

tptr = headingbuf;

while ((strtok (tptr," ") =NULL)

n++;

tptr = NULL;

M=O;

while (fgets (databuf,BUFFER,fptr) !=NULL) /* get the data *

rewind(fptr):,

for (k=O; k < n; k++)

fscanf(fptr, "%s' ,label-axis [k]); /* discard the headings ~

if ((bigarray = calloc (n,sizeof(float*))) == NULL)
printf (" Something is wrong with memory cannot initialize array\n");

134

exit(1);

for (i=-O; i < n; i++)

if ((bigarray[i] =calloc(m,sizeof(float))) -- NULL)
printf (" Check memory cannot load data for array\n");

exitk 1);

/* Begin graphics set up *
for (i=0; i < m; i++)I

for 0j=0; j < n; j++)
fscanf (fptr,"%f',&bigarrayU][i]);

puts("Enter title of the graph (limit 30 characters))

gets (label.title);

puts("Enter the subtitle of the graph (limit 30 characters))

gets (label. subtitle);

/* Begin graphics hardware interface ~

graphics_modeO; /* call the setvid.c file *

_clearscreen(__GCLEARSCREEN)

_pgmiitcharto;

_pg...defaultchart(&env, _PG_SCATTERCHART, _PG_POINTANDLINE)
strcpy(env. maintitle. title, label .title);
env. maintitle.titlecolor =1; /* color I white,text color ~

env. maintitlejustify = -PGCENTER;
strcpy(env, subtitle. title, label .subtitle),
env. subtitle. titlecolor = 1; /* color I =white,text color ~

env.subtitlejustify = -P0_CENTER;
strcpy(env. xaxis. axistitle.title, "Time");

env.chartwindow.border = TRUE;

135

-pg...getpalette(pal) /* Set chart point value to =blank *

pal[1I.plotchar = 32;

-pg-setpalette(pal)

jmpbak:

puts("Do you want grids on your graph (y or n)?");

gets (gridquest);

switch (*gridquest)

case 'y':
env~yaxis.grid = TRUE;

env.xaxis.grid = TRUE;

env.yaxis.gridstyle = 4;

env.xaxis.gridstyle = 5;

break;

case 'n':

env.yaxis.grid = FALSE;

env.xaxis.grid = FALSE;
break;

default:

printf("Try again. Input lowercase y or n only! Nn");

goto impbak;

f* Begin plotting values *
for (0=1; i < n; i++) (

strcpy(env .yaxis.axistitle.title, label_axisli]);
-pg-chartscater(&env, bigarray[O], bigarray[i], in);

getcho;

-setvideomode(_DEFAULTMODE) !* reset the video back to original *
/* setting prior to running plot.exe*/

for (i=O; i < n; i++)

free (big array [i]);
free(bigarray);

fclose(fptr);

136

setvid.c

This function sets the video graphics mode for the graphing routine:
plot. It check for the graphics-adapter card that is present in the
respective computer and sets it automatically to its highest resolution.

This function is called by "plot.c". It returns a void and accepts no

arguments.Graphics cards that are accepted by this program are:
1) VGA 2) EGA 3) CGA 4) HERCULES.

DISCLAIMER: Due to the configuration of the standard Microsoft 'C'
libraries used, this function will always set the graphics card present

to its highest resolution available regardless of the monitor in use.
Therefore, if you have a VGA graphics card installed and are using a

EGA monitor the "plot.exe" program will not work.
*/

#include "grph.h"

void graphics-mode(void)

_getvideoconfig(&myscreen);

switch(myscreen.adapter)
case _CGA:

case _OCGA:

_setvideomode(_HRESBW);

break;

case _EGA:

case _OEGA:

_setvideomode(_ERESCOLOR);

break;

case _VGA:

case _OVGA:
case _MCGA:

_setvideomode(_VRES 16COLOR);

break;

case _HGC:
_setvideomode(_HERCMONO);

break;

137

default:

printf("This program requires a graphics card.");

exit(O);

-etvideoconfig(&myscreen)
maxx = myscreen.numxpixels - 1; /* this information is not used ~

maxy = myscreen.numypixels - 1; l* currently, it is used for *

/* manual axis scaling *

grph.h

This is the header file for the program "graph.exe".

Associated files are : 'plot.c' and 'setvid.c'.

#icud sd1bh

#include <stdlib.h>

#include <conio.h>

#include <graph.h>

#include <pgchart.h>

#include <string.h>

#include <math.h>

tvpedef enum I FALSE, TRUE) boolean-,
void graphics-mode(void);
struct videoconfig myscreen;

int maxx, maxy;
palettetype pal;

138

APPENDIX E. HARDWARE DESIGN SCHEMATICS

The diagrams in this appendix pertain to the designs discussed in Chapter IV. of this
I/

thesis. These diagrams are of the active-RC filter circuit and the Synchro-to-Resolver

circuit. For explanation and positioning of these curcuits, please refer to Chapter IV.

These circuits are intended for use in the signal conditioning network of the AUV. For

further assistance refer to the technical notes listed in the references. These notes are

available in the AUV library.

1

i

CCD

jE Ci C2

_r 0

Ica_ _ (2

L Z~

r .. r)
> J -

140:

LK

-- *

- ----- --- ---

...- A-

-C.2. -- a 0-

141

LIST OF REFERENCES

1. Cristi, R., Papoulias, F.A., and Healey, A.J., "Adaptive Sliding Mode Control of
Autonomous Underwater Vehicles in the Dive Plane," Naval Postgraduate School
(unpublished), revised March 1990.

2. Cristi, R., Healey, A.J., and Papoulias, F.A., "Dynamic Output Feedback by
Robust Observer and Variable Structure Control," in review for Proceedings of the
1990 American Control Conference, San Diego, CA, May 1990.

3. Schwartz, M.A., Kalman Filtering for Adaptive Depth, Steering and Roll Control
of an Autonomous Underwater Vehicle (AUV), Master's Thesis, Naval
Postgraduate School, Monterey, CA, March 1989.

4. Boncal, Richard J., A Study of Model Based Maneuvering Controls for
Autonomous Underwater Vehicles, Master's Thesis, Naval Postgraduate School,
Monterey, CA, December 1987.

5. Doyle, J. and Stein, G., "Robustness with Observers," IEEE Transactions on
Automatic Control, v. AC-24, no. 4, pp. 607-611, August 1979.

6. Gehani, N., C." An Advanced Introduction, pp. 36-134, Computer Science Press,
Inc., 1988.

7. Davis, M.H., Real Time Adaptive Control of an Autonomous Underwater Vehicle
(AUV), Master's Thesis, Naval Postgraduate School, Monterey, CA, September
1989.

8. Strum, R.D., and Kirk, D.E., First Principles of Discrete Systems and Digital
Signal Processing, pp. 54-226, Addison-Wesley, Inc., 1988.

9. Ghausi, M.S., and Laker, K.R., Modern Filter Design Active RC and Switched
Capacitor, pp. 102-191, Prentice-Hall, Inc., 1981.

10. Analog Devices Inc., Synchro and Resolver Conversion, 1980.

11. Analog Devices Application Note, "Dynamic Characteristics of Tracking
Converters," by M. Thomas, 1980.

142

12. Analog Devices Technical Note, "Variable Resolution, Monolithic Resolver-to-
Digital Converter," 1987.

143

BIBLIOGRAPHY

Thaler, GJ., Automatic Control Systems, West Publishing Company, 1989.

Kraus, A.D., Matrices For Engineers, Hemisphere Publishing Corporation, 1987.

Friedland, B., Control System Design, McGraw-Hill, 1986.

Barkakati, N., Microsoft C Bible, Howard W. Sams & Company, 1988.

Kirk, D.E., Optimal Control Theory, Prentice-Hall, Inc., 1970.

144

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5004

4. Department of Electrical and 8
Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5004
ATTN: Professor R. Cristi, Code EC/Cx

5. Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5004
ATTN: LCDR J. Yurchak. Code CS/Yr

6. Chairman, Code ME 2
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5004

7. Chairman, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5004

145

8. Curricular Officer, Code 32
Naval Postgraduate School
Monterey, CA 93943-5000

9. Commander, Naval Surface Weapons Center
White Oak, MD 20910
ATTN: H. Cook, Code U25

10. Head, Undersea AI and Robotics Branch
Naval Ocean System Center
San Diego, CA 92152
ATTN: P. Heckman, Code 943

11. Commander, Naval Coastal Systems Center
Panama City, FL 32407-5000
ATTN: Dr. G. Dobeck

12. RADM Evans, SEA-92R
Naval Sea Systems Command
Washington, DC 20362-5101
ATTN: Ms. Judy Rumsey

13. David Taylor Naval Ship Research and
Development Center
Carderock Laboratory
Bethesda, MD 20084-5000
ATTN: Dr. D. Milne, Code 1563

14. Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5004
ATTN: Professor F. Papoulias, Code ME/Pa

15. Naval Research Laboratory
Marine Systems Division
Washington, DC 20375
ATTN: Dr. D. Steiger

146

16. Commanding Officer 2
Naval Electronics System Engineering Center
Vallejo, CA 94592
ATN: LT William D. Riling

4

147

