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(physical observables) and gains of intracavity doubled lasers. A new system of equations

is derived which models the frequency doubling of a general class-B laser with any number

of intracavity birefringent elements, and the relevant features of the cavity configuration are
reduced to two parameters.

The complete range of behavior of the intensity output is characterized for one, two

and three longitudinal modes in this general framework. A novel approach to the linearized

stability analysis of the model leads to explicit stability criteria for the cavity parameters,

and to several successful predictions of ways to stabilize the laser output. Several
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experiment.

In the specific case of an intracavity doubled Nd:YAG laser, numerical results trace
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SUMMDARY

In many laser applications, the frequency of light produced by the laser is doubled

by a crystal with nonlinear optical properties. The presence of such a crystal inside a laser

cavity can produce large, irregular fluctuations in the output intensity. This thesis examines

nonlinear systems of ordinary differential equations for the longitudinal mode intensities

(physical observables) and gains of intracavity doubled lasers. A new system of equations

is derived which models the frequency doubling of a general class-B laser with any number

of intracavity birefringent elements, and the relevant features of the cavity configuration are

reduced to two parameters. General results are also presented on the possible polarization

states of the output beam; these polarizations are explicitly included in a dynamical system

for the first time. This analysis is also the first to include the possibility of birefringence in

the gain medium.

The complete range of behavior of the intensity output is characterized for one, two

and three longitudinal modes in this general framework. A novel approach to the linearized

stability analysis of the model leads to explicit stability criteria for the cavity parameters,

and to several successful predictions of ways to stabilize the laser output. Several

experimental laser configurations previously studied prove to be special cases of the general

model; all the experimental results confirm the correspondence between the theory and

experiment. Extensive numerical integrations also display a wide range of dynamical

behavior consistent with experimental observations.

In the specific case of an intracavity doubled Nd:YAG laser, numerical results trace

an intermittency route to chaos, with cross saturation as the control parameter. Samples of

experimental output are closely matched by numerical integrations. An additional set of rate

equations are developed which display dynamics seen in experiments but not in previous



xi

numerical results. Still another set of rate equations validates our approximation of the

lasing transition in Nd:YAG as a two-level system. The intracavity doubled Nd:YAG laser

is found, in theory and experiment, to be a rich source of nonlinear dynamics.



CHAPTER I

INTRODUCTION

In many laser applications, the frequency of light produced by the laser is doubled

by a crystal with nonlinear optical properties. The presence of such a crystal inside a laser

cavity can produce large, irregular fluctuations in the output intensity. This thesis examines

nonlinear systems of ordinary differential equations for the intensities (physical

observables) and gains in intracavity doubled lasers. We derive a new system of equations

which models the frequency doubling of a generalclass-B laser with any number of

intracavity birefringent elements, and the relevant features of the cavity configuration are

reduced to two parameters.

While the numerical results we present are particular to the intracavity doubled

Nd:YAG laser, our theory applies to a more general class of lasers. Our general results

characterize the polarization states of the output beam, and for the first time these

polarizations are explicitly included in the dynamical system which describes the doubled

laser. This analysis is also the first to include the possibility of birefringence in the gain

medium.

The complete range of behavior of the intensity output is characterized for one, two

and three longitudinal modes in this general framework. A novel approach to the linearized

stability analysis of the model leads to explicit stability criteria for the cavity parameters,

and to several successful predictions of ways to stabilize the laser output. Several

experimental laser configurations previously studied prove to be special cases of our
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general model; all the experimental results confirm the correspondence between the theory

and experiment. Extensive numerical integrations also display a wide range of dynamical

behavior consistent with experimental observations.

This report is directed toward a broad audience which may have a strong

background in physics or mathematics, but not necessarily both. Thus, the first chapter

includes basic material on laser physics as well as dynamical systems and ordinary

differential equations.

The previous rate equation model is studied in Chapter IL We analyze the stability

of numerous steady state solutions, and we show how the stable and unstable manifolds of

these points interact to give stable steady state, periodic, and chaotic behavior in the laser

intensity output. In the specific case of an intracavity doubled Nd:YAG laser, numerical

results trace an intermittency route to chaos, with cross saturation as the control parameter.

We develop the new model for intracavity doubled lasers in Chapter I. We derive

and analyze the model in a very general framework, apply it to several specific laser

configurations, and present the results of extensive numerical integrations. In addition to

reproducing many qualitative features of experimental data, the numerical integrations

closely match several specific examples of experimental output. Moreover, the analysis of

our new equations predicts ways to eliminate the chaotic intensity fluctuations; these

predictions have been verified in our experimental results.

The new model for intracavity doubling in Chapter 11 is referenced to the system of

equations used by Baer. The basic template of equations is kept intact while we develop

the new approach for specifically modeling the doubling process with arbitrary birefringent

cavity elements. In Chapter IV we propose several variations on the basic template, where

we develop new systems of equations from more fundamental physical principles. One

new set of equations produces results which resemble intensity traces seen in laboratory
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experiments but not yet predicted by any previous model. Still another set of rate equations

confirms the two-level approximation for the lasing transition in the Nd:YAG laser. We

conclude in Chapter V with suggestions for future research and a summary of our main

results which highlight the utility of the intracavity doubled Nd:YAG laser for studying

nonlinear dynamical phenomena.

Review of Laser Basics

A laser produces radiation with several characteristic features, one of which is that

the emitted light can be nearly monochromatic, i.e. of a single frequency. Rather than

construct a separate laser for each desired output frequency, we would like to be able to

alter the configuration of a given laser in some simple way to produce light either within a

range of frequencies, or at several specific frequencies. Tunable lasers, for example, have

been designed which produce light within a range of frequencies. This thesis centers on

lasers whose output frequency is changed by a crystal with nonlinear optical properties that

doubles the frequency of incident light within a range of (crystal-dependent) wavelengths.

Frequency doubling can take place outside a laser cavity, simply by placing a

nonlinear crystal in the path of the output beam. The beam which results is a combination

of light at the input, or fundamental, frequency, and some small percentage of light at the

doubled frequency. More efficient doubling can be achieved by intracavity doubling, i.e.

by placing the doubling crystal inside the laser cavity, which takes advantage of the larger

intracavity power. In a certain class of lasers, a serious experimental drawback to

intracavity doubling is that the output beam intensity often displays large, irregular

fluctuations in amplitude, fluctuations which may be undesirable for certain uses of the

light at the doubled frequency.
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This section reviews only the most fundamental concepts of lasers and optics

necessary for understanding the basic dynamics of an intracavity frequency doubled laser.

The following discussion is drawn from several standard texts which review these subjects

in depth (Siegman, 1986; Sargent, et al., 1974; O'Shea, et al., 1978; Hecht and Zajac,

1979). We begin with a simple view of laser operation and work slowly toward an

intuitive understanding of the differential equations which describe the relevant rime-

dependent variables in the laser.

Theoretically, any collection of identical particles (atoms, molecules, ions, etc.)

which can be temporarily excited to an energy level above a ground state can be made to

lase under suitable conditions. All we need at first (Fig. 1.1) is a source of input energy,

the pump, to excite the active medium to the upper energy level El. An excited species will

generally decay back to its ground state by one of two mechanisms: spontaneous decay,

which is characterized by an upper state lifetime tf, or stimulated emission, where a

passing photon with energy E1 -E0 stimulates the excited particle and causes it to decay to

its ground state, emitting a photon with the same energy. The frequency co of these

photons is determined by the relation E1-E0 = fliv, where fi is Planck's constant (divided

by 2t). The second photon generated by stimulated emission travels in the same direction

and in phase with the incident photon; that is, the two photons propagate coherently. If we

now place mirrors on either side of the source of excited particles (the active medium),

some of the photons produced by spontaneous emission are reflected back into the excited

population and generate a cascade of photons through stimulated emission. As long as

there is sufficient pump energy to sustain a population inversion (more particles in the

excited state than the ground state) the amplification by stimulated emission can continue

indefinitely. The coherent beam of radiation produced by this process has a single

frequency determined by the difference in energy levels of the active medium. A beam of
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Fast spontaneous decay
E1

Pump Spontaneous emission

Energy photon

v Stimulated E E = "fi o
emission 0

photons

E0  1

ground state E0

Fig. 1.1 Three-Level Lasing Scheme. Absorption of photons from
the pump source excite the active medium; spontaneous
and stimulated emission produce photons in the lasing transition.

light exits the cavity through the output mirror which is designed to transmit a small

percentage of the incident light, while reflecting most of the light back into the cavity to

sustain the lasing process.

The pump is an energy source that provides photons whose energy matches the

absorptive energy transition, E2-EO. For the laser system we study in this thesis (Fig.

1.2), the pump is actually another laser, in fact an array of small semi-conductor lasers

(called a laser diode); the active medium is a crystal of yttrium aluminum garnet, doped

with neodymium ions, denoted Nd3+:YAG. The system is commonly referred to as a

diode-pumped YAG laser. The YAG laser is actually a four-level laser, shown in Fig.

1.3, where the pump transition is at one wavelength (near 810 nm), the spontaneous decay
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INPUT OUTPUT
MIRROR MIRROR

HR 1064 nm HR 1064 nm
HR 532 rum HT 532 nm

LL

LASER Nd:YAG KTP QWP ETALONS
DIODE CRYSTAL CRYSTAL
PUMP

Fig. 1.2 General Cavity Configuration for the Intracavity Frequency Doubled
Nd:YAG Laser. The input mirror is highly reflective (HR) for both the
fundamental (1064 nm) and doubled (532 nm) intensities. The output
mirror reflects the fundamental frequency efficiently and is highly
transmissive (HT) for the green light. Some configurations include a
quarter wave plate (QWP) or etalons.
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upper energy state E3

E2

Pump
Energy Laser Output

81064 nm836 nm

E1

ground state E0

Fig. 1.3 Four-Level Lasing Transition in Nd:YAG. The fast spontaneous
decay out of levels E3 and El allows a population inversion to be
sustained between the middle two levels.

rates out of E3 and E1 are extremely fast, and lasing transition (and so the population

inversion) is between energy levels E2 and El, at a wavelength of 1064 nm (infrared).

The propagation of light in the cavity can be described by complex electromagnetic waves

which are solutions of Maxwell's equations with Dirichlet boundary conditions (amplitudes

equal to zero) at the cavity mirrors. Thus, for a cavity of length L, we identify a single

longitudinal mode as an electric field

Ej(z,t) = IEj(t)I sin (JL-) e- i(Ajt+9p) 1.1

whose spatial dependence is a sine function with a frequency restricted by the cavity length,

and A = jitc/L, where c/2L is the spacing between allowed frequencies in the cavity. This

standing wave approximation is valid for cavities like ours (Fig. 1.2) where the laser
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p

a. Convergent and Divergent Beam with
Gaussian Cross-Section

b. Plane Wave Approximation with
Uniform Cross-Section

Fig. 1.4 Comparison of Actual Beam Cross-Section with
Plane Wave Approximation.
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beam reflects between two mirrors (as opposed to a ring laser where a beam can travel

continuously in one direction). The intensity Ij of a longitudinal mode is simply the

squared magnitude of its complex electric field: Ij = IEjI2. The cross-section of a laser beam

is generally not uniform (Fig. 1.4), but we assume that the transverse modes do not affect

the dynamics of the longitudinal modes; this is essentially a plane-wave approximation.

The laser's output intensity is the most directly observable physical quantity, so the

relevant systems of ordinary differential equations which describe our laser include an

equation for the intensity (or field) of each active longitudinal mode. The propagation of a

longitudinal mode (i.e. a stream of photons) in the cavity serves to deplete the population in

the upper excited energy state; we say this reduces the gain or the available gain for all the

modes. In fact the net gain, Gj, of a particular mode is defined by the relative increase (Gj

> 1) or decrease (Gj < 1) in the mode amplitude after one round trip through the cavity.

The time evolution of the gain Gj depends on the population inversion (a larger inversion

tends to strengthen the mode amplitude) and the losses experienced by the mode in a round

trip (due to transmission through the output mirror and scattering by impurities in the air

and in the optical cavity elements). Knowing the transmission percentage of the output

mirror, we can calculate the approximate cavity losses for a given mode (see Appendix B).

The coupled ordinary differential equations that describe the time variations of

intensity and gain for a single mode come from the optical Maxwell-Bloch equations

(Siegman, 1986; McMackin, et al., 1988; Baer, 1986). These equations are referred to as

rate equations because, while the sources of gain and loss only influence a given mode over

a small portion of the complete round trip (or almost instantaneously as in the case of

mirror transmission), these effects are represented as overall rates of gain or decay which

apply uniformly over the length of the cavity. This is a common assumption and a well-

established approach to laser dynamics. The Nd:YAG laser belongs to a much larger class
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of lasers, class-B lasers (Arecchi, 1987), whose essential single-mode dynamics are

contained in two coupled ordinary differential equations (see Appendix A for more details):

dl¢c-= 1(G-a) 1.2.a

dG

kf dG G(I+PI 1.2.b
~dt =yGl1I

where tc is the cavity round trip time, tjf is the upper state lifetime (or fluorescence time), a

is the total cavity loss, y is the pump strength, and 13 is a self-saturation parameter that

gauges how strongly the intensity amplitude depletes the available gain. It is important to

note that the time scales Tc and tf for the YAG laser differ by five to six orders of

magnitude, with tc on the order of nanoseconds and 'rf = 0.24 msec. For reference, the

phenomena studied in this thesis generally occur on a time scale of 1 jisec to 1 msec; for

most of our discussions, 0.5 sec is an extremely long time, and 1014 Hz is a very high

frequency.

There are an infinite number of candidate electric fields (1.1) that can oscillate in a

given laser cavity; the gain profile of a cavity (Fig. 1.5) describes the cavity's gain (or loss)

characteristics which select out certain modes to lase with different relative strengths. The

relative losses experienced by different modes can arise from nonuniformity of optical

elements in the cavity, beam misalignment, or intentionally through the use of etalons,

glass plates inserted in the cavity to purposefully restrict the number of active modes.

Another important influence on the relative mode strengths is the spatial overlap of modes

in the active medium, where several longitudinal modes compete for the same (local)

collection of excited particles (Fig. 1.6). For a single mode, there is no
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round trip gain

cavity frequency
(n-2)irc nrcc (n+2)7c

L L L

Fig. 1.5 Example of a Gain Profile for a Typical Laser Cavity. Some frequencies
experience less gain during each round trip, as depicted by the gain profile.

problem; the mode amplitude varies in space sinusoidally, and wherever the intensity is

strong, the local population inversion is small (or zero). Similarly, the regions in the active

medium where the intensity is small have relatively large inversions. If a second mode tries

to lase (e.g., as we increase pump power above a certain threshold), it sees a nonuniform

population inversion along the length of the active medium; in the regions where both

intensities reach their relative maxima, the gain is quickly depleted and the two modes are

strongly coupled by their cross-saturation. This coupling plays an important role in

later discussions of multimode rate equations.

To this point, we have reviewed the basic operation of any laser. We now

introduce the concepts particular to frequency doubling. The first relevant property of an

optical element is its index of refraction, which describes the relative speed at which light

passes through the element. The index of refraction generally depends on the frequency

and incident angle of entering light. Many crystals, like mica and calcite, have
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intensity available gain

H - active medium -*

a. Intensity peaks deplete the available gain.

K - active medium

b. Strong coupling between two modes via spatial overlap

Fig. 1.6 Spatial Dependencies of Intensity and Gain in the Active Medium
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more than one refractive index for different orientations of the electric field; a material with

two principal indices of refraction nj is called birefringent, and the directions associated

with the two refractive indices are denoted the fast and slow axes (or extraordinary and

ordinary axes), with the latter title referring to the smaller refractive index. For an electric

field incident on a birefringent material, the field generally has components along both the

fast and slow axes, so the birefringent element (with length 1) introduces a relative phase

delay 8 = (nlI - n2)2t/c between the two component directions. Special optically

birefringent elements are designed to produce specific phase delays for electric fields of

given frequencies. Later chapters, for example, illustrate the use of a quarter wave plate

(QWP) which introduces a relative phase delay of it/2 in the two components of an electric

field having a particular frequency.

The frequency doubling we consider in this thesis is accomplished by a birefringent

potassium titanyl phosphate (KTP) crystal which converts a small percentage of input light

at 1064 nm into green light at the doubled frequency, or halved wavelength 532 nm. The

KTP crystal is cut at a particular length and orientation to make the doubling process as

efficient as possible (Fan, et al., 1987; Ito, et al., 1975). When the intensity of a single

longitudinal mode is (partially) converted to doubled light, we refer to the process as

second harmonic generation (SHG); when two photons of different modes with similar

frequencies combine to produce light at a frequency very close to that of the doubled

frequency, we call the process sum-frequency generation. We refer to both processes as

frequency doubling and make the distinction between SHG and sum-frequency generation

when necessary.

An important feature of the doubling process is that the intensity of the doubled

light is proportional to the lar[d intensity of the input light at the fundamental frequency.

This is the motivation to place the doubling crystal inside the cavity, to take advantage of
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the stronger intracavity fundamental intensity and increase the doubling efficiency. It also

explains our interest in understanding and controlling the irregular intensity fluctuations that

result from intracavity doubling.

We now return to Fig. 1.2 and describe our experimental setup in more detail. Our

laser contains a 5 mm long Nd:YAG crystal pumped by a 10 element phase array laser

diode. The diode laser beam is preconditioned by cylindrical lenses to focus to a small

circular spot on the flat input face of the YAG rod. The input face of the YAG is coated

with a mirror that allows the pump beam to enter the cavity, and reflects both the

fundamental intensity (1064 nm) and the doubled intensity (532 nm) with high efficiency.

A KTP crystal performs the intracavity doubling and is specially coated to minimize

reflections at both wavelengths. The output mirror is highly reflective at the fundamental

frequency, but is highly transmissive for the green light. Some cavity configurations we

consider later include etalons to restrict the number of longitudinal modes in the cavity;

other configurations include quarter wave plates to influence the propagation of different

components of electric fields in the cavity.

The experimental pump strengths we consider are referenced to a threshold pump

level at which the laser barely turns on. Our experiments include pump ranges from about

1.5 times threshold (intensity output is obscured by noise for any lower pumping) to 15

times threshold (an upper bound imposed by pump currents for the pumping laser).

Samples of experimental output of total fundamental intensity (the total contribution of all

longitudinal modes) are shown in Fig. 1.7. A wide range of behavior is observed,

depending on the particular cavity configuration; the intensity traces shown here are for

different values of input pump power. A realistic system of equations must also display

this range of time-dependent behavior.
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Pump Strength
(x threshold)

-T . - - - - - - - 7.0

6.0

%0"jV-. ,-14.5

3.5

(b) 2.5

(a). .. . . .. . .$ ---- -1.

Fig. 1.7 Samples of Intensity Output from an Intracavity Doubled Nd:YAG Laser.
Changing the input pump power produces: (a) stable output, (1b) periodic
output, (c) multiple-period output, (d) chaos.
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There are, of course, other types of lasers which produce green light, so why

should we trouble with the instabilities which seem to be inherent in intracavity doubling?

The answer lies in recent improvements in the power and efficiency of diode lasers for use

as pump sources for solid state gain media (Byer, et al., 1984; Fan and Byer, 1988;

Chumbley, 1989; Lin, 1989; Perkins and Fahlen, 1987). Diode-pumped solid state lasers

are compact, long-lived, and more efficient than other types of lasers which output light at

comparable frequencies. The diode laser offers the advantage of stable pumping with little

noise; the diode-pumped Nd:YAG has much greater frequency stability than the diode laser

itself. There are countless applications for the green light produced by the frequency

doubled YAG, with particular emphasis on color laser printing, in low-power applications

(Fujii, 1986; Cook, 1988; Takashima, et al., 1987; Fitzpatric, et al., 1986). The growing

interest in frequency doubled lasers highlights the importance of understanding the

dynamics of the doubling process, so we can control the output instabilities which have

restricted their use in some applications.

As a final note to this section, we highlight some vocabulary subtleties, to avoid

confusion later in the thesis. The fundamental frequency in our laser is the frequency at

which the Nd:YAG crystal lases, usually identified by the wavelength, 1064 nm. The

doubled frequency is the output produced by the KTP doubling crystal; in our case this is

at a wavelength of 532 nm. There are two different "frequency" domains we discuss in the

thesis. The first is in the context used above where we address the frequency of

electromagnetic field oscillations. This is distinct from the frequency content of intensity

time histories which we examine later using Fast Fourier Transforms (FFTs) of numerical

integrations and experimental data. Next we point out two kinds of oscillations found in

our discussions. In one context, we say that a longitudinal mode is "active", or "lases", or

"oscillates" in the laser cavity, interchangeably. In another context, we observe periodic or
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irregular oscillations in the time traces of intensity output. Finally, we refer to

polarization in two different ways. The first is an atomic polarization, a dipole moment

due to a distribution of electric charge. This polarization is a key variable in the Maxwell-

Bloch equations reviewed in Appendix A. The second polarization refers to the (not

necessarily fixed) direction along which an electric field amplitude fluctuates. Thus, we

can place polarizing filters in the path of the beam to measure intensity output in particular

polarization directions. The interactions of polarized electric fields and birefringent

materials is critical to the new model of intracavity doubling presented in Chapter III.
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Basics of Dynamical Systems

This section briefly reviews the main tools of ordinary differential equations and

dynamical systems which are used to study the systems of equations that arise in later

chapters. We assume the reader is familiar with the technique of linearizing a system of

equations in the neighborhood of a steady state point to discover some of its stability

properties; we also assume a familiarity with different types of stability: center points,

asymptotic stability, saddle points, etc. More details can be found in standard texts on

ordinary differential equations and dynamical systems (e.g., Hale, 1969; Jordan and

Smith, 1987; Guckenheimer, 1980).

We define a dynamical system using a differential equation which we write here in

general form, for an N-dimensional vector x:

dx
dt = F(x,t) 1.3

where the right hand side of the equation is also vector-valued. (We recall that the Jacobian

of F is the matrix formed by taking partial derivatives of F with respect to the components

of x.) A dynamical system, then, is defined by a solution operator O(x,t) which describes

the time evolution of (1.3). The operator 0 is defined on RN+ I (the N dimensions of x,

plus time), is continuous with respect to initial conditions, and for any x in the domain of

F, satisfies:

O(x,0) = x l.4.a

O(x,t+s) = O(O(x,s),t). l.4.b
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Property (1.4.b) simply states that the solution found by integrating (1.3) from 0 to (t+s),

with initial condition x, is identical to the solution found by integrating from 0 to s with

initial condition x, then using O(x,s) as the initial condition for a subsequent integration

from 0 to t (Fig. 1.8).

x = 0(x,0)

0(x,s) O(x,t+s)

Fig. 1.8 Sketch of the Solution Operator 0.

Almost all the systems of equations we consider in this thesis are autonomous, i.e.

F does not depend explicitly on time. For such equations, it is useful to construct phase

diagrams like Fig. 1.9 for the system of equations in question. The N-dimensional phase

space for (1.3) is defined by the N coordinates of x. The phase portrait usually includes

the steady state points of (1.3), where F = 0, plus some general indication of the flow

vectors (F(x)) elsewhere in the phase space. All the equations we consider have a right

side F which is infinitely differentiable; this implies that the solution passing through every

initial condition is unique.
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Fig. 1.9 Generic Phase Portrait. The sketch shows one center and one saddle point.
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A phase sketch also indicates the type of stability of the steady state points as well

as the structure of their stable and unstable manifolds. The stable manifold Ws(x) of a

point x where F(x) = 0, is the set of initial conditions whose solutions asymptotically

approach x as t - +oo. Similarly, the unstable manifold WU(x) is the set of

initial conditions whose solutions approach x as t -4 - o. We sometimes refer to the

solution passing through an initial condition as the trajectory of that point in phase space.

A trajectory which does not asymptotically lead to a single point in phase space can have

many other limiting behaviors: e.g., a periodic limit cycle, an unbounded trajectory, or a

chaotic trajectory (to be defined shortly) which is bounded but aperiodic.

If our phase space is planar, and F is continuously differentiable, a classic theorem

by Poincar6 and Bendixson states that any bounded trajectory must approach either a single

fixed point, a periodic limit cycle, or a homoclinic cycle (where one or more trajectories

begin and end at a steady state point); this occurs because uniqueness of trajectories

prevents them from crossing each other in the phase plane. If the phase space has three or

more dimensions, however, there is extra room in the phase space for trajectories to pass

around each other, so the restriction that trajectories can not cross no longer inhibits the

limiting behavior of a trajectory (in most cases). Thus, for a bounded phase space with

two dimensions, no chaotic solutions can exist. When the phase space has three or more

dimensions, chaos can occur. Later in the thesis, this fact indicates the minimum number

of differential equations needed in the model to produce chaotic output.

We use several other simple properties of (1.3) and its associated phase portrait to

characterize the solutions of (1.3). For example, we can sometimes find a bounded region

of phase space where all the flow vectors point into the interior of the set. A region like

this is called an absorbing set; any trajectory which enters such a set must remain in it for

all later times. We also get information about the flow from the trace of the Jacobian of F,
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since the trace of a matrix equals the sum of its eigenvalues. If this trace is negative in a

region of phase space, it indicates that the flow is locally dissipative. If a trajectory enters

an absorbing set where the trace of the Jacobian is negative in the entire set, then the

trajectory must asymptotically approach a stable steady state point in that set.

Another tool we use to study solutions to (1.3) is a Poincard map. We define this

map on a surface of N-I dimensions called a transversal, which is chosen so that the

flow is not tangent to the surface. For each point y on the transversal, the Poincar map

P(y) is defined as the point on the surface where the solution of (1.3) through y next

passes through the transversal (Fig. 1. 10). The properties of the Poincare map give direct

information about the flow in the complete phase space. A periodic orbit, for instance,

P(Y)

Fig. 1. 10 Construction of a Poincard Map.
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crosses the transversal at the same point for all time, so points in a Poincard map which

tend toward a single fixed point indicate that the flow is converging to a periodic orbit.

Similarly, toroidal flow in the phase space appears as a closed loop (or a countable number

of fixed points) in the Poincard map. The map inherits continuity from the continuity of F;

we can linearize the Poincard map about its fixed points and compute eigenvalues (Floquet

exponents) of the linearized matrix to determine the stability properties of those fixed

points. Some systems of equations can be integrated analytically to derive explicit

expressions (or at least local approximations) for the Poincar6 map on a given transversal.

The equations we study in this thesis are sufficiently complicated to require numerical

integration to approximate the Poincard maps we use.

We now specify the conditions under which we identify a particular trajectory as

chaotic. The first requirement is sensitivity to initial conditions (SIC). Recall that the

solution operator is continuous as a function of initial conditions, but for trajectories which

exhibit SIC, a small perturbation in the initial condition is amplified exponentially in

increasing time, so that two trajectories which start out arbitrarily close to each other

diverge exponentially in some finite time. The trajectories we identify as chaotic in

Chapters II and Ill have this property. Chaotic solutions to our systems of equations also

tend to "fill up" regions of a Poincard map. That is, a periodic or quasiperiodic trajectory

generates a point or a closed loop in the Poincard map, while a chaotic trajectory generates a

continuous distribution of points across a bounded (not necessarily connected) subset of

the transversal (compare, for example, the maps in Fig. 3.170)). The aperiodic nature of a

chaotic trajectory is further characterized by a broad FFT. A broad-banded spectrum can

also be produced by a signal with substantial noise; however, a chaotic trajectory will also

display SIC, while a noisy signal may not.
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A route to chaos describes the changes in the character of the flow as a function

of one or more parameters in F. A particular route to chaos is generally identified by the

transfer of stability, or bifurcation, from one type of solution to another. An equilibrium

point, for instance, may lose its stability as a parameter increases through some threshold

value, such that the stable limiting behavior near that point is no longer a steady state but a

periodic orbit. For an extensive study of bifurcation theory, see (Chow and Hale, 1982).

One particular route to chaos we find in the equations studied in Chapter UI is known as

intermittency. In intermittent chaos, periods of laminar (apparently periodic) behavior

are interrupted at irregular time intervals by turbulent (chaotic) flow. More details on the

nature of intermittency in our problem are presented in the next chapter, a review of the

fundamentals of intermittency appear in Appendix C, with extensive references.
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CHAPTER H

THE BAER MODEL

The first attempt to model the unstable multimode dynamics of a diode-pumped

intracavity doubled Nd:YAG laser was documented by T. Baer of Spectra-Physics(Baer,

1986). He presented theory and experimental data that describe the time-dependent

behavior of laser intensity as a function of the number of longitudinal modes oscillating in

the cavity.

Recall that the frequencies and number of longitudinal modes are determined by the

cavity length and by the cavity gain profile. By placing etalons (glass plates which affect

the relative losses of different modes) in the cavity, Baer further controlled the number of

active modes. With the laser restricted to single mode operation, he observed only stable

steady state output When two modes were allowed to oscillate, the total intensity output

showed periodic pulses; the two modes took turns switching on and off. New intensity

behavior was observed for three modes. For some cavity configurations, sequential

pulsing was seen (numerically), similar to the output for two modes. In other cases, the

total intensity for three active modes displayed large aperiodic fluctuations which did not

damp out in time.

This section includes theoretical and numerical analyses of the model proposed by

Baer. A linearized analysis for the multimode Baer equations was begun by P. Mandel and

X.-G. Wu (Wu and Mandel, 1985; 1987). Their analysis focuses on the two-mode case,
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with few restrictions on the parameters. The main result they report is that Hopf

bifurcations (from equilibria to periodic solutions) only occur when two or more modes are

oscillating; otherwise only steady bifurcations occur, from single-mode to two-mode

solutions. They also report a linearized analysis of the N-mode equations in limits of

certain parameter values.

The first unique element of our analysis is that we consider not only the stability

characteristics of the steady state points, but also how the stable and unstable manifolds of

these points interact (numerically) to produce different types of solutions. Throughout the

thesis we examine global dynamics to see how various models compare to experiment

when the laser does not operate in a stable steady state. We also present a novel technique

for simplifying the linear stability analysis in a way that leads to more general criteria for

steady state stability. Moreover, we believe our work to be the first which characterizes the

observed aperiodic intensity fluctuations as chaotic dynamics; we provide numerical

evidence of an intermittency route to chaos. Our study identifies the frequency doubled

Nd:YAG laser as one of few experimental systems observed to date which demonstrate

intermittent chaos in a strictly passive cavity configuration.

Single-Mode dynamics

Analysis

Prior to Baer's study, theoretical work had concentrated on equations which

describe only a single mode in the laser (Smith, 1970; Kennedy and Barry, 1974). The

differential equations model the time dependence of the single intensity I1 and the

associated gain G1 (Baer, 1986):
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d1I= 1 1(G - a 11 2.L.a
~dt- G -- e )

'CfdG l  G1h + pil)1 , 2.L.b

where Tc is the time taken by a photon to make one round trip through the cavity; cc

represents all cavity losses exclusive of doubling losses; e is a coupling coefficient which

depends on the nonlinear optical properties of the KTP doubling crystal; Tf is the

fluorescence time (lifetime of the upper excited energy state); y is the small-signal gain (due

to the energy input by the pumping diode laser); PI is the saturation parameter which

determines how strongly the intensity depletes the available gain. The parameter values

used by Baer for the single-mode equations appear in Table 1.

Table 1. Parameter Values for the Single-Mode Baer Equations.
These are the parameter values used for the analyses
in this chapter, unless otherwise noted.

tc 0.5 x 10-9 sec cavity round trip time

trf = 0.24 x 10-3 sec fluorescence time

a = 0.015 cavity losses

F= 5.0 x 10-5 KTP coupling coefficient

= 0.12 pump parameter

O3 = 1.0 self-saturation parameter

I = 5.0 cm cavity length
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We scale the intensity to be dimensionless, so all variables in (2.1) are non-negative

and dimensionless, except for time variables. Recall that the gain GI is a measure of the

net increase or decrease in intensity experienced during one round trip through the cavity.

The cavity losses described by a are almost entirely due to transmission through the output

mirror (see Fig 1.2). The doubling term -I1 2 represents the intensity losses due to second

harmonic production through frequency doubling.

The relative magnitudes of various parameters govern much of the dynamics of

(2.1). For any cavity length between 3 cm and 1 m, rf/Tc = 105 (see Appendix B on

parameter calculations), so I1 fluctuates much faster than GI. The tendency of I1 to

increase or decrease in (2.1 .a) depends on how the current value of gain compares to the

loss terms (- a - ell). As a physical constraint, the small signal gain ymust always

exceed the loss a in order to sustain any lasing; this is confirmed analytically in the stability

analysis below. Note that doubling losses are proportional to the squared intensity, while

cavity losses are only proportional to I1. Also notice that e is several orders of magnitude

smaller than a, so the frequency doubling process adds a small quadratic perturbation to

the usual single-mode rate equations.

Equations 2.1 include another interesting detail. The intensity equation describes a

single longitudinal mode which oscillates at the fundamental frequency; there is no

differential equation for the new intensity at the doubled frequency. This is because we

treat the doubling process strictly as a loss in the fundamental intensity, and because the

higher frequency green light is almost entirely transmitted out of the cavity at the output

mirror (see Fig 1.2). Thus we neglect the effect of small amounts of green light which are

reflected back into the cavity.
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We now give a complete study of the phase portrait and stability analysis for (2. 1).

This is fairly straightforward and provides a great deal of insight for the multimode

dynamics which we treat in later sections. A local stability analysis and review of the

single mode transient behavior was carried out in (Kennedy and Barry, 1974). Some of

their eigenvalue analysis appears in the discussion which follows.

The region of interest in the two-dimensional phase plane is the first quadrant where

intensity and gain are nonnegative observable quantities. There is actually a bounded

rectangle U1 which is an absorbing set, as long as £ is not zero (Fig. 2.1). (If e=O, U1 has

no top boundary.) No trajectories can cross the bottom of the absorbing rectangle, since

the flow along the G1 axis converges to the point G1 = y. When G1 = 0, along the Ii axis,

dG I/dt is positive, so all the flow on this line must enter the rectangle. Similarly, the flow

must enter the rectangle from the right, along the line G1 = y, since dG1/dt is negative along

that line. The top edge of the absorbing set is defined by any line I1 = constant, where the

constant is greater than e/(y - cx). This causes dI1/dt to be negative, and flow must enter the

rectangle from the top.

The sketch of the rest of the phase portrait begins with the identification of the

equilibria and their stability analysis. The steady state solutions of (2.1) are found by

setting the derivatives to zero, and solving for the following steady state values Is and Gs:

Gs- ,with
(1 + Ps)

(a) Is = 0

(b) I= (e+ i)( 1 + 4e 3(y- a) 1)o2.2
I2.2



30

( c ) i s F 1 'x0 + a 2 . , c o t+ a j~)2 /2.2, cont.

Both I1 and G1 are non-negative physical quantities, so the third equilibrium is not a

feasible physical solution for any parameter values. The first solution, where the intensity

is zero, represents a point where the laser is off. The second solution, with a non-zero

intensity, is of most interest physically.

The dynamics in the immediate neighborhood of an equilibrium is determined by

linearizing the right side of (2.1). This Jacobian J1, written here with the gain G1 as the

first coordinate, is:

[sI(Gs - a- 2EIs) 2.3

11c Tc

where Is and Gs are the steady state values of the intensity and gain. At the steady state

point Gs = y, Is =0 (2.2.a), the eigenvalues and eigenvectors of the Jacobian are:

, =1=[]' f 101

2.4

=Y

X Cc V2 [-

L + _I
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The negative eigenvalue ).I indicates a trajectory approaching the equilibrium; its

eigenvector points along the G I axis for all parameter values. The second eigenvalue

depends somewhat on the parameter settings. If y < a, then X2 is negative and this

equilibrium is stable. In fact, since the right boundary of Ul is fixed at the line G1 = y, any

value of 'y less than a would prevent the gain from ever surpassing the losses, and this

trivial equilibrium would be globally stable, i.e. the laser could never stay on. We also see

from (2.2.b) that y = a is a critical threshold above which the intensity may take on positive

values. Thus, for the remainder of our analyses, we assume a value of y greater than a.

This renders X2 a positive eigenvalue which indicates a trajectory departing the

neighborhood of the equilibrium; the eigenvector v2 always points into the absorbing

rectangle. These local flow characteristics are included in the phase diagram in Fig. 2. 1.

When the Jacobian is evaluated at the internal equilibrium (2.2.b) the eigenvalues

are:

2 " 'c +f 2.5

V E (I + plI )2 2CIS(1 + PI) + 4131 GIs
2 ,'r2 ,C2 'Tc 'Tf

The expression under the radical is dominated by the negative third term, so XI and X2 are

complex. These imaginary eigenvalues indicate locally spiralling trajectories, and the

(always) negative real parts imply local convergence to the equilibrium.

The convergence to a stable equilibrium, as indicated by the linearization, is of

course only a local property of the flow. While we have the existence of an absorbing set,

which guarantees an attractor of some type in Ul, we can not immediately invoke a fixed
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point theorem to prove global convergence to this equilibrium, because the flow is not

dissipative everywhere in the region. (This is also the case in other well-known systems

like the Van der Pol oscillator where global stability is difficult to prove analytically.) In

particular, the shaded triangle of Fig. 2.1 is the region where the trace of the Jacobian,

tr(Jl), is positive, so the flow there is locally expansive. The hypotenuse of the triangle is

the line where tr(JI) = 0, i.e. there is no local dissipation or expansion. In the unshaded

area, tr(J1) is negative, so the flow is dissipative, and any trajectory which remains in this

region for all t > to (for some reference time to) must converge to the equilibrium point.

The two dimensional phase portrait can be sketched in some detail as seen in Fig. 2.1.

Numerical Results

Laboratory experiments where the laser operates in a single mode show only

transient oscillations to a stable steady state; this fact supports the case for global

convergence in the phase space analysis. Numerical integration of (2.1) also indicates

global convergence: all numerical trajectories, for many initial conditions, converge to the

nontrivial equilibrium (2.2.b).

In Fig. 2.2, we show intensity time traces obtained numerically. The intensity I1 is

plotted for different values of the parameter e. For larger values of e, i.e. stronger second

harmonic conversion, the relaxation oscillations become completely damped out. The time

scales of any oscillations are an important check for comparing numerical integrations to

experimental data; such comparisons appear in later sections.
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The relative influence of the damping and the transient oscillations can be seen in a closer

analysis of the eigenvalues in (2.5) (Kennedy and Barry, 1974). The real part of X is the

damping term, which depends on Is, the steady state value of intensity:

Re(X) - E + (I ) 2.62 "r T

Although Is decreases with increasing c (see (2.2.b)), the overall damping still increases for

larger e. This trend is highlighted in the plot of Re(X) in Fig. 2.3.

The oscillation frequency of trajectories which spiral in toward the steady state may

be calculated from the imaginary part of X. The magnitude of the negative term under the

square root in (2.5) gives a good approximation for the frequency 0o:

[2eIs(I + 0 Is)+ 413 Gs 1, /2  2.7

We notice that E has a negligible influence on co, while the damping term (2.6) is

proportional to e. This leads to an intersection of the curves in Fig. 2.3 at a critical value of

c, above which no oscillations away from the steady state are sustained. This is confirmed

by the numerical time trace in Fig. 2.2(c), where e is larger than the critical value, and the

intensity asymptotically approaches steady state with no oscillations.
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(a) 70.12 e=1.e-5
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(c) 7=0.12 e=1.e-4

0.0 1.0 2.0

time (100 ap sec)

Fig. 2.2 Changes in Damping as a Function of c.
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Fig. 2.3 Oscillation Frequency (w) and Damping (Re(k)) as Functions of c.
For E > Ec the damping suppresses all oscillations.
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The transient oscilations shown in Fig. 2.2(b) correspond to spiralling trajectories

in the associated phase space. For e = 5.0 x 10-5 , one sees in Fig. 2.4 that a trajectory,

initiated near the unstable manifold of the trivial (Is = 0) equilibrium, does not return to the

expansive region of phase space. The existence of such an orbit, which spirals from the

unstable manifold of (2.2.a) to the interior equilibrium (2.2.b), demonstrates global

stability by the Poincard-Bendixson theorem. This is true because any candidate periodic

orbit would have to encircle the equilibrium and cross the spiral trajectory in finite time,

violating the theorem.
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Baer model -=0.12 =5.e-5

(a)

C -

0.00 0.12
G1

Baer model y-:0.12 v=5.e-5

(b)

0.014 0.016
G1

Fig. 2.4 Numerical Phase Portraits of the Single-Mode Baer Equations.
The intensity scale in (a) is enormous; the equilibrium point appears
close to the horizontal axis. (b) The trajectory does not return to the
shaded expansive region where tr(J1) > 0.
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Two-Mode Dynamics

Analysis

The study of the single-mode dynamics of an intracavity doubled laser is only a

small step on the way to understanding the irregular intensity output observed by Baer.

Ordinarily, one hopes to increase the laser output by allowing more than one longitudinal

mode to lase; Baer hypothesized that some nonlinear coupling between modes was

responsible for the large intensity fluctuations(Baer, 1986). A significant contribution of

Baer's report was the generalization of the single-mode equations (2.1) to account for

interactions between multiple longitudinal modes in the doubling process. To approach the

multimode dynamics from the simplest point of view, we begin with an analysis of the

two-mode case. The differential equations proposed by Baer (Baer, 1986) to model the

intensities Ij and gains Gj of a doubled laser oscillating with two longitudinal modes are:

mdI 11 (GI - a, - -11 2E12) 2.8.a
dt

Tfd G- -  Go - GI( 1 + Al 11 + 1312 12) 2.8.b
dt

'c-I2 - 12 (G 2 - (X2 - e 12 - 2E 11) 2.8.c
dt

¢fdG 2 -G2 - G 2 (I + 13212 + 132111) • 2.8.d
dt
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These equations are almost identical to the single mode relations, with the following

additional terms: (i) there is a separate small signal gain GI o and G20 for each mode;

(ii) the cross saturation parameters 312 and 321 quantify how the two modes "compete" for

the active medium (see discussion in Chapter I on spatial overlap); (iii) a new term also

appears in the intensity equations to account for a different way of generating the new

doubled frequency. The first doubling term, 112, describes losses in Ii due to strict

frequency doubling, or second harmonic generation (SHG), where two photons from the

same longitudinal mode contribute to produce higher frequency light. The second doubling

term, 2£II2, describes sum-frequency generation which also occurs in the doubling

crystal. In the sum-frequency process, two different modes each contribute one photon to

produce light at a frequency virtually indistinguishable from that made by SHG.

Baerjustifies his choice of the factor 2, in the second doubling term, by noting that

the sum-frequency output power is generally four times that produced by SHG

(Shen,1984). If the subsequent loss in the fundamental intensities, due to sum-frequency

generation, is shared equally, then the cross term 1112 appearing in each of the intensity

equations should include a factor of 2. However, we have shown this to be true only in

certain restrictive cases to be discussed in Chapter III (James, et al., 1990a). Nevertheless,

it is still useful to retain Baer's hypothesis in the following analysis, to develop an intuition

for the multimode dynamics of an intracavity doubled laser.

As in the single-mode case, the production of green light is treated as losses in the

differential equations for the intensities which oscillate at the fundamental frequency.

However, in the two-mode case, the total doubled intensity is now a sum of SHG

contributions and sum-frequency generation. To compare the time histories of the total

fundamental and doubled intensities (both measurable in the laboratory), the total doubled

intensity Id can be calculated by combining all the doubling loss terms:
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S= I++ eI+4 eI1I2. 2.9

The total fundamental intensity If is simply I, + 12.

Si .ilarly to what we found for the single-mode equations, the four-dimensional

phase space for the two-mode case also has a bounded rectangular absorbing set, formed

by the geometric cross product of the bounded rectangle U 1 for II and G1, and the

rectangle U2 for 12 and G2.

Steady State Analysis

In the two mode operation of the doubled Nd:YAG laser, Baer observed only

periodic pulsing of the two modes, and no stable steady state intensity was seen.

Consistent with Baer's observations, we next show that all steady state points prove to be

unstable for most

realistic parameter values.

Table 2. Parameter Values for the Two-Mode Baer Equations.

,= 0.5 x 10-9 sec cavity round trip time

f= 0.24 x 10-3 sec fluorescence time

a = a = a2 = 0.0 15 cavity losses

= 5.0 x 10-5  KTP coupling coefficient

j = G10= G20 = 0.12 pump parameter

01 = 132 = 1.0 self-saturation

13 = 1312 = 1321 = 0.666 cross-saturation
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The linearization in its general form is, at best, cumbcrsome to study analytically.

To simplify the analysis, we scale time tnew = t/tf, define t = V-jf, and choose symmetric

mode-dependent parameters. That is, we let a, = a2 = cc, Go = Go = y, P1 = 02 = 1, and

P12 = P. (The parameter values we use are close to those chosen by Baer, they are listed in

Table 2.) In this case we get:

di = 11(G1 -, a - cI1 - 2e12) 2.10.a
dG1

dG = Y " G 1 + I, + P 12)2.10.b

dIt2 - 12(G2 - a - £12 - 2eI ) 2.10.c
dt

dG2 y G2(1 + 12 + 0I11) 2.10.d
dt

We now examine four steady state points of these equations, characterized by

whether the steady state intensities are on or off:

A. 11>0, 12>0.

B. I1 =0, 12 =0.

C. 11>0, 12=0.

D. 11=0, 12>0.

Case A. Here we have both intensities on, and because of the symmetric form of

(2.10) we need to find an equilibrium point where both intensities have the same value Is
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and the gains are both equal to Gs. (See Appendix E for a discussion of the uniqueness of

this point.) We solve for Is and Gs in:

0 = Gs- a - 3 c Is

2.11
0 = y-Gs(1I + [I +1]Is)

and find that the explicit expressions for Is and Gs are very similar to the single-mode

solutions in (2.2.b). In particular,

IS = 7 a  + O(e) and Gs=a+O(e). 2.12
a(l+3)

We now prove that we can constrain the parameters in order to guarantee stability of this

equilibrium.

Propsition 2.1. If y > a and

£ < -1 (1 + [1 +[3]Is) =Is

then the equilibrium point in (2.12) is asymptotically stable.

Proof. The stability of the equilibrium is determined from the eigenvalues of the

Jacobian of (2.10) evaluated at the equilibrium:
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1 (Gs- a-G22 [I,+ Is]) 1I 2 I Is

i3T 0

-Gs -(IS + [0 IS + 1) - Gs 0

.12 c Is 0 1 (Gs - a - 2 e [Is + IS]) I Is
1C 'T T

- P Gs 0 - Gs - IS + P3 IS + 1)

.... 2.13

To calculate the eigenvalues of this matrix we first use a simple decoupling

transformation. This technique was suggested to us by Kurt Wiesenfeld who identified

some similarities between the matrix above and the linearization of systems of ordinary

differential equations describing the dynamics of Josephson junction arrays (see, e.g.

Aronson, et al. 1987). This technique also helps simplify many stability analyses in later

sections.

For the two mode equations, we let

A = 11+12 B = 01+G2

a = I1- 12 b = GI -G2 2.14

and

f = 1 +(l+0) IS,
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where the outlined variables are small perturbations away from the steady state point. Then

the transformed linearized system consists of two uncoupled pairs of equations:

d[ = F (L2.15.adtB -(I +13 Gs - fB

= 2.15.b
dtb -01- 3 Gs - f b

Since the matrices in (2.13) and (2.15) are related by a similarity transformation, their

eigenvalues are the same. Eigenvectors, if we want them, require a back transformation.

The eigenvalues of (2.15.a) are:

X1.2 = 1( +CS

2.16

± V(f + E -Is 4'A[(I+ P)G, + 3 f]

It is straightforward to show that these eigenvalues are complex. From (2.12) and

the parameters in Table 1, we see that Isn't is of order 1. This also implies that f = 0(1), so

in (2.16) the dominant term under the square root (with the factor of IsGs/'t) is negative.

Since the real part of the eigenvalues is always negative, a two dimensional manifold of the

phase space near this equilibrium resembles a stable spiral.

The eigenvalues of the second transformed matrix (2.15.b) are
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X.2= .2 (f, I)

2.17

2 ItI~

Reasoning as before, these eigenvalues are also complex, but the stability of the

equilibrium now depends on the parameter values. In fact, stability now requires

S< -(1 + [ + 3I) 2.18
is

For the parameter values in Table 1, this condition is approximately E < 3.0 x 10-6; note

this condition is not satisfied by the e value used by Baer.

The approximation for Is which we noted earlier now takes on much more

importance: Is =- (y - cx)/[a(l+3)]. Since we saw that a is the critical, or threshold, value

for y, this approximation for Is represents how far above threshold the laser is being

pumped. (In fact, in our integration programs, we simply define y as (1 +p) x, where p is

some percentage above threshold.) That means that the stability criterion in (2.18) relates

steady state stability to the pump strength (Is) and to the doubling efficiency (E) in a very

direct way. That is, a stronger pump implies that the equilibrium (with both intensities on,

for this case) is unstable for a larger range of E. This important relation between pump

strength and stability will also appear in our analyses of systems with more modes.

So we see that for e less than a critical value (which includes the case E = 0), the

eigenvalues in (2.17) have negative real parts and this equilibrium is asymptotically stable.

As c takes on larger values and fails the stability test in (2.18), the equilibrium acquires an
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GIi

LG2 = yI1+ /

G2 a X

Fig. 2.5 Phase Portrait of the Two-Mode Baer Equations. The phase space
is actually four-dimensional; the appropriate values of G2 in the fourth
dimension are noted near the steady state points. For small E, only the
interior steady state point is completely stable.
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unstable manifold of dimension 2. The resulting bifurcation is investigated in the next

section. For now, we depict the local phase portrait of this equilibrium in Fig. 2.5, where

we take E near zero to enforce (2.18).

Case B. This case is the trivial equilibrium where both intensities are zero, and

both gains are equal to the small signal gain, or pump parameter, y. From (2.10) we see

that these steady state values decouple the equations. The local phase space then must be a

cross product between the local two-dimensional phase portraits of the individual modes.

Recall from the single mode analysis (see Fig. 2.1) that the trivial equilibrium is a saddle

point, stable along the G-axis and strongly unstable in the I-direction. This implies that the

two-mode trivial equilibrium will have a two-dimensional stable manifold in the (GI,G 2)

plane, and should be strongly unstable in the positive directions of II and 12.

In fact the Jacobian (2.13), evaluated at this equilibrium, becomes

-a 0 0 0

-Y -1 -3v 0
2.19

0 0 0y-a

L0 - -1

When we perform the same transformation as (2.14), the transformed linearized system

becomes

] a 0 JAA = 2.20.a
-(1B+)T -
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= -d 2.20.b

b -( 13) Y b

We see immediately in these equations there are two eigenvalues equal to -1; from the

untransformed matrix in (2.19) the associated eigenvectors clearly point along the

respective G-axes. The other two eigenvalues are very large, O(1/,t), and have their largest

components in the respective I-axes. This simple analysis confirms that the local phase

space is a cross product of the two single-mode neighborhoods. The two-mode trivial

steady state point is sketched in Fig. 2.5 as a point on the GI-axis with arrows indicating

the unstable directions primarily along the I-axes.

Cases C and D. In these two cases, only one of the intensities is non-zero; since

the parameter values are symmetric, the two cases are equivalent. We take I1 > 0 and

12 =0 in this discussion. The steady state value for I1 is approximately Is - (y - a)/a, and

G = Gs = a. The steady state coordinates for the other mode are 12 = 0 and

G2 = y/(1+3Is). The Jacobian evaluated at this equilibrium is:

- C IjIri - 2E Ijr 0

- Gs -(1 + I) - 3Gs 0

0 0 (y- at - 2EI)/ 0 2.21

-L3y/(1+ 1 ) 0 -Y/(1 + 3 I) -(1 + 1I)

we see that the asymmetry in the steady state values prevents us from making the same

transformation of the linearized system as before (equations 2.14). However, we can gain

some understanding of the structure of the structure of the local phase space. We notice
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that if 12 = 0 in (2. 10.a and b), the two equations revert to their single-mode form. This

implies that the stable manifold for the two-mode equilibrium includes the entire first

quadrant of the (11,GI) plane. These two equations are also always independent of the

behavior of G2; the isolated non-zero value in the last column of the matrix in (2.21) gives

the negative eigenvalue, indicating that the G2-axis also belongs to the stable manifold of

this equilibrium. The 12-direction is strongly unstable, as evidenced by the third column of

(2.21), where the third term (y - a - 2sls)/'t dominates. If we take a vector with a large 12-

component of the form [ E , E l, C ]T, and premultiply it by the Jacobian (2.21), we

produce a vector of the form [ O(E) , O(e), (y - a - 2eIs)/T , O(E) ]. The approximate

eigenvalue and eigenvector confirm the strong instability in the 12-direction. Physically,

this means that a cavity which is configured to allow two oscillating modes will amplify

any small-amplitude signal of either mode to switch it on.

For this case, the local phase space looks like the cross product of two different

single-mode neighborhoods: the mode-I neighborhood is a stable spiral; the mode-2

contribution is the saddle associated with the trivial single-mode equilibrium. In a three-

dimensional projection (without G2), this structure is the familiar Shil'nikov saddle-focus

(Shil'nikov, 1965) sketched in Fig. 2.6; the fourth dimension is the stable G2-direction.

The two local phase portraits for Cases C and D are included in the two-mode phase

diagram in Fig. 2.5. The saddle-focus analysis performed by Shil'nikov (Shil'nikov,

1965-1970) does not apply to our system since there are apparently no homoclinic orbits or

cycles which return to the two saddle-focus points. However, we can use numerical

integrations to infer how the stable and unstable manifolds of the four equilibria interact and

allow periodic motions to occur. (We also note that a modified Shil'nikov approach, using

homoclinic cycles instead of homoclinic orbits, may apply to our problem.)
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Fig. 2.6 Generic Structure of the Shil'nikov Saddle-Focus.

Numerical Results

Numerical integration of (2.10) with c > c and with many different initial

conditions, reveals pulsing behavior like that observed by Baer (Baer, 1986). Figure 2.7

shows a portion of the numeric integration of such a periodic trajectory. Baer uses a close-

up sketch like that in Fig. 2.7(b) to examine time segments of the numerical solution and

point out several important features of (2.10). The time sequence can be described by four

distinct parts:

(1) I1 is essentially zero, while 12 is approximately equal to its single-mode

equilibrium value. GI increases due to external pumping (small signal gain) until it

overcomes the losses for mode 1.
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Baer model -y= 0.12

C

0.0 LO LO0

0.0 LO LO0

time (100 microsec)

Fig. 2.7 Periodic Numerical Results for the Two-Mode Equations.
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(2) With a positive net gain, I1 now switches on. The intensity spike arises due to

the fast time scale of the intensity equations. The sharp increase in intensity saturates the

available gain, so GI decreases; the sum-frequency losses in mode 2 cause 12 to switch off.

(3) I1 and GI relax to "quasi-steady-state" values, as if only one mode were active

in the cavity. 12 is essentially zero; G2 is increasing (like GI did in time segment (1)).

(4) G2 surpasses the mode 2 losses, 12 switches on and the subsequent sum-

frequency losses cause I1 to shut down. The spiking intensity in 12 also causes a

substantial decrease in the available gain. The sequence begins again.

We notice that when one intensity is very small, the system behaves like the single-

mode set of equations (2.1). Another essential feature of the dynmcs is the role of the

gain variables in determining when the intensities turn on and off. When G1, for example,

rises above a threshold value (determined by the amount of losses experienced by II) then

I1 switches on, causing 12 in turn to switch off. So, except for their transient spiking, the

intensity values, either on or off, are determined by the hysteretic cycling of the respective

gain variables. This role of the gains will be important in the three mode case later on.

Now we examine the long-term periodic motion in Fig. 2.7(a). All initial

conditions we tested led to periodic pulsing where the intensities switch on and off. The

time scales of these pulses will later help us to refine parameter values to match

experimental output more closely. In the numerical integration, we expect long term

unstable behavior of some kind, because the equilibria we examined in the linearized

analysis were all unstable when E > Cc. Within each pulse, we see the intensity behave as if

it were the only mode lasing. These observations allow us to give a reasonable sketch of
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the phase portrait for the two mode laser. The phase space in Fig. 2.8 actually lies in four

dimensions, but we know that when one intensity is very small, the local phase portrait is

just like the single-mode case. For this reason the phase portrait can be sketched as two

thin-walled slabs, each reproducing the single-mode phase diagram. The non-zero

thickness of the 11-G1 slab, for instance, represents the portion of phase space where 12 is

small, but non-zero. When one quasi-steady state intensity switches off, there is a quick

transition from one spiral to the other, and the other intensity will oscillate toward a quasi-

steady state.

The locally single-mode behavior of the two-mode solutions may also be seen from

the viewpoint of perturbation theory as follows. Suppose that the (II,GI) slab has its

thickness defined for 0 <12 < e, and G2 < a. We can look at the dynamics of II and G1 on

this slab in terms of a small perturbation away from the single-mode equations. First, we

note that the differential equations (2.10.a and b) for II and G1 are independent of G2.

Next we observe that, for the assumed restrictions on 12 and G2 , the intensity 12

monotonically decreases for increasing time. Thus, we do not have the difficulty of a

perturbation with oscillations. Since 12 monotonically decreases between its extreme values

in the slab, we only need to examine the perturbation of the first mode's equations at the

two extremes of 12=0 and 12=C.

When 12=0, equations (2. lO.a and b) return to the precise form of the single-mode

equations we analyzed in the previous section. We know that, as long as y > aX, the

equilibrium in the interior of the (locally two dimensional) phase space is globally

attractive.



55

2

Fig. 2.8 Phase Portrait of the Periodic Flow in the Two-Mode Equations. The
spiral on each individual slab corresponds to one mode approaching its
quasi-steady-state while the other intensity is negligible. Periodic
variations in GI and G2 cause the trajectory to jump from one slab to
the other.
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At the other extreme we have 12=e. Direct substitution of this value into (2.10)

produces:

dI II (GI - [a+2, 2] -Ell) 2.22.a

d - I-(GI ([l +2 2e] +1i).22b
dt

dG1  y- GI ([I+ Pe] + 11) 2.22.b

These equations may be rescaled to conform to the structure we have used so far for the

single-mode equations. Define q = I + 13F and let

=qt T=qt Ii = q

q aa + E=Y

Then the rescaled equations for II and G1 are:

.4 = I, (G, - -1I1)

2.23
dG _ y - G1 (1+ II)

dt

These equations are basically the same as when we have 12--0, except that almost all the

variables have a small change of order c. Clearly, nothing in the single-mode analysis is

changed for these equations, so the global attractiveness of the interior equilibrium is

maintained; the only difference is that the equilibrium itself is shifted by O(E).



57

Under the restriction that 12 remain small, the structure of the local flow in the

(11,G1) slab does not change for any 12 < e. This analysis confirms the thin-walled

structure of the phase space in the case where the two-mode flow is periodic (Fig. 2.8).

The sequence of numerical results in Fig. 2.9 depicts the bifurcation which leads

from stable steady state intensity output to the periodic pulses observed by Baer, as c

increases through the stability threshold cc in (2.18). For a pump strength of 8 times

threshold, Fig. 2.9(a) shows the damping of intensity oscillations as the trajectory

converges to an equilibrium, for small E. The stability condition is no longer satisfied in

Fig. 2.9(b), and a periodic solution results. We note that the periodic oscillations do not

deviate far from the equilibrium values of Fig. 2.9(a); this periodic solution lies near the

now unstable steady state point. As e increases in Figs. 2.9(c)-(e), the periodic flow

departs further and further from the unstable steady state, such that, for larger E, the

trajectory has either I1 or 12 essentially zero for most of the time. In these cases, the

periodic trajectory spends most of its time flattened against one of the phase space slabs

sketched in Fig. 2.8.

Finally, Figs. 2.9 through 2.11 illustrate how the character of the pulses change

with respect to different parameters. As in the one-mode equations, an increase in E serves

to dampen oscillations within each pulse (Fig. 2.9). Increases in the pumping, y/oz,

sharpen the initial spike as each intensity turns on, and raises the quasi-steady-state

intensity plateau (Fig. 2.10). In Fig. 2.11, we see how an increase in the cross-saturation

J3 decreases the rate of intensity switching and increases the duration of each pulse.
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Fig. 2.9 Bifurcation from Stable Steady State to Periodic Orbit. The

control parameter is E.
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Fig. 2.10 Changes in Pulse Shape as a Function of Pump Strength.
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Fig. 2.11 Changes in Pulse Shape as a Function of Cross-Saturation [3.
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Three-Mode Dynamics

In the experiments performed by Baer, three or more modes were necessary to

generate irregular intensity output. In the numerical integration of his multimode model, he

also found that one or two modes could only produce steady or periodic motion, while the

intensity output for three or more modes displayed large fluctuations in amplitude.

Since the complexity of the equations increases greatly with each additional mode,

the analysis which follows is primarily a discussion of the general behavior we observe in

numerical experiments with three modes; the numerical results indicate an intermittency

route to chaos which we observed by varying the cross saturation parameters.

Analysis

To extend the two-mode equations to an arbitrary number of modes, Baer assumes

that each pairwise coupling between modes j and k takes the same form, 2 EIjlk. The

nonlinear differential equations which model the dynamics of N longitudinal modes in the

intracavity doubled laser then become:

d11  N

dt = (GJ-, J-EII-2c Ik)Ij
k=1
k*j 2.24

TfdGj -Gj - Gj(I + Pjlj + I N jklk
d tk =

k=l
k~tj

j = 1,2.....N.
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In our analysis, we assume symmetric parameters, that is, all mode-dependent parameters

are set equal: aj = a = 0.015; Gjo =y= 0.12; Pj = 1.0; A3jk = A e [0,1]. (Again the

intensities are scaled to be dimensionless, so all the variables except for time variables are

dimensionless.) This symmetry assumption yields no loss in generality, since the

numerical results show no different qualitative behavior for asymmetric parameter values.

All the parameter values are listed in Table 3.

Table 3. Parameter Values for the Three-Mode Baer Equations.

Three or More Modes
(symmetric case)

=tc 0.5 x 10-9 sec

tf 0.2 4 x 10-3 sec

a= 0.015

= 5.0 x 10-5

= 0.12

lE [0,1]

Again, the total intensity If at the fundamental wavelength is expressed as the sum

I1 + 12 + 13..., and the total intracavity intensity Id at !he second harmonic wavelength is the

combined effect of frequency doubling and sum frequency generation:
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N N

Id= I -Ij2. 2e . Ij k 2.25
j=-- j,k=l

j*k

In our study of the three-mode equations, we first look for an equilibrium which

has all intensities positive and equal (Is), and all gains equal (Gs). Such an equilibrium

requires:

Gs - cc - 3 E Is = 0 2.26.a

and

y' - Gs (I + [1I + 213] Is )=0. 2.26.b

The uniqueness of this equilibrium (where all intensities are positive, and e is small) is

discussed in Appendix E. There is a simple condition for the stability of this equilibrium,

as in the two-mode case.

Protosition 2.2. Let N=3 in (2.24) and let all parameters take on common values,

i.e. let aj = a, GjO= ,3jk = 13, and bj = l. If y > a and

£< fsrIs Gs

then the equilibrium determined by (2.26) is asymptotically stable.

Erof. The proof proceeds as that of Proposition 2.1. We linearize the equations

about the equilibrium given by (2.26), and apply a decoupling transformation to the

linearized variables. This time, the transformation is
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A= I +12 +1 3  B=G1 +G 2 +G3

al =311 -A bj =30G -B 2.27

a2=312 -A b2 = 3 G2 - B

This produces three uncoupled pairs of linear equations:

-Gs1+2I ) -(1+Is[1 +213]) B

2.28

dt bj G s I(01+ Is [l +2 0 ) bj j 1 2
a, = a2

For both matrices above, we have one negative off-diagonal entry, the positive off-diagonal

term is of order 106, and the other terms are of order 1. All the eigenvalues, then, are

complex. For the first matrix, the real part of the eigenvalues is:

Re(X) = [- 3 E - (1+Is [1 +21]) 2.29

which is always negative. For the second matrix, the real part of the eigenvalues is:

Re(k) = I [E- (l+I I +2Is]. 2.30
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In (2.30), we have Re(X) < 0 if and only if

< - 2.31
Is Gs

where we have used the relationship between Is and Gs given by (2.26). This completes

the proof. El

We can rewrite (2.31) to see the implications of the stability criterion for the

experiment. We define p as the percentage above threshold at which the laser is pumped,

so that

(1 + p) = (Y - C) 2.32

and we have the following approximations for Is and Gs:

s - ( P + O(E) Gs = a+e. 2.33
(1 + 23)

We substitute (2.33) in (2.31) to get the stability condition

e < (1 + 23) (1 + p) 2.34
p

In this form, it is evident that stronger pumping tends to lower the stability threshold for E.

Increases in cross-saturation (3) have the same effect. Raising the stability threshold in
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(2.34) by increasing t (which equals 't/tf) would require a longer cavity (increasing tc) or

a different active medium with a shorter upper state lifetime (lowering tf).

There are also three steady state points where two intensities are on and the third is

off. The local flow near such points resembles that of the two mode case: for instance, if

13--0, then (2.24) decouples into four equations which describe the two-mode dynamics,

and two differential equations for 13 and G3. The unstable manifolds of steady state points

in these regions of the phase space are found (by transformations similar to (2.27)) to have

at least one dimension, in the direction of the third intensity; all numerical trajectories

generated long-time solutions where either all three modes lased or all three modes turned

off.

As in the two-mode equations, there are interesting steady state points where only

one intensity is positive and the other two are zero. There are three such points, and the

numerical trajectories spend most of their time near these three points. Again, for 'large'

(e not satisfying the stability criterion of Proposition 2.2) the local flow around these points

resembles the single-mode case, with transient oscillations about a quasi-steady state value

of intensity and gain. The periodic pulsing observed for three modes that sequentially

switch on and off suggests the phase portrait of Fig. 2.12. When one intensity pulses on,

it behaves locally as if the other two intensities did not exist, until another intensity kicks on

(as its gain overcomes its losses) and then moves quickly to one of the other thin walls of

the phase space. The perturbation analysis we carried out for the thin walls of the two-

mode equations, to confirm the locally planar structure of the flow, applies here as well.

Both laboratory and numerical experiments indicate that three modes are the

minimum necessary to generate chaotic behavior. However, the three-mode model

includes six differential equations. Since we know from the Poincar6-Bendixson theorem
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Fig. 2.12 Phase Portrait for Periodic Flow in the Three-Mode Equations.
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that three (autonomous) ordinary differential equations is the minimum necessary to

generate chaos, we first look for some source of lowe~r dimensional behavior. It appears

that the numerical intensity output and its fast Fourier transform are most helpful for

visually identifying irregular output as periodic or aperiodic. On the other hand, the time

history of the gain variables provides the most information on the transient tendencies of

the flow, and on how the transition to chaos takes place. Recall from Fig. 2.7 how Gj

deter ,ines the dynamics of its associated intensity by crossing a threshold which is set by

the mode-j losses. This is a consequence of the large difference in time scales in the

intensity and gain equations, and permits the gain variables to contain all the pertinent

information about non-steady state behavior in the model. For this reason, the numerical

analysis in the next section relies primarily on output of the gains.

Numerical Results

Baer found both periodic and chaotic intensity output in numerical integration of his

three-mode equations (Baer, 1986). His preliminary findings suggest that the character of

the total intensity output depends on the symmetry of the mode-dependent gain and loss

parameters.

We look for a single parameter to use as a control variable to observe bifurcations

from periodicity to chaos. The unstable behavior in (2.24) is deterministic in origin (there

are no random noise terms), and is due to the mode interactions. This is apparent because,

without the Ijlik terms in the equations, the intensities asymptotically approach their

respective stable steady states. There are two candidate parameters which influence mode

coupling: E and P. We assume that the nonlinear coupling c is fixed by the properties of the

KTP doubling crystal, so we choose 3 as the control parameter. Recall that 3 is the cross
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saturation parameter which represents spatial overlap, or how the modes compete for the

zvailable gain along the length of the YAG crystal. While 3 is not straightforward to

measure experimentally, it can be varied by changing the placement of the YAG crystal in

the cavity (see Fig. 1.6).

The cross saturation P can theoretically assume values between 0 ard 2 (Sicgrnan,

1986). If 03 is very small, the modes are essentially independent of each other and there is

no appreciable competition for the gain. Multiple modes may then coexist in steady state

operation. If the spatial overlap of the modes is significant, 13 may be sizeable. In fact, if

0 > 1, the competition for gain is so great that only one of the modes can oscillate (see

Appendix E). Baer used J3 = 0.666 in his calculations and obtained irregular amplitude

fluctuations.

In our computations (James, et al., 1990a) we limit the model to three active

modes, which is sufficient for chaotic dynamics to occur. (For pump power levels below 3

or 4 times the threshold power, we often see the laser oscillate in only three longitudinal

modes, so this is a reasonable restriction.) The behavior of the total fundamental intensity

If and the total doubled intensity Id can both display the experimentally observed irregular

fluctuations. Again we use the symmetric parameter values in Table 3. With these

parameters, and 0 < 03 < 0.2910, the total intensity is periodic. The individual mod4o

intensities cycle on and off as shown in Fig. 2.13(a); we call this sequence of alternating

peak intensities, I1-12-13-1-..., a "right waltz". The corresponding time history of total

intensities is plotted in Fig. 2.13(b) to confirm that the peaks do not average out as they

combine in the total intensities. This stable periodic solution coexists in phase space with

an analogous "left waltz" whose intensity peaks alternate in the reverse order, 13-12-11-13-...

For these values of 03, the two waltzes appear to be the only stable solutions, and initial

conditions dictate which waltz is selected.
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Fig. 2.13 Periodic Numerical Results for the Three-Mode Equations. The
regular pattern of intensity peaks in (a) is a "right waltz", the
corresponding output in (b) is for the total fundamental intensity If and
the doubled intensity Id.
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We take 0 < 3 < 0.2910 and look in the portion of the phase space defined by G1,

G2 and G3 to find evidence of a route to chaos. We define the Poincar map M on the

transversal surface Gl=0.017 where the points in the flow have the coordinate G1=0.017

and a negative time derivative. (The value of G1 which defines the plane must be hand-

selected after observing the minimum and maximum excursions for GI from a sample of

the numerical results.) For a (six-dimensional) point x on this surface, M(x) is found by

continuing the numerical integration of the flow until the next time that G1 = 0.017 and GI

is decreasing. M maps a five component vector (11,12,G2,13,G3) to another five-vector.

However, the relevant dynamics can all be seen in the (G2,G3) plane. This two-

dimensional projection of the Poincar6 map is pictured in Fig. 2.14. (The discrete

sequence of 03 values was hand-selected to illustrate changes in the flow structure near the

bifurcation; the approximate bifurcation point was found with a binary search.)

The plot in Fig. 2.14(a) is for 1200 iterations of M when 03 = 0.2910. First, we

notice the structure of the two S-shaped curves, symmetric across the line G2 = G3. Each

periodic waltz appears in the Poincard map as a fixed point, so each curve highlights the

stable and unstable manifolds of these fixed points. The form of (2.24) requires symmetry

in the flow on either side of the hyperplane G2 = G3, so all the structure above the line

must be mirrored below the line. The result of reflecting all the points in Fig. 2.14(a) to the

region below G2 = G3 appears in Fig. 2.14(b). In this way, the 1200 points yield twice

the resolution of the map.

We examine the 'flow' of these Poincar6 maps more closely in Fig. 2.15(a). The

fixed point that represents the left waltz has been reflected onto the point that represents the

right waltz. This point C corresponds to a stable periodic orbit in phase space. For

0 < 13 < 0.2910, all numerical trajectories were attracted to one of the waltzes for all

initial conditions we attempted.
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Fig. 2.14 Numerical Poincart Maps for the Three-Mode Equations. The map
in (a) highlights the flow symmetry in phase space. The points which
correspond to each waltz represent periodic orbits in the full phase
space.The second map (b) contains the same points as (a), but reflected
below the line of symmetry, G2 = G3.



73

=02900 02c Af905

0 S S,

o0o. _. 0 =ozo

Lrr ~0

0.01635 0.01670 0.01635 0.01670

G2  G2

.- _ (0 l ) 0 2 9 1 0 ,

C

0 =0.2910

LI 2i-f".Peod,c tna

0.01635 0.01670 I
G2 

.I

A 0 29i0

Fig. 2.15 Transition from Periodicity to Intermittency. The first three maps
show the reflected Poincari Map in a neighborhood of the fixed point C.

The inverse pitchfork bifurcation that results from an increase in 03 is
shown in (d). Solid lines indicate stable points; dashes indicate
instability. We note that the T-periodic point C is also 2T-periodic.
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We can deduce important qualitative features of the flow dynamics from simple

observations of how M maps the points on the curve which passes through C. First,

points on the curve to one side of C are mapped to the opposite side of C. The point S 1,

for instance, is mapped to S2. This indicates the existence of a Floquet multiplier (of the

Jacobian of the map, evaluated at C) with a negative real part. Such a multiplier will

eventually signal the type of intermittency in the system. Next, all the points on the curve

between SI and S2 are mapped toward C, as indicated by the arrows. (This is a map, not a

continuous flow, so the arrows indicate only tendencies of the map.) The negative

multiplier still causes points to flip-flop across C, but along this arc they get closer to C at

each iteration. Finally, the points outside the SI-S2 arc are repelled from S1 and S2 until

they leave the curve. After falling off the curve, a point will either be mapped towards the

opposite waltz or will return to a neighborhood of the SI-s 2 arc.

The character of the global dynamics in Fig. 2.15(a) with J3 = 0.2900 is now more

clear. The curve through C is strongly attractive in the transverse direction. The point C is

a stable hyperbolic fixed point of M, and corresponds to a periodic solution of the flow, of

some period T which depends only weakly on 3. The points SI and S2 map onto each

other under M, and correspond to an unstable periodic solution of period 2T. There are

regions of the phase space that allow passage from the vicinity of one waltz to the other,

but once a trajectory approaches the SI -S2 arc of one of the waltzes, the trajectory will

converge to that particular periodic orbit. In the unreflected G2 -G3 plane, we then have

two stable T-periodic solutions and two unstable 2T-periodic solutions.

In Fig. 2.15(b), with 0 = 0.2905, the stable and unstable manifolds of C retain the

same structure. The point C is completely stable, while SI and S2 are saddle points in the

plane. However, for this increased value of 3, the unstable 2T-periodic solution indicated

by S! and S2 lies closer to C. In Fig. 2.15(c), 13 = 0.2910, and the points S1 and S2 have



75

collapsed onto C, making it a saddle point. As 3 increases through 0.2910 we get the

inverse pitchfork bifurcation sketched in Fig. 2.15(d). The transfer of instability at the

critical value (P about = 0.29 10) renders the T-periodic solution unstable and provides the

mechanism for intermittency (see Appendix C for an overview of intermittency).

The laminar or regular portion of the intermittent flow appears for solutions which

pass through the neighborhood of C (Fig. 2.15(c)). This point is still strongly attractive in

the transverse direction. Moreover, the periodic orbit is just barely unstable for 3 = 0.3, so

points near C are mapped away very slowly. This implies that initial conditions close to C

may appear T-periodic (or even 2T-periodic) for a long time. Such flow constitutes the

laminar portion of the intermittent behavior.

Turbulent, or intermittently chaotic, flow appears eventually because the instability

of C forces points away from it, and all trajectories must proceed off the end of the L1 -L2

curve in Fig. 2.15(c). Once off the curve, a trajectory wanders about in a fairly thin

attractor in the phase space until it approaches a neighborhood of either waltz. The

trajectory then reenters the laminar region of phase space. The typical time history in

Fig. 2.16 clearly displays the laminar and turbulent behaviors in the total fundamental

intensity.

On the way to characterizing the intermittency, we have already observed the

inverse pitchfork bifurcation which suggests that the primary Floquet multiplier passes

through -1. We confirmed this analytically by calculating the eigenvalues of an

approximation to the Jacobian of M, in the neighborhood of C. We denote the equilibrium

C as the vector c = (cl,c2,c3,C4,c 5) and the unit basis vectors as Fi, i = 1,2,3,4,5. Next we
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Fig. 2.16 Intermittency in the Total Fundamental Intensity for Three Modes. The
numerical time trace displays periods of laminar and turbulent behavior.
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define small displacement vectors hi = hi ei, where the scalar quantity hi = 0.001ci. We

then formulate a standard approximation to the Jacobian by:

J(c) = [M(c)-M(c-hl) M(c)- -hs)] 2.
hl ' h5 .2.35

This approximation requires J to be nonsingular at c, which is true except for P equal to its

critical bifurcation value, slightly less than 0.2910.

It is straightforward to find approximate coordinates of c when 13 < 0.2910, where

c is stable. In such a case, one integrates numerically until the trajectory converges to a

small neighborhood of the periodic orbit. However, for values of 13 greater than 0.2910, c

is unstable and one must find this point another way; we apply the technique of homotopic

continuation (Male and Steinberg, 1988; Keller, 1977). In the former reference, Hale and

Sternberg use this method to generate initial conditions near unstable limit cycles in order to

calculate numerical trajectories along unstable manifolds. In our case, we need to identify

the unstable point in the Poincard section in order to approximate the Jacobian at that point.

We use the Poincard map M and define a function F(x) = x - M(x). Even though c

is unstable, it is still a zero of F, and we use a discrete Newton's method to find this zero.

We are able solve for these unstable points for values of 13 up to 0.50.

We plot the eigenvalues of several approximations to J for 13 - 0.3 in Fig. 2.17.

The periodic point loses its stability when 13 0.2910 and the principal eigenvalue of J

decreases through -1. Since the other eigenvalues remain fairly constant through this range

of 13, this clearly characterizes the loss of stability as type III intermittency (Berge, et al.,

1984). Type III intermittency is characterized by: (i) a loss of stability when the principal

eigenvalue of J decreases through -1; (ii) a distribution of the durations of laminar
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Fig. 2.17 Changes in the Eigenvalues of J as a Function of Cross-Saturation 13.
The decrease in the principal eigenvalue (denoted by *) through -1
indicates the transfer of stability leading to type m intermittency. All
other eigenvalues remain essentially constant. Eigenvalues are calculated
for 13 = 0.25, 0.28, 0.29, 0.30, and 0.40, and are real for P3 in this range.
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Fig. 2.18 Local Cubic Structure of Peak-to-Peak Return Times. For
= 0.29201, these are 1000 consecutive peak-to-peak times t(i)

of the total fundamental intensity. The plotted cubic is
0.03(t - 5.9)3 + l.l(t - 5.9) + 5.9.



80

flow regions which has an infinitely long tail; (iii) a locally cubic form for the second return

map of peak-to-peak times (for our case, we observe peaks in the numerical intensity

output ). We now examine evidence of the latter two characteristics of type m]
intermittency (see Appendix C for more details).

Evidence of type III behavior appears in the statistics ot the time spacing between

peaks in the total intensity. We begin with a long nimerical trajectory fnr the example

5 = 0.29201 (part of which is shown in Fig. 2.16) and create a sequence (t 1 , t2, t3,...} of

1000 peak-to-peak times. In Fig. 2.18 we plot the second return times for this sequence,

i.e. t(i+2) versus t(i). The resulting figure displays the locally cubic form which is typical

of the generic return map that generates type [] intermittency (Pomeau and Manneville,

1980; Appendix C).

The type of intermittency is also evident in the distribution of the durations of

laminar flow in a single trajectory. Pomeau and Manneville indicate the approximate

distribution which is characteristic of this type of intermittency (Pomeau and Manneville,

1980). We define laminar behavior in our numerical trajectory as flow whose intersection

with the plane G1 = 0.17 lies on the L1-L2 curve in Fig. 2.15(c). Since the time of return

to the plane remains nearly constant for points near C, we approximate the duration of

laminar flow by counting the number of consecutive points which stay on the curve. The

distribution of this count in Fig. 2.19 conforms to the model distribution described by

Pomeau and Manneville. The long tail in this histogram is weighted (in the limit of infinite

time) such that the distribution is not normalizable. A meaningful characteriztic thme scale,

then, is an average of the inverse of the laminar flow duration. We find the period of the

Poincard map in the laminar region to be approximately 18 gasec. We then define the time
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Fig. 2.19 Distribution of the Durations of Laminar Behavior. The relative
occurrence is calculated with respect to 410 laminar regions in
a single trajectory.
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duration of laminar flow tj = (18 gsec) x (n: the number of consecutive points on L1-L2)

and calculate the average <l/ti> = 1/70 jisec-1 .

The transition from intermittency to 'complete' chaos, for larger values of 3, is

difficult to detect numerically. The LI-L2 curve in Fig. 2.15(c) is an unstable manifold of

C, and flow on that curve eventually returns to a neighborhood of C's stable manifold.

However, the thinness of the attractor around Ll-L2 obscures the trajectories returning to

C. We conjecture that, at some value of P3 between 0.4 and 0.6, the unstable manifold

becomes tangent to the stable manifold. The complications in the flow contingent with the

creation of such a tangency are sufficient to produce chaos (Chow and Hale, 1982; Peitgen,

1982).

When 0.4 < 3 < 0.96, the flow is chaotic on a strange attractor like the one depicted

in Fig. 2.20(a). The chaotic intensity output for 03 = 0.60, the approximate experimental

value used by Baer, is shown in Fig. 2.20(b). Another transition occurs for 1 between

0.96 and 0.98. We observe an inverse cascade which stabilizes the flow, and for 1 > 0.98

the only allowed solutions are those for which a single intensity is stable and nonzero,

while the other two intensities are forced to zero. This behavior persists for values of 03 up

to 2.0. Thus, the range of 1 in which modes may coexist is from 0 to i; one way to obtain

single-mode laser operation is to increase P3 which increases the competition between

modes.

For all the cases we considered, different initial conditions made no difference in

the character of the flow. That is, we found no instances of stable periodic orbits

coexisting with locally stable steady state points, or with small regions of phase space with

strange attractors. However, the coexistence of two periodic solutions (the left and right

waltz) in phase space do make the choice of initial conditions more important. The shape

of the basins of attraction for each waltz, for example, remains an open question.
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Fig. 2.20 Chaotic Numerical Trajectory for Three Modes. The chaotic flow
on the Poincar6 map in (a) corresponds to the total fundamental
intensity output in (b).
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The analysis of Baez's rate equation model for intracavity frequency doubling has

allowed us to develop a better understanding of the phase space dynamics. A laser

oscillating with a single-mode can only proceed to an asymptotically stable steady state. A

two-mode laser can operate in steady state, with a doubling crystal in the cavity, as long as

the doubling efficiency (quantified by e) is small. For more efficient doubling, the two

modes pulse on and off periodically, with each pulse resembling the single-mode behavior

over short times. No chaos is observed in a two-mode intracavity doubled Nd:YAG laser,

but the nonlinear coupling in the doubling process is clearly responsible for the instablility

of steady state solutions to the rate equations. Using Baer's extension of the rate equations

to multiple longitudinal modes, we showed that the three-mode case displays the complete

range of behavior from steady state intensity output, to periodic pulses, to intermittency and

chaos. We proved explicit stability conditions on the nonlinear coupling parameter e for the

two-mode and three-mode cases. Finally, we found an intermittent route to chaos, by

varying the cross-saturation parameters which affect how the modes compete for the

available gain medium.

The discovery of intermittency in the model for the intracavity doubled Nd:YAG

laser holds a special significance. There are countless examples of chaotic dynamics

exhibited in laser systems (see the References on "Experiments Displaying Intermittency"

and "Chaos in Lasers"), but there are very few instances of chaotic phenomena reported for

linear laser cavities (as opposed to ring lasers) with only passive optical elements. Another

similar laser which has demonstrated chaotic dynamics is the laser cavity with a saturable

absorber (see the References on "Three-Level Lasers" and "Lasers with Saturable

Absorbers"). Virtually all other chaotic lasers either include an artificial modulation of the
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pump source or intracavity elements, or require additional feedback loops outside the cavity

to generate a destabilizing nonlinear effect (see References of "Modulated Parameters"). In

the next chapter we portray the intracavity doubled Nd:YAG laser as a paradigm for the

study of nonlinear dynamics in lasers.
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CHAPTER III

A NEW MODEL FOR THE DOUBLING PROCESS

Ideally, the more we understand the source of chaos through a theoretical model,

the better we can control the stability of the experimental system. M. Oka and S. Kubota

hypothesize that the instabilities in an intracavity doubled YAG laser are due to interactions

among longitudinal modes with different spatial polarizations (Oka and Kubota, 1988).

They eliminate the chaotic fluctuations, in a laser very similar to the one studied by Baer,

by inserting a quarter wave plate (QWP) in the cavity, rotated at a 45 degree angle with

respect to the KTP crystal fast axis.

Furthermore, they present theoretical and experimental evidence of the crucial role

of polarization in the dynamics of intracavity frequency doubling. In particular, the KTP

crystal is cut to maximize the doubling process by ta .- ig -Jvantage of the KTP's

birefringence (Fan, et al., 1987; Ito, et al., 1975; Yao an, r:ahlen, 1984); Oka and Kubota

report that the intensity output from an intracavity doubled Nd:YAG laser is polarized in

two orthogonal directions. Their observations of the quarter wave plate's influence on the

intensity output make it clear that any reasonable model of intracavity doubling must

account for the birefringence of the cavity elements.

Oka and Kubota also outline the initial steps of an analysis technique which we find

essential for modelling the doubling process correctly. They use the Jones matrix
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representations (see Appendix D) of the KTP crystal and QWP to calculate the green

production by two modes lasing in orthogonal polarization directions.

In the first section of this chapter, we complete the work begun by Oka and Kubota

and develop a general model of intracavity doubling for a Class B laser wi.h any number of

birefringent elements and without reference to a specific cavity configuration. We account

for the frequency doubling of modes which lase in the same polarization direction, as well

as in orthogonal polarization directions. Our analysis is the first to include the possibility

of birefringence in the YAG crystal. We also establish the crucial connection between the

theoretical second-harmonic loss terms and the multimode rate equations. In our new rate

equations, the important elements of the doubling process are reduced to two parameters.

The analysis section includes the proof of stability criteria, for steady state solutions to

those equations, which successfully predict simple ways to eliminate the chaotic

fluctuations from the total intensity output. Then we apply our general results to three

specific laser cavities with and without quarter wave plates. Finally, our numerical results

generate approximate bifurcation diagrams for two particular alignments of the polarized

longitudinal modes, and we present several interesting comparisons of numerical and

experimental data.

Our first goal in this section is to derive analytic expressions which describe how

electric fields, with frequencies near the YAG fundamental frequency, combine to produce

light at the doubled frequency. We will then show how these expressions alter the rate

equations proposed in (Baer, 1986). We begin with the following assumptions:



88

(i) Each longitudinal mode is a time-dependent electric field (E-field) whose

frequency is one of the frequencies allowed by the standing wave approximation. (The

intensity of each mode is the squared magnitude of its E-field.)

(ii) Light propagates in the cavity as a plane wave, along the direction of the

cavity's optical axis (see Fig. 1.4).

(iii) The laser beam cross-section is constant along the length of the cavity;

transverse mode structure does not affect the dynamics of the doubling process.

(iv) The only optical elements present in the cavity are birefringent materials,

and each element has orthogonal fast and slow axes of propagation for the electric field.

(v) Reflection at the cavity mirrors has no effect on the polarization state of an

E-field.

Under the above assumptions, we can define a coordinate system in the plane of the

propagating light, and define a complex E-field with two time-dependent coordinates. Each

coordinate includes a magnitude and phase. We can describe the propagation of this field

through the cavity by multiplication with 2-by-2 matrices (Hecht and Zajac, 1979; Oka and

Kubota, 1988; Appendix D). Assumptions (i)-(v) also guarantee that the round trip matrix,

which results from combining only passive birefringent optical components, has a special

structure which allows us to generalize the analysis.

Specifically, the round trip matrix is produced by multiplying only two types of

matrices. The first matrix C(8) describes passage through a birefringent material which

induces a relative phase delay 8, and is diagonal:

C(8) =[ei8/2  0 . 3.10 e-i8/2.
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The other type of matrix R(4) accounts for the relative angular positions of the fast axes of

two adjacent optical elements (see fig. 3.1):

F cos(p  -sin 4p 3.2[ sing) cosqI .

Both matrices belong to SU(2), the group of complex unitary matrices whose determinant

equals 1. (Recall that groups are closed under multiplication.) The matrix C has the

additional properly of having complex conjugates along its diagonal. In fact, we now

prove that any round trip matrix made up of such components is also unitary, symmetric,

and has conjugate diagonal elements. The round trip matrix also has off-diagonal entries

which are purely imaginary.

e fast "4/

axis

0

YAG KTP
CRYSTAL CRYSTAL

Fig. 3.1 Relative Angular Position of Two Adjacent Birefringent Elements. The
angle ( lies between the respective fast axes.
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mirror first element second element mirrorNo. doIt.-

Fig. 3.2 Schematic Construction of a Round Trip Matrix M. The arbitrary
reference point for the start of this round trip is chosen to be the
left cavity mirror.

The special structure of the round trip matrix M relies on the fact that any rotation

experienced in a single pass through the cavity must be matched with a counter-rotation on

the return passage. For example, the round trip matrix for a cavity with two birefringent

elements has the following structure (fig. 3.2):

return through counter second mirror second rotation first

first element rotation element (identity) element element

M = C(O1 ) R((pl) C( 2) I C(2) R(-(p1 ) C(5 1)

3.3

a 0 cospi -sinpl][b 0] [ cos 19 sin 91 a 01
Lo0 f sin pi cs 1 Jo J1-sin cpl cos pi 0l Ai
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(The bar (-) represents complex conjugation.) The most general round trip matrix, with N

different elements, is given by:

M = C(51) R(01) --" R(ON-1) CON) CO$N) R(-ON-1) ... R(-01) C(81) . 3.4

To prove the proposition below, we observe some elementary properties of the

unitary matrix

0 [11
1-1 0 . 3.5

We note that this matrix rotates vectors by W/2, and has the following properties:

(a) - 1;2 = I, the identity.

(b) - , I = [1 , for arbitrary complex a,b,c and d.
Ic d -bha

(c) I C I = - C* , for matrices C defined above.

(d) I R Z = - R , for matrices R defined above. This also follows from

property (a) since all rotations of the plane commute.



92

We can now show:

Proposition 3.1. Let the round trip matrix M be defined by (3.4). Then

M c SU(2) and has the form:

M aiy 3.6

where a e C, y E 9; and the eigenvectors of M are real and orthogonal.

Remarks. The fact that the eigenvectors of M are real indicates an important

property of the laser output. A real E-field vector, in the Jones theory, represents linearly

polarized light. Since we calculate our round trip matrix beginning at one of the cavity

mirrors, this implies that the intensity output from such a laser is linearly polarized,

regardless of the amount of birefringence, or relative angular position, of the intracavity

elements.

As we calculate the eigenvalues and eigenvectors of M, we note that the derivation

of the general model for intracavity doubling only requires the existence of orthogonal

eigendirections. However, later applications to specific laser cavities need the functional

form of the eigenvectors, so we present the necessary equations here.

Proof. The unitary character of M follows from the closure of SU(2) under

multiplication. The symmetry of M is directly shown, since each matrix C is diagonal, and

forj = 1, 2,..., N-I we have R(ON.I)T = R(ON-1)* = R(-ON-1) (we distinguish here

between the Hermitian adjoint A* and the transpose AT which involves no complex

conjugation):
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MT [C(81 ) R(0 1) ... R(ON.1) C(ON) C(ON) R(-ON.1) ... R(-01 ) C(8 1) ]T

= C(8 1)T R(-OI)T ... R(-N.I)T C(SN)T C(SN)T R(ON.1)T ... R(OI)T C(8 1)T

= M.

Suppose A is a symmetric matrix, with elements

A c ] .

Then (b), above, implies that L A I = - A* if and only if A has the desired form of

(3.6). That is, property (b) requires that d = 1, and c = - U which means c must be purely

imaginary. This part of the proof is completed by observing that

2; M ; = 1 C(8 1) R(0 1) "" R(ON-1) C(SN) C(SN) R(-ON-I) "" R(-0 1) C(51) Z

- - Z C(81) 12 R(0 1) 12 ... 12 R(-0 1) Z2 C(81 ) I

= - C*(8 1) R(O,) "'" R(NN-1) C*(SN) C(SN) R(-ON-1) .. R(- 1) C*(Sl)

=- OW")T =.M.

(The minus sign appears in the second equality because there are even numbers of C and R

factors, but an odd number of 12 terms inserted in the multiplication. The last equality
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comes from the symmetry of M.) Therefore, M has complex conjugate diagonal entries

and purely imaginary off-diagonals, as in (3.6). Since M is unitary, its eigenvalues have

magnitude 1, its eigenvectors are orthogonal, and 1a12 + y2 = 1, which simplifies several

calculations.

In the case where y = 0, the eigenvalues and orthonormal eigenvectors of M are

simply:

X,1 = a wi = 0

l 3.7X2 =a W2 = [01

For y 0, the eigenvalues and orthogonal, but unnormalized, eigenvectors are:

X1. 2 = I [(a +R) ± /(a + -) 2 - 4 ]

3.8.a

= Re(a) ± W'fRe(a)] 2 - 1

w1 =[2Im(a)'-4(a+a)
2 ]

2y 3.8.b

W2 =[21m(a) +4-(a+-) 2 I
2 y . 3.8.c

The components of wl and w2 are always real for M in the form of (3.6).
LI
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For the remaining discussion, we take M to have the form in (3.6). The next step

in the analysis is to recognize that only those E-fields which are eigenvectors of M will

survive multiple round trips through the cavity. The physical reason for this is clear the

lasing process is sustained by the cascade of stimulated emission which occurs because the

cavity mirrors are carefully aligned to reflect an E-field directly onto itself. Similarly, the

polarization state of an E-field that replicates after each round trip maximizes its

amplification. The only fields which replicate after a round trip are eigenvectors of M.

Thus, we can understand the propagation of longitudinal modes in the cavity by studying

the round trip matrix M.

Moreover, the eigenvectors of a unitary matrix are orthogonal. This fact has great

physical significance: given a fixed cavity configuration, there are exactly two candidate

polarization directions in which any mode can oscillate. Our goal now is to examine the

pairwise coupling of modes which oscillate either in the same polarization direction, or in

orthogonal polarization directions.

It is interesting to recall that I is identically 1 for a unitary matrix. This implies

that an E-field (which points in an eigendirection) could oscillate forever in a perfect laser

cavity (with no sources of gain or loss) with no increase or attenuation. However, in a real

laser cavity, energy is input from the pump and energy leaks out via transmission through

mirrors and scattering in the cavity; the time evolution of the E-field amplitudes depends on

the continual interactions of these gains and losses. Therefore, the important elements in

this part of the analysis are not the eigenvalues, but the eigenvectors.

We want to examine the coupling of two modes which may be polarized in parallel

or orthogonal directions. No other analysis to date has accounted for these two distinct

ways the modes can interact. Suppose we have a laser cavity whose round trip matrix has

the structure described by Proposition 3.1. We can explicitly calculate how the intensities
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of two modes combine to produce an intensity at the doubled frequency. To do this, we

follow the approach outlined in (Oka and Kubota, 1988) but in a much more general

setting.

We define normalized vectors u and v in one of two ways, with respect to the

eigenvectors of M in (3.8): either u = v = wiwil (i = 1 or 2) so the vectors are parallel;

or u = wlAwIl and v = w2/w 21 so u is orthogonal to v. These two vectors identify the

polarization directions for two fields oscillating in the cavity. Given u and v, we define

two time-dependent E-fields:

E1(a,j) = jEj(t)j ei((1t+(P IUlU2

3.9
E 2 (c 2 ,t) = E (t)lei ( Pt )  v 2

where Col and o)2 are allowed frequencies for longitudinal modes, IEI(t)l and IE2(t)I are the

magnitudes of the respective fields, and (p1 and (p2 are arbitrary initial phases. (For this

discussion, we suppress the sinusoidal spatial variation of the fields, see Fig. 1.6.) The

field amplitudes and phases are time dependent, but the polarization directions determined

by the eigenvectors are constant.

It is important to note two different time scales present in the E-field expressions

(3.9). The first time scale is that of the frequency " which is determined primarily by the

length of the cavity. This extremely high frequency is on the order of 1014 Hz (see

Appendix B). The other time scale at work in (3.9) is the cavity decay rate of the E-field,

determined mainly by the transmission losses at the output mirror and the cavity round trip

time. For a cavity length of 3.0 cm and a transmission of 0.1%, the cavity decay rate

(Appendix B) is on the order of 107 Hz, many orders of magnitude slower than the phase
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oscillations. We will, very shortly, average the fields over several periods of the faster

oscillations, to simplify the study of the field amplitude dynamics.

The E-field vectors are defined relative to some fixed coordinate reference in the

cavity. We take the coordinate axes to be the fast and slow (or extraordinary and ordinary)

axes of the doubling crystal; call these the e- and o-axes respectively. Let Fe denote the

total E-field in the e-direction, that is, the sum of the first components of E1 and E2.

Similarly define Eo as the sum of the second components of E1 and E2 . The electric fields

F, and Eo in the doubling crystal combine to produce a new field Pd(j,o2,t),

approximately at the doubled frequency, according to the following relation

(Ito, et al., 1970):

Pd((o,,Co)2,t) = deff Ee(O)i,O)2,t ) Eo((olO)2,t ) 3.10

- dff[lIEl(t) ul ei(Ght+ T) + E2(t)I v, ei(It+ P2)1

x [IE(t)l U2 ei(wzt+ (, P) +jE2(t)1 v2ei(C0t+ 92)]

The effective nonlinear coefficient deft (m/V), for the KTP crystal, indicates how efficiently

the doubling crystal converts the E-fields from the fundamental frequency to the doubled

frequency (Ito, et al., 1975; Shen, 1984). We assume, for the moment, that the KTP

crystal is the first cavity element encountered in the round trip, so the eigenvector

components uj and vj in (3.10) are real. This is not true in general; we deal with the more

general case later.

We could calculate the new doubled intensity Id explicitly as the square magnitude

of Pd, i.e. Id = Pd Pd*. However, the oscillations at frequencies col and o)2 are sufficiently
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fast to treat the field amplitudes IEj(t)l as constants over several time periods of order

(I/wl), and derive a good approximation to Id by averaging:

Id(t) < Pd(Wl,W02,t ) Pd*(Wl,0W,t ) > 3.11

= deff( I (t) uj u + I2(t) 2 v + II(t) 12(t)[u1 v2 + U2 vi]2)

where < > indicates a time average over an interval on the order of t E [ 0, 100/cWi ], and

=I - EjEj*. The 112 and 122 terms represent frequency doubling by the second harmonic

generation of each mode. The 1112 cross term corresponds to sum-frequency generation by

the combination of the two modes.

We scale the coefficient deft, usually expressed in (nVV), to correspond to our

dimensionless coupling coefficient e:

def2 
3.12.a4eocD 3

where c is the speed of light, co is the permittivity constant (8.8 x 10-12 C2/N-m2), and D is

an appropriate atomic length parameter for the doubling crystal. (The factor of 4 in the

denominator arises from the definition of another coefficient derived below, in (3.13).)

This scaling actually renders E in units of inverse watts, but a later scaling of our

differential equations makes E dimensionless.

The relative weights of the coefficients in (3.11) are determined by the eigenvectors

of the round trip matrix; they inherit very simple relationships from the special structure of

the matrix. First, we label the coefficients as:
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gl = 4 u12 u2 2

g2 = 4 v1 2 v2 2  3.12.b

a = 4(ulv2+u2vI)
2 .

We next observe that the normalized vector u can be expressed as a function of some angle

(p, i.e. u 1 = cos (p and U2 = sin (p. If we have the case of two modes with parallel

polarizations, then gi = g2 trivially. If we have u I v then we can write v as vj = sin (p

and v2 = - cos (p, and we see again that gi = g2. So in all cases, we have gj identically

equal to g2. We let g denote the common value of this doubling parameter which can take

on values from 0 to 1.

The second coefficient o has one form if u = v, and another if u is orthogonal to

v. This distinction is extremely important in modeling the doubling process since a is the

coefficient of the term which describes the sum-frequency generation of the two modes.

The values of g and o determine the relative contributions of second harmonic generation

and sum-frequency generation to the overall production of the green light.

If u = v, i.e. the modes are in the same polarization state, then

a = 4(2cos(psinqp) 2 = 4g, 3.13

and the doubled intensity is:

Id(t) = e(gIl 2 + gI22 + 4gi112). 3.14

On the other hand, if u -I v and the modes lase in orthogonal polarization

directions, then
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a = 4(-cos29 + sin 2(p)2 = 4(cos2Wo) 2 = 4(1 - [sin2(p] 2) = 4 (1-g), 3.15

and the intensity at the doubled frequency is:

Id(t) = e(gl12 + gI22 + 4[1-g] 1112). 3.16

Relations similar to (3.14) and (3.16) were derived by Oka and Kubota, but only for a

cavity with a QWP, and only for three particular angles of the QWP. Their results also

require the two contributing modes to be orthogonal. Our equation is derived in a much

more general setting which allows for u and v to be either parallel or orthogonal, and

applies to a cavity with any number of birefringent elements.

Recall that we derive (3.14) and (3.16) for u and v with real components. We now

show

Proposition 3.2. The relationships (3.13) and (3.15) between coefficients g and a

hold for E-fields (3.9) at any position in the cavity, where the eigenvectors may be

complex.

Remak. The specific value of g depends on the location of the doubling crystal in

the cavity, and must be calculated from the eigenvectors of the round trip matrix which

starts at one face of the doubling crystal.

Pof. If the KTP crystal is the cavity element nearest a mirror (Fig. 3.3(a)), then

u and v indicate how much of the E-fields lie along the e- and o-axes of the KTP. These

vectors may then be used in (3.10) to determine the E-field at the doubled frequency.
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(a)

mirror KTP crystal YAG crystal other elements mirror

a

mirror YAG crystal KTP crystal mirror

(c)

b

mirror YAG crystal KTP crystal mirror

Fig. 3.3 Generic Cavity Configurations Referenced in the Proof of
Proposition 3.2. (a) The eigenvectors u and v are identified at
the input face of the KTP crystal. (b) Complex eigenvectors a
and b are shown for the two-element cavity; the fast axes of the
YAG and KTP crystals are parallel. (c) The KTP crystal has been
rotated at angle p with respect to the YAG fast axis.
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Suppose, however, the KTP crystal is the second cavity element (Fig. 3.3(b)), and the two

birefringent elements have their fast axes parallel. Then the complex round trip

eigenvectors a and b, at the KTP crystal, can be computed by propagating u and v through

the first birefringent element (with induced phase delay ):

u r eiWZ '0 lUl keau' Fei J2v

a = C(,) u = [e[2J = e'i,/2u2 b = [ei/2v2] 3.17

We use these vectors to calculate the doubled E-field Pd as we did in (3.10):

Pd(wl1,O)2,t) = deff Ee(cOl,O2,t ) Eo(O)l,Ci2,t ) 3.18

= deff[ IEI(t)l al ei(OMt+ 9) + IE2(t) b, ei(Ot+ (P2)]

x [jE1 (t)j a2 ei( 't+ WI) + 1E2(t) b2e i (wt+ (P2)]

When we compute the time-average of the doubled intensty Id,

Id(t) < Pd(o)1,0,2,t ) Pd*(ol1,(,2,t ) > 3.19

(d~ff[ 2 E1(t)I a1 ei(0Ot+ WI) + jE 2(t)j biei(jht + W2)]

x [fE1(t)I a2 ei((wt+ I0) +[E 2(t)I b2ei( t + (P)]

" [ IE(t) j e i( t+ W1) + 1E2(t)I le-i(O2t+ 92)]

x [IEI(t)ja2e-i((Ot+ W) +1E 2(t)I 2e-i(2t+ P,)] )

d2ff([ ElaI 2 + EIE 2 (abl e- i([cW,' (]+ Wi-2)+c.c.) + E221b 1
2 ]

x [ a 2 + EIE 2 (a 2 ei*0wi-wflt+ 9-4)+c.c.) + E2Ib 2 ])



103

= deff2 ( [E1
2uj 2 + EIE2 ulvl 2 cos([o-o.]t+P-P2) + E22v1

2 ]

x [E1
2u2 2 + EIE2 u2V2 2 cos([orl-o)]t+pl-qp) + E22v22 ] )

= deff( I2(t) u1 + I2(t) v2 + II(t) 12(t)[u1 V2 + U2v 1]2), 3.19, cont.

we get the exact expression for Id we found in (3.11) with the same u 1, u2, v I and v2.

Thus, for complex eigenvectors of the form (3.17), the coefficient relationships (3.13) and

(3.15) still hold.

We next consider the case in Fig. 3.3(c), where the doubling crystal is the second

cavity element and its fast axis is positioned at a non-zero angle (p with respect to the first

element's fast axis. The eigenvectors a and b at the face of the KTP are now given by

a R(-p) C(4) = [ cosqp sin " [eiWf2 0 Frull
L- sin(p cos(pJ L 0 e-i2J Lu2J

cui eik/ 2 + su2e-i1/ 2 "]

= suleiI 2 + cu2ei 2 ] 2, c =cosp s= sin

b R(-(p) C(4) v = [ cvlei/ 2 + sv2eCi/ 2 ] 3.20
svle i /2 + cv2e'i/ 21 "

We need not calculate Pd directly for this case, we only need show that a and b have the

same form as (3.17), in which case the relations (3.13) and (3.15) are valid, but the

specific value of g may be different. To show this, recall that unitary matrices preserve
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length and angles. Therefore, a and b as defined in (3.20) are orthonorrnal and have the

form (3.17).

The complex vectors (3.20) at the face of the KTP crystal are found for the case

where the KTP is separated from the cavity mirror by another birefringent element. For the

most general cavity, where the KTP may be preceded by more intracavity elements, the

eigenvectors at the KTP are found by multiplying a and b (3.20) by more diagonal

matrices C(j) and rotation matrices R(pj); the complex eigenvectors always have the form

of (3.17). However, the specific value of g computed from these eigenvectors depends on

the particular cavity configuration. For example, in the two-element case above (3.20), we

find

g = 4 IajI 2 1a212 = c2s2 + u12u22 - c2s2 u12 u22 4cos2t 3.22

+ csuU2 2 cost cos2(p (u2 2 - u12),

which is not identically equal to 4u12u22. E]

With the expressions in (3.14) and (3.16), and the rate equations used by Baer

(without doubling terms), we produce new rate equations which account for the

polarization states of multiple longitudinal modes. We still treat the second harmonic

production as losses in the intensities oscillating at the fundamental frequency. We then

insert these losses into the intensity rate equations (2.24) as follows. The squared intensity

terms in (3.14) and (3.16) represent frequency doubling losses in the respective intensities.

Although these terms appear in both equations, they represent the same doubling process,

so we only count each term once and place it as a loss term in the respective intensity
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equation. We assume the 1112 cross terms are shared equally between the contributing

modes.

Suppose there are N longitudinal modes Ij in one polarization direction, and P

modes Ij in the other orthogonal direction. We then have a new set of rate equations, for

the intensities and gains, which depend on the doubling coefficient g:

dlj N P

-- = Gj - cxj -gelj - 2ge Ik - 2(1-g) e Im)Ij 3.23.a
k= 1 m=1
kvj

diP N
,tct - (Gj -j -gelj - 2gel Ik - 2(1-g)eY Im)Ij 3.23.b

k=1 m=1
k~j

tf dG = G - Gj ( + Pj Ij + N PJk Ik + I Pjm IM) 3.23.c

t k=1 m=1
k~j

dGj - P N
f- G Gj(1 + !+ bjklk + Y bjmlm) 3.23.d

dt k=1 m=l
ktj

In (3.23.a and c), j = 1, 2, ..., N; in (3.23.b and d), j = 1, 2, ..., P. The new coefficients

bjk and bjk are simply additional cross saturation terms. The intensities Ij and Ij are

intensities at the fundamental frequency; the general equation for total green intensity is

found be combining all the doubling loss terms:
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N P

Id = E~ I , + g C I ii
j=1 j=1

N.P

+4(l-g)e 2: 'ilk 32
j,k = 1 3.24

N P
+ 2ge Y IjIk + 2ge I Ij Ik

j.k=l jk=l
j*k j~k

It is important to note the general nature of (3.23): the most restrictive assumption

made was that the cavity only includes birefringent optical components. The coefficient g

depends on the cavity configuration, but g always lies between 0 and 1, and the form of the

differential equations is always the same.

We see that Baer's multimode equations (2.24) are a specific case of the above

system. If we take all modes to oscillate in the same polarization direction, (3.23)

immediately returns Baer's model, where a factor of ge replaces e.

The analysis carried out by Oka and Kubota is also a special case of the above

equations. They calculated the doubled intensity Id and derived the expression in (3.16) for

the special cases of g = 0 (when the QWP angle is 0 or ir/2) and g = 1 (when the QWP

angle is ir/4). Therefore (3.23) with N = P = 1 is the general two-mode system of

equations for the laser studied by Oka and Kubota.

To summarize, Oka and Kubota initiated a powerful and straightforward approach

to create a theoretical model for the doubling process, but they left several significant loose

ends. First, they only studied the pairwise coupling of modes which oscillate in orthogonal

polarization states. Secondly, they only carried out the analysis of a system with a QWP

set at three specific angles. Finally, they stopped short of making a connection between

their analysis and the rate equations in order to study the resulting dynamical system. Our
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analysis ties up these loose ends, and produces a general model which applies to laser

cavities with and without QWP's, or any other birefringent element. Moreover, all the

pertinent information regarding the doubling losses has been reduced to the two parameters

£ and g.
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Analysi

Our new equations (3.23) and Baer's original equations (2.24) differ by terms of

order E, so it will not be surprising to see that the structures of most of the steady state

points in our new model are very similar to those discussed in Chapter II. However, the

steady state intensifies we wish to analyze may now have intensities which are polarized in

one of two orthogonal directions, so we must consider all combinations of polarization

directions. The following subsections address the analysis of steady state solutions where

only one intensity is non-zero, where two intensities are non-zero, and lastly when three

modes are lasing. Two general cases are treated first: the case where an arbitrary number

of modes all lase in the same polarization direction; the case with an equal number of modes

in each of the two orthogonal directions.

To simplify the analysis we assume the mode-dependent parameters are symmetric,

scale time as in the two-mode Baer equations (2.10), and take = = 1, so that (3.23)

becomes:

N P
I = (Gj- c - gEIj - 2g E Ik - 2(1-g) c Ilm) Ij 3.25.a

k=l m=1
k*j

dGj N P

d-t Gj( I + Ij + Y P Ik + 1 TIm) 3.25.b
k=1 m=1
kaj

j = 1, 2, ..., N
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d P N

,c aG - P-j - 2 ge 11, - 201- g) ey I.) j 3.25.c
t k=1 m=l

k~j

dGj -p N
Y y-GjI + j + I 13k + Y, 13Im) 3.25.d

k=1 m=1
k~j

j= 1, 2, ..., P

and we use the parameter values for our own experiment configuration (developed in

Appendix B and listed in Table 4).

Arbitrary Number of Mc !es in the Same Polarization Direction. To address the

case of N modes all in the same polarization direction, we set P = 0 in (3.25). As in our

Table 4. Parameter Values Used for Equations (3.25)

't = tc/tf =2.0x 10-6

a = 0.01

p = pump strength, percent above threshold

y=( +p)xa

E= 5.0 x 10- 5

13=0.6

• . . . . , i I l I I
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previous three-mode analysis, we seek a steady state that has all intensities equal (Is) and all

gains equal (Gs). These steady state values must satisfy:

Gs - a - g e(2N- 1)Is = 0

3.26.a

- Gs(l+ Is[l+1(N-1)]) = 0.

The approximate solutions to (3.26.a) are

Gs= a + O(e) 3.26.b

is = (y-a) + O() P + O(E).(x [I + 1P(N - 1)] [1 + P(N - 1)]

Our analysis proves the following stability condition:

Proposition 3.3. If P = 0, y > a, and

g < r l+(N-Pl)]

then the steady state point described by (3.26) is an asymptotically stable steady state

solution of equations (3.25).
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Eof. We linearize (3.25) about the symmetric steady state, and carry out the same

transformation technique used in the three-mode stability analysis in Chapter II. For this

case, we let

N N
A= Ii B- Gj

j=1 j=1 3.27

ak=NIk-A bk=NGk-B, k-2,3,...,N ,

where Ij and Gj are the variables which represent perturbations away from the steady state

point. The transformed linearization decouples into pairs of equations whose eigenvalues

can be calculated directly:

a - 3.28.adt B-Gs( I + N) I-( Is[I + P(N -1)l) B

I t It 3.2 8. b
dt bk Gs ( I - I) - ( 1 + IS [l + (N- 1)]) bk

The steady state values Is and Gs are of order 1, so the matrices above are dominated by the

positive off-diagonal Is~/ term which is of order 106. The other off-diagonal terms are
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always negative, so the eigenvalues of both matrices are complex. The real part of the

eigenvalues for the matrix in (3.28.a) is:

Re(k) = I - (I+1,[1+(N1)])] 3.29

Both terms in this expression are negative for all N, so Re(X) is always negative and the

local (A,B) plane is part of the stable manifold for the steady state point.

The real part of the eigenvalues for the second matrix, in (3.28.b) is:

Re(X) = -[- g E - (1 + 1, [1 + (N-1)] 3.30

In this case, the stability of the equilibrium depends on the particular parameter values. The

stability criterion reduces to

g [1+(N-1)1+ + O(E). 3.31

where the O(e) correction comes from applying the Is approximation (3.26.b) to (3.30).

D

As a check on the analysis to this point we see that, for N - 3 and g = 1, (3.31) returns the

same stability criterion for £ as for the Baer model in Proposition 2.2.

The stability condition on g in (3.3 1) has the following implications for the

experiment. First consider the effect of c on stability. On one hand, one might hope to

maximize E in an experiment to get the most efficient production of green light; on the other
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hand, (3.31) indicates that larger values of C decrease the range of g where the steady state

intensity is stable. This means that the quality of the KTP crystal, which determines the

effective frequency doubling, strongly affects the stability of the intensity output. The

other terms in (3.3 1) also suggest ways to increase the stable range of g. Lowering the

pump strength, i.e. decreasing p, raises the stability threshold. An increase in the number

of modes (for a fixed pump power) or an increase in the cross saturation 03 also have the

effect of increasing g's stability range. The stability threshold can also be increased via

changes in the time constant t (which equals rc/f). We can increase the cavity round trip

time Tc by lengthening the cavity, or decrease tf by using a gain medium that has a faster

upper state decay rate than Nd:YAG. We note that all these means for increasing the stable

range for g also tend to lower the total green output: lower pump strength, less efficient

doubling, etc. Preliminary experiments to date confirm all the implications made by this

analysis.

The upper bound on g in (3.31) implies that the intensity output is stable only when

there is little green production, since for N modes in the same direction, the doubled

intensity Id is proportional to g (see (3.14), or (3.32) below). This important difference

between the multimode operation in this case and Baer's model is illustrated by the terms

which combine to give us the total doubled intensity Id. The doubled intensity for Baer's

model appears in (2.25); for our model, the relation is

N N
Id = ge I I + 2ge ljk 3.32

j=1 j,k=l
jsk

In Baer's model, Id is proportional to e, so theoretically, as long as there is a

doubling crystal, the laser will output some amount of green light. In our model however,
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Fig. 3.4 Experimental Observations of Mode Structure for
Several KTP Crystal Rotation Angles. The angles are measured with
respect to an arbitrary zero. Longitudinal modes are identified by
spikes in the output from a confocal Fabry-Perot interferometer. In each
plot, the first line shows the modes in the polarization direction with the
strongest output; the second line shows the modes in the orthogonal
direction; the third line displays the total mode Output. (a)-(c) Cases where
we observed stable fundamental and doubled output. (d) Case where the
fundamental output was stable and no green light was observed.
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the doubled intensity is proportional to ge. This means it should be possible to rotate the

cavity elements, or control their birefringence, to make g = 0 and completely eliminate the

doubled intensity, but still have intensity output at the fundamental frequency. This

hypothesis has been confirmed in the laboratory (Fig. 3.4(d)), where we observed a case

with five modes lasing at the fundamental frequency, all in the same polarization direction

and the KTP crystal was rotated such that no green light was produced even with a pump

strength of five times the fundamental intensity threshold. With the KTP crystal in this

position, the intensity output was stable. For other angular settings of the KTP crystal, at a

comparable pump level, green light was seen during stable steady state operation. We note

that the number of modes in each polarization direction changes with rotation of the KTP

crystal; the explicit stability condition (3.31) only holds for cases where all active modes

oscillate in the same polarization direction.

Equal Number of Modes in Each Polarization Direction. The next case of interest

considers (3.25) with the same number of modes N in each polarization direction (P = N).

The steady state point where all intensities are equal and all gains are equal is nearly

identical to the previous case:

Gs = a + O(e) 3.33

IS = + 0(E) = + O(E).
a [1 + 13(2N - 1)] [1 + 3(2N - 1)]

The linearized analysis of this steady state point is carried out much like before, but this

time, the appropriate decoupling transformation is:
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N N N NA = YIj + Y, j B= YGj + Y, j

j=1 j=1 j=1  j=1

ak = N (1k +1k- A bk = N (Gk + Gfk) -B, 3.34

N N N N

j=1 j=1 j=1 j=1

Ck = N(lk-1k)-C dk = N (G k- Gk)- D

k = 2,3,...,N.

Using this transformation we show:

Proposition 3.4. If P = N, y > a, g * 0, and

g> 2N 1 I [ p (for all NzO) 335a

and
g < ,[1+(2N- l) P] (for N>1) 3.35.b

then the steady state point defined by (3.33) is an asymptotically stable solution of (3.25).

In the case of g = 0, the stability condition is

E N (I+p) [I + 3 (2N -1)]. 3.35.c1+ 2N p
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&oof. The time derivatives of the transformed variables in (3.34) form a system of

equations which decomposes into coupled pairs of differential equations. The eigenvalues

of the resulting 2-by-2 matrices yield the stability conditions (3.35) as follows. (Much of

the derivation is identical to that of the previous proposition, except a factor of 2N replaces

the factor of N.)

The eigenvalues associated with the differential equations for A and B are complex

with negative real parts, indicating asymptotic stability in the (A,B) plane; the calculation is

the same as in Proposition 3.2. Similarly, the matrices for the aj and bj equations all yield

eigenvalues whose real parts dictate the stability condition (3.35.b) which closely

resembles the condition of Proposition 3.2. This stability condition accounts for the

pairwise interaction of modes which oscillate in the same polarization direction. We note

that, when N=1, there are no aj or bj transformations and no pairs of modes in parallel

polarization states which can couple, so (3.35.b) need not be satisfied for the steady state to

be stable.

The eigenvalues associated with cj and dj generate the same stability condition

(3.35.b) as the eigenvalues for aj and bj. The new stability constraint (3.35.a) appears in

the equations for C and D. The coefficient matrix of the differential equations for C and D

is:

[ Is (2N+[1-4N]g)/] '  Is/,t 3.36
- Gs(I+P) f

where

f = + Is [l+(2N-1)P].
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The matrix (3.36) has complex eigenvalues with real part equal to the trace of (3.36). To

guarantee stability of the steady state point, the real part must be negative, which requires

(3.35.a) to be satisfied for all N>O. If we let g=O in (3.36), we get the constraint in

(3.35.c) which is more stringent than (3.35.b). As before, the inequalities in (3.35) are

accurate to O(E) due to our approximations for Is. -

Armed with these two general results, we now examine several specific stability

conditions when the laser operates in one, two, or three modes, for different combinations

of polarization directions.

Single-Mode Operation. When the laser has only one longitudinal mode, there is

no mechanism for sum-frequency generation. It also means that N = I and P = 0 in (3.25)

and the single-mode equations in our new model are identical to the single-mode Baer

model. The analysis for these equations shows the non-trivial steady state to be globally

attractive when y > (x; this case is treated in depth in Chapter II.

Two-Mode Operation. There are two orthogonal candidate directions for each of

the two active modes, so there are two different cases to consider. The first is the case

where both modes are oriented in the same polarization direction. The second case has one

mode in each of the two polarization directions. Both cases are particular examples of the

general analyses performed above.

For two modes in the same polarization direction, we simply set N = 2 in the result

of Proposition 3.3 to get:

g < [.] 1 3.37

E
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The stability constraint for two modes polarized in orthogonal directions comes

from setting N = 1 in (3.35.a):

2 1 T[1 +13] _._] 3.389 >3 3 

The important difference in (3.37) and (3.38) lies in the relative amount of doubled

intensity Ld produced in each case during stable steady state operation of the laser. Recall

that, for the case of two modes in the same polarization direction, Id is proportional to g.

Thus, the requirerr- ., .,.37) means that stable laser operation is achieved only with

relatively weak ,.;en output. On the other hand, (3.38) requires g to exceed a particular

threshold. In this case (3.16) indicates that significant stable green output may be obtained,

primarily through second harmonic generation. Therefore, to produce stronger doubled

intensity output, we would prefer the laser to operate in single mode, or in two

orthogonally polarized modes, rather than with two (or more) modes lasing in the same

polarization direction. Experiments which take advantage of such a mode structure are

discussed in the applications section of this chapter.

The case with two modes in the same polarization direction is essentially identical

to Baer's two-mode model (Baer, 1986); our new equations simply have a factor of ge

where Baer had only E. The structure of the phase space is therefore identical to the two-

mode phase space studied in Chapter II.

For the case of two orthogonally polarized modes, however, there are other steady

state points which have a different local structure than we have discussed to this point.

There are two steady states which have one intensity (say I1s) non-zero and the other

intensity (I2s) zero. The approximate steady state values in this case are:



120

- + 0() GIs = cc + 0(E)

3.39

12s = 0 G2s = I YPi + 0(c).
I~=1 +0(e)s

In all the systems of equations we have studied until now, the stable manifold of (3.39)

includes the (I 1,G1) plane and a 1-dimensional unstable manifold points strongly in the

direction of 12. However, when we linearize (3.25) about this point (with N=P=I), we

find a condition for the asymptotic stability of this point:

G2s < a + 2(1-g)e Ils 3.40.a

which (within 0(c)) requires:

a(2-13) < 2c(1-g) . 3.40.b

This condition may be difficult to realize experimentally, since a is typically 0(10-3) and c

is 0(10-5). It is a theoretically feasible constraint, however, particularly for 0 near 2; under

this condition, two equilibria described by (3.39) can coexist in phase space with the stable

steady state in (3.33) (or the periodic orbit which bifurcates out of that point). This more

complicated structure of the phase space persists for the cases of larger number of modes

which do not all align in the same polarization direction.

Three-Mode Operation. While this case has an additional mode and two more

equations than the previous section, there are only two basic combinations of modes to
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consider. The first case has all three modes lasing in the same polarization direction; the

second has two modes in one direction and the third mode in the orthogonal polarization

direction. The linearized analysis we carry out for the three-mode equations is not very

different from what we have done so far, the numerical studies of the three-mode dynamics

in a later section illustrate more substantial differences.

We begin with the simpler case of all three modes in the same polarization state.

When we set N = 3 and P = 0 in (3.25), we find that the equations essentially become

Baer's model (2.24) with the important difference that the ge-term now appears where there

used to be only an e. The stability criterion for the interior steady state point (with all

modes non-zero and equal) is found by setting N = 3 in (3.31):

g < .[+2P] LE 3.41

This is the same condition we would get by applying the stability analysis of Chapter II,

and taking the stability criterion (2.34) to be a constraint on ge instead of e. The

applications section of this chapter will examine specific functional forms of g to look for

parameter ranges where g is small.

Now we turn to the more involved case of the three-mode laser where two modes

oscillate in one polarization direction (call this the y direction) while the third mode

oscillates in the orthogonal (x) direction. This case does not fit the template of any of the

general cases we have considered thus far, so we must restart the analysis.

As in the discussion of three-mode steady state points in Chapter II, (3.25) has

three steady states where one intensity is non-zero and the other two intensities are zero.
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When the positive intensity (Is) is the third mode in the x direction, and the steady state

values for I1 and 12 (in the y direction) are zero, the steady state gain values are:

GIs = G2s - 7 + O(E) G3s = aL + O() 3.42
1+13 s

and (3.25) has the following linearized equation for I1 and 12:

dj = Ij (Gjs - ax - 2(l-g) e Is), j = 1, 2. 3.43

The steady state point in question has a stable manifold which includes the (13,G3) plane,

corresponding to its single-mode behavior, as long as y > mt. There are also two stable

directions along the G1 and G2 axes. In the three-mode Baer model we saw that the

unstable manifold for such a point is two-dimensional, locally pointing in the directions of

the opposing two intensities. For our new model, the right side of (3.43) can be negative,

in which case this steady state would stable; the condition under which this occurs is

precisely the inequality (3.40.b) shown above.

A stability condition similar to (3.43) results when we consider the steady state

point that has Ii or 12 non-zero while the other two intensities are zero. The important

observation here is that when the new model (3.25) has modes lasing in both polarization

directions, there are parameter ranges for which there are basins of attraction for these

steady state points. The three-mode Baer model has two periodic waltzes which are simple

reflections of each other, but the only stable solutions have all modes on. The new model,

however, has coexisting stable attractors with different structures (for some parameter
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values), and the selection of initial conditions dictates onto which attractor a numerical

trajectory falls.

There are, of course, three more steady state points with two intensities on while

the third is off. We fust illustrate this case with the example with ls = 12s = Is > 0 and

13s = 0. The linearization of (3.25) about this point produces a differential equation for 13

nearly identical to (3.43):

' - 3(G3s- aL - 4(1-g) Els). 3.44

The associated condition for stability reduces to:

a < 2E(1-g). 3.45

Thus, there are parameter ranges where two modes can lasewith the third mode off, and

small perturbations at the frequency of the third intensity (physically due to spontaneous

emission noise) will not be amplified to allow the third mode to lase.

A similar analysis holds true if we examine the steady state point where lis and 13s

are positive while 12s = 0. In this case the 12 equation governs the stability of the point,

and the stability constraint requires £ > aL. This condition is not likely to be realized

physically, so the linearized analysis indicates that a small perturbation in 12 will be

amplified such that the mode will turn on.

We conclude the study of this mode arrangement (two modes orthogonally

polarized with respect to a third mode) with the stability analysis of the steady state where

all intensities are positive, and all gains are positive. Due to the alignment of the modes in

different polarization directions, the steady state equations for (3.25) do not allow all three
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intensities to be equal, in general. Instead, we have a common steady state value (Is) for

modes 1 and 2, with a slightly different value (13s) for mode 3. The steady state quantities

must satisfy:

GIs = G2s = Gs = ot + 3gels + 2(1-g)13s

yGs(1 + II 01s+ ONI3s) = 0

3.46

G3s = a + gC13s + 4(1-g)e1s

y- G3s(1 + I3s + 20Is) = 0.

We find numerically (with parameter values in Table 4) that these four equations have

positive solutions Is and I3s only for 0.99 < g < 1; these solutions have extremely small

intensities compared to the steady state intensities for the single mode case with comparable

pump powers. Thus, we expect to not see steady state behavior for modes in these

polarization states.

To determine the stability of the steady state point with non-negative intensities, we

employ the following transformation:

A= 1 + 12 B =01+ 02 C=13

3.47

a= 1 - 12 b=Gl -02 D=G 3 .
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The eigenvalues for the 4-by-4 matrix associated with the A, B, C and D differential

equations were found numerically to have negative real parts (using the EISPACK

eigenvalue routine RG). The eigenvalues associated with a and b analytically yield the

condition

£
g-Is < 1 + [l+11Is + 1313s 3.48

't

for which the steady state point is stable.

The main stability results of this section are summarized below in Table 5. When

all modes oscillate in the same polarization direction (a), g must be small to assure stable

intensity output; the green output for stable operation must also be relatively weak. When

two active modes oscillate in orthogonal polarization directions (b), the stability criterion

requires g to be relatively large, and the model predicts substantial stable green production.

For N modes in each polarization direction (c), the stability of the intensity output depends

on the overlap of two inequalities. The next section applies the general derivation of this

chapter to specific laser cavities and addresses the calculation of g for different cavity

configurations.
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Table 5. Summary of Stability Results for Steady States of (3.25).

number of modes in each
polarization direction stability condition

N

(a) g - Pj

0

11
(b) l > 2 l,[I +1p]il +p]

N 4N [ I] 4N - -I tl-N13]l

(C) and

Ng< T[1 +(2N-1)0] [+ :
E
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Applications

The round trip matrix calculated by Oka and Kubota (Oka and Kubota, 1988)

includes two birefringent elements, the KTP crystal and the quarter wave plate, and the

relative angle of their respective fast axes. We decided to investigate the effect of adding

the birefringence of the YAG crystal to our analysis, after G. Kiihz of Spectra-Physics

suggested that we might increase our total green output by stressing the YAG crystal to

induce birefringence. The possibility of any birefringence in the YAG has not been

considered in previous analyses of intracavity doubled YAG lasers (Baer, 1986; Oka and

Kubota, 1988; Wu and Mandel, 1985 and 1987; James, et al., 1990a and 1990b). Thus,

the first application of our generalized round trip matrix will be a cavity which contains

only a birefringent YAG rod and KTP doubling crystal, with no QWP. The second

application will be our version of the round trip matrix for the cavity with a QWP, which

includes the YAG birefringence in the analysis. Finally we apply our round trip matrix

analysis to the "twisted mode" cavity which includes two QWP's in the intracavity doubled

laser (Evtuhov and Siegman, 1965; Otsuka and Iwasaki, 1976; Fry and Henderson, 1986;

Wallmeroth and Peuser, 1988).

Cavity Without uarter Wave Plates

The round trip matrix M1 for the cavity which includes only the YAG and KTP

crystals depends on three parameters: the YAG phase delay , the KTP phase delay 8, and

the relative angle (p between the fast axes of the two crystals (Fig. 3.1). Recall from

Chapter I that the difference in indices of refraction n I and n2 is the birefringence of a

material; we express this birefringence in terms of the relative phase delay induced between
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the two coordinates of a propagating field. We assume that the ambient, unstressed,

birefringence of the YAG crystal is small, such that n I - n2 is of the order 10-6. This

produces a phase delay of about O.01 for a 5mm long crystal. The value of 4 can be

increased significantly by applying stress to the YAG crystal. The KTP crystal, on the

other hand, is inherently birefringent and is cut so its birefringence enhances the frequency

doubling process (Fan, et al., 1987; Ito, et al., 1975; Shen, 1984; Yao and Fahlen, 1984).

The phase delay 8 induced by the KTP crystal may assume values from 0 to 2t, and may

be adjusted by controlling the temperature of the KTP, a procedure recommended to us by

T. Baer. The relative angle (p can be changed by the simple rotation of either the YAG or

the KTP crystal.

We now evaluate the round trip matrix M1 by the multiplication detailed in (3.1)

through (3.4). The result is:

M1 a ,y 3.49iy M

a = e4 (cos2p ei8 + sin 2(p e-i8)

y = sin 2p sin 8

The eigenvectors wl and w2 for M1 have already been presented in their general form in

(3.8); we recall them here, for reference:

2 Ia(a):
1.2= 2 y . 3.50
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The functional dependence of the doubling parameter g on the three parameters ,

8, and (p can now be calculated from the normalized eigenvector components:

g = 4(wj(1)wi(2))2/1wj12, as derived in (3.12). Our aim is to evaluate g for different

parameter values, and search for parameters which yield a value of g that satisfies the

stability criteria (3.31), (3.35), or (3.38) found in the previous section.

The doubling parameter g is plotted in Figs. 3.5 and 3.6 as a function of the three

angular parameters , 8, and (p. All three variables upon which MI depends theoretically

take on any value from 0 to 2n. There are symmetries, however, which reduce the range

of values we need to consider for each variable. For instance, the fast axis of either crystal

is not an axis which radiates out from the center of the crystal, but represents a direction

that traverses the entire cross section of the crystal. Thus the angular position p = 0 is

identical to the position (p = rt, and we only need to consider values of (p between 0 and 7r.

Moreover, g is n-periodic in 8, and symmetric about n/2 in (p and 4. The shaded regions in

Fig. 3.5 indicate the parameter values where g satisfies (3.31) for N=3, p=5.0 and other

parameters as listed in Table 4. In Fig. 3.6, the shaded regions indicate parameters for

which g satisfies (3.38) (one mode in each polarization direction) for any pump strength,

i.e. the plane is shaded for g > 2/3.

The first plot in Fig. 3.5 is for a YAG crystal with extremely small phase delay

= 0.0 1t. This phase delay corresponds to a birefringence of about 1 part in 106, which

is approximately what we measured for the (unstressed) YAG crystal in our experiment.

The figure shows that g is very small for nearly all angles (p and KTP phase delays S. The

theory indicates that this laser configuration generally produces stable output when all the

modes oscillate in the same polarization direction. Otherwise, we expect to observe

periodic or chaotic intensity output. For increasing values of YAG phase delay
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(a 0=.O1ni (b) CO7T
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Fig. 3.6 Stability Regimes for g with Two Modes in Orthogonal Polarization States.
The shaded regions correspond to parameters where g > 2/3, satisfying (3.38).
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(Figs. 3.5(b) through (f)) the size of the stable region shrinks, but there are always some

finite areas of parameter space where stable operation of the laser can be obtained.

In Fig. 3.6, the stable regions are larger for higher values of YAG birefringence.

That means that, if the laser operates with one mode in each orthogonal polarization

direction, it is to our advantage to induce birefringence in the YAG to generate more green

light. The "twisted mode" technique causes the laser to behave exactly this way; we

discuss this method below in the third application section.

In the laboratory, it is not feasible to constantly measure all three of these

parameters in real time, so we can not necessarily trace a specific line on a particular g-

surface which corresponds to turning a single knob in the experiment. However, we do

expect these surface plots to give a reasonable estimate of the relative sizes of stable and

unstable portions of the parameter space, and to indicate conditions under which we might

be confident to find always-stable or always-unstable steady state output. In fact, the plots

in Fig. 3.5 were the first evidence we saw that the birefringence of the YAG, and the

position of its fast and slow axis, had any influence on the dynamics of intracavity

doubling. They led directly to our first success with stabilizing the intensity output in the

laboratory by rotating the KTP crystal in the cavity. Figure 3.7 shows a sequence of

experimental total intensity traces as a function of the angle between the YAG and KT?

crystal fast axes. The reported angles are given relative to an arbitrarily selected zero. The

sequence shows the character of the intensity output progressing from stable steady state,

to periodicity, to chaotic behavior, and returning again to stable periodic output. The

theoretical model predicts exactly this kind of transition.
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KTP ORIENTATION ANGLE: 700 82 °

(a) (b)
I-

z

z

0 I I I 1 I, I, I I, '

TIME (!0psec/div) TIME (1Opsec/div)

1060 1160

(C) (d)

z

SI I I I I

TIME (20pisec/div) TIME (201.sec/div)

1540 1630

((f)

I I I I I I

TIME (201psec/div) TIME (201psec/div)

Fig. 3.7 Experimental Intensity Output as a Function of KTP Orientation Angle.
The reported angle is the KTP crystal position relative to an arbitrary
zero. All other parameters are constant for the six plots.
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Cavity With Ouarter Wave Plate

We now return to the cavity configuration studied in (Oka and Kubota, 1988) but

we include the birefringent YAG crystal in the analysis. This case, then, includes three

birefringent optical elements and two relative rotatory positions (Fig. 3.8). The phase

delay induced by the quarter wave plate is fixed at ir/2, so there are four free parameters:

the YAG induced phase delay ,, the KTP phase delay 8, the relative angle qp of the YAG

and KTP fast axes, and the angle V between the fast axes of the KTP crystal and the QWP.

The round trip matrix M2 for this configuration again produces a matrix of the form

of (3.49), but this time,

relative angle relative angle

phase phase phase
delay delay delay

8 I/2

Fig. 3.8 Schematic of the Cavity with Quarter Wave Plate. This configuration has
four free parameters: 4, 8, (p, and \V.
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a = ei( +n/2) [ cos 2(p (eis - 2sin 2p cos 6) - sin 2(p sin 24f 1

3.51

y = sin 2(p cos 2y cos 8 + cos 2(p sin 241

We are especially interested in the values of g for y = 0 (or, equivalently n/2) and V = r/4

because these are the angles studied by Oka and Kubota. They found in their experiment

that, for V = nt/4, the laser operates in a stable steady state, with no artificial restrictions

on the number of modes. When the QWP is rotated such that Ni = 0 or Yr, they observe

chaotic intensity output at both the fundamental and doubled frequencies. They report no

information about the r of angles over which they observe either stable or chaotic

output.

Several sample plots of the g-surfaces calculated from the eigenvectors of M2

appear in Fig. 3.9, where we take y = 0. The plots are shaded for parameters where g

satisfies (3.31), i.e. for three modes with parallel polarizations. We see portions of

parameter space in Fig. 3.9 where the steady state intensity is unstable, consistent with

Okas findings. However there are also values of the YAG phase delay for which the

model predicts the laser will operate in a stable steady state, almost the entire parameter

plane in Fig. 3.9(a), for example. It is interesting to notice how Fig. 3.9 illustrates that

NV=O is equivalent to having no QWP but a KTP crystal with phase delay (8+r/2), see

Fig. 3.5.

When we set Nv = 74, where Oka reports stable output, we find that g - 1. From

Table 5 we see that g S I implies stability only for the single mode laser, or the laser

operating with two orthogonally polarized modes. We can thus infer from Oka's results

that the cavity configuration with 41 = 7t/4 forces the laser to operate in one of these two
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states. We can also return to Fig. 3.9(a), for instance, to see that the stability cordition in

Table 5(b) is not satisfied for almost the entire parameter plane; this is consistent with

Oka's findings if their laser operated with two orthogonally polarized modes.

We emphasize that the functional form of g depends scrongly on the YAG

birefringence, even when the induced phase delay 4 is extremely small. In our own

experiments, we have observed cavity configurations where the intensity output is unstable

(periodic or chaotic) for all QWP angles except for a tiny range of 1 or 2 degrees; we have

equally seen cases where the intensity output is stable for all QWP angles excepting a small

range of 5 to 10 degrees. The four angular variables , 8, p( and -q appear to be sufficient

to account for this wide variety of behavior in the experiment.



137
(a) O17T am O 7T (b) .10 7T */ODO 7T

VAS

:Nat'

Fig.3.9Szablit Reimesforg wth Qartr Wae PateAngl ~C= 0
Thm eV shddrgosc=epn opraeesweegstsis(.1

for N3 andp=5.O



138

Twisted Mode Cavity With Two Ouarter Wave Plates

The "twisted mode" cavity for an intracavity doubled laser includes two QWPs,

one adjacent to each cavity mirror (Fig. 3.10). This configuration generates circularly

polarized light which combines in the YAG crystal to form a beam that has constant

amplitude along the length of the YAG (Evtuhov and Siegman, 1965; Otsuka and Iwasaki,

1976; Fry and Henderson, 1986; Wallmeroth and Peuser, 1988). A uniform depletion of

available gain results, and forces the laser to operate with, at most, one longitudinal mode

in each polarization direction. In our model, that means the stability criterion in (3.38)

applies directly to this cavity.

The general round trip matrix M3 for this cavity has five free parameters

(Fig. 3.10): the YAG phase delay 4, KTP phase delay 8, the angle 4Vj between the first

QWP and the YAG fast axes, the angle 42 between the KTP crystal and the second QWP

axes, and the angle p between the YAG a:.d the KTP crystal fast axes. We take only a

special case of M3 here to illustrate the application of our theory to this laser.

relative angle relative angle relative angle

''V2

~QW~i$- YA TPQ

phase phase phase phase

delay delay delay delay

/8 7E2

Fig. 3.10 Schematic for the Twisted Mode Laser Configuration.
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Suppose the fast axes of the YAG and KTP crystal are parallel, the first QWP is

rotated ir/4 with respect to this common axis, and the second QWP is rotated - r4. In this

case we find that M3 is the identity matrix, regardless of the values of 8 and p. All vectors

are eigenvectors of the identity, which seems to imply that any field vector will replicate

after a round trip through the cavity. However, there are other experimental factors which

affect the longitudinal modes. First, the twisted mode configuration allows no more than

two modes to lase, and they must oscillate in orthogonal polarization directions.

Furthermore, the polarization alignment that produces green light most efficiently is when

the E-fields are polarized at 7t/4 with respect to the KTP axes. The eigenvectors associated

with these fields have components of equal magnitude, which implies that the doubling

coefficient g for this configuration equals 1, by (3.22). This maximal value for g always

satisfies the stability criterion (3.38), so the laser in this configuration always operates in a

stable steady state. This interesting analytical result is consistent with the experimental

results reported in the above references on twisted mode cavities.

Numerical Results

A new ingredient in our system of equations (3.23) is the identification of a

polarizatiop state with each longitudinal mode. The associated intensity variable Ij belongs

to one of two groups of similarly polarized modes, and pairwise mode interactions depend

on whether the participating modes oscillate in parallel or orthogonal directions. The new

doubling terms have no effect on the single-mode dynamics of (3.23) since the changes

involve couplings between pairs of modes. Numerical integrations of the two-mode case

also produce no new qualitative behavior: the only limiting behaviors are stable steady

states and periodic orbits.
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Many interesting results are seen in numerical integrations of (3.23) with three

modes. We now report the results of extensive integrations for the case where all three

modes have the same polarization state, and for the case of two modes in one polarization

direction with a third orthogonally polarized mode. In each case, we integrate (3.23) for

enough values of the pump strength p and the doubling coefficient g to generate

approximate bifurcation diagrams in the (p,g) plane. We find different trends, in the two

cases, for the average green intensity in stable versus chaotic output. In the latter case, we

also find parameters that produce numerical results which closely match particular

experimental data.

Three Modes in the Same Polarization Direction

The numerical data discussed in this section appear at the end of the chapter in Fig.

3.17. The computer program POLYAG3 integrates (3.23) with three modes in the same

polarization state; a program listing appears in Appendix F. A wide range of solutions are

summarized in the approximate bifurcation diagram in Fig. 3.11. The curves in the

bifurcation diagram roughly separate the regions in the (g,p) plane where we observe

qualitatively similar solutions. We note that for all pump levels, stable intensity behavior

was observed for small g, as predicted by (3.31). Moreover, for any fixed g, stronger

pumping produces more unstable behavior, as we see in experiments.

To associate particular numerical data in Fig. 3.17 with the bifurcation diagram

(Fig. 3.11) we find that periodic output is most easily identified in the intensity time traces,

and confirmed by simple structure in the associated FFT (see, e.g. Fig. 3.17(a)). Quasi-

periodic output can have erratic time histories, but appears quite structured in the numerical
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Fig. 3.12 Comparison of Average Green Output Power during Stable and
Chaotic Behavior in (3.25) with N=3 and P--O. The total average
green output does not depend on the character of the intensity

output, but strictly on the value of g.
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Fig. 3.13 Experimental Measurements of Average Green Output Power.
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configuration produces more green in stable operation. We have
observed output from other configurations where the opposite is u'ue.



144

Poincar6 maps (Fig. 3.170)) and shows regular structure in its FFT (Fig. 3.17(i)).

Chaotic output tends to fill out the Poincard section and broaden the associated FFT

(Fig. 3.17(t)).

We also calculated the average green output power for the total intensities plotted in

Fig. 3.17. At a given pump power, the average green output tended to be stronger for

chaotic operation than it did for stable or periodic output (Fig. 3.12). This tendency is

expected for extracavity doubling (Teich and Diament, 1968; Diament and Teich, 1969;

Teich, et al., 1970 ) but it is not always true in the experimental measurements we have

made (Fig. 3.13). This suggests that the laser was not operating with all modes in the

same polarization state when the measurements were taken. If we recall the equation for

the doubled intensity for N modes with the same polarization (3.32) we see one sum of

squared intensities, due to second harmonic generation, and a second sum of cross terms

due to sum-frequency generation. The numeric time histories (Fig. 3.17) display sharper

spikes for chaotic output than for periodic behavior, so that each individual intensity spends

most of its time near zero. This means that most of the cross terms in the second sum of

(3.32) are small relative to the frequency doubling terms. Since the total green output is

larger in chaotic output, it implies that the sum-frequency generation is dominated by

second harmonic generation in chaotic intensity behavior.

Two Modes in one Polarization Direction: Third Mode Orthogonally Polarized

The numerical data for this case were output from computer program POLYAG2

and are illustrated in Fig. 3.18 at the end of this chapter. These solutions are summarized

in the bifurcation diagram in Fig. 3.14 which has several important differences from the

previous diagram (Fig. 3.11). First of all, no stable steady state solutions were observed



145

0.8

0.6

0.4 not calculated
Speriod I

idmultiple periods
0.2 -or quasi-periodic

chaotic

0.0
3.0 10.0

pump, as fraction of threshold
(log scale)

Fig. 3.14 Bifurcation Diagram for (3.25) with N=2 and P=I.
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(a) Experimental time traces. Line I shows the -,itensity in the x direction,
(b) Numerical integration of (3.25) with N=2 and P=-l. The total time of this
plot matches the time scale of the experimental data. (c) Fabry-Perot output
showing the distribution of modes in the x and y directions. (d) The
same numerical data as (b) with the time histories for modes I and 2 separated.



147

Legend Scale Factors

0 stable or periodic 16. chaotic

O stable or periodic 15p= .5 N chao1ic0

tgsable or periodic l-5
Average Green p=2.0 & saoric 10
Output Power A chotc

(arbitrary units
time scale factors)

8

6- A 0
6 0

4

2--G

I I I I m0 g
0.2 0.4 0.6 0.8 1.0
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power (which corresponds to a fixed average fundamental intensity
power in the numerical model) chaotic time histories tend to
produce less green output.
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for this case. This is due to the absence of an interior (all modes "on") steady state solution

to (3.46) for most values of g. Secondly, the stable periodic behavior in this case occurs

for g near 1. Lastly, this set of equations requires a much smaller time step and is more

difficult to integrate for g near 0, because the intensity coupling in the sum frequency terms

dominates the intensity derivatives in (3.23) and makes the time derivatives very steep.

In Fig. 3.15 we make a direct comparison of experimental and numerical data. The

time traces in Fig. 3.15(a) are the fundamental intensity output in two orthogonal

polarization directions, with the total intensity output plotted in the third line. The cavity

included a QWP, and was pumped at about 2 times threshold. The best parameter set we

found to match the data was a---0.01, p=2.0, 3=0.55, and g=0.4 4 ; the numerical solution

appears in Fig. 3.15(b). To our knowledge this is the first successful match of numerical

integration to three-mode output (with different polarization directions). We note that the

numerical output closely reproduces the time scales of the pulses in addition to the relative

peaks and pulse shapes.

As in the previous case, we calculated the average green output for some of the

integrations plotted in Fig. 3.18, to compare the output for periodic and chaotic intensity

behavior. We found that for a fixed pump power, the average green output was less for

chaotic time histories than it was for periodic output (Fig. 3.16). This is partially explained

by the equation for total green output intensity (3.24). There are many cross terms which

represent the contributions of sum frequency generation; we discussed above that one of

the terms in every IjIk pair is usually negligible in chaotic time traces, so the cross term

sums can become small for chaotic intensity behavior. We hypothesize that this causes the

total green output to decrease as illustrated in Fig. 3.16.
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This chapter reports the development and analysis of a new model for intracavity

doubling. The model is derived in a very general framework that applies to intracavity

doubling in any class-B laser with passive birefringent intracavity elements. The analysis

of this model has led to successful predictions of ways to eliminate intensity fluctuations in

the output from a frequency doubled laser. The key ingredients in the model include the

birefringence of the active medium, and the different sum frequency generation by modes

which oscillate in parallel or in orthogonal polarization directions. The model produces

close matches to experimental data in both the qualitative features and time scales of

intensity output from an intracavity frequency doubled Nd:YAG laser. Furthermore, our

analysis and numerical results completely characterize the intensity behaviors for one, two,

and three modes.
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Fig. 3.17 Numerical Integrations of (3.25) with N=3 and P=0.
(a) Total intensity output for p=l.1.
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CHAPTER IV

VARIATIONS OF THE RATE EQUATIONS

Introduction

The round trip matrix approach initiated by Oka and Kubota (Oka and Kubota,

1988) is essential to the derivation of our new model for intracavity doubling presented in

Chapter IU. However, before we had completed that derivation, we investigated several

possible changes in the rate equations, to see how the laser output progresses from the

stable behavior for a quarter wave plate angle of it/4, to the chaotic output seen when the

QWP angle is 0. This chapter explains two different sets of rate equations we developed in

the course of our research.

The first set of equations is derived from the Maxwell-Bloch equations, a more

fundamental set of physical relations than the rate equations used by Baer. The new

equations we derive contain more information about the properties of the longitudinal

modes and include new terms which describe couplings between gain variables. Numerical

integration of this model exhibits certain qualities of experimentally observed intensities

which have not been predicted by previous models. This new model will be the subject of

further research.

A second set of rate equations is derived for a YAG laser with three energy levels

instead of the two levels we have assumed thus far in the thesis. This idea was suggested

to us by E. Arimondo who has had great success modeling the single-mode dynamics of
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CO2 lasers using a three-level model (De Tomasi, et al., 1989; Arimondo, et al., 1983,

1987, 1988; Arimondo, 1988; Hennequin, et al., 1988). Initial numerical tests of our

equations indicate that, for the intracavity doubled Nd:YAG laser, the three-level model

does not produce any new qualitative features of the intensity dynamics. This validates the

two-level approximation for the intracavity doubled YAG.

The chapter concludes with a brief discussion of how the rate equations can be

simply modified to study systems with modulated parameters. For example, there is

substantial interest in studying the effects of a periodically modulated pump on intensity

output. One can also investigate the influence of noise terms on the system of equations.

The changes necessary in the differential equations to study these effects are outlined in the

final section.

The issue in this chapter is not how to model the intracavity doubling, but how to

derive appropriate multimode rate equations. To simplify the rate equations in this chapter,

we collect all the doubling losses into a single variable Dj for each mode j. The complete

forms for these doubling terms are the subject of Chapter III. While the new models

discussed in this chapter are derived in full detail, the complete analysis of each model

remains open as a topic for future research.

Derivation from Maxwell-Bloch Equations

General Derivation

The derivation in this section is largely taken from an appendix in a recent report on

chaos in dye lasers (McMackin, et al., 1988). The article concerns multimode instabilities

where some of the cavity-dependent parameters have significantly different values than
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those of our Nd:YAG laser. However, many of the assumptions made in the McMackin

article also apply to our problem. We retrace the exact steps followed by McMackin to get

from the Maxwell-Bloch equations (see Appendix A for more details) to a coupled set of

ordinary differential equations for longitudinal mode amplitudes and population inversions.

From that point we depart from McMackin's development to introduce a new approach to

removing the troublesome spatial dependence of these equations. The equations we get are

similar to Baer's rate equations (Baer, 1986), but they present a different treatment of the

population inversions and carry more information about the individual modes.

As in the McMackin article, we assume the Nd:YAG laser is a system with two

energy levels, with an energy difference between the two levels of fi co (For the values of

these and other constants and parameters in this chapter, see Appendix B.) We define

S(z,t) as the atomic polarization, or dipole coherence, of the active medium, and define

W(z,t) as the population inversion, expressed as a difference in the probability of an ion

(Nd3+) being in the upper state, minus the probability of being in the lower state. The

spatial dependence of these variables is along the length of the optical axis in the cavity,

indicated by the z-axis (see Fig. D. 1). The variables S and W describe properties of the

active medium, so S and W are non-zero only over the length 8z of the YAG crystal which

we define for z c (z1, zI + 8z). In our experiment, where the input mirror is deposited on

one end of the YAG crystal, we have z I = 0.

The time dependence of S and W are governed by the Maxwell-Bloch equations of

motion:

d S(z,t) pS(z,t) - id E(z,t) W(z,t) 4. La

d W(z,t) r - (W(z,t) - Wo) + - S*(z,t) E(z,t) - - S(z,t) E*(z,t) 4. .b
2fi 2fi
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The parameter p is the dipole dephasing rate, the decay rate of the polarization; and d is the

transition dipole moment, a scaled value of the (square root of) the upper state lifetime F.

The parameter Wo represents an equilibrium value for W(z,t) when there is no lasing; a

way to determine Wo will be presented shortly.

The complex electric field E(z,t) must also obey the wave equation

[2 E(zt)e'iwt = a N d S(z,t) eiCt 4.2

aZ2 c2 at2J at 2 c2 E4

In (4.2), c is the speed of light, and No is the number density of active molecules in the

gain medium. We take Dirichlet (E = 0) boundary conditions at both ends of the cavity,

and separate variables by expanding E(z,t) in terms of Fourier components ul(z) whose

coefficients are the field amplitudes of the longitudinal cavity modes:

E(z,t) = Z AI(t) ul(z) e-iAt ,1 = 0, ±1, ±2, ... 4.3

where Aj(t) is the amplitude of the Ith longitudinal mode; Al = (01 - o = IA; A = rtc/L, and

ul(z) = sin(klz) are the mode functions for a standing wave cavity, where kl = (o&.

The first step is to substitute the expansion in (4.3) into the wave equation and

calculate the time derivative of the individual mode amplitudes. When we carry out the

substitution, apply the time derivatives, and integrate with spatial mode ul(z), we get:

2 [-Aj+2i",'t] N)deA1 t u1(z) [S" - 2 i -C S'- ZowS] dz2 
44

.... 4.4
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where the primes C) indicate time derivatives. The reduction to (4.4) used only the

orthogonality of the spatial modes ui(z). The equation can be simplified further by making

several assumptions about the relative time scales in the equation:

Al" v, w Al' Al ,, o S' v, O

When we neglect the small terms, the differential equation for the field amplitude becomes

dA(t) = i W N, d eiAtt . ui(z) S(z,t) dz 4.5dt EL

In a Class B laser like the Nd:YAG, the dipole dephasing rate p is much faster than

any of the other time scales, so the value of S(z,t) is essentially instantaneously determined

by the other variables. We adiabatically eliminate the polarization S(zt) by setting the

derivative in (4.1 .a) to zero:

S(z,t) - i d E(z,t) W(z,t) 4.6
ftp

We now combine (4.1), (4.5), and (4.6) to produce the coupled nonlinear ordinary

differential equations for the mode amplitudes and inversion:
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dAI(t) = -FIA(t) + b XAn(t) eiA t I W(z,t) un(z) U(Z) dz 4.7.a
dt n

-d- W(z,t) = - I (W(z,t) - Wo) - 1 W(z,t) I Am(t) An(t) Um(Z) un(Z)eiA - t 4.7.b
dt m.n

where r' is the cavity loss experienced by the 1t mode, Anj = (n - 1)/A, and

d2  No 6 d2  4.8
pf, 2  eo Ii L p

The equilibrium inversion Wo is defined below in the section on the single-mode model.

The spatial dependence in (4.7) makes the equations difficult to solve even

numerically. To simplify the problem, we would like to avoid the discretization of space

necessary to account for the spatial dependence of the inversion. Still another difficulty is

the presence of the time-dependent exponential terms which renders (4.7) non-

autonomous. We address these problems in the following developments of specific models

for the cases of one, two, and three longitudinal modes.

Single-Mode Model

The application of (4.7) to the single-mode case accomplishes two goals. The first

is to determine how the parameter Wo relates to the threshold for lasing. In particular, WO

will be scaled to correspond to the pumping parameter of our previous rate equations (2.24

and 3.25). The second goal is to outline our approach for dealing with the spatial
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dependence of the inversion. The same approach will be used in the two- and three-mode

cases.

For only one mode, (4.7) becomes

AA 1 (t) = -r 1 A1 (t) + b AI(t) W(z,t)u2(z) dz 4.9.a
dt J"

-d-W(z,t) = - F (W(z,t) - Wo) - i W(z,t)IAI(t)12 u2(z) 4.9.b
dt IZ ..

Recall that uj(z) = sin(klz), and that the spatial integral is over the length of the YAG

crystal. Our first simplification is to define a new variable:

W(t) = 1 W(z,t) dz 4.10L f.""

The new variable W(t) simply represents a spatial average of the population inversion over

the length of the active medium. If we now integrate (4.9.b) over the entire cavity length

L, we get

dtW(t)= IWo - "W - !IAI(t)1 2  2(Z)dz4.11

dt L WZt l41
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The right side of (4.11) still has spatial dependencies to be integrated, but we see that the

same integral appears in the mode equation (4.9.a). We next calculate a reasonable

approximation for this integral in terms of W(t) by applying a simple identity to the u12

term,

W(z,t) sin 2(klz) dz ) W(z,t) [1 - cos(2klz)] dz 4.12

and neglect the fast oscillations of the high-frequency cosine term, to arrive at the

approximation:

W(z,t) sin 2(kjz) dz = I Wdz = LW . 4.13
J~ 2 Jnz 2

The single mode equations, in this Oth order approximation, are now

A =-IA + bAW 4.14.a

W =FW0 - W(r+aIA12 ) 4.14.b

where a = 5/2, and b = L/2. We now let I = IA12, so (4.14) becomes a scaled version of

Baer's single-mode rate equations (2.1):

= 2 1 (W - '+) 4.15.a

W = TWo W(r+aI) 4.15.b
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We determine the parameter Wo by examining the equilibrium values for I and W. The

steady state value for W, Ws = ri/b, is independent of the equilibrium intensity. The

steady state intensity Is, on the other hand, depends on Wo and Ws:

= _--- O_ -WS)
aW. 4.16

So there is a positive, physically attainable intensity only if Wo is greater than the threshold

quantity F1/b, and we define Wo to reflect its relationship to the pump strength, as follows.

Let p be the percentage above threshold at which the laser is being pumped. Then let

Wo = (I + p) F 1 / b. The parameter Wo now represents the pump strength, relative to

threshold, in terms of fundamental cavity parameters.

At this point, we could also add the effect of intracavity doubling to (4.15). We

simply treat the doubling process as a loss for the intensity, which oscillates at the

fundamental frequency, and include the additional loss term in the intensity equation

(4.15.a). We know from previous chapters that the correct loss term in the single-mode

equation is - e 12 but to keep the focus of this chapter on the new rate equations, we insert

the doubling losses with a general time-dependent term D, so that (4.15.a) becomes:

= 21(bW-F-Dj) 4.17

We note that the fast exponential contributions to the doubling terms are averaged out in

(3.14) and (3.16), so the phases of the doubling process do not appear in the field

amplitude equations.



201

The single-mode equations in this form correspond exactly to those used by Baer

(2.1). As discussed in Chapter II, the only single-mode dynamics observed in the laser are

transients which lead to steady state intensity output. The truncation of (4.9) at the 0th

order exhibits such behavior, so this truncation is adequately justified. Higher order

truncation will be necessary in the multimode equations.
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Two-Mode Model

In this section we simplify (4.7) to model a standing wave laser with two

longitudinal modes. We used subscripts 1 and 2 in previous chapters to identify two

different modes. In this new model the subscripts carry more meaning: the absolute

difference in subscripts Im-nI tells how many cavity mode spacings separate the two

modes. This spacing directly affects the degree of spatial overlap and explicitly appears in

the new two-mode equations.

To clarify some of the longer equations which follow, we shorten the notation of

integration over the YAG crystal to be simply j. Also recall that our cavity has its input

8z

mirror deposited on the surface of the YAG, so the lower limit of integration, zl, equals

zero. This is not the case for all intracavity doubled YAG lasers, but we point out in the

development where any changes need to be made for cavities where zi * 0.

Let the integer indices m and n (man) denote two longitudinal modes. The two-

mode version of (4.7) gives the following equations for the electric field amplitudes Am

and An and the inversion W:

AM -4mAm + ~ Amf WU21 z+Ae~juud] 48

fa.~A +d + n-afuWm dI 4.18.a

An r An+ E[Am e i4tfa.Wumun dz +An fa A dzI 41.
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W = -P(W-Wo) - 5W [IAmI2U2 + An12U2 + AmAnumUn e- t + Am AnuUne -nwt]

.... 4.18.c

Recall that W depends on both space (z) and time in (4.18).

This is the first time in our analysis where we encounter a non-autonomous system

of equations. The nonlinear couplings between the modes include terms with exponential

factors that oscillate at a frequency of order A, which is extremely fast in our system, on

the order of 10 GHz (see Appendix B). For the moment, we assume that these fast

oscillations average to zero and we ignore these terms during the reduction of (4.18). After

we arrive at a reasonable approximation to (4.18) which is independent of z, we will return

to the issue of how to justify this averaging.

Under the assumption that the exponential terms in (4.18) average to zero, the

system is autonomous. We again introduce the averaged inversion W defined in (4.10).

Like in the single mode case (4.11), the differential equation for V contains spatial

integrals:

[(W W0) - i AmJ Wu2dz + Anf ] 4.19

We would like to approximate these integrals, in addition to those in (4.18.a and b), in

order to eliminate the spatial dependence of the equations. Our first attempt was to

approximate the integrals in terms of W" and constant terms, and truncate the equations at

this Oth order approximation. Numerical integration of the resulting equations (including
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the frequency doubling terms) only produced solutions which converged to a stable steady

state, for all initial conditions and all parameter settings we attempted. These results were

not consistent with Baer's observations of a two-mode laser, so we continued the hierarchy

of equations by defining new variables:

Wij = If W ui uj dz , 4.20

where i and j take on values in the set of indices of the oscillating E-fields. This definitior

simplifies (4.18):

Am = -dmAm + 6AmWmm 4.21.a

An -rnAn + 6 AnWnn 4.21.b

W r (W - W o ) - a[ImWmnm + InWnnI • 4.21.c

However, we still need to simplify the differential equations for Wmm and Wnn, which

both have the form:

Ww. ( -w ) -1-[ f W ur-d W f UAu2 dz] 4.22

The derivative (4.22) is found by multiplying (4.18.c) by urn2 and integrating.
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For the integrals that have fourth order integrands, we need approximations in

terms of the lower order variables W, Wmm, and Wnn. Expanding the second integral in

(4.22), we see the different frequencies of the contributing terms:

J W u2 u2 dz = J W sin2(kmz) sin 2(knz)

= lfJW dz + K J W cos[2(km+kiJz] dz- J W cost2kmzI dz

f W cos[2knz] dz + JW cos[2(k.-kn)z] dz 424 84.23

We assume the magnitude of the second integral is negligible, since cos[2(km+kn)z]

oscillates much faster than any other term. We also note that the first, third and fourth

integrals are simply W, Wmm, and Wnn. Our final assumption is that the cos[2(km-kn)z]

oscillation in the last integrand is slow enough that we can factor it out of the integral as its

average value from 0 to 8z, i.e. we take:

f.W cos[2(km-kn)z] dz - qrn W dz,

4.24

qnmn I[ I4 + cos[2(k.-kn)Sz]]
2

When I m - n I = 1, qmn = 0.9, and for I m - n I = 2, qmn = 0.65, so the cosine term is

nearly constant over the length of the YAG crystal and the approximation is good for

closely spaced modes. (Note that the first term of qmn is 1/2 because the lower limit of
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integration is zero for our cavity, where the input mirror is deposited on the end of the

YAG crystal. For a cavity with the YAG rod at an arbitrary coordinate z, the general form

of qmn is (1/2) {cos[2(km-kn)Zl] + cos[2 (km-kn)(Zl+8z)] }.)

With the approximation in (4.24), we complete the reduction of (4.23):

L Wu u n dz [.. ]w + 2[Wm"' + Wnn,. 4.25

We also need an expansion like (4.25) in the case where m=n, which makes qmm = 1. In

this case, we need no approximation:

W U m dz = W +
L 8 4.26

We now combine (4.21), (4.22), (4.25) and (4.26) to produce a first order truncation to

(4.7) which models a general two-mode class-B laser:

Am = - mAm + SAmWmm 4.27.a

An= -Fn An + 6 An Wnn 4.27.b

= F(W - Wo) - A [ImWmm + InWnn] 4.27.c
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Wmm = Wo/2 - Wmm[ r + Um + ln/2] - .InWnn/2 + 1i W[Im + (qmn - 2 ) Inu 8

4.27.d

Wnn = I"Vo2 - Wnn[ I'+On + Mn 2 ] - 1ImWmm/ 2 + 1 W In + (qmn - 2 ) Im]/ 8 .

4.27.e

These equations are very similar to the rate equations (2.8). When we make a

correspondence between Wmm and the gain variable Gm, we see that our field equations

(4.27.a and b) directly reproduce Baer's intensity equations (2.8.a and c). Also, the first

terms in (4.27.d and e) correspond to the gain equations (2.8.b and d) for a cross

saturation 03 of 1/2. The additional terms in (4.27.d and e), and the new equation for the

average inversion W (4.27.c) directly couple the dynamics of Wmm and Wnn. These new

terms do not appear in other multimode equations for intracavity doubling. We interpret the

relations (4.27.c,d, and e) as follows. The differential equation for Wr (4.27.c) describes

how the overall population inversion changes in time. The variables Wmm and WnM

represent first order corrections to the average inversion, at frequencies of the respective

modes. All three inversion variables are directly coupled in (4.27.c,d and e) because the

two lasing modes are competing for a single pool of excited particles whose average

inversion is measured by W.

The effect of the mode separation in (4.27) is carried in the coefficient qmn. For

further separation, qmn becomes smaller and decreases some of the coupling in (4.27.d and

e). We will later see in the three mode case how certain ranges of pump strength "select"

different mode separations, so that some mode pairs cannot coexist at particular pump

levels. This phenomenon is not observed in the previous rate equations (2.24) since they

include no information regarding mode spacing.
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Fig. 4.1 Numeric Integration of (4.7) With and Without Fast Exponential Terms.
Note the large difference in time scales in the four plots. (b) and (c)
represent a small segment of (a); (d) is an even smaller segment of (c).
The plots suggest we can average the fast oscillations out of (4.7) with
no loss of important dynamical information.
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We used a sample integration of a single mode, with the coefficient e set to zero, to

numerically examine the influence of the fast oscillations in (4.7) which we have neglected

up to this point. The numerical time history shown in Fig. 4.1(a) does not include the fast

oscillations; the oscillation frequency is extremely high, so the long computation time

forced us to make our comparison on a very short time scale (Fig. 4.1(b) and (c)). The

numerical solutions with and without the fast exponentials are indistinguishable; the close

up of the solution computed with the fast terms (Fig. 4.1(d)) suggests that the fast

oscillations have a negligible effect on the slower motion of (4.27).

With a better intuition of the relative magnitudes of the fast and slow oscillations in

(4.18), we now take a perturbative approach to averaging the fast terms to zero. We let

m=l, n=2 in (4.18), and the additional variable W12 is defined by (4.20). Let A be the

vector (Al, A2, W, WI 1 , W22, W12), so we can express (4.27) as

A = F(A) 4.28

where F, the right hand side of (4.27), does not include the fast exponentials that appear in

(4.18). Since W12 is included in A, but does not appear in (4.27), we take dWl2/dt = 0

in F. This is the averaged equation where we have assumed that the effect of the

exponential terms is negligible. We want to compare (4.28) to (4.18), rewritten here in the

first order truncation:

A I= - AIA1 + [AIW1 l - DI+ SA2 W 12 e-iAt 4.29.a

A,2 = -r 2 A2 + A2 W22 - D2 + 6AIW 1 2 e+ iAt 4.29.b
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W = -r(W - Wo) - A[IlWll + I22W 22 ]

- 1 A1 A2* W12 ei' t + c.c] 4.30.a

*V = rWo/2 - w 1 [r+fail +ft0 2/2] - 1I2W22/2 + t W[Ii + (q12-2)12]/8

- [AI A2* W1ll 2 eiAt + c.c]

4.30.b

r22 = I"Woi2 - W 22[ r+ 12+ fill/2] - HIiWI1/2 + r ft[ 12 + (q12- 2)II]/8.

- [ Al A2* W1222 ein t + c.c]

4.30.c

V12 = -FWI 2 - dI 11W1112 + 122 W1222 1

- a [ AI A2* W 1122 eiAt + c.c] . 4.30.d

We note that W12 = W21 by definition; the frequency doubling losses have been combined

in Di and D2; "c.c." stands for complex conjugate, and the four-subscript variables are

defined like the Wij in (4.20):

Wijkl W ui uj UkUl dz 4.31

The Wijkl must be approximated in terms of the lower order variables; this is accomplished

by the same sort of procedure carried out in (4.23) through (4.25). For the averaging
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problem at hand, it suffices to note that such approximations exist. We write (4.29) and

(4.30) in the general form:

A. = F(A) + G(A,1/A,t) 4.32

where the function G includes all the fast exponential terms, as well as the entire W 12

equation (4.30.d). The small parameter in G is l/A, the inverse of the frequency spacing

between modes; A is 0(10 GHz). Over short time intervals, where A is essentially

constant, G averages to zero, so we would like to show that G represents only a small

perturbation to the averaged system of equations (4.28). We show this using a simple

transformation suggested to us by Jack Hale, found in Chapter 7 of his text on ordinary

differential equations (Hale, 1969):

BI = A1 + I- (bA2W12 e t ) 4.33.a
A

B2 = A2 - I (SAlWI2e~"A) . 4.33.b
A

Under this transformation, (4.32) becomes

l = F(B) + - G'(B,l/A,t); 4.34
A

and the function G' is continuous, along with its first derivative, and bounded (see the

discussion of the absorbing rectangles Ui in Chapter II). Then the theorem from which we

draw (4.33) (Hale, 1969) may be summarized for our problem as follows. Given the
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properties of G and G' above, there exists a critical frequency ock such that, for all A> co ,

an asymptotically stable solution of the perturbed system (4.34) remains within a small

neighborhood of a corresponding asymptotically stable (steady state or periodic) solution of

(4.32). In our particular system of equations (4.29) and (4.30), we do not yet know the

critical value Ock, but the numerical evidence of Fig. 4.1 suggests that our experimentally

determined A is sufficiently large to justify the averaging.

Initial numerical integrations of (4.27), with frequency doubling included, display

dynamics very similar to those of the Baer rate equations for two modes (Fig. 4.2). For

most parameter ranges, the two intensities pulse on and off periodically as in the cases

studied in Chapter II.

0.00 0.25 0.50 0.75 L0

0.0 0.5 1.0

Fig. 4.2 Numerical Integration of the Two-Mode Equations (4.27). Pumping
is 5 x threshold. Total plot time is 100 gis.
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Model for Three or More Modes

All the tools we require to build the model for three or more modes were developed

in the previous section, so we proceed directly to the general form of (4.27) for N modes.

In the last section we structured the equations to make it simpler to compare the new

equations with the form of Baer's rate equations. Here, we scale the variables and

restructure the new equations to simplify the generalization to N modes. Along with

(4.24) and (4.25) we require the following scalings:

b=SL I = I Aj12  I,= a
FF

- b r
=rnW Vjj fjWjj oJ 2 7j

4.35.a
tFiw Ftnew = r t Fij -i j E j

ri

p = pump (>1)

with intracavity doubling losses represented by Dj which are now formed with £j instead of

E. Recall that the phase contributions to the doubling terms Dj were averaged ouL We

include the general form of Dj, for N modes Ij in one polarization direction and P modes Ij'

in the orthogonal direction, we have:



214

N P
Dj= -g j Ij + 2 g ej kIIk + 2 (1-g) E kIIk'  4.35.b

k=1 k=1

We have arbitrarily scaled W with respect to rnl, as a reference point; this allows us to

simplify the general form of the equations (with tildes removed from scaled variables to

avoid clutter):

Oj ij = Ij(Wjj - 1 - Dj) j=ni, n2,..., nN

N
W= flp- W- YFkIlkWkk 4.36

k=l

N
W iJj=f -- P wi 2 Ik [(Wjj + FkjWkk)/2 - (qjk - 2)FljW"]

k=1

j=n I, n2..... nN ,

where {fnj, j=l,...,N) is the indexing set for the N modes. We have again neglected the

fast exponential terms of (4.7) which average to zero. The assignment of polarization

directions to Ij in (4.36) has been suppressed here.

An interesting feature of (4.36) is the connection between pump strength and

allowable mode separation. We observe this connection in numerical solutions of (4.36)

for three modes, where we assume mode-2 is centered between two symmetric side modes,

I and 3. First we let the frequency spacing to each side mode be only one cavity mode

spacing (c/2L), and we numerically integrate (4.36) with no frequency doubling (c = 0)

until the system reaches a stable steady state. We also impose 5% higher losses on the side
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modes than on the central mode. Under these conditions, we find that different pump

strengths produce a wide range of relative steady state intensities for the center and the side

modes (Fig. 4.3(a)). When we reset the intermode spacing to twice the cavity mode

spacing (c/L), the range of pump values where all three modes are on differs from the

previous case (Fig. 4.3(b)). This evidence indicates that the level of pumping, combined

with the cavity's gain profile, weeds out certain frequencies and enhances others. This is

consistent with the results reported by McMackin in a comparable model for dye lasers.

A numerical integration of (4.36) appears in Fig. 4.4, with N=3 (all modes in the

same polarization direction) and modes separated by one cavity mode spacing. The total

fundamental intensity trace in Fig. 4.4(b) shows a different kind of intensity output than we

have seen in other models. We see similar beating in some experimental output

(Fig. 4.4(c)); the information about mode spacing included in this new model seems

necessary to reproduce this phenomenon. We note that the time scales of the numerical and

laboratory experiments do not coincide, so more integrations are necessary to observe the

changes in output intensity as the mode separation is changed.
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p = 7.0

p =6.0

LLL.p = 5.0

p= 4.0

p=3.0

p= 2.0

p= 1.5

(a) one cavity mode (b) two cavity mode
spacing spacings

Fig. 4.3 Changes in Steady State Intensities as Functions of Pump Strength.
(a) steady state limits of (4.36) for modes separated by one cavity mode

spacing, with 5% greater loss for side modes. (b) modes are separated
by two cavity mode spacings.
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0.0 0.75 msec

(a) 0.75 msec

0.0
0.75 msec

0

0.0 0.75 msec

(b 
I ' " F "R"

0.0 0.75 msec

II I
total time = 100 ms

Fig. 4.4 Slow Beating in Three-Mode Systems. (a) individual intensities in numerical
results, (b) total intensity of numerical integrations, (c) experimental
output of total intensity. Note the difference in time scales.
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This section followed the approach of (McMackin, et al., 1988) to develop a

general set of rate equations, for a multimode class-B laser, with features not included in

other models. In these equations, the population inversion is treated as a spatially averaged

quantity with frst order corrections whose frequencies are those of the active longitudinal

modes. Spatial overlap is accounted for explicitly by the coupling coefficients which

depend on the frequency spacings between neighboring modes. Numerical integrations

show how the pump strength and mode asymmetries interact to select preferred longitudinal

mode frequencies, and exhibit slow beating in the total intensity which has not yet been

observed in integrations of other models.

Three-Level Model

In Chapter I we approximate the lasing process in a YAG as a two-level transition

(Fig. 1.3). There are actually four energy bands or levels involved in the process, but we

assume that two of the decay rates (out of E3 and E1 ) are so fast that we can neglect their

role in the laser dynamics. The time scales of these energy transitions are unique to each

active medium; the two-level approximation is invalid for other types of lasers. The CC 2

laser is an important example of such a laser, where the decay out of the lower lasing level

El is slow enough it mush be included in the rate equation model. Dynamically, the need

for the third level in the C02 equations is necessary because chaotic behavior is observed

for singe-m output. If the model includes only intensity and gain equations, the

Poincar&Bendixson theorem prohibits any chaotic dynamics; the single-mode equations

need another dimension to produce chaos.
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M 2 ,

Pump P
Stimulated
Emission

R21
M 1  R R20

M 0  R 10

Fig. 4.5 Three-Level Rate Equation Scheme.

We now formulate a three-level rate equation model for the intracavity doubled

YAG laser, inferred from the schematic of energy transitions in Fig. 4.5. The approach

and the notation used here follow the discussions in (Tachikawa et al., 1987; De Tomasi et

al., 1989). We assume the transient population in the highest energy level E3 is negligible,

and let M2, MI and M0 be the populations of the respective energy levels. The pump rate P

excites ions from E0 to E2 in the three-level approximation. The lasing transition due to

stimulated emission is shown between E2 and El. The other three energy transitions are

spontaneous decay rates between the three levels, where R20, for instance, is the

spontaneous decay ,"Aom E2 to E0.

We normalize M1, M2 and M3 so their sum is 1, and define D = M2 - M1

(inversion) and S = M1 + M2 . The rate equations for D, S and the single-mode intensity
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I can be written directly by including the appropriate gain or loss terms in Fig. 4.5. First of

all, we know the intensity dynamics depend on D and not on S and if we scale time

tnew = 2rlt in terms of the cavity decay rate rI then we write the scaled differential

equation for intensity:

i = I ( BD - 1 - frequency doubling terms, 4.37

where B is a scaling for the population inversion D. There are five relevant energy

transitions in the differential equation for the inversion:

= _-1 (PM0 - 21D[2rib] - R20M2 + RIoMI - 2R21M 2 ) 4.38
2I1

where the terms represent the pump transition and stimulated emission and the three effects

of spontaneous emission. We note that the R10M1 term is positive since it serves to

increase the inversion; there is a factor of 2 in the last term because the transfer of one

excited particle from level 2 to level 1 increases the value of D by 2.

Similarly, we write the relevant transitions for S:

_L (PMO - R20M2 - R1M,) . 4.39

2F1

The transitions between levels 2 and 1 do not explicitly influence the dynamics of S since S

is the sum of these two populations.

We now rewrite these differential equations in terms of the Maxwell-Bloch

variables derived in the previous section. This allows us to see how the additions of the

third level to the model changes the single-mode equations (4.14). We observe that R21 is
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the upper state decay rate we call F (which is 4.0 x 103 s"1 for Nd:YAG); we assume that

particles decay from E2 to E0 at the same rate, so R20 = F. We also include a new

parameter FO = R10 (2.0 x 106 s-1). The single-mode equations for the three-level

intracavity doubled laser are then

0 i - I(W - 1 - doubling terms) 4.40.a

W = (l+p) - !W(5 + go +21) - iS(1-go) 4.40.b

S=(+p) - W(1 -go) AS(1 + go) 4.40.c

where p is the pump percentage above threshold, go = F0IF, W is the average population

inversion, 0 is a small (dimensionless) time constant, and cavity losses have been scaled to

1. Numerical integrations of (4.40) show the same qualitative behavior as (4.14): transient

oscillations to a stable steady state. No periodic or aperiodic solutions were observed for

integrations with several values of pumping p and coupling coefficient s (in the doubling

term). Our next step is to generalize (4.40) for two and three modes.

When we compare (4.40) to a similarly scaled version of (4.14) we see that the new

terms in (4.40.b) due to the presence of the third energy level are

W(3 + go) - S(1 - go). 4.41

To get two-mode equations comparable to (4.27), we note that the intensity equations

(4.27.a and b) do not change in the three-level model, so we begin by adding (4.41) to the

scaled W equation (4.27.c):
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W = (l+p) - W -I1 W1 - 12 W22

4.42

-W(3 + go ) - S (1 - go).

The differential equation for S in the two mode case is the same as before (4.40.c). Recall

that W1I is defined (4.20) as a normalized integral of W with sine functions. We define

new variables Sjj the same way:

Sij= Suiujdz 4.43

and we get the following equations:
11 .1 ( -o

11= 1(1+p) - W - IIWIIII - I2WI122 - i(3+go)Wl! - !(1-gO)SII

4.44.a

1 1 1
Sl i = (l+p) (1-go)Wil - (l+go) Sl 4.44.b

where Wiiij is defined by (4.25); the equations for W22 and S22 have the same form as

(4.44). This is a straightforward correction to the the previous rate equations (4.27). Most

importantly, the Sjj equations do not introduce any new four-index integrals which require

approximation. Therefore, these equations need no more simplification to model the two-
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mode dynamics, as long as the three-level approximation to the lasing process is valid. We

can also directly generalize the correction terms for an arbitrary number N of modes:

0 = Ij ( W - 1 - doubling terms) 4.45.a

N
W = (+p) -W- lIk Wkk 4.45.b

k= 1

1 1I W(3 + go) - iS(1 - go)

* 1 N
Wjj (l+p) - i- k k Wjjkk 4.45.c

k= 1

1 1
- (3+go) Wjj - (1-go) Sjj

1 11

Sjj = l(l+p) - (1- go) Wj - 1(1 + go)Sj , 4.45.d

j =1, 2, ... N.

Initial numerical integrations of the two-mode equations (Fig. 4.6) and the three-

mode equations ((4.45) with N=3) show no new types of solutions; two modes display

steady state and periodic behaviors, and the transitions to chaos are not noticeably different

for three-modes. These results confirm validity of the two-level assumption made for the

rate equations in Chapters I and II.
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*-0

0.00 0.25 0.50 0.75 1.00

0.0 0.5 1.0

Fig. 4.6 Numerical Results for Two Modes in the Three-Level Model. The total
time is I gsec.
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Modulated Parameters

The rate equations (3.25) developed in Chapter IHI are deterministic equations that

can generate chaotic intensity time histories. These equations are derived under the

assumption that the input pump beam is perfectly steady and that cavity loss rates are

constant. It is straightforward to include the modulation of cavity parameters in the

equations; two examples are discussed below. The addition of noise to the equations, for

instance, is useful for studying the effects of spontaneous emission noise and the

sensitivity of the laser system to non-steady pumping. The second example, the forced

periodic modulation of the pump, is a common technique in laser spectroscopy, where a

particular frequency (usually at the frequency of relaxation oscillations) is amplified by the

input modulation (Chakmakjian, et al., 1989; Hamilton, et al., 1987; Petersen, 1989;

Kozlovsky, et al., 1989). We briefly present the changes in (3.25) necessary to apply

these modulations; the analysis of the resulting equations remains an open problem.

The constant pump term y in (3.25) does not multiply any of the time-dependent

variables, so we can apply established techniques for including additive noise in our

equations (Vemuri and Roy, 1989). We consider the two-mode case, first with white

noise. Given two independent random numbers a and b at each time step t, uniformly

distributed on [0,1 ], we use the Box-Mueller algorithm to generate independent gaussian

numbers with variance 2DAt (for an integration time step At):

ql(t) = -F-4 D At ln(a) cos(27tb)

4.46

q2(t) = "-4 D At ln(a) sin(27rb).
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We then define the time-dependent pump term Pj(t) = y+ qj(t) (j=l,2), and put Pj(t) into

(3.25) in place of y.

To add colored noise to y, we need an additional differential equation for each noise

term. We still generate qj as above, with normal distributions, but we define

Pj(t) = y + Qj(t), where

S= -Qj + Xqj 4.47

Qj(O) = qj(O) j = 1, 2

and IA is the correlation time of the colored noise. The noise term Qj(t) has zero mean and

correlation function (Qj(t)Qj(s)) = DXexp(-Xlt-sf). The time-dependent pump term Pj(t) is

placed directly into (3.25).

The periodic modulation of the pump can be accomplished in the same way, where

the time-dependent term qj(t) added to y is simply a sine function with a selected frequency

and amplitude.
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CHAPTER V

CONCLUSIONS

The new model for intracavity frequency doubling in Chapter HI exhibits many

phenomena which have also been observed in experiments. The new set of rate equations

derived in Chapter IV carries more information about individual modes and their frequency

spacing, and reproduce at least one experimentally observed behavior which has not been

reported in numerical solutions of other models. Our suggestions for future research

highlight several unresolved issues about these two models, but the next steps in this

research mostly center around modifications to the models.

The main loose end in all our rate equations is the calculation of the cross-saturation

parameter P. We treat J3 as a free parameter in this thesis, either using previously published

values, or making numerical data fit the character of experimental output. There are explicit

formulae available to estimate P (e.g., Sargent, et al., 1974) and it is routinely estimated for

other types of lasers (Yamada and Suematsu, 1981); the appropriate calculation needs to be

carried out for the intracavity doubled Nd:YAG laser.

While our new model for intracavity doubling in Chapter III addresses the

polarization states of longitudinal modes, it does not consider any possible effect of the

polarization of the input pump beam. Laboratory tests show the pump beam from the diode

laser to be nearly linearly polarized. This polarization may in fact have no influence on the

polarization of cavity modes, but this effect has not yet been studied.
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Even with the models in their current form, there is a need for more appropriate

formats for the output. Our Poincar6 maps of the gain variables, for instance, are essential

to understanding the dynamics of the various models. However, these maps do not

correspond to any directly measurable quantity in the laboratory. It would be very useful to

compile a set of utility programs which process our current numerical output in a form

more comparable to experimental data. The FFTs of total intensity output already serve

this purpose; other examples include: return maps (plots of I(t+At) versus I(t)); correlation

functions; histograms of intensity values, intensity peaks, or peak-to-peak times; and

estimates of Lyapunov exponents.

There are several straightforward variations to our models which bear further

investigation. The addition of noise or pump modulation to the models is discussed in

Chapter IV. The influence of asymmetries has not yet been addressed in depth. This is an

especially important issue, for the following reason. In a laser with three oscillating

modes, it is seldom the case that all three modes have the same magnitude. Quite the

contrary, at a lower power level where only two modes oscillate, an increase in power past

a certain threshold causes the third mode to appear only slightly at first; higher powers

usually have several modes oscillating with vastly different relative magnitudes. This

situation, for instance, can be modeled by assigning different gains and losses to each

mode in the model.

Another interesting problem is to see how the numerical integrations match

experimental output for cases of more than three modes. Some of our laboratory data, for

instance, have six modes oscillating in one polarization direction and two modes in the

orthogonal direction.

The complete analysis of the Chapter IV rate equations remains an open research

topic. The steady state results illustrated in Fig. 4.3 suggest that the effect of mode spacing
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on the linearized analysis may itself be a difficult analytical problem. There is much to be

learned from a thorough series of numerical integrations of this model. Future work on

these equations also needs to include the polarization states of the longitudinal modes which

have not been accounted for yet in this particular model.

An unresolved issue in the analysis of our models concerns the Poincari maps,

upon which we rely to observe the intermittency route to chaos, for instance. We generate

these maps numerically, but it remains to be seen if we can construct an appropriate analytic

approximation to the true map (which requires integration of the coupled set of differential

equations). The construction of an approximate map would serve as an important check for

our numerical results.

The larger problem of characterizing intermittent flow through an invariant measure

on the dynamical system is discussed in Appendix C. Several important issues arise,

including: how to "best" approximate an appropriate invariant measure for the system, and

how to infer estimates of the duration of laminar or turbulent behavior from such a

measure. There is also an interesting aside to this problem: how to use a technique

designed for approximating invariant measures (one of the cell mapping techniques, for

instance) and use it to calculate other statistics for the flow, such as Lyapunov exponents.

Some of this work has been accomplished already, but there may be room for improvement

using new variations of cell mapping (Tongue and Gu, 1988).

The intracavity frequency doubled laser has been shown, in theory and experiment,

to be a model system for studying a wide range of dynamical behavior. Analytical and

numerical results demonstrate that our new model for intracavity doubling successfully

predicts the stable and unstable configurations for several applications of the general model,

and reproduces the experimental behavior of a one-, two- and three-mode Nd:YAG laser.
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Comparable ranges of behavior can be observed, in both laboratory and numerical

experiments, by the variation of a single control parameter. Overall, the intracavity doubled

Nd:YAG laser is found to be a paradigm for investigations of nonlinear dynamics.
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APPENDIX A

THE MAXWELL-BLOCH EQUATIONS

This appendix is a brief comment on the background of the Maxwell-Bloch

equations. These semiclassical equations are a well-established standard for describing

single-mode laser dynamics; details of their derivation can be found in (Haken, 1975;

Sargent, et al., 1974; Arecchi, 1987) among others. The following description summarizes

discussions found in (Roy, et al., 1989; Arecchi, 1987).

The derivation begins with the quantum form of the molecule, radiation and

interaction Harmiltonians. Decay rates for the electric field, molecular polarization, and

population inversion are introduced by including the interactions of the molecules and

radiation with reservoirs. In the semiclassical approximation to these equations, the

quantum operators are replaced by their classical expectation values (according to

Ehrenfest's Theorem (Borowitz, 1967; Park, 1964)), and factored under assumptions of

statistical independence.

The single-mode Maxwell-Bloch equations that result are (in their simplest form):

= -(imc +k)E + gP

P= -(ioo+ y_) P + gEA A.1

A = -y11(A-Ao) - 2g (E*P + c.c.).

The time-dependent variables are electric field amplitude E with angular frequency ok,

molecular polarization P, and population inversion A. Their respective decay rates are k,
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yL and y i,; g is proportional to the atomic dipole moment, co is the resonance frequency

of the molecules, and A0 is the equilibrium inversion in the absence of lasing.

Arecchi's classification of lasers depends on the relative time scales in (A. 1). A

class-C laser is a system for which the three decay rates are of similar orders of magnitude,

and all three equations in (A.1) are necessary to describe the single-mode dynamics. In a

class-B laser, the polarization decay y_L is very fast with respect to the other time scales,

and P can be replaced by its steady state value. This adiabatic elimination of P implies

that the polarization effectively responds instantaneously to any changes in the other

variables, such that only two differential equations are necessary to describe the single-

mode dynamics. This is a reasonable approximation for Nd:YAG and C02 lasers, for

example. Finally, class-A lasers are those whose field variations are slow with respect to

changes in polarization and inversion; both P and A can be adiabatically eliminated and

replaced by their steady state values in the E-field equation. This class of lasers includes

dye lasers and atomic gas lasers.
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APPENDIX B

PARAMETER VALUES

In this appendix we identify the sources, or give sample calculations, for the

parameter values used in our model equations. The parameter notations apply consistently

to variables used throughout the thesis; the calculated values correspond to a 5.0 cm cavity

with 98% reflection of the fundamental wavelength at the output mirror.

Some of the parameters of interest are physical constants:

Eo= 8.85 x 10-12 C2/N.m 2  permittivity

h = 6.6 x 10-34 J.s Planck's constant B. 1

fi = h/2n = 1.0x 10-34 J-s

c = 3.0 x 108 m/s light speed.

The next easiest parameters to get are physically measurable properties of the

Nd:YAG crystal and cavity:

n = 1.8 average refraction index

(Svelto, 1989)

L = 5.0 x 10 -2 m example cavity length

I = 8z = 5.0 x 10-3 m YAG crystal length

diam = 3.0 x 10- 3 m YAG diameter
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No = 6.0 x 1025 / m3  number density of Nd+3 ions for
a 1% concentration in YAG
(Svelto, 1989)

= 0.24 x 10-3 s fluorescence or upper state lifetime
(Baer, 1986)

F = l/Tf upper state decay rate

p = 5.0 x 1011 S1 dipole decay or dephasing rate
(Siegman,1986)

T = 0.02 transmission percentage of output
mirror at fundamental frequency

The remaining parameters are combinations of the above quantities:

2rc 18.0 x 1014 s 1  fundamental frequency
x

V - 3.0 x 1014 s-1  fundamental frequency
27r

2L

L - 1.7 x 10-8 s cavity (field) decay time

FL = 1/'td cavity decay rate

d2 = IgI2 - 3jhhc 3  - 8.0 x 10-62 c2.m2  dipole moment
162r3v3n

=2L 3.3 x 10-10 s cavity round trip timeC -- C
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a - 2T = 0.04 intensity mode loss
'Ef

We also include a scaling between watts (W) and squared field (V2/m 2) which was

useful to change the units of def 2 , the measured KTP doubling coefficient, in (3.12.a):

(+X+Dm)Cb)
N 2  1 d V2 B.2

(-s) m)c ) m- ; ) = 2

where D is an appropriate atomic length, on the order of 1 A.

The above expressions give measurable estimates for all the parameters we need

except for the cross saturation term, 3. Theoretically, 13 assumes values from 0 to 2

(Siegman, 1986) and the fact that experiments do not display bistable behavior indicates

that 0 < P3 < 1 (see Appendix E). The specific value of 13 depends on the degree of

spatial overlap of modes in the gain medium, so that 13 is close to I for modes which are

strongly correlated, and P3 is small for modes which are anticorrelated in the gain medium.

The amount of overlap for two modes can be estimated by integrating the product of two

sine functions, with the same frequencies, over the length of the gain medium (and scale

the result to vary between 0 and 1). This is the closest approximation we have for 13 as of

this writing.
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APPENDIX C

INTERM1T=ENCY

Numerical integrations of the three-mode rate equations in Chapter II display an

intermittency route to chaos. This appendix provides a brief overview of intermittency and

its classification into three types in (Pomeau and Manneville, 1980; Berge, 1984); most of

the following discussion is taken from these two sources. Extensive references about the

theory of intermittency, and its observation in physical systems, appear in the groups of

references entitled: Experiments Displaying Intermittency; Intermittency Theory; Entropies

and Dimension with Intermittency; Resonances, Frobenius-Perron Operators and Power

Spectra; and Scaling and Renormalization.

The theory of intermittency in nonlinear dynamical systems is not yet complete in

many ways. For example, there do not appear to be any good algorithms for estimating the

times of metastability and the transition times between metastable states. When the

intermittency is not associated with a bifurcation from a nearby equilibrium, we are not

aware of any useful estimates other than for linear systems. In this light, we also discuss a

new way to characterize an intermittent system proposed by Evans Harrell which remains

an open research topic.

Any regular time-dependent behavior (usually periodic) which is occasionally

interrupted by irregular, turbulent behavior can be described as intermittent. We call the

regular regimes of intermittent behavior laminar or metastable flow, and the irregular

regimes turbulent. Intermittent behavior is easily visualized in turbulent flow in water or

air. In the laser rate equations, a sample of intermittent flow appears in Fig. 2.16.
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We let rt be the transition value of some control parameter in a return map or system

of equations where we observe stable, periodic observations for r < rt, and we see

apparently periodic behavior interrupted by turbulent bursts for r > rt. It is important to

note that neither the amplitude nor the duration of the turbulent behavior depend strongly on

r, only the average duration of the laminar behavior. The classification of intermittent

behavior is based on the linearized analysis of the fixed point in a Poincare map as r passes

through rt. There are three classifications:

Type 1. A real Floquet multiplier increases through +1.

Type 11. Complex conjugate Floquet multipliers exit the unit circle.

Type Il. A real Floquet multiplier decreases through - 1.

These classifications are based on strictly local phenomena, i.e., the linearized analysis of a

limit cycle. At the onset of intermittent behavior, as r just surpasses rt, the laminar flow

resembles the previously stable limit cycle. Turbulent flow is observed when a trajectory

leaves the neighborhood of the now unstable limit cycle to wander about in phase space.

To observe intermittency (with recurring laminar behavior) there must be some global

process of reinjection which drives a trajectory back to a neighborhood of the limit cycle

in finite time. This reinjection process is unique to each dynamical system and is not

accounted for in the Pomeau-Manneville classification. We now examine the three types of

behavior in terms of their local bifurcations and estimates of the durations of laminar flow.



238

Type I Intermittency

We characterize the destabilization of periodic flow by approximating the first-

return map locally, with a one-dimensional Taylor series. Suppose we have a

multidimensional dynamical system and define a Poincar6 map on a transversal in the

neighborhood of a periodic orbit. This orbit is represented by a fixed point for the Poincar6

map. Let u be an eigenvector of the map of the fixed point. Then multiplying u by the

Floquet matrix is equivalent to multiplying by the parameter-dependent eigenvalue X(r):

Un+l = .(r) Un C.l

where "k passing through +1 at rt" translates into

(rO = 1, and 0. C.2
drC2

We look at a representative coordinate y of u and approximate Yk+l = f(yk,r) near rt and

near the fixed point y*, i.e., y* = f(y*,r. Near rt the first return map is nearly the

identity, so we approximate it by

Yk+I = Yk + E + yk2 + higher order terms, C.3

where

= r- rt (or rrtrt

Fixed points of (C.3) exist only for c < 0: y± = ± (-c) 1t2 (see Fig. C.1). The local

quadratic in Fig. C. 1 (a) slides upward with increases in e. We calculate



239

Yn. i

(a)

1

yn
Y- Y.

Yn. 1

(b)

yn

Fig. C.I Local Approximation for (C.3). (a) The fixed point y. is stable;
y+ is unstable. (b) When E > 0, there is no fixed point and a channel
forms where the flow is nearly the identity.
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f(y±.) = I ± 2(-E)1 /2 and find that y. is stable and y+ is unstable. When e > 0, we see there

is no fixed point (Fig. C. I (b)) and a local channel is formed for the flow. This channel is

not merely an artifact of our approximation, it appears very clearly for the second (y)

coordinate in the Lorenz equations (Pomeau and Manneville, 1980).

We can derive general scaling laws for the passage time through this channel,

which corresponds to the duration of laminar flow, as follows. If Yk+1 - Yk then (C.3)

implies that

kv Ykl -Yk
dk (k+1)-k = Yk+1-Yk C.4

so in the narrow channel we have

y e + y 2  C.5dk

which essential represents the coordinate distance traveled per iteration. The general

solution to (C.5) is y(k) = E1/2 tan [E1/2 (k-ko)], where ko is the iteration number referenced

to the waist of the channel; we take ko = 0. This solution diverges for k = ± I - so this

defines the iteration limit at which the approximation (C.4) is no longer valid. It also

indicates that the number of iterations needed to cross the channel is of order E-l/2; this is an

estimate of the average laminar duration for Type I intermittency. We note that the

Lyapunov number associated with a trajectory is on the order of (I/correlation time), so for

intermittent flow, the Lyapunov number should be O('./12); this is confirmed by numerical

integration of the Lorenz model in (Pomeau and Manneville, 1980).

The above estimate for average laminar duration leads to a heuristic probability

distribution for laminar flow duration (the analytic probability distribution remains an open
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topic of research). Pomeau and Manneville point out that the duration of laminar regimes is

bounded above by a term of O(e-4 /2) and there is a higher probability of reinjecting into the

laminar regime for y<y* than y>y* (where the tendency is to exit the laminar regime). The

heuristic distribution which results is shown in Fig. C.2.

0(1/E)

Laminar Duration

Fig. C.2 Heuristic Distribution of Laminar Durations for Type I Intermittency.

Type I ntermittencv

For this type of intermittency, the flow near the fixed point of the first-return map is

approximated by a relation similar to (C.3) (see Berge, et al., 1984, for details):

Yn+I = (1 + ) Yn + I9 yn3 + higher order terms. C.6
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The estimate of average laminar duration which results is inconsistent with numerical

experiments; Pomeau and Manneville admit there is less known analytically about the

statistics of Type II intermittency than about the other two types. The best analytic

treatment we found for this type of intermittency was (Argoul, et al., 1988), which

concentrates on a specific three-dimensional model exhibiting Type I intermittency.

Type Il Intermittency

In this type of intermittency, the Floquet multiplier decreases through -1, so the

local linear approximation to the first-retum map is:

Yn+1 = - (1 + ) Yn . C.7

This is different from the local flow for Type I intermittency where the fixed point

disappears as e increases through 0. Here, the fixed point still exists, but loses its stability.

To see the bifurcation in this case, we use a local cubic approximation, because we

eventually need to follow the 2-cycle fixed points (i.e., fixed points of the Poincard map

composed with itself):

Yn+1 = (1+) Yn + ayn2 + 3 yn3  C.8

so that

Yn+2 = (I + 2 E) Yn + byn3  C.9

where b = -2 (f3 + aX2). We note that the linear term here is approximately +1, and there is

no quadratic term, within 0(E). If b < 0, we get period doubling as E increases through 0.



243

If b > 0, we get the inverse pitchfork illustrated by the laser rate equations in Chapter HI.

As before, we approximate the derivative of y near the fixed point:

Yn+2 - Yn 4 = y(2e + 0 yn2 ) C.10

and we scale y by (20A3) 1/ 2 and scale k by (liE) to get

dL = y (I + y2). C. 11

The scaling suggests that the average laminar duration is of order (l/E) , and that the

average amplitude of fluctuations from the laminar behavior are of order v-/ 2. There is no

upper bound on laminar duration imposed by the approximation (C. 10); is it characteristic

of Type Il intermittency that the distribution of laminar durations can have an infinite tail.

The heuristic distribution of laminar durations proposed by Pomeau and Manneville is

shown in Fig. C.3. We find in Chapter II that the statistics we gather from a numerical

solution to the laser rate equations has the same features.
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0
03

Laminar Duration

Fig. C.3 Heuristic Distribution of Laminar Durations for Type Ill Intermittency.

We emphasize above that the Pomeau-Manneville intermittency categories only

consider local properties of the flow. Evans Harrell proposes that we attempt to

characterize intermittency by estimating the time of laminar duration from an invariant

measure of the flow in phase space. We illustrate this idea in Fig. C.4 with a sketch of the

phase space for a metastable system, for instance, a driven pendulum with the equation:

x" + A3 x' + sin x = f cos(Ot). For certain parameter values, the chaotic flow of a single

trajectory fills out a portion of the phase space. Intuitively, we expect a significant portion

of the associated invariant measure to be supported in the periodic wells where laminar

flow occurs; the time spent near the origin, switching from one well to the other, should be

fairly short.
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0_<p_<l

supp(dg)

Fig. C4 Sketch of an Invariant Measure for a Two-Well System.

More generally, suppose that we have the equations of motion for vectors x, in

some manifold M, of the form

dx
dt = F(x). C.12

A nonautonomous equation (like the forced pendulum) can be convened to an autonomous

system like (C. 12) in a standard way by adding an additional dimension z, where
d

dz/dt = 1. Let Ot(x) be the solution operator such that j 4t(x) = F(4t(x). While the

solution operator moves individual solutions along flow vectors in the phase space M, the

linear operator

exp(t F. V) C.13
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describes the corresponding flow on an appropriate vector space of functions on the phase

space, e.g., LP(M,dg) for some p. We observe, for example, that (F V) operating on the

identity is zero, and (F- V) s = 0 for any invariant set S, since Ot(S) = S and so

exp(tF-V) Xs = Xs.

Here is a possible approach to characterize intermittency. Suppose we identify the

support of a suitable invariant measure d. and let p be a smooth cut-off function which lies

between 0 and I on a subset of that support. Suppose we also calculate F.Vp and find

that

I F.Vp l"L21,d .) = li1 p IL2(M,dg) C.14

where c is small. Then we expect that

exp(tF-V) p - p + O(t P I p II) C. 15

i.e., the support of p is a metastable region of phase space with a characteristic time on the

order of I/e.

A key problem in using this operator is to define the measure d4 on M. We might to

arrange, for instance, for (iF.V) to be self-adjoint on L2 (M,dg). Ideally, dg would be a

stationary measure generated by the dynamical system itself. Unfortunately, such

measures are often concentrated on fractal sets, which makes differentiation as in (C. 14)

problematic. It may be preferable to use instead a Lebesgue absolutely continuous

measure, such as the convolution of the fractal measure with a Gaussian. In analogy with

the situation in quantum mechanics and Markov semigroups (Harrell, 1982 and 1988;
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Davies, 1982) one might hope to relate the metastable times to a property of an eigenvalue

of the linear operator iF.V, such as a near degeneracy or a small imaginary part.

Estimating invariant measures can be a difficult problem; one approach to finding a

measure is to approximate the Frobenius-Perron operator, whose domain is the set of

measures on M (see, e.g., Li, 1976). An invariant measure of the system is a fixed point

of the Frobenius-Perron operator, and an iterative method using this operator can be shown

to converge to an invariant measure in certain cases. For many-dimensional systems (like

our laser rate equations) the approximation to this operator has not been extensively

studied.

Anoher finite approximation to an invariant measure can be found using the Cell-

to-Cell mapping technique developed in (Hsu, 1980 through 1987). In this method, a

bounded transversal of the flow is divided into a finite number of cells. By following the

images of a sample of points in each cell, a probability matrix is constructed that maps a

given discrete measure to its image under the Poincar6 mapping. Iterating this matrix

multiplication has also been shown to converge to an invariant measure on the transversal;

this cell mapping method seems the most tractable technique we found for approximating

invariant measures computationally.
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APPENDIX D

JONES MATRICES

This appendix summarizes the fundamentals of the Jones matrix representation of

electric field (E-field) propagation in a laser cavity. Jones matrices are used in Chapter M

to describe the influence of intracavity optical elements on an E-field during a round trip

through a laser cavity. A good source for more details of Jones matrices is the optics text

by Hecht and Zajac (Hecht and Zajac, 1979); this appendix is an outline of section 8.12.2

of that text, written from the perspective of our intracavity doubled laser.

The Jones technique applies to polarized waves as they propagate along the z-axis

of the laser cavity, with coordinates defined in Fig. D.1. A field vector E(t) with time-

dependent scalar components

E(t) = [Ex(t) D.IEy(t)]D.

completely defines the polarization state of the E-field (we are ignoring any spatial

dependence on z in this discussion). To identify the time-dependent behavior of the

amplitude and phase of each coordinate, we rewrite (D. 1) as:

E(t) =[Eox(t)ei Px(t)] D.2Eoy(t)ei(°y(t)
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X output mirror

input mirror

yZ

Fig. D. 1. Definition of Axes in a Laser Cavity. The z-axis is often referred
to as the "optical" axis.

The following examples illustrate the form of (D.2) for specific polarization states. For

instance, a linearly polarized E-field Eh which is polarized in the horizontal direction, and

the field Ev polarized in the vertical direction, may be written as:

Eh(t) = Eo(t) ei(P(t) [ 0 ] Ev(t) = Eo(t) ei(P(t) [ 1 ], D.3

while an arbitrary linearly polarized field may be written as:

E(t) = Eo(t) ei(P(t) [ a 1D4b (a2+b2)1/2 I

where a and b are constant real numbers. Notice that this is the form which we assume the

E-fields take in Chapter III.
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In circularly polarized E-fields, the amplitudes of the x and y components are equal,

but the phase of one component differs from the other by Pt/2. Right-circular polarization,

for example, is written as:

Er(t) = [ E° (t)ei(px(t) ] D.5IEo(t)e i [(Px (t ) -7r/ 2 ]

We rewrite (D.5) in the normalized form of (D.3):

Er (t) = Eo(t) ei(Px(t) [ 1 ] D.6

and note that E-fields which are not linearly polarized have complex components when

written in this normalized form. The most general, elliptical polarization has the form (D.2)

where Eox(t) is not identically equal to Eoy(t), and there is no fixed difference between Px(t)

and (py(t).

The Jones technique uses these vectors to describe how an E-field propagates

through a laser cavity. To describe the passage of an E-field through any optical element,

we premultiply the vector by an appropriate matrix. (The method assumes all optical

elements have uniform properties which are, in general not z-dependent.) Suppose, for

example, the linearly polarized field in (D.4) encounters a birefringent crystal whose fast

axis aligns with the x-axis of the cavity. Let ix and iY denote the normalized x and y

components of E. The crystal introduces a relative phase delay 8 in the y-component of the

E-field. By convention, the phase shift is applied to an E-field by adding 6/2 to the phase

of the x-component, and subtracting 5/2 from the phase of the y-component, so the matrix

C(8) for such a birefringent element is:
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C(S) = r ei&2 0 ] D.70 ei&2J

and passage through the crystal is described by premultiplication with C(S):

C() E(t) ei&20] Eo(t) ei(P(t) [ a ]

- EO(t) eiP(t) a e i/2

= Eo(t) ei[Wt) ' 2l b - i  D.8

No matrix is necessary to account for an E-field's passage through free space (with

no optical elements); the spatial dependence of the E-field is contained in the amplitude

factor Eo(t) and has simply been suppressed in this discussion. To describe the round trip

of an E-field through a cavity with N elements, we begin at one end of the cavity, and

premultiply by the appropriate matrix for each birefringent element; each matrix has the

form (D.7). The fast and slow axes of adjacent birefringent elements are not generally

parallel. However, the birefringent properties are defined along the direction of these axes,

so the E-field vector must be expressed in terms of the fast and slow directions before

multiplying with the birefringFnce matrix. This operation is accomplished by

premultiplication with a rotation matrix whose angle is prescribed by the relative angle

between the fast axes of the adjacent elements. The most general round trip matrix, then,

includes a rotation matrix
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R(O) [cos 0 - sin 0] D.9R(0) = sin 0 cos 0 D.

between each pair of birefringent matrices (D.7). The general round trip matrix M is then

constructed as shown in equation (3.4).

An E-field must replicate after each round trip through a laser cavity in order to

sustain the lasing process. Thus, the eigenvectors of the associated round trip matrix

completely describe the polarization state of a longitudinal mode in the laser. We use this

polarization information in Chapter IH to calculate the E-field produced in a frequency

doubling crystal (see (3.10)).
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APPENDIX E

ON THE UNIQUENESS OF STEADY STATE POINTS

We analyze the two-mode rate equations (2.10) by assuming symmetric parameters

and linearizing about four steady state points. The first point considered is the "interior"

steady state where both intensities I1 and 12 are positive. The approximate values for

intensity and gain at this steady state (2.12) are accurate to within O(e) when we assume

that the steady state in question has 11=12. In this appendix we argue the uniqueness of this

interior steady state point.

The four relations that must be satisfied for a steady state point of (2.10) are:

GI = a + ElII + 2e12 E.L.a

y = GI(1 + I1 + 312) E.L.b

G2 = a + E12 + 2eIi E.L.c

7= G2 (1 + 12 + P11I)- E.l.d

We substitute the equations for G1 and G2 into (E.I .b and d) to get two quadratic

expressions in I1 and 12:

y = (1 + I1 + 3I2)(at + E I1 + 2 e 12) E.2.a

(1 + 12 + 3I1)(at + E12 + 2e11) • E.2.b



254

If we assume ll=12=ls then (E.2) is simply a quadratic in Is:

y = (1 + [l+3]Is)(ct + 3,Is)

= a + (3e + [1+3] ) Is + 3 e [1+I3]Is2  E.3

with the (positive) solution:

is -(3E+a[l+]) + 4(3+x[1+131)2 + 12e[l+3][y-a] EA
64[1+[3 64[1+3]

Expanding the square root in terms of e confirms the approximation in (2.12):

IS = Y a + O(E). E.5
a[lI+P3]

Now we look for a solution of (E.2) where 11#12. We do this graphically in

Fig. E. 1 (for a similar discussion, with two modes but no frequency doubling, see

Sargent, et al., 1974; Siegman, 1986). We graph (E.2.a) as a solid line, and (E.2.b) as a

dashed line, for different values of the cross saturation (the figure shows sketches redrawn

from numerical graphs). Any intersection in the iirst quadrant represents an experimentally

obtainable steady state solution of (2.10). We find the graphs of each function to be

essentially linear, the reason is evident in (E.3). The quadratic term is multiplied by the
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small parameter e, so (E.2.a), seen as a function of I1, has a small second derivative:

6E[I+p]. Thus, the curve of the quadratics is imperceptible, and the problem is essentially

reduced to finding the intersection of two lines.

We see in Fig. E. 1 that there is an obvious unique steady state point for 13 not close

to 1. For P3-1, there are an infinite number of solutions, i.e. Ial renders (E.2.a) identical

to (E.2.b). For 13 = 1, a numerical calculation is necessary to determine uniqueness of the

solution of (E.2).

The sketches in Fig. E. 1 also illustrate stability information about the four steady

state points (Cases A through D for (2.10)). We find numerically that (for the parameters

in Table 2) the interior steady state is a stable solution of (2.10) when 1<0.9. For 13>1.1,

the interior steady state is unstable, and the equations are bistable. That is, there are basins

12 12

(a) 0 0.666 (b) P = 2.0

Fig. E.2 Intersection of Quadratics (E.2) Indicating Stability of Interior Steady State.
An intersection inside the shaded triangle indicates weak coupling and stability
(a); intersection outside the trangle indicates instability.

I
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of attraction for both of the points where one intensity is positive and the other is zero. It is

pointed out in both references above that the case of weak coupling (3<0.9) is seen

graphically when the two lines intersect inside the triangle shown in Fig. E.2(a). The lines

intersect outside the triangle for the case of strong coupling (3>1.1 in Fig. E.2(b)),

indicating the instability of the interior steady state point.

For the more general equations (2.8) with asymmetric parameters, the graphical

approach still shows the existence of a unique interior steady state point (for 3 not close to

1), but this point no longer has I1=I2. This steady state similarly is stable for small f0 and

unstable for large 3.

The results above further imply that models with three or more modes also have a

unique interior steady state point. Since (E.3) is essentially linear, the problem of finding

an interior steady state point for three modes, for example, is equivalent to finding the

intersection of three planes. The quadratic formula applied to (2.26) shows the existence of

such a solution; this solution is unique because the cross sections of the each pair of planes

must look like Fig. E. 1, so the three planes do not intersect in a line.



258

APPENDIX F

COMPUTER PROGRAMS

This appendix includes the main computer programs used to numerically integrate

the various rate equations discussed in the thesis. A brief description of each program

precedes its listing. We also include some general comments on our choices of integration

routines, program parameters and initial conditions. All programs are written in Fortran 77

and run on the Georgia Institute of Technology Cyber 855 and Cyber 990 computers.

Eigenvalue calculations are performed by the EISPACK routine RG.

Numerical integrations are performed with IMSL routine DGEAR, using the Adams

integrator (METH=l) and the approximate Jacobian (MITER=2). We chose this integrator

over the stiff Gear method (METH=I) and the Runge-Kutta integrator in the IMSL routine

DVERK. We compared extensive calculations with DGEAR and DVERK and found that,

with the same error tolerance (10-8 to 10-12) DVERK generally takes 5 to 10 times longer to

integrate the same two-mode equations (2.24). For example, with TOL=1.0 x 10-12,

DT=50 nsec and 5000 time steps, DGEAR ran the integration in 6 cp sec, while DVERK

ran the problem in 43 cp sec.

The large difference in time scales in our equations (see r and rf in Table 1) does

not force us to use the stiff Gear integrator in DGEAR. The most efficient integrator for

our equations is the DGEAR Adams method, with no analytic Jacobian calculated (i.e.,

MITER=2). We see no gain in speed or accuracy using the analytic Jacobian (MlTER=1).

We run DGEAR with error tolerances from 10-5 to 10-8 and observe no difference

in the numerical results. All numerical data presented in this thesis were run with TOL in

this range of values. We also integrate with a small, regular time step, between 1 and 10
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nanoseconds. We use a fixed time step to allow efficient fast Fourier transforms (FFTs)

of numerical time histories which can be directly compared to experimental data.

The large number of variables in our rate equations make it difficult to numerically

integrate from enough initial conditions to be sure we observe all possible numerical

solutions. We generally choose initial conditions the following way. For the first

integration of a new set of equations, say (2.24), we let the intensity variables be small

(Ij = 0.001) and the gain variables be near their equilibrium values (Gj = aX). We then

numerically integrate until we observed some limiting behavior such as a stable steady state

or periodic cycle. These integrations usually require very small time steps since the

intensity gradients are steep during the early transient times. We form a restart file with the

values of intensity and gain at the end of each integration; the restart file serves as the initial

condition for further integrations with different parameters.



260

POLYAG3 integrates rate equations (3.25) for the special case of three modes

oscillating in the same polarization direction, i.e., N=3, P--O. ("YAG" in the program

name indicates Nd:YAG rate equations, "POL" identifies our new model for polarization

states, "3" indicates three parallel modes.) The program requires an input file of initial

conditions, and keyboard input of: time step, dt; number of integration steps, nsteps; value

for the doubling coefficient, g; and pump strength, p.

The output files are:

TAPE 4: Lists all parameter settings and contains digital time histories of the total
fundamental and doubled intensities; is used to plot time histories like Fig. 3.17(a).

TAPE 8: Contains the values of intensities and gains at the end of the integration; is
used as an initial condition for later integrations.

TAPE 9: (optional) Lists all parameter values and contains FFT of total intensity
data; is used to make frequency plots like Fig. 3.17(c).

TAPE 10: (optional) Lists all parameter values and contains digital time histories of
the intensity of each mode; is used to plot time histories like Fig. 3.17(b).

The program time t is expressed in nanoseconds.
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PROGRA-M POLYG3(TAPE 3,TAPE 4,TAPE 8,TAPE 9,TAPE 10)
C
C USAGE:
C LGO, INITIALFILE(INPUT) ,OUTPUTFILE,RESTAPTFILE(OUTPUT),
C FFTOUTPUTFILE, INTENSITIESOUTPUT
C THIS VERSION INCLUDES SAME-POL'ZATION COUPLING. ALL 3
C MODES SAME
C OUTPUT TOTAL INTENSITIES,INDIVIDUAL INTENSITIES, FFT'S
C THIS VERSION USES THE G-DEPENDENT LOSS-MODEL
C USE IMSL ROUTINE DGEAR TO NUMERICALLY INTEGRATE
C SIX 1ST-ORDER DIFF EQ'S DESCRIBING THE TIME-DEPENDENT
C INTENSITIES AND GAINS FOR 3 MODES IN A ND:YAG LASER
C WITH AN INTRA-CAVITY DOUBLING CRYSTAL.
C OUR CAVITY IS ABOUT 3. CM AND OUTPUT COUPLER TRANSMITS
C .005 OF THE FUNDAMENTAL FREQUENCY
C
C REF: T. BAER, J. OPT. SOC. AM. B, VOL 3, NO 9, SEP 86,
C 1177.
C

REAL II,GI,I2,G2,I3,G3
REAL WK(200000),ITOT(200000),IDUB(200000)
INTEGER IWK(200000)
COMPLEX X(200000)
CO MON /LOGIC/ RISING,THRESH
CHARACTER*1 ANS

73 WRITE (*, 2201)
2201 FORMAT(/' INPUT DT IN NANOSECONDS AND NSTEPS")

READ(*,2202) DT,NSTEPS
2202 FOR4AT(EI1.4,/, 16)

WRITE(*,2203) DT,NSTEPS
2203 FORMAT(/" DT = ",Eli.4," NSTEPS = '*,I6," OK?")

READ (*, 700) ANS
700 FORMAT(AI)

IF(ANS.NE.'Y'.AND.ANS.NE.'Y') GOTO 73
C

C SUBROUTINE KNOB SETS THE VALUE OF DOUBLING PARAM G
C INTEG PERFORMS INTEGRATES THE EQUATIONS IN ROUTINE FCN
C

CALL KNOB
CALL INTEG(DT, NSTEPS, ITOT, IDUB,X,WK, IWK)
END

C
SUBROUTINE INTEG(DT,NSTEPS, ITOT, IDUB,X,WK, IWK)

C
C MAIN INTEGRATION ROUTINE
C

REAL I1,GI,I2,G2,I3,G3,ITOT(NSTEPS),IDUB(NSTEPS)
COMPLEX X(NSTEPS)
REAL WK(3*NSTEPS+200),H
INTEGER IWK(3*NSTEPS+200)
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REAL IlINIT, I2INIT, IINEXT, I2NEXT, I3INIT, I3NEXT
REAL Y(6)
CHARACTER*1 ANS
EXTERNAL FCN,FCNJ

C
C THE VECTOR Y HOLDS THE INTENSITY AND GAIN VARIABLES
C

EQUIVALENCE (Y(I),I1),(Y(2),GI),(Y(3),I2),(Y(4),G2),
& (Y(5), 13), (Y(6) ,G3)
LOGICAL FIRST, FLAG, PEAKED, PASSED, RISING
COMMON /LOGIC/ RISING,THRESH

C
COMMON / /
& TAUC,TAUF,EPS,A ,A2,A3,B,B12,B21,GIO,G20,BI3,B23,
& B31,B32,G30
COMMON /DBAND/ NLC,NUC
COMMON /GEAR/ DUMMY(48),SDUMMY(4),IDUMMY(38)
COMMON /GJ/ G,SIG,ANGLE

C
C
C OPEN(UNIT=3,FILE='YAGIN',STATUS='OLD')
C OPEN(UNIT=4,FILE='YAGOUT')

WRITE(*,'(" DO YOU WANT OUTPUT OF INDIVIDUAL
& INTENSITIES?") ')
READ(*,700) ANS

700 FORMAT(AI)
FLAG=.FALSE.
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') FLAG=.TRUE.

C
NWK=6

C NWK: NUMBER OF DIFFL EQUATIONS
TOL=I.E-5

C ERROR TOLERANCE FOR INTEGRATOR
C
C SET PARAMATER DEFAULTS
C

TAUC=0.2
C NANOSEC, CAVITY ROUND-TRIP TIME

TAUF=0.24E6
C NANOSEC, FLUORESCENCE LIFETIME

A1=0.010
C MODE-i LOSSES

A2=0.010
C MODE-2 LOSSES

A3=0.010
C MODE-3 LOSSES

EPS=5.E-5
C 1/W NONLINEAR COUPLING COEFFICIENT

B-1.
C 1/W SATURATION PARAMETER
C WRITE(*,'(" INPUT COMMON CROSS-SATURATION PARAM")')
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C READ(*,(F20.18) ') BIJ
C SET BIJ LARGE ENOUGH TO ALLOW POSSIBILITY OF CHAOS

BIJ=. 6
C

B 12 =BI J
C l1W CROSS-SATURATION PARAMETER

B21=B12
C

B13=BIJ
B31=B13

C
B23=BIJ
B32=B23

C
C G10=0.12
C SMALL-SIGNAL GAIN
C G20=0.12
C
C G30=0.12

WRITE(*,'(/," INPUT PUMP AS FRAC OF THRESHOLD
& (TH=1.)") ')

READ (*, '(F 5. 2)') P
PUMP=P *Ai
G1O=PUMP
G20=PUJMP
G30=PUMP

C
READ (3, 101)
& TINIT,DTB,NSTEPSB,I1INIT,G1INIT,I2INIT,G2INIT,
& 13INIT,G3INIT

101 FORMAT(E11.4,/,Ell.4,
& /, 16,/,E20.14, /,E20.14,/,E20.14,/,E20.14,
& /,E20.14,/E20.14)

C
C

T=TINIT
Y (1) =I1INIT
Y (2) =GINIT

Y (4) =G2INIT
Y (5) =I3INIT
Y (6) =G3INIT
TSTOP=T

C
C OPEN (UNIT=9, FILE=' FFTOUT')

WRITE (9, 201)
& TOL, TAUC,TAUF,A1, A2,A3, EPS,B,B12, B21,B13,B31,B23,
& B32,G10,G20,G30,DT,NSTEPS,G,P

WRITE (4, 201)
& TOL,TAUC,TAUF,A1,A2,A3 EPS,B,B12,B21,B13,B31, B23,
& B32,G10,G20,G30,DT,NSTEPS,G,P
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WRITE (10,201)
& TOL, TAUC, TAUF, Al,A2, A3, EPS, B, B12, B21, B13, B31, B23,
& B32,Gl0,G20,G30,DT,NSTEPS,G,P

201. FORMAT("DGEAR INTEGRATION OF FREQUENCY-DOUBLED ND:YAG
& SYSTEM",!!,
& " TOL E 1.4
& 'TAUC =",E11.4," NSEC",/,"TAUF = 1,l.,
& NSEC",/,
& "ALPH-Al = ",El1.4,/,"A T PHA2 =",E11.4,/,"ALPHA3
& = ",El1.4,
& /,"EPS = ",El1.4,
& To 1/W",/,"BETA = "l,E16.9," 1/W",/,"BETA12=
& it,E16.9," 1/W"
& ,/,"BETA21 = ",E16.9," 1/W",/,"BETA13
& ",El6.9,/,
& "BETA31 = ",E16.9,I,"BETA23 = ",E16.9,/,"BETA32
& 11",E16.9,
& /,"G1O = ",El1.4,/,"G20 = ",E11.4,/,"G30-
& El1.4,/,"DT = ",E11.4," NSEC",/,"NSTEPS =,6

& 4X,"DOUBLING COEF G = ",F9.5," PUMP = ",F5.2)
WRITE (4, 2 11)
WRITE (10, 219)

219 FORMAT(//,"T (NANOSEC)",9X,"Il (WATTS)",14X,"I2
& (WATTS)",
& 14X,"I3 (WATTS)",!)

211 FORMAT (//, "T (NANOSEC) ", 8X, "FUNDAMENTAL", 14X," DOUBLED
& of 1/
& 18X, "OUTPUT (WATTS) ", lX, "OUTPUT (WATTS)",!)

C
IF(FLAG) WRITE(10,105) T,Y(1),Y(3),Y(5)
TOT=Y (1) +Y (3) +Y (5)
DUB=EPS*(G*(11!*I1+I2*1k2+I3*I3)
& +4.*G*(I1*12+I2*I3+I3*I1))
WRITE(4,105) T,TOT,DUB

C
105 FORMAT(E1.4,4X,3(E20.14,4X))

C
IND=1

CCCCcC
TSTOP=0
IFLAG=0
FIRS'LT= .TRUE.

PASSED= .FALSE.

RIS ING= .FALSE.

C
298 CONTINUE

NFF T=N STE P
NRESET=0
H=DT/2.
METH= 1
MITER=2
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C
C METH=1:ADAMS,2:STIFF MITER=1:USE FCNJ, 2:FCNJ IS DUMMY

DO 100 J=1,NSTEPS
T=T STOP
TSTOP=T+DT
IFLAG=IFLAG+1

C
C

CALL DGEAR (NWK,FCN,FCNj,T,H,Y,TSTOP,TOL,METH,
& MITER, IND, IWK, WK, IER)

C
C PRINT*, J,DUMMY(8),IDUMMY(6),IDUMMY(7)
C

IF(IER.GT.130) THEN
WRITE (-,113) J, IND, IER
GO TO 123

113 FORMAT(/," STEP ",6/"ERROR TERMINATION. IND-
& llr12,
& if IER 14

ENDIF
C

ITOT (J) =Y (1) +Y (3) +Y (5)
IDUB(J)=EPS*(G*(Il*Il+I2*I2+I3*I3)

& +4.*G*(Il*I2+I2*I3+I3*Il))
IF(IFLAG.GE.10) THEN

IF(FLAG) WRITE(10,105) T,I1,I2,13
C WRITE(*,105) T,I1,12,13

WRITE(4,105) T,ITOT(J),IDUB(J)
C

IFLAG=0
ENDIF

C
C
100 CONTINUE

WR'ITE(*,'(" Y:",6(1X,E1O.4))') (Y(KK),KK=1,6)
WRITE(*, '(" INTEGRATION STEP "1,17," REACHED",/,
& ." WANNA GO ON?")')
& NSTEPS

READ (*, '(A) ') ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') GOTO 298

123 CONTINUE
IF(NRESET.NE.0) PRINT*,' NUMBER OF RESETS = ',NRESET

CCCCCCCCCCC
C OPEN (UNIT=8,FILE='RESTART')
717 WRITE(8,707) T,G,Y(1),Y(2) ,Y(3),Y(4),Y(5),Y(6)
707 FORMAT(E11.4,20X,"RESTART TIME",/,E11.4,20X,"DOUBLING

& COEF",/,
& ,O0",20x,."PUT NSTEPS HERE
& (16) ",/,E20.14,20X,-"Il",/,

& E20.14,20X, "G1",/,E20.14,20X,"I2",/,E20.14,20X,"G2"
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& ,/,E20.'L,0I',,E20.14.1,2X,G3,,)
C

WRITE(*,'(" WANNA DO FFT?")')
READ (*, # (A) ') ANS
IF(ANS.EQ.'N'.OR.ANS.EQ.'N') GO TO 7777

C
C FFT IS TAKEN ON LAST NSTEPS OF IDUB DATA

LENX=INT (NFFT/2 .) +1
FNYQ=1./ (2. *DT)
DFREQ-=FNYQ/FLOATM(ENX)

C CALL FFTRC(ITOT,IIFFT,X,IWK,WK)
C WRITE(9,2901) DFREQ,FNYQ,"ITOT',LENX

C WRITE(9,2902) (X(K)/NFFT, K=1,LENX)
2901 FORMAT(//," DFREQ = ",E13.4,1' NYQUIST =",E13.4,

& is FFT FOR ", A4, /,16, " FOURIER
& COEFFICIENTS",//)

2902 FORMAT(2(El3.6))
CALL FFTRC(IDUB,NFFT,X, IWK,WK)
WRITE(9,2901) DFREQ,FNYQ,"IDUB",LENX
WRITE(9,2902) (X(K)N7FFT, K=1,2000)

C CALL FFTRC(G1,NFFT,X,IWK,WK)
C WRITE(9,2901) "G1",LENX
C WRITE(9,2902) (X(K) /NFFT, K=1,LENX)
C CALL FFTRC(12,NSTEPS,X,IWK,WK)
C WPRITE(9,2901) DFREQ,FNYQ,"12",LENX
C WRITE(9,2902) (X(K)/NSTEPS, K=1,LENX)
C CALL FFTRC(G2,NSTEPS,X,IWK,WK)
C WRITE(9,2901) "G2",LENX
C WRITE(9,2902) (X(K)/NSTEPS, K=1,LENX)
C
7777 STOP

END
C

SUBROUTINE FCN (N, T, Y,YPRIME)
C
C DIFFERENTIAL EQUATIONS INTEGRATED BY DGEAR
C THESE EQUATIONS ARE FOR THREE MODES IN THE SAME
C POLARIZATION DIRECTION
C

REAL I1,G1,I2,G2,I3,G3
LOGICAL RISING
REAL Y(6),YPRIME(6)

C
COMMON /LOGIC/ RISING,THRESH
COMMON / /
& TAUC,TAUF,EPS,A1, A2,A3, B,B12,B21,G1O,G20,B13,B23,
& B31,B32,G30
COMtMON /GJ/ G,SIG,ANGLE
I1=Y(1)
Gl=Y (2)
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12=Y (3)
G2=Y (4)
13=Y (5)
G3=Y (6)

C
YPRIME(1)=((Gl-Al-G*EPS*I1-2.*G*EPS*(I2+I3))*Il)/TAUC
YPRIME(2) =(GlO- (B*I1+B12*12+B13*13+1.) *Gl) /TAUF
YPRIME(3)=((G2-A2-G*EPS*I2-2.*G*EPS*(I1+I3))*I2)/TAUC
YPRIME(4)=(G2O-(B*I2+B21*I1+B23*I3+1.) *G2) /TAUJF
YPI,4-5 (G'-3GES*32**P*I+2)I)TU
YPRIMIE(6)=(G3O-(B*I3+B31*I1+B32*I2+i.) *G3)/TAUF

C
RISING=.TRUE.

C IF(YPRIME(2) .LT.O) RISING=.FALSE.
END

C
SUBROUTINE FCNJ(N,X,Y,PD)
REAL Y (6) ,PD (6, 6)
REAL I1,Gl,12,G2,I3,G3

C
C DUMMY ROUTINE FOR MITER =2

C
END

C
C

SUBROUTINE KNOB
C

CHARACTER*1 ANS
REAL NSQ , NSQ2, NUM
COMMON /GJ/ G,SIG,ANGLE

C
1 CONTITNUE

WRITE(*,'(/h INPUT DOUBLING COEFFICIENT G (F7.5)")')
READ (*, '(F 7. 5) G
SIG=2.* (1.-G)

15 WRITE(*, '(/" G =",E1O.4," SIG = ",E10.4) ') G,SIG
WRITE(*,'(/"I ARE THESE SETTINGS OK?")')
READ (*, '(A) ') ANS
IF(ANS.NE. 'Y' .AND.ANS.NE. Y') GOTO 1

C
END
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POLYAG2 integrates (3.25) for N=2 and P=1, i.e., with two modes in one

polarization direction and a third mode in the orthogonal direction. The entire structure of

the program is identical to that of POLYAG3, except for the specific equations in routine

FCN, so only the program lines unique to POLYAG2 are listed here.

The program time t is expressed in nanoseconds.
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PROGRAM POLYG2 (TAPE 3,TAPE 4,TAPE 8,TAPE 9,TAPE 10)
C
C USAGE:
C LGO, INITIALFILE (INPUT) ,OUTPUTFILE,RESTARTFILE (OUTPUT),
C FFTOUTPUTFILE, INTENSITIESOUTPUT

0
0
0

7777 STOP
END

C
SUBROUTINE FCN (N, T, Y,YPRIME)
REAL il,Gl,12,G2,I3,G3
LOGICAL RISING
REAL Y(6),YPRIME(6)

C
COMMON /LOGIC/ RISING,THRESH
COMMON / /
& TAUC, TAUF,EPS,A1,A2,A3,B,B12,B21,G1O,G20,Bl3,B23,
& B31,B32,G30
COMMON /GJ/ G,SIG,ANGLTE

GI=Y (2)
12=Y (3)
G2=Y (4)
13=Y (5)
G3=Y(6)

C
YPRIME(1)=((G lGESIl2**P*2

& SIG*EPS*I3) *11) /TAUC
YPRIME (2) =(GlO- (B*Il+B12*I2+B13*I3+1.) *G1) /TAUF
YPRIME (3) = ((G2-A2-G*EPS*I2-2.*G*EP*l.

& SIG*EPS* 13) *12) /TAUC
YPRIME(4)=(G20-(B*I2+B21*I1+B23*I3+1.)*G2)/TAUF
YPRIME(5)=( (G3-A3-G*EPS*I3-SIG*EPS* (11+I2)) *13) /TAUC
YPRIME(6)=(G3O-(B*I3+B31*I+B32*I2+1.) *G3)/TAUF

C
RISING= .TRUE.

C IF(YPRIME(2).LT.0) RISING=.FALSE.
END

C
SUBROUTINE FCNJ(N,X,Y,PD)
REAL Y(6),PD(6,6)
REAL I1,G1,I2,G2,I3,G3

C
C DUMMY ROUTINE WHEN MITER = 2

END
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P3PK integrates the same equations as POLYAG3 with a different purpose. This

progam can output all gain and intensity variables at a fixed (input) transversal cross-

section defined by a plane GI = constant. The output file TAPE 4 lists all parameter values

and contains the values of G2 and G3 on the transversal; this output is used to plot

numerical Poincar6 maps like those in Fig. 3.17(e). Note the use of a refined time step in

the integration routine INTEG to get more accurate output as the numerical trajectory passes

through the transversal.

The program time t is expressed in nanoseconds.
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PROGRAM P3PK(TAPE 3,TAPE 4,TAPE 8,TAPE 9)
c
C USAGE:
C LGO,INITIALFILES(INPUT) ,OUTPUTFILE,RESTARTFILE (OUTPUT)
C *** FFTOUTPUTFILE,INTENSITIESOUTPUT *** NOT
C USED HERE
C THIS VERSION HAS 3 MODES IN SAME POLARIZATION DIRECTION
C OUTPUT ONLY G2,G3, AT CROSSING OF POINCARE SECTION
C USE IMSL ROUTINE DGEAR TO NUMERICALLY INTEGRATE
C SIX 1ST-ORDER DIFF EQ'S DESCRIBING THE TIME-DEPENDENT
C INTENSITIES AND GAINS FOR 3 MODES IN A ND:YAG LASER
C WITH AN INTRA-CAVITY DOUBLING CRYSTAL.
C OUR CAVITY IS ABOUT 3 CM. OUTPUT COUPLER TRANSMITS
C 0.005 FUNDAMENTAL FREQUENCY
C
C REF: T. BAER, J. OPT. SOC. AM. B. VOL 3, NO 9, SEP 86,
C 1177.
C

REAL NORM
REAL XO (6),X! (6),YO (6),Y1 (6),YK(6),YKP1 (6) ,Y(6)
INTEGER IPVT(6)
CHARACTER*1 ANS
COMMON /GWORK/ NWK,TOL,DT,ANS
COMMON / /

& TAUC, TAUF,EPS, A1,A2,A3,B, G0, G20,G30,GI,NCUTS
COMMON /DBAND/ NLC,NUC
COMMON /GEAR/ DUMMY(48),SDUMMY(4),IDUMMY(38)
COMMON /REF/ SR, BR, THETA, XR (6)
COMMON /LOGIC/ RISING,THRESH
COMMON /GJ/ G,SIG,ANGLE
EXTERNAL NORM
PI=3.14159265359

73 WRITE(*,2201)
2201 FORMAT(/" INPUT DT (NANOSEC), AND NCUTS TO GENERATE")

READ(*,'(EIO.4,/,I5)') DT,NCUTS
C DT=10.0
C NCUTS=I
2202 FORMAT(Eli.4)

WRITE(*,2203) DT,NCUTS
2203 FORMAT(/" DT = ",Eli.4," NCUTS = ",15," OK?")

READ(*,700) ANS

C ANS='Y'
700 FORMAT (Al)

IF(ANS.NE.'Y'.AND.ANS.NE.'Y') GOTO 73
WRITE(*, '(/" INPUT POINCARE-CUT THRESHOLD (E15.9)") ')
READ(*, '(E15.9) ') THRESH

C SET POINCARE CROSS-SECTION AT GI=THRESH
C THRESH=.0165

G1=THRESH
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C
NWK= 6

C NWK: NUMBER OF DIFFL EQUATIONS
TOL=1 .E-8

C
C SET PARAMATER DEFAULTS USED IN THE PAPER
C

TAUC=0 .2
C NANOSEC, CAVITY ROUND-TRIP TIME

TAUF=0 .24E6
C NANOSEC, FLUORESCENCE LIFETIME

A1=0 .010
C MODE-i LOSSES

A2=0 .010
C MODE-2 LOSSES

A3=0.010
C

EPS=5 .E-5
C 1/W NONLINEAR COUPLING COEFFICIENT

B=l.
C 11W SATURATION PARAMETER
C WRITE(*,'(" INPUT COMMON CROSS-SATURATION PARAM")')
C READ(*, '(F20.18) ') BIJ
C
C G10=0.12
C SMALL-SIGNAL GAIN
C G20=0.12
C
C G30=0.12

WRITE(*,'(/," INPUT PUMP AS FRAC OF THRESHOLD (E.G.
& TH=-1.)") ')
READ(*(F 5.2) ') P
PUMP=P *A1
G1O=PUMP
G20=PUMP
G30=PUMP
CALL-READIN(3,Xl,B1)
Bx=. 6
CALL KNOB

C DANGLE=ANGLE*180./PI
C

WRITE (4, 201)
& TOL,TAUC,TAUF,A1,A2,A3,EPS,B,BX,BX,-X,;X,BX,
& BX,G10,G20,G30,DT,NCUTS,THRESH,G,P

201 FORMAT("DGEAR INTEGRATION OF FREQUENCY-DOUBLED ND:YAG
& SYSTEM",!!,
& "TOL "El4/
& "TAUC =",E11.4," NSEC",/,"TAUF = ,El4-
& NSEC",/,
& "ALPHA1 - ",E11.4,/,"lALPHA2 - ",E11.4,/,"ALPHA3
& = ",E11.4,
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& /,"EPS = ",Ell.4,
& 11 1/W",/,"BETA = ",E16.9," 1/W",/,"BETA12
& l",E16.9," 1/W"
& ,/,"BETA21 = ",E16.9," 1/W",/,"BETA13=
& 19,E16.9,/,
& "BETA31 = ",E16.9,/,"BETA23 = ",El6.9,/,"BETA32
& =1E69

& /,"G:O = ",El1.4,/,"G20 = ",Ell.4,/,"G30-
& Ell.4,/,"DT = ",Ell.4," NSEC",I," NCUTS ",6
& IX," POINCARE SECT AT = ,85
& "1 DOUBLING COEFF G = 11,F9.4," RELATIVE PUMP
& = ",F5.2)

WRITE (4, 2 11)
211 FORMAT(//," CUT-TO-CUT ",13X," G2 it

& 4X,11 G3 "/"TIME (MICROSC)",1OX," AT SLICE
& III/)

CCCCCCCCCCCCCCCCCCC SET UP FOR Gl=CONST
YK(1)=X1 (1)
G1=X1 (2)
DO 15 K=2,5

15 YK(K)=Xl(K+1)
C
C PASS CROSS-SATURATION TO ROUTINE INTEG VIA YK(6)
C

YK (6) =BX
C
75 00O 25 K=1,NCUTS

CALL INTEG (YK, DELT)
WRITE(4,'(lX,3(El4.7,2X))') DELT,YK(3),YK(5)
WRITE(*,'(1X,3(El4.7,2X))') DELT,YK(3),YK(5)
IF(ANS.EQ.'NK.OR.ANS.EQ.'N') GOTO 82

25 CONTINUE
C

WRITE(*,'(/"i WANNA DO MORE POINTS?")')
READ (*, '(A) ') ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') THEN

WRITE(*,'(P' INPUT # OF ADDITIONAL POINTSIIt
READ(*, ' (I5) ') NCUTS
GOTO 75

ENDIF
82 CALL ALLOUT(YK,G1)

STOP
END

C
SUBROUTINE INTEG (Z, DELT)

C
REAL Il,G1,12,G2,13,G3,ZIN(6),Z(6)
REAL H,WK(1000) ,IPREV
INTEGER IWK(1000)
REAL Y(6),YSAV(6)
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CHARACTER*. ANS
LOGICAL FIRST, FLAG, PEAKED, PASSED, RISING
EXTERNAL FCN,FCNJ

C
COMMON /GWORK/ NWK,TOL,DT,ANS
COMMON / /
& TAUC,TAUF,EPS, A1,A2,A3,B,G1O, G20,G30, G1,NCUTS
COMMON /PARAM/ B12, B21, B23, B32,Bl3,B31
COMMON /DBAND/ NLC-,NUC
COMMON /GEAR/ DtMMY(48),SDUMMY(4),IDUMMY(38)
COMMON /LOGIC/ RISING,THRESN
COMMON /GJ/ G,SIG,ANGLE

C
700 FORMAT(Al)

DTSAV=DT
C
C SAVE DT BECAUSE WE REFINE DT AS WE CROSS TRANSVERSAL
C TO GET AN ACCURATE MAP
C

BX=Z (6)
Z (6)=BX

C
B 12 =BX

C 1/W CROSS-SATURATION PARAMETER
B21=B12

C
B13=BX
B31=B13

C
B23=BX
B32=B23
Y(1)=Z (1)
Y (2) =Gl
Y(3)=Z (2)
Y(4)=Z (3)
Y (5)=Z (4)
Y(6)=Z (5)

C WRITE(*,'(" Y:",6(lX,E10.4))') (Y(KK),KK=1,6)
C
C
105 FORMAT(E11.4,4X,3(E20.14,4X))

C
IND=l
TSTOP=0
NRESET=0
IFLAG=0
TCUT=TSTOP
FIRST= .TRUE.
PASSED= .FALSE.
TLAST=0
RISING= .FALSE.
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C
ICUT=0
NITS=100000

298 CONTINUE
299 DO 100 J=1,NITS

T=TSTOP
TSTOP=T+DT

C
H=DT,12.

C WRITE (*, 1("~ J, T, TSTOP, DT", 14, 3(2X, E13. 5))'
& J, T, TSTOP, DT
METH= 1
MITER=2
DO 10 K=1,6

10 YSAV(K)=Y(K)
C

CALL DGEAR (NWK,FCN,FCNJ,T,H,Y,T STOP,TOL,METH,
& MITER, IND, IWK,WK, IER)

C WRITE(*,'(" Y:",6(1X,E10.4))') (Y(KK),KK=1,6)
C
C PRINT*, J,DUMMY(8),IDUMMY(6),IDUMMY(7)
C

IF(IER.GT.130) THEN
WRITE(*,113) J,IND,IER
GO TO 123

113 FORMAT(/," STEP ",16,/," ERROR TERM~INATION. IND=
& 11,12,
& IER = ,4/

ENDIF
C
C OUPTUT ALL VARIABLES BUT Gi WHEN POINCARE SECTION IS
C CROSSED WITH
C Gi DECREASING
C

IF(.NOT.RISING) THEN
IF(.NOT.PASSED.AN4D.(Y(2) .LT.THRESH)) THEN

PASSED= .TRUE.
TCUT=T-DT
ICUT=ICUT+1

IF((FIRST)) THEN
FIRST= .FALSE.
GO TO 537

ENDIF
C WRITE(4,3711) (Y(KK),KK=1,6)
C3711 FORMAT(6(2X,E15.9))

TLAST=TCUT
IF(ICUT.GE.1) THEN

IF(IFLAG.GE.1) GOTO 123
IFLAG=1
TT=TLAST

C
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C REFINE DT TO GET GOOD DATA ON TRANSVERSAL
C

DT=DT/1O.
C WITE(*,'(##:"~,6(1X,E1O.4))') (Y(KK),KK=1,6)

DO 34 K=1,6
34 Y (K) =YSAV (K)

C WRITE(*,'(11 Y:",6(1X,E1O.4))l) (Y(KK),KK=1,6)
NSTEPS=200
TSTOP=O.

C DO 54 K=1,1000
C WK(K)=O.
C54 IWK(K)=O
C

IND=1
PASSED=.FALSE.
ICUT=ICUT-1
GOTO 298

END IF
537 ENDIF

ENDIF
IF(RISING.AND. (Y(2) .GT.THRESH)) PASSED=.FALSE.

C
100 CONTINUE

WRITE(*,'(" Y:",6(1X,E1O.4))l) (Y(KK),KK=1,6)
WRITE(*, '("I INTEGRATION STEP -1,17," REACHED",/,
& " WITH ",16," PEAKS IDENTIFIED.",/," WANNA GO
& ON?") ')
& NITSfICUT

READ (*, '(A) ') ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.-Y') GOTO 299

123 CONTINUE
IF(NRESET.NE.O) PRINT*,' NUMBER OF RESETS =',NRESET

DT=DTSAV
DELT= (TCUT+TT) *1.E-3

C
Z (1)=Y(1)
Z (2)=Y(3)
Z (3)=Y(4)
Z (4)=Y(5)
Z (5)=Y(6)
G1=Y (2)

C WRITE(*, '(/" Z =",6(E1O.3,lX)) ') (Z(KK),KK=1,6)
C

END
C
C

SUBROUTINE FCN (N, TY, YPRIME)
REAL I1,G1,12,G2,I3,G3
LOGICAL RISING
REAL Y(6),YPRIME(6)

C
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COMMON /LOGIC/ RISING,THRESH
C COMMON / /

& TAUC, TAUF,EFS,A1, A2,A3, B,B12,B21,G1O,G20,B13,B23,
C & B31,B32,G30

COMMON /PARAN/ B12,B21,B23,B32,B13,B31
COMMON / /

& TAUC, TAUF,EPS,A1, A2,A3, B,G1O, G20,G30, G1SNCUTS
COMMON /GJ/ G,SIG,ANGLE
I1=Y(1)
Gl=Y (2)
12=Y (3)
G2=Y (4)
13=Y (5)
G3=Y(6)

C
YPRIME(1)=((Gl-A1-G*EPS*Il-2.*G-*EPS*(I2+I3))*I1)/TAUo
YPRIME (2) =(GlO- (B*I1.+B12*I2+Bl3*I3+1.) *G1) /TLAUF
YPRIME (3)=((G2-A2-G*EPS*I2-2 . *G*ES* (11+13)) *I2) /TAUC
YPRIME (4)= (G20- (B*12+B21*I1+B23*I3+1.) *G2) /TAUF
YPRIME (5) =( (G3-A3-G*EPS*I3-.~2*G*EPS*(11+12)) *13) /TAUC
YPRIME(6) =(G30- (B*I3+B31*I1+B32*12+1.) *G3) /TAUF

C
RISING=.TRUE.
IF(YPRIME(2).LT.0) RISING=.FALSE.
END

C
SUBROUTINE FCNJ (N, X,Y, PD)
REAL Y (6) ,PD (6, 6)
REAL I1,G1,12,G2,13,G3

C
C
C DUMMY ROUTINE WHEN MITER =2

C
C

END
C

SUBROUTINE READIN(IFILE,Z,B)
C

REAL Z (6) ,B, IlINIT, I2INIT, I3INIT
C

READ(IFILE, 101)
& TINIT,BX,NC,I1INIT,G1INIT,I2INIT,G2INIT,
& 13INIT, G31NIT

101 FOR.MAT(EhI .4, /,E12 .4,/,16, /
& ,E20.14,/,E20.14, /,E20.14, /,E20.14,
& /,E20.14,/E20.14)

C
C

Z (1)=I1INIT
Z (2)=G1INIT
Z (3) =I2INIT
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Z (4) =G2INIT
Z (5) =I3INIT
Z (6)=G3INIT
B=BX

C
END

C
SUBROUTINE ALLOUT (Z, GG)

C
REAL Z(6),GG
COMMON /GJ/ G,SIG,ANGLE

C
C OPEN (UNIT=8,FILE='RESTART')
717 WRITE (8,707) T,G, Z (1) ,GG, Z (2), Z (3), Z (4), Z (5)
707 FORMAT(Ell.4,20X,"RESTART TIME",/,

& Eli.4,20X,"DOUBLING COEFF G ",/,"
& 0", /,E20.14, 20X,"II" ,/,
&

& E20.14,20X, "Gl",/,E20.14,20X,"I2",/,E20.14,20X,"G
2'

& ,/,E20.14,20X,"I3",/,E20.14,20X,"G3")
C

END
C

SUBROUTINE KNOB
C

CHARACTER*1 ANS
REAL NSQ1, NSQ2, NUM
COMMON /GJ/ G,SIG,ANGLE

C
C MOST GENERAL MODEL ONLY NEEDS G... GET PARAMETER
C DEPENDENCE ON G
C ELSEWHERE

WRITE(*,'(/" INPUT DOUBLING COEFFICIENT G [0,11
& (F7.5)")')
READ(*,'(F7.5)') G
SIG=2. *(I .- G)

WRITE (*,'(/" G = ",F7. 5," IS THIS OK?")') G
C WRITE(*, '(/" D = ",E10.4," SIG = ",ElO.4)') G,SIG
C WRITE(*,'(/" ARE THESE SETTINGS OK?")')

READ (*, ' (A) ') ANS
IF(ANS.NE.'Y'.AND.ANS.NE.'"" GOTO 1

C
END
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HOMO2 integrates the Baer rate equations (2.24) to carry out the homotopic

continuation technique described in Chapter II. Recall that the goal is to find unstable fixed

points of a Poincard map using a stable iterative method. The algorithm of HOMO2 is

outlined here:

1. Set THRESH which defines the transversal G1 = THRESH.

2. Input an initial guess for the fixed point YO = (II(O),I 2(0),G 2 (0),13(0),G 3(0)).

3. Integrate (2.24) from yo until GI = THRESH and dGj/dt < 0; this is the
numerical Poincar6 map M(yo).

4 Let P(Yk) = M(yk) - Yk. Approximate P'(Yk) by equation (2.35).

5. Solve for Yk+l by the approximate Newton's method:

Solve P'(Yk) z = P(Yk),

let Yk+I = Yk + z.

6. Report II Yk+I - Yk II.

7. If norm is "small enough", stop; output Yk+1.

8. Set Yk = Yk+1 •

9. To iterate with the same approximation to P'(y), go to (5).

10. To recompute P', go to (4).

The program time t is expressed in nanoseconds.
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PROGRAM HOMO2(TAPE 3,TAPE 4,TAPE 8,TAPE 9)
C
C USAGE:
C LGO, INITIALFILES (INPUT),OUTPUTFILE,RESTARTFILE (OUTPUT),
C *** FFTOUTPUTFILE,INTENSITIESOUTPUT *** NOT USED
C HERE
C THIS VERSION HAS NO FUNCTION EN TO ACT AS ARC-LENGTH
C OUTPUT ONLY G2,G3, AND ALL I'S AT CROSSING OF POINCARE
C SECTION
C USE IMSL ROUTINE DGEAR TO NUMERICALLY INTEGRATE
C FOUR 1ST-ORDER DIFF EQ'S DESCRIBING THE TIME-DEPENDENT
C INTENSITIES AND GAINS FOR TWO-MODES IN A ND:YAG LASER
C WITH AN INTRA-CAVITY DOUBLING CRYSTAL.
C REF: T. BAER, J. OPT. SOC. AM. B. VOL 3, NO 9, SEP 86,
C 1177.
C DGEAR ROUTINE IS ADVERTISED TO BE VARIABLE ORDER ACCURACY.
C

REAL NORM
REAL XO(6),Xl (6),YO(6),YI(6),YK(6),YKP1(6),Y(6)
REAL PPRIM(6,6),PD(6,7),P(6),YKM1(6),TEMP(6)
REAL LU(6,6),EQUIL(6),DEL(6),RHS(6)
INTEGER IPVT(6)
CHARACTER*1 ANS
COMMON /GWORK/ NWK,TOL,DT
COMMON / / TAUC, TAUF,EPS,Al,A2,A3,B, GI0,G20,G30,GI,NCUTS
COMMON /DBAND/ NLC,NUC
COMMON /GEAR/ DUMMY(48),SDUMMY(4),IDUMMY(38)
COMMON /REF/ SR,BR,THETA,XR(6)
COMMON /LOGIC/ RISING,THRESH
EXTERNAL NORM,EN

C73 WRITE(*,2201)
C2201 FORMAT(/" INPUT DT IN NANOSECONDS")
C READ(*,2202) DT

DT=1 .0
NCUTS=1

2202 FORMAT(Eli.4)
C WRITE(*,2203) DT
C2203 FORMAT(/" DT = ",Eli.4," OK?")
C READ(*,700) ANS

ANS='Y'
700 FORMAT(AI)

C IF(ANS.NE.'Y'.AND.ANS.NE.'Y') GOTO 73
C WRITE(*,'(" INPUT CONVERGENCE TOLERANCE (E15.9)")')
C READ(*,'(E15.9)') CTOL
C SET POINCARE CROSS-SECTION AT G1=THRESH

THRESH=. 017

GI=THRESH
C

NWK=6
C NWK: NUMBER OF DIFFL EQUATIONS

TOL=1 .E-8
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C
C SET PARAMATER DEFAULTS USED IN THE PAPER
C

TAUC=0 .5
C NANOSEC, CAVITY ROUND-TRIP TIME

TAUF=0 .24E6
C NANOSEC, FLUORESCENCE LIFETIME

A1=0 .015
C MODE-i LOSSES

A2=0.015
C MODE-2 LOSSES

A3=0.015
C

EPS=5.E-5
C 11W NONLINEAR COUPLING COEFFICIENT

B=1.
C 1/W SATURATION PARAMETER
C WRITE(*, '(" INPUT COMMON CROSS-SATURATION PAR.AM") ')
C READ(*,'(F20.18)') BIJ
C

G10=0.12
C SMALL-SIGNAL GAIN

G20=0. 12
C

G30=0. 12
CCCCCCCCCCCCCCCCCCC GET 2 INITIAL GUESSES FROM 'CONVERGED' I.C.
C CALL READIN(30,XO,BO)

CALL READIN(3,X1,B1)
CCCCCCCCCCCCCCCCCCC SET UP FOR G1=CONST, .017 HERE
C S0=BO

S1=Bl
C S2=S1+ (S1-SO)
C WRITE(*,'(/" SO = ",E20.14," 51 = ",E20.14,/," INPUT
C S :1 1
C & SOS1

WRITE (*, ' (/" 51 = ", E20.14,/, INPUT S2:) ) 5
READ (*, '(E20.14) ') S2
WRITE (4,' (' LOOKING FOR INITIAL CONDITIONS FOR "

& "CROSS-SATURATION = ",E20.14,/," ON POINCARE "

& "SECTION Gi = ",E20.14) ') 52,G1
WRITE(4, '(1" OUTPUT ARRAYS LIST Ii, 12,G2, 13,G3,B")'
SR=S1
XR(1)=X1 (1)
DO 10 J=2,5

10 XR(J)=X1(J+1)
C XR(6)=B1

THETA=O .5
CCCCCCCCCCCCCCCCC NOW, FUNCTION EN HAS BEEN SET, THRU COMMON C

/ REF /
YO (1)=XO (1)
Y1 (1)=X1(1)
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DO 20 J=2, 5
Yo (J) =XO (J+1)

20 Yl(J)=X1(J+1)
YO (6)=S2
Y1 (6) =S2
WRITE (4, '(" YO AND Y1: ",/, 6(E2.6, iX) ,/,6 (E12.6, iX) )')

& (YO (J) ,J=l, 6) ,(Yl(J) rJ1, 6)
DO 30 J=1,6
YKM. (J) =YO (J)

30 YK(J)=Y1(J)
CCCCCCCCCCCCCCCCCC FILL AND INVERT THE PPRIM APPROXIMATRIX
C WRITE(*, '(I" YK: ",6(El0.3,1X)) ') (YK(KK),KK=1,6)

DFAC=.001
22 CALL INTEG(YK,Y)

C WRITE(*, '(" Y :",6(E1O.3,lX)) ') (Y(KK),KK=1,6)
DO 40 J=1,5
P (J) =YK (J) -Y (J)

40 PD (J, 1)=P (J)
C PD (6, 1)-EN (YK, S2)
C P(6)=PD(6,1)
C

DO 50 K=1,5
DO 51 J=1,6

51 TEMP (J) =YK (J)
TEMP (K) =YK(K) * (1. -DFAC)

C WRITE(*,'(/u YK: ",6(1X,E1O.3))') (YK(KK),KK=1,6)
CALL INTEG (TEMP, Y)

C WRITE (*, '(" Y ,6 (1X, E10.3))' (Y (KK) ,KK=1, 6)
DO 52 J=1,5

52 PD (J, K+1) =TEMP(M)-Y(07)
C PD(6,K+1)=EN(TEMP,S2)
50 CONTINUE

C
DO 60 K=1,6
DENOM=ABS (DFAC*YK (K))
DO 60 J=1, 6

60 PPRIM(J,K) =(PD (J, 1)-PD (J,K+1) )/DENOM
CCCCCCCCCCCCCCCC-CCCCCCCCCCCCCCCC INVERT PPRIM

CALL LUDATF (PPRIM,LU,5,6r,,Dl,D2,IPVT,EQUIL,WA,IER)
WR.ITE(*,'("I LUDATF IER = ",14)') IER

C
C GET RHS OF AX=B ....
C WRITE(*,C("YK AND YKM1:",/,6(E2.6,lX),/,6(El2.6,lX))')
C & (YK(J),J=1,6),(YKM1(J),J=1,6)
11 DO 70 J=1,6
70 RHS (J) =P(M)* (-l.)

C
C WRITE(*, '('PPRIM:,/

C & 5(1X,E1O.4))') ((PPRIM(II,JJ),JJ=1,5),II=1,5)
C WRITE(*,'(h' RHS",/, 5(1X,E1O.4))') (RHS(KK),KK=1,5)
C WRITE(*, '(" DH, P l",/,E20.14,/,5(1X,E1O.4))t) DH,
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C & (P (KK) ,KKI, 5)
C
C

CALL LUELMF (LU,RHS,IPVT,5,6,DEL)
C WRITE(*, '(" DEL",/, 5(lX,E1O.4)) ') (DEL(KK),KK=1,5)
C

DO 80 J=1,5
80 YKP 1(J) =YK (J) +DEL (J)

YKP1 (6)=YK(6)
C

DH=NORM(YKP1, YK)
WRITE(*, '(/," NCRM(YKP1-YK) = ",E11.4,/," YKP1

& 6 (1X, E12. ) )') DH, (YKP 1(J) ,J= 1,6)
WRITE(4, '(I," NORM(YKPI-YK) = ",E11.4,/," YKP1

& 6 (1 X, E12. 6)) D H, (YKP 1(J) ,J= 1,6)
DO 90 J=1,6
YKM1 (J) =YK (J)

90 YK (J) =YKP 1(J)
WRITE(*,'(/,' WANNA ITERATE WITH SAME PPRIM-INVERSE?")')
READ (*, '(A) ') ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') THEN

CALL INTEG(YK,Y)
DO 95 J=1,5

95 P (J) =YK (J) -Y (J)
C P (6) =EN (YK, S2)

GOTO 11
ENDIF
WRITE(*,'/,' WANNA MAKE A NEW INVERSE?")')
READ (*, 1(A) ') ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') THEN

DFAC=0.001*AMIN1 (1. ,DH)
WRITE(4, '(" RE-EVALtJTATING PPRIM-INVERSE DFAC=

& F10.7)') DFAC
GOTO 22

ENDIF
CALL ALLOUT (YK, Gi)
STOP.
END

C
SUBROUTINE INTEG(ZIN, Z)

C
REAL Ii, G1, 2, G2,13, G3,ZIN (6), Z(6)
REAL H, WK (1000) , IPREV
INTEGER IWK(1000)
REAL Y(6)
CHARACTER*1 ANS
LOGICAL FIRST, FLAG, PEAKED, PASSED, RISING
EXTERNAL FCN,FCNJ

C
COMMON /GWORK/ NWK,TOL,DT
COMMON / / TAUC,TAUF,EPS, A1,A2, A3, B, G1O,G20,G30,G1,NCUTS
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COMMhON /PARAM/ B12,B21,B23,B32,B13,B31
COMMON /DBAND/ NLC,NEJC
COMMON /GEAR/ DUMMY(48),SDUMMY(4),IDUMMY(38)
COMMON /LOGIC/ RISING,THRESH

700 FORMAT(A1)
C

BX=ZIN (6)
Z (6)=BX

C
B 12 =BX

C 11W CROSS-SATURATION PARAMETER
B21=B12

C
B13=BX
B31=B13

C
B23=BX
B32=B23
Y(1)=ZIN(1)
Y(2)=G1
Y(3)=ZIN(2)
Y(4)=ZIN(3)
Y (5)=ZIN (4)
Y(6)=ZIN(5)

C WRITE(*,'("I Y:",6(lX,E1O.4))') (Y(KK),KK='1,6)
C
C WRITE (*, 201)
C TOL,TAUC, TAUF,A1,A2,A3,EPS,B,B12,B21,B13,B31,B23,
C & B32,Gl0,G20,G30,DT,NCUTS,THRESH
201 FORMAT("DGEAR INTEGRATION OF FREQUENCY-DOUBLED ND:YAG

& SYSTEM",//,
& "TOL =,l.4/

& "TAUC =",E11.4,'
t NSEC",/,"TAUF = ,l."

& NSEC",/,
& "ALPHA1 = ",El1.4,/,"ALPHA2 = ",El1.4,/,"ALPHA3-
& ",E11.4,
& /,"EPS = ",E11.4,
& 11 1/W",/,"BETA =",E16.9," 1/W",/,"BETA12=
& ",E16.9,",
& 1/W,
& ,/,"BETA21 = ",E16.9," 1/W",/,"BETA13 = "E69/
& "BETA31 -",E16.9,/,"BETA23 = ",El6.9,/,"BETA32-
& ",E16.9,
& /,"G10 =",E11.4,/,"G20 = ",El1.4,/,"G30-
& E11.4,/,"DT = ",E11.4," NSEC",/," NCUTS =,6

& 4X,"THRESHOLD FOR POINCARE SECTION = ",F10.5)
C WRITE (4, 211)
C WRITE (10, 219)
C219 FORMAT(//,"T (NANOSEC)",9X,"I1 (WATTS)",14X,"I2 (WATTS)",
C & 14X,"13 (WATTS)",/)
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211 FORMAT(//,"T (NANOSEC)",8X," CUT-TO-CUT ,,13x," G2
& IV,

& 4X," G3 ",/,18X,"TIME (MICROSC)",1OX," AT SLICE
& "!

C
105 FORMAT(E11.4,4X,3(E20.14,4X))

C
IND=1
TSTOP=0
NRESET=0
IFLAG=0
TCUT=TSTOP
FIRST= .TRUE.
PASSED= .FALSE.
TLAST= 0
RISING= .FALSE.

C
ICUT=0
NSTEPS=50 000

299 DO 100 J=1,NSTEPS
T=TSTCP
TSTOP=T+DT
IFLAG=IFLAG+l

C
H=DT/2.

C WRITE(*,'("I J,T,TSTOP,DT",14,3(2X,E13.5))') J,T,TSTOP,DT
MET H= 1
MITER=1

C
CALL DGEAR (NWK,FCN,FCNJ,T,H,Y,TSTOP,TOL,METH,

& MITER, IND, IWK, WK, IER)
C WRITE(*,'(" Y:",6(1X,E1O.4))') (Y(KK),KK=1,6)
C
C PRINT*, J,DUMMY(8),IDUMMY(6),IDUMMY(7)
C

IF(IER.GT.130) THEN
WRITE(*,113) J,IND,IER
GO TO 123

113 FORMAT(/," STEP ,,16,/," ERROR TERMINATION. IND ",2
& is IER =",4/

ENDIF
C
C
C OUPTUT AL.. VARIABLES BUT Gi WHEN POINCARE SECTION IS
C CROSSED
C WITH
C Gi DECREASING
C

IF( .NOT.RISING) THEN
IF(.NOT.PASSED.AND. (G1.LT.THRESH)) THEN

PASSED= .TRUE.
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TCUT=T-DT
ICUT=ICUT+ 1

IF((FIRST)) THEN
FIRST=.FALSE.
GO TO 537

ENDIF
DELT= (TCUT-TLAST) *1.E-3

C IF (.NOT.FIRST) WRITE(4,3711) (Y(KK),KK=l,6o)
3711 FORMAT(6(2X,E15.9))

TLAST=TCUT
IF(ICUT.GE.NCUTS) GO TO 123

537 ENDIF
ENDIF
IF(RIrSING.AND. (Gl.GT.THRESH)) PASSED=.FALSE.

C
100 CONTINUE

WRITE(*, '("I INTEGRATION STEP ",17," REACHED",!,
& " WITH ",16," PEAKS IDENTIFIED.",/," WANNA GO
& ON?") ')
& NSTEPS,ICUT

READ (*, -(A) ') ANS
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') GO TO 299

123 CONTINUE
PRINT*,' NUMBER OF RESETS = ',NRESET

C
Z (1)=Y(1)
Z (2)=Y(3)
Z (3)=Y(4)
Z (4)=Y(5)
Z (5)=Y(6)

C WRITE(*, '(/" Z = '!,6(ElIO.3,1X)) ') (Z(KK),KK=1,6)
C

END
C

SUBROUTINE FCN (N, T, Y,YPRIME)
REAL I1,G1,I2,G2,I3,G3
LOGICAL RISING
REAL Y (6) ,YPRIME (6)

C
COMMON /LOGIC/ RISING,THRESH
COMMON /PARAM/ B12,B21,B23,B32,B13,B31
COMMON //TAUC, TAUF, EPS,A1,A2, A3,B,G10, G20,G30,G1,NCUTS
I1=Y(1)
G1=Y (2)
12=Y(3)
G2=Y(4)
13=Y (5)
G3=Y(6)

C
YPRIME(1)=((G1-A1-EPS*I1-2.*EPS*(I2+I3))*I1)/TAUC
YPRIME (2)-=(G10- (B*I1+B12*12+B13*I3+1.) *G1) /TAUF
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YP RIME (3)= ((G2-A2-EPS*I2-2.*EPS* (11+ 13) )*12) /TAUC
YPRIME(4)=(G20-(B*I2+B21*T1+B23*I3+1.)*G2)/TAUF
YPRIME(5)=((G3-A3-EPS*13-2.*EPS*(I14+I2))*I3)/TAUC
YPRIME (6)=(G30- (B*13+B31*I1+B32*12+1.) *G3) /TAUF

C
RISING=.TRUE.
IF(YPRTME(2) .LT.0) RISING=.FALSE.
END

C
SUBROUTINE FCNJ(N,X,Y,PD)
REAL Y (6) ,PD (6, 6)
REAL 11,G1,I2,G2,13,G3

C
C ROUTINE FOR ANALYTIC JACOBIAN IS USED WHEN4 MITER=1
C

COMMON /LOGIC/ RISING,THRESH
COMMON /PARAM/ B12, B21, B23,B32,B13, B31
COMMON //TAUC, TAUF, EPS, Al,A2, A3, B, GI, G20, G30, Gl,NCUTS

C
Il=Y (1)
G1=Y(2)
12=Y (3)
G2=Y (4)
13=Y (5)
G3=Y(6)

C
SUMI=Il+I2+.L.3

C
PD (1,1) =(Gl-Al1-2 .*EPS*SUMI) /TAUC
PD (1,2) =I1/TAUC
PD (1,3) =- . *(2. *EPS* Il)/TAUC"
PD (1,4) =0.
PD (1,5) =--1 *2. *EPS*I1/TAUC
PD(1, 6)=0.

C
PD (2,1) =-1. *B*G1/TAUF
PD (2,.2) =-1. *(B*I1+B12*I2+B13*I3+1.) /TAUF
PD (2,3) =-1.*Bl2*Gl/TAUF
PD (2,4) =0.
PD (2,5) =-l .*B13*G1/TAUF
PD (2,6) =0.

C
PD (3,1) =-1 *2.*EPS*i2/TAUC

PD (3, 2)=0.
PD (3, 3)= (G2-A2-2. *EPS*SUMI) /TAUC
PD (3, 4) =12/TAUC
PD (3,5) =-1. *2. *EPS*12/TAUC
PD (3, 6) =0.

C
PD (4,1) =-l.*B21*G2/TAUF
PP (4,2) =0.
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PD (4, 3)~-1 .*B*G2/TAUF
PD (4,4) -1.* (B*I2+B21*I1+B23*13+1.) /TAUF
PD (4,5) -1 . *B23*G2/TAUF
PD(4, 6)-G.

C
PD (5,1) -1 . *2* *EPS*13/TAUJC
PD (5,2)=0.
PD(5,3)= l.*2*EPS*13/TAUC
PD (5, 4)=0.
PD (5,5)=(G3-A3-2. *EPS*SUMI) /TAUC
PD (5, 6) =1I3/TAUC

C
PD (6c, 1)=-l*B31*G3/TAUF
PD (6, 2)=O.
PD (6,3) =-1. *B32 *G3/TAUJF
PD (6,4)=0.
PD (6, 5) --1 . *B*G3/TAUF
PD (6,6)=-1. * (B*13+B31*11+B32*12+1.) /TAUF

C
END

C
SUBROUTINE READIN (IFILE, Z,B)

C
REAL Z (6) ,B, IlINIT, I2INIT, I3INIT

C
READ(IF-ILE,101) TINIT,BX,NC,IlINIT,GIINIT,I2INIT,G2INIT,

& 13INIT,G3INIT
101 FORMAT(Ell.4,/,Ell.4,/, 16,/,

& E20.14,/,E20.14, /,E20.14,/,E20.14,
& /,E20.14,/E20.14)

C
C

Z (1)=I2INIT
Z (2)=GlINIT
Z (3)=I2INIT
Z (4) =G2INIT
Z (5)=I3INIT
Z (6)=G3INIT
Bs=BX

C
END

C
SUBROUTINE ALLOUT (Z, GG)

C
REAL Z(6),GG

C
C OPEN(UNIT=8,FILE''RESTART')
-717 WRITE(8,707) T,DT,Z(6) ,Z(1),GG,Z (2),Z(3) ,Z(4),Z(5)
707 FORMAT(Ell.4,20X,"RESTART TIME",/,E11.4,20X,"DT NSEC",/,

& Ell.4,20X, "CROSS-SAT
& PARAMI'TER",/,E20.14,20X,"I1",/,
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& E20.14,20X,"Gl",/,E20.14,20X,"I2",/,E20.14,20X,"G2"
& ,/,E20.14, 20X,"1I3", /,E20.14, 20X, "G3")

C
END

C
REAL FUNCTION EN(Z,S)

C
REAL Z(6)
COMMON /REF/ SR,BR,THETA,XR(6)

C
SUM1=0.
SUM2=0.
DO 10 J=1,5
SUM1=SUM1+ (Z (J) -XR(J) ) *(Z (J) -XR(J))

10 CONTINUE
SUM2= (Z (6) -BR) * (Z (6) -BR)
EN=THETA*SUM1 + (1.-THETA)*SUM2 - (S-SR)*(S-SR)

C
END

C
REAL FUNCTION NORM(A,B)

C
REAL A(6),B(6)

C
SUMSQ=0.
DO 10 J=1,6

C WRITE(*, '(" AJ AND BJ: ",2(2X,E12.6)) ') A(J),B(J)
SUMSQ=SUMSQ + (A(J)-B(J))*(A(J)-B(J))

10 CONTINUE
NORM=SQRT (SUMSQ)
WRITE(*, '(SNORM = ",E12.6) ') NORM
RETURN
END
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The last two program listings include the parameter definitions and differential

equations (FCN) for the three-mode version of the new rate equations (4.36) in RAY3G,

and the three-level model for two modes (4.45) in RAY2S. The program time is scaled so

that tprogram =7 tactual
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PROGRAM RAY3G(TAPE 3,TAPE 4,TAPE 8,TAPE 9,TAPE 10)
C
C USAGE-
C LGO,INITIALFILE(INPUT) ,OUTPUTFILE,RESTARTFILE (OUTPUT),
C FFTOUTPUTFILE, INTENSITIESOUTPUT
C *** ASYMMETRIC VERSION *
C THREE LEVEL TEST MODEL
C THIS VERSION USES THE FROM-SCRATCH EQUATIONS NEAR-RAYMER
C THREE-MODES; FIRST-ORDER APPROX
C THIS VERSION IGNORES THE FAST-OSCILLATIONS , EXP(I*DEL*T)
C WITH SCALING TO HOPEFULLY REDUCE STIFFNESS IN INTEGRATOR
C USE IMSL ROUTINE DGEAR TO NUMERICALLY INTEGRATE
C 11 1ST-ORDER DIFF EQ'S DESCRIBING THE TIME-DEPENDENT
C INTENSITIES AND GAINS FOR TWO-MODES IN A ND:YAG LASER
C WITH AN INTRA-CAVITY DOUBLING CRYSTAL.
C REF: T. BAER, J. OPT. SOC. AM. B, VOL 3, NO 9, SEP 86,
1177.
C

REAL BIR,BII,B2R,B2I,W,WK(200000),II(200000),I2(200000)
REAL 13(200000)
INTEGER IWK(200000)
COMPLEX X(200000)
COMMON /LOGIC/ RISING,THRESH
CHARACTER*1 ANS

73 WRITE (*, 2201)
2201 FORMAT(/" INPUT DT AND NSTEPS")

READ(*,2202) DT,NSTEPS
2202 FORMAT(Ell.4,/,I6)

WRITE(*,2203) DT,NSTEPS
2203 FORMAT(/" DT = ",Eli.4," NSTEPS = ",16," OK?")

READ(*,700) ANS
700 FORMAT(A1)

IF(ANS.NE.'Y'.AND.ANS:NE.'Y') GOTO 73
C

CALL KNOB
CALL INTEG(DT,NSTEPS,I1,I2,X,WK, IWK)
END

C
SUBROUTINE INTEG(DT,NSTEPS, II, I2,X,WK, IWK)

C
REAL BIR,BII,B2R,B2I,W,II(NSTEPS),I2(NSTEPS)
COMPLEX X(NSTEPS)
REAL WK(3*NSTEPS+200),H
INTEGER IWK(3*NSTEPS+200)
REAL Y(11)
CHARACTER*1 ANS
EXTERNAL FCN,FCNJ
EQUIVALENCE (Y(1),BI),(Y(2),B2),(Y(3),B3),(Y(4),W),
& (Y(5),W11),(Y(6),W22),(Y(7),W33),(Y(8),S),
& (Y(9),SII),(Y(10),$22),(Y(11),$33)
LOGICAL FIRST, FLAG, PEAKED, PASSED, RISING
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COMMON /LOGIC/ RISING,THRESH
C

COMMON //GAM1,GAM,A,B,DEL,EPS,P,WO,THETA,PHI,GOG
COMMON /ASYM/
& GAM2,GAM3,THETA1,THETA2, THETA3,D12,D13,D21,D23,
& D31,D)32,Fl,F2,F3,Q1,Q2,EPS1,EPS2,EPS3
COMMON /DBAND/ NLC,NUC
COMMON /GEAR/ DUMMY(48),SDUMMi(4),IDUMMY(38)
COMMON /GJ/ G,SIG,ANGLE

C
WRITE(*,'(" DO YOU REALLY WANT OUTPUT TO TAPE 4?"'
READ (*, 7 00) ANS

700 FORMAT(A1)
FLAG=.FALSE.
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') FLAG=.TRUE.

C
NWK=11

C NWK: NUMBER OF DIFFL EQUATIONS
TOL=1 .E-3

C
C SET PARAMATER DEFAULTS ...

C
GAM2=6 .E7

C SEC-INVERSE, CAVITY DECAY RATE
WRITE(*, '(/" INPUT RELATIVE LOSS FRACTION") ')
READ(*, '(F6.4) ') FLOSS
GAM1=FLOSS*GAM2
GAM3 =GAM1

C
GAM=4 .E3
GAMO=2 .E6
GOG=GAMO /GAM

C SEC-INVERSE, POPULATION DECAY RATE
THETA1=GAM/ (2. *GA41)
THETA2=GAM/ (2. *GAJ2)
THETA3=GA4/ (2. *GAM3)

C
D12=GAM1/GAM2
D13=GAM1 /GAN3
D2 1=GAM2/GAMI
D23=GAM2 /GAM3
D31=GAM3/GAM1
D32=GAM3 /GAM2

C
B=1 .E12

C
Fl=B/GAM1
F2=B/GAM2
F3=B/GAM3

C
Q1=. 137
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Q2=. 168
C Q2=Ql
C

A=1 .E-5
C

EPS=1.E-5
WRITE(*, ' (/" INPUT P ))

READ (*, '(E 12. 4) ') P
WRITE(*, 1 (/" INPUT EPS") '
READ(*, '(E 12. 4)') EPS
EPS1=EPS*GAM/ (A*GAMl)
EPS2=EPS*GAM/ (A*GAM2)
EPS3=EPS*GAM/ (A*GAM3)

C
DEL=1 .9E10

C DEL=DEL/100.
C
C P=1000.0
C PERCENTAGE ABOVE THRESHOLD

XL=5 .E-3
C YAG CRYSTAL LENGTH

XLL=5 .E-2
C CAVITY LENGTH

WO=(1.+P) *GA-MI/B
P=:Wo

C
C P=(l.+P)*XL/XLL
C P=WO*XL/XLL
C

THETA=GAN/ (2. *GA~l)
C. (2.*GAMI)

PHI=DEL/GAM1
C

READ(3,1O1) TINIT,DTB,NSTEPSB,B1NIT,B2NIT,B3NIT,WNIT,
& W11NIT,W22NIT,W33NIT,SNIT,S11NIT,S22NIT,S33NIT

101 FCRMAT(E11.4,/,E11.4,/,I6,11(/,E20.14))
C
C

T=TINIT
Y(1)=B1NIT
Y (2) =B2NIT
Y(3)=B3NIT
Y(4) =WNIT
Y (5) =W11NIT
Y(6) =W22NIT
Y (7) =W33NIT
Y (8)=SNIT
Y (9)=S11NIT
Y (10) -S22NIT
Y(11)=S33NIT
TSTOP=T
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C

0
0
0

7777 STOP
END

C
SUBROUTINE FCN (N, T, Y,YPRIME)
LOGICAL RISING
REAL Y(11),YPRIME(11)

C
COMMON I/GAM1,GAM,A,B,DEL,EPS,P,WO,THETA,PHI,GOG
COMMON /ASYM/

& GAM2,GAM3,THETA1,THETA2,THETA3,D12,D13,D21,D23,
& D31,D32,Fl,F2,F3,Ql,Q2,EPS1,EPS-2,EPS3
COMMON /LOGIC/ RISING,THRESH
COMMON /GJ/ G,SIG,ANGLE
B1=Y (1)
B2=Y (2)
B3=Y (3)
W=Y(4)
W11=Y (5)
W22=Y(6)
W33=Y (7)
S=Y (8)
S11=Y(9)
S22=Y(1O)
S33=Y (11)

C
TERM1=G*EPS1*Bl/2. + (1 .-G) *EPS1* (B2+B3)
TERM2=G*EPS2*B2/2. + (1.-G) *EPS2*(B1+B3)
TERM3=G*EPS3*B3/2. + (1.-G)*EPS3* (B1+B2)

C ARG=DEL*T
C SS=SIN(ARG)
C CC=COS(ARG)

YPRIME(1)=(B1*(Wl1-l.-TERM1 ) )/THETA1
YPRIME(2)=(B2* (W22-l.-TERM2 ) ) /THETA2
YPRIME(3)=(B3* (W33-1.-TERM3 ) )/THETA3
YPRIME(4)= F2*P - W -D12*B1*W11 - B2*W22 -D32*B3*W33

& ~- W* (3. + GOG) /2. - S* (1. - GOG) /2.
YPRIME(5)= F1*P/2. - W11 - (B1*(W11 - D21*W/8.)

& +B2*((W11+D21*W22)/2. - Q1*D21*W)
& +B3*((W11+D31*W33)/2. - Q2*D21*W))
& - W11*(3. + GOG)/2. - S11*(1. - GOG)/2.
YPRIME(6)= F2*P/2. - W22 - (B1*((D12*W11+W22)/2. - Q1*W)

& +B2*(W22 - W/8.)
& +B3* ((W22+D32*W33) /2. - Q1*W))
& - W22*(3. +GOG)/2. - S22*(l. - GOG)/2.
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YPRIME(7,1= F3*P/2. - W33 - (B1*((Dl3*W11+W33)/2. - &
Q2*D23*W)

& +B2*((D23*W22+W33)/2. - Q1*D23*W)
& +B3*(w33 - D23*W18.))
& - W33*(3. + GOG)/2. - S33*(1. - GOG)/2.
YPRIME(8)= P - W*(1. - GOG)/2. - S*(1. + GOG)/2.
YPRIME(9)= P/2. -W11*(1. -GOG)/2. -S11*(1. + GOG)/2.
YPRII4E(1O)= P/2. -W22*(1. -GOG)/2. -S22*(1. + GOG)/2.
YPRIME(1'i)= P/2. -W33*(1. -GOG)/2. -S33*(1. + GOG)/2.

C
C RISING=.TRUE.
C IF(YPRIME(2) .LT.O) RISING=.FALSE.

END
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PROGRAM RAY2S(TAPE 3,TAPE 4,TAPE 8,TAPE 9,TAPE 10)
C
C USAGE:
C LGO, INITIALFILE(INPUT) ,OUTPUTFILE,RESTARTFILE (OUTPUT),
C FFTOUTPUTFILE, INTENSITIESOUTPUT
C **THREE LEVEL TEST MODEL
C THIS VERSION USES THE FROM-SCRATCH EQUATIONS NEAR-RAYMER
C TWO-MODES; EIGHT EQUATIONS
C WITH SCALING TO HOPEFULLY REDUCE STIFFNESS IN INTEGRATOR
C USE IMSL ROUTINE DGEAR TO NUMERICALLY INTEGRATE
C 1ST-ORDER DIFF EQ'S DESCRIBING THE TIME-DEPENDENT
C INTENSITIES AND INVERSIONS FOR TWO-MODES IN A ND:YAG LASER
C WITH AN INTPRA-CAVITY DOUBLING CRYSTAL.
C REF: T. BAER, J. OPT. SOC. AM. B, VOL 3, NO 9, SEP 86,
C 1177.
C

REAL B1R,B1I,B2R,B2I,W,WK(200000),I1(200000),I2(200000)
INTEGER IWK(200000)
COMPLEX X(200000)
COMMON /LOGIC/ RISING,THRESH
CHARACTER*1 ANS

73 WRITE(*,2201)
2201 FORMAT(/' INPUT DT AND NSTEPS')

READ(*,2202) DT,NSTEPS
2202 FORMAT(El1.4,/, 16)

WRITE(*,2203) DT,NSTEPS
2203 FORMAT(/" DT = 'SE11.4," NSTEPS =",16," OK?")

READ (*, 700) ANS
700 FORMAT(A1)

IF(ANS.NE.'Y'.AND.ANS.NE.'Y') GOTO 73
C

CALL KNOB
CALL INTEG(DT,NSTEPS,11,12,X,WK,IWK)
END

C
SUBROUTINE INTEG(DT,NSTEPS, Ii, 2,X,WK, IWK)

C
REAL B1R,B1I,B2R,B2I,W,I1(NSTEPS),I2(NSTEPS)
COMPLEX X(NSTEPS)
REAL WK(3*NSTEPS+200) ,H
INTEGER IWK(3-NSTEPS+200)
REAL Y(8)
CHARACTER*1 ANS
EXTERNAL FCN,FCNJ
EQUIVALENCE (Y(1),B1),(Y(2),B2),(Y(3),W),(Y(4),W11),
& (Y(5),W22),(Y(6),S),(Y(7),S11),(Y(8),S22)
LOGICAL FIRST, FLAG, PEAKED, PASSED, RISING
COMMON /LOGIC/ RISING,THRESH

C
COMMON //GAM1,GAM,A,B,DEL,EPS,P,WO,THETA,PHI,GOG
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COMMON /DBAND/ NLC,NUC
COMMON /GEAR/ DUMMY(48),SDUMMY(4),IDUMMY(38)
COMMON /GJ/ G,SIG,ANGLE

C
C
C OPEN(UNIT=3,FILE='YAGIN',STATUS='OLD')
C OPEN (UNIT=4, FILE=' YAGOUT')

WRITE(*,'(" DO YOU WANT OUTPUT TO TAPE 4?")')
READ (*, 700) ANS

700 FORMAT(AlI)
FLAG=.FALSE.
IF(ANS.EQ.'Y'.OR.ANS.EQ.'Y') FLTAG=.TRUE.

C
NWK=8

C NWK: NUMBER OF DIFFL EQUATIONS
TOL=1 .E-3

C
C SET_ PARA.MATER DEFAULTS ...

C
GAM1=6.E7

C SEC-INVERSE, CAVITY DECAY RATE (SCALED)
GAM=4 .E3

C SEC-INVERSE, POPULATION DECAY RATE (SCALED)
GAMO=2 .E6

C
GOG=GAMO/GAM

C
B=1 .E'12

C
A=1 .E-5

C
EPS=0
WRITE(*, '(/" INPUT P"))
READ(*, '(E12.4) ) P
WRITE(*, ' (/" INPUT EPS") '
READ(*, '(E12.4) ) EPS

C
DEL=1. 9E10

C DEL=DEL/100.
C
C P=2.00
C PERCENTAGE ABOVE THRESHOLD

WO=(1.+P) *GA.MI/B
C

THETA=GAM/GAM1
C

PHI=DEL/GAM1
READ (3, 101)
& TINIT,DTB,NSTEPSB,B1NIT,B2NIT,WNIT,W11NIT,W22NIT,
& SNIT,S11NIT,S22NIT

101 FORMAT(E11.4,/,E11.4,/,I6,8(/,E20.14) )
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C
C

T=TINIT
Y (1) =B1NIT
Y (2) =B2NIT
Y (3) =WNIT
Y (4) =W11NIT
Y(5) =W22NIT
Y (6) =SNIT
Y(7)=S11NIT
Y (8) =S22NIT
TSTOP=T

C

0
0
0

7777 STOP
END

C
SUBROUTINE FCN (N, T, Y,YPRIME)
LOGICAL RISING
REAL Y (8),YPRIME (8)

C
COMMON //GAM1,GAN,A,B,DEL,EPS,P,WO,THETA,PHI,GOG
COMMON /LOGIC/ RISING,THRESH
COMMON /GJ/ G,SIG,ANGLE
Bl=Y (1)
B2=Y (2)
W=Y (3)
Wl1=Y (4)
W22=Y(5)
S=Y(6)
S11=Y (7)
S22=Y (8)

C
TERM1=G*EPS*B1/2. + (l.-G)*EPS*B2
TERM2=G*EPS*B2/2. + (l.-G)*EPS*B1

C ARG=DEL*T
C SS=SIN(ARG)
C CC=COS(ARG)
C
C THE FACTOR BELOW, OF 0.137, ASSUMES NEAREST-NEIGHBOR
C MODE SPACING
C

W1111 = W11 -W/8.
W1122 = (Wil + W22)/2. - 0.137*w
W2222 = W22 -W/8.

C
YPRIME(1)=(2.*B1*(W1-1.-.TERM1 ) )/THETA
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YPRIME(2)=(2.*B2*(W22-1.-TERm2 ) )/THETA
C YPRIME (3) =(1.s-P) - W* (1. + B). + B2)

YPRIME(3)= P - W -B1*Wll - B2*W22
& - W*(3. + GOG)/2. - S*(1. - GOG)/2.
YPRIME(4)= P12. - W11 -Bl*Wl111 - B2*W1122
& - W11*(3. + GOG)/2. - Sl1*(1. - GOG)/2.
YPRIME(5)= P12. - W22 -Bl*W1122 -B2*W2222
& -W22*(3. + GOG)/2. - S22*(l. - GOG)/2.
YPRIME(6)= P - W*(1. - GOG)/2. - S*(1. + GOG)/2.
YPRIME(7)= P/2. - W11*(1. - GOG)/2. - S11*(1. + GOG)/2.
YPRIME(8)= P/2. - W22*(l. - GOG)/2. - S22*(1. + GOG)/2.

C
C RISING=.TRUE.
C IF(YPRIME(2).LT.O) RISING=.FALSE.

END
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