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PREFACE

This final report covers the effort of the research project titled “Constitutive Cqua-
tions For Hot Working” conducted in the Department of Mechanical Engineering at
Massachusetts Institute of Technology, under U.S. Army MTL Grant No. DAAG46-83-
K-0021. The performance period for this grant was 5-2-83 through 9-30-86.

This report is excerpted from the Ph.D. thesis of Dr. Stuart Brown, which was finan-
cially supported by this grant. The principal investigator on this project was Professor
Lallit Anand of the Department of Mechanical Engineeering at MIT, and the program

manager for the project at MTL was Dr. Dennis Tracey.
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Chapter 1

Summary Of Results

We have formulated a state variable constitutive model for large deformation, isotropic
thermo-elasto-viscoplasticity. The viscoplastic material parameters appearing in the con-
stitutive functions are determined from experimental data obtained from hot, isothermal,
strain rate jump, load-unload-hold-reload, and constant true strain rate experiments con-
ducted on an Fe-2% Si alloy. The constitutive model is briefly described below. The

details of our work our reported in the chapters to follow.

Constitutive Model

The state variables are taken to be {T,0,s}, where T is the Cauchy stress, 0 is the
absolute temperature, and s is a scalar internal variable with dimensions of stress, called
the isotropic deformation resistance. The internal variable s represents an aveiaged
isotropic resistance to macroscopic plastic flow offered by the underlying “isotropic”
strengthening mechanisms such as dislocation density, subgrain size, grain size, solid
solution strengthening effects, etc.

The evolution equations for the three state variables are:

e Evolution equation for the stress:

TV = £[D — DP] - II0,




where TV = T — WT + TW is the Jawnann derivative of Cauchy stress T;

L =2uT + {x—(2/3)1}1 ® 1 is the fourth order isotropic elasticity tensor; u =

A

fi(0), & = &(0) are the elastic shear and bulk moduli, respectively; ¥I = (3xka)1 is
the stress-temperature tensor; a = &(6) is the coefficient of thermal expansion; D
is the stretching tensor; W is the spin tensor; Z is the fourth order identity tensor;

and 1 the second order identity tensor.

The plastic stretching tensor D? is given by the flow rule:

Dr= 3/ (T/5), with &=7((3).0),
where T’ denotes the stress deviator, and & = /(3/2)T’ - T' denotes the equivalent

tensile stress.

¢ Evolution equation for s:

This is taken to be given by
§=h(5,0,s)& —7(0,s),

where h is a hardening function which accounts for any dynamic recovery, and 7 is

a static recovery function in the absence of stress.

¢ Evolution equation for 0:

From an approximate balance of energy
0 = (pc)~! {div (A gradf) + w T - D?},

where p is the mass density, ¢ = &(0) is the specific heat, A = A(0) is the thermal
conductivity, and w, a scalar in the 1ange 0.85 < w < 1, is the fraction of plastic

work converted to heat.
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Based on our hot compression experiments on an Fe-2%Si alloy (performed in the
homologous temperature range 0.6 to 0.9 and the strain rate range 10~3 to 10° sec™!),

we have proposed the following specific constitutive functions for & and é:

& =Aexp (—%) [sinh ({%)]I/m .

Our experiments show that for at least the Fe-2%Si, the static recovery function 7 has

negligible contribution to the evolution of s, and that § may be adequately represented

by
§= {ho (1 - %) sign (1 - -%)} &,
s s

s l€ o (_Q_)”
s = Aexp R0 .

The list of material parameters in these constitutive equations are: A,Q,m,§, ho,

with

a,§, and n. Also R is the universal gas constant. We have formulated a systematic
procedure to determine these material parameters from data obtained from isothermat,
strain rate jump, and constant true strain rate experiments. These material parameters

are listed below.
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TABLE 1

Material Parameters for Fe - 2% Si

Material Parameter Value
A 6.346 x 10*! cec™?
Q@ 312.35 kJ /mole
i3 3.25
m 0.1956
S 125.1 MPa
n 0.06869
ho 3093.1 MPa
a 1.5

The correlation between the model and the experimental data, upon which the model
is based and from which the material parameters of the model have been determined,
is very good. Also, we have also performed a variety of experiments that were not used
to determine the material parameters in our constitutive functions. These experiments
were performed to test the predictive capability of the constitutive model. We find that
our constitutive model accurately predicts the response of the material to these critical
experiments.

It is expected that specific forms of constitutive equations should be the same for dif-
ferent materials, as long as the underlying operative physical mechanisms are the same.
Since the mechanisms are generally the same for a given class of materials in a given range
of temperatures and strain rates, we anticipate that the constitutive equations proposed
above should be applicable for modeling the deformation behavior of other cubic metals
at temperatures greater than half the melting tempeiature in degrees absoluie, and iu

1

the strain rate range 102 to 10°sec™. This range of strain rates and temperntures is

of great practical interest for numerous low-rate hot working processes (e.g., isothermal




forging). Finally, although the use of a single scalar internal variable limits the con-

stitutive equations to describing the deformation behavior of initially isotropic meta.s

upto deformation levels where significant polycrystal texturing has pot developed, the

constitutive equations developed during the course of our research should be useful for

obtaining improved analyses of various hot deformation processing operations of metzls.
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Chapter 2

Introduction

Hot working refers to a collection of metal forming processes which take advantage of the
lower flow stress and greater ductility of metals at high temperatures. It encompasses
such operations as hot rolling, extrusion, and forging, where metals are heated to a laige
fraction of their m:lting temperatures and then subjected to large deformations. Hot
working is a common operation in the processing of metals. It has been estimated that
well over 80 percent of all metallic products undergo some form of hot working during
their fabrication history [Semiatin et al. 1981].

The benefits of hot working are extensive. Large changes in shape may be achieved
with each processing step. The machine loads required to achieve these changes arc
much lower than would be encountered at room temperature. There can be substan-
tial savings in material, with properly designed processes producing little waste metal.
There is also the opportunity to control material properties during the working operation.
Many hot working processes produce beneficial distributions of oriented grains and in-
troduce deformation-induced microstruclures which increase the subsequent deformation
and fracture resistance of the material.

There are several features common to most hot working processes. Most hot work-
ing produces large deformations, with equivalent strains easily exceeding 1 or 2. Most

processes, to achieve lower working loads, heat the worked metal to temperatures from




one-half to nine-tenths its melting (homologous) temperature. Strain rates are similarly
high, ranging from 10~2 per second for isothermal forgings to 10 or more per second
in finish rolling and high speed hammer operations. Many working processes are in-
terrupted, incorporating multiple deformation passes on the same workpiece with hold
periods between passes. Temperatures may vary dramatically, as a function of both time
and position within the workpiece. Temperature changes may occur due to both heat
losses to tooling and {he atmosphere and the conversion of plastic work into heat. Finally,
the mode of deformation may be extremely inhomogeneous, with very complex material
flow paths involving large rotations, strains, and changes in strain rate.

Partially due to the conservatism of the industry and partially due to the complex-
ity of the hot working process, much of the knowledge for the design of hot working
processes has been both experiential and proprietary. The modelling of such processes
requires the solution of very complex, strongly coupled mechanical and thermal boundary
value problems. The advent of digital modeliing techniques such as the finite element
method is beginning to permit the simulation of working operations which before were
frequently designed on a trial-and-error basis. The problems associated with such simula-
tions, however, are far from resolved. Several difficulties remain, many which encompass
experimental, theoretical, and computational disciplines. These difficulties include the
proper accomodation of kinematics of large deformation, the complexity of material be-
havior possible in hot working, coupled thermo-mechanical deformation, the complex
friction and thermal boundary conditions, and element distortion and remeshing,.

This investigation concentrates on the central issue of appropriate large deformation
constitutive equations for the high temperature deformation of metals. Currently used
constitutive models (e.g. in the F.E.M. program ALPID) are usually simple three dimen-
sional generalizations of uniaxial stress versus strain rate relationships of the power law

form where the stresses and strain rates are those obtained as “steady state” values after




any transients have decayed [Thomsen, et. al. 1965; Jonas, 1969, Sellars 1972, 1978]. Al-
though these models consider only steady state behavior, conditions described above for
hot working are inherently non-steady. The interrupted, inhomogeneous deformations
resulting from hot working may prevent the numerous operative physical mechanisms
and thermally activated processes from ever reaching a steady state. The final state of a
hot worked piece of metal therefore is strongly affected by its deformation history. This
history dependence suggests a constitutive model of the internal variable type, where the
current state or condition of the microstructure is tracked via a list of variables which
evolve with the deformation and temperature history. These internal variables are not
necessarily directly measureable, but they are intended to represent some averaged ma-
terial property, such as a generalized resistance to plastic deformation. At any point,
the internal variables are assumed to represent the condition of the metal; there is no
need to know the prior thermo-mechanical history. A second list of variables is added
to the list of internal variables to complete the constitutive model. These imposed or
“external” variables such as strain rate, stress, and temperature are assumed, with the
internal variables, to be sufficient to represent the current mechanical response of the
material and to govern the evolution of both the external and internal variables.
Several investigators have recently proposed internal variable constitutive models for
the high temperature deformation of metals [Hart, 1970; Bodner and Partom, 1975;
Miller, 1976; Kocks, 1976; and Anand 1982). Virtually all models except that of Anand
have been proposed for application in the creep deformation regime, at temperatures
and strain rates lower than that encountered in hot working. The issues associated with
formulating an internal variable model in either regime are the same. However, due to lack
of experimental data in the hot working regime, it is not evident that a model formulated
for creep may be extrapolated for hot working simulation. The model proposed by Anand

for hot working was based on a reduced set of moderate strain, material tests representing




a small subset of the hotworking regime. Anand by necessity assumed functional forms
for his material model which he then fit to the experimental data. No data were available
for model validation independent of that used for the fitting of model parameters.

The goals of the research reported here were to:

1. Develop a high temperature mechanical test system to characterize metal behavior
in the hot working regime, including high homologous temperatures, moderate

strain rates, and large strains.

2. Perform experiments necessary to investigate the constitutive response of a repre-

sentative metal in the hot working regime.

3. Formulate an internal variable constitutive model from the experimental data, with

the following considerations:

a. The model should represent large, three dimensional deformations in the hot

working regime.

b. The model should be able to represent the most significant aspects of the under-
lying microstructural state of the metal and its evolution during deformation.
Physical phenomena to be modelled include strain hardening, strain rate and
temperature sensitivity including history effects, and both dynamic and static

Trecovery processes.

c. Material parameter determination should be straightforward and require a min-
imum of experimental testing. This should of course be commensurate with

the degree of complexity that is to be modelled.

d. Finally, the model should be formulated with due consideration of issues regard-

ing its numerical implementation in finite element programs.




4. Evaluate the model through appropriate validation experiments, including an in-
vestigation of the model’s ability to predict some aspects of the internal state of

the material.

The following chapter describes a high temperature test system and describes the
compression testing procedures associated with an iron - 2% silicon alloy. Chapter 4
discusses the structure of the constitutive model, describes a set of experiments used to
evaluate the material functions, and proposes specific forms for those functions. Chapter
5-discusses the reduction of the data obtained from the mechanical tests and presents
a procedure for determining material constants for the constitutive model. Chapter 6
presents a comparison of material response predicted by the constitutive model with ex-
periments involving boundary conditions not used for the material parameter evaluation.
This chapter also discusses means of correlating predicted values of the internal variable
with- physically measureable quantities. Finally, we conclude this report with some final

remarks and discussion in Chapter 7.
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Chapter 3

Experimental Apparatus

This chapter begins with a description of the high temperature test system designed
and used to evaluate material response under hot working conditions. Issues related to
compression testing are discussed, and the model material used in this investigation, an

iron - 2% silicon alloy, is described.

3.1 High Temperature Test System

Any system used for basic high temperature mechanical testing and for the simulation

of hot working should possess the following minimal characteristics:

1. Isothermal testing to temperatures exceeding .9 0., of the material of interest, where

0, is the melting temperature in degrees absolute.
2. True strain rates ranging from 10~* to at least 10° sec™! and preferably greater.

. Variable testing modes, including compression, torsion, and tension.

[N

4. Rapid quenching of specimens from test temperatures.

5. Complex loading histories, both to evaluate material response and to simulate non-

steady forging operations.
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6. Controllable environments to reduce the effect of oxildation.
7. High speed data collection.

Figure 3.1 shows a photograph of the test system constructed to meet the above
characteristics. The basic system consists of an Instron Corporation, Model 1322 ten-
sion/torsion servohydraulic test machine. The system actuator has a frequency response
of approximately 10 hertz, which effectively limits the maximum controllable strain rate
for ordinary, laboratory sized axial specimens to approximately 1 per second. The lower
strain rate limit is approximately 10~ per second due to the limits of resolution for the
actuator displacement and hydraulic servovalve. Approximately the same strain rates
are obtainable in torsion.

The analog controllers for the servohydraulic machine permit external control signals
in the form of voltages. These may be provided either by digital or analog function
generators, permitting arbitrarily complex loading histories. Most of the control signals
for this investigation were obtained from an analog function generator, designed and
assembled by Mehrdad Haghi (of our laboratory), following a simpler design used by
Immarigeon and Jonas [Immarigeon and Jonas 1975). The function generator uses a
simple RC circuit to provide a decaying exponential voltage which simulates a constant
true strain rate compression test. The function generator is also designed with set points
which may either hold the voltage at that point or change the strain rate, which enables
strain rate jump and recovery tests.

The temperature and environmental control for the test system is provided by a high
temperature, vacuum furnace built by Centorr Associates, Suncook, New Hampshire,
according to our specifications. The furnace, pictured in Figures 3.2 through 3.4 is a
stainless steel, double-walled chamber with a center heat zone. The furnace is mounted

in the frame of the servohydraulic machine, as illustrated in Figure 3.1. The vacuum
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system consists of a roughing pump and a 4 inch diffusion pump which is attached to
the back plate of the furnace. Maximurn vacuum attainable was approximately 10-¢
torr. The furnace is equipped with flexible bellows above and below through which pass
loading rods composed of a high temperature molybdenum alloy, TZM. The loading rods
pass into the furnace through the bellows and are hermetically sealed with a pair of
differentially pumped Viton quad rings. The lower seal is designed to permit the lower
loading rod to both rotate and move in and out of the furnace without disturbing the
vacuum.

Heating is provided by a cylindrical heating zone consisting of tungsten mesh heat-
ing elements surrounded by a multiple layer set of molybdenum heat shields. Power
is provided by an SCR-controlled A/C power supply which caused extensive problems
with electrical noise. Electrical noise is a continual, unavoidable problem with SCR con-

trollers. In retrospect the system should have been designed with a D/C power supply.

A Leeds and Northrup Electromax V temperature controller is used with chromel-alumel

thermocouples to maintain specimen temperatures. A thermocoupie spot welded to each
specimen serves as the feedback transducer to the controller. The heat zone is designed
to reach temperatures up to 1800 Celsius, but the loading rod materials, 94% alumina
and TZM, begin to creep and recrystallize, respectively, at approximately 1200 Celsius.
All tests were therefore run at or below 1200 Celsius. The furnace is water-cooled, water

being circulated between the double walls of the furnace while at temperature.

The furnace was also equipped with an insulated Conflat induction heating feedthrough.

Induction heating in atmosphere or vacuum is therefore another possible means of reach-
ing high temperatures. Tests involving quenching require induction heating since the
tungsten mesh heating elements and molybdenum heat shields can not withstand the
rapid contraction associated with querch cooling. Induction heating possesses the same

disadvantage as the SCR heating system in that it generates a significant amount of
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electrical noise, obscuring transducer signals.

Other features of the furnace include ports to accomodate gas quenching, 12 ther-
mocouple feedthroughs, and mounting brackets and feedthroughs appropriate for a high
temperature, MTS extensometer.

Data acquisition for most of this project was accomplished with an IBM PC/XT
equipped with a Metrabyte Corporation DASH-16 analog-to-digital converter. The DASH-
16 was provided with BASIC language callable subroutines which permitted sampling
rates exceeding 1 kilohertz. An approximate limit of 30,000 data points could be col-
lected during one sampling session, the maximum number controlled by the memory
remaining after subtracting the memory requirements of the BASIC language and the
BASIC sampling program from a 64K sector of IBM/PC memory. All data was trans-
ferred to a Data General MV4000 computer for analysis; the IBM/PC was used only for
data acquisition.

The high temperature system is unique in the variety of high temperature test ca-
pabilities. Other systems exist which permit one mode of testing, heating, or control,
but we know of no other system with the same collected capabilities. All of the data

presented in this report were obtained using this test system.

3.2 Compression Testing

The role of t}.2 compression test in the study of the large deformation of metals is well es-
tablished [ASTM Standard E209-65; Chait and Papirno, 1983; Hsu, 1969]. Compression
testing achieves large strains due to the absence of necking and permits a fairly simple
means of measuring strain by determining the relative displacement of the compression
platens. Also it is also easier to-perform relative to torsion testing since it requires sim-

pler and more common experimental apparatus and requires less complicated alignment
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of loading fixtures. Compression testing is particularly appropriate for large deformation
testing at high temperatures, where temperature uniformity is difficult to maintain in
tension and torsion specimens, and strain measurement in tension and torsion requires
complex extensometry.

Unlike tension and, to a lesser extent, torsion testing, compression testing frequently
is not selected for material testing due to its propensity for different modes of inhomo-
geneous deformation. Temperature gradients, lateral buckling, and friction between the
compression specimen and compression platen all may create inhomogeneous deforma-
tion.

When a material demonstrates substantial rate sensitivity, temperature gradients,
specifically axial gradients, may produce conical specimens, illustrated in Figure 3.5.
The gradient in this case was caused by the quenching of the upper end of the specimen
by a cooler compression platen. Extensive finite element heat transfer analyses of the

Centorr furnace heat zone and the initially installed TZM alloy loading rods prc -ided with

the furnace indicated that the greatest source of heat loss was through the water-cooled

loading rods. The conduction through the rods was enough to p-oduce temperature
gradients in excess of 20 degrees Celsius along the length of the compression specimens.
This gradient was reduced to 42 degrees Celsius by installing one inch diameter, 94%
alumina ceramic rods in place of the TZM loading rods. The alumina rods fit within the
mounting sockets of the TZM rods, which were withdrawn from the furnace heat zone.
The change to alumina rods reduced the thermal conductivity of the heat zone loading
rod material from approximately 100 W/m °K to 5 W/m °K. The new loading rod system
is shown in Figure 3.6. TZM was still used as the compression platen material, since it
could be easily polished to provide a smooth compression surface, and since it acted to
distribute the specimen contact load evenly over the alumina rod crossection. It should

be noted that a much easier method to eliminate temperature gradients is to employ
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a three zone furnace. Such a furnace eliminates any sensitivity to load train materials,
permitting the use of high temperature materials, such as thoriated tungsten or graphite
without concern for these materials’ high thermal conductivities.

Lateral buckling was encountered in compression specimens whose height to diameter
ratio exceeded 1.5. This height-to-diameter limit appears rather inflexible, for we fre-
quently obtained shear buckling in specimens with a 1.6 ratio. A ratio of 1.5 eliminated
any ostensible buckling.

A more significant deformation inhomogeneity resulted from friction between the
specimen and the compression platens. Figure 3.7 indicates the deformation pattern
which results from excessive friction between the specimen and platens. Figure 3.8 illus-
trates the shape of a comparably barrelled specimen. The effect-of friction in preventing
homogeneous compression was reduced through the use of grooves in the ends of the
compression specimens in conjunction with high temperature lubricants. This technique
has been used by many investigators [Uvria, 1968; Sherby, 1980; Hsu, 1969] and appears
to work very well in producing homogeneous compression for compressive true strains
exceeding —1.0. Shallow, concentric grooves are machined on the end faces of the spec-
imens to hold high temperature lubricant. Figure 3.9 provides the dimensions of the
specimen and the grooves on the specimen faces. The specimen dimensions were selected
to provide sufficient grains in the cross-section to permit a continuum assumption, the
number of grains encountered across the diameter being approximately fifteen.

The lubricants used were mixtures of powdered glass and boron nitride powder. This
particular combination of glass and boron nitride appears to act as a high temperature
analog to the common room temperature lubricants of molybdenum disulfide or graphite
in-a grease carrier. At high temperatures the glass melts to form a viscous, lubricating
film which also carries the boron nitride. Boron nitride possesses a hexagonal basal plane

crystalline structure, providing lubrication in the same manner as graphite or molybde-
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num disulfide [Niedenzu, et al. 1965). The particular glass/boron nitride mixtures used
as lubricants at the different test temperatures are listed in Table 3.1. Our general ex-
perience indicates that a good criterion for lubricant selection is that the melted glass
should have a viscosity of approximately 10* poise at test temperature, and that the
glass-to-boron nitride weight ratio should be greater than 4-to-1, and should probably
be closer to 8 or 10-to-1.

It is also possible to eliminate the boron nitride completely and still obtain uniform
deformation using only glass. Boron nitride extends the effective usable lubrication tem-
perature range of a particular glass. Boron nitride may also react with oxygen at high
temperatures, so its usefulness may be limited to vacuum or inert environments.

Figure 3.10 shows a typical compression specimen before and after an essentially
homogeneous, isothermal, constant true strain rate compression test to a true strain of
-100%. Notice that the deformed specimen is sill cylindrical, and that there is no notice-
able rollover of the sides of the specimen, which would have resulted were there friction
between the specimen end faces and the compression platens. Figure 3.11 shows the
microstructure of one such specimen. Notice that all of th grains possess approximately
the same aspect ratio as the deformed specimen.

Additional factors influenced deformation homogeneity of the compression specimens.
It appears to be very important for the compression platens to be well polished. The TZM
platens used for the experiments described within were polished for each experiment to an
approximately 10 micron surface finish. The ends of the compression specimens were also
finished to a 600 grit roughness. It is also important for the opposing surfaces of the load
train to be parallel and remain so during the test. The end of the compression specimens
should also be parallel. Groove spacing and depth appeared to be less sensitive controlling
parameters than was initially anticipated. Approximate bounds for these dimensions are

a groove spacing of fifteen to thirty thousandths of a inch and a groove depth of four to
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eight thousandths of an inch.

Compressive strains throughout this investigation were measured by subtracting the
effect of test machine compliance from the displacement of the servohydraulic actuator.
The large displacements required for large strain compression tests permitted this indirect
means of measuring deformation, since the errors associated with variations and nonlin-
earities in compliance and the resolution of the actuator LVDT were relatively small. The
errors were more significant, however, at the beginning of each test when the tolerances
were taken up, and when we desired very accurate strain measurements. Extensive digi-
tal smoothing techniques permitted greater resolution in measuring displacements than
was possible using analog data collection equipment. Using smoothing, we could easily
resolve strains less than 1074, although the degree of resolution was sensitive to both
strain rate and rate of data acquisition. More exact resolution of strains would be aided
by some means of measuring the relative displacement of the compression platens, such
as a high temperature LVDT, extensometer, or strain gauge. Implementation of these

transducers is not trivial, although they are necessary for small strain resolution.

3.3 Iron — 2% Silicon Model Material

An iron silicon alloy was selected as the model material in this investigation for several
reasons. First, although an iron based material, it retains a body-centered cubic structure
up to the solidus temperature. This property is useful, for we wished to be able to
deform our model material at hot working temperatures and then rapidly quench the test
specimens to preserve the hot worked microstructure. The martensitic transformation
associated with many iron alloys would erase any deformation-induced microstructure.
The equilibrium diagram for the iron/silicon system shown in Figure 3.12 indicates the

persistence of the alpha phase at all temperatures for the above composition.
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The iron 2% silicon was also selected for the high stacking fault energy associated
with body-centered cubic materials. Our intention was to model the evolution of struc-
ture including the mechanisms of hardening, dynamic recovery, and static recovery. We
wished to avoid dynamic recrystallization, which can introduce such complications as an
oscillating stress/strain response and deformation localization [Jonas, 1969]. Figure 3.13
illustrates the oscillations which result during the deformation of a material which ex-
hibits dynamic recrystallization, in this case 1018 plain carbon steel. High stacking fault
energy materials generally do not demonstrate dynamic recrystallization since the rate of
recovery is believed to be sufficiently high to prevent the accumulation of a deformation
structure which may trigger recrystallization [McQueen, 1982].

The deformation response of iron silicon alloys has also been studied extensively
using both transmission electron microscopy [e.g. Hu, 1964] and dislocation etch pits
[Lytton, et al., 1965]. We felt that extensive experience in the examination of iron silicon
microstructures would facilitate efforts at similar examinations should we wish to do-so.

The particular alloy used in this investigation was provided by Armco Steel Company,
Middletown, Ohio. It was provided in rolled plates, approximately 1 inch thick, 12-inches
wide, and 3 to 4 feet long. The nominal composition is listed in Table 3.3. All specimens
were machined such that their axis of symmetry was oriented across the width of the
plate, illustrated in Figure 3.14. The material possessed a large grain size. Figure 3.15
illustrates the polished and etched (Fry’s reagent) cross-section of a typical compression
specimen.

All specimens were annealed for 1 hour at 700 degrees Celsius. This schedule is
identical to that used by Young and Sherby [Young and Sherby, 1973] in an investigation
of a similar iron silicon alloy. Annealing at higher temperatures and for a longer time

was avoided to prevent excessive grain growth.
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TABLE 3.1

Lubricant Composition

Temperature Constituents Composition Ratio
(Celsius) by Weight
700 BN:1190:Acetone 1:4:16
800 BN:1190:Acetone 1:4:16
900 BN:0010:Acetone 1:8:32
1000 BN:0010:Acetone 1:8:32
1100 BN:0010:Acetone 1:8:32
1200 BN:0010:Acetone 1:8:32

Notes:

1. BN = boron nitride powder, purchased from Union Carbide Corporation, Grade HCP.

2. Four digit number refer to glass classification codes. Glass was purchased as a powder,

325 screen size, from Corning Corporation, Corning, New York.
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TABLE 3.2
Composition of Iron - 2% Silicon
Element | Weight %
Si 1.98
Al 0.56
C 0.0023
Mn 0.16
Cu 0.26
Cr 0.13
Ni 0.14
S 0.0012
) 0.009
: Ti | 0.0041
: N | 0.0050
Mo 0.038
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Figure 3.1 High temperature mechanical test system.
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Figure 3.2 Vacuum furnace exterior
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Figure 3.3 Vacuum system for high temperature
furnace.




Figure 3.4 Vacuum furnace interior.
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Figure 3.5 Conical specimen resulting from axial
temperature gradient.
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Figure 3.6 Load train for isothermal compression
testing.
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Figure 3.7 Pattern of grain deformation in
compression specimen with significant friction between
specimen and compression platen.
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Figure 3.8 Barrelled compression specimen resulting
from friction between specimen and compression
platen.
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Figure 3.9 Dimensions of Fe — 2% Si Compression Specimen.
Test results insensitive to groove geometry.
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Figure 3. 10 Compression specimen before and after a
homogeneous, isothermal, constant true strain rate
compression test.
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Figure 3.11 Grain deformation obtained from a
homogeneous, isothermal, constant true strain rate
compression test.
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Figure 3.15 Crosssection of compression specimen
etched to indicate grain size.
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Chapter 4

Experimental Determination of the
Material Response Functions

The basic form of the constitutive model follows the mathematical structure proposed by

Anand for an isotropic metal [Anand, 1985]. The model assumes three state variables:
{T’ s’ 0}’

where T is the Cauchy stress, 0 is the absolute temperature, and s is a scalar inter-
nal variable which represents an isotropic resistance to plastic deformation. Evolution

equations for the three variables are:

¢ Evolution equation for the stress:
TV = £[D — DP] — I14,
where

T™V=T-WT+TW Jaumann derivative of Cauchy stress T;
L=2uT + {x-(2/3)u}1®1 fourth order isotropic elasticity tensor;

p=p(8), k==~r(0) shear and bulk moduli;
II = (3ka)1 stress-temperature tensor;
a= &(d) coefficient of thermal expansion;
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L=grad v spatial gradient of velocity;

D =sym (L) stretching tensor;

W = skew (L) spin tensor;

0 absolute temperature;

Iz fourth order identity tensor;
1 second order identity tensor.

The constitutive equation for D? is:

o (3T
pDr=¥¢{2=—
(%)

where

&=f (6,0,s) >0, & <s, equivalent plastic tensile strain rate;
T deviator of the Cauchy stress;

F=4/(3/2)T"- T’ equivalent tensile stress.
Evolution equation for the internal variable s:
$=§(6,0,s),

Evolution equation for the absolute temperature:

Given by the following approximate energy balance equation (this is not a consti-
tutive equation):

0 = (pc)™" {div () gradd) + w T - D?},

Here p = p(6) is the mass density, ¢ = &0) is the specific heat, A = A(0) is the
thermal conductivity, and w, a scalar in the range 0.85 < w < 1.0, is the fraction

of plastic work converted to heat.
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The main task of this investigation then is to evaluate the functional forms for the
equivalent plastic strain rate f(4,0, s) and the evolution equation for the internal variable
s: §(6,0,s).

This constitutive model employs only one scalar internal variable, s, for several rea-
sons. First, we wished to determine whether one scalar internal variable would be suf-
ficient to describe the major features of metal behavior during hot working. The well-
known correlation between the dislocation density and flow stress suggested that a single
internal variable might be adequate. There is a.ditionally sufficient uncertainty of what
role a second internal variable would play. Some investigators [Kocks, 1966] suggest
that obvious secondary parameters such as dislocation cell size may not contribute to
deformation resistance and are merely consequences of dislocation density.

Second, the task of determining the evolution of internal variables is much more
straightforward if there is only one. We wished to be able to perform tests which would
suggest the functional form for the evolution equation for the internal variable. More
than one internal variable would nccessitate tests which would somehow decouple the
evolution of the two or more internal variables. We felt that the extent of knowledge
concerning the development of state during large deformations provides very little guid-
ance for performing such experiments.

The internal variable was selected to be scalar since the task of accomodating the
largest source of anisotropy, deformation-induced texture, is still not well understood.
Small strain anisotropy associated with Bauschinger type effects were ignored since its
effect was assumed to saturate at a small fraction of the strains encountered in hot

working.
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Here, we focus our attention on the two undetermined response functions of the

constitutive model, the rate or flow equation:
P ~
¢ = f(d,s,0), 4.1

and the evolution equation:

$ =g(3,s,0). 4.2

Given the above structure, we now must deduce the functional forms of the two equa-
tions. Ideally, we would like to have an adequate understanding of the underlying mecha-
nisms governing high temperature behavior such that our task would be only to perform
the experiments to determine the few specific material constants for the metal of in-
terest. Realistically, our limited knowledge of these mechanisms precludes this, both
because our understanding of the different mechanisms is incomplete and because the
actual mechanisms are associated with complex structures and processes certainly not
totally representable by a single internal variable model. We therefore choose to moti-
vate functional forms, where possible, from elementary assumptions about deformation
mechanisms, guided by appropriate experimentation to modify these forms and provide
material parameters.

We make the following assumptions concerning the forms of equations 4.1 and 4.2:

1. We define the scalar internal variable s to be a stress valued quantity called the de-
formation resistance. As a structure parameter, it represents a generalized isotropic
resistance to plastic flow which contains contributions from dislocation density, sub-
grain size, grain size, solid solution strengthening, intrinsic lattice resistance, etc.
For pure, single phase materials, we expect it to be highly correlated with the
dislocation density and subgrain size, which are expected to be the primary contri-

butions to deformation resistance at these temperatures.
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2. The state variable enters into the rate equation only as a ratio with the equivalent

tensile stress. That is,
¥ g (i,o) . 43

s

This form has been suggested by Kocks, Argon, and Ashby [1975] in conjunction
with a model for mechanically-activated dislocation glide. Rice [1970] and others
have suggested this structure as well, although there seems to be no fundamental
requirement for a scalar internal variable to be incorporated in this way. We shall
consider functional forms for which equation 4.3 may be inverted such that we
may write ¢ = c¢s, where c is a function of strain rate and temperature. This
structure parallels an expanding or shrinking isotropic yield surface, where the
plastic resistance acts as the flow strength. Of course, the model presented here
does not include a yield surface; plastic deformation is assumed to occur at any

non-zero value of equivalent stress.

3. The evolution equation for the internal variable is assumed to be of the form:
$ = h(5,s,0)¢ —#(s,0). 4.4

Assuming three primary mechanisms, hardening, dynamic recovery, and static re-
covery, we associate h(&,s,0) with dynamic processes, i.e., hardening and dynamic
recovery. Static recovery is accommodated through 7(s,0). This form is reminis-
cent of the Bailey-Orowan equation [Bailey, 1926, Orowan, 1945], and is almost
universally employed in internal variable evolution equations for high temperature
deformation. The assumption that the static recovery function is independent of
stress reflects our desire for this function to represent evolution processes which

occur in unloaded material.

Given the above assumptions about the forms of the rate and evolution equations,

we now ask what experiments may be performed to complete their specification. Given
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that the two differential equations 4.3 and 4.4 are coupled, it seems reasonable that we
should seek some way of decoupling the two equations so that the functional forms may
be investigated separately. Given two equations of the form 4.3 and 4.4, then following

a similar development presented by Ruina [1983], we may make the statements:

o The value of the internal variable is uniquely determined if all of the external
variables (7,0, ép) are known. This is portrayed in Figure 4.1 where dotted lines of
constant internal variable s are indicated in stress/strain rate/temperature space.
The lines are straight only for illustration, there is no physical reason why they
should be straight. The dashed line exists for those materials which reach some
saturation condition where the value of the internal variable attains some constant

value, here denoted as s*.

o Experiments where we apply fast changes in the external variables (so that we
may assume constant structure) should produce the relationship between them
expressed by equation 4.3. If we are confident that the structure has not changed
in the time necessary to apply the change, then the changes in the external variables
are governed only by the rate equation. This then suggests a series of experiments
where we rapidly change either the strain rate, temperature, or stress to different
values, with the values of the other external variables being the same just before the
change. This guarantees that the initial state is unchanged, and the rate equation

is decoupled from the evolution equation.

Using the assumptions listed above and exploiting the characteristics of the functional
forms outlined, the following sections propose a series of tests for evaluating the consti-
tutive functions. At least three modes of testing are required to evaluate the functional
form of both the rate equation and evolution equation for the internal variable. The

following sections detail the three series of tests used in this investigation: (a) isothermal
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strain rate jump tests from the same state to evaluate g in 4.3, (b) isothermal load-
unload-hold-reload tests to evaluate 7 in 4.4, and (c) isothermal, constant true strain

rate tests to evaluate h in 4.4.
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4.1 Evaluation of the Rate Equation: f(<,6)

As just argued, if one wishes to experimentally probe the behavior of the rate equation
expressed by 4.3, one must design experiments such that material state is held constant.
One can not otherwise separate the effect of an evolving structure from the instantaneous
response at constant structure. Very few experiments have been performed, particularly
within the hot working regime, which have accomplished this separation. This is probably
due to the fact that internal variable models have not been applied to hot working;
experimentalists therefore have not designed their investigations with an internal variable
formulation in mind. It is striking, however, that there are not more constant structure
data a ~ociated with the creep regime, for internal variables have been applied to creep
constitutive models for many years.

Investigators have used different experimental techniques to characterize the rate de-
pendent deformation of metals at assumed constant internal state. Most techniques
involve an abrupt change in either strain rate or stress and measurement of the instan-
taneous or “short time” response in the associated stress or strain rate. None of the
techniques, whether stress-drop, relaxation, or jump tests, is without experimental un-
certainties. These uncertainties range from difficulty in extracting the effect due to a
particular mechanism when many possible mechanisms may be operating, to operational
problems associated with test machine compliance, resolution of small strains, acquisition
of data from rapid transients, and computational uncertainties in determining rate mea-
sures from data obtained as a function of time. As a result no one technique is universally
accepted, and the type of test performed by an investigator is generally a function of the
type of test equipment which is available instead of the most desirable test technique.
All of the tests mentioned herein assume that internal state does not change significantly

during the period of the transient, an assumption which is only approximately satisfied
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in all tests.

The following paragraphs describe briefly the different tests used to correlate stress
and strain rate at constant structure, list some of the investigators associated with each
test type, and also give some of the uncertainties associated with each type. The sec-
tion finally presents some arguments proposing that the strain rate jump test may have
some clear advantages over stress-drop and relaxation tests in determining isostructural
properties.

Mitra and McLean [1967] used stress-drop tests to evalute the stress dependence of the
creep strain rate in aluminum and nickel by correlating the strain rate resulting after the
stress drop with the magnitude of the stress after the drop. Mitra and McLean assumed
an initial incubation period after which they measured the strain rate. Assuming that
the state of the material has not changed significantly during the incubation period, the
resulting stress/strain rate curve may be taken to be the stress dependence for the given
initial internal state. Investigators have used the same procedure but have measured the
“instantaneous creep rate” at the new stress without any assumed incubation period, e.g.
Sherby [1957) and Robinson [1969,74,75), summarized by Takeuchi and Argon [1976] and
Sherby [1977). The above mentioned incubation period is problematic in the interpre-
tation of stress drop data. The incubation period is assumed necessary to let anelastic
effects subside, but there is no clear, and certainly no consensus, criterion on what that
period should be. Frequently investigators do not indicate what delay, if any, they have
employed before determining the post-stress-drop, strain rate. Complicating the uncer-
tainty about incubation is the obvious possibility of structure evolution occurring during
the incubation period, thereby voiding the constant structure assumption of the test.

Of the investigators who have used stress drop tests to evaluate rate dependence,
most of the results mentioned in the papers listed above indicate a constant structure

power law stress dependence of the strain rate of 6 to 8. Figures 4.2a and 4.2b illustrate
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the power law dependence of constant structure, stress drop data. This dependence in all
cases was greater than the steady state stress exponent obtained for each material. The
power law strain rate/stress relationship for constant structure has not been universally
confirmed. Gibeling and Nix [1982], recently performed a set of stress drop tests on pure
aluminum and found that the isostructural stress dependence of the strain rate followed
an exponential relationship. [Figure 4.2¢]

Stress drop tests are difficult to perform for hot working investigations due to the
magnitude of the associated strain rates. Evaluation of strain rates following a change
in stress requires numerical differentiation of a strain versus time record, which in turn
requires sampling of strain over very small time intervals.

Hart [1979] and others have popularized the relaxation test as another test of stress
dependence at constant structure. In this procedure, a specimen is deformed to a given
strain and the test machine is halted. The specimen strain rate may be determined
by subtracting a machine compliance effect from the load versus time curve obtained
during relaxation. Hart estimates that the inelastic strain accumulated during a typical
relaxation test is about 10~4. From this Hart states that such a small strain increment
produces negligible strain hardening, so the test can be considered to be at a constant
state. This assumption is valid only as long as static recovery effects can be neglected,
which is certainly not possible in the range of homologous temperatures associated with
hot working. Other investigators using this technique include Alexopoulos [1982] and
C. Li [1981]. The relaxation test is problematic in that some investigators have pro-
posed using it to characterize recovery mechanisms, an application directly contrary to
Hart’s assumption of zero state change. Other investigators have suggested that the
small strains associated with relaxation tests do not accurately probe the large strain
constitutive response of a material since little dislocation motion is required to unload

the test specimen [Rhode et al. 1973).
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Another procedure used to measure the constant structure, strain rate or stress de-
pendence is to suddenly change the strain rate. The instantaneous change in stress
accompanying a change in strain rate may be a more faithful representation of the stress
dependence than that which results from the stress drop test, since there is no associated
incubation time. Klepaczko and Dufly [1977, 1982, 1986] have probably performed the
most comprehensive set of strain rate jumnp tests, having documented the behavior of both
FCC and BCC materials over a wide range of temperatures and strain rates, although
most of their test temperatures were below one half the homologous temperature.

It should be noted that very few of the investigators mentioned above have employed
any of the “jump” tests described above in a manner appropriate to decoupling state
from instantaneous rate dependence. Such decoupling requires jumps from the same
initial state. In the context of the single, isotropic internal variable model under con-
sideration here, this means from the same value of temperature, strain rate, and stress.
Given that the real material may (and probably does) exhibit history dependence beyond
that representable by a single internal variable, the jumps should occur after identical
deformation histories to assure as identical a state as possible. In a case where a steady
state is reached, it is useful to impose the sudden change from steady state conditions
where the jump state is more reliably reproduced. A set of such jump tests is indicated
in Figure 4.3. Figure 4.4 iliustrates a set of jump tests on the schematic introduced in
Figure 4.1, where the test begins with the value of the internal variable so and eventually
saturates at s™.

Interpretation of jump test data is complicated by different back-extrapolation meth-
ods used to determine the instantaneous stress dependence, especially when there is an
overshoot and subsequent drop in stress. Kocks, Argon, and Ashby [1975] review the
different methods and conclude provisionally that the method of extrapolation is not of

critical importance. The jump test data obtained in this investigation does not demon-
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strate any overshoot. The data show a linear segment which then increases monotonically
with increasing strain. One may therefore select a simple and straightforward technique
of defining the instantaneous stress response as that resulting from a 0.2 percent strain
offset, illustrated in a schematic strain rate jump test in Figure 4.9, where o is used
as the constant structure stress response. This necessarily assumes that one, there is
no change in state during this strain increment, and two, that the transition to the new
strain rate has been accomplished over the small strain increment. The 0.2% strain offset
criteria was chosen over some back extrapolation procedure since the presence of exten-
sive hardening made extrapolation from some point further from the jump point difficult
to justify.

Very few investigators have attempted to examine the constant structure temperature
dependence of the flow behavior of metals within the regime of temperatures and strain
rates associated with creep or hot working. Direct measurement of this dependence,
and thus the activation energies associated with the dislocation glide mechanisms, re-
quires temperature jump tests. The activation energies obtained from steady state data
represent the combined contribution of both glide kinetics and the thermal processes
controlling the evolution of microstructure. We did not perform any temperature jump
testing in this investigation because the time constant associated with changing temper-
atures in the test equipment was significantly larger than the recovery rates associated

with the model material.

4.1.1 Strain Rate Jump Tests

As discussed in the previous section, jump tests measure material response at a given con-
stant structure, thereby characterizing the rate equation associated with our constitutive
model. A series of strain rate jump tests were performed on the test system described in

Chapter 3. All strain rate jumps were programmed to occur at the same value of strain
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for a given temperature, after the stress variation with strain had reached an apparent
constant value at the initial strain rate. Jumping from such apparently steady state
conditions minimized the variation in initial state among tests at the same temperature
and initial strain rate. Figures 4.5 to 4.8 show the strain rate jump test results at 700,
800, 900 and 1000 degrees Celsius. All jumps in strain rate were from the same initial
strain rate of 0.2 x 10~* per second. The maximum final strain rate was selected to be
1 per second due to the limit of the servohydraulic dynamic response. This strain rate
also corresponded to the rate at which noticeable adiabatic heating occurred, producing
an effective limit to the isothermal, constant true strain rate test conditions.

The displacement command signal for the strain rate jump tests was provided by
the analog function generator described in Chapter 3. Data acquisition was performed
on a IBM PC/XT equipped with a Metrabyte Dash-16 data acquisition board. Two
programs were used on the PC/XT, both of which are listed and described in Appendix
A . Both the load cell and LVDT output signals were also conditioned by a 60 Hertz
cut-off, low pass filter to reduce the electrical noise generated by the vacuum furnace
heating elements. The filter frequency was selected to permit as much noise reduction as
possible without distorting trancducer output signals.

Once stored on the PC/XT, the load/displacement data were transferred to a Data
General MV4000 where they were converted to true stress/strain data. The stress and
strain values were then independently smoothed, using sample number as the independent
variable, and then the plastic strain and strain rate were calculated at each sample point.
The programs and procedures used for this analysis is described in Appendix A.

The stress before and immediately after the jump was then measured. The stress
after the jump was selected to be the stress corresponding to a 0.002 offset strain from
the jump strain, as illustrated in Figure 4.9. It was frequently difficult to determine this

value precisely due to the absence of a clearly linear, elastic, initial portion of the jump
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in stress. The initial portion of the curve, although linear, decreased in slope between
tests as the final strain rate was increased. In any event, the linear section of the curve
was assumed to be elastic, and the offset was taken from this section. The uncertainty in
this linear region did not significantly change the value of this offset stress. Examination
of the strain rate data indicated that the final strain rate was achieved at approximately
the same time as the 0.002 strain offset stress was reached. Given the assumption of
no change in state up to that point, the offset stress could then be assumed to indicate
the stress sensitivity of the material at a given internal state. Figure 4.10 shows the
constant state lines constructed from this stress/strain rate data. Table 4.1 lists the data
associated with these tests which were used to produce Figure 4.10.

Three rate equations were considered for correlation with the constant structure data.

One, a simple model representing a stress and structure dependent thermal activation:

t= Aexp [—% (1 —%)] 4.1.1

Here, A and @) are material parameters. Two, a modification of 4.1.1 to reflect the

phenomena of power law breakdown:

i () o[- (1-2)), 112

where an additional parameter ¢ has been added. Three, an alternative to 4.1.1 which
separates temperature and stress dependence into a simple Arrhenius term involving

a constant activation energy and a function depending only on stress and the internal

é=Aexp (—%) [sinh ({%)]I/m. 4.1.3

Four material parameters are required: A,@,§, and m. R is the gas constant in these

variable;

equations (8.314 x 1072 kJoules/mole). Equation 4.1.1 reflects a simplification of a form

proposed by Kocks, Argon, and Ashby [1975] for the jerky glide of dislocations. Here,
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s represents a generalized obstacle resistance to dislocation motion. Equation 4.1.2,
proposed by Lee and Zaverl {1978], follows the same motivation, but assumes a priori that
the rate equation should reflect the transition from power law to exponential behavior,
and therefore includes a stress-dependent pre-exponential to accommodate the power
law. Equation 4.1.3 makes the same a priori assumption but uses a modification of the
following hyperbolic sine form first proposed by Garofalo [1963] to model steady state

behavior into the power law breakdown regime:

Cor = A X <‘%) [sinh(ao.) "™, 414

where the “ss” subscript denotes quantities relevant only to steady state conditions. This

form accomodates power law breakdown since for low values of (ao,;) it approximates:

€ss = Ags €xp (" %?) (aa”)l/m, 4.1.5

and for large values of the same argument it approaches:

€ss = é};—;exp (—%) exp (%ass> . 4.1.6
There appears to be no widely accepted mechanistic derivation of the hyperbolic sine
form of the rate equation represent by 4.1.4. Gittus [1976] has proposed an explanation
of power law breakdown founded on the dominance of forward and backward vacancy
formation rates. A hyperbolic sine form results naturally from this assumption of forward
and backward mechanical activation. Many other investigators, [Sherby, 1968; Frost and
Ashby, 1982] associate power law breakdown with a transition from climb-dominated
deformation to dislocation glide domination. In any event, it is well-known thai the
hyperbolic sine form provides a convenient phenomenoiogical representation of power
law breakdown.

We settled upon the hyperbolic sine form, 4.1.3, for the rate equation for the following

reasons:
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1. The steady state stress/strain rate relationship for pure aluminum and Fe - 2%
Si suggests a constant activation energy. Figure 4.11 illustrates the steady state
stress/strain rate relationship for aluminum over a wide range of strain rates and
temperatures, where the steady state strain rate is normalized by a constant ac-
tivation energy [Jonas, 1969]. In light of the success of this normalization, we
found it reasonable to extend this relationship to the rate equation and assume a

relationship of the form of 4.1.4.

The jump test data for the Fe - 2% Si further suggests a functional dependence of
the form of 4.1.3. Figure 4.12 plots the constant structure jump test data where
the strain rate has been normalized by a constant activation energy, taken in this
case to be that for self diffusion in alpha iron. It is obvious that a power law
does not represent the dependence between stress and the normalized strain rate.
With the exception of the 700 degree Celsius data, each constant structure curve
is concave upward in a manner commensurate with power law breakdown. The
700 degree data is suspect for reasons associated with the dynamic response of the
servohydraulic; it is included however for both for completeness and because we are
not certain that the data is actually incorrect. It would be interesting to perform

constant structure tests at higher strain rates to investigate this behavior.

Although the constant structure data for the Fe - 2% Si may be represented by an
exponential, constant structure stress drop tests performed on other metals suggest
a power law asymptote in the low strain rate creep regime [Sherby et al. 1977]. For
this reason we selected equation 4.1.3 which may accomodate this transition from

an exponential to a power law.

2. Regardless of the form of the rate equation, we insist that the steady state value

of the iuternal variable (s,,) increase monotonically with steady state stress (o).
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This not only makes sense physically but also corresponds to measurements of room
temperature yield stress as a function of steady state stress [Young and Sherby,
1973). One may check whether the three proposed rate equations accomodate this
requirement by assuming steady state conditions and equating each rate equation
to known empirical relations for steady state behavior. By eliminating strain rate
as the common variable we may determine whether the resulting functional de-
pendence between the steady state values of stress and the internal variable is

reasonable.

Following this procedure, equation 4.1.1 requires an unreasonable relationship be-
tween steady state stress and steady state value of the internal variable in order
to reproduce power law breakdown. The steady state strain rate/stress relation-
ship for many materials including most metals in the hot working regime may be

represented by equation 4.1.4:

bes = Ags €XP ( %0) [sinh(ao,,)]/™, 4.14

where the “ss™ subscript denotes quantities relevant only to steady state conditions.
If we assume steady state conditions and then apply 4.1.4 for the steady state strain

rate in 4.1.1, we obtain:

Sgs = }%a” [ln {—A— exp (Q ROQ ) [sinh(aar,,)]ll’"}]_1 . 4.1.7

Wong and Jonas [1968] have fit 4.1.4 to pure aluminum within a wide range of

temperatures, strain rates, and stresses to find the following constants:

Q@ss = 156.0 kJ/mole,
o = .0446 MPa™,
1/m = 4.70,




Ay, = 2.34 x 1010 sec!.
If we assume additionally the following values for equation 4.1.1:
A =1x10"sec!, and

Q@ = 142.0 kJ/mole, (self-diffusion),

then substitution of these values into 4.1.7 yields, for a representative temperature

of 200 degrees Celsius:
S22 = 36.00, [In {0.067[sinh(.04460, )| }] . 4.1.8

The steady state stress/internal variable relation:aip expressed by 4.1.8 is shown in
Figure 4.13. The negative values of state and the singularity indicates that equation

4.1.1 is inadequate to simulate hot working.

. Generally accepted notions of the stress dependence of the pre-exponential create
a situation for equation 4.1.2 similar to that described in item 2 above for equation
4.1.1. Stress dependence of the pre-exponential is generally derived to be propor-
tional to stress raised to a low power, either one or two [Argon, 1975). If we assume
two to be an upper bound and then follow a procedure identical to that followed in
reason two above, we obtain the following expression correlating steady state stress

and steady state deformation resistance:

A,sexp (—%) [sinh(ag,,)]/™ = A (gﬁ)nexp [—% (1 - z’—s)] , 4.1.9

338 SSS
where the variables have the same interpretations as in item 1. Rearranging and

using the same values for aluminum used before yields:

2
0.067[sinh(.04460,,)]*" = (Z—) exp [36.0ﬁ . 4.1.10

33 33

The values of s,, corresponding to variation in ¢,s; may be determined numerically

from 4.1.10. Figure 4.14 plots the relationship resulting from such a determination.

94




Once again the variation in the value of the internal variable at steady state with

respect to steady state stress is not what we should reasonably expect.

4. The fact that the ratio of equivalent stress/internal variable appears twice in equa-
tion 4.1.2 complicates the determination of material parameters significantly when
fitting the rate equation to actual material data. As will be seen, much of the
following analysis exploits a desirable feature of the rate equation to be inverted to

produce an analytic relationship of the form:
o =cs,

where ¢ depends only on temperature and strain rate. Equation 4.1.2 does not

permit such an inversion.

The material parameters associated with equation 4.1.3 may be evaluated directly from
the jump test data. The procedures and numerical routines used to obtain these pa-
rameters are described in Chapter 5. Figure 4.15 illustrates the correspondence between
the experimental data and the rate equation with the following values for the material

parameters:

Q = 247.5 kJ/mole
A =1.26x108 sec™?
22793

m

The value of @ is within the range of activation energies obtained by other investigators
for self-diffusion in alpha iron: 239 to 251 kJ/mole [Frost and Ashby, 1982]. It is lower
than the value of 333.6 kJ/mole obtained by Uvira and Jonas {1868} by fitting equation
4.1.4 to a set of steady state stress and stress rate data on a Fe - 3% Si alloy. There is
no reason to expect the activation energies obtained in this investigation and by Uvira

and Jonas to be similar. The value c' ...ued through the jump tests is a consequence of
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constant structure rate dependence while that obtained from steady state data provides
a weigh£ed average of both this dependence and the thermally activated processes con-
trolling the evolution of state. The correlation between the data and the fit rate equation
is excellent. We therefore adopted equation 4.1.3 as the rate equation. The parameter &
in the rate equation is indeterminate. We chose to include £ in order to restrict values of
the internal variable s to be at all times greater than &. This corresponds to requiring
the proportionality constant ¢ to be less than one, where & = cs for isothermal, constant

true strain rate conditions. For 4.1.3, c is:

AP m
c= %sinh'1 [{% exp (%)} ] . 4.1.12

For the rest of this investigation we assume a value of £ = 5.0.

To recapitulate, the rate equation which will be used throughout the rest of this

é= Aexp (—%) [sinh ({%)]I/m . 4.1.3

where A, Q, and m are material parameters which should be determined from constant

investigation is:

structure, jump test data.

4.2 Evaluation of the Static Recovery Function: (6, s)

Several means are available for decoupling the dynamic and static terms of the evolution

equation for s represented by equation 4.4, restated here:
$ = h(5,s,0)& — (s, 0). 4.4

Certainly, one may assume that one term predominates within a particular tempera-
turc/strain rate regime. We expect the effect of the static recovery function 7 to diminish
as the strain rate increases or as the temperature decreases. One may therefore assign

a regime where static recovery may be neglected and the strain hardening data used to
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characterize only the dynamic term of the evolution equation. We may similarly perform
tests where the hardening function A may be considered neligible. As will be shown be-
low, this may be accomplished either via some extrapolation technique or by static hold
tests which enforce a zero plastic strain rate.

Experimental determination of a static recovery function of the form
r =7(0,s) 4.2.1

is particularly arduous since recovery testing typically yields only one data point, i.e. a
“recovered” state, per test. Characterization of a recovery function therefore requires nu-
merous tests to completely capture the effect of each of the relevant parameters. Different
investigators have proposed different experiments to examine static recovery phenomena.
Most assume a Bailey-Orowan form for the combined effect of hardening and recovery,
and then propose a procedure whereby the hardening rate may be considered to be negli-
gible relative to the recovery term. We have not found any investigator who has evaluated
recovery data directly in order to determine an internal variable based, static recovery
function.

Perhaps the first comprehensive phenomenological investigation of hardening and
recovery was performed by Mitra and McLean [1966], who, following a suggestion of
Cottrell and Aytekin [1950], used stress drop experiments to evaluate a recovery function

based on stress. They assumed that the recovery function could be represented as:

(%
r= di c.

They then performed a series of stress drop tests from the same initial stress, tempera-
ture, and strain, and then associated the drop in stress (Ac) with the time increment
(At) required to reach a new steady state strain rate. Figure 4.16 illustrates one such

stress drop test. They then plotted the stress reductions versus the associated recovery
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time. The instantaneous recovery rate was assumed to be slope of the resulting curve

extrapolated back to a zero stress reduction:
F= Agrllo(Aa/At), 4.2.2

which is illustrated in Figure 4.17.

Kocks [1975] proposed two methods of evaluating #. Method one consisted of imposing
strain rate jumps from identical steady state conditions and measuring the associated
instantaneous rate of change in stress. Back extrapolation of the resulting data to zero
strain rate as illustrated in Figure 4.18 would then provide the recovery rate. Method two
consisted of measuring the rate of change of stress immediately following a large drop in
strain rate from steady state conditions (where the rate of recovery supposedly equals that
of hardening). If the drop in strain rate is at least one order of magnitude, then Kocks
hypothesized that since the rate of hardening is assumed in a Bailey-Orowan formulation
to be proportional to the strain rate, then the hardening term would be negligible relative
to the static softening term, which would be unaffected by the reduction in strain rate.
The rate of change of stress would therefore be due purely to static recovery in the
absence of significant hardening or dynamic recovery. Both of these methods possess the
operational disadvantage of attempting to measure the rate of change of stress associated
with a very short transient. No investigations have been found which used either of these
two methods to evaluate the recovery function r.

An additional test of static softening mechanisms which has been employed exten-
sively in investigations of metal working behavior is the load-unload-hold-reload test
[McQueen, 1985; Luton, et al., 1980; Petkovic, 1979]. Employed primarily to simulate
multistage hot working, specimens are deformed, usually isothermally, either in compres-
sion or torsion to a given strain, unloaded, held for varying time periods, then reloaded.

The load-unload-reload cycle may be repeated many times sequentially on the same
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specimen to simulate complicated, multistage hot working processes. The change in
state resulting from a particular hold period may be characterized by the yield stress ob-
tained on reloading the specimen. The test possesses the benefit of avoiding the multiple
uncertainties (and controversies) associated with both measuring and interpreting the
transients associated with changing the stress or strain rate. The test, however, suffers
the same shortcoming as the jump test, since some semi-arbitrary criteria must be used
to measure the yield stress upon reloading. The same arguments can be made as in the
case of the jump test that the variation in yield stress is relatively small given sufficient
resolution on the reloading transient.

Rather than fixing a final form for the recovery function # and then using recovery
data to determine the parameters of that function, the following technique is proposed to
characterize the static recovery function assuming the following intermediate structure

for the evolution equation for the internal variable:

$ = h(0,0,s)¢ —#(s)exp (—%) . 4.2.4

Here, we assume that the dependence of static recovery on the temperature and the
internal variable may be expressed through the product of an Arrhenius term with a
constant activation energy, )., and a function depending only on s. The activation
energy @, is expected to be different from that associated with the rate equation, Q.
Since static recovery is generally assumed to be the result of dislocation climb [Hirth,
1982] @, should be close to the activation energy for the self-diffusion of vacancies. We
therefore assume @, = 300 kJ/mole, which is an average value for self-diffusion in alpha
iron [Frost and Ashby, 1982]. Chapter 5 describes a series of tests which validates this
assumption. The expectation is that we may design an appropriate technique so that we
only assume a priori equations 4.3 and 4.2.4, and then let the experimental data suggest

a form for #(s).
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The proposed procedure exploits the consequence of the above equations that the
internal variable s is at all times proportional to the stress ¢ during an isothermal,

constant true strain rate test. That is,
o = cs, 4.2.5

where c is a function of the rate equation which includes strain rate and temperature
dependence (equation 4.1.12). This proportionality is central to the evaluation of both the
static recovery function + and the hardening function h, for it allows us to use a measure
of stress to determine the internal variable s through the constant c. We therefore do
not have to measure s directly; we need only measure stress and assure that isothermal,
constant true strain rate conditions exist. This assumption may be made as long as the
functional dependence in the rate equation between the equivalent stress and the internal
variable is one-to-one for a given temperature and strain rate.

If we now perform load-unload-hold-reload experiments in isothermal, constant true
strain rate conditions, the difference between the stress just before unloading and the yield
stress upon reloading represents the change in state due only to static recovery. We can
then vary temperature (8), hold time (At), and stress before unloading (o,), maintaining
a constant value of ¢, and thus determine the temperature and state dependence of the
recovery function by measuring the value of stress upon reloading (o).

The procedure proposed assumes that we have already determined the functional
dependence on temperature, which as stated, will be represented by an Arrhenius ex-
pression with an activation energy equal to that of self-diffusion. The data required is a
set of load-unload-hold-reload tests, where the stress before unloading, the temperature,
and strain rate are held constant. Figure 4.19 illustrates a series of such load-unload-
hold-reload tests. The only variable changed between tests is the hold time, At. The

dependent variable is the stress obtained upon reloading the specimen, o;. The proce-
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dure effectively measures the integrated effect of recovery, then differentiates it to obtain
the recovery function. This is in contrast to the methods described at the beginning of
this section which attempt to measure recovery function directly.

In the absence of hardening or dynamic recovery (ép = 0), the evolution equation

becomes:
§ = —7(s)exp (—-&> : 4.2.6
RO
Integration yields
Q,) 51 ds
—_ — = =At. 2.
exp (RO / o) - A 421
However, since we only know ¢ and not s, we may express this as:
Q,) ogle d(ofc)
exp (RO /a‘/c Fojo) At. 4.2.8

From load-unload-hold-reload tests we may determine o,,0;, and At. Differentiating the

integral on the left hand side of 4.2.8 with respect to o/c yields:

_dulede/) 1
d(oy/c) /a.'/c #ofc)  #ay/c)’ 4.2.9
¥ & 1 N d
exp (RO) #osfe) —  d(ag/c) At. 4.2.10

If we now know (or assume) @, we may use 4.2.8 to plot the hold period —At versus oy/c,
the derivative of which, according to 4.2.10, is the reciprocal of the recovery function:
1

f(og/c) = exp (%) —Ar 4.2.11
d(og/c)

Figure 4.20 shows a schematic plot of hold period (At) versus the stress measured upon
reloading (o), which may be obtained from a scries of tests like those illustrated in
Figure 4.19. Figure 4.21 illustrates the result of treating the data in Figure 4.20 in the

manner proposed by equation 4.2.11. The data plotted in Figure 4.21 then represents

the recovery function #(s,8).




This procedure may be applied to the static recovery function proposed by both
Prinz and Argon [1984] and Nix and Gibeling [1985]. Slightly generalized, the form of

the function is:

= —p Bexp (—%—;) (-Z)p. 4212
Here, y is the shear modulus and B and p and material constants. There is an additional
temperature dependence of the pre-exponential in the Prinz and Argon and the Nix and
Gibeling models which has been neglected in 4.2.12. Given load-unload-hold-reload data
as described above, 4.2.12 applied to 4.2.10 yields:
- » -p
d(:ﬁ; = exp (%) ﬁ% (0—:) . 4.2.13

The above procedure requires enough tests at a given temperature to be able te

determine the derivative on the right hand side of 4.2.10. It also presupposes knowledge
of the value of ¢ and @Q,. Once again, ¢ is the proportionality constant defined by equation
4.1.12 and obtained from the strain rate equation. @, may be estimated as the activation
energy for self-diffusion for the material of interest. It may also be determined by a series
of tests where through trial and error the same values of o, and o4 are obtained for two
tests at different temperatures but the same value of ¢. This can be accomplished only
by allowing a longer recovery time for the lower temperature test. If these conditions are

met, then for the two tests at two temperatures:

exp (— gg) Aty = exp (-—RQ—(;J Aty, 4.2.14

and @), may be determined.

4.2.1 Recovery Tests

A set of load-unload-hold-reload tests were performed on the silicon iron according to

the paradigm described above. Before performing these tests, however, we performed a
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series of tests to determine the temperature and strain at which static recrystallization
initiated. We then selected a temperature and strain below these values to assure that
the softening measured due to the hold period would be due solely to static recovery.
The initiation of static recrystallization was determined phenomenologically according
to a procedure described by McQueen [McQueen, 1982; Ryan et al., 1983]. A series of
tests were performed at increments of 100 degrees Celsius where a compression specimen
was deformed at a constant strain rate and temperature for a given strain increment,
unloaded, and held for a specified time. This was repeated for the same strain increment
until a true strain of approximately —1.2. The fractional softening for each hold period

was then plotted as a function of strain for each test. Fractional softening is defined as:

Ouyn — O
FS, = ~n—"rlnil) 4.2.15
Oun — Oyo
where
Cun = stress before unloading nth strain increment,

0r(n+1) = yield stress upon reloading from nth hold period,

Tyo = original yield stress.

McQueen found that during a given test, fractional softening remained relatively con-
stant if only static recovery was present. Static recrystallization, however, past a certain
initiation strain caused the fractional softening to increase.

The results of our multiple hold tests are included in Figures 4.22 to 4.25. The
fractional softening versus strain is plotted in Figure 4.26. Notice that the fractional
softening begins to increase at 1000 degrees Celsius at a true strain of 0.6. We therefore
chose our recovery test conditions to be at 900 degrees Celsius, at a strain rate less than
that used . r the multiple hold tests, (—0.02 per second instead of —0.1 per second),
and at a strain of —0.3. Examination of the etched grains of specimens tested at this

conditions did not show any regions of recrystallized grains.
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The results of the recovery tests for these conditions are presented in Figure 4.27. One
obvious result of these tests is that the stress measured upon reloading is not significantly
different from that measured just before unloading, even for relatively long hold periods.
We should therefore expect the rate of static recovery to be commensurately low.

Another result from these recovery tests is that when the “yield stress” is measured
upon reloading, the greatest incremental decrease in stress occurs during the shortest
hold period. In other words, the rate of static recovery decreases dramatically as the
hold period increases. This is not necessarily unexpected, for we may hypothesize short
range rearrangements due to the polarization of a deformation-induced microstructure
or anelastic effects which produce a rapid apparent initial rate of recovery. This result
was not obtained by Petkovic [1979] who performed similar load-unload-hold-reload tests
on polycrystalline copper. Petkovic found that some incubation time was necessary after
unloading before any noticeable recovery was obtained upon reloading. This incuba-
tion period extended to as long as 100 seconds at 500 degrees Celsius (0.6 homologous
temperature).

The question arises however whether we should model this behavior. We decided to

ignore this initial rapid unloading to the following reasons:
1. Insufficient recovery testing was performed to characterize the extent of this effect.

2. If this initial high recovery rate is due to microstructure polarization or anelastic
effects, we do not expect these efects to significantly alter the large deformation

material response.

3. If the procedure described in Section 4.2 for evaluation of the static recovery func-
tion is followed, the high apparent initial recovery rate produces an unreasonably
strong dependence of recovery on the internal variable. This dependence corre-

sponds to a power law dependence of recovery rate on the internal variable s raised
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to a power exceeding 100.

We therefore chose to consider data for recovery hold periods exceeding 20 seconds to fit
a material function for static recovery.

Following the procedure described in Section 4.2, a 0.002 strain offset stress was
measured from the reloading segment of each test. The variation in this “yield” stress
was then used as a measure of the variation in state due to different hold periods. This
data is plotted in Figure 4.28. Continuing with the development presented in Section
4.2, we assume that the recovery function may be represented by equation 4.2.6:

§ = —7(s) exp (—%) . 4.2.6
Equation 4.2.11 then expresses the recovery function in terms of the derivative of the

data in Figure 4.28:

o r 1
#(o[c)exp (—%) = —. 4.2.11
d(oy/c)

Figure 4.29 contains the data treated in the manner suggested by 4.2.11, which then

represents the recovery function. Due to the small number of tests the derivative was
taken to be the slope of the line drawn between sequential data points.

The static recovery function which we considered is a generalized form of a function
proposed both by Nix and Gibeling [1985] and Prinz and Argon [1984] based on models

of dislocation climb causing static recovery in dislocation cell walls:

- QL) s\ 2
T = uBexp(Ro L) 4.2.12

where p is the shear modulus and B and p are material parameters. Both of the above
pairs of investigators hypothesize a value of p between four and six.
Fitting equation 4.2.13 to the recovery data illustrated in Figure 4.29 produced the

following values for the material parameters:
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B =1.08 x 10%° MPA /sec
@> = 300 kJ/mole,
p =206

The procedures and numerical routines used to obtain these parameters are described
in Chapter 5. Figure 4.30 indicates the fit of equation 4.2.12 to the recovery data using
the above parameters. The lack of correlation with the high recovery rate portion of the
data reflects the previously described decisior. to ignore the initial rapid static recovery
data.

Notice that the exponent p is significantly greater than that predicted by Argon and
Nix. It is unclear whether this is due to a stronger dependence of recovery on state than
was anticipated or whether some characteristic of the experimental procedure produces
this dependence. Since these experiments are rather arduous when performed with Fe -
2% Si, further investigation of both the phenomena and the experimental method would
be easier if the model material were a lower melting temperature metal such as aluminum.

Nevertheless, equation 4.2.12 with the above material parameters provides a measure
of static recovery, we believe the first measure of static recovery employing an internal

variable formulation. To summarize, the static recovery function for the internal variable

p
F = —F. exp (-—%) (%) , 4.2.12

where B, )., and p are material parameters.

s is:

4.3 Evaluation of Dynamic Hardening and Recov-
ery Function: h(d,s,0)

If we now consider an experiment where the temperature and true strain rate are held

constant, then according to section 4.1 for fully developed flows where ¢ ~ ¢ there is a
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unique proportional relationship between the equivalent stress and the internal variable

throughout the test:

olar

§=—, 4.3.1

where c is constant for a given temperature/strain rate pair. We can therefore express

the evolution equation for the internal variable in terms of stress:

é=ch (&,3,0) & _ o (i'-,e) , 43.2
C [+
o"
do . c.(0
LA (o‘,—,0> _ L (—,o) . 43.3
der c € c

The slope of the stress versus plastic strain data (&,&), or hardening data, from an
isothermal, constant true strain rate test therefore reflects the internal variable evolution
equation for the above model. The hardening data however incorporates contributions
from both functions A and 7 representing the evolution of structure. Additional testing or
assumptions must be made to further separate these equations for evaluation. Figure 4.31
illustrates an isothermal, constant true strain rate test path on the schematic introduced
in Figure 4.1.

A series of isothermal, constant true strain rate tests have been performed on the iron
- 2% silicon. These tests were performed over a temperature range of 700 to 1200 degrees
Celsius (.55 to .83 T,,) and a strain rate range of 1073 to 1 sec™. 700 Celsius represented
7 the lowest temperature at which tests could be performed due to the load limit of the
ceramic load train. We did not perform tests above 1200 Celsius due to excessive creep
of the load train. The lower limit on the strain rate of 1072 sec™! was lowest true strain
rate obtainable with the analog function generator. The highest strain rate represented
both the limit of the frequency response of the servohydraulic and the strain rate where

adiabatic heating invalidates isothermal test conditions.
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Figures 4.32 through 4.36 contain the stress/strain data for the different temperatures
at constant strain rate, while Figures 4.37 through 4.40 illustrate the same data, except
for the various strain rates at constant temperature. Notice that the stress eventually
reaches an apparent steady state value at strains approaching 0.5. Notice also that we
have chosen to neglect data below an initial strain of 0.01. Since the specimens are
grooved at the ends, we anticipate that at the test start, some “settling” of the ends
will occur, rendering accurate interpretation of the small initial strains doubtful if not
impossible. Table 4.2 lists the isothermal, constant true strain rate test parameters and
values of saturation stress (¢*) reached in each test.

Figures 4.41 through 4.44 represent the hardening data for the constant true strain
rate tests. Elastic strains were subtracted before the hardening (do/de?) was determined.
The program used to numerically determine the hardening is included in Appendix A.
Elastic constants for the Fe - 2% Si alloy are listed as a function of temperature in Table
4.3.

The hardening data was used to determine a functional form for the evolution equation
for the internal variable. Section 4.0 indicated that given our chosen form for the rate
equation, we may represent the evolution equation for the internal variable s in terms of

hardening and stress:
% = ch (a, %0) -5 (5:-0) . 433
Since we have performed experiments to evaluate the rate equation and static recovery
function, we may adjust the hardening data for the contribution of static recovery and
evaluate the form of k(d,s,9).
One tmportant resull of the recovery tests is that the stetic recovery function does
not appreciably affect the hardening data. The integrated contribution of the recovery

function to reducing the internal variable over a typical isothermal, constant true strain
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rate test is less than 1 percent of the instantaneous value of the internal variable. The
static recovery function therefore may be ignored rather than added back to the hardening
data, and the hardening data, in the absence of any contribution of static recovery, then
represents:

% ~ ch (&,%,0) 4.3.4
The form of h(&, s,8) which we first investigated was the simple linear softening function
proposed by Anand [1982]:

ds

S
&=t(1-3): 439

Here, hg represents a constant rate of athermal hardening which via mechanistic argu-
ments is generally assumed to be of the order of one hundredth the shear modulus (4/100)
[Kocks, 1966). The ratio (s/s*) represents deformation dependent softening phenomena.
The denominator s* is a saturation value of s associated with a given temperature, and
strain rate (or stress); The combined term ho(s/s*) represents the rate of dynamic soft-
ening. For isothermal, constant true strain rate tests where & = cs, equation 4.3.5 may
be expressed as.

B b (1 _ ai> , 4.3.6
where 6* = cs” is the saturation or steady state stress. Equation 4.3.5 is attractive
on practical grounds since it supposes two separate phenomena, hardening and dynamic
softening, which interact linearly and for which models may be independently formulated
and then summed. The constant ¢ represents the contribution of constant structure defor-
mation kinetics, manifested here as a rate sensitivity of strain hardening. Equation 4.3.6

may be integrated directly to yield the Voce [1955] equation for stress/strain behavior:
h
F=6"—(6"—0p)exp (—C&—:)E”) , 4.3.7
where oy = ¢sg and s¢ is the initial value of s.
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Examination of the hardening data, Figures 4.41 to 4.44, however, indicates that the
softening is not linear; there is a substantial change in the softening rate as the steady
state stress is approached. We chose to accomodate this change in the softening behavior

via a modification to equation 4.3.5 through the introduction of an exponent a to yield:

ds s\

or, for an isothermal, constant true strain rate test:

~

99 _ che (1 - .fi'.) . 4.3.9

der x

Figure 4.45 indicates the behavior of the hardening version of equation 4.3.9 as t.e value
of a is varied. Equation 4.3.9 also retains the feature «.i a saturation stress, which is
supported by the Fe - 2% Si data, where the stress appears to reach a constant value
given isothermal, constant strain rate conditions. This feature does not necessarily extend
to low (= 0.3T,,) temperatures where many materials do not appear to demonstrate a
saturation stress, even for very large strains [Hecker, 1981]. Figure 4.46 indicates the
correspondence between equation 4.3.9 and hardening data for a given strain rate and
a range of temperatures. A value of a = 1.5 was found to best represent the hardening
curves for the Fe - 2% Si.

For low values of the internal variable s (s < s*), the value of ko may be interpreted
as the rate of athermal hardening. The value of ko found for the Fe - 2% Si was 3498.0
MPa, which corresponds to a value of approximately x/20. This is greater than the
hardening rate obtained and derived for State II hardening in single crystals which as
stated previously is expected to be in the range of p/100 to £/200.

The integrated form of the cquation 4.3.9 yiclds:
1
=5 |6~ 5)0" + (a = 1) {(cho) (5"} 2], 4.3.10
where Gy = csg and sp is the initial value of s.
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This formulation also requires an expression for s*, which may be interpreted as the

saturation state. We propose a phenomenological form for s*(0, 5, s, €) where

= ~ ép c?ds "
§ =8 [X €Xp (—R—O')} . 4.3.11

This form is motivated by requiring that the saturation state increases with increasing
strain rate and decreasing temperature, and is influenced by thermally activated processes
represented by Qg4,, the activation energy associated with dynamic softening.

Once again, since we may represent s* by 6*/c, we may plot s* versus strain rate in
Figure 4.47 by dividing the saturation stress obtained during isothermal, constant true
strain rate tests by the constant ¢ determined from the rate equation. The figure indicates
that a power law relationship between strain rate and saturation state is justified. Figure
4.48 illustrates the correlation between the steady state data and a nonlinear least squares
fit of equation 4.3.11 to the same data. Chapter 5 describes the routines and procedures
used to fit the data to the material functions. The material constants obtained from the

nonlinear least squares fit to 4.3.11 are:

§ =236.3MPa
n =.06272
Qa4s = 439.4 kJ/mole

The value of the activation energy associated with the steady state relation (439.4
kJ/mole) is almost twice that obtained for the rate equation (247.5 kJ/mole). The
large value of 493.4 kJ/mole is an artifact of the form of equation 4.3.11. If we cast this

equation in the form:

r.pan
=3 liJ exp <st) , 4.3.12

then we obtain a value of Qg, = 27.6 kJ/mole with no change to the values of the other

two material parameters.
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Figure 4.49 demonstrates the relationship between steady state stress and the steady
state value of the internal variable for different values of strain rate and temperature.
An interesting feature of this plot is the linear relation between state and stress which
reaches from the power law into the power law breakdown regime. One interpretation of
this result is that power law breakdown is a consequence of the kinetics of the deformation
process (incorporated through the parameter c) and is not due to any change in the basic
processes governing the evolution of state. As a result power law breakdown should be
represented by the rate equation in the manner provided by equation 4.1.3.

The form of the dynamic term of the evolution equation was finally taken to be:

=

with s* given by 4.3.11. In 4.3.13 || denotes the absolute value and sgn(z) is the sign

a

h(0,s,5) = ho

sgn (1 - ;s;) , 4.3.13

function defined as:

1 z20
sgn(z) = -1 z<0

The absolute value and sign function are necessary to accomodate strain softening when
s™ is less than s. Such a situation is certainly possible in hot working processes where
the strain rate decreases or the temperature increases at a material point. Such a change
may cause the current value of s to be greater than the asymptotic value represented by
s* calculated under the new conditions. Chapter 6 contains the results from strain rate

decrement tests which indicate the necessity of this form.
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4.4 Summary of Constitutive Model

Once the different material functions were determined, they were combined into the the

constitutive equations summarized below.

& = A exp (—-}—%) [sinh (ég)]l/m . 4.3

The evolution equation for the internal variable:

(1 - s;s:) & sgn (1 - %) — B exp (—%) (%o))p, 4.3.2

The rate equation:

a
S=h0

where

AP an
= _ o~ 6_ . st
s —S[Aexp(Iw)J . 4.3.11

The following chapter details the procedures used to determine the model parame-
ters from a set of appropriate experimental data. The list of model parameters are:
A,Q,m,€ ho,a,3,Qus,n, B, Qy,and p. Also, u(0) is the elastic shear modulus used purely

for purposes of normalizing the value of s. Its temperature dependence is listed in Table

4.3.




TABLE 4.1
Iron - 2% Silicon Jump Test Data

Test | Temperature Initial Final Stress Stress
Number Strain Rate | Strain Rate | before jump | after jump
(Celsius) (sec™?) (sec™?) (MPa) (MPa)
1 700. 2.00E-4 2.00E-4 74.0 74.0
2 700. 2.00E-4 2.02E-3 74.0 90.5
3 700. 2.00E-4 9.42E-3 74.0 102.3
4 700. 2.00E-4 8.66E-2 74.0 131.0
5 700. 2.00E-4 8.99E-1 74.0 182.0
6 800. 2.20E-4 2.20E-4 30.0 30.0
7 800. 2.20E-4 2.11E-3 30.0 41.6
8 800. 2.20E-4 1.02E-2 30.0 49.5
9 800. 2.20E-4 9.35E-2 30.0 65.4
10 800. 2.20E-4 953E-0 30.0 78.3
11 900. 1.90E-4 1.90E-4 12.0 12.0
12 900. 1.90E-4 2.07E-3 12.0 20.0
13 900. 1.90E-4 1.97E-2 12.0 28.0
14 900. 1.90E-4 1.01E-1 12.0 35.0
15 900. 1.90E-4 1.11E-0 12.0 47.0
16 1000. 2.35E-4 2.35E-4 7.0 7.0
|3 1000. 2.35E-4 2.00E-3 7.0 10.6
13 1000, 2.35E-4 1.00E-2 7.0 15.5
19 1000. 2.35E-4 8.79E-2 7.0 21.6
20 1000. 2.35E-4 .899E-0 7.0 28.4
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TABLE 4.2
Iron - 2% Silicon
Isothermal, Constant True Strain Rate Tests
Temperature | Strain o’
Test ID (Celsius) Rate | (MPa)
(sec™?)
8508132 700 1.0 | 229.97
8511291 750 1.0 | 180.85
8506191 800 1.0 | 131.38
8511281 800 1.0 | 138.25
8506201 800 Q| 93.73
8504132 800 g 91.36
8054011 800 01| 68.85
8503311 798 001} 46.16
8511292 850 1.0 | 108.44
8504012 850 01| 49.63
8506141 900 1.0 | 84.38
8502071 900 1| 55.29
8501231 900 01 34.77
8504131 899 01| 36.60
8501221 900 001 21.11
8412151 950 01| 25.18
8511261 1000 1.0 | 57.57
8511301 1000 1.0 | 53.96
8503011 1000 316 | 44.71
8501081 1000 Jd 1 32.57
8502051 1000 [ .0316 | 26.78
8501241 1000 01| 19.77
8502061 1000 | .00316 | 15.76
8501121 1000 .001 | 10.75
8511271 1100 502 | 34.11
8504041 1100 316 | 27.99
8504061 1100 3161 28.12
8502081 1100 A 21.33
8504021 1100 01| 12.24
8504121 1098 .001 6.63
8508131 1200 1.0! 2566
8508091 1200 d ] 14.72
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TABLE 4.3
Elastic Constants for Fe - 2% Si

Temperature 7 E v
(Celsius) | (GPa) | (GPa)

700 57 150 | .32
800 50 135 | .35
900 42 115 | .38
1000 37 105 | 41
1100 32 93 | .44
1200 30 87 | .47

Source: ASM Handbook, Volume 1, pg 641.
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Figure 4.2a Constant structure data for aluminum.
Reference [Mitra and McLean, 1967
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Figure 4.5 Strain rate jump tests with Fe - 2% Si to determine constant
structure rate dependence.
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Figure 4.6 Strain rate jump tests with Fe - 2% Si to determine constant
structure rate dependence.
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Figure 4.7 Strain rate jump tests with Fe — 2% Si to determine constant
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Figure 4.8 Strain rate jump tests with Fe — 2% Si to delermine constant
structure strain rate dependence
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Figure 4.13 Relationship between steady state stress and the internal
variable resulting from use of equation 4.1.1 as the rate equation.
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Figure 4.15 Correspondence between constant state data and fit of equation
4.1.3 to the same data.

' | T T T T T T T

Stress Drop Recovery Test -

Stress Reduced
by Ao

Time

Figure 4.16 Schematic stress drop test illustrating parameters used
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illustration only; they do not represent actual data.
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88




i ] R ] 1 ] I 1 ]

Recovery Test Example 7

— Load-Hold-Unload-Reload Tests ]

Recovery Function (Stress/second)
|

0.0 1 | ] i 1 | ] ] 1

State Variable (s=o0,/c)
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Figure 4.22 Multiple hold test data of Fe — 2% Si. Tests performed
at 800 Celsius with 0.1 sec™ constant true strain rate. Duration of each
hold period was 20 seconds.
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Figure 4.23 Multiple hold test data for Fe — 2% Si. Test performed at 900
Celsius with 0.1 sec™ constant true strain rate. Duration of each hold
period was 20 seconds.
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Figure 4.24 Multiple hold test data for Fe — 2% Si. Test performed at 1000
Celsius and 0.1 sec™ cunstant true strain rate. Duration of each hold
period was 20 seconds.
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Figure 4.26 Fractional softening as a funclion of strain, determined
from multiple hold tests on Fe -~ 2% Si.
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Figure 4.27 Load-unload-hold-reload tests on Fe — 2% Si. Data represents
reload segmenti. Data has been shifted horizontally to superimpose
elastic slopes.
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Figure 4.28 Hold period versus stress upon reloading for Fe — 2% Si.
Tests performed at 900 degrees Celsius and at 0.02 sec™! constant
true strain- rate.
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Data obtained from: Figure 4.28 according to equation 4.2.11.
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94




TRk Giw T Ia L

Stress (MPa)

Stress (MPa)

180.0 T

- Fe — 2% Si |
1500 - 800 C ¢ = -1.0 sec |
120.0 ’

-0.1 ]
90.0 i
~0.01 .

30.0 -

0.0 L

80.0 "
. -0.001 |

0.0

Figure 4.32

0.2 0.4 0.6 0.8 1.0
Strain

Isothermal, constant true strain rate tests on Fe — 2% Si
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Figure 4.33 Isothermal, constant true strain raie tests on Fe -~ 2% Si at

900 degrees Celsius and different strain rate.
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Figure 4.34 Isothermal, constant true strain rate tests on Fe - 2% Si at
1000 degrees Celsius and different strain rates.
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Figure 4.35 Isothermal, constant true strain rate tests on Fe - 2% Si at
1100 Celsius and different strain rates.
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Figure 4.36 Isothermal, constant true strain rate tests on Fe - 2% Si at
1200 degrees Celsius and different strain rates.
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Figure 4.37 Isothermal, constant true strain rate tests on Fe - 2% Si with
strain rate of ~1.0 sec™ and at different temperatures.
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Figure 4.38 Isothermal, constant true strain rate tests on Fe - 2% Si with

strain rate of —0.1 sec™ and at different temperatures.
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Figure 4.39 Isothermal, constant true strain rate tests on Fe - 2% Si with

strain rate of —0.01 sec™ and at different temperatures.
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Figure 4.40 Isothermal, constant true strain rate tests on Fe — 2% Si with
strain rate of —=0.001 sec ~! and at different temperatures.
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Figure 4.41 Plastic hardening data (do/de¢?) derived from isothermal,
constant true strain rate tests on Fe — 2% Si. Strain rate of —1.0 sec™.
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Figure 4.42 Plastic hardening data (do/de?) derived from isothermal,
constant true strain rate tests on Fe — 2% Si. Strain rate of -0.1 sec™.
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Figure 4.43 Plastic hardening data (do/de®) derived from isothermal,
constant true strain rate tests on Fe — 2% Si. Strain rate of —=0.01 sec™.
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Figure 4.44 Plastic hardening data (do/de?) derived from isothermal, l
constant true sirain rate tests on Fe — 2% Si. Strain rate of —0.001 sec™.
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Figure 4.45 Variation in equation 4.3.9 as the value of exponent a

is varied.
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Figure 4.46 Correspondance between hardening data and equation 4.3.9
for a value of a=1.5.
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Figure 4.48 Fit of equation 4.3.11 for saturation of internal variable
data for Fe — 2% Si. Data obtained from isothermal, constant true
strain rate tests,
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Chapter 5

Determination of Material
Parameters

Fitting of the parameters associated with our constitutive model follows the progression of
testing described in the previous two chapters. Parameters associated with each material
response function are determined from the tests used to characterize that particular
aspect of material behavior. The rate equation parameters are therefore determined from
the jump test data, static recovery function parameters are determined from the load-
unload-hold-reload data, and the dynamic hardening and recovery function is determined
from the isothermal, constant true strain rate tests.

The fitting procedure exploits extensively the proportionality between stress and the
internal variable resulting from the consequences of an isothermal, constant true strain
rate test. At a fixed temperature and a fixed compressive strain rate, equation 4.1.3
implies:

s =|ol/c, 5.1

where ¢ is a constant defined by

C= %sinh'1 [{-‘iAp—i exp (%)}m] . 5.2

This relationship permits the substitution of (|o|/c) for the internal variable s while

determining model parameters. Since the internal variable s represents some generalized
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resistance to plastic deformation it is difficult, if not practically impossible, to measure a
value of s directly. Ideally we would like to have some macroscopic or microscopic quantity
which we may correlate with s. Some possibilities for such measures are discussed in
Chapter 6. In the absence of a directly measureable quantity, equation 5.1 permits the
determination of model parameters without directly knowing the value of the internal
variable.

The following procedure provides a deterministic method for evaluating the material
parameters associated with the constitutive model presented in Chapter 4. The stress
after a change in strain rate, whether it be associated with a strain rate jump or a
recovery test reloading, is determined in our data as the stress corresponding to a 0.2%

strain offset from the strain at the change in strain rate.

1. Determination of rate equation parameters A, Q and m:
The strain rate jump tests provide constant state data for different states at different
temperatures. If we normalize the stresses after each jump by the stress before each
jump, then the rate equation eliminates the contribution of the internal variable
since the test before and after the jump is both isothermal and at a constant true

strain rate:

g4l 5.3
g; ¢S
or, .
oy sinh™? [{iA(- exp (7%) }m]_ 54
oi  sinh™ [{% exp (%) }m] ’ .
where

oy = stress immediately after jump,
o; = stress immediately before jump,

é; = strain rate after jump,




¢; = strain rate before jump, and

0 = test temperature.

Equation 5.4 is fit to the jump test data (oy,0:,¢és,6;,0) for each temperature

through a nonlinear least squares fit to provide the parameters m and the combined

=48

term

A

as a function of temperature. The pre-exponential A and the activation energy @
are then determined via a second nonlinear least squares fit of the temperature to
the above term. The constant m is taken as the average value across all temper-
atures. Nonlinear fitting throughout this procedure was performed with an IMSL
numerical subroutine ZXSSQ which provides for minimization of a nonlinear ob-
jective function on the basis of a least squares residue. The programs used in the

fitting, ISOCON and its associated subroutine FITISO, are listed in Appendix B.

The three constants (A, Q,m) could be determined simultaneously via a three pa-
rameter least squares fit, but it was found that the two step procedure produced a

better correlation with the data.

Figure 5.1 indicates the correlation between the jump test data and the rate equa-

tion prediction using parameters determined via the above process.

It should be stated that the procedure described in this step does not produce an
unambiguous value for the activation energy, ). Strain rate jump tests directly
measure the functional relation between stress and strain rate. Temperature jump
tests are necessary if one wishes to measure the activation energy directly. We are

able to determine an activation energy here since the rate equation cast in the form
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of equation 5.4 retains a variation with temperature. A different rate equation
may very well not permit the determination of an activation energy from strain
rate jump test data. Practically, very littie error is introduced to the model if one

chooses to use the same value of activation energy for both @ and Qg;.

. Determination of state/stress scaling factor ¢:

As was indicated in Section 4.1 the parameter ¢ is a dimensionless scaling factor
included in the rate equation to enforce our requirement that the value of the
internal variable s always be greater than the value of the equivalent tensile stress
&. Motivated by an interpretation of s to represent some athermal measure of
deformation resistance, this corresponds to requiring the proportionality constant
¢ to be less than one, where & = cs for isothermal, constant true strain rate
conditions. The parameter does not improve the predictive capability of the model;
it may be set equal to one with no adverse effect. A reasonable value of £ may

therefore be calculated by requiring:

£ > sinh™ [{% exp (%)}"‘] ,

where the strain rate and temperature are the highest and lowest values of their

applicable ranges, respectively.

. Determination of stalic recovery term parameters B, @, and p:
The static recovery function parameters were determined via a nonlinear least
squares fit of equation 4.2.13 to the recovery data analyzed in the manner described

in Section 4.2, where 4.2.13 is:

—dAt _ Q:\ n (o'f>-P
dlo,]q) = P (R()) WB \¢) 4213

Here, c is the stress/internal variable constant defined by 5.2. We assumed here

that @), equals the activation energy for ¢ lf-diffusion of alpha iron, 300 kJ/mole.
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[Frost & Ashby, 1982] We provide two justifications for this assumption. One,
static recovery has been observed to be associated with non-conservative climb
of dislocations, [Takeuchi and Argon, 1976] the relevant activation energy then is
that of self-diffusion. Two, we checked this assumption via the following test. We
performed two load-unload-hold-reload tests at the same value of ¢ but at different
temperatures (and consequently different strain rates). The strain rates needed
to produce the same value of ¢ may be determined from the rate equation with
the parameters determined in Step 1. If we design the tests to obtain the same
values of stress just before unloading (0;) and immediately after reloading (o)
then, according to our model, the value of the internal variable is the same both at
the beginning and at the end of the hold period for both tests. If these conditions

are met, then for the two tests at the two temperatures according to 4.3.17:

exp (-—&) Aty = exp (——I%';) At,. 4.2.14

Tests were performed according to the above procedure, varying the hold times
until the same value of o; was obtained. The two tests used for the measurement

of @, possessed the following experimental parameters:

Test | Temperature | Strain rate | Hold strain o; oy At
(Celsius) (1/sec) (MPa) | (MPa) | (sec)
1 800. .00506 10 46.7 40.7 | 352.
2 900. 1 .20 46.5 40.8 20.

Equation 4.2.14 using the values from the above table produces a value of @), =

300.2 kJ /mole, in excellent agreement with our assumed value for self-diffusion.

The recovery data used to fit 4.2.11 is plotted in Figure 4.29, and listed below in

Table 5.1. Fitting was accomplished via & nonlinear least squares fit similar to that
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similarly listed in Appendix B.

used in Step 1. The programs used for the fitting, STATCON and FITREGC, are

Table 5.1

Recovery Test Data
900 Celsius - 0.02 1/sec

At o; | (—dAt)/d(oy/c)
(seconds) | (MPa) | (seconds/MPa)
20 33.6 2.67
70 33.1 31.25
150 33.5 42.19
300 32.9 78.74
500 32.2 86.96

The correlation between the recovery data and the recovery function prediction is
plotted in Figure 5.2. Notice that the exponent in-this case exceeds 20, significantly
greater than the exponent of 4 proposed by Argon [Prinz and Argon, 1984] and
Nix [Nix and Gibeling, 1985). The point corresponding to the shortest hold period
was ignored in the curve fitting. We associated the rapid initial stress decrease
accompanying short hold times with very small scale rearrangement or anelastic
effects. One consequence of including this effect would be to increase the value
of the exponent p to magnitudes of 50 to 100. We therefore chose to ignore this
effect with the consequence of representing longer time recovery effects with greater

accuracy than short time effects.

It should be noted that one may evaluate the static recovery function using offset
stresses measured at a larger strain offset than the 0.002 strain offset used above.
This was done with the Fe - 2% Si data using a 0.02 strain offset. The value of
the exponent p resulting from the analysis exceeded thirty. Selection of a different

strain offset therefore did not reduce the relatively high magnitude of the state
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variable exponent.

4. Determination of the Saturation Stress o*:
The value of the saturation stress o* is determined for each test from the steady

state value reached in the (o, ¢?) datal.

5. Determination of a,chg, and oo:
The combined constant cho and the parameter a for each test are determined by
a least squares fit of the hardening (o, do/de?) data according to equation 4.3.9,

restated here:

After the values of a and chy are obtained the value of oy is obtained by a least
square fit of the constant strain rate (o, €’) data to equation 4.3.10 for fixed values
of a and chq. Alternatively, cho,a, and oo may be determined by a similar least
squares fit of the (o,€?) data to the inlegrated stress-strain relation of equation
4.3.10. We believe that the first approach is more physically motivated, but the
second should work well, especially when it is difficult b.cause of lack of sufficient
data points or noisy data to differentiate numerically the (o, ¢?) data. Normally
there is variation in the values of ¢ determined from different tests. The value
of a is therefore determined as the average of the values determined from each
individual test. After the value of a is fixed, the least squares fit of equation 4.3.9
is performed to determine the final value of chg. For the 2% silicon iron the value of
a = 1.5 describes our experimental data well. Accordingly, for this material we fix
a = 1.5, The range of data used to determine chgy and o corresponds to €? > 1%

because there are various uncertainties associated with measuring small strains

UIf a steady state is not reached in the experiments, then ¢* is estimated by extrapolating the o
versus do/de? data to do/deP = 0.
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in compression by our test techniques. Figure 4.46 illustrates the correspondence
between the hardening data and equation 4.3.9 using ¢ = 1.5. The program used

in this step, QNON, is listed in Appendix B.

. Determination of hg:

The value of kg is then obtained as the simple average:

hy = 2= (lehol: /)
q

, (5.1)

where [ch), is the value of cho determined in step 5 for test %, ¢; is the correspond-
ing value of ¢ defined in 5.2, and ¢ is the number of tests. The value of ho was

determined to be 3498.0 MPa.

. Determination of §,n,and Qg,:

The values of §,n and the activation energy @y, are then determined by a non-linear

least squares fit to equation 4.3.11 cast in terms of stress:

. __ _6_ st "
7 “cs[Ae"p(Ro)] ’

The programs used for this fit are named SATCONS and its associated subroutine
FITSAT. They are included in Appendix B.

. Determination of so:

The value of sq for each test, the initial value of the deformation resistance s, is then
determined by dividing the value of o determined in step 5 by the corresponding
value of ¢ defined in equation 5.2. Table 5.2 provides the average so values for each

test temperature, determined via the procedure described above.

The material paramecters for the 2% silicon iron obtained by the method outlined above

are listed in Table 5.3. The value of the activation energy @ = 247.5 kJ/molc is within

the range 237 to 251 kJ/mole for the activation energy for lattice self-diffusion in ferrite

112




(see, for example Ashby and Frost {1982]). We note that for a similar silicon steel, Uvira
and Jonas [1968] have previously obtained a value of @ = 333.6 kJ/mole. As discussed
in Chapter 3, however, there is no reason to expect the activation energy associated with
the rate equation to be equal to either that of self-diffusion or that obtained from a fit
to steady state data.

Although there is no physically justified reason for doing so, one may set Qqu, equal to
the value of Q@ determined for the rate equation without introducing a significant amount
of error in the predictive capability of the model. The different values of activation en-
ergy in the two equations reflect a difference in the physical mechanisms governing that
particular aspect of the material response. The model, however, does not appear to be
extremely sensitive to averaging these two values of activation energy. We shall adopt
this simplification. With this simplification the material parameters are those given in
Table 1 of Chapter 1, instead of those in Table 5.3. Note that it is not only the activation
energies that have changed. A change in the activation energies causes a commensurate

change in the other material parameters as well.

5.1 Minimum number of tests

One reasonable question associated with the determination of material parameters is:
What is the minimum number of tests that need be performed to provide sufficient data
to follow the above procedure? Certainly one need not perform as many tests as are
presented in this report.

If we ignore the static recovery function, it is possible to determine all of the constants
from a series of strain rate jump tests like those presented in Section 4.1. The jump seg-
ments provide constant structure data for determining the parameters associated with

the strain rate equation. We may determine the parameters associated with the satura-
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tion state equation if we perform the tests such that the stress reaches a constant value
before the jump and then allow the stress to reach a new steady state after the jump.
Finally, the hardening segments of the curves before and after each jump provides the
parameters for the evolution equation for the internal variable.

It is possible (although certainly not recommended) to determine all of the material
parameters from six (6) strain rate jump tests, divided into two sets of three jump tests
with each set performed at a different temperature. This set of tests represents the
minimum number required to uniquely determine each material parameter, once again
assuming that we have neglected static recovery. Obviously, more tests are required to
provide confidence in the quality of the correlation between material and model, with
appropriate tests spanning the range of strain rates, stresses, and temperatures to be

represented by the model.
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TABLE 5.2

Initial Values of Internal Variable s

Temperature | sg

Celsius MPa
700 134.2
750 121.1
800 102.7
850 89.6
900 74.6
950 79.1
1000 66.1
1100 58.4
1200 80.1
TABLE 5.3

Material Parameters for 2% Silicon Iron

Material Parameter Value
A 1.26 x 108 sec™!
Q 247.5 kJ /mole
¢ 5.00
m 0.22793
] 36.3 MPa
Qas 439.4 kJ/mole

n 0.06272

ko 3498.0 MPa

a 1.5

B 1.08 x 1080 (MPa/sec)
Qr 300.0 kJ/moie

p 20.6
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Chapter 6

Evaluation and Validation of
Constitutive Model

No consistent criteria have been established for the evaluation of different constitutive
models; most comparisons to date consist of checking whether models represent basic
qualitative aspects of material behavior. Nevertheless, the evaluation and validation of

a model involves several considerations which include:

1. At the very least, the model should represent the physical data upon which the
model is based and from which the material parameters of the model are deter-

mined.

2. Comparison between the predictions from the model and the physical system should
encompass the variable space to be modelled. Given a set of external and internal
variables, the model should represent the physical system thoughout all permuta-
tions of those variables. If the model parameters have been evaluated using data
from a subset of the variable space, validation should include not only that subset
but as much of the variable space as possible. Validation should therefore examine

the predictive capability of the model at reasonable points, including the limits, of

the variable space.
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3. Item one above supposes that all of the relevant variables are measurable. Unfor-
tunately in our case there is no direct correlation of the internal variable s to a
physical quantity. One consideration therefore in our investigation is whether we
may find some some means of correlating s to some physical measurement which

we may then take to represent s.

The tests which follow provide initial validation of the model with consideration of the
above issues.

Five sets of tests follow. First, the model is correlated with the original material tests,
and the correlation is found to be excellent. Second, a load control test is compared with
a prediction from the constitutive model. Data obtained from the load controlled exper-
iments was not used in the evalutation of the material parameters for the model. Third,
strain rates jump tests where the strain rate is increased twice during one test is com-
pared with the predicted model response. Fourth, a strain rate decrement test is used
to confirm the presence of strain softening. Fifth, a specimen is proposed and tested
to investigate both the ability to predict a variation in state subject to an inhomoge-
nous deformation and to investigate different macroscopic measurements which may be

correlated with the internal variable.

6.1 Numerical Integration of Constitutive Equations

The simulations presented in this chapter were produced via one of two integration pro-
cedures, both of which are represented by programs listed in Appendix C. The first
program, ISOINT, uses an IMSL numerical subroutine to evaluate all tests where the
true strain rate is constant or is instantaneously changed. Given a constant true strain
rate and isothermal conditions, integration of the constitutive model reduces to integra-

tion of the evolution equation for the internal variable. Although the coupled system of
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equations is relatively “stiff”, the evolution equation for s is not. Therefore the IMSL
subroutine DVERK which employs a fifth order Runge-Kutta algorithm for non-stiff sys-
tems of differential equations was employed. A typical simulation required less than
seconds of CPU time on a Data General MV4000.

Simulations of experiments involving other boundary conditions were performed us-
ing the finite element program ABAQUS. The constitutive equations obtained in this
investigation have been incorporated by Anand et al. [1985] as a material model via a
user-material interface in ABAQUS developed by Hibbitt, Karlsson, and Sorensen, Inc.
of Providence, Rhode Island. The coupled differential constitutive equations are nu-
merically very stiff and require special computational schemes for efficient integration in
time. Anand et al. use a semi-implicit time-integration procedure with automatic time
stepping. Using this time-integration procedure in ABAQUS we may evaluate material
response in arbitrary three dimensional loading conditions. A simulation of an isother-
mal, constant true strain rate test using ABAQUS requires approximately 10 minutes of

CPU time as opposed to the 5 seconds required by ISOINT.

6.2 Simulation of Original Experiments

Figures 6.1 through 6.14 present isothermal, constant true strain rate test, recovery test,
and jump test simulations with the original experimental data. All simulations were
produced using ISOINT. The initial values of the internal variable, so, used in these
simulations varied with temperature and are included in Table 5.2. The correlation
between the model and the experimental data is excellent. The only large discrepancy
between the model and the experiments occurs with the 700 degree Celsius, strain rate
jump tests (Figure 6.10). This is not unanticipated since the jump test data was not well

represented by the rate equation at that temperature.
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6.3 Load Boundary Condition Test

Since the independent variables in the major portion of the experiments were strain rate
and temperature, it is important to investigate the predictive capability of the constitu-
tive model when they are dependent variables. Experiments which permit such compar-
ison include load or stress controlled tests and temperature variation tests.

A simple isothermal, load controlled compression experiment was selected where the
load was increased linearly at a rate of 2000 Newtons per second up to 20,000 Newtons,
held for 10 seconds, and then decreased linearly to zero load, illustrated in Figure 6.15.
Displacement was recorded versus time, the true strain and stress calculated, and the
strain rate determined from the strain versus time data. Total accumulated compressive
strain in this test exceeded -0.9. Figure 6.16 illustrates the agreement between the ex-
perimental strain rate and predicted strain rate versus time. The ABAQUS input data
for the simulation is included in Appendix D.

Although the initial loading segment of the test produces the worst agreement between
the model and the data, it is also the most severe test of the model, since the model is
being asked to follow a rate of change in one of the state variables. The constant load

segment, where the applied stress varies more slowly, is duplicated very well by the model.

6.4 Strain Rate Decrement and Double Jump Tests

Figures 6.17 to 6.19 show variations in the strain rate jump tests, where the strain
rate is in the first case increased twice and in the second case decreased once. The

model represents the double jump test data very well, duplicating both hardening and

instantaneous strain rate dependence.
Although the constitutive model predicts the final steady state stress in the strain

rate decrement test, the model predicts a transition to that stress after the strain rate
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decrement which is much different from the actual data. The experimental data changes
abruptly to the new value of steady state stress. This behavior was unexpected. It is
not clear whether this represents true material behavior or is some experimental arti-
fact. Similar data obtained with identical tests on 1100 aluminum [Kim et al., 1986]
demonstrated a material response like that predicted by the constitutive model. It is
possible that the abrupt transition is a characteristic of the analog function generator or
the servobydraulic, although preliminary examinations of the hardware failed to detect
any abnormalities. It would be useful to perform the same tests on some other metals
using different hardware to determine whether this result is reproducible.

The steady state stress reached after the strain rate decrement corresponds to the
steady state value for a monotonic test at the final strain rate and temperature. The
sgn(—) function adopted in the evolution equation for the internal variable simulates

strain softening, permitting the model to predict the new saturation state.

6.5 State Gradient Specimen and Testing

One assumption of an internal variable constitutive model is that the value of the internal
variable provides some measure of the mechanical state of the material. The aim of this
particular test was to determine the correlation between the value of the internal variable
predicted by the constitutive model and the variation in deformation resistance within
an inhomogeneously deformed test specimen. A simple conical compression specimen
geometry was selected to produce a gradient of deformation along the vertical axis. Figure
6.20 shows a typical gradient specimen before and after testing.

A typical lest sequence consisted of compressing the specimen at elevated tempera-
ture, immediately quenching, and then machining a series of small cylindrical compression

specimens from the center axis of the deformed specimen. The yield stress obtained from
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a compression test on each compression specimen provides a measure of the deformation
resistance in the region of the gradient specimen from which the compression specimen
was machined. Microhardness tests were also performed along the center section of the
compressed specimen to evaluate whether microhardness could be correlated with the
internal variable.

Since we have evaluated the internal variable s by measuring a 0.2% yield stress, and
since the yield stress is temperature dependent, ideally we would perform these compres-
sion experiments at the original gradient test temperature. This is operationaliy difficult
to do since the specimen requires a finite amount of time to heat to test temperature,
-and recovery processes may erase the variation in deformation-induced microstructure
between specimens. We may perform these yield tests at room temperature, but then
we are faced with the dilemma of relating the room temperature yield stress, where the
high temperature value of ¢ may not be applicable, to the deformation resistance.

A set of initial tests were performed using Fe - 2% Si gradient specimens. The spec-
imens were heated using an induction coil and then cooled with a helium gas quench
immediately after compression. Room temperature yield tests using compression speci-
mens taken from the axis of the quenched specimens produced no discernable variation
in yield stress as a function of azial position in the gradient specimen. It was uncertain
whether the lack of variation was due to inadequaie quench rates, insufficient grains per
compression specimen cross-section, or the true absence of a variation in state.

We then decided to perform an identical set of tests using 1100 aluminum in place of
the Fe - 2% Si. The use of aluminum permitted large gradient specimens, faster quench
rates, and easier machining and testing of the yield stress compression specimens. A
set of parallel experiments following the methods applied to the Fe - 2% Si have been
performed by Kwon Hee Kim [Kim et al. 1986] to determine the material parameters

for 1100 aluminum for the model developed in this investigation. The aluminum could
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be tested in an air atmosphere using a radiant lamp, clamshell furnace which permitted
heating rates more than two orders of magnitude greater than was possible using the vac-
uum furnace. The radiant furnace also permitted a water quench which also increased
quenching rates. Aluminum thus permitted both the possibility of a more reliable reten-
tion of high temperature microstructure and the potential of performing the yield tests at
elevated temperatures. Figure 6.21 shows the aluminum gradient specimen dimensions.
The gradient specimen compression test was simulated using ABAQUS and the user
material subroutine briefly described in Section 6.1. Appendix D contains the ABAQUS
input file describing the finite element model. Figure 6.22 illustrates the displacements
resulting from a simulation of a test on the 1100 aluminum at 300 degrees Celsius and at
a compression rate of 1 millimeter per second. Figure 6.23 provides a contours of of the
internal variable for this same test. Values provides in the contour table are in terms of
equivalent shear stress and must be multiplied by v/3 to obtain equivalent tensile values.
Tests were performed with the aluminum gradient specimen at both room temperature
and at 300 degrees Celsius. The room temperature test was performed to provide a large
variation in state to compare with the higher temperature test results. The elevated
temperature specimen reached 300 degrees from room temperature in approximately 500
seconds and was quenched from 300 degrees Celsius to room temperature in less than 10
seconds. After compression, both specimens were sectioned along their axis of symmetry.
Figures 6.24 and 6.25 show the variation in microhardness along the longitudinal axis of
both specimens. Each data point in the figures represents the average of 8 to 10 readings
at each position. Although some variation is evident in the room temperature specimen,
there was no detectable variation in microhardness in the quenched specimen.
Compression specimens (approximately 7.0 mm in diameter by 7.0 mm in length) were
machined coaxial with the axis of the compressed gradient specimens as indicated in Fig-

ures 6.26 and 6.27. These figures indicate the variation in yield stress measured at room
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temperature from the compression specimens obtained from both the room temperature
and 300 degree Celsius gradient specimens. Figure 6.28 shows the actual stress-strain
data for the five compression specimens machined from the 300 degree gradient specimen.
Figure 6.27 also shows the variation in the value of the internal variable s predicted by
the ABAQUS simulation, where the values of s have been multiplied by a constant (.830)
such that the model prediction and the measured yield stress coincide for the rightmost
data point. The model prediction appears to represent qualitatively the variation in yield
stress along the length of the specimen very well, duplicating not only the magnitude of
variation in stress but also the axial position of that variation.

It should be noted that the constitutive model cannot be extrapolated to room tem-
perature given material constants which were determined from tests at higher homologous
temperatures. The constitutive model does not predict the room temperature yield stress
variation from the quenched gradient specimen, a calculation which may be done by mul-
tiplying the predicted value of s by the proportionality constant ¢ obtained by inserting
room temperature parameters into equation 5.2. Such a calculation overestimates the
actual yield stress by approximately a factor of 2.

Nevertheless, the predicted variation in the internal variable appears to indicate the

relative variation in plastic deformation resistance very well.
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Figure 6.20 State gradient specimen before and after
testing.
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Chapter 7

Concluding Remarks

The success of this constitutive model in representing large rate-dependent metal de-
formations at high temperatures, indicates that a single scalar internal variable model
may be adequate for analyzing hot working operatlons Such a result is of significant
practical importance. Depending on the forms of the materlal functions, a single scalar
model is most likely easier to fit to test data than multiple internal variable models. A
single scalar model also provides a potential reduction in computational requirements
both by simplifying the updating of material states from a tightly coupled, stiff set of
nonlinear diflferential equations and by reducing the number of variable values stored at
each integration point in a large finite element model.

The constitutive model developed in this report has been recently used both to model
other metals and to simulate hot working processes. The model has been applied to a
face-centered cubic metal, 1100 aluminum [Kim, et al., 1986). The correlation between the
model and the 1100 aluminum data appears to be better than the correlations presented
in this report for the iron - 2% silicon alloy. This model employing 1100 aluminum
material parameters has been used in ABAQUS finite element simulations of closed die
forging operations Lush, Weber and Anand [1987]. The finite element predictions of load
histories and material flow agrees well with actual forging tests.

A limitation of this model derives from the fact that anisotropic material behavior
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has been ignored, with the consequence that errors may develop with large deformations.
Small scale anisotropy associated with reversed loading, Bauchinger-type phenomena was
reasonably assumed to saturate after a few percent strain, and large scale effects due to
the development of texture were ignored primarily because of the current lack of simple
techniques for modelling the evolution of crystalline orientation. The fact that the as-
sumption of isotropy was enforced in this investigation through the use of monotonic tests
on identically-oriented specimens does not mean however that the texture development
in the Fe - 2% Si alloy is insignificant. It would be reasonable in further investigations to
investigate the accuracy of the constitutive model as a function of variation of material
orientation after large deformations.

The model presented here has been developed for single phase metals under large
deformations where the dominant deformation processes are assumed to be thermally
activated. Materials which may possess a strong athermal component of deformation
resistance, such as precipitation or dispersion strengthened metals therefore may not be
well represented.

Several conclusions may be drawn about constitutive models for hot working given

the rescarch presented herein:

1. The dependence of strain rate upon stress at a given constant structure is not well
represented by a power law, much less by that power law exponent which correlates
the steady state stress to the steady state strain rate. Furthermore, given a single
internal variable model for creep, where the dependence of strain rate upon stress

and state is expressed in the form:

¢ = £(0) (3) 71

S

the exponent n should not be the steady state stress exponent. If we expect the

steady state value of the internal variable s to increase with stress, n must be
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greater than the values of 3 to 5 normally associated with creep.

2. If power law breakdown is the result of a change in deformation mechanism, that
mechanism is associated with the constant structure kinetics and not with the evo-
lution of the microstructure. Power law breakdown therefore should be represented

in the deformation rate equation.

3. It may be possible to neglect static recovery, i.e., recovery in the absence of load,
in simulating many hot working processes. The static recovery rate measured in
this investigation did not affect the material response over the range of strain
rates and temperatures tested. This restriction applies only to recovery processes;

recrystallization if present will most likely effect the material response.

Internal variable models which postulate separate rate equations for deformation and
microstructure evolution requires material data which is generally not available. The
fundamental consideration is that one should perform experiments to characterize each
material function unambiguously. Constant structure tests such as the jump tests de-
scribed in this report are essential if one wishes to evaluate or fit the deformation equation
to data which represent only deformation kinetics. Similarly, tests designed such that
deformation kinetics may either be neglected, as in the load-unload-hold-reload tests, or
compensated for in some phenomenological way (e.g. using the constant ¢ in this model)
provide data representative of the evolution of structure.

Such testing addresses important questions concerning appropriate material func-
tions. One obvious case in point is the characterization of deformation rate equations like
those discussed in Section 4.1.1. Strain rate, stress, and temperature jump tests provide
the capability of directly evaluating deformation kinetics. Such techniques are certainly

applicable to fundamental investigations on single crystals as well as polycrystalline en-

gineering alloys. It is likely that such experimentation will become more common as
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internal variable formulations gain acceptance. Such experimentation in conjunction
with increased understanding of the processes controlling the evolution of structure may
provide, in time, more consensus on the form of constitutive models for high temperature

deformation.
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——————————————— STEF | ———mmmm e
*Load DASH16.BIN by loading at 92K (Hex 1700) outside basic workspace
CLEAR, 49152!

DEF SEG = ¢

SG = 256 x FEEK(&HS11) + PEEK(&HS1Q)

SG = 86 + 491521/16

DEF SEG = SG

BLOAD "DASH1&.EKIN", O ‘Load it

DIM DIOY%(8),A%(20001) *Initialize data arrays
DIO%Z(Q) = &HIOO *DASH-146 board base address

DIOY%(1) = 2 'Selected interrupt level for DASH-16
DIDY%(R) = 2 ‘Selected DMA level for DASH-16

DASHLI6 = © ‘Declare & imitialize other CALL parameters
FLAGYZ = O

MD%Z = O ’Select Mode @ - inmnitialize driver

CALL DASH146 (MD¥%, DIOZ(0).FLAGZ) *do it
IF FLAG%Z< >0 THEN FRINT "INITIALIZATION ERROR":STOP ‘“any error?

'Set up multiplexer scanning limits for channels 0 to 1
2

MD%=1 ‘Mode 1 - set scan limits

DIOL(0)=1

DIO% (1) =2

CALL DASH1&6 (MD%, DIOZ(Q) . FLAGZ)

IF FLAGZL>O THEN PRINT "Error in scan limits # ";FLAGYZ ¢ STOP

b4

Ve —————— STEF 3 ~~————- - e e
*Prompt for sampling rate

b

INFUT "Enter sampling rate in Hertz (up to 1000, even number) : ", SAMRTY
INFUT "Enter number of desired samples (maximum 10,000) t " .NSAMY
SAMDUR = NSAMZL/SAMRT%

PRINT

PRINT "Duration of sampling period is: ",SAMDUR,"” seconds.”
FRINT

MD% = 17

DIOZ(O) = 2 3 DIO%(1) = 250000!/SAMRTZ

CALL DASH1é6 (MD%, DIOL(D) FLAGZ)

IF FLAGY%< O THEN PRINT"Error in scan rate set up # ":FLAGYZ : STOP
?

R STEP 4 —ccrmm e e
PRINT "Fress any key to start data collection”

E$ = INKEY$

IF B$="" THEN 510

*Do NSAMY, conversions into array AL(X) using mode 4

DIOY%(O) = NSAMLE2 ’Number of conversions

DIO%Z (1) = VARPTR(AZ(O)) *Array locator

D10%(2) =1 *Trigger source - programmable timer
MD%=4

CALL DASH1& (MDY%, DIOY%(O) FLAGY)

IF FLAG%< >0 THEN FRINT "Error in mode 4 # ":FLAGYZ : STOP
FPRINT "Data acquisition dore"

FRINT "Hit any key to continue"”
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&20
630
640
650
650
670
680
690
700
710
720
730
740
750
760
770
730
720
800
810
820

Es = INKEY$
IF Be="" THEN 620

e ———— STEP § --———m—mmmmm e - -
‘Review even 100th data point voltage and store in integer form

.

FOR 17 =0 TO NSAMYZX2 STEF 200

Al = AY(IZ) 7204.7 + A2 = AU(LIZ+1)/204.7
J7%=1%/2

FRINT J%.AL,AR2

NEXT I%

INFUT "Input first data point to be saved
INPUT "Input last data point to be saved
INPUT "Input name of file to hold data
OFEN INFILE$ FOR OUTFUT AS #2

FOR J% = FSTFTZ TO LSTPTZ

I = J% % 2

PRINT #2,3%:A%(1%) tAZ{T%+1)

NEXT J%
CLOSE #2
END
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Data Reduction of Raw Load/Deflection Data

The following procedure used to obtain smooth true stress versus true strain data,
and hardening data from load/deflection data resulting from uniaxial compression or
tension tests. It uses four pregrams, TRUECON, JUMPPT, POLYS, and HARDEN, to
generate a generic data file which may then serve as a relatively “clean” set of uniaxial
test data. The purpose of this procedure is to provide data cleansed of any test machine
or data acquisition idiosyncrasies, providing a standard format available for subsequent
analysis.

The procedure described herein assumes the following format for the raw data ob-
tained from constant true strain rate tests:

First row: Number of data points(integer)
Test ID (integer)
Temperature in Celsius
Strain rate

Subsequent rows: Data arranged in columns
Column  Contents

1 Sample number
2 Displacement in A/D integer units
3 Load in A/D integer units

Entries on the same row are separated by commas or spaces. The programs treat the data
as free-formatted. The programs are structured such that the output of a particularly
program serves as the input of the next program in sequence. Each program produces an
output file which consists of the input file plus additional columns of data which result
from the analysis of that program. A copy of each relevant program is attached to the
end of this appendix.
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A.1 Converting to True Stress/True Strain Data: TRUECON

The program TRUECON uses the raw data file to produce a file with the follow
structure in free-formatted form.

First row: Same as raw data file
Subsequent rows: Data arranged in columns
Column Contents
1 Sample number
Load in Newtons
Displacement in mm
True stress in MPa
True strain

U WO N

TRUECON requests the following input:

1. Specimen area in square millimeters.
Temperature in degrees Celsius.

Coefficient of thermal expansion.

Compliance of test machine ir kiloNewtons/mm.
Starting actuator displacement (zero load point).

File name containing input data.

B A o B

File name to contain output data.

A.2 Smoothing of True Stress/Strain Data: (JUMPPT and POLYS)

Programs JUMPPT and POLYS serve to smooth the true stress data produced by
program TRUECON. JUMPPT smoothes the strain data and calculates the strain rate.
POLYS smoothes the stress data. Both strain and stress are smoothed versus sample
number (which may be considered equivalent to time). The programs smooth by fitting
a cubic polynomial to segments of the stress/strain data, and uses the value predicted
by the zubic at the center of the segment to be the smoothed value at that point. The
segment is called a “bin” and is moved point by point along the set of data, producing
a smoothed value at the center point of the bin. The user specifies 1/2 the number of
data points in the bin. The bin size should never be less than 10 and frequently may
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have to be larger to obtain adequate smoothing. The 1/2 bin size is therefore always 5
or greater.

JUMPPT, POLYS and the next program HARDEN use double precision IMSL sub-
routines to perform their relative tasks. The correct IMSL library obviously must then
be specified when linking either of these two programs.

JUMPPT requests the following input:

w0

10.

. Name of input data file (TRUECON output).

First sample number in first range of data where strain rate is to be determined.
Last sample number is first range of data where strain rate is to be determined.
First sample number in second range of data where strain rate is to be determined.

Last sample number in second range of data where strain rate is to be determined.
(Two ranges are specified so that strain rates before and after a strain rate jump
may be determined if desired.)

. Data samplin, interval in seconds.
. Name of output data file.

. First sample number in range for strain smoothing,.

Last sample number in range for strain smoothing.

1/2 bin size for smoothing.

JUMPPT produces the following output file:

First row: Same as raw data file
Subsequent rows: Data arranged in columns

Column Contents

1 Sample number
Load in Newtons
Displacement in mm
True stress in MPa
True strain (smoothed)

-8 Null data

Strain rate

O O O W N
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POLYS requests the following input:

—

. Name of input file (JUMPPT output).

. 1/2 smoothing bin size.

W N

. First sample number in range for stress smoothing.

N

. Last sample number in range for stress smoothing,.

w

. Name of output file.

POLYS produces the following output file:

First row: Same as raw data file
Subsequent rows: Data arranged in columns
Column Contents
1 Sample number
Load in Newtons
Displacement in mm
True stress in MPa
True strain (smoothed)
True stress (smoothed)
-8 Null

Strain rate

W ~J O Ot W N

The user should plot the smoothed and unsmoothed data after each smoothing operation
to confirm that the smoothing does not distort the actual data.

A.3 Plastic Hardening Determination: (HARDEN)

The next step required is to determine the rate of hardening, i.e., the rate of change
of stress with strain, for each constant true strain rate test. This is accomplished with
program HARDEN. HARDEN produces a new data file of the original data from POLYS

with two new columns:

1. Column 7: Plastic hardening

2. Column 8: Plastic strain
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HARDEN requests the following input:

1. File name of input data (POLYS output).

First sample in range of data for hardening calculation.
Last sample in range of data for hardening calculation.
1/2 smoothing bin size.

File name to contain output data.

> o s W

Young’s modulus in GPA at test temperature. (Used to calculate plastic strain.

HARDEN calculates the hardening, or slope of the stress versus plastic strain curve,
by selecting a bin of data (like POLYS) fitting a cubic polynomial to the data in the
bin, then using the derivative of the polynomial at the center point of the bin to be the
hardening rate at that point. The bin moves through the data, sequentially fitting the
data to the polynomial and taking the derivative at the center point. The size of the
bin, in data points, is specified by the user each time HARDEN is run. A good range
seems to be between 5 and 10, although this depends on the smoothness of the data
being analyzed. The bin size may have to be increased if there are many data points
> 100 which are closely packed or if the data is particularly noisy.

To summarize, HARDEN produces the following output file:

First row: Same as raw data file
Subsequent rows: Data arranged in columns
Column Contents
1 Sample number
Load in Newtons
Displacement in mm
True stress in MPa
True strain (smoothed)
True stress (smoothed)
Plastic strain
Plastic hardening
Strain rate

O 00 ~JO Ok W N

Once again, it is a good idea to plot the hardening (column 8) versus stress to confirm
that HARDEN produced reasonable results. It is also a good idea to try several different
bin sizes to examinc the variation in predicted hardening.
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¥ Yeolole!

TRUECON

CONVERTS LOAD VERSUS DISPLACEMENT DATA FILES
INTO TRUE STRESS VERSUS TRUE STRAIN DATA FILES.

DATA IS READ FROM FORTRAN DATA FILE SPECIFIED BY
ASSIGN FOR025 [INFILE] STATEMENT. DATA IS OUTPUT
TO FOR026 [OUTFILE]. THE INPUT FILE

FORMAT 1IS:
NM
ARRAY

VARIABLES:

AREA
TEMP
ALPHA
0013
DISP
Li

LS

LOADCF
DISPCF
NTESTID

TEMPT
RATE

NX
INFILE
OUTFILE
ARRAY (1
SIZE

1)

STUART BROWN 1-3-84

INITIALIZE DATA

REAL ARRAY2(2000,5),ARRAY(1,3)
REAL AREA,TEMP,ALPHA,OOMP,DISP,LI,LS,TEMPT,RATE,SI1ZE,LOADCF

REAL DISPCF
CHARACTER*20 INFILE,QUTFILE

NUVBER OF DATA POINTS
SAMPLE, LOAD, DI SPLACEMENT

SPECIMEN ARFA IN MM**2

TEST TEMPERATURE IN CELSIUS

COEF OF THERMAL EXPANSION

TEST MACHINE OOMPLIANCE

STARTING DISPLACEMENT

INITIAL SPECIMEN LENGTH

SPECIMEN LENGTH ADJUSTED
FOR TEMPERATURE

CONVERSION FACTOR FOR LOAD,
(NEWTONS/VOLT)

CONVERSION FACTOR FOR DISPLACE-
MENT (MM/VOLT)

IDENTIFICATION NUMBER FOR
TEST (INTEGER)

TEST TEMPERATURE IN CELSIUS

TEST STRAIN RATE

NUMBER OF DATA POINTS

INPUT FILE NAME

OUTPUT FILE NAME

DATA FILE

TEMPERATURE SCALING FACTOR

FOR SPECIMEN DIMENSIONS

READ DATA AND OONVERT TO TRUE STRESS AND STRAIN

FORMAT(A20)
FORMAT (F10.5)

PRINT ®,"”INPUT SPECIMEN AREA IN MM*MM »

READ (*,5) AREA

PRINT *,”INPUT TEMP IN DEGREES CELSIUS "

READ (*,5) TEMP

PRINT *,”INPUT COEF THERMAL EXPANSION * 10°6 "

READ (% ) AIDHA

hnse avr e

PRINT *,”INPUT COMPLIANCE IN KN/MM "

READ (*,5) coMp

PRINT *,"INPUT STARTING DISPLACEMENT "

READ (*,5) DISP

PRINT *,"INPUT STARTING LENGTH IN MM "
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READ (*,5) LI

PRINT *,”INPUT RAW DATA FILE NAME "

READ (*,4) INFILE

PRINT *,"INPUT LOAD CONVERSION FACTOR (NEWIONS/VOLT) *
READ (*,5) LOADCF

PRINT *,”INPUT DISP CONVERSION FACTOR (MM/VOLT) »
READ (*,5) DISPCF
PRINT #&,”INPUT QUTPUT FILE NAME "

READ (*,4) OUTFILE

OPEN (25,FILE=INFILE, STATUS='OLD’
1 ,RECRM="DS")

READ (25,*) NUM_ TESTID,TEMPT,RATE
DO 10 I « 1,NIM

READ {(25,%*) ARRAY(1,1),ARRAY(1,3),ARRAY(1,2)

SIZE = 1. + (TEMP-20.) * ALPHA * 1.E-06

LS « LI * SIZE

SS = ARRAY(1,3)

ARRAY(1,3) = DISPCF * ARRAY(1,2) / 204.7

ARRAY(1,2) = LOADCF * SS / 204.7

ENG = (ARRAY(1,3) - ARRAY(1,2)/(0C0MP*1000) - DISP)/LS
ARRAY2(1,5) = -ALOG(1.+ ENG)

ARRAY2(1,4) = -ARRAY(1,2) * (1. + ENG)/(AREA*SIZE**2)
ARRAY2(I,1) = ARRAY(1,1)

ARRAY2(I,3) = ARRAY(1,3)

ARRAY2(I,2) = ARRAY(1,2)

0 CONTINUE
STORE TRUE STRESS AND STRAIN DATA

OPEN (26,FILE~OUTFILE, STATUS='NEW’ ,
1 RECFM="DS’)

WRITE (26,%*) NWM,NTESTID,TEMPT,RATE
DO 20 I=1,NWM

WRITE (26,*) (ARRAY2(I1,]),J=1,5)

20 CONTINUE
CLOSE (UNIT=2S5)
CLOSE (UNIT=26)
STOP
END

aQa=a

Q
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JUMPPT
STU BROWN 2-16-86
DETERMINES SMOOTHED STRAIN AND INTERSECTION STRAIN
VARIABLES

ARRAYT(1200,9)

SAMPLE NUMBER
LOAD
DISPLACEMENT
TRUE STRESS
TRUE STRAIN
SMOOTHED STRESS
PLASTIC STRAIN
HARDENING
STRAIN RATE

WO I W=

DOUBLE PRECISION LPT1,LPT2,UPT1,UPT2,ARRAYT(1200,9), SAMRATE
DOUBLE PRECISION ARRAY1(1200,2),ARRAY2(1200,2), JUMPPT
DOUBLE PRECISION ALBAP(3),DES(5),ANOVA(14),STAT(9),PRED(1,7)
CHARACTER*20 INFILE,QUTFILE,ANSWER

SMDOTHING VARIABLES

DOUBLE PRECISION SPT1,SPT2,WORK(2,1200),X(100),Y(100),RSQ,P(200)
DOUBLE PRECISION T(16),C(6),5(6),A(3),B(3),Z(4)

REAL RATE(1200),STRAIN(1200),STRAINL(1200)

FORMAT(15A)

PRINT *,”PROGRAM JUMPPT”

PRINT *,”ENTER NAME OF INPUT DATA FILE "
READ (*,5) INFILE

PRINT *,”STRAIN RATE DETERMINATION SECTION
PRINT *,”INPUT FIRST POINT FOR LOWER RANGE
READ (*,*) LPT1

PRINT *,”INPUT SECOND POINT FOR LOWER RANGE "
READ (*,*) LPT2

PRINT #*,”INPUT FIRST POINT FOR UPPER RANGE "
READ (*,*) UPT1

PRINT *,”INPUT SECOND POINT FOR UPPER RANGE "
READ (*,*) UPT2

PRINT *,”INPUT DATA SAMPLING INTERVAL (SEC) "
READ (*,*) SAMRATE

3 2

READ DATA

NPT1 = 0O

NPT2 = 0

OPEN(24,FILE=INFILE ,RECFM='DS’)
OPEN(12,FILE='ERROR.LS")

READ (24,*) NPT

DO 10 I = 1, NPT

READ(24,*) (ARRAYT(I1,J]),J=1,5)
ARRAYT(I,6) = 0.
ARRAYT(I,7) = 0.
ARRAYT(I,8) = O,
ARRAYT(I,9) = 0.
IF ((ARRAYT(1,1).GE.LPT1).AND.(ARRAYT(I,1).LE.LPT2)) THEN
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NPT1 = NPT1 + 1
ARRAY1(NPT1,1) = ARRAYT(I,1)
ARRAY1(NPT1,2) = ARRAYT(I,S)

ELSE IF ((ARRAYT(I,1).GE.UPT1).AND.(ARRAYT(I,1).LE.UPT2))

THEN

NPT2 = NPT2 + 1

ARRAY2(NPT2,1) = ARRAYT(I,1)

ARRAY2(NPT2,2) = ARRAYT(I,S)

END IF
CONTINUE
CLOSE(24)
PERFORM LINEAR REGRESSION

IX = 1200
IMID « 0

IPRED = 0
ALBAP(1) = .05
ALBAP(2) = .05
IP = 1

NN = 0

CALL RLONE(ARRAY1, IX,NPT1,IMOD, IPRED,ALBAP,DES,ANOVA, STAT,
PRED, IP,NN, IER)

PRINT *,”REGRESSION COEF FOR LOWER RANGE = ”,(STAT(1)/SAMRATE)

Al = STAT(1)

B1 = STAT(S)

PRINT *,”IER (ERROR PARAMETER) = ",IER

IX = 1200

IMD = 0

IPRED = 0

ALBAP(1) = .05

ALBAP(2) = .05

IP = 1

NN =0

CALL RLONE(ARRAY2,IX,NPT2, IMOD, IPRED,ALBAP,DES,ANOVA, STAT,
PRED, IP,NN, IER)

PRINT *,”REGRESSION COEF FOR UPPER RANGE = ”,(STAT(1)/SAMRATE)

A2 = STAT(1)

B2 = STAT(S)

PRINT *,”IER (ERROR PARAMETER) = ",IER

CALCULATE INTERSECTION

BEGIN SMDOTHING SECTION

PRINT ¢, ”

PRINT *,”SMDOOTH STRAIN AND DETERMINE STRAIN RATE? (Y OR N)”
READ (*,5) ANSWER

IF (ANSWER.EQ.’'N’) GO TO 500

PRINT *,”ENTER NAME OF OUTPUT FILE "
READ (*,5) OUTFILE
OPEN(25,FILE=OUTFILE,RECRV="DS*)

RINT *,"ENTER INITIAL SAMPLE NOMBER "
READ (3,%) SPT1

PRINT *,”ENTER FINAL SAMPLE NUMBER "
READ (*,*) SPT2

PRINT *,”ENTER 1/2 BIN SIZE "
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READ (*,*) NBIN
SELECT DATA ARRAY

NBEG « NPT
NSAM = O
DO 15 I = 1,NPT

IF ((ARRAYT(I1,1).GE.SPT1).AND.(ARRAYT(1,1).LE.SPT2)) THEN

NSAM = NSAM + 1
ARRAY2(NSAM,1) = ARRAYT(I,1)
ARRAY2(NSAM,2) = ARRAYT(I,S)

NBEG = MIN(NBEG,I)
END IF
CONTINUE
SET UP WORK ARRAY

DO 20 I = 1,NBIN

WORK(1,1) = ARRAYT(NBEG-NBIN+I-1,1)

WORK(2,1) = ARRAYT(NBEG-NBIN+I-1,5)

WORK(2,NBIN+NSAM+I) = 2*ARRAY2(NSAM,2)-ARRAY2(NSAM-1,2)

V&gng(I.NBINmSAMH) = 2*ARRAY2(NSAM, 1) -ARRAY2 (NSAM-1,1)
INUE

DO 30 I = 1,NSAM

WORK(1,NBIN+I) = ARRAY2(I,1)
WORK(2,NBIN+I) = ARRAY2(I,2)
CONTINUE

OPEN(27,FILE="'ZOUT’ ,RECPM="DS’)

DO 33 I = 1,NSAM+2*NBIN
WRITE(27,*) WORK(1,I) ,WORK(2,1)
OONTINUE

CURVE FIT

RSQ = 99.99D0
MD = 3

N = 2*NBIN + 1
DO SO I = 1,NSAM
WRITE(27,%) I

DO 40 J = 1,N

X(J) = WORK(1,I+J-1)
Y(J) = WORK(2,14J-1)
WRITE(27,*) X(J),¥(J)
CONTINUE

DO 45 K = 1,6

C(K) = 0.0
CONTINUE

CALL RLFOTH(X,Y,N,RSQ,MD,ID,P,C,S,A,B,IER)

CALL RLDOPM(C,ID,A,B,T)

STRAIN(I) = SNGL(C(1) + C(2)*ARRAY2(1,1) +
C(3)*ARRAY2(1,1)*%*2 + C(4)*ARRAY2(I,1)**3)

RATE(I) = SNGL((C(2) + 2*C(3)*ARRAY2(I,1) +
3*C(4)*ARRAY2(I,1)*%2)/SAMRATE)
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STRAINL(I)= SNGL(STAT(1)*ARRAY2(1,1)+STAT(5))
CQONTINUE
CLOSE(27)

OUTPUT RESULTS

VRITE(25,*) NPT
DO 60 I= 1,NPT

IF((ARRAYT(1,1).LT.SPT1).0R. (ARRAYT(I,1).GT.SPT2)) THEN
WRITE(25,*) (ARRAYT(I,J),J=1,9)

ELSE
WRITE(25,*) (ARRAYT(I,J),J=1,4),STRAIN(I-NBEG+1),

1 STRAINL(I-NBEG+1), (ARRAYT(1,J),J=7,8),RATE(I-NBEG+1)
END IF

CONTINUE
CLOSE(25)
STOP

END
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POLYS

DATA SMOOTHING PROGRAM FOR STRESS/STRAIN CURVES
STUART BROWN 5-29-85/MOD MEHRDAD HAGHI 7-16-85

VARIABLES

NX NUMBER OF DATA POINTS
ADATA(I,NX) ORIGINAL DATA ARRAY

ROW 1 SAMPLE NUMBER

ROW 2 LOAD

ROW 3 DI SPLACEMENT

ROW 4 TRUE STRESS

ROW 5 TRUE STRAIN

ROW € SMDOTHED STRESS

ROW 7 PLASTIC STRAIN

ROW 8 HARDENING

ROW 9 STRAIN RATE
NPT 1/2 SMDOTHING FRAME S1ZE
WORK(2,NX) WORK ARRAY FOR SMOOTHING
x(1) X AXIS WORK ARRAY
Y(I) SMDOTHED VARIABLE WORK ARRAY
P(I) WORK VECIOR
c(6) REGRESSION COEFFICIENTS
s(6) SCALING COEFFICIENTS
A(3) » "
B(3) ” ”

1/0 ASSIGNMENTS
FOR025 INPUT FILE, PER ADATA(I,NX) ABOVE
POR026 OUTPUT FILE, PER ADATA(I,NX) ABOVE
PROGRAM POLYS
INITIALIZE DATA

aaaQ aaoaaaaaoaaaaaoaaaaaaoaaaaaOOOaaaaaaQan

REAL ADATA(9,2000) ,WORK(2,2000),SSTRESS(2000),ZERO
CHARACTER®*20 INFILE,OUTFILE
DOUBLE PRECISION P(100),T(16),X(50),Y(50),C(6),5(6),A(3),B(3),

1 Z(4),RSQ
RSQ = 99.99D0

M = 2

FORMAT(15A)

READ DATA

aQaQn

PRINT *,"AHAT IS INPUT FILENAME? "
READ (*,5) INFILE

PRINT *,”INPUT 1/2 BIN SIZE »
READ (*,*) NPT

PRINT *,™AHAT IS INITIAL SAMPLE NUMBER? "
READ (*,*) NSAM1

PRINT *,"WHAT IS FINAL SAMPLE NIMBEFR? *
READ (*,*) NSAMR2

PRINT ®,™WHAT 1S OUTPUT FILENAME? *
READ (*,5) OUTFILE

OPEN (12,FILE="ERROR.LS")

OPEN (25,FILE=INFILE,RECFM='DS’)

READ (25,%) NX
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NSAM = 0
DO 101 - 1,XX

READ (25,*) (ADATA(J,I1),J=1,9)
IF ((Amm(x 1) .GE.NSAMI) .AND. (ADATA(1,1).LE.NSAM2)) THEN
NSAM = NSAM + 1

END IF
IF (ADATA(1,1).EQ.NSAM1) NBEG=I

CONT INUE
CLOSE (UNIT=25)

SETUP WORK ARRAY

NEND = NBEG + NSAM - 1
DO 20 1 = 1,NPT

WORK(1,1) = 2*ADATA(1,NBBEG)-ADATA(1,NBEG+NPT-1+1)
WORK(2,1) = 2%ADATA(4,NBEG)-ADATA( 4 ,NBEG+NPT-1+1)
WORK (2 ,NSAM+NPT+1) = 2*ADATA(4,NEND)-ADATA(4 ,NEND-1)
mg;{.}gmmﬂq) = 2%ADATA(1,NEND)-ADATA(1,NEND-1)

DO 30 I = 1,NSAM

WORK (1, I+NPT) = ADATA(1, I+NBEG-1)
WORK(2, I+NPT) = ADATA(4,1+NBEG-1)
CONTINUE

CURVE FIT

N = 2NPT + 1
DO 50 I = 1,NSAM

DO 40 J = 1, 2°*NPT+1

X(J) = DBLE(WORK(1,I+J-1))
Y(J) = DBLE(WORK(2,1+J-1))
CONTINUE

CALL RLFOTH(X,Y,N,RSQ,MD,ID,P,C,S,A,B,IER)
CALL RLDOPM(C,ID,A,B,T)
SSTRESS(I) = SNGL(C(1)+C(2)*ADATA(1 , I+NBEG-1)

1 +C(3)*ADATA(1, I+NBEG-1)%%2)

CONTINUE

OUTPUT RESULTS

OPEN (26,FILE=OUTFILE)
WRITE (26,*) NX

ZERO = 0.0

DO 601 = 1,NX

IF ((ADATA(1,1) LT NSAM1) OR, (ADATA(1,1).GT.NSAVR)) THEN

WRITE (26,*) (ADATA(J,1),J=1,5),ZERO, (ADATA(K,1) K=7,9)
ELSE
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WRITE (26,*) (ADATA(J,I),J=1,5),SSTRESS(I-NBEG+1),
1 (ADATA(K,1) ,K=7,9)
END IF

Cc
60 CONTINUE
C

CLOSE (26)
STOP
END
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HARDEN

HARDENING PROGRAM FOR JUMP TESTS
STUART BROWN 7-18-86

VARIABLES

NX

ADATA(I,NX)
ROW 1
ROW 2
ROW 3
ROW 4
ROW §
ROW 6
ROW 7
ROW 8
ROW 9

NPT
WORK(2,NX)
X(1)

Y(1)

P(1)

c(6)

s(6)

A(3)

B(3)

1/0 ASSIGNMENTS

NUMBER OF DATA POINTS
ORIGINAL DATA ARRAY

SAMPLE NUMBER
LOAD
DISPLACEMENT
STRESS

STRAIN
SMOOTHED STRESS
PLASTIC STRAIN
HARDENING
STRAIN RATE

1/2 SMOOTHING FRAME SIZE
VWORK ARRAY FOR SMODOTHING

X AXIS WORK ARRAY

SMOOTHED VARIABLE WORK ARRAY
VWORK VECTOR

REGRESSION COEFFICIENTS
SCéLIm CDEFI:ICIENTS

FOR025 INPUT FILE, PER ADATA(I,NX) ABOVE
FOR026 OQUTPUT FILE, PER ADATA(I,NX) ABOVE

PROGRAM POLYS

INITIALIZE DATA

REAL ADATA(9,2000),WORK(2,2000) ,HARDEN(2000),ZERO,E

CHARACTER*20 INFILE,OUTFILE

DOUBLE PRECISION P(100),T(16),X(50),Y(50),C(6),8(6),A(3),B(3),

1 Z(4),RSQ
RSQ ~ 99.99D0

MD = 2

FORMAT(15A)

PRINT *,"HAT 1S INPUT FILENAME?

READ (*,5) INFILE

READ DATA

PRINT *#,"”SHAT IS INITIAL SAMPLE NUMBER? "

READ (*,*) NSAM1

PRINT *,"SHAT IS FINAL SAMPLE NUMBER? "

READ (*,*) NSAM2
PRINT *,”ENTER 1/2 BIN SIZE
READ (%,%) NPT

PRINT *,"WHAT IS OUTPUT FILENAME?

READ (*,5) OUTFILE

PRINT *,”ENTER YOUNG'S MODULUS IN GPA "

READ (*,*) E
OPEN (12,FILE="ERROR.LS")
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OPEN (26 ,FILE="ZOUT’ ,RECFM="'DS’)
OPEN (25,FILE=INFILE,RECFM='DS’)
READ (25,*) NX

NSAM = 0

DO10 1 = 1,NX

READ (25,*) (ADATA(J,1),J=1,9)

ADATA(7,1) = ADATA(S,1) - ADATA(6,I)/(E*1000.)

IF ((ADATA(1,1).GE.NSAM1) .AND.(ADATA(1,1).LE.NSAM2)) THEN
NSAM = NSAM + 1
END IF

IF (ADATA(1,I).EQ.NSAM1) NBEG=I

COWTINUE
CLOSE (UNIT=25)

SETUP WORK ARRAY

NEND = NBEG + NSAM - 1
DO 20 I = 1,NPT

WORK(1,I) = ADATA(7,NBEG+I-NPT-1)

IF (WORK(1,I).LT.WORK(1,1-1)) WORK(1,I)=WORK(1,I-1)+.000001
WORK(2,1) = ADATA(6,NBEG+I-NPT-1)

WORK (2 ,NSAM#NPT+1) = 2*ADATA(6,NEND)-ADATA(6,NEND-1)

WORK ( éﬁgmmu ) = 2*ADATA(7,NEND)-ADATA(7,NEND-1)

CONTI

DO 30 I = 1,NSAM

WORK(1,I+NPT) = ADATA(7,I+NBEG-1)
IF (WORK(1,I+NPT).LT.WORK(1,I+NPT-1)) WORK(1,I+NPT) =
WORK(1, I+NPT-1)+.000001
WORK(2, I+NPT) = ADATA(6, I+NBEG-1)
CQONTINUE
DO 31 J = 1,NSAM+2*NPT
WRITE(26,*) WORK(1,J) ,WORK(2,])
CONTINUE
CLOSE(26)

CURVE FIT

N = 2*NPT + 1
DO 50 I = 1,NSAM

DO 40 J = 1, 2°*NPT+1

X(J) = DBLE(WORK(1,I+J-1))

Y(J) = DBLE(WORK(2,I+J-1))

CONTINUE
CALL RLFOTH(X,Y,N,RSQ,MD,ID,P,C,S,A,B, IER)
CALL RLDOPM(C,ID,A,B,T)

HARDEN(1) = SNGL(C(2)+2*C(3)*ADATA(7, I+NBEG-1))
CONTINUE

OUTPUT RESULTS
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OPEN (26,FILE=QUTFILE)
WRITE (26,*) NX
ZERO = 0.0
DO 60 I = 1,NX
IF ((ADATA(1,I).LT.NSAM1).0R.(ADATA(1,1).GT.NSAM2)) THEN
WRITE (26,*) (ADATA(J,1),J=1,7),ZERO,ADATA(9,])
ELSE
WRITE (26,*) (ADATA(J,1),J=1,7) ,HARDEN(I-NBEG+1),ADATA(9,1)
END IF
0 CONTINUE
CLOSE (26)

STOP
END

Qa0 O O O O O
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APPENDIX B

Material Parameter Determination Programs
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c
g QNON
c FIT OF HARDENING DATA BETWEEN SPECIFIED VALUES OF
g STRESS
c STUART BROWN 8-13-85
c
C VARIABLES
c
o NX NUMBER OF DATA POINTS
C ADATA(NX, 7) DATA ARRAY
c ROW 5§ SMDOTHED STRESS
c 6 HARDENING
c 7 PLASTIC STRAIN
c STRESS(NX) SMDOTHED STRESS
c STRAIN(NX) PLASTIC STRAIN
c SL LOWER STRESS DATA LIMIT FOR FIT
c SU UPPER STRESS DATA LIMIT FOR FIT
c Q.QD EXPONENT IN HARDENING LAW
C CHO C s HO
c SIGS,SIGSD SIGMA STAR
c SO SIGMA ZERO
g SOCALC SIGMA ZERO FROM FIRST DATA POINT

PROGRAM QNON
c EXTERNAL FITQ1,FITQ2

REAL ADATA(450,7) ,MAXSTRAIN

DOUBLE PRECISION Q,CHO,SIGS

DOUBLE PRECISION X(2),F(450),XJAC(450,2),XJTI(3),XY(450,2)

1 WORK(918) ,PARM(4),STRAIN(450) , STRESS(450) ,HARDEN(450)

DOUBLE PRECISION EPS,DELTA,SSQ, SU, SL, STSSUM, SOCALC

OOMWDN STRAIN, STRESS,XY,SIGS,Q,CHO

CHARACTER*20 FNAME, PNAME
(7: FORMAT(20A)
g INITIALIZE DATA
g ZXSSQ PARAMETERS

N=1

M=1

NSIG = 6

EPS = 0.0D0

DELTA = 0.0D0

MAXFN = 5000

JIOPT = 1

IXJAC = 450

Ni = 1
C
g READ STRESS RANGE

PRINT 10
10 FORMAT (® INPUT LOWER STRESS LIMIT FOR FIT *)

READ *,SL

WRITE (6,20)
20 FORMAT (' INPUT UPPER STRESS LIMIT FOR FIT )
c READ *%,5U
c READ DATA AND SET UP
c ZXSsQ FIT
c

176




G QOOQe

aaa aaan

36

40

55
60

PRINT *,”NAME OF DATA FILE ”
READ(*,7) FNAME

OPEN (25,FILE=FNAME,RECPM="'DS’)

READ(25,*) NX

PRINT *,”READING DATA”

DO 30 I = 1,MX

READ(25,*) (ADATA(I,J),J=1,7)
STRESS(I) = DBLE(ADATA(I,S))
STRAIN(I) = DBLE(ADATA(I,?7))
HARDEN(1) = DBLE(ADATA(I,6))
IF (STRESS(1).GT.SIGS) THEN

SIGS = STRESS(I)
MAXSTRAIN = STRAIN(I)
END IF

CONTINUE

SELECT DATA FOR FIT
DO 331« 1,NX

IF ((STRESS(1).GT.SL).AND.(STRESS(I).LT.SU).AND.
1 (STRAIN(I).LT.MAXSTRAIN)) THEN

XY(N1,1) = STRESS(I)
XY(N1,2) = HARDEN(I)
Nl = N1 +1

END IF

CONTINUE

Ni = N1 -1
CLOSE (UNIT=25)
PRINT *,”FINISHED READING DATA”

CALCULATE SIGS AND
TRANSFORM DATA

SIGS = SIGS + 1.0D-3

HARDENING FIT

WRITE (6,35)

FORMAT (' INPUT ESTIMATE OF CHO ")

READ *,X(1)

WRITE (6,36)

FORMAT (’ INPUT ESTIMATE OF Q ")

READ *,Q

PRINT *,”STARTING FIRST ZXSSQ"

CALL ZXSSQ(FITQ1,N1,M,NSIG,EPS,DELTA ,MAXFN, IOPT,PARM,X,
1 $SQ,F,XJAC, IXJAC,XJTJ ,WORK, INFER, IER)
PRINT *,"ZXSSQ FINISHED”

CHO = X(1)

VRITE(6,40) Q

FORMAT (' Q = * ,D10.5)

WRITE(6,50) SIGS

wymam (2 oo ’ en £\
ININYEAL \ VIV - 2AFAV e )

WRITE(6,55) CHO

FORMAT (* Q10 = °’,D10.5)
VRITE(6,60) IER

FORMAT (* IER = ',IS5)
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SET UP PLOT FILE
OF DATA VERSUS
FIT CURVE

PRINT *,”"NAME OF HARDENING PLOT FILE i
READ (*,7) PNAME

OPEN(UNIT=24,FILE=PNAME)

WRITE(24,%) NX

DO 100 I = 1,NX

HARD = REAL(CHO*(1.D0 - (STRESS(I)/SIGS))**Q)
STRESSR = REAL(STRESS(I))

WRITE (24,%) STRESSR,ADATA(I,6),HARD
CONTINUE

CLOSE(24)
SET UP FOR FIT FOR SO

PRINT *,”INPUT ESTIMATE OF SIGMA ZERO »
READ (*,s) X{1)

PRINT *,7ZXSSQ STARTING”

CALL ZXSSQ(FITQ2,NX,N,NSIG,EPS,DELTA ,MAXEN, IOPT,PARM,X,
1 $SQ, F,XJAC, IXJAC,XJTJ ,WORK, INFER, IER)

PRINT *,"ZXSSQ FINISHED”

WRITE(6,75) INFER,IER

FORMAT (* INFER = ',17,’ 1IER = ',I5)

VRITE(6,80) X(1)

FORMAT (* SO = *,D10.5)
SOCALC=SIGS-(SIGS-DBLE(ADATA(1,1)))

1 sDEXP(DBLE(ADATA(1,3))*CE0/SIGS)
WRITE(6,90) SOCALC

FORMAT (' SOCALC = ’,D10.5)

SET UP PLOT FILE
OF DATA VERSUS
FIT QURVE

PRINT *,”"NAME OF STRESS/STRAIN PLOT FILE ”
READ (*,7) PNAME

OPEN(UNIT=25, FILE=PNAME)

WRITE(2S5,*) NX

DO 120 1 = 1,NX

STRESSC = REAL(SIGS-((SIGS-X(1))**(1-Q)+
1 (Q-1)*CHO*STRAIN(I)/(SIGS**Q))**(1/(1-Q)))
STRAINR = REAL(STRAIN(I))
STRESSR = REAL(STRESS(I))
WRITE (25,*) STRAINR,STRESSR,STRESSC
CONTINUE

CLOSE(25)

STOP
END
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FITQ1
EVALUATION SUBROUTINE FOR QNON
STUART BROWN  8-14-85

SUBROUTINE FITQ1(X,NX,N,F)
DOUBLE PRECISION X(2),F(450),STRESS(450),STRAIN(450),S1GS,Q

aaaaaQa

1 ,XY(450,2),CHO
c COMVON  STRAIN, STRESS, XY, SIGS,Q,CHO
PRINT *,X
c
DO 10 I=1,NX
C
c F(I) = Xy(I,2) - X(1)*((1.D0-(XY(I,1)/SIGS))**Q)
10 CONTINUE
RETURN
END
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FITQ2
EVALUATION SUBROUTINE FOR QNON
STUART BROWN  8-14-85

SUBROUTINE FITQ2(X,NX,N,F)
DOUBLE PRECISION X(2),F(450),STRESS(450),STRAIN(450).SIGS,Q

C
C
C
C
C
C
Cc

1 ,XY(450,2),CH0
COMMDN STRAIN, STRESS, XY, SIGS,Q,CHO
3 C
PRINT *,X
2 C
: DO 10 I=1,NX
: c
F(I) = STRESS(I) - SIGS + ((SIGS-X(1))**(1-Q)
c + (Q-1)*CHO*STRAIN(I)/(S1GS**Q))**(1/(1-Q))
10 CONTINUE

RETURN
END

GRS b
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I1SOCON

DETERMINES MATERIAL CONSTANTS FOR CONSTANT
STATE DATA USING NONLINEAR, LEAST SQUARES, IMSL ROUTINE
ZXSSQ. (DOUBLE PRECISION VERSION)

STUART BROWN 4-4-86

VARIABLES

DATA(NX,6)
COLUMN 1

AUNEWN

TEMP(25)
RATEI(25)
RATEF(25)
CURVE(25)
STRESSF(25)
STRESS1(25)
Xx(3)

F(25)

N

NSIG

FILE ASSIGNMENTS

FOR02S
SUBROUTINES

FITISO
ZXSSQ

PROGRAM ISOCON

EXTERNAL FITISO

DATA FILE
TEST ID NUMBER
TEMPERATURE
INITIAL STRAIN RATE
FINAL STRAIN RATE
FINAL STRESS
INITIAL STRESS
TEMPERATURE (KELVIN)
INITIAL STRAIN RATE
FINAL STRAIN RATE
ID NUMBERS OF CURVES
STRESS IMMEDIATELY AFTER JUMP
STRESS IMMEDIATELY BEFORE JUMP
EQUATION PARAMETEKRS
RESIDUE FROM FIT
NUMBER OF PARAMETERS
SIGNIFICANT DIGITS REQUIRED FOR
PARAMETERS

INPUT FILE
USED IN ZXSSQ
FITTING ROUTINE

INITIALIZE DATA

DOUBLE PRECISION X(5),F(99),XJAC(99,5),XIJTJ(15),RATEI(99)
1 JWORK(238) , PARM(4) ,RATEF(99),STRESSF(99) ,TEMP(99) ,CURVE(99)

2 ,STRESSI(99)
REAL DATA(99,6)

DOUBLE PRECISION EPS,DELTA,SSQ,Q,A, STXI ,MP

CHARACTER®*20 INFILE

CQOMVON RATE! ,RATEF, TEMP, STRESSF,Q,A, STXI ,MP, STRESSI

N=2

NSIG = 8

EPS = 0.0D0
DELTA = 0.0D0
MAXFN = 5000
IOPT = 0
IXJAC = 99

FORMAT(20A)

READ DATA

PRINT *,”ENTER NAME OF DATA FILE: "

READ (*,6) INFILE
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OPEN (25,FILE=INFILE,RECRM="'DS’)
OPEN (12,FILE='"ERROR.LS')
READ(25,*

DO 101 = 1,NX

READ(25,*) (DATA(I,J),J=1,6)
RATEI(1) = DBLE(DATA(I,3))

STRESSF(1) = DBLE(DATA(I,S))
STRESSI(1) ~ DBLE(DATA(I,6))

TEMP(I) = DBLE(DATA(I, 2)) + 273.14D+0
RATEF(I) = DBLE(DATA(I,4))

CONTINUE

CLOSE (UNIT=25)
ESTIMATE (QONSTANTS

PRINT *,”INPUT ESTIMATE OF A-Q TERM : "
READ (*,*) X(1)
PRINT *,”INPUT ESTIMATE OF M : "
READ (*,*) X(2)

PERFORM FIT

cm_r. ZXSSQ(FITISO,NX,N,NSIG,EPS,DELTA ,MAXFN, 10PT, PARM, X,
$SQ,F, XJAC, IXJAC . XJT] JWORK, INFER, IER)

wmm (*,70) INFER IER

FORMAT (* INFER = °©,17,° IER = *,15)

WRITE (*,80) X(1)

FORMAT (* A/Q = ’,D12.5)

WRITE (*,81) X(2)

FORMAT (* M = ',D12.5)

PRINT *,(F(}),J=1,NX)

STOP

END
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FITISO
EVALUATION SUBROUTINE FOR ISOQON
STUART BROWN  4-4-86

SUBROUTINE FITISO(X,NX,N,F)

DOUBLE PRECISION X(5),F(99),RATEI(99),STRESSF(99),TEMP(99)
DOUBLE PRECISION ZI,ZF,ARGNUMER ,ARGDENOM,Q,A, STXI ,MP,RATEF(99),Al
DOUBLE PRECISION STRESSI(99),ARG1,ARG2

COMVON RATEI ,RATEF, TEMP, STRESSF,Q,A, STXI ,MP, STRESSI

PRINT *,X(1),X(2)
DO 10 I = 1,NX

ARGNUMER = X(1) * RATEF(I)*%X(2)

ARGDENOM = X(1) * RATEI(I)*»X(2)

ARG1 = DLOG( ARGNUMER + DSQRT( 1.0D0O + ARGNUMER*ARGNUMER ))
ARG2 = DLOG( ARGDENCM + DSQRT( 1.0D0 + ARGDENCOM*ARGDENCM ))
F(I) = {STRESSF(I)/STRESSI(I)) - (ARG1/ARG2)

CONTINUE

RETURN
END
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C
c SATOONS
C
C DETERMINES TWO  MATERIAL CONSTANTS FOR SATURATION
c STRESS DATA USING NONLINEAR, LEAST { UARES, IMSL ROUTINE
g ZXSSQ. (DOUBLE PRECISION VERSION)
g STUART BROWN 11-22-86
(c:: VARIABLES
c DATA(NX, 6) DATA FILE
C COLUMN 1 TEST ID NUMBER
C 2 TEMPERATURE
C 3 STRAIN RATE
C 4 C * HO
C 5 SIGMA STAR
C 6 SIGMA ZERO
C TEMP(25) TEMPERATURE (KELVIN)
C RATE(25) TEST STRAIN RATES
C SIGSTAR(2S) TEST SIGMA STARS
C CURVE(25) ID NUMBERS OF CURVES
C a0(25) C * HO VALUES
(o X(3) EQUATION PARAMETERS
c F(25) RESIDUE FROM FIT
C N NUMBER OF PARAMETERS
c NSIG SIGNIFICANT DIGITS REQUIRED FOR
g PARAMETERS
Cc FILE ASSIGNMENTS
c
C FOR025 INPUT FILE
C
Cc SUBROUTINES
C
C FITSAT USED IN ZXSSQ
C ZXSSQ FITTING ROUTINE
C
PROGRAM SATCONS
C INITIALIZE DATA
C

EXTERNAL FITSAT

DOUBLE PRECISION X(3),F(99),XJAC(99,3),XJTI{10)
1 JVORK(219),PARM(4) ,RATE(99),SIGSTAR(99) ,TEMP(99),CHO(99)
REAL DATA(99,6)

DOUBLE PRECISION EPS,DELTA,S5Q,Q,XI,PM,A
CHARACTER*20 INFILE

COMVDN RATE, SIGSTAR, TEMP,CGHD,Q,XI ,PM,A

N=3

NSIG = 6

EPS = 0.0D0

DELTA = 0.0D0

MAXFN = 5000

1I0PT = 0

IXJAC = 99

READ DATA

S eolele!]

"ENTER NAME OF DATA FILE: ”
6) INFILE
,FILE=INFILE,RECRM="DS")
,FILE='ERROR.LS’)
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READ(25,%) NX
DO 10 I = 1,NX

READ(25,*) (DATA(I,J),I=1,6)

RATE(I) = DBLE(DATA(I,3))

SIGSTAR(1) = DBLE(DATA(I,S))

TEMP(I) = DBLE(DATA(I,2)) + 273.14D+0
CHO(I) = DBLE(DATA(I,4))

CONTINUE

CLOSE (UNIT=25)
ESTIMATE CONSTANTS

PRINT *,”INPUT ESTIMATE OF STILDA: :
READ (*,*) X(1)

PRINT *,”INPUT ESTIMATE OF N : "
READ (*,*) X(2)

PRINT *,”INPUT ESTIMATE OF QDS : "
READ (*,*) X(3)

PRINT *,”INPUT VALUE OF XI "
READ (*,®) XI

PRINT *,”INPUT VALUE OF A »
READ (%,%) A

PRINT *,”INPUT VALUE OF M »
READ (*,®) PM

PRINT *,”INPUT VALUE OF Q »
READ (*,*) Q

PERFORM FIT

CALL ZXSSQ(FITSAT,NX,N,NSIG,EPS,DELTA ,MAXFN, IOPT, PARM, X,
$8Q,F,XJAC, IXJAC,XJTJ WORK, INFER, IER)

1
WRITE (*,70) INFER,IER

FORMAT (' INFER = ’,17,’ IER = ',I5)
WRITE (*,80) (X(I),I=1,3)
FORMAT (* STILDA = ',D12.5,/’' N = ',D12.4,

1 /’ = ’',D12.5)

PRINT *,(F(J),J=1,NX)
STOP
END
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FITSAT
EVALUATION SUBROUTINE FOR SATCONS
STUART BROWN  11-22-86
SUBROUTINE FITSAT(X,NX,N,F)
DOUBLE PRECISION X(3),F(99),RATE(99),SIGSTAR(99) ,TEMP(99),CHO(99)
DOUBLE PRECISION Q,XI,PM,A,ARG,C
COMMVDN RATE, SIGSTAR, TEMP,CHO,Q,XI,PM,A
PRINT *,X(1),X(2)

DO10 1 = 1,X

sIoleloiolele

Q

ARG = ((RATE(1)/A)*DEXP(Q/(8.314D-3*TEMP(1))))**MM
C = (1/XI)*DLOG(ARG + DSQRT(1+ARG*ARG))
F(1) = DLOG(SIGSTAR(I)) - DLOG(C*X(1)*((RATE(I)/A)*
1 DEXP(X(3)/(8.314D-3*TEMP(1))))**X(2))
10 CONTINUE

RETURN
END
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HOCALC
DETERMINES HO AND INITIAL STATE VALUES USING MATERIAL

CONSTANTS DETERMINED FROM SATCONS, AND ZERCON PROGRAMS.

STUART BROWN 12-13-85

VARIABLES
DATA(NX, 6) DATA FILE
COLUMN 1 TEST ID NUMBER
2 TEMPERATURE
3 STRAIN RATE
4 C * HO
5 SIGVMA STAR
6 SIGVMA ZERO
TEMP(99) TEMPERATURE (KELVIN)
RATE(99) TEST STRAIN RATES
SIGSTAR(99) TEST SIGMA STARS
CURVE(99) ID NUMBERS OF CURVES
an(99) C * HO VALUES
FILE ASSIGNMENTS
FOR025 INPUT FILE
FOR026 OUTPUT FILE

PROGRAM HOCALC
INITIALIZE DATA

REAL RATE(99),SIGSTAR(99),TEMP(99),CH0(99),SIGZERO(99)
REAL DATA(99,6),X,C(99),50(99),H0(99)

REAL ALPHA,A,Q,M,HOAVE,HOSIM

CHARACTER*20 INFILE,OUTFILE

INPUT CONSTANTS

PRINT *,”INPUT VALUE OF A s
READ (*,*) A

PRINT *,”INPUT VALUE OF ALPHA : ”
READ (*,*) ALPHA

PRINT *,”INPUT VALUE OF Q : o
READ (*,*) Q
PRINT *,”INPUT VALUE OF M s
READ (*,5) M
READ DATA
FORMAT(20A)

PRINT *,”ENTER NAME OF INPUT DATA FILE: "
READ (*,6) INFILE

OPEN (25,FILE=INFILE,RECRM="DS’)

PRINT *,”ENTER NAME OF OUTPUT DATA FILE: ”
READ (*,6) OUTFILE

ILE=OUTFILE ,RECFM="DS ")
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READ(25,*) (DATA(I,J),J=1,6)

RATE(I) = DATA(I,3)

SIGSTAR(I) = DATA(I,S)

TEMP(I) = DATA(I,2) + 273.14E+0

CHO(I) = DATA(I,4)

SIGZERO(I) = DATA(I,6)

X = (RATE(I)*EXP(Q/8.314E-3/TEMP(1))/A)**M

C(I) = (1/ALPHA)*ALOG(X+SQRT(1+X*X))

SO(I) = SIGZERO(1)/C(1)

HO(I) = CHO(I)/C(1)

HOSUM = HO(I) + HOSWM

WRITE (26,9) (DATA(I,J),J=1,6),50(1),C(1),H0o(1)
FORMAT(2F9.0,F6.3,4F10.4,F9.5,F9.0)

CONTINUE

CLOSE (UNIT=26)
CLOSE (UNIT=25) -

PERFORM FIT

HOAVE = HOSUM/NX

WRITE (*,70) HOAVE
FORMAT (’ HO = ',F9.3)
STOP

END
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ISOINT
INTEGRATION OF ISOTHERMAL, CONSTANT RATE TESTS
STUART BROWN  10-29-86

VARIABLE DESCRIPTION
CP STRESS/STATE PROPORTIONALITY
THOLD HOLD TIME
BMOD YOUNG'S MDDULUS IN MPA
TDUR DURATION OF TEST
RATE STRAIN RATE
N NMBER OF EQUATIONS
IND SUBROUTINE OPTION FLAG
'IN?JL LOCAL CONVERGENCE TOLERANCE
X TIME
Y(1) VALUE OF STATE VARIABLE
c(21)
IER
w(1,9)

PROGRAM ISOINT

EXTERNAL EVOL

REAL STRESS,STRAIN,THOLD,W(1,9),C(24),Y(1)
CHARACTER*20 OUTFILE, INFILE

QOMMON RATE, HO, SSTAR, P, A, SO, B, QR, SMD
FORMAT(A)

PRINT *,"ENTER INPUT FILENAME »
READ (*,5) INFILE
PRINT *, "ENTER OUTPUT FILENAME "
READ (*,5) OUTFILE

READ DATAFILE

OPEN(24,FI1LE=INFILE ,RECPM="DS’ , STATUS="0OLD’ )

READ (24,*) RATE1 STRAIN RATE ONE

READ (24,*) RATE2 STRAIN RATE TWO

READ (24,%*) SjUMP JUMP STRAIN

READ (24,*) TBEMP TEMPERATURE IN CELSIUS
READ (24,*) SFIN FINAL VALUE OF 5TRAIN

READ (24,*) NSTEPLD1 # STEPS IN LOADING PERIOD 1
READ (24,%*) NSTEPLD2 # STEPS IN LOADING PERIOD 2
READ (z4,*) Y(1) INITIAL VALUE OF S (MPA)

!

!

!

!

!

1

!

!
READ (24,*) BMOD ! YOUNGS MDDULUS (MPA)
READ (24,*) sMOD ! SHEAR MODULUS (MPA)
READ (24,%) XI ! STRESS/STATE SCALING
READ (24,*) Q ! RATE ACTIVATION ENERGY
READ (24,*) ™M ! RATE EXPONENT
READ (24,%*) AP ! PREEXPONENTJAL
READ (24,*) HO ! ATHERMAL HARDENING RATE
READ (24,*) A ! EXPONENT IN HARDENING LAW
READ (24,*) STILDE ! SATURATION SCALING
READ (24,*) EN ! SATURATION EXPONENT
READ (24,*) (s ! SATURATION ACTIVATION ENERGY
READ (24,*) B ! STATIC REC PREMULTIPLIER
READ (24,*) R ! RECOVERY ACTIVATION ENERGY
READ (24,*) P ! RECOVERY TERM EXPONENT
CLOSE (24)
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SO = Y(1)

ARG = ((RATE1/AP)*EXP(Q/((TEMP+273.16)*8.314E-3)))**RM

CP = (1./XI)*ALOG(ARG+SQRT(1.+ARG*ARG))

SSTAR=STILDE*( (RATE1/AP) *EXP(QDS/((TEMP+273.16)*8.314E-3)))**EN
TINT1 = SJUMP/RATE1

TINT2 = (SFIN-SJUMP)/RATE2

TLD! « TINT1/NSTEPLD1

TLD2 = TINT2/NSTEPLD2

OPEN(UNIT=25,FILE=OUTFILE)

WRITE (25,*) NSTEPLD1 + NSTEPLD2

INITIAL LOADING INTEGRATION LOOP

aaa

X = 0.0
RATE = RATElL
DO 100 I = 1, NSTEPLD1

N=1

TEND = X + TLD1

IND = 1

N =1

TOL = .0010

CALL DVERK(N,EWL,X,Y,TEND,TOL, IND,C,NW,W, IER)
STRESS = CP*Y(1)

STRAIN = ( STRESS / EMID ) +( X * RATE1 )
WRITE(25,*) STRAIN,STRESS,TEND,Y(1)

IF ((IND.LT.0).OR.(IER.GT.0.)) THEN

PRINT *,”IND = ”,IND,” AND IER = ",IER
GO TO 400

c END IF
(1:00 CONTINUE

X = 0.0

RATE = RATE2

ARG = ((RATE2/AP)*EXP(Q/((TEMP+273.16)*8.314E-3)))**EM

CP = (1./XI)*ALOG(ARG+SQRT(1.+ARG*ARG))

SSTAR=STILDE®* ((RATE2/AP) *EXP(QDS/((TEMP+273.16)*8.314E-3)))**EN
DO 200 I = 1, NSTEPLD2

o
Ne1
TEND =« X + TLD2
IND = 1 '
NV =1
TOL = .0010
CALL DVERK(N,EVOL,X,Y,TEND,TOL, IND,C,NW,W, IER)
STRESS = CP*Y(1)
STRAIN = ( STRESS / EMOD ) +( X * RATE2) + SJUMP
WRITE(25,*) STRAIN,STRESS,TEND+TINT1,Y(1)
IF ((IND.LT.0).OR.{IER.GT.0.)) THEN
PRINT *,”IND = *,IND,” AND iER = ",IER
c GO TO 400
END IF
o

200 CONTINUE
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CLOSE(25)
STOP
END
EVOL
EVALUATION SUBROUTINE FOR ISOINT
STUART BROWN 10-28-86
SUBROUTINE EVOL(N,X,Y,YPRIME)

REAL Y(N),YPRIME(N),THOLD
OOMVON RATE,HO, SSTAR, P,A, S0O,B,QR, SMOD

YPRIME(1) = HO * ((1-(Y(1)/SSTAR))**A) * RATE -
(B*(Y(1)/SMOD)**P) *SMOD*EXP( -QR/ ((TEMP+273.16)*8.314E-3))

RETURN
END
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RECINT
INTEGRATION OF RECOVERY TESTS
STUART BROWN  10-29-86

VARIABLE DESCRIPTION

CP STRESS/STATE PROPORTIONALITY
THOLD HOLD TIME
EMOD YOUNG'S MODULUS IN MPA
TDUR DURATION OF TEST
RATE STRAIN RATE
N NUMBER OF EQUATICNS
IND SUBROUTINE OPTION FLAG
'Ith LOCAL CONVERGENCE TOLERANCE
X TIME
Y(1) VALUE OF STATE VARIABLE
c(21)
IER
w(1,9)

PROGRAM RECINT

EXTERNAL EVOL

REAL STRESS,STRAIN,THOLD,W(1,9),C(24),Y(1)

CHARACTER*20 -OUTFILE, INFILE

OOMVON THOLD, RATE, HO, SSTAR, B, EMJ, TEMP, QR, P, THB, A, SO
FORMAT(A)

PRINT *,”ENTER INPUT FILENAME "
READ (*,5) INFILE
PRINT *,”ENTER OUTPUT FILENAME "
READ (*,5) OUTFILE

READ DATAFILE

OPEN(24,FILE~INFILE ,RECPM="'DS ', STATUS="'0OLD’ )

READ (24,%) RATE STRAIN RATE

READ (24,*) SHOLD HOLD STRAIN

READ (24,*) THOLD TIME HELD FOR RECOVERY

READ (24,*) SFIN FINAL VALUE OF STRAIN

READ (24,*) NSTEPLD1 # STEPS IN LOADING PERIOD
READ (24,*) NSTEPHD. # STEPS IN HOLD PERIOD

READ (24,*) NSTEPLD2 # STEPS IN RELOADING PERIOD
READ (24,*) Y(1) INITIAL VALUE OF S (MPA)
READ (24,*) BMD YOUNGS MODULUS (MPA)

READ (24,%) CP STATE/STRESS PROPORTIONALITY
READ (24,*) HO ATHERMAL HARDENING RATE

READ (24,*) A EXPONENT IN HARDENING LAW
READ (24,*) SSTAR SATURATION VALUE OF S

READ (24,*) B PREMULTIPLIER IN RECOVERY TERM
READ (24,*) BWU SHEAR MODULUS IN GPA

READ (24,*) R RECOVERY ACTIVATION ENERGY
READ (24,*) TBEMP TEMPERATURE IN KELVIN

READ (24,%) P REQOVERY TERM- EXPONENT

CLOSE (24)

s Gun GUr S S Gms Em S S Gmt Gmm S Su Gun s Gum S

S0 = Y(1)
THB = SHOLD/RATE
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TLD1l = THB/NSTEPLD1

TLD2 = (SFIN-SHOLD)/RATE

TLD21 = TLD2/NSTEPLD2

THDI « THOLD/NSTEPHD
OPEN(UNIT=25,FILE=QUTFILE)

WRITE (25,%*) NSTEPLD1+NSTEPHD+NSTEPLD2+1

INITIAL LOADING INTEGRATION LOOP

X=10.0

DO 100 I = 1, NSTEPLD1
Nwmil
TEND = X + TLD1I
IND = 1
NW e 1
TOL = .0010

CALL DVERK(N,EVOL,X,Y,TEND,TOL, IND,C,NW,W, IER)
STRESS = CP*Y(1)

STRAIN » ( STRESS / BMOD ) +( X * RATE )
WRITE(25,*) STRAIN,STRESS,TEND,Y(1)

IF ((IND.LT.0).OR.(IER.GT.0.)) THEN

PRINT *,”IND = ",IND,” AND IER = ”,IER
GO TO 400

END IF
CONTINUE
HOLD INTEGRATION LOOP

DO 200 I = 1, NSTEPHD

N=1

TEND = X + THDI

IND = 1

MW= 1

TOL = .001

CALL DVERK(N,EVOL,X,Y,TEND,TOL, IND,C,NW,W, IER)

STRESS = 0.0

STRAIN = THB * RATE

WRITE(25,*) STRAIN,STRESS,TEND,Y(1)

IF ((IND.LT.0).OR.(IER.GT.0.)) THEN

PRINT *,”IND = ",IND,” AND IER = ",IER
GO TO 400

END IF
CONTINUE
RELOADING INTEGRATION
STRESS = CP * Y(1)
STRAIN = (STRESS/EMOD) + (X-THOLD)*RATE
WRITE (25,*) STRAIN,STRESS,X,Y(1)
DO 300 I = 1, NSTEPLD2
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TeAD = X + TLD21
IND = 1

NW =1
TOL = .001

CALL DVERK(N,EVOL,X,Y,TEND,TOL, IND,C,NW,W, IER)

STRESS = CP * Y(1)

STRAIN = ( STRESS / EMOD ) + (X-THOLD) * RATE
WRITE(2S5,*) STRAIN,STRESS,TEND,Y(1)

IF ((IND.LT.0).OR.(IER.GT.0.)) THEN
PRINT ‘,”IND - ”.IND'” AND IER - ”'IER

GO TO 400
END IF
CONTINUE
CLOSE(25)
STOP
END
EVOL

EVALUATION SUBROUTINE FOR RECINT
STUART BROWN 10-28-86

SUBROUTINE EVOL(N,X,Y,YPRIME)
REAL Y(N),YPRIME(N),THOLD

COMVON THOLD, RATE,HO, SSTAR, B, MU, TEBMP,QR, P, THB, A, SO
IF ((X.LT.THB).OR.(X.GE.(THB+THOLD))) THEN

YPRIME(1) = HO * ((1-(Y(1)/SSTAR))**A) * RATE
- B*EXP(-QR/8.314E-3/TEMP)*EMU * (Y(1)/EMUJ)**P

ELSE
YPRIME(1)= -B*EXP(-QR/8.314E-3/TEMP)*EMJ*(Y(1)/EMU)**P

END IF




SUBROUTINE WMAT(STRESS, STATEV,DDSDDE, SSE, SPD, SCD, STRAN, DSTRAN,

1 TIME,DTIME, TEMP,DTEMP , PREDEF ,DPRED ,MATERL ,NDI ,NSHR ,NTENS,

2 NSTATV,PROPS,NPROPS,COORDS)
Cttttt‘8"t‘ttl‘ltt8‘t8‘tt‘tl“l‘ltt!ttttttttt‘t't‘t‘ttttttttttlttlll!z
C Isotropic Thermo-Elasto-Viscoplasticity with pressure sensitive
C plastic flow and plastic dilatancy.
Ctttlt't‘tlllttttttttlt“ttltlttttt‘t‘ttt‘ttt8'3‘3'8'ttttlltttlttlttttt
C This UMAT version interfaces with the *VISCO procedure in ABAQUS.

C Automatic timestep control is done using the CEMAX parameter. The

C timestep is decreased if CEMAX exceeds (‘ZEIOL.
Ctt!lt!lttttt‘lll‘tttll"ttttt‘ttttlttttttttttttttt‘ttttl#ttttttttt!ttt
C This WMAT version is not for use in plane stress or any other cases
C where more strain terms than stress terms are used.
Cttttt3tt333tttt!tll!tt‘t8“'tl3t8‘8tttt88ttttt‘t‘ttlttttl#tttttttttttt

C State Variables:

C STATEV(1) = § (plastic flow resistance,tensile,suggested
o units are N/m2)
C STATEV(2) = TH (temperature,suggested units are Deg.K)

C Two more are for debugging and plotting purposes.

C STATEV(3) = F {plutic shear strain rate)

C STATEV(4) = time integral of F  (plastic shear strain)
Cttttl‘8tt‘3‘3'8‘8“'t8“t‘ttttt‘3“8‘8‘33333“‘8“‘3“8383*‘888!*383&3
C Contents of PROPS vector in this version:

g 3 PROPS(J)

C1 PLSIMT -- limit on equiv. plastic tensile strain increment
C2 PHI -- degree of implicitness (ranges from 0 to 1)

C3 OMEGA -- fraction of plastic work going into adiabatic heating
C4 50 -- initial value for internal variable S

C5 TO -- initial value for temperature

C6 AMJ -- shear modulus

C7 ‘.APPA -- bulk modulus

C 8 ALPHA -- thermal expansion coefficient

C9 RHDO -- density )

C10 C -- specific heat

C 11 A -- pre-exponential factor in plastic shear strain rate
C 12 Q/R -- activation energy divided by universal gas constant
C 13 XP -- exponent in eqn for F (1./strain rate sensitivity)
C 14 PALPHA -- pressure sensitivity parameter

C 15 HO -- pre-mmltiplier in hardening rate equation

C 16 SB -- pre-multiplier for saturation value of §

C 17 AN -- exponent in equatior for saturation value of §

C18 B -- pre-mmltiplier for rate of static restoration

C 19 SA -- annealed value of S

C 20 P -- exponent in equation for RDOT

C The above list of properties is specific to the functions chosen for
C modeling one particular material. For other materials a different list
C may be desirable. For example, additional properties would be needed
C to define functions of temperature for the elastic constants and for
C the annealed value of interns]l variable S.
Cttttt8tttttttlttttt‘tttl§§8"lt"ttl‘ttl!t‘ltltttttlttttt8‘383:“3!!#‘
C See subroutines UMPROP, GAMDOT, and SDOT for suggested units for

C the above properties.
Ctttltt8“383t‘Clttt‘l3‘33333tttlltt‘tt“tltt‘lt8ttttttltltttltttttlttt
C The values input for SO,A,HO,SB,B,SA should correspond to tensile

C test data. These values are converted to equivalent shear values

C within the subroutines.
Clttttt883'3ttt.lll“‘t!tt“'l‘tt‘tttttttttttttlt“ttttttlttttlttt‘tttt
C The parameter PHI controls the degree of implicitness of the

C integration procedure.

C PHI=0.0 ---- explicit

Cc PHI=1,0 ---- fully implicit

C Suggested value of PHI: equal to or greater than 0.50
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Ctttlll“ll“t‘t'“‘ltl‘lt‘t‘lktt"ltttllt“tl“ttl“‘ttt“t‘tl!ttttltt

C The parameter C(MEGA controls whether the problem is isothermal or

C adiabatic.

C OMEGA=0.0 ---- isothermal

C OMEGA=1.0 ---- adiabatic

C Suggested value for fast deformations is 0.9
cttt‘l'"‘t‘lttt“ttl‘t“lttlltltt"tl‘l‘ﬁt:tlt‘tt““““ttttt“ttlttt

IMPLICIT REAL*8(A-H,0-Z)
Ctttt!.‘l“‘tlttt“t.?ttt“‘tl‘t.l“tll‘lt?t‘l'l“‘l‘llttt‘88"‘333“!3
C Common blocks CERROR and CONSTS appear here exactly as they exist in
C ABAQUS version 4-5-159. They will génerally be different for other
C ABAQUS versions.
Ctttt3‘33‘1'3“‘33“ttt“tttl#ttt‘tltttttt‘l:ttttttlttlttlttttttttttttt

QOMVON/CERROR/RESMAX(30) , INREMX(30) ,ERRMAX(2) ,CETOL,CSLIM,

1 CEMAX,PCTOL,TLIMIT,PSUBIN,RESMIN,DIMAX(30) , INDUMX(30) ,ERRPRE,
2 UDELSS, PTOL ,AMIOL ,DMKET ,IMRETL , S IGTOL , DS IGMX, UTOL , UMAX , UAMAX,
3 WAX, VAMAX , AMAX , AMAX , TMAX , EPPMAX , RMAX , R4MAX , NGOPEN , NGCLOS ,
4 ROTTOL,ROTFAC, JRIKND,NINOCS ,RIKUB,RIKUMX ,RIKMUJ,RIKLAM,RIKDLA,
5 RIKRO,RIKOLD,RIKIMX,QMAX,DUMAXP , STRRAT , PCUT ,RIKDLO
Cttttttttttlltttttttlltt‘8tt'ttt838“8“‘tttt‘ttt‘ttttttt‘383‘3333“3‘3
COMMON/CONSTS/P1,SIN60,00S60,KCROS2(3) ,KCROS3(3) ,ZERO, LZERO,LONE,,
1 ONE,TWO,HALF,ABIG,ASMALL,BCBIG,LOCSHR(2,3),THIRD, PRECIS ,BLANK
Ctttttttttt‘lt‘ttt8‘ttt‘t3"‘38“3“““‘338ttltt‘t‘tt!ttttttttttttttt'

DIMENSION STRESS(NTENS),STATEV(NSTATV) ,DDSDDE(NTENS,NTENS),

; smn(r(m)ZNs) ,DSTRAN(NTENS ) , PREDEF(1) ,DPRED(1) , PROPS (NPROPS ),
Ctttl!tltt“‘t‘gtttlttttt38‘3ttttt‘t‘ttt“tttlt'tttttttttttttttttl‘tttt

SQART3=TWO*SIN6O

NDIP1=NDI+1

PHIDT=PROPS(2) *DTIME

Ctttt‘8‘8‘3‘3“‘3‘88‘83““8“‘8‘1“333‘3"‘l"lCtttttltttttltttttttltt

C Initialize the state varjabtles, if necessary.
Cttttttt‘t.‘t‘lt"j‘83‘t‘"lltlttt“lt‘ttttttlttt:ttl8‘8'3‘88““8'383!
IF (STATEV(1).LE.ZERO) THEN
STATEV(1)=PROPS(4)/SQART3
STATEV(2 )=PROPS(5)
STATEV(4)=ZERO
END IF

ctttt‘33‘3‘8“833“‘t"!“'t“ttttt‘ttttttl8‘8333‘1t“ttt‘tt‘tt“lt’ttt

C Set the state variables.
C‘!tl888l8ttt38t"ttt3"‘3‘3‘3"tt‘“‘tt‘ttl‘tt‘ttttttttt“llatlttttttt

S=STATEV(1)

TH=STATEV(2)
C!tttl"‘tt‘t3ltt“lt““‘l‘tttl‘ltl"lt‘“t“‘tttt"“‘8““38388'31’.
C The parameter TAUTOL is the minimum value allowed for TAUB. This
C avoids difficulties that could arise when dividing by TAUB. The value
C used corresponds to a stress level at which F is considered
C negligible, while 1./TAUTOL**2 can still be evaluated.

Cll‘t3"!8"‘8‘3‘3'8"ll“t“““t‘lt“t'lttltl‘tl!!“tltttlltttllttttt

TAUTOL=S*1.D-6
Ctttttt““‘t‘tt!t’ttttt8ttt"t‘ttt‘t."88ltt‘tt"lt‘ltttttltttt!tttttt
C Subroutine UMPROP determines AMUJ,AKAPPA,ALPHA,RHD,and C based upon
C the temperature TH, using data supplied in PROPS. For the present
C case, the properties are assumed constant and input directly in PROPS.
C In other cases, additional data constants defining functions of TH for
C each property may be input.
Cttltlt“‘t'l““.“““"33‘8““"8‘8ttttttttttttgittltlttt‘tt‘tt“‘3

CALL UMPROP (AMU,AKAPPA,ALPHA,RHD,C,TH, PROPS,NPROPS)

Ct888!tl"3333'33'8"3'33333“33‘3’““C‘.‘ll‘l‘t"t"'lt'l'l"“‘tl"t

C Pressure PB and equivalent shear stress TAUB
Ctt:tt‘tlat‘ttltt!‘t"tt‘ttttlt'ltt‘llt‘t‘t‘tlttttttlt"‘ttt‘tttttttt‘t

CALL SINV (STRESS,SINV1,SINV2)
TAUB=IMAX1(SINV2/SQART3, TAUTOL)

197




PB=-SINVi
Cttttttttlttt“lttl"'lltlltttttltttttttltttttltttttttttlttttttttlttttt
C Subroutine SBETA determines the value of the plastic dilatancy
C factor BETA. Presently set to zero.
Ct8!1““".‘ttttttl‘C‘l““."‘t"l!lt‘ta‘ltlttttttt‘t'tttt‘tltt#tttlt

CALL SBETA (TAUB,PB,TH,S,BETA)
Ct!tt“33"3!““.'l‘l‘tlt“t“‘ll“'!‘t“t"ttl“t't“ttt‘ttttt‘tltttt

IF (PROPS(3).GT.ZERQO) THEN

CON1=PROPS(3)*(TAUB-BETA*PB)/(RHO*C)

ELSE

QON1=ZERO

END IF
Clt!t"l‘ttO‘t“‘l'lt'tttll"‘tltttt“t'Ott3!“‘38383“3383‘!#‘3“!lltt
C Subroutine GAMDOT determines the equivalent plastic shear strain rate
C F and its derivatives PDA,PDB,PDC,PDD with respect to TAUB,PB,TH,and
C S, respectively. To make the subsequent calculations more convenient,
C PDB,PDC, and PDD are returned as:

C RATIOB = PDB/PDA

C RATIOC = PDC/PDA

C RATIOD = PDD/PDA

C OON2 is returned for use in subroutine SDOT.
cxt'ltttt‘tttt‘“““8‘3‘83‘3‘8“'!33'3‘!“8“‘8838“8"“33833‘833tttt

CALL GAMDOT (TAUB,PB,TH,S,PROPS,NPROPS, SQART3,

1 F1,PDA,RATIOB,RATIOC,RATIOD,OON2)

AMUB=AMU*TAUB/ (TAUB+AMU*PHIDT*F1)
Ctl'l‘88“"t‘tttttt“tt‘tltt‘tt“‘t"t3“.83“83‘8“8830tttttttltttttt
C Subroutine SDOT determines the hardening rate H and the static
C restoration rate RDOT. SA, the annealed valué of S at this
C temperature, is also returned.
C8tt3tttttll‘t!tttt“‘ttttt“!33'!“‘33"88“‘38“88‘3‘38ttttt83t3$lllt

CALL SDOT(TAUB, PB,TH,S,AMJ,CON2, PROPS ,NPROPS, SQART3,F1,H,RDOT, SA)

DR=RDOT*DTIME
C‘3."3l‘tt‘Ct‘l.tt‘tt‘tt‘ttt!tl.l'tt‘t‘ttt“t't‘ltttl"33!8“8888‘8883

G=AMU- (RATIOB*AKAPPA*BETA+RATIOC*CON1+RATIOD*H)

V=PHIDT*PDA*G

V1=F1*DTIME/ (ONE+V)

V2=PHIDT*PDA/ (ONE+V)

C!ttlt‘3‘38‘3‘8“8“‘8“‘33"‘3'38"‘tt“".“‘!t“t‘tl‘3"3“8'338“‘3

C Trace of strain increment -- DVOL
C‘t't““"38‘l“t‘t‘3"38!88“8“8‘3“‘lt‘t“‘tll““‘tttlt!‘ttttl"“

DVOL=ZERO
DO 10 K1=1,NDI
10 DVOL=DVOL+DSTRAN(K1)

Cttt"“t““‘t“."’t‘t‘l‘l“lt‘t.““88“3‘3‘3‘83‘3‘&83tt‘tttt“““3

C Convert stress to deviatoric stress.
Cttt83‘33‘l3“3‘3"‘303‘ltt"!ttttl‘tt3‘“‘ttttlttttt‘ttttttt‘ttt!tt‘lt
DO 20 K1=1,NDI
20 STRESS(K1)=STRESS(K1)+PB

Ct‘t38‘.‘““‘“t‘l‘l‘l“t‘t““tl‘l‘8““““‘83‘88“3“‘3“3‘ttttt"t

C Deviatoric stress times strain increment -- SDSI
C!ltttl“t“t‘.t.t.tttlt“ttlttttt““‘ttttt‘ttttttttt‘ltt‘tttttttt3‘!!

SDSi=ZERO

DO 30 K1i=1,NTENS

30 SDSI=SDSI+STRESS(K1)*DSTRAN(K1)

Cttt3388"'tttt3‘.3'8‘t‘t‘ttt‘ttltlttt“.ttttttttt“l“"tt‘tttttttt“t
C Effective plastic shea: strain increment.
Ctt33ttttt333tl3“8“8‘ttttttt‘t“t.“tl‘O“t‘tt‘t‘tttttttttttttttttttt

DGAMPRAY14V2# (AMETSSDST /TAUR-AKAPPA SRATIORSTRYNA, )
Ctt33‘tttlO‘ttt‘tt‘ttltttttt“'t‘t‘tt‘tt‘tktttttttttttttttttttttgtttttt
C Increments DS and DTH.
ctttttt‘ttt3‘tttttttt.ttttt'ttt“lt“tt‘tlt‘tttt'tltttlttttttttttllttlt

DS=H*DGAMPB-DR

DTH=(OON1 *DGAMPB
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Ct3'l“‘lltall“l‘ll“lit‘l“l‘t‘t‘ll“ttt‘t‘t‘!tttt‘tt3$‘tttt‘t'tkltlt

C Constants for Jacobian and stress increment.
Ctt:tlﬂtt‘ttt‘lttttt“'33‘!33t‘lt‘tttll8l83t!3lttt3338‘#33'3‘!38333‘333

V3=TWO*AMUB

V11=AKAPPA-TWO*THIRD*AMJUB

V4=V11*DVOL

V5=AKAPPA*ALPHA*DTH/THIRD

V6=AKAPPA*BETA *DGAMPB

V7=V4-V5-V6

V8=AMJ*DGAMPB/TAUB - (AMU-AMUB } *SDS 1 /TAUB**2

V9=AMUB

V12=(V2*AMU**2+AMUB-AMJ) /TAUB**2

V13=-V2*AKAPPA*RATIOB*AMU/TAUB

V14=V23AKAPPA* (AMU/TAUB) * (BETA+CON1 *ALPHA/THIRD)

V15=-V2*AKAPPA* *2*RATIOB* (BETA+CON1*ALPHA/THIRD)

V16=wV11-V15§
Cttttttttll“ttt‘t83"llt‘ttttt‘tt“tll8“‘33338‘3“3“81“‘833!83!333#
C Calculate the Jacobian, whick is nonsymmetric unless Vi3=V14. This
C is generally true only if QMEGA=0, BETA=0O, and PDB=0. Otherwise.

C ABAQUS will use only the symmetric part of the Jacobian unless an
C unsymmetric Jacobian has been called for on the title card.
C Note that STRESS used here is the deviatoric stress.
Cltttttttt"tt't‘tttt‘tt‘tl‘l.“tt"3l‘tt)‘ttttttlt‘tt3383“‘8‘38‘3‘8&!
DO 40 K11 ,NTENS
DO 40-K2=1,NTENS
40 DDSDDE(K1,K2)=-V12*STRESS(K1)*STRESS(K2)

DO 50 K1=1,NDI

DO S0 K2=1,NTENS

DDSDDE(K1,K2 )=DDSDDE (K1 ,K2 ) -V14*STRESS (K2)

50 DDSDDE(K2,K1)=DDSDDE(K2,K1)-V13*STRESS(K2)

DO 60°Ki=1,NDI

DDSDDE(K1,K1)=DDSIDE(K1,K1)+V3

DO 60 K2=1,NDI

60 DDSDDE(K1,K2)=DDSDDE(K1,K2)+V16
IF (NSHR.GT.0) THEN
DO 70 Ki=NDIP1,NTENS
70 DDSDDE(K1,K1)=DDSDDE(K1,K1)+V9
Cltt‘l§§et£§3ttt‘ttlt.l‘t"l‘ttltt‘88t‘tttt!t8tlttt“l‘tttttttttltllttt
C Calculate complete STRESS at the end of the increment using the
C deviatoric stress at the beginning of the increment.
Ctt83!3‘83‘tt"ltt“ttt‘tltttl‘33!'333“!‘8!“3‘8“tttt!tt‘ttttt!ttl!:t
DO 80 K1=1,NDI
80 STRESS(K1)=(ONE-V8)*STRESS(K1)+V3*DSTRAN(K1)+V7-PB
IF (NSHR.GT.0) THEN
DO 90 K1=NDIP1,NTENS
90 STRE?IS?(KI)-(G{E-VB)‘S'I‘RESS(KI )+V9*DSTRAN(K1)
END

Ctttl‘3““3‘““‘l“‘.‘t“""tl“tt‘3‘tt"3"'ttll"tttttt‘ttt"“tlt

C Update the state variables.
Cttl8t8‘ltt‘!j"lttt“‘tttttll‘t‘ltttltttltttttttttttttttlt‘ttttttttttt

CALL SINV (STRESS,SINVi,SINV2)

TAUB=IMAX1(SINV2/SQART3, TAUTOL)

PB=-SINV1

TH=TH+DTH-

S=S+DS

IF (S.LT.SA) S=SA

CALL GAMDOT (TAUB,PB,TH,S,PROPS,NPROPS, SQART3,

1 F2,PDA,RATIOB,RATIOC,RATIOD,00ON2)

STATEV(1)=8

STATEV(2)=TH

STATEV(3)=F2

STATEV(4 )=STATEV(4)+DGAMPB




Ct‘8tt83"“"'lll‘t!8l‘l38‘3!8l“3‘t8‘!"33tlt‘t“ttttttttt!tttttttttt

C Comparison of the plastic strain rates before and after the time
C increment. To be used by the automatic integration scheme of ABAQUS.
C Note that the factor SQART3 is used to convert shear strain to
C tensile strain,
Cttttt““t“8“ltlt83‘ttttltt““tttttlt“tttttttt“t‘tttt‘l‘tttt‘tttt

DIFF=DTIME*DABS (F1-F2)/SQART3

CEMAX=-IMAX 1 (CEMAX, DIFF)
Clttt3‘3‘..3‘““‘3"“‘3‘3"‘3‘l‘lt‘t"3383!8‘8‘3(“!3‘3'33‘8'33!3‘!“
C Check magnitude of plastic strain increment against a reference level.
C This allows the automatic timestep control in ABAQUS to limit the size
C of the plastic strain increment using the variable CEMAX.
Ctttttltttt!‘t'ltttl‘tt‘tlttlt3“33!‘!t‘tltttltttlttlttttttttltt#ltlttt

PLSLMI'=PROPS( 1) *SQART3

IF (PLSIMT.GT.ZERO) THEN

PLSCHK=(DGAMPB/PLSIMT ) *CETOL

CEMAX=-IMAX1 (CEMAX,, PLSCHK)

END IF

RETURN

END

C‘tt3‘t“l‘l'tt"13338838Btlttt!‘tltﬂl“lt‘tttttttttttt‘ttt#!t‘tttt‘tt3

ctltlltlltt883l"tt““l“"lt‘83"8!33‘3“3ttttttttttttlt:t3!#8*‘88‘83

SUBROUTINE UMPROP (AMU,AKAPPA,ALPHA,RHD,C,TH, PROPS,NPROPS)
Cttttl'8"""38‘.‘3‘t“8lt8tltttttt‘ttttttt;tttttt!8;83833833“8‘tttt#
C Determine the following constants for the material:

C AMJ ---- shear modulus (suggested uuits: N/m2)

C AKAPPA - bulk modulus (suggested units: N/m2)

C ALPHA -- thermal expansion coefficient (suggested units: 1/Deg.K)

C RHO ---- mass density (suggested units: kg/m3)

CC ------ specific heat (suggested units: Joules/kg/Deg.K)

C In general, these properties are functions of temperature, but in

C the present case they are input directly, assuming no temperature

C dependence. Additional entries in PROPS could be used to define them
C as functions of temperature, )
C!3!t‘tttt"‘l‘8“!"“tttt“‘38333'38.“8‘!‘88“’3“‘83ttl!3‘888!8’!88

IMPLICIT REAL*8(A-H,0-Z)

Ctttltlt‘ltl""ltt'.l!‘lltt‘l‘l3"ttttSltttttttttttttttttltttlttttt!tl

DIMENSION PROPS(NPROPS)
Ct:ttttttt“tttttttt‘tttttl3"3'tttt338‘8‘388lttttttt;tttttt!tl:ttttttt

AMU=PROPS(6)

AKAPPA=PROPS(7)

ALPHA=PROPS(8)

RHO=PROPS(9)

C=PROPS(10)

C‘tltt"“““'"8“‘3"ltt‘t'l“t"‘8l““‘l‘ttl‘tt“tltttttttttlttt‘t

RETURN

Ctlt‘38“.“‘"'8‘3'33“““t‘t““‘l“‘t‘tttltttt‘33’8‘33‘3‘83‘3'1‘3"

Cttt"““‘l‘8“t“‘t‘t't‘tt"t‘t‘t"8“3"3“833‘883‘3.“3‘3"!"83‘83

SUBROUTINE SBETA (TAUB,PB,TH,S,BETA)

C!ttll‘tl“"“‘l“ltt"‘tt"“l‘“'38ll““'33“33"t‘ltttt‘tttttttt“

C Subroutine SBETA determines the plastic dilatancy factor.
Cttltt!ttl“tttttttlt‘tttttttttttttttlttt‘ttttttltttttttttttttltttttttt

IMPLICIT REAL*8(A-H,0-Z)

Ctttttlt‘t‘l“t““l‘t“‘l‘.“tl3'88'(813‘3'3338““8‘8"8ttttttt"tl“

BETA=0.0D+0

Ctt8‘!‘l‘3““"l‘t"t“tlt‘ltl"33333“‘338tttttttltttt‘tttttlltttlt't

RETURN

Cttllltt““t"tt"“tltl‘ttt".‘C‘333“‘33‘33338'8833383"Cttttttt'tlt
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Cttt!t‘ll!t“'l'tt"ll"t33‘lltt‘tt‘ttttt‘t"“lt'ltll‘l‘!ttttt333‘88!3

SUBROUTINE GAMDO!" (TAUB,PB,TH,S,PROPS,NPROPS, SQART3,

1 F,PDA,RATIOB,RATIOC,RATIOD,CON2)
Cttlltt‘t‘ltt“tt“ltlttt8tttt3818tt883ttttlttttt“ttltttttt‘tttttttttt
C Subroutine GAMDOT determines the equivalent plastic shear strain rate
C and its derivatives PDA,PDB,PDC,PDD with respect to TAUB,PB,TH,and S,
C respectively. Note that the following derivative terms are returned:
Cc RATIOB = PDB/PDA
C RATIOC = PDC/PDA
C RATIOD = PDD/PDA

C!lt‘3‘8‘8!3333““8‘8‘3““."3tttlt333"88“8‘8‘#“3‘33“81‘8883‘38‘t

IMPLICIT REAL*8(A-H,0-Z)
Crta s RS AR RE SR RN E SN NN SRS S RIS RS RNSRSSRESSRERSERERERERS
COMMON/QONSTS/P1,SIN60,00S60 ,KCROS2(3) ,KCROS3(3) ,ZERO, LZERO, LONE,
1 ONE,TWO,HALF,ABIG,ASMALL,BCBIG,LOCSHR(2,3),THIRD,PRECIS ,BLANK

Ct3“'3‘8““"888“3““3“‘33“"t't33‘88ttl‘tt33‘8‘88“3!333“‘833‘3

DIMENSION PROPS(NPROPS)
Ct8tlttttttt!t88!3‘3“33"“‘38‘tttt'llltttltttttttt338‘:88388‘!‘!‘3‘8‘
C Material parameters defining the equivalent plastic shear strain rate
C PROPS(11)=A --- pre-exponential factor
C suggested units are: 1,/sec
C PROPS(12)=Q/R --- activation energy divided by universal gas constant

suggested units for Q are: kJ/mol
suggested units for R are: 8.314D-3 kJ/mol/Deg.K
PROPS(13)=1./AM -- 1./strain rate sensitivity
PROPS(14)=PALPHA -- pressure sensitivity parameter
suggested units are: 1/(N/m2)
Note:  PALPHA=2*(IMU/DPB)/MJ0 , with
MJO -- shear modulus at zero pressure
IMU/DPB -- pressure dependency of shear modulus
XE2EEEESEESISLXSASESELEEEREEELSESEIEEEESEEEATESEEEEXLSEERTELELLEEEERES
AL = 3.250D0
CON2=SQART3*PROPS(11)*DEXP(-PROPS(12)/TH)

Ct‘t‘ttltt"tt‘tll‘l‘tt““"8‘3333‘3t‘t!tt.!t‘ttt!ttt““"“tlt‘ll‘tt

F=CON2* (DS INH(TAUB*AL/ (S* (ONE+PROPS(14)*PB))))**PROPS(13)
Clttt"ttl‘t!tl“ttl'38“"‘3“‘3““.‘t‘lttt‘ttttttlttttt‘tltt!ttttt‘t
C Note that a tolerance was set on the minimum value of TAUB allowed,
C to avoid calculational difficulties.
Cllt3tlt3‘tll‘38tltll8"8“‘3"‘tt'ttttt]ttlttltltttt‘t““ttl‘tttttttt

SP = S*(ONE+PROPS(14)*PB) .

PDA=F*PROPS(13) *DOOSH(TAUB*AL/SP) *AL/DS INH(TAUB*AL/SP)/SP

RATIOB=0.0

RATIOC=PROPS(12)*S*DTANH(TAUB*AL/S)7 (AL*PROPS(13)*TH**2)

RATIOD=-TAUB/S

Clt83““'8"8‘!tl‘lt"“"t"“l‘t““tt“tttt‘tt‘tttt“‘tt‘ttt‘tt‘ttl

RETURN

C!tlttt“l"lt“‘tl““t‘.““""t"t‘t"8“"8‘83‘3‘3’333"“8‘8“3"

aQaaaaaaan

Cttltt‘ttltt“““l"“"3“"'3“‘!“‘3"‘3““‘ttttt‘t‘t““‘ll‘lt“t

SUBROUTINE SDOT (TAUB,PB,TH,S,AMJ,CON2,PROPS,NPROPS, SQART3,F,

1 H,RDOT, SA)
Ct‘33‘8‘“‘ll"‘lltt‘tt‘tt.tlt““tttttt‘t‘ttttlt‘tttltttttt‘l!“tttt‘t
C This subroutine determines the hardening rate H and the static
C 1estoration rate RDOT.
Ct8*‘t‘t‘t'.tt“““‘lt"tl‘O“83‘3"“!!“‘383"'!8‘tttt‘ttt‘ttttt‘t&‘

IMPLICIT REAL*8(A-H,0-Z)
Cttttttt8tttlOtttltt.tt‘tttt‘ttttttt‘ttt}ttttttttlttttttttttttttttttttt
OOMMON/CONSTS/P1,SIN60,00860 ,KCROS2(3) , KCROS3(3) ,ZERO,LZERO,LONE,
1 ONE,TWO,HALF,ABIG,ASMALL,BCBIG,LOCSHR(2, 3) ,THIRD, PRECIS , BLANK

Clt‘tttt‘t!l"l"3"l‘l"l‘““8““3“3'.““8“8‘.‘833!333'3’3“!!“‘

DIMENSION PROPS(NPROPS)

C!!ttt‘t“““l.""“lt‘l“l‘l3"38‘3!‘3“'8‘"tt‘tttt‘t‘ttt‘t‘ltttlll
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CMaterial parameters determining the rate of hardening:

C PROPS(15)=HO -- pre-multiplier in hardening rate equation

C suggested units: N/m2

Cc PROPS%16)-SB -- pre-multiplier for saturation value of §

C suggested units: N/m2

C PROPS(17)=AN -- exponent in eqn. for saturation value of §

C PROPS(18)wB --- pre-multiplier for rate of static restoration

C suggested units: N/m2

C PROPS(19)=SA -- annealed value of S.

C suggested units: N/m2

C PROPS(20)=P --- exponent of ((S/SA)-1.) in RDOT

C The following constant was calculated in GAMDOT.

C OON2 = A*DEXP( -Q/(R*TH) )

C Note that HO,SB,B, and SA should be from tensile test data because
C a conversion to pure shear data is done in this subroutine.
C‘t33t38‘ttlt3338‘3‘8“‘3"“tttttttt‘t‘8."‘3tt!tttttttt‘ttt!tttt!tttt

C First calculate H.
Ctttltlttttttlt"l‘lt‘t8‘883"““8‘3‘3‘3!"3‘#ltt‘ttt‘ttttttt#ttt#t*#&

SS=(PROPS(16)/SQART3)*(F/CON2)**PROPS(17)

IF (S.LE.SS) THEN

H=THIRD*PROPS(15)*(ONE-S/8S)**1.5D0

ELSE

H=ZERO

END IF
Ct3"t"ttttlttttttl8ttttt't"tttttt‘lt‘3.“83“'t‘ttttttttt#ttttt‘lttt
C Determine the annealed value of S. Although in general it is a
C function of temperature, in the present version it is input directly
C and considered constant.
Ctttlt“‘tt'ttt‘llttltl8‘!Qtlt“‘ttt“‘tttt‘t“t‘tl‘3‘3“3"“3"#833*!

SA=PROPS(19)/SQART3-

C"83ttt‘3'3“83‘8“33'88"83‘33“‘t“t‘t‘t‘l““‘ttt38‘13‘!‘3"33*18!!

C Calculate RDOT.
Ct38ttt“‘ttttt‘tt‘l“3tttt‘tt‘t““‘t.‘t“ltt‘tttttttt‘tt‘ttttll‘llttt
SD=(S/SA)-ONE
IF (SD.GT.ZERO) THEN
RDOT=AMU*THIRD*PROPS (18 ) *CON2*SD**PROPS(20)
ELSE
RDOT=ZERO
END IF
Ctt3338383388t‘8t8ttttttl"lt‘ﬂ’t‘tltt‘ttltl“t‘ttttttttttttltttt#ltttt
RETURN
END



APPENDIX D

ABAQUS input files
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*HEADING
LOAD BOUNDARY CONDITIONS - 20000 N

:

B b Nt HAWN - »

3,2,1.,4,2,-1.

*MATERIAL

*USER MATERIAL,CONSTANTS=20

.01D0 ,0.75D0 ,0.D0 , 60.0D6 ,1073.14DO ,32.0D9 ,1.59D11 ,16.6D-6
7.3D3  ,0.44D3,6.346D11,3.7569D4 ,5.1125D0 ,0.0D0 ,3774.D6 ,125.1D6
.06869D0,0.0D0 , 60.0D6,1.0D0

*DEPVAR

4

*AMPLITUDE ,VALUE=A , TIME=V , NAME~-TOPLOAD

0., 0., 10., -20000, 20. , -20000, 30. , O.
*STEP , NLGEQM, AMP=RAMP , INC=1500 , CYCLE=6 , SUBVAX
*VISCO, PTOL=1.0,CETOL=1. 0E- 5

0.0001,30.0,, .06

*CLOAD , AMPLITUDE=TOPLOAD

4,2,10

*EL FILE,FREQ=1

2,1

2,1,1

*EL PRINT, FREQ=1000

2,1

2.1,1
*NODE PRINT, FREQ=1000

*PRINT , RESIDUAL=NO, FREQ=100
*END STEP
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*HEADING
ALUMINWM GRADIENT SPECIMEN

s NEUTRAL FILE GENEPATED ON: 26-MAR-86 09:38:09 PATRAN VERSION: 1.63

** SUMMARY DATA:
b 52 NODES, 36 ELEMENTS, O MATERIALS,
*NODE, NSET=CF0000

1 0.0 0.0
4 0.01270 0.0
49 0.0 0.04041

52 0.00374 0.04041
*NGEN,NSET=LSIDE
1,49,4
*NGEN,NSET=RSIDE
4,52,4
*NGEN
1,4,1
5,8,1
9,12,1
13,16,1
17,20,1
21,24,1
25,28,1
29,32,1
33,36,1
37,40,1
41,44,1
45,48,1
49,52,1
*NSET ,NSET=TOP
49,50,51,52
*ELEMENT, TYPE=CAX4H
1, 1, 2, 6, S
*ELGEN
1,3,1,1,12,4,3
*BOUNDAR

Y

1 1 2 .000E+00

2 2 -000E+00

3 2 .000E+00

4 2 .000E+00

s 1 .000E+00

9 1 .000E+00

13 1 .000E+00

17 1 .000E+00

21 1 .000E+00

25 1 .000E+00

29 1 .000E+00

33 1 .000E+00

37 1 .000E+00

a1 .000E+00

45 1 .000E+00

49 1 .000E+00
*EQUATION

2

52,2,1.,49,2,-1.
2
51,2,1.,49,2,-1,
2
50,2,1.,49,2,-1.

*MATERIAL
*USER MATERIAL, QONSTANTS=20

0 PHYSICAL PROPERTIES

.01D0, 0.75D0 ,0.DO , 35.0D6 , 573.16D0 ,25.0D9 ,0.70D11 ,22.0D-6

2.753 ,1.00D3 ,1.906D7 ,2.1086D4 ,4.2831D0
.07049D0,0.0D0 , 35.0D6 ,1.0D0
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*DEPVAR
4
*pPLOT
*DRAW
*STEP ,NLGEQM,AMP=RAMP , INC=1 ,CYCLE=6 , SUBMAX
*VISCO,PTOL=1.0,CETOL=1,.E-4
0.0000065,0.0000065,0.0000065
*BOUNDARY
mp ’ 2 » ‘0 -00000001
*NODE PRINT
*PRINT,RESIDUAL=NO
*END STEP
*RESTART ,WRITE, FREQ=300
*STEP, NLGEQM, AMP=RAMP,INC=300,CYCLE=6,SUBMAX
*VISQ),PTOL=5.0, CETOL=1.0E-4
6.001, 8.0,,.08
*BOUNDARY
T0P,2,,-0.0080
*EL FILE,FREQ=49

2 2 1 1

2 2 1 1

2 2 2 2
*NODE FILE,FREQ=49

2 1 1 1 1 2
*EL PRINT,DEPVAR, FREQ=49
2,1
2,1,1
*NODE PRINT,FREQ=49
*PRINT,RESIDUAL=NO
E X4

*PLOT , FREQ=49
*DISPLACED
1,1.0
*CONTOUR

L 2 J

9,10
s

PLOTTING SECTION

VON MISES STRESS
INTERNAL VARIABLE

81,10
*END STEP
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DISTRIBUTION LIST

No. of
Copies To

Office of the Under Secretary of Defense for Research and Engineering,
The Pentagon, Washington, DC 20301

Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue,
Alexandria, VA 22333-0001
ATTN: AMCLD

Commander, U.S. Army Laboratory Command, 2800 Powder Mill Road, Adelphi,
MD 20783-1145
ATTN: AMSLC-IM-TL

Commander, Defense Technical Information Center, Cameron Station,
Building 5, 5010 Duke Street, Alexandria, VA 22304-6145
ATTN: DTIC-FDAC

Metals and Ceramics Information Center, Battelle Columbus Laboratories,
505 King Avenue, Columbus, OH 43201

Commander, Army Research Office, P.0. Box 12211, Research Triangle Park,
NC 27709-2211
ATTN: Information Processing Office

Commander, U.S. Army Electronics Technology and Devices Laboratory,
Fort Monmouth, NJ 07703-5000
ATTN: SLCET-DT

Commander U.S. Army Missile Command, Redstone Arsenal, AL 35898-5247
ATTN: AMSMI-RD-ST
Technical Library

Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ
07801
ATTN: SMCAR-TDC

Commander, U.S. Aray Natick Research, Development and Engineering Center,
Natick, MA 01760
ATTN: Technical Library

Commander, U.S. Army Tank-Automotive Command, Warren, MI 48397-5000
ATTN: AMSTA-R

Commander, U.S. Army Engineer Waterways Experiment Station, P.0. Box 631,
Vicksburg, MS 39180
ATTN: Research Center Library

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground,
MD 21005
ATTN: SLCBR-DD-T (STINFO)




No. of
Copies To

— et

Director, Benet Weapons Laboratory, LCWSL, USA AMCCOM, Watervliet, NY
12189
ATTN: AMSMC-LCB-TL

Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street
N.E., Charlottesville, VA 22901-5396
ATTN: AIAST-RA-ST

Director, Eustis Directorate, U.S. Army Air Mobility Research and
Development Laboratory, Fort Eustis, VA 23604-5577
ATTN: SAVDL-E-MOS (AVSCOM)

Director, Langley Directorate, U.S. Army Air Mobility Research and
Development Laboratory, NASA-Langley Research Center, Hampton, VA 23665
ATTN: Aerostructures Directorate

Naval Research Laboratory, Washington, DC 20375
ATTN: Code 6830

Office of Naval Research, 800 North Quincy Street, Arlington, VA
22217-5000
ATTN: Mechanics Division, Code 1132-SM

Naval Air Development Center, Warminster, PA 18974-5000
ATTN: Code 6064
AVCSTD/6043

U.S. Navy David Taylor Research Center, Bethesda, MD 20084
ATTN: Code 172

U.S. Air Force Office of Scientific Research, Bolling Air Force Base,
Washington, DC 20332
ATIN: Mechanics Division

Commander, U.S. Air Force Materials Laboratory, Wright-Patterson Air Force
Base, OH 45433
ATTN: AFWAL/MLLN

National Aeronautics and Space Administration, Marshall Space Flight
Center, Huntsville, AL 35812
ATTN: EHO1, Dir, M&P Lab

Committee on Marine Structures, Marine Board, National Research Council,
2101 Constitution Avenue, N.W., Washington, DC 20418

Director, U.S. Army Materials Technology Laboratory, Watertown, MA
02172-0001
ATTN: SLCMT-TML

SLCMT-PR

SLCMT-IMA-T
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