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W D Abstract

Double-barrier resonant tunneling structures often contain undoped spacer
layers separating heavily n-doped regions from active regions of the structure.
Conduction band electrons coming from the heavily doped regions diffuse into the
undoped regions, producing potential energy profiles that can confine hole states
within the spacer layers. A classical model is used to predict the potential energy
profiles in these structures, and the associated hole binding energies and wave
functions are calculated numerically. / ' C ) .
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1. Introduction

Double-barrier resonant tunneling (DBRT) structures (and in fact a variety of
different semiconductor heterostructures) often contain heavily doped re-
gions and undoped "active" regions separated by an undoped spacer layer.
Attempts to model the electronic states in these structures always involve
assumptions regarding the distribution of extended-state electrons (or holes)
near the abrupt doping profile edge.' For example, n-type DBRT structures
often contain undoped spacer layers (about 100 A thick) surrounding the
barrier/quantum-well (QW) region of the structure. These layers are in turn
surrounded by heavily n-doped regions that facilitate electrical contact to the
sample. The present paper deals with the nature of the band-bending near
spacer layers and the hole states that are confined (in one spatial dimension)
by this space-charge potential.

We use a classical model of the charge distribution to derive expressions for
the potential profile in unbiased DBRT structures. We then integrate a one-
band effective mass Schridinger equation through the region of interest to
obtain the hole states confined by the potential. In a concluding section, we
comment on the classical model's weakness and indicate how the theory
might be improved so that the potential profile and binding energy estimates
are more reliable.

2. Model and Calculations

Consider the energy band diagram of a typical DBRT structure, shown in
figure 1. The host semiconductor might be GaAs and the barrier layers
AlGaAs. We assume that the region between the vertical dotted lines is
undoped while the region outside the dotted lines is uniformly doped. We
further assume for simplicity that all donor atoms are ionized and that the
electrons associated with them occupy extended conduction band states. In
modeling the free electron distribution in this structure, we replace the
discrete, randomly distributed ionized donor atoms by a uniform positive
background, and we ignore potential fluctuations. We now ask, how do the
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'See. for example, models described in T. Ando. A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).



electrons distribute themselves in the presence of this background charge
density? We address this question from a classical point of view, commenting
later on improvements to the model.

At T = 0 K, the electron charge density will perfectly match the positive
background charge density, and the electrostatic potential will be zero
everywhere. At a finite temperature, some electrons will diffuse into the
undoped region (on a distance scale comparable to a Debye length) leading
to dipole layers centered near the doping edges. This will produce an
electrostatic potential that decreases as one enters the undoped region from
either side of the structure (fig. 1 corresponds to this classical picture at zero
temperature). Let z = 0 correspond to the doping edge on the left side of figure
1 (vertical dotted line), with z increasing towards the double-barrier structure.
We take the spacer layer to have a thickness tand assume that electron density
is zero inside the barrier and QW regions of the structurc.* This implies that
electrons which diffuse past the doping edge must reside in the spacer-layer
region, and therefore, the electric field at z = t is zero.

In the classical approach to the problem, the electron number density n(z) is
given by

n(z) = nd exp[3eo(z)] (1)

where 3= l/kT, n is the donor density, e is the electronic charge, and O(z) is
the electrostatic potential (assumed equal to zero at z = --o). Expression (1)
is readily obtained by assuming that (a) O(z) changes slowly enough that, at
any point z, the density of conduction band states is what one would have in
a bulk semiconductor (without an electric field) whose band-edge has been
shifted by the local value of the potential energy (-eo(z)), (b) the chemical
potential satisfies the inequality E - eo(z) - ju >> kT, where E. is the
conduction-band-edge energy, and (c) n(z) is always much greater than the
intrinsic charge density in the conduction band. The first two assumptions
will not be satisfied for some choices of n,, T, and t. In particular, assumption
(b) is certainly violated over some region of the structure for degenerately
doped materials. Nevertheless, corrections due to electron degeneracy are
sometimes minor and, as a first estimate of the potential profile and hole-
binding energies, the nondegenerate result will suffice. Next we impose the
requirement that Poisson's equation be satisfied:

d2 4(z) r 4p(z) (2)
dz2  C

where e is the static dielectric constant of the host semiconductor, and p(z) is
given by

i (Z)= e[nd-n(z)] forz<0 (3)-z= -en(z) for z >0/

*We assume that the barrier height is infinite.
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By combining equations (1), (2), and (3), one obtains the equations

d2U(Z) - 1 exp[-U(z)] for z > 0, and (4)

d + (1- exp[-U(z)]) for z < 0, (5)
dz

2

where U(z) is a dimensionless potential energy defined byU(z) = -fleo(z), and
I is the classical Debye length given by

1 =l EkBT (6)2
41rnde2) (6)

Equation (4) can be integrated analytically to obtain, for the z > 0 region,

U(z) = U(t) + 2 lnfcos(Oo exp[-U(t)/2]z (7)( 1] 7

where 00 is defined by cos200 = exp(U(0) - U(t)).

The solution to equation (5) can be given in terms of a definite integral (which
cannot itself be profitably expressed in terms of special functions). We obtain,
for z < 0,

U(z) = G-MU()] + ). (8)

The single-valued function G is given by

G(x) = M(x) + Y2 In[x/U(O)],

where M(x) is defined by

M(X) = fX dy e(y~l (9)M 0x -" dyy + exp(-y) - 1-

The solutions obtained for differential equations (4) and (5) both require the
specification of boundary conditions. We have already implicitly imposed
continuity of U(z) at z = 0. By requiring that the electric field at z = 0 (which
is proportional to U'(0)) be continuous, we obtain, equating first integrals of
(4) and (5),

exp[-U(t)] = 1 - U(O) (10)

Another relation between U(0) and U(t) is obtained by evaluating equation (7)
at z = t. After combining this second relation with equation (10), we obtain a
transcendental equation for U(t), namely,

1 - U(t) - exp [-U(t)] = 2 In[cost exp [-U(t)/21] (11)
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This expression contains only one unknown, U(t), which can be found by
root-solving. Once U(t) is known, U(0) can be obtained from (10). The results
can then be used in the solutions to (4) and (5) to calculate the potential energy
function.

We have carried out this procedure and in figure 2a, we plot the valence-band-
edge diagram of a DBRT structure at three temperatures: T = 77, 150, and
300 K. Figure 2b shows the depth of the hole-confining potential well as a
function of temperature. We have chosen the structure's parameters as fol-
lows: t = 150 A, nd = 2 x 1013 cm-3, 150-meV AlGaAs barrier height, 42.25-A
QW width, and 62.5-A barrier width (the latter three are irrelevant for the
calculation of the potential). We now integrate a one-band effective mass
Schridinger equation through the spacer-layer region of the structure. In
figures 3a and 3b, we plot the T= 300 K hole-confining potential (upside down
and reversed) along with the confined heavy- and light-hole wave functions,
respectively. Figures 3c and 3d contain similar results at T = 77 K. The wave
functions are labelled by the binding energies. These results were obtained by
numerically integrating a one-band effective-mass Schrtdinger equation for
Vp(x) (x =t - z), subject to the requirement that yW(x) go to zero far inside the
barrier region (x << 0) and far inside the doped region (x >> t), and that VI/m*
be continuous at the barrier interface (where m* is the hole effective mass).
In our calculations, we used m., = 0.34 m0 and m, = 0.094 m0 for the heavy-
and light-hole masses in the host semiconductor, and m. = 0.433 m0 and
IA= 0.109 m0 for heavy- and light-hole masses in the barrier layer (values

which correspond to an Al fraction of about 30 percent).

We believe that if electron-hole pairs were generated within a diffusion length
of the doping edge, holes could readily migrate into the spacer layer region,
occupying the lowest hole subband calculated above. One would then expect
to see luminescence radiation resulting from transitions between extended-
state conduction band states and the lowest hole subband, and (maybe)
between conduction band DBRT resonance states and the lowest hole

(a) (b)
100 _____1 Undoped region 62.5

E Doped ..

0 ! 3 7 .5 ...................... .......... ..' " "... .......... ......... ........ ' . . . . .
ST, = 300 K (D.......... .........

.a - 5 0 - b = 1 50 K 3: 2 5 --
0 [Tc = 77 K .5

CD-100 4) 12.5-

> -150 0 . ....... ......
-400 -2(0 b 20)0 400 O0 40 80 120 160 200 240 280 320

Width (A) Temperature (K)
Figure 2. (a) Valence-band-edge energ diarmo double-barrier resonant tunneling structure at T = 300,
150, and 77 K. Spacer layers are I5 A hick, and doping density of n-doped regions is 2 x 100M cm -1. (b) Hole-
confining potential well depth versus temperature for structure with some parameters.
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Figure 3. Hole-confining potentials (upside down) plotted with bound heavy- and light-hole wave functions:
(a) heavy- and (b) light-hole states at T = 300 K; (c) heavy- and (d) light-hole states at T = 77 K.

subband. However, seeing such features might prove difficult. The larger
binding energies (which are most easily separable from direct-gap-related
features in luminescence) occur in the deeper wells, which in turn occur at the
higher temperatures (according to the classical picture described above). On
the other hand, the higher the temperature, the broader are the photolumines-
cence line shapes, particularly in heavily doped samples. We believe that one
should see, at least, a luminescence band associated with transitions between
the low-energy conduction band-edge states and the confined lowest-sub-
band heavy-hole state. We have not calculated the expected position (or
shape) of such a band as a function of temperature but believe that it mignt
have a characteristic temperature dependence arising from the temperature
dependence of the quantum confining potential in the spacer layer. We have
made some preliminary piezoreflectance measurements on a DBRT sample
(with parameters identical to those used in the model), 2 but have not seen any

2R. L. Tober and J. D. Bruno, Proc. SPIE 1286 (in press).
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convincing evidence of the quantum-confined hole states in the spectra. The
experimental effort is still in progress.

3. Conclusions

The assumptions upon which the classical model relies are not well satisfied.
We have ignored quantum-mechanical effects in determining the distribution
of conduction-band electrons. We then used the very potential obtained from
the resulting electron distribution in an effective-mass Schr6dinger equation
to determine quantum-confined hole states. Ourrationale for doing this rested
on the lack of a confining potential for electrons. We therefore assumed that
the local density of electron states was modified less by the potential than was
the local density of hole states. This rationale, however, is not very satisfying.
Furthermore, one can expect that even at zero temperature, where the classical
picture leads to no potential energy profile, one would have a quantum-
mechanical dipole layer, since the electron density cannot drop from nd to zero
on a length scale shorter than X, Here A. is the Fermi wavelength of the
degenerate electron gas inside the doped regions of the structure. A "back of
the envelope" calculation based on this idea leads to a quantum mechanical
potential well in the positive background region of the structure whose depth
is comparable to the depth of the thermally induced space-charge well seen
by holes at room temperature. This implies that a full quantum-mechanical
treatment might be required in order to obtain reliable space-charge fields
(and hole binding energies) in these DBRT and similar structures. A less
important approximation involved replacing the Fermi distribution by a
Boltzmann distribution to obtain equation (1). Although conditions required
for this approximation's validity are violated to some extent in the structure
we considered, corrections due to electron degeneracy are small (in the
structure we considered) and do not change the hole binding energies
substantially.

In view of the unsatisfactory nature of some approximations made in this
work, we are presently applying density functional theory to this problem and
will report on that work in the future.
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